WO2008040659A2 - Procédé d'exploitation d'un capteur de champ magnétique et capteur de champ magnétique correspondant - Google Patents

Procédé d'exploitation d'un capteur de champ magnétique et capteur de champ magnétique correspondant Download PDF

Info

Publication number
WO2008040659A2
WO2008040659A2 PCT/EP2007/060160 EP2007060160W WO2008040659A2 WO 2008040659 A2 WO2008040659 A2 WO 2008040659A2 EP 2007060160 W EP2007060160 W EP 2007060160W WO 2008040659 A2 WO2008040659 A2 WO 2008040659A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
hysteresis
current
field sensor
characteristic
Prior art date
Application number
PCT/EP2007/060160
Other languages
German (de)
English (en)
Other versions
WO2008040659A3 (fr
Inventor
Gotthard Rieger
Richard Schmidt
Roland Weiss
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008040659A2 publication Critical patent/WO2008040659A2/fr
Publication of WO2008040659A3 publication Critical patent/WO2008040659A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the invention relates to a method for operating a magnetic field sensor from at least one magnetoresistive element according to the preamble of claim 1.
  • the invention relates to an associated magnetic field sensor.
  • the magnetic field sensor preferably four magnetoresistive elements in bridge circuit are present.
  • Magnetic field sensors working according to the magnetoresistive effect are known in particular as so-called GMR (Giant Magneto Resistance) and TMR (Tunnel Magneto Resistance), which operate according to the so-called “spin-valve” principle
  • GMR Global Magneto Resistance
  • TMR Tunnelnel Magneto Resistance
  • Position, speed, speed, field or current sensors are an alternative to the Hall sensors commonly used in practice.
  • MR-based sensors have become increasingly known in recent years.
  • the main advantages are compared to
  • Hall sensors in the simpler system structure, the greater immunity to interference - due to the possibility of a design with greatly reduced external field sensitivity - and the lower noise.
  • fully integrated solutions are suitable for MR-based sensors, since the magnetoresistive elements can be applied as a back-end process, for example in CMOS technology, and thus no additional chip area is required.
  • each four elements are connected to a known from electrical engineering Wheatstone bridge to a more accurate, of temperature fluctuations, Foreign fields or other disturbances to achieve more independent measurement.
  • the effect on the output signal of the sensitive element or the sensitive elements for magnetic field / current measurement depends strongly on the history of the magnetic field and the temperature at the location of the sensor, the influence can not practically be numerically excluded. In addition to the reduced accuracy over temperature and current range, therefore, the possible offset calibration is difficult.
  • MR sensors achieve high accuracies, i. ⁇ 1% error at room temperature, only in the temperature range up to 85 ° C.
  • MR sensors with increased effort and cost can be achieved via a continuous closed-loop control, so-called “closed loop” or compensation circuit but the disadvantage of a very high power consumption (1 W at a measuring current of 25 A).
  • the measuring range is limited to approximately 150 A.
  • Devices for measuring the magnetic field are known from the prior art in a wide variety of designs, including, for example, DE 43 43 686 B4, DE 10 2004 056 38 A1, DE 43 19 149 A1, DE 198 34 183 A1, US 2005 / 0150295 Al and DE 29 44 490 Al is referenced.
  • elements with two preferred magnetic directions are used which, when used as intended, "fringe" in one of the two directions, the hysteresis behavior occurring being reduced by suitable measures, but in particular only the offset behavior being minimized.
  • a compensated magnetic field sensor which is constructed with respect to a sensor plane of thin film strips, known with means for compensation, in which the compensation is carried out by trained in specific geometry layer strip conductor on both sides of the sensor plane.
  • the invention relates to the reduction and in particular the minimization of the hysteresis properties in magnetic field sensor with magnetoresistive elements which are subject to hysteresis.
  • a high-frequency magnetic field pulse on the measuring current - preferably with decaying amplitude - which is generated by means of a particular integrated current-carrying conductor, a current-carrying conductor loop or a current-carrying coil arrangement, the hysteresis of a single magnetoresistive element or a bridge constructed thereof be significantly reduced.
  • the final magnetization field is chosen so that a maximum effect of hysteresis reduction is achieved with reasonable energy expenditure.
  • GMR and TMR elements are advantageously constructed in thin-film construction and operate according to the "spin-valve" principle, which is described by way of example in “Physics in our time” 2002, page 210 et seq.
  • the hysteresis is no longer subject to the influence of the random sequence of values of the measuring field.
  • the magnetic memory of the individual magnetoresistive element is reduced or overwritten by the temporarily superimposed Entmagnetleitersfeider and thus minimized.
  • a hysteresis-reduced characteristic can be obtained.
  • the alternating field or the current pulse superimposed on the measuring field, in particular with decreasing amplitude can be generated by an internal conductor loop.
  • a superposition of a high-frequency pulse which may be undamped or decaying, results in a significant reduction of the hysteresis in an internal conductor loop.
  • FIG. 1 shows a diagram with magnetic hysteresis curves
  • FIG. 2 shows a diagram for clarifying the invention
  • FIG. 3 shows a diagram for determining the hysteresis as a function of the current amplitude and the measuring method
  • FIG. 5 shows the plan view of the magnetic field sensor according to FIG. 4.
  • a reduction of the hysteresis can be done by superimposing a demagnetizing pulse.
  • the reduction of the hysteresis or the remanent magnetization of ferromagnetic materials is expediently carried out with an alternating field of decreasing amplitude.
  • the current I is shown on the abscissa and the sensor signal V on the ordinate.
  • the result is a hysteresis characteristic 21 or 21 'and the ideal, hysteresis-free characteristic 22. Due to the high-frequency superimposition of the alternating field, a hysteresis-reduced characteristic can be obtained in the magnetic system. It is advantageous in the case of magneto-resistive elements that the alternating field superimposed on the measuring field or the current pulse with decreasing amplitude can be generated by an internal conductor loop.
  • FIG. 3 it can be seen from FIG. 3 that a significant reduction of the hysteresis is achieved in an internal conductor loop by superposition of a high-frequency pulse, which may be unattenuated or decaying.
  • Graphs 31 to 33 show that with a typical design of an output amplitude of about 1 A, an effective reduction of hysteresis by a factor of 3 can be achieved.
  • a substrate is designated 40.
  • magnetoresistive elements 41, 42 43 and 44 are arranged, which together form a Wheatstone bridge.
  • Such bridge circuits for magnetic field sensors made of magnetoresistive elements 41, 42 43 and 44 are known from the prior art.
  • a loop with a current-carrying conductor 45 is present, which is designed as a rectangular current loop with several turns so that in each case two magnetoresistive elements 41, 42 and 43 are arranged in pairs in the longitudinal leg of the loop. This results in a U-shaped arrangement. It can be seen from FIG. 4 that the magnetoresistive elements 41, 42, 43 and 44 are incorporated in the substrate 40 itself, wherein the substrate 40 is covered by a non-conductive layer 46 for electrical insulation of the conductor loop 45.
  • an arrangement 50 for pulse current generation which forms a discrete circuit of a filter 51, an A / D converter 52, a computing unit 53 and a control unit 54 or an integrated chip topography with these functions ,
  • the chip topography can also directly form the substrate for the magnetoresistive elements.
  • the voltage signal U B passes through the filter 51 with associated A / D converter 52 to the arithmetic unit 53 and control unit 54 to the subsequent pulse current source 55.
  • the current signal I 3 feeds the conductor loop 45 and generates the alternating field or the pulses with decreasing amplitude.
  • Substrate and chip topography is advantageously realized in CMOS technology, which offers the possibility of a maximum miniaturization.
  • the conductor loop 45 is applied, I 3 can be removed from the IC integrated on the substrate 40.
  • the demagnetizing pulses are thus generated when an alternating field is impressed. These act as a control field, which is designated in Figure 5 by 47, which acts on the measuring field, which is designated in Figure 4 at 48.
  • the hysteresis error can thus be reduced, whereby the resolution and accuracy of the arrangement is markedly increased.
  • a reduction of up to a factor of 4 can be achieved. Since the Abmagnet Deutschensphasen can be very short, already A comparatively low amplitude is sufficient, the power consumption in the arrangement according to Figure 4/5 is significantly lower than in the known "close loop" method .No control is needed, so that the sensor maintains its quasi-passive character.
  • demagnetization phases can also be targeted in a so-called "power on reset” procedure or after particularly critical operating states, for example short circuit with very high magnetic fields, to create a defined, reproducible Initial state of the traces are used.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

L'invention concerne des capteurs de champ magnétique constitués d'éléments magnétorésistifs, quatre de ces éléments étant utilisés en circuit de pontage. On sait que de tels éléments magnétorésistifs qui permettent de détecter un courant de mesure en tant que signal de champ magnétique ont une courbe caractéristique affectée d'hystérésis. Afin de réduire ou de minimiser l'hystérésis, l'invention prévoit la superposition d'au moins une impulsion de magnétisation finale à haute fréquence sur le courant de mesure, permettant d'améliorer considérablement les qualités de mesure. Pour cela, un disque conducteur (45) est connecté dans le capteur (40), de préférence avec des éléments de capteur (41m-44) magnétorésistifs reliés en circuit de pontage.
PCT/EP2007/060160 2006-09-29 2007-09-25 Procédé d'exploitation d'un capteur de champ magnétique et capteur de champ magnétique correspondant WO2008040659A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006046739.6 2006-09-29
DE200610046739 DE102006046739B4 (de) 2006-09-29 2006-09-29 Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor

Publications (2)

Publication Number Publication Date
WO2008040659A2 true WO2008040659A2 (fr) 2008-04-10
WO2008040659A3 WO2008040659A3 (fr) 2008-07-10

Family

ID=39134441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060160 WO2008040659A2 (fr) 2006-09-29 2007-09-25 Procédé d'exploitation d'un capteur de champ magnétique et capteur de champ magnétique correspondant

Country Status (2)

Country Link
DE (1) DE102006046739B4 (fr)
WO (1) WO2008040659A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
DE102007052408A1 (de) 2007-10-31 2009-05-07 Siemens Ag Verfahren zum Betreiben eines Magnetfeldsensors und zugehörige Anordnung
US7816905B2 (en) 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
US8063634B2 (en) 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
US7973527B2 (en) 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944490C2 (de) * 1979-11-03 1985-02-21 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Beseitigung des Einflusses von Remanenz in Empfangssystemen und Vorrichtung zur Durchführung des Verfahrens
US5351005A (en) * 1992-12-31 1994-09-27 Honeywell Inc. Resetting closed-loop magnetoresistive magnetic sensor
DE4319146C2 (de) * 1993-06-09 1999-02-04 Inst Mikrostrukturtechnologie Magnetfeldsensor, aufgebaut aus einer Ummagnetisierungsleitung und einem oder mehreren magnetoresistiven Widerständen
DE19834153A1 (de) * 1998-07-29 2000-02-10 Lust Antriebstechnik Gmbh Verfahren zur Auswertung von Signalen magnetoresistiver Sensoren
US7112793B2 (en) * 2004-01-05 2006-09-26 Laser Technology, Inc. One-chip compass implemented using magnetoresistive (MR) sensor temperature compensation and magnetic cross-term reduction techniques
DE102004056384A1 (de) * 2004-07-01 2006-02-02 Sensitec Gmbh Verfahren zur Offseteliminierung aus Signalen magnetoresistiver Sensoren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAUSER H: "Magnetic hysteresis modeling of electronic sensor devices and components" SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, Bd. 106, Nr. 1-3, 15. September 2003 (2003-09-15), Seiten 84-90, XP004446528 ISSN: 0924-4247 *
MAPPS D J ET AL: "Optimisation of material and structure for a switched-bias magnetoresistive sensor" SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, Bd. 81, Nr. 1-3, April 2000 (2000-04), Seiten 60-63, XP004191252 ISSN: 0924-4247 *
TAKAHASHI ET AL: "Study on demagnetization characteristics of magnetic shielding plate in cathode ray tube" JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, Bd. 181, Nr. 1-3, 1. Januar 2007 (2007-01-01), Seiten 121-125, XP005670188 ISSN: 0924-0136 *

Also Published As

Publication number Publication date
DE102006046739A1 (de) 2008-04-03
WO2008040659A3 (fr) 2008-07-10
DE102006046739B4 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
DE102006046739B4 (de) Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
DE102006046736B4 (de) Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
DE102006021774B4 (de) Stromsensor zur galvanisch getrennten Strommessung
DE60037790T2 (de) Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
DE102005047413B4 (de) Magnetoresistives Sensorelement und Verfaheren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest
DE10028640B4 (de) Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
CH651151A5 (de) Messwandler zum messen eines insbesondere von einem messstrom erzeugten magnetfeldes.
DE102007032867A1 (de) Magnetoresistive Magnetfeldsensorstruktur
DE102006062750A1 (de) Konzept zum Erfassen einer Änderung einer physikalischen Grösse mittels einer Stromleiterstruktur
DE10017374B4 (de) Magnetische Koppeleinrichtung und deren Verwendung
EP0875000A1 (fr) Dispositif d'aimantation d'elements capteurs magnetoresistifs a couche mince dans un montage en pont
WO2007096318A1 (fr) Dispositif de détection pour détecter LA grandeur d'un champ magnétique
DE102016111256B4 (de) Magnetfeldgenerator, Magnetsensorsystem und Magnetsensor
DE102018115530A1 (de) Magnetfeldsensor
DE102008030334A1 (de) Verfahren zur störarmen berührungslosen Messung hoher Ströme und zugehöriger Hochstromsensor
DE102014109646A1 (de) Detektor und spannungswandler
EP1567878B1 (fr) Element de detection magnetoresistif et procede pour diminuer le defaut d'alignement angulaire d'un element de detection magnetoresistif
DE10117355A1 (de) Verfahren zur Einstellung einer Magnetisierung in einer Schichtanordnung und dessen Verwendung
DE102007029665B3 (de) Verfahren und Vorrichtung zum definierten Magnetisieren von permanent magnetisierbaren Elementen und magnetoresistiven Sensorstrukturen
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
DE102011086034A1 (de) Halbleitervorrichtung
DE102012208404A1 (de) Magnetische Differenzfeldsensoranordnung
DE19954053A1 (de) Magnetfelddetektorelement
DE112018006072T5 (de) Z-achse-magnetsensor mit verteilten flussleitern
DE102013205474A1 (de) Strommesssensor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820557

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07820557

Country of ref document: EP

Kind code of ref document: A2