WO2008040896A2 - Method of locating a vehicle - Google Patents
Method of locating a vehicle Download PDFInfo
- Publication number
- WO2008040896A2 WO2008040896A2 PCT/FR2007/051990 FR2007051990W WO2008040896A2 WO 2008040896 A2 WO2008040896 A2 WO 2008040896A2 FR 2007051990 W FR2007051990 W FR 2007051990W WO 2008040896 A2 WO2008040896 A2 WO 2008040896A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- satellite
- mask
- antenna
- camera
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/28—Satellite selection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/485—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/22—Multipath-related issues
Definitions
- the present invention relates to a method and a device for locating a vehicle.
- Locating vehicles using satellite signals is gradually becoming an essential tool in transportation systems.
- known satellite positioning systems may lack accuracy, availability and / or reliability, particularly when the propagation channel is obstructed by the presence of masks, particularly in dense urban areas or on a railway network.
- satellite positioning systems are therefore generally supplemented by dead reckoning systems, ground beacons and / or systems broadcasting correction information.
- the vehicle must therefore be equipped with a complex device, using jointly with the aid of a sophisticated expensive calculator, the various sensors (GPS receiver (Global Positioning System), gyrometers, odometers, onboard mapping, etc.) but also a communication device (RDS radio receiver (Direct Satellite Broadcasting) or DAB (Digital Audio Broadcasting), GSM (Global System for Mobile Communications), etc.).
- GPS receiver Global Positioning System
- gyrometers Global Positioning System
- odometers onboard mapping, etc.
- RDS radio receiver Direct Satellite Broadcasting
- DAB Digital Audio Broadcasting
- GSM Global System for Mobile Communications
- a known solution consists in building a database gathering information relating to the availability of a constellation of satellites along a given trajectory, then, a posteriori, using this database to correct a position determined by a system. satellite location of the vehicle.
- Such systems require knowing the route of the vehicle in advance.
- they may lack reliability and / or accuracy, particularly when the mask characterizing the environment of the antenna varies, for example in the case of an environment with vegetation.
- the present invention aims to provide a method and a location device that avoid at least some of the aforementioned drawbacks, which allow a precise and reliable location, regardless of the route of the vehicle, and which therefore increase the safety of the vehicle. vehicle while reducing the cost of ground maintenance.
- the subject of the invention is a method for locating a vehicle comprising the steps of: a) determining a mask characterizing the environment of an antenna of a GPS system using means of embedded recording in said vehicle, b) determining, according to said mask, a set of visible satellites whose signals are able to be received directly by said antenna, and c) determining a position of said vehicle using said visible satellites, characterized in that that said mask is defined by a height and a distance associated with each direction, step b) comprising the sub-steps consisting of: d) using geometric and propagation optical laws to determine a set of reflected satellites of which the signals are able to be received by said antenna through at least one reflection, and e) for each satellite of said set of reflected satellites, calculate a the signal associated with the reflection, said position being determined in step c) using, on the one hand, each visible satellite and, on the other hand, each reflected satellite taking into account the delay of the corresponding signal.
- step b) comprises the substep of comparing an elevation angle of a satellite with an elevation angle of the mask in the corresponding direction and, when the elevation angle of said satellite is greater than at the elevation angle of said mask, to consider that said satellite is visible.
- step c) comprises a substep of calculating a confidence index relative to the determined position.
- said vehicle is equipped with a secondary locating device capable of determining a position of the vehicle when the confidence index is below a predetermined threshold.
- the secondary locating device comprises an odometric sensor.
- said recording means are video means comprising a fish-eye objective camera disposed on the roof of said vehicle so that an image made by said camera is substantially centered on said antenna .
- the data transmitted by said camera is combined with data from a distance sensor to determine said mask.
- said recording means are video means comprising two cameras arranged on the roof of said vehicle.
- said mask is determined using a stereovision method applied to two successive images from a camera.
- the invention also relates to a device for locating a vehicle using the location method.
- FIG. 1 is a schematic functional view of a locating device according to a first embodiment of the invention
- Figure 2 is a simplified schematic perspective view of a vehicle in which is embedded the locating device of Figure 1
- Fig. 3 is a block diagram showing the steps of a first location method performed by the location device of Fig. 1
- FIG. 4 is a simplified schematic view of an image made by a camera of the locating device of FIG. 1
- FIG. 5 is a simplified schematic representation of satellites of a constellation of satellites capable of transmitting data to a GPS system of the locating device of FIG. 1;
- FIG. 6 is a block diagram showing the steps of a second location method performed by a location device according to a second embodiment of the invention
- Figure 7 is a schematic functional view of a locating device according to a third embodiment of the invention
- Figure 8 is a simplified schematic view of two cameras of the locating device according to the third embodiment of the invention
- Fig. 9 is a block diagram showing the steps of a third location method performed by the location device of Fig. 7
- FIG. 10 is a simplified schematic view showing two images taken respectively by the two cameras of FIG. 8.
- FIG. 1 shows a locating device 1 embedded in a vehicle 6 (represented in FIG. T), for example a railway vehicle .
- the vehicle 6 is also equipped with a secondary locating device (not shown), comprising for example an odometric sensor, which is intended to allow the determination of a position of the vehicle 6 when the locating device 1 does not allow not a sufficiently reliable and / or precise location of the vehicle 6, as will be described in detail below.
- a secondary locating device comprising for example an odometric sensor, which is intended to allow the determination of a position of the vehicle 6 when the locating device 1 does not allow not a sufficiently reliable and / or precise location of the vehicle 6, as will be described in detail below.
- the device 1 comprises a GPS system 2 and video recording means 3.
- the GPS system 2 comprises, in a conventional manner, an antenna, disposed on the roof of the vehicle 6, and processing means able to determine a position of the vehicle 6, said potentially erroneous position, from satellite signals received by the antenna.
- the video recording means 3 comprise, for example, a fish-eye objective camera 4, disposed on the roof of the vehicle 6, close to the antenna of the GPS receiver 2, so that an image supplied by the camera 4 is substantially centered on the antenna.
- the device 1 comprises processing means 5, comprising a module 21 for determining a mask, a module 22 for determining the state of a satellite and a module 23 for locating the vehicle 6.
- the processing means 5 are for determining a position of the vehicle 6, said corrected position, from data provided by the GPS system 2 and data provided by the video recording means 3.
- the GPS system 2 measures the propagation times of a set of signals coming from the satellites of a satellite constellation and deduces therefrom pseudo-distance values between each of the satellites considered and the system 2.
- the accuracy of the location information of a conventional GPS system is of the order of 10 m.
- the main causes of inaccuracy result from a poor estimation of the pseudo-distance (delays related to the propagation of signals in the atmosphere, synchronization errors of the clocks, bad geometry of the available satellites, etc.).
- a number of mathematical models or equipment can reduce these errors.
- the antenna environment of the GPS system 2 is a poor estimation of the pseudo-distance (delays related to the propagation of signals in the atmosphere, synchronization errors of the clocks, bad geometry of the available satellites, etc.).
- FIG. 2 shows three satellites S 1 , S 2 and S 3 of a satellite constellation.
- the vehicle 6 circulates in a valley 7 having two slopes 9.
- three possible states for a satellite S are considered, these states depending on the reception by the system 2 of signals from the satellite S.
- a satellite is called in a visible state, or visible satellite, a satellite whose signals are able to be received directly by the system 2. In FIG. 2, the satellite S 1 is visible.
- the signals coming from the satellite S are either not received or received by multipath, that is to say after one or more reflection (s).
- a satellite is called in a blocked state, or a blocked satellite, a satellite whose signals are not able to be received by the receiver 2.
- a satellite is called in a reflected state, or reflected satellite, a satellite whose signals are capable of being received through multiple trips.
- the satellite S 2 is reflected, since a signal emitted by the satellite S 2 is able to be reflected on a slope 9 in the direction of the antenna, and the satellite S 3 is blocked.
- step 200 the camera 4 realizes an image 12 (FIG. 4) representing a 360 ° view of the obstacles arranged around the antenna of the GPS system 2.
- the camera 4 transmits to the module 21, via a line of communication 17, data relating to the image 12.
- the expression communication line does not imply that the connection between the camera 4 and the processing means 5 is wired, this connection can also be wireless.
- the camera 4 provides for example 25 frames / second.
- the synchronization of the image recording with the odometric sensor makes it possible to record the images according to the distance traveled. For example, an image 12 is recorded every meters.
- the use of spatial rather than temporal sampling has the particular advantage of avoiding the storage of unnecessary data, for example when the vehicle is stationary or is traveling slowly.
- the first method of localization is for example carried out each time an image is made.
- the GPS system 2 receives data from satellites S of the satellite constellation, processes the received data, and transmits to the module 22, for each satellite for which data has been received, position data of the satellite, via a communication line 14, GPS time data, via a communication line 15, and pseudo-distance data, via a line 16. It will be noted that these data are potentially erroneous, particularly in the case of the presence of paths multiple.
- the GPS system 2 also transmits to the module 23, via a communication line 33, the GPS time data.
- the module 21 determines a mask characterizing the environment of the antenna for the current position of the vehicle 6 from the data transmitted by the camera 4. It will be noted that an advantage of the camera 4 with fish objective -eye is that it allows a direct reading of an elevation angle E1 of the mask around the antenna in each direction az passing through the antenna.
- An elevation angle E1 (t 0 , az) in a given az direction is the angle between a horizontal plane and a plane passing through the apex of the highest obstacle in the given az direction, t 0 being the moment at which the image was made.
- the mask corresponds to the dark part 13.
- the module 21 sends the data El (t o , az) to the module 22 via a communication line 24.
- the module 22 determines the elevation and azimuth angles of the satellites of the satellite constellation, for example using data transmitted by the GPS system 2 at step 200 or ephemeris that is, satellite position and speed data that allows satellite positions to be calculated at any time.
- FIG. 5 represents the position of satellites Si at S 5 with respect to the antenna of the GPS system 2 as a function of their elevation angle and their azimuth angle.
- the module 22 compares the elevation angle of a satellite, for example the satellite S l, and the elevation angle E1 of the mask in the corresponding az direction, that is to say with the angle d corresponding azimuth.
- the module 22 only considers the satellites visible in the optical sense of the term from the antenna of the GPS system 2, that is to say the satellites that are above the mask.
- This approach is therefore binary, a satellite S can be in two states, visible or masked.
- the elevation angle of the satellite constitutes the classification criterion, a satellite being considered masked as soon as its elevation angle is less than the elevation angle of the mask in the corresponding direction.
- the module 22 stores the state of the satellite S 1 , visible or masked, and transmits to the module 23, via a communication line 26, the state of the satellite S 1 and a position of the satellite S 1 .
- Step 202 is repeated for each satellite S 2 to S 5 of the satellite constellation.
- the module 23 determines, using the positions of the visible satellites, a corrected position of the vehicle 6.
- the module 23 also determines a confidence index relative to the determined corrected position, the confidence index being in particular dependent the number of satellites S used to determine the position, here the visible satellites.
- the corrected position and the confidence index are respectively issued by communication lines 34 and 35 to, for example, a control device (not shown).
- the confidence index may be used to determine whether or not the secondary locating device is to be used to determine a vehicle position, for example by comparing the value of the confidence index with a predetermined threshold.
- the first location method is particularly effective in an environment with few reflections, for example a mountain range. Indeed, the mountains do not have substantially vertical facades strongly generating reflections.
- This method therefore allows a more precise location and a good characterization of the confidence that can be given to the location, given the environment. It should be noted that an odometer, intended to measure a distance traveled by a vehicle, is reliable over short distances but has a drift for larger distances. It is therefore well suited to be used as a secondary location system whose operation is controlled when the location obtained with the location device 1 is not sufficiently accurate and / or reliable.
- beacons can be arranged in tunnels or other places causing poor reception of satellite signals.
- a second location method executed by a device 1 according to a second embodiment will now be described.
- the device 1 according to the second embodiment comprises, in addition to the elements described in the first embodiment, a distance sensor 30, for example an optical sensor of the LIDAR (Llght Detection And Ranging) type, represented in broken lines on the It will be noted that the device 1 according to the second embodiment could be used to execute the first method of localization.
- LIDAR Lght Detection And Ranging
- step 300 the camera 4 realizes an image 12 and transmits it to the module 21.
- the GPS device 2 transmits to the module 22 the position data, the GPS time data, and the pseudo-distance data.
- the GPS system 2 also transmits the GPS time data to the module 23.
- the distance sensor 30 makes a measurement of the distance of the obstacles relative to the antenna in each direction.
- the sensor 30 transmits the distance data to the module 21 via a communication line 31.
- the module 21 determines a mask characterizing the environment of the antenna for the current position of the vehicle 6 from the data transmitted by the camera 4 and by the distance sensor 30.
- the mask is defined by an elevation angle El (t 0 , az) and a distance d (t 0 , az) associated with each direction az.
- the module 21 determines for each direction az a height h (t 0 , az) of the mask.
- the module 21 sends to the module 22 elevation data El (t o , az), via a communication line 24, data of height h (t o , az), via a communication line 25, and distance data d (t 0 , az), via a communication line 32.
- the module 22 determines the elevation and azimuth angles of the satellites Si at S 5 .
- the module 22 compares the elevation of a satellite and the elevation of the mask in the corresponding direction.
- the module 22 considers laws of geometrical optics and propagation to differentiate, among the masked satellites, the blocked satellites and the reflected satellites.
- the module 22 transmits to the module 23, via the communication line 26, the state of the satellite, the position of the satellite and, in the case of a reflected satellite, the delay of the signal associated with the reflection.
- Step 302 is repeated for each satellite in the satellite constellation.
- Step 303 is similar to step 103.
- the module 23 also uses the positions of the reflected satellites and corrects the error due to reflection using the delay calculated in step 302.
- trust is a function of the number of visible satellites and the number of satellites reflected.
- FIG. 7 A third embodiment of the locating device, shown in FIG. 7, will now be described.
- the elements of the locating device identical to the first embodiment are designated by the same reference numeral increased by 100 and are not described again. .
- the recording means 103 comprise, in place of the camera 4, two cameras 140 and 141 arranged back to back on the roof of the vehicle, as shown in FIG. 8, around the antenna of the system GPS 102.
- the cameras 140, 141 are, for example, black and white analog matrix cameras equipped with a CCD sensor (charge transfer sensor).
- the camera 140 sends an image 112 A, to ( Figure 10). Simultaneously, the camera 141 produces an image 112 B , each camera 140, 141 provides for example 25 frames / second.
- the synchronization of the image recording with the odometric sensor makes it possible to record the images according to the distance traveled. For example, an image 112 A, to, 112 ⁇ , is recorded to all meters. Two images 112 A , to and 112 A , successive ti realized by the camera
- module 141 are transmitted to module 121.
- the GPS device 2 transmits to the module 122 the position data, the GPS time data, and the pseudo-distance data.
- the GPS system 102 also transmits the GPS time data to the module 123.
- the module 121 determines a mask characterizing the environment of the antenna.
- the mask comprises a first sub-mask determined from the two images 112 A) t0 and 1 12 A; t1 transmitted by the camera 140.
- the mask comprises a second sub-mask determined from the two images 1 12 B , to and 112 B , ti transmitted by the camera 141.
- the first sub-mask is determined by considering the two successive images 112 A) t0 and 112 A; t1 as two images coming from two parallel cameras whose distance is a function of the displacement of the vehicle between the two images, here Im.
- a single-camera stereovision method is applied to the images 112A ; t0 and 112A: t1 , which makes it possible to calculate the distance d of each of the obstacles seen in the image 112A ) t0 as well as their height h.
- the second sub-mask is determined similarly by considering the two successive images 112 B) t0 and
- the combination of the two sub-masks then makes it possible, by making the assumption that the obstacles are located along the trajectory, parallel to the direction of the vehicle, to reconstitute the environment in 3 dimensions and to consider each of the obstacles forming the mask 360 ° around the antenna.
- the mask is characterized by an elevation angle El (t 0 , az) and a distance d (t 0 , az) associated with each direction az.
- the module 121 transmits to the module 122 elevation data El (t o , az), via a communication line 124, data of height h (t o , az), via a communication line 125, and data of distance d (t 0 , az), via a communication line 132.
- Steps 402 and 403 are similar to steps 302 and 303 described above. Due to the geometrical hypotheses applied, the results obtained with the device 101 are particularly interesting when the obstacles can be modeled by vertical planes and especially as their edges are marked. This method is particularly well suited to urban location, especially when obstacles are buildings.
- the position of the vehicle is determined in real time, which makes it possible to obtain a more reliable and more precise location.
- the locating devices 1 and 101 are in particular intended to be used for safety applications, for example the command control of the trains or the optimization of the tilting of the trains.
- the expected location accuracies vary from 50 m to 1 m, for a service availability greater than 99% of time and space.
- the devices 1, 101 are suitable for any application requiring a precise and reliable location.
- devices 1, 101 are not limited to railway applications.
- devices 1, 101 may be used for vehicle guidance, which requires being able to position the vehicle on a lane and therefore requires an accuracy of about 5 m.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
Method of locating a vehicle (6), comprising the steps consisting in: a) determining a mask characterizing the environment of an antenna of a GPS system (2) with the aid of recording means (4) carried in said vehicle, b) determining, as a function of said mask, a set of visible satellites whose signals are able to be received directly by said antenna and c) determining a position of said vehicle (6) by using said visible satellites.
Description
PROCÉDÉ DE LOCALISATION D'UN VÉHICULE METHOD FOR LOCATING A VEHICLE
La présente invention a pour objets un procédé et un dispositif de localisation d'un véhicule.The present invention relates to a method and a device for locating a vehicle.
La localisation de véhicules à l'aide de signaux satellites devient progressivement un outil incontournable dans les systèmes de transport. Cependant, les systèmes de localisation par satellites connus peuvent manquer de précision, de disponibilité et/ou de fiabilité, en particulier lorsque le canal de propagation est obstrué par la présence de masques, notamment en milieu urbain dense ou sur un réseau ferroviaire. Afin de garantir les exigences d'une application donnée, les systèmes de localisation par satellites sont donc en général complétés par des systèmes de navigation à l'estime, des balises au sol et/ou des systèmes diffusant des informations de correction. Le véhicule doit donc être équipé d'un dispositif complexe, exploitant conjointement à l'aide d'un calculateur sophistiqué coûteux, les différents capteurs (récepteur GPS (Global Positioning System), gyromètres, odomètres, cartographie embarquée, etc.) mais aussi d'un dispositif de communication (récepteur radio RDS (Radiodiffusion Directe par Satellite) ou DAB (Digital Audio Broadcasting), radio téléphone GSM (Global System for Mobile communications), etc.). De tels systèmes équipent déjà un certain nombre de véhicules particuliers mais représentent un investissement important pour l'équipement d'une flotte de transports collectifs (trains, réseaux de bus).Locating vehicles using satellite signals is gradually becoming an essential tool in transportation systems. However, known satellite positioning systems may lack accuracy, availability and / or reliability, particularly when the propagation channel is obstructed by the presence of masks, particularly in dense urban areas or on a railway network. In order to guarantee the requirements of a given application, satellite positioning systems are therefore generally supplemented by dead reckoning systems, ground beacons and / or systems broadcasting correction information. The vehicle must therefore be equipped with a complex device, using jointly with the aid of a sophisticated expensive calculator, the various sensors (GPS receiver (Global Positioning System), gyrometers, odometers, onboard mapping, etc.) but also a communication device (RDS radio receiver (Direct Satellite Broadcasting) or DAB (Digital Audio Broadcasting), GSM (Global System for Mobile Communications), etc.). Such systems already equip a number of private vehicles but represent a significant investment for the equipment of a fleet of public transport (trains, bus networks).
Pour le développement d'applications de localisation et de communication de faible coût à caractère sécuritaire dans le domaine routier ou ferroviaire, il est donc important de développer des solutions qui permettent de s'affranchir de ces systèmes multi-capteurs ou du moins de les simplifier.For the development of low-cost location and communication applications of a safety nature in the road or rail sector, it is therefore important to develop solutions that make it possible to overcome these multi-sensor systems or at least simplify them. .
Une solution connue consiste à construire une base de données regroupant des informations relatives à la disponibilité d'une constellation de satellites le long d'une trajectoire donnée, puis, a posteriori, à utiliser cette base de données pour corriger une position déterminée par un système de localisation par satellites du véhicule.A known solution consists in building a database gathering information relating to the availability of a constellation of satellites along a given trajectory, then, a posteriori, using this database to correct a position determined by a system. satellite location of the vehicle.
De tels systèmes imposent de connaître l'itinéraire du véhicule à l'avance. En outre, ils peuvent manquer de fiabilité et/ou de précision, en particulier lorsque le masque caractérisant l'environnement de
l'antenne varie, par exemple dans le cas d'un environnement comportant de la végétation.Such systems require knowing the route of the vehicle in advance. In addition, they may lack reliability and / or accuracy, particularly when the mask characterizing the environment of the antenna varies, for example in the case of an environment with vegetation.
La présente invention a pour but de proposer un procédé et un dispositif de localisation qui évitent au moins certains des inconvénients précités, qui permettent une localisation précise et fiable, indépendamment de l'itinéraire du véhicule, et qui permettent donc d'augmenter la sécurité du véhicule tout en diminuant le coût de la maintenance au sol.The present invention aims to provide a method and a location device that avoid at least some of the aforementioned drawbacks, which allow a precise and reliable location, regardless of the route of the vehicle, and which therefore increase the safety of the vehicle. vehicle while reducing the cost of ground maintenance.
A cet effet, l'invention a pour objet un procédé de localisation d'un véhicule comprenant les étapes consistant à : a) déterminer un masque caractérisant l'environnement d'une antenne d'un système GPS à l'aide de moyens d'enregistrement embarqués dans ledit véhicule, b) déterminer, en fonction dudit masque, un ensemble de satellites visibles dont les signaux sont aptes à être reçus directement par ladite antenne, et c) déterminer une position dudit véhicule en utilisant lesdits satellites visibles, caractérisé en ce que ledit masque est défini par une hauteur et par une distance associées à chaque direction, l'étape b) comprenant les sous- étapes consistant à : d) utiliser des lois d'optique géométrique et de propagation pour déterminer un ensemble de satellites réfléchis dont les signaux sont aptes à être reçus par ladite antenne par le biais d'au moins une réflexion, et e) pour chaque satellite dudit ensemble de satellites réfléchis, calculer un retard du signal associé à la réflexion, ladite position étant déterminée à l'étape c) en utilisant, d'une part, chaque satellite visible et, d'autre part, chaque satellite réfléchi en tenant compte du retard du signal correspondant.To this end, the subject of the invention is a method for locating a vehicle comprising the steps of: a) determining a mask characterizing the environment of an antenna of a GPS system using means of embedded recording in said vehicle, b) determining, according to said mask, a set of visible satellites whose signals are able to be received directly by said antenna, and c) determining a position of said vehicle using said visible satellites, characterized in that that said mask is defined by a height and a distance associated with each direction, step b) comprising the sub-steps consisting of: d) using geometric and propagation optical laws to determine a set of reflected satellites of which the signals are able to be received by said antenna through at least one reflection, and e) for each satellite of said set of reflected satellites, calculate a the signal associated with the reflection, said position being determined in step c) using, on the one hand, each visible satellite and, on the other hand, each reflected satellite taking into account the delay of the corresponding signal.
De préférence, l'étape b) comprend la sous-étape consistant à comparer un angle d'élévation d'un satellite avec un angle d'élévation du masque dans la direction correspondante et, lorsque l'angle d'élévation dudit satellite est supérieur à l'angle d'élévation dudit masque, à considérer que ledit satellite est visible.
De préférence, l'étape c) comprend une sous-étape consistant à calculer un indice de confiance relatif à la position déterminée.Preferably, step b) comprises the substep of comparing an elevation angle of a satellite with an elevation angle of the mask in the corresponding direction and, when the elevation angle of said satellite is greater than at the elevation angle of said mask, to consider that said satellite is visible. Preferably, step c) comprises a substep of calculating a confidence index relative to the determined position.
Selon un mode de réalisation de l'invention, ledit véhicule est équipé d'un dispositif de localisation secondaire apte à déterminer une position du véhicule lorsque l'indice de confiance est inférieur à un seuil prédéterminé.According to one embodiment of the invention, said vehicle is equipped with a secondary locating device capable of determining a position of the vehicle when the confidence index is below a predetermined threshold.
De préférence, le dispositif de localisation secondaire comporte un capteur odométrique.Preferably, the secondary locating device comprises an odometric sensor.
Selon un mode de réalisation de l'invention, lesdits moyens d'enregistrement sont des moyens vidéo comprenant une caméra à objectif fish-eye, disposée sur le toit dudit véhicule de manière qu'une image réalisée par ladite caméra soit sensiblement centrée sur ladite antenne.According to one embodiment of the invention, said recording means are video means comprising a fish-eye objective camera disposed on the roof of said vehicle so that an image made by said camera is substantially centered on said antenna .
De préférence, les données transmises par ladite caméra sont combinées avec des données provenant d'un capteur de distance pour déterminer ledit masque.Preferably, the data transmitted by said camera is combined with data from a distance sensor to determine said mask.
Selon un autre mode de réalisation de l'invention, lesdits moyens d'enregistrement sont des moyens vidéo comprenant deux caméras disposées sur le toit dudit véhicule. Avantageusement, ledit masque est déterminé à l'aide d'un procédé de stéréovision appliqué sur deux images successives provenant d'une caméra.According to another embodiment of the invention, said recording means are video means comprising two cameras arranged on the roof of said vehicle. Advantageously, said mask is determined using a stereovision method applied to two successive images from a camera.
L'invention a également pour objet un dispositif de localisation d'un véhicule utilisant le procédé de localisation. L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, de plusieurs modes de réalisation de l'invention donnés à titre d'exemples purement illustratifs et non limitatifs, en référence aux dessins schématiques annexés.The invention also relates to a device for locating a vehicle using the location method. The invention will be better understood, and other objects, details, features and advantages thereof will become more clearly apparent in the following detailed explanatory description of several embodiments of the invention given as examples. purely illustrative and non-limiting examples, with reference to the attached schematic drawings.
Sur ces dessins : la figure 1 est une vue schématique fonctionnelle d'un dispositif de localisation selon un premier mode de réalisation de l'invention ;
la figure 2 est une vue schématique simplifiée en perspective d'un véhicule dans lequel est embarqué le dispositif de localisation de la figure 1 ; la figure 3 est un schéma fonctionnel représentant les étapes d'un premier procédé de localisation exécuté par le dispositif de localisation de la figure 1 ; la figure 4 est une vue schématique simplifiée d'une image réalisée par une caméra du dispositif de localisation de la figure 1 ; - la figure 5 est une représentation schématique simplifiée de satellites d'une constellation de satellites aptes à transmettre des données à un système GPS du dispositif de localisation de la figure 1 ; la figure 6 est un schéma fonctionnel représentant les étapes d'un deuxième procédé de localisation exécuté par un dispositif de localisation selon un deuxième mode de réalisation de l'invention ; la figure 7 est une vue schématique fonctionnelle d'un dispositif de localisation selon un troisième mode de réalisation de l'invention ; la figure 8 est une vue schématique simplifiée de deux caméras du dispositif de localisation selon le troisième mode de réalisation de l'invention ; la figure 9 est un schéma fonctionnel représentant les étapes d'un troisième procédé de localisation exécuté par le dispositif de localisation de la figure 7 ; et la figure 10 est une vue schématique simplifiée montrant deux images réalisées respectivement par les deux caméras de la figure 8. La figure 1 montre un dispositif de localisation 1 embarqué dans un véhicule 6 (représenté sur la figure T), par exemple un véhicule ferroviaire. Le véhicule 6 est également équipé d'un dispositif de localisation secondaire (non représenté), comprenant par exemple un capteur odométrique, qui est destiné à permettre la détermination d'une position du véhicule 6 lorsque le dispositif de localisation 1 ne permet
pas une localisation suffisamment fiable et/ou précise du véhicule 6, tel que cela sera décrit en détail plus loin.In these drawings: FIG. 1 is a schematic functional view of a locating device according to a first embodiment of the invention; Figure 2 is a simplified schematic perspective view of a vehicle in which is embedded the locating device of Figure 1; Fig. 3 is a block diagram showing the steps of a first location method performed by the location device of Fig. 1; FIG. 4 is a simplified schematic view of an image made by a camera of the locating device of FIG. 1; FIG. 5 is a simplified schematic representation of satellites of a constellation of satellites capable of transmitting data to a GPS system of the locating device of FIG. 1; Fig. 6 is a block diagram showing the steps of a second location method performed by a location device according to a second embodiment of the invention; Figure 7 is a schematic functional view of a locating device according to a third embodiment of the invention; Figure 8 is a simplified schematic view of two cameras of the locating device according to the third embodiment of the invention; Fig. 9 is a block diagram showing the steps of a third location method performed by the location device of Fig. 7; and FIG. 10 is a simplified schematic view showing two images taken respectively by the two cameras of FIG. 8. FIG. 1 shows a locating device 1 embedded in a vehicle 6 (represented in FIG. T), for example a railway vehicle . The vehicle 6 is also equipped with a secondary locating device (not shown), comprising for example an odometric sensor, which is intended to allow the determination of a position of the vehicle 6 when the locating device 1 does not allow not a sufficiently reliable and / or precise location of the vehicle 6, as will be described in detail below.
Le dispositif 1 comporte un système GPS 2 et des moyens d'enregistrement vidéo 3. Le système GPS 2 comporte, de manière classique, une antenne, disposée sur le toit du véhicule 6, et des moyens de traitement aptes à déterminer une position du véhicule 6, dite position potentiellement erronée, à partir de signaux satellites reçus par l'antenne.The device 1 comprises a GPS system 2 and video recording means 3. The GPS system 2 comprises, in a conventional manner, an antenna, disposed on the roof of the vehicle 6, and processing means able to determine a position of the vehicle 6, said potentially erroneous position, from satellite signals received by the antenna.
Les moyens d'enregistrement vidéo 3 comprennent par exemple une caméra 4 à objectif fish-eye, disposée sur le toit du véhicule 6, à proximité de l'antenne du récepteur GPS 2, de manière qu'une image fournie par la caméra 4 soit sensiblement centrée sur l'antenne.The video recording means 3 comprise, for example, a fish-eye objective camera 4, disposed on the roof of the vehicle 6, close to the antenna of the GPS receiver 2, so that an image supplied by the camera 4 is substantially centered on the antenna.
Le dispositif 1 comporte des moyens de traitement 5, comprenant un module 21 de détermination d'un masque, un module 22 de détermination de l'état d'un satellite et un module 23 de localisation du véhicule 6. Les moyens de traitement 5 sont destinés à déterminer une position du véhicule 6, dite position corrigée, à partir de données fournies par le système GPS 2 et de données fournies par les moyens d'enregistrement vidéo 3.The device 1 comprises processing means 5, comprising a module 21 for determining a mask, a module 22 for determining the state of a satellite and a module 23 for locating the vehicle 6. The processing means 5 are for determining a position of the vehicle 6, said corrected position, from data provided by the GPS system 2 and data provided by the video recording means 3.
Pour déterminer une position potentiellement erronée du véhicule 6, le système GPS 2 mesure les temps de propagation d'un ensemble de signaux issus des satellites d'une constellation de satellites et en déduit des valeurs de pseudo-distance entre chacun des satellites considérés et le système 2. Aujourd'hui, la précision de l'information de localisation d'un système GPS classique est de l'ordre de 10 m. Les principales causes de l'imprécision résultent d'une mauvaise estimation de la pseudo-distance (retards liés à la propagation des signaux dans l'atmosphère, erreurs de synchronisation des horloges, mauvaise géométrie des satellites disponibles, etc.). Un certain nombre de modèles mathématiques ou d'équipements permettent de réduire ces erreurs. Cependant, l'environnement de l'antenne du système GPS 2In order to determine a potentially erroneous position of the vehicle 6, the GPS system 2 measures the propagation times of a set of signals coming from the satellites of a satellite constellation and deduces therefrom pseudo-distance values between each of the satellites considered and the system 2. Today, the accuracy of the location information of a conventional GPS system is of the order of 10 m. The main causes of inaccuracy result from a poor estimation of the pseudo-distance (delays related to the propagation of signals in the atmosphere, synchronization errors of the clocks, bad geometry of the available satellites, etc.). A number of mathematical models or equipment can reduce these errors. However, the antenna environment of the GPS system 2
(immeubles, arbres, ponts, etc.) forme un masque radioélectrique et peut également limiter la précision et la disponibilité de la localisation. Les masques radioélectriques ne peuvent pas être corrigés a priori car il n'existe pas de modélisation généralisable à tous les environnements. Ces masques peuvent engendrer des erreurs, notamment par la propagation par trajets multiples.
La figure 2 montre trois satellites S1, S2 et S3 d'une constellation de satellites. Le véhicule 6 circule dans une vallée 7 présentant deux versants 9. Dans la suite de la description, on considère trois états possibles pour un satellite S, ces états dépendant de la réception par le système 2 de signaux issus du satellite S.(Buildings, trees, bridges, etc.) form a radio mask and may also limit the accuracy and availability of the location. Radio masks can not be corrected a priori because there is no generalizable modeling for all environments. These masks can cause errors, especially by multipath propagation. Figure 2 shows three satellites S 1 , S 2 and S 3 of a satellite constellation. The vehicle 6 circulates in a valley 7 having two slopes 9. In the remainder of the description, three possible states for a satellite S are considered, these states depending on the reception by the system 2 of signals from the satellite S.
Le cas le plus favorable pour la réception d'un signal satellite est la réception en visibilité directe car dans ce cas le signal ne subit pas les atténuations et les retards dus aux trajets multiples. On appelle satellite dans un état visible, ou satellite visible, un satellite dont les signaux sont aptes à être reçus directement par le système 2. Sur la figure 2, le satellite S1 est visible.The most favorable case for the reception of a satellite signal is the line-of-sight reception because in this case the signal does not undergo the attenuations and the delays due to the multiple paths. A satellite is called in a visible state, or visible satellite, a satellite whose signals are able to be received directly by the system 2. In FIG. 2, the satellite S 1 is visible.
Lorsqu'un satellite S est masqué, c'est-à-dire lorsque les signaux issus du satellite ne peuvent pas être reçus directement par le système 2, les signaux en provenance du satellite S sont soit non reçus, soit reçus par trajets multiples, c'est-à-dire après une ou plusieurs réflexion(s). On appelle satellite dans un état bloqué, ou satellite bloqué, un satellite dont les signaux ne sont pas aptes à être reçus par le récepteur 2. On appelle satellite dans un état réfléchi, ou satellite réfléchi, un satellite dont les signaux sont aptes à être reçus par le biais de trajet multiples. Sur la figure 2, le satellite S2 est réfléchi, car un signal émis par le satellite S2 est apte à se réfléchir sur un versant 9 en direction de l'antenne, et le satellite S3 est bloqué.When a satellite S is masked, that is to say when the signals from the satellite can not be received directly by the system 2, the signals coming from the satellite S are either not received or received by multipath, that is to say after one or more reflection (s). A satellite is called in a blocked state, or a blocked satellite, a satellite whose signals are not able to be received by the receiver 2. A satellite is called in a reflected state, or reflected satellite, a satellite whose signals are capable of being received through multiple trips. In FIG. 2, the satellite S 2 is reflected, since a signal emitted by the satellite S 2 is able to be reflected on a slope 9 in the direction of the antenna, and the satellite S 3 is blocked.
En référence à la figure 3, on va maintenant décrire les étapes d'un premier procédé de localisation exécuté par le dispositif 1 selon le premier mode de réalisation.Referring to Figure 3, will now be described the steps of a first locating method performed by the device 1 according to the first embodiment.
A l'étape 200, la caméra 4 réalise une image 12 (figure 4) représentant une vision à 360° des obstacles disposés autour de l'antenne du système GPS 2. La caméra 4 émet à destination du module 21, via une ligne de communication 17, des données relatives à l'image 12. On notera que l'expression ligne de communication n'implique pas que la liaison entre la caméra 4 et les moyens de traitement 5 soit filaire, cette liaison pouvant également être sans fil.In step 200, the camera 4 realizes an image 12 (FIG. 4) representing a 360 ° view of the obstacles arranged around the antenna of the GPS system 2. The camera 4 transmits to the module 21, via a line of communication 17, data relating to the image 12. It will be noted that the expression communication line does not imply that the connection between the camera 4 and the processing means 5 is wired, this connection can also be wireless.
La caméra 4 fournit par exemple 25 images/seconde. Cependant, la synchronisation de l'enregistrement des images avec le capteur odométrique permet d'enregistrer les images en fonction de la distance parcourue. Par exemple, une image 12 est enregistrée tous les
mètres. L'utilisation d'un échantillonnage spatial plutôt que temporel présente notamment l'avantage d'éviter la mémorisation de données inutiles par exemple lorsque le véhicule est à l'arrêt ou circule lentement. Le premier procédé de localisation est par exemple exécuté à chaque réalisation d'une image.The camera 4 provides for example 25 frames / second. However, the synchronization of the image recording with the odometric sensor makes it possible to record the images according to the distance traveled. For example, an image 12 is recorded every meters. The use of spatial rather than temporal sampling has the particular advantage of avoiding the storage of unnecessary data, for example when the vehicle is stationary or is traveling slowly. The first method of localization is for example carried out each time an image is made.
Simultanément, le système GPS 2 reçoit des données provenant de satellites S de la constellation de satellites, traite les données reçues, et émet à destination du module 22, pour chaque satellite pour lequel des données ont été reçues, des données de position du satellite, via une ligne de communication 14, des données de temps GPS, via une ligne de communication 15, et des données de pseudo-distance, via une ligne 16. On notera que ces données sont potentiellement erronées notamment dans le cas de la présence de trajets multiples. Le système GPS 2 émet également à destination du module 23, via une ligne de communication 33, les données de temps GPS.Simultaneously, the GPS system 2 receives data from satellites S of the satellite constellation, processes the received data, and transmits to the module 22, for each satellite for which data has been received, position data of the satellite, via a communication line 14, GPS time data, via a communication line 15, and pseudo-distance data, via a line 16. It will be noted that these data are potentially erroneous, particularly in the case of the presence of paths multiple. The GPS system 2 also transmits to the module 23, via a communication line 33, the GPS time data.
A l'étape 201, le module 21 détermine un masque caractérisant l'environnement de l'antenne pour la position actuelle du véhicule 6 à partir des données transmises par la caméra 4. On notera qu'un avantage de la caméra 4 à objectif fish-eye est qu'elle permet une lecture directe d'un angle d'élévation El du masque autour de l'antenne dans chacune des directions az passant par l'antenne. Un angle d'élévation El(t0, az) dans une direction az donnée est l'angle entre un plan horizontal et un plan passant par le sommet de l'obstacle le plus haut dans la direction az donnée, t0 étant l'instant à laquelle l'image a été réalisée. Sur la figure 4, le masque correspond à la partie foncée 13. Le module 21 émet à destination du module 22 les données El(to,az), via une ligne de communication 24.In step 201, the module 21 determines a mask characterizing the environment of the antenna for the current position of the vehicle 6 from the data transmitted by the camera 4. It will be noted that an advantage of the camera 4 with fish objective -eye is that it allows a direct reading of an elevation angle E1 of the mask around the antenna in each direction az passing through the antenna. An elevation angle E1 (t 0 , az) in a given az direction is the angle between a horizontal plane and a plane passing through the apex of the highest obstacle in the given az direction, t 0 being the moment at which the image was made. In FIG. 4, the mask corresponds to the dark part 13. The module 21 sends the data El (t o , az) to the module 22 via a communication line 24.
A l'étape 202, le module 22 détermine les angles d'élévation et d'azimut des satellites de la constellation de satellites, par exemple à l'aide des données transmises par le système GPS 2 à l'étape 200 ou d'éphémérides, c'est-à-dire de données relatives à la position et à la vitesse des satellites qui permettent le calcul des positions des satellites à tout instant. La figure 5 représente la position de satellites Si à S5 par rapport à l'antenne du système GPS 2 en fonction de leur angle d'élévation et de leur angle d'azimut.
Le module 22 compare l'angle d'élévation d'un satellite, par exemple le satellite S l, et l'angle d'élévation El du masque dans la direction az correspondante, c'est-à-dire avec l'angle d'azimut correspondant. Dans ce mode de réalisation, le module 22 ne considère que les satellites visibles au sens optique du terme depuis l'antenne du système GPS 2, c'est-à-dire les satellites qui se situent au-dessus du masque. Cette approche est donc binaire, un satellite S pouvant se trouver dans deux états, visible ou masqué. En d'autres termes, l'angle d'élévation du satellite constitue le critère de classement, un satellite étant considéré comme masqué dès que son angle d'élévation est inférieur à l'angle d'élévation du masque dans la direction correspondante.In step 202, the module 22 determines the elevation and azimuth angles of the satellites of the satellite constellation, for example using data transmitted by the GPS system 2 at step 200 or ephemeris that is, satellite position and speed data that allows satellite positions to be calculated at any time. FIG. 5 represents the position of satellites Si at S 5 with respect to the antenna of the GPS system 2 as a function of their elevation angle and their azimuth angle. The module 22 compares the elevation angle of a satellite, for example the satellite S l, and the elevation angle E1 of the mask in the corresponding az direction, that is to say with the angle d corresponding azimuth. In this embodiment, the module 22 only considers the satellites visible in the optical sense of the term from the antenna of the GPS system 2, that is to say the satellites that are above the mask. This approach is therefore binary, a satellite S can be in two states, visible or masked. In other words, the elevation angle of the satellite constitutes the classification criterion, a satellite being considered masked as soon as its elevation angle is less than the elevation angle of the mask in the corresponding direction.
Le module 22 mémorise l'état du satellite S1, visible ou masqué, et émet à destination du module 23, via une ligne de communication 26, l'état du satellite S1 et une position du satellite S1.The module 22 stores the state of the satellite S 1 , visible or masked, and transmits to the module 23, via a communication line 26, the state of the satellite S 1 and a position of the satellite S 1 .
L'étape 202 est répétée pour chaque satellite S2 à S5 de la constellation de satellites.Step 202 is repeated for each satellite S 2 to S 5 of the satellite constellation.
A l'étape 203, le module 23 détermine, en utilisant les positions des satellites visibles, une position corrigée du véhicule 6. Le module 23 détermine également un indice de confiance relatif à la position corrigée déterminée, l'indice de confiance étant notamment fonction du nombre de satellites S utilisés pour déterminer la position, ici les satellites visibles. La position corrigée et l'indice de confiance sont respectivement émis par des lignes de communication 34 et 35 à destination, par exemple, d'un dispositif de commande (non représenté). L'indice de confiance peut être utilisé pour déterminer si le dispositif de localisation secondaire doit être utilisé ou non pour déterminer une position du véhicule, par exemple en comparant la valeur de l'indice de confiance à un seuil prédéterminé. Le premier procédé de localisation est particulièrement efficace dans un environnement entraînant peu de réflexions, par exemple une chaîne montagneuse. En effet, les montagnes ne présentent pas de façades sensiblement verticales fortement génératrices de réflexions.In step 203, the module 23 determines, using the positions of the visible satellites, a corrected position of the vehicle 6. The module 23 also determines a confidence index relative to the determined corrected position, the confidence index being in particular dependent the number of satellites S used to determine the position, here the visible satellites. The corrected position and the confidence index are respectively issued by communication lines 34 and 35 to, for example, a control device (not shown). The confidence index may be used to determine whether or not the secondary locating device is to be used to determine a vehicle position, for example by comparing the value of the confidence index with a predetermined threshold. The first location method is particularly effective in an environment with few reflections, for example a mountain range. Indeed, the mountains do not have substantially vertical facades strongly generating reflections.
Ce procédé permet donc une localisation plus précise et une bonne caractérisation de la confiance que l'on peut accorder à la localisation, compte tenu de l'environnement.
On notera qu'un odomètre, destiné à mesurer une distance parcourue par un véhicule, est fiable sur de courtes distances mais qu'il présente une dérive pour les distances plus grandes. Il est donc bien adapté pour être utilisé comme système de localisation secondaire dont le fonctionnement est commandé lorsque la localisation obtenue avec le dispositif de localisation 1 n'est pas suffisamment précise et/ou fiable.This method therefore allows a more precise location and a good characterization of the confidence that can be given to the location, given the environment. It should be noted that an odometer, intended to measure a distance traveled by a vehicle, is reliable over short distances but has a drift for larger distances. It is therefore well suited to be used as a secondary location system whose operation is controlled when the location obtained with the location device 1 is not sufficiently accurate and / or reliable.
En variante, pour compléter le dispositif 1 , des balises peuvent être disposées dans les tunnels ou autres endroits entraînant une mauvaise réception de signaux satellites. En référence à la figure 6, on va maintenant décrire un deuxième procédé de localisation exécuté par un dispositif 1 selon un deuxième mode de réalisation. Le dispositif 1 selon le deuxième mode de réalisation comporte, en plus des éléments décrits dans le premier mode de réalisation, un capteur de distance 30, par exemple un capteur optique de type LIDAR (Llght Détection And Ranging), représenté en traits interrompus sur la figure 1. On notera que le dispositif 1 selon le deuxième mode de réalisation pourrait être utilisé pour exécuter le premier procédé de localisation.Alternatively, to complete the device 1, beacons can be arranged in tunnels or other places causing poor reception of satellite signals. With reference to FIG. 6, a second location method executed by a device 1 according to a second embodiment will now be described. The device 1 according to the second embodiment comprises, in addition to the elements described in the first embodiment, a distance sensor 30, for example an optical sensor of the LIDAR (Llght Detection And Ranging) type, represented in broken lines on the It will be noted that the device 1 according to the second embodiment could be used to execute the first method of localization.
A l'étape 300, la caméra 4 réalise une image 12 et la transmet au module 21. Le dispositif GPS 2 émet à destination du module 22 les données de position, les données de temps GPS, et les données de pseudo-distance. Le système GPS 2 émet également à destination du module 23 les données de temps GPS.In step 300, the camera 4 realizes an image 12 and transmits it to the module 21. The GPS device 2 transmits to the module 22 the position data, the GPS time data, and the pseudo-distance data. The GPS system 2 also transmits the GPS time data to the module 23.
Simultanément, le capteur de distance 30 réalise une mesure de la distance des obstacles par rapport à l'antenne dans chaque direction. Le capteur 30 transmet les données de distance au module 21 via une ligne de communication 31.Simultaneously, the distance sensor 30 makes a measurement of the distance of the obstacles relative to the antenna in each direction. The sensor 30 transmits the distance data to the module 21 via a communication line 31.
A l'étape 301, le module 21 détermine un masque caractérisant l'environnement de l'antenne pour la position actuelle du véhicule 6 à partir des données transmises par la caméra 4 et par le capteur de distance 30. Ici, le masque est défini par un angle d'élévation El(t0, az) et par une distance d(t0, az) associés à chaque direction az. Le module 21 détermine pour chaque direction az une hauteur h(t0, az) du masque. Le module 21 émet à destination du module 22 des données d'élévation El(to,az), via une ligne de communication 24, des données de hauteur h(to,az), via une ligne de communication 25, et des données de distance d(t0, az), via une ligne de communication 32.
A l'étape 302, le module 22 détermine les angles d'élévation et d'azimut des satellites Si à S5.In step 301, the module 21 determines a mask characterizing the environment of the antenna for the current position of the vehicle 6 from the data transmitted by the camera 4 and by the distance sensor 30. Here, the mask is defined by an elevation angle El (t 0 , az) and a distance d (t 0 , az) associated with each direction az. The module 21 determines for each direction az a height h (t 0 , az) of the mask. The module 21 sends to the module 22 elevation data El (t o , az), via a communication line 24, data of height h (t o , az), via a communication line 25, and distance data d (t 0 , az), via a communication line 32. In step 302, the module 22 determines the elevation and azimuth angles of the satellites Si at S 5 .
Le module 22 compare l'élévation d'un satellite et l'élévation du masque dans la direction correspondante. Dans ce mode de réalisation, le module 22 considère des lois d'optique géométrique et de propagation pour différencier, parmi les satellites masqués, les satellites bloqués et les satellites réfléchis.The module 22 compares the elevation of a satellite and the elevation of the mask in the corresponding direction. In this embodiment, the module 22 considers laws of geometrical optics and propagation to differentiate, among the masked satellites, the blocked satellites and the reflected satellites.
Le module 22 émet à destination du module 23, via la ligne de communication 26, l'état du satellite, la position du satellite et, dans le cas d'un satellite réfléchi, le retard du signal associé à la réflexion.The module 22 transmits to the module 23, via the communication line 26, the state of the satellite, the position of the satellite and, in the case of a reflected satellite, the delay of the signal associated with the reflection.
L'étape 302 est répétée pour chaque satellite de la constellation de satellites.Step 302 is repeated for each satellite in the satellite constellation.
L'étape 303 est similaire à l'étape 103. Ici, le module 23 utilise également les positions des satellites réfléchis et corrige l'erreur due à la réflexion à l'aide du retard calculé à l'étape 302. L'indice de confiance est donc fonction du nombre de satellites visibles et du nombre de satellites réfléchis.Step 303 is similar to step 103. Here, the module 23 also uses the positions of the reflected satellites and corrects the error due to reflection using the delay calculated in step 302. Thus, trust is a function of the number of visible satellites and the number of satellites reflected.
On va maintenant décrire un troisième mode de réalisation du dispositif de localisation, représenté sur la figure 7. Les éléments du dispositif de localisation identiques au premier mode de réalisation sont désignés par le même chiffre de référence augmenté de 100 et ne sont pas décrits à nouveau.A third embodiment of the locating device, shown in FIG. 7, will now be described. The elements of the locating device identical to the first embodiment are designated by the same reference numeral increased by 100 and are not described again. .
Ici, les moyens d'enregistrement 103 comprennent, à la place de la caméra 4, deux caméras 140 et 141 disposées dos à dos sur le toit du véhicule, tel que cela est représenté sur la figure 8, autour de l'antenne du système GPS 102. Les caméras 140, 141 sont par exemple des caméras matricielles analogiques noir et blanc équipées d'un capteur CCD (capteur à transfert de charge).Here, the recording means 103 comprise, in place of the camera 4, two cameras 140 and 141 arranged back to back on the roof of the vehicle, as shown in FIG. 8, around the antenna of the system GPS 102. The cameras 140, 141 are, for example, black and white analog matrix cameras equipped with a CCD sensor (charge transfer sensor).
En référence à la figure 9, on va maintenant décrire un troisième procédé de localisation exécuté par le dispositif 101 selon le troisième mode de réalisation.With reference to FIG. 9, a third location method executed by the device 101 according to the third embodiment will now be described.
A l'étape 400, la caméra 140 réalise une image 112A,to (figure 10). Simultanément, la caméra 141 réalise une image 112B,to- Chaque caméra 140, 141 fournit par exemple 25 images/seconde. Cependant, la synchronisation de l'enregistrement des images avec le capteur odométrique permet d'enregistrer les images en fonction de la distance parcourue. Par exemple, une image 112A,to, 112β,to est enregistrée tous les
mètres. Deux images 112A,to et 112A,ti successives réalisées par la caméraAt step 400, the camera 140 sends an image 112 A, to (Figure 10). Simultaneously, the camera 141 produces an image 112 B , each camera 140, 141 provides for example 25 frames / second. However, the synchronization of the image recording with the odometric sensor makes it possible to record the images according to the distance traveled. For example, an image 112 A, to, 112β, is recorded to all meters. Two images 112 A , to and 112 A , successive ti realized by the camera
140 et deux images 112B,to, et 112B,ti successives réalisées par la caméra140 and two successive images 112 B , to, and 112 B , ti taken by the camera
141 sont transmises au module 121.141 are transmitted to module 121.
Simultanément, le dispositif GPS 2 émet à destination du module 122 les données de position, les données de temps GPS, et les données de pseudo-distance. Le système GPS 102 émet également à destination du module 123 les données de temps GPS.Simultaneously, the GPS device 2 transmits to the module 122 the position data, the GPS time data, and the pseudo-distance data. The GPS system 102 also transmits the GPS time data to the module 123.
A l'étape 401 , le module 121 détermine un masque caractérisant l'environnement de l'antenne. Le masque comprend un premier sous-masque déterminé à partir des deux images 112A)t0 et 1 12A;tl transmises par la caméra 140. Le masque comprend un deuxième sous-masque déterminé à partir des deux images 1 12B,to et 112B,ti transmises par la caméra 141.In step 401, the module 121 determines a mask characterizing the environment of the antenna. The mask comprises a first sub-mask determined from the two images 112 A) t0 and 1 12 A; t1 transmitted by the camera 140. The mask comprises a second sub-mask determined from the two images 1 12 B , to and 112 B , ti transmitted by the camera 141.
Le premier sous-masque est déterminé en considérant les deux images successives 112A)t0 et 112A;tl comme deux images issues de deux caméras parallèles dont la distance est fonction du déplacement du véhicule entre les deux images, ici Im. Un procédé de stéréovision mono-caméra est appliqué aux images 112A;t0 et 112A:tl, ce qui permet de calculer la distance d de chacun des obstacles vus dans l'image 112A)t0 ainsi que leur hauteur h. Le deuxième sous-masque est déterminé de manière similaire en considérant les deux images successives 112B)t0 etThe first sub-mask is determined by considering the two successive images 112 A) t0 and 112 A; t1 as two images coming from two parallel cameras whose distance is a function of the displacement of the vehicle between the two images, here Im. A single-camera stereovision method is applied to the images 112A ; t0 and 112A: t1 , which makes it possible to calculate the distance d of each of the obstacles seen in the image 112A ) t0 as well as their height h. The second sub-mask is determined similarly by considering the two successive images 112 B) t0 and
La combinaison des deux sous-masques permet alors, en faisant l'hypothèse que les obstacles sont situés le long de la trajectoire, parallèlement à la direction du véhicule, de reconstituer l'environnement en 3 dimensions et de considérer chacun des obstacles formant le masque à 360° autour de l'antenne.The combination of the two sub-masks then makes it possible, by making the assumption that the obstacles are located along the trajectory, parallel to the direction of the vehicle, to reconstitute the environment in 3 dimensions and to consider each of the obstacles forming the mask 360 ° around the antenna.
Le masque est caractérisé par un angle d'élévation El(t0, az) et par une distance d(t0, az) associés à chaque direction az. Le module 121 émet à destination du module 122 des données d'élévation El(to,az), via une ligne de communication 124, des données de hauteur h(to,az), via une ligne de communication 125, et des données de distance d(t0, az), via une ligne de communication 132.The mask is characterized by an elevation angle El (t 0 , az) and a distance d (t 0 , az) associated with each direction az. The module 121 transmits to the module 122 elevation data El (t o , az), via a communication line 124, data of height h (t o , az), via a communication line 125, and data of distance d (t 0 , az), via a communication line 132.
Les étapes 402 et 403 sont similaires aux étapes 302 et 303 décrites précédemment.
En raison des hypothèses géométriques appliquées, les résultats obtenus avec le dispositif 101 sont particulièrement intéressants lorsque les obstacles sont modélisables par des plans verticaux et d'autant plus que leurs arêtes sont marquées. Ce procédé est notamment bien adapté à une localisation en milieu urbain, en particulier lorsque les obstacles sont des immeubles.Steps 402 and 403 are similar to steps 302 and 303 described above. Due to the geometrical hypotheses applied, the results obtained with the device 101 are particularly interesting when the obstacles can be modeled by vertical planes and especially as their edges are marked. This method is particularly well suited to urban location, especially when obstacles are buildings.
Dans les trois modes de réalisation décrits précédemment, la position du véhicule est déterminée en temps réel, ce qui permet d'obtenir une localisation plus fiable et plus précise. Les dispositifs de localisation 1 et 101 sont en particulier destinés à être utilisés pour des applications sécuritaires, par exemple le contrôle commande des trains ou l'optimisation de la pendulation des trains. Pour ce type d'applications, les précisions de localisation attendues varient de 50 m à 1 m, pour une disponibilité de service supérieure à 99 % du temps et de l'espace. De manière générale, les dispositifs 1, 101 sont adaptés pour toute application nécessitant une localisation précise et fiable.In the three embodiments described above, the position of the vehicle is determined in real time, which makes it possible to obtain a more reliable and more precise location. The locating devices 1 and 101 are in particular intended to be used for safety applications, for example the command control of the trains or the optimization of the tilting of the trains. For this type of application, the expected location accuracies vary from 50 m to 1 m, for a service availability greater than 99% of time and space. In general, the devices 1, 101 are suitable for any application requiring a precise and reliable location.
On notera que les dispositifs 1, 101 ne sont pas limités à des applications ferroviaires. Par exemple, les dispositifs 1, 101 peuvent être utilisés pour le guidage de véhicule, qui nécessite d'être capable de positionner le véhicule sur une voie et requiert donc une précision de l'ordre de 5 m.It will be noted that the devices 1, 101 are not limited to railway applications. For example, devices 1, 101 may be used for vehicle guidance, which requires being able to position the vehicle on a lane and therefore requires an accuracy of about 5 m.
Bien que l'invention ait été décrite en relation avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
Claims
1. Procédé de localisation d'un véhicule (6) comprenant les étapes consistant à : a) déterminer un masque caractérisant l'environnement d'une antenne d'un système GPS (2, 102) à l'aide de moyens d'enregistrement (4, 140, 141) embarqués dans ledit véhicule, b) déterminer, en fonction dudit masque, un ensemble de satellites visibles dont les signaux sont aptes à être reçus directement par ladite antenne, et c) déterminer une position dudit véhicule en utilisant lesdits satellites visibles, caractérisé en ce que ledit masque est défini par une hauteur (h(tθ, az)) et par une distance (d(tθ, az)) associées à chaque direction (az), l'étape b) comprenant les sous-étapes consistant à : d) utiliser des lois d'optique géométrique et de propagation pour déterminer un ensemble de satellites réfléchis dont les signaux sont aptes à être reçus par ladite antenne par le biais d'au moins une réflexion, et e) pour chaque satellite dudit ensemble de satellites réfléchis, calculer un retard du signal associé à la réflexion, ladite position étant déterminée à l'étape c) en utilisant, d'une part, chaque satellite visible et, d'autre part, chaque satellite réfléchi en tenant compte du retard du signal correspondant. A method of locating a vehicle (6) comprising the steps of: a) determining a mask characterizing the environment of an antenna of a GPS system (2, 102) by means of recording means (4, 140, 141) embedded in said vehicle, b) determine, according to said mask, a set of visible satellites whose signals are able to be received directly by said antenna, and c) determine a position of said vehicle using said visible satellites, characterized in that said mask is defined by a height (h (tθ, az)) and by a distance (d (tθ, az)) associated with each direction (az), step b) comprising the sub steps of: d) using geometric and propagation optics laws to determine a set of reflected satellites whose signals are receivable by said antenna through at least one reflection, and e) for each satellite of said set of satellites reflected his, calculate a delay of the signal associated with reflection, said position being determined in step c) using, on the one hand, each visible satellite and, on the other hand, each satellite reflected taking into account the delay of the signal corresponding.
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape b) comprend la sous-étape consistant à comparer un angle d'élévation d'un satellite avec un angle d'élévation (El) du masque dans la direction (az) correspondante et, lorsque l'angle d'élévation dudit satellite est supérieur à l'angle d'élévation dudit masque à considérer que ledit satellite est visible.2. Method according to claim 1, characterized in that step b) comprises the substep of comparing an elevation angle of a satellite with an elevation angle (El) of the mask in the direction (az ) and, when the elevation angle of said satellite is greater than the elevation angle of said mask to consider that said satellite is visible.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape c) comprend une sous-étape consistant à calculer un indice de confiance relatif à la position déterminée.3. Method according to claim 1 or 2, characterized in that step c) comprises a substep of calculating a confidence index relative to the determined position.
4. Procédé selon la revendications 3, caractérisé en ce que ledit véhicule (6) est équipé d'un dispositif de localisation secondaire apte à déterminer une position du véhicule lorsque l'indice de confiance est inférieur à un seuil prédéterminé.4. Method according to claim 3, characterized in that said vehicle (6) is equipped with a secondary location device able to determine a position of the vehicle when the confidence index is below a predetermined threshold.
5. Procédé selon la revendication 4, caractérisé en ce que le dispositif de localisation secondaire comporte un capteur odométrique. 5. Method according to claim 4, characterized in that the secondary location device comprises an odometric sensor.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens d'enregistrement sont des moyens vidéo (4) comprenant une caméra à objectif fish-eye, disposée sur le toit dudit véhicule de manière qu'une image réalisée par ladite caméra soit sensiblement centrée sur ladite antenne. 6. Method according to any one of claims 1 to 5, characterized in that said recording means are video means (4) comprising a fish-eye lens camera, disposed on the roof of said vehicle so that a image made by said camera is substantially centered on said antenna.
7. Procédé selon la revendication 6, caractérisé en ce que les données transmises par ladite caméra (4) sont combinées avec des données provenant d'un capteur de distance pour déterminer ledit masque.7. The method of claim 6, characterized in that the data transmitted by said camera (4) is combined with data from a distance sensor to determine said mask.
8. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens d'enregistrement sont des moyens vidéo comprenant deux caméras (140, 141) disposées sur le toit dudit véhicule.8. Method according to any one of claims 1 to 5, characterized in that said recording means are video means comprising two cameras (140, 141) disposed on the roof of said vehicle.
9. Procédé selon la revendication 8, caractérisé en ce que ledit masque est déterminé à l'aide d'un procédé de stéréovision appliqué sur deux images successives provenant d'une caméra (140, 141).9. The method of claim 8, characterized in that said mask is determined using a stereovision method applied to two successive images from a camera (140, 141).
10. Dispositif de localisation d'un véhicule utilisant le procédé de localisation selon l'une des revendications 1 à 9. 10. Device for locating a vehicle using the locating method according to one of claims 1 to 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0654018 | 2006-09-29 | ||
FR0654018A FR2906632B1 (en) | 2006-09-29 | 2006-09-29 | METHOD FOR LOCATING A VEHICLE |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008040896A2 true WO2008040896A2 (en) | 2008-04-10 |
WO2008040896A3 WO2008040896A3 (en) | 2008-07-03 |
Family
ID=38146074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2007/051990 WO2008040896A2 (en) | 2006-09-29 | 2007-09-21 | Method of locating a vehicle |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2906632B1 (en) |
WO (1) | WO2008040896A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2475675A (en) * | 2009-11-17 | 2011-06-01 | Samsung Electronics Co Ltd | Navigation receiver operable with multiple navigation systems |
DE102012013504A1 (en) * | 2012-07-06 | 2014-01-09 | Audi Ag | Method for operating satellite-based position determination system for motor vehicle, involves determining vehicle position based on signals and under consideration of checking of line of sight connection between satellites and receiver |
GB2516576A (en) * | 2011-01-05 | 2015-01-28 | Cambridge Silicon Radio Ltd | Location Fix From Unknown Position |
US9086479B2 (en) | 2011-01-05 | 2015-07-21 | Cambridge Silicon Radio Limited | Convergence zone |
US9158002B2 (en) | 2011-01-05 | 2015-10-13 | Qualcomm Incorporated | Satellite subset selection |
US9322922B2 (en) | 2011-01-05 | 2016-04-26 | Qualcomm Technologies International, Ltd. | Determining position of a GNSS receiver using fractional signalling event period times |
WO2017010230A1 (en) * | 2015-07-16 | 2017-01-19 | 日本電信電話株式会社 | Satellite signal receiver, satellite signal reception method, and program |
CN110603463A (en) * | 2017-05-19 | 2019-12-20 | 高通股份有限公司 | Non line of sight (NLoS) satellite detection at a vehicle using a camera |
CN113300757A (en) * | 2021-05-27 | 2021-08-24 | 上海埃威航空电子有限公司 | Vehicle-mounted satellite communication terminal equipment of low-orbit broadband communication satellite and control method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3249429B1 (en) | 2016-05-27 | 2019-05-01 | Centre National d'Etudes Spatiales | Adaptive antenna assembly for improving precision of a gnss receiver in a perturbated environment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024846A1 (en) * | 1997-11-11 | 1999-05-20 | Franz Josef Lohmar | Method and device for determining measuring periods for satellite measurement of points at least partially surrounded by visual obstacles |
US20020050944A1 (en) * | 1998-07-02 | 2002-05-02 | Leonid Sheynblat | Method and apparatus for measurement processing of satellite positioning system (SPS) signals |
US20050046614A1 (en) * | 2003-08-28 | 2005-03-03 | Hiroki Akano | Position measuring apparatus |
US20060082495A1 (en) * | 2004-10-14 | 2006-04-20 | Koutaro Wakamatsu | Navigation apparatus |
WO2006113689A2 (en) * | 2005-04-17 | 2006-10-26 | Trimble Navigation Limited | Enhanced gnss signal processing |
-
2006
- 2006-09-29 FR FR0654018A patent/FR2906632B1/en active Active
-
2007
- 2007-09-21 WO PCT/FR2007/051990 patent/WO2008040896A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024846A1 (en) * | 1997-11-11 | 1999-05-20 | Franz Josef Lohmar | Method and device for determining measuring periods for satellite measurement of points at least partially surrounded by visual obstacles |
US20020050944A1 (en) * | 1998-07-02 | 2002-05-02 | Leonid Sheynblat | Method and apparatus for measurement processing of satellite positioning system (SPS) signals |
US20050046614A1 (en) * | 2003-08-28 | 2005-03-03 | Hiroki Akano | Position measuring apparatus |
US20060082495A1 (en) * | 2004-10-14 | 2006-04-20 | Koutaro Wakamatsu | Navigation apparatus |
WO2006113689A2 (en) * | 2005-04-17 | 2006-10-26 | Trimble Navigation Limited | Enhanced gnss signal processing |
Non-Patent Citations (2)
Title |
---|
MARAIS J ET AL: "Satellite propagation path model along a railway track for GNSS applications" VEHICULAR TECHNOLOGY CONFERENCE, 2004. VTC2004-FALL. 2004 IEEE 60TH LOS ANGELES, CA, USA 26-29 SEPT. 2004, PISCATAWAY, NJ, USA,IEEE, 26 septembre 2004 (2004-09-26), pages 4066-4070, XP010790185 ISBN: 0-7803-8521-7 * |
WANG, HSU: "Improved GPS Location Positioning in NLOS Propagation Environments" PROCEEDINGS OF ANTENNAS AND PROPAGATION, avril 2000 (2000-04), pages 9-14, XP009099556 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2475675A (en) * | 2009-11-17 | 2011-06-01 | Samsung Electronics Co Ltd | Navigation receiver operable with multiple navigation systems |
US9086479B2 (en) | 2011-01-05 | 2015-07-21 | Cambridge Silicon Radio Limited | Convergence zone |
GB2516576A (en) * | 2011-01-05 | 2015-01-28 | Cambridge Silicon Radio Ltd | Location Fix From Unknown Position |
US9030355B2 (en) | 2011-01-05 | 2015-05-12 | Cambridge Silicon Radio Limited | Location fix from unknown position |
GB2516576B (en) * | 2011-01-05 | 2015-05-20 | Cambridge Silicon Radio Ltd | Location Fix From Unknown Position |
US9158002B2 (en) | 2011-01-05 | 2015-10-13 | Qualcomm Incorporated | Satellite subset selection |
US9322922B2 (en) | 2011-01-05 | 2016-04-26 | Qualcomm Technologies International, Ltd. | Determining position of a GNSS receiver using fractional signalling event period times |
DE102012013504B4 (en) * | 2012-07-06 | 2014-02-06 | Audi Ag | A method of operating a satellite positioning system for a motor vehicle and positioning system |
DE102012013504A1 (en) * | 2012-07-06 | 2014-01-09 | Audi Ag | Method for operating satellite-based position determination system for motor vehicle, involves determining vehicle position based on signals and under consideration of checking of line of sight connection between satellites and receiver |
WO2017010230A1 (en) * | 2015-07-16 | 2017-01-19 | 日本電信電話株式会社 | Satellite signal receiver, satellite signal reception method, and program |
JPWO2017010230A1 (en) * | 2015-07-16 | 2017-12-14 | 日本電信電話株式会社 | Satellite signal receiving apparatus, satellite signal receiving method and program |
US10371821B2 (en) | 2015-07-16 | 2019-08-06 | Nippon Telegraph And Telephone Corporation | Satellite signal reception apparatus, satellite signal reception method and program therefor |
CN110603463A (en) * | 2017-05-19 | 2019-12-20 | 高通股份有限公司 | Non line of sight (NLoS) satellite detection at a vehicle using a camera |
CN113300757A (en) * | 2021-05-27 | 2021-08-24 | 上海埃威航空电子有限公司 | Vehicle-mounted satellite communication terminal equipment of low-orbit broadband communication satellite and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2008040896A3 (en) | 2008-07-03 |
FR2906632B1 (en) | 2010-09-03 |
FR2906632A1 (en) | 2008-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008040896A2 (en) | Method of locating a vehicle | |
EP1577644A1 (en) | Method for real-time guidance of a terrestrial vehicle equipped with an off-board navigation system | |
EP2225622A1 (en) | Method for aircraft landing assistance using gps and mls in case of calculated axial approach | |
Hsu et al. | Hong Kong UrbanNav: An open-source multisensory dataset for benchmarking urban navigation algorithms | |
CA2805619A1 (en) | Direction estimation process for the arrival of navigation signals on a receptor after reflection on the walls in a satellite positioning system | |
FR2670002A1 (en) | Method and system for determining the position of moving objects from a location station and apparatus for implementing the method | |
EP3420373A1 (en) | Location of a target by a tracking vehicle | |
EP2765390B1 (en) | System and method for assisting with the navigation of an aircraft | |
WO2020157161A1 (en) | Location method using gnss signals | |
WO2020201243A1 (en) | Method for updating a road map based on a network of contributors | |
EP1205732A2 (en) | Inertial navigation unit comprising an integrated GPS receiver | |
EP1751576A1 (en) | Method, system and module for locating a telecommunications terminal | |
EP2804016B1 (en) | Improved method for determining the position and/or the speed of a guided vehicle; related system | |
FR2950702A1 (en) | METHOD AND DEVICE FOR DYNAMICALLY LOCATING A MOBILE | |
FR3064073A1 (en) | METHOD AND DEVICE FOR DETERMINING A POSITION | |
EP4229360A1 (en) | Method for locating road objects | |
FR3106886A1 (en) | Determination of information to aid navigation on a road network | |
FR3075949A1 (en) | METHOD FOR DETERMINING ANTICIPATION DISTANCE FROM THE TRACK OF A MOTOR VEHICLE | |
FR3072182A1 (en) | CALCULATOR, SYSTEM AND METHOD FOR GEOLOCATION OF A VEHICLE | |
WO2021170519A1 (en) | Method for correcting the path of a vehicle, and associated computer | |
FR3080176A1 (en) | DEVICE FOR SYNCHRONIZING A PRIMARY POSITION OF A MOBILE OBJECT WITH A SECONDARY POSITION | |
WO2020239783A1 (en) | Method and device for remote determination of visibility for overtaking assistance | |
FR3133816A1 (en) | Method and device for determining control instructions for a vehicle based on the glare of a vehicle camera from the sun | |
FR3098927A1 (en) | Method and device for determining the position of a vehicle | |
FR2966924A1 (en) | Reliable telematic location system for locating motor vehicle in case of failure or accident, has communication unit communicating with remote geolocation service for transmitting calculated current position of system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07848361 Country of ref document: EP Kind code of ref document: A2 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07848361 Country of ref document: EP Kind code of ref document: A2 |