WO2008038670A1 - Flashing fluorescent lamp, backlight device, and liquid crystal display device - Google Patents

Flashing fluorescent lamp, backlight device, and liquid crystal display device Download PDF

Info

Publication number
WO2008038670A1
WO2008038670A1 PCT/JP2007/068695 JP2007068695W WO2008038670A1 WO 2008038670 A1 WO2008038670 A1 WO 2008038670A1 JP 2007068695 W JP2007068695 W JP 2007068695W WO 2008038670 A1 WO2008038670 A1 WO 2008038670A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
fluorescent lamp
liquid crystal
lighting
backlight device
Prior art date
Application number
PCT/JP2007/068695
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Ikeda
Naoki Tsutsui
Tomohiro Mizoguchi
Masahiko Tamai
Original Assignee
Harison Toshiba Lighting Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corporation filed Critical Harison Toshiba Lighting Corporation
Priority to JP2008536397A priority Critical patent/JPWO2008038670A1/en
Publication of WO2008038670A1 publication Critical patent/WO2008038670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps

Definitions

  • Fluorescent lamp for flashing backlight device, and liquid crystal display device
  • the present invention relates to a fluorescent lamp, a backlight device, and a liquid crystal display device used for blinking lighting.
  • the blinking lighting method includes a blinking lighting method that lights up in accordance with the on / off timing of a plurality of arranged lamps, a scanning lighting method that lights up while sequentially scrolling by shifting the lamp on / off timing, etc. Is generally known. In any of the methods, there is an advantage that motion blur caused when displaying a moving image can be prevented by combining with driving of a liquid crystal.
  • An object of the present invention is to provide a fluorescent lamp for blinking lighting, a backlight device, and a liquid crystal display device in which an afterimage hardly remains.
  • the flashing lighting fluorescent lamp of the present invention has a multi-wavelength phosphor composed of a plurality of types of phosphors having a 1/10 afterglow time of 5 msec or less on the inner surface of a glass container. It is formed!
  • the phosphor has a 90% emission rising force S and a time force S5 msec or less.
  • the phosphor includes an activator selected from Sn2 +, Pr3 +, ⁇ u2 +, Eu3 +, Ce3 +, and Tb3 +. is there.
  • the phosphor is a multi-wavelength phosphor including red, green, and blue phosphors
  • the red phosphor is Sn2 +, Pr3 +, EU2 +, EU3 +, green Phosphors include Eu2 +, Ce3 +, Tb3 +, and blue phosphors include an activator selected from Eu2 +! /.
  • the backlight device of the present invention includes a housing, the fluorescent lamp housed in the housing, and a lighting circuit capable of blinking and lighting the fluorescent lamp. It is.
  • a liquid crystal display device of the present invention includes the above-described backlight device and a liquid crystal panel disposed on the light emitting surface side of the backlight device.
  • FIG. 1 is a diagram for explaining a backlight device according to a first embodiment (embodiment) of the present invention.
  • FIG. 2 is a diagram for explaining a cross section of the fluorescent lamp shown in FIG.
  • FIG. 3 is a diagram for explaining the light emission characteristics of a fluorescent lamp coated with a Y203: Eu3 + phosphor.
  • FIG. 4 A diagram for explaining the presence or absence of afterimages when moving images on a liquid crystal are projected by fluorescent lamps with different response speeds.
  • FIG. 5 Example (a diagram for explaining the light emission characteristics when the lamp of Example ⁇ blinks by blinking lighting).
  • FIG. 6 is a diagram for explaining the light emission characteristics when the lamp of Comparative Example l is blinking and blinking.
  • FIG. 7 is a diagram for explaining a difference between Example 1 and Comparative Example 1.
  • FIG. 8 A diagram for explaining the response speed of a fluorescent lamp when various phosphors are used.
  • FIG. 9 is a diagram for explaining the response speed of a fluorescent lamp when the phosphors of FIG. 8 are combined.
  • FIG. 10 is a diagram for explaining a backlight device according to a second embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a liquid crystal display device according to a third embodiment of the present invention.
  • FIG. 12 is a diagram for explaining light emission obtained by the liquid crystal display device of the present invention.
  • FIG. 1 is a diagram for explaining a backlight device according to a first embodiment of the present invention.
  • the backlight device BL of the present embodiment is a direct type.
  • the casing of the knocklight BL is composed of a front frame la and a back frame lb.
  • An opening surface is formed in the front frame 1a.
  • the back frame lb has a bottomed opening shape, and a highly reflective reflecting surface is formed on the inner side.
  • a plurality of elongated fluorescent lamps 2 are arranged inside the knock frame lb so that their tube axes are substantially parallel to each other.
  • the cold cathode fluorescent lamp a hot cathode fluorescent lamp, an external electrode fluorescent lamp, a flat fluorescent lamp or the like may be used, and there is no limitation on the type, shape, size, and the like.
  • FIG. 1 A specific structure of the fluorescent lamp 2 is shown in FIG.
  • the main part of the fluorescent lamp 2 is composed of a glass container 21 made of, for example, soft glass, and a mixed gas composed of Ne and Ar and mercury are enclosed therein. Electrode mounts 22 a and 22 b are sealed at both ends of the glass container 21.
  • the electrode mounts 22a and 22b are composed of electrodes 22al and 22bl and bead glasses 22a2 and 22b2.
  • FIG. 3 is a diagram for explaining the light emission characteristics of a fluorescent lamp coated with a Y203: Eu3 + phosphor.
  • the horizontal axis represents time, and the vertical axis represents voltage or current value.
  • Waveform (A) in the figure is an on / off signal that is a voltage waveform for on / off control of the fluorescent lamp, waveform (B) is the lamp voltage waveform, waveform (C) is the lamp current waveform, waveform is the lamp emission intensity. It is an output voltage waveform obtained by photoelectric conversion with a photodiode. These waveforms are measured with an oscilloscope.
  • the fluorescent lamp 2 responds to the on / off signal waveform (A) with the lamp voltage and lamp current waveforms (B) and (C) without delay, but the lamp emission waveform (D).
  • the reaction tends to be delayed. This is a result of the response speed of the phosphor. Therefore, it is most desirable to use a phosphor whose response speed is the same as that of the on / off signal (A), but such a phosphor is difficult to realize.
  • the inventor investigated the response speed of various phosphors, and 1/10 afterglow time (when the maximum brightness is A, the time from the brightness power of the lamp to 0.1A) A three-wavelength fluorescent lamp with a lmsec to 10 msc was made. Then, a moving image on the liquid crystal was projected with the fluorescent lamp, and a test was conducted on 10 subjects to see if there was an afterimage in the moving image.
  • the results are shown in FIG. As can be seen from Fig. 4, it was found that if the 1/10 afterglow time was 5 msec or less, it was hardly visible to the human eye as an afterimage, and if it was 3 msec or less, it could hardly be recognized as an afterimage.
  • the Y203: Eu3 + phosphor shown in Fig. 3 has a 90% rise time and 1/10 afterglow time of about 2.5 msec. It is suitable as the phosphor of the present invention, which is fast. In most phosphors, it was found that the rise of light emission and the fall of light emission are correlated. For example, the phosphor in Fig.
  • a diffusion plate 3 is arranged on the opening side of the back frame lb. Diffusion plate
  • an optical sheet 4 is disposed!
  • the optical sheet 4 one sheet or a plurality of sheets such as a diffusion sheet and a prism sheet can be used according to the purpose.
  • a lighting circuit 5 is arranged on the back side of the knock frame lb.
  • the lighting circuit 5 is typically a PWM (Pulse Width Modulation) circuit as long as the fluorescent lamp 2 can be turned on and off.
  • PWM Pulse Width Modulation
  • Optical sheet 4 diffusion sheet, prism sheet,
  • Phosphor 23 Y203: Eu3 + (R), LaP04: Ce3 +, Tb3 + (G), BaMg2A110O17: Eu2 + (B),
  • the configuration other than the phosphor 23 has the same specifications as in Example 1.
  • FIG. 5 is a diagram for explaining the light emission characteristics when the lamp of Example 1 and FIG. 6 are turned on by blinking lighting of the lamp of Comparative Example 1.
  • the horizontal axis represents time
  • the vertical axis represents voltage or current value.
  • Waveform (A) in the figure is an on / off signal that is a voltage waveform for controlling on / off of the fluorescent lamp
  • waveform (B) is the lamp voltage waveform
  • waveform (C) is the lamp current waveform
  • waveform (D) is the lamp waveform. It is an output voltage waveform obtained by photoelectrically converting the emission intensity with a photodiode.
  • Example 1 Comparing the light emission waveforms of FIGS. 5 and 6, it can be seen that in Example 1, the response speed of the comparative example beam is faster. Specifically, the 1/10 afterglow time of Example 1 is about 3 mse C , and Comparative Example 1 is about 7 msec. Example 1 is turned off earlier. Also, regarding the 90% light emission rise time, Example 1 is less than 3 msec, while Comparative Example 1 is less than 8 msec.
  • Example 1 when each lamp is mounted on a liquid crystal display device and a moving image is taken, the force that Example 1 hardly left as an afterimage is comparatively clear in Example 1 that an afterimage remains and the moving image appears blurred. there were.
  • the brightness was compared when the liquid crystal was closed at the lamp turn-off timing, that is, when the lamp brightness was obtained only during the lamp on-time.
  • the duty ratio was 100%, the luminance of both lamps relative to the luminous flux was about 95% in Example 1 and about 70% in Comparative Example 1. That is, the liquid crystal display device using Example 1 was clearly felt brighter.
  • Example 1 Comparative Example 1
  • a green phosphor having a different response speed with respect to the on / off signal is used as shown in FIG.
  • FIGS. 5 and 6 when a three-wavelength phosphor is used, there is a large difference in the rise and afterglow of the lamp. From this, when flashing with the fluorescent lamp 2 coated with a three-wavelength phosphor, if one of the phosphors of R (red), G (green), and B (blue) has a slow response speed, It was speculated that the response speed of fluorescent lamps would slow down.
  • the response speed of the phosphor is mainly related to the activator of the phosphor.
  • the composition of the phosphor is expressed as Y203: Eu3 +, the force S that generally calls Y203 as the matrix and Eu3 + as the activator S, as can be seen from FIG. It was found that it was almost dependent on the drug. Therefore, when a test was conducted by paying attention to the phosphor activator, a phosphor composed of an activator selected from Sn2 +, Pr3 +, EU2 +, EU3 +, Ce3 +, Tb3 + would be 1/10 of 5 msec or less. It turned out that it was easy to realize the afterglow time.
  • Eu3 + and Tb3 + activators have a response speed of several msec, there are phosphors whose 1/10 afterglow time exceeds 5 msec depending on the combination with the base material. Therefore, in these cases, only phosphors with 1/10 afterglow time of 5 msec or less are suitable for blinking lighting.
  • Sn2 +, Pr3 +, EU2 +, and Ce3 + activators have 90% emission rise time and 1/10 afterglow time of about 0.1 msec, and the phosphor responds almost without delay to the on / off signal. In particular, it can be said that it is suitable for flashing lighting applications.
  • the characteristics of the activator having the slowest response speed tend to be obtained as the response speed of the phosphor.
  • the response speed of Ceb + containing Ce3 + with a high response speed is obtained, and the response speed of Tb3 + with a slower response speed is obtained. That is, in the case of a plurality of activations, if one of them includes an activation agent having a slow response speed, it is not suitable as a phosphor used for blinking lighting.
  • the fluorescent lamp of the present invention is also effective when dimming by the PWM method.
  • dimming is performed mainly for the purpose of adjusting the contrast, but as a result, it is difficult to leave afterimages!
  • blinking lighting is performed using a fluorescent lamp in which an RGB phosphor 23 having a 1/10 afterglow time force of ⁇ msec or less is applied to the inner surface of the glass container 21.
  • an RGB phosphor 23 having a 1/10 afterglow time force of ⁇ msec or less is applied to the inner surface of the glass container 21.
  • such phosphors have a 90% emission rise time of 5 msec or less. Therefore, when the liquid crystal display device is configured by synchronizing the lamp and liquid crystal on / off, the luminance loss of the lamp is small. High brightness can be realized.
  • the red phosphor is Sn2 +, Pr3 +, Eu2 +, Eu3 +
  • the green phosphor is Eu2 +, Ce3 +, Tb3 +
  • the blue phosphor is a lamp with a three-wavelength phosphor containing an activator selected from Eu2 +. If configured, the above effect can be reproduced.
  • the blinking lighting method is used as the backlight device lighting method, but the present invention can also be effectively applied to a scanning lighting type backlight device.
  • FIG. 10 is a diagram for explaining a scanning lighting type backlight device.
  • each of the 12 lamps is divided into 2 lamps to form 6 lamp groups, and each lamp group is input with an on / off signal that is shifted by 1/6 time, and the scanning lights up. Is doing.
  • the on / off signal has a frequency of 60 Hz and a duty ratio of 50%, and is generated by the PWM method.
  • This scanning lighting method is different from the blinking lighting method in that one or more of the lamp groups are always turned on in the lighting state.
  • a light device can be realized.
  • FIG. 11 is a diagram for explaining an embodiment of a liquid crystal display device using the fluorescent lamp of the present invention.
  • a housing is constituted by a front case FC and a back case BC.
  • a liquid crystal panel LCP is disposed on the opening surface of the front case FC.
  • the back case BC has a shape of a bottomed opening, and a backlight device BL is disposed therein.
  • FIG. 12 is a diagram for explaining the light emission characteristics when the lamp of the backlight device BL is turned on and off.
  • the horizontal axis represents time
  • the vertical axis represents voltage or current value.
  • waveform (A) in the figure is an on / off signal that is a voltage waveform for controlling on / off of the fluorescent lamp
  • waveform (B) is the lamp voltage waveform
  • waveform (C) is the lamp current waveform
  • waveform (D) is the lamp waveform.
  • the waveform is a signal for opening and closing the liquid crystal forming the liquid crystal panel LCP
  • the waveform) is the emission waveform obtained by the liquid crystal panel LCP
  • the waveform (G) is the emission waveform that cannot be obtained by the liquid crystal panel LCP. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Provided is a fluorescent lamp (2) including a fluorescent material layer (23) formed on the inner face of a glass container (21). The fluorescent material layer contains only the fluorescent material (as specified by a fluorescent material containing an activator selected from the group consisting of Sn2+, Pr3+, Eu2+, Eu3+, Ce3+ and Tb3+), which has a 90 % illumination rising time period of 5 milliseconds or less and a one-tenth residual time period of 5 milliseconds or less. This fluorescent lamp can flash quickly so that it can suppress the formation of a residual image if it is used as a backlight of the liquid crystal display device of the flashing type, in which the backlight is flashed in response to the drive of the liquid crystal.

Description

明 細 書  Specification
点滅点灯用蛍光ランプ、バックライト装置及び液晶表示装置  Fluorescent lamp for flashing, backlight device, and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、点滅点灯に用いられる蛍光ランプ、バックライト装置及び液晶表示装置 に関する。  The present invention relates to a fluorescent lamp, a backlight device, and a liquid crystal display device used for blinking lighting.
背景技術  Background art
[0002] 液晶テレビ等に使用されてレ、るバックライト装置の点灯方式は、従来、ランプを常時 点灯する方式 (以下、従来方式)が主流であつたが、近年、ランプをオンオフさせなが ら点灯する方式 (以下、点滅点灯方式)の開発が進められてレ、る。  [0002] Conventionally, as a lighting method of a backlight device used in a liquid crystal television or the like, a method of always lighting a lamp (hereinafter referred to as a conventional method) has been mainstream. The development of a method that illuminates (hereinafter referred to as a blinking illumination method) is underway.
[0003] 点滅'点灯方式には、配置した複数のランプのオンオフのタイミングを合わせて点灯 するブリンキング点灯方式やランプのオンオフのタイミングをずらすことにより、順次ス クロールさせながら点灯するスキャニング点灯方式などが一般に知られている。何れ の方式においても、液晶の駆動と組み合わせることで動画表示の際に生じる動きぼ けを防止することができると 、うメリットがある。  [0003] The blinking lighting method includes a blinking lighting method that lights up in accordance with the on / off timing of a plurality of arranged lamps, a scanning lighting method that lights up while sequentially scrolling by shifting the lamp on / off timing, etc. Is generally known. In any of the methods, there is an advantage that motion blur caused when displaying a moving image can be prevented by combining with driving of a liquid crystal.
[0004] すなわち、これらの点滅点灯方式は、一般に動画に弱いといわれている液晶テレビ の課題を解決する手段として注目を浴びて 、る。このような点滅点灯方式のバックラ イト装置は、国際公開第 04/053826号パンフレット、特開 2004-87489号公報、特開 20 ' 03- 84739号公報、特開 2002- 6815号公報などに開示されている。 [0004] That is, these blinking lighting systems are attracting attention as a means for solving the problems of liquid crystal televisions that are generally said to be weak against moving images. Such a blinking backlight device is disclosed in International Publication No. 04/053826 pamphlet, Japanese Patent Application Laid-Open No. 2004-87489, Japanese Patent Application Laid-Open No. 20 '03 -84739, Japanese Patent Application Laid-Open No. 2002-6815, and the like. ing.
[0005] し力、しこのような点滅点灯方式を用いたバックライト装置においては、動画表示の際 に生じる動きぼけをある程度防止することができるが、十分に防止することはできず、 依然として残像が残ることが大きな問題となっている。 [0005] In a backlight device using such a flashing lighting method, the motion blur that occurs when displaying a moving image can be prevented to some extent, but it cannot be sufficiently prevented, and an afterimage still remains. Remains a big problem.
[0006] この問題に対し、発明者が検討した結果、バックライト装置を構成する蛍光灯に用 レ、られる蛍光体の応答速度にも原因があることを発見した。すなわち、従来方式に使 用されてレ、る蛍光ランプを点滅点灯方式に使用した場合、蛍光ランプへのオンオフ 入力に対し、蛍光体が遅れて反応するため、上記問題が生じているという結論に達し た。 [0006] As a result of the inventors' investigation of this problem, it has been found that there is a cause in the response speed of the phosphor used in the fluorescent lamp constituting the backlight device. In other words, when the fluorescent lamp used in the conventional method is used in the blinking lighting method, the phosphor reacts with a delay with respect to the on / off input to the fluorescent lamp, so the above problem has occurred. Reached.
発明の開示  Disclosure of the invention
訂正された ^紙 (規則 91) [0007] この点滅点灯方式に適した蛍光ランプの蛍光体について研究を重ねた結果、従来 よりも残像が残りにくい点滅点灯用蛍光ランプ、バックライト装置及び液晶表示装置 を実現することができたため、本発明を提案するに至った。 Corrected ^ paper (Rule 91) [0007] As a result of repeated research on the phosphor of the fluorescent lamp suitable for this blinking lighting method, it was possible to realize a blinking lighting fluorescent lamp, a backlight device, and a liquid crystal display device in which an afterimage is less likely to remain than before. The present invention has been proposed.
[0008] 本発明の目的は、残像が残りにくい点滅点灯用蛍光ランプ、バックライト装置及び 液晶表示装置を提供することである。 [0008] An object of the present invention is to provide a fluorescent lamp for blinking lighting, a backlight device, and a liquid crystal display device in which an afterimage hardly remains.
[0009] 上記目的を達成するために、本発明の点滅点灯用蛍光ランプは、ガラス容器の内 面に 1/10残光時間が 5msec以下である複数種類の蛍光体からなる多波長蛍光体が 形成されて!/ヽることを特徴とする。 [0009] In order to achieve the above object, the flashing lighting fluorescent lamp of the present invention has a multi-wavelength phosphor composed of a plurality of types of phosphors having a 1/10 afterglow time of 5 msec or less on the inner surface of a glass container. It is formed!
[0010] また、本発明の点滅点灯用蛍光ランプにおいては、前記蛍光体は 90%発光立ち上 力 Sり時間力 S5msec以下であることを特徴とするものである。 [0010] Further, in the blinking lighting fluorescent lamp of the present invention, the phosphor has a 90% emission rising force S and a time force S5 msec or less.
[0011] さらに、本発明の点滅点灯用蛍光ランプにおいては、前記蛍光体は Sn2+、 Pr3+、 Ε u2+、 Eu3+、 Ce3+、 Tb3+から選択された付活剤を含んでいることを特徴とするもので ある。 [0011] Further, in the blinking lighting fluorescent lamp of the present invention, the phosphor includes an activator selected from Sn2 +, Pr3 +, Εu2 +, Eu3 +, Ce3 +, and Tb3 +. is there.
[0012] さらに、本発明の点滅点灯用蛍光ランプにおいては、前記蛍光体は赤色、緑色、 青色の蛍光体を含む多波長蛍光体であり、赤色蛍光体は Sn2+、 Pr3+、 EU2+、 EU3+、 緑色蛍光体は Eu2+、 Ce3+、 Tb3+、青色蛍光体は Eu2+から選択された付活剤を含ん で!/、ることを特 ί毁とするものである。  Furthermore, in the blinking lighting fluorescent lamp of the present invention, the phosphor is a multi-wavelength phosphor including red, green, and blue phosphors, and the red phosphor is Sn2 +, Pr3 +, EU2 +, EU3 +, green Phosphors include Eu2 +, Ce3 +, Tb3 +, and blue phosphors include an activator selected from Eu2 +! /.
[0013] また、本発明のバックライト装置は、筐体と、前記筐体内に収容された上記の蛍光ラ ンプと、前記蛍光ランプを点滅点灯可能な点灯回路とを具備することを特徴とするも のである。  [0013] In addition, the backlight device of the present invention includes a housing, the fluorescent lamp housed in the housing, and a lighting circuit capable of blinking and lighting the fluorescent lamp. It is.
[0014] また、本発明の液晶表示装置は、上記のバックライト装置と、このバックライト装置の 発光面側に配置された液晶パネルと、を具備したことを特徴とするものである。  [0014] Further, a liquid crystal display device of the present invention includes the above-described backlight device and a liquid crystal panel disposed on the light emitting surface side of the backlight device.
[0015] 本発明によれば、残像が残りにくい点滅点灯用蛍光ランプ、バックライト装置及び 液晶表示装置を実現することができる。  [0015] According to the present invention, it is possible to realize a blinking lighting fluorescent lamp, a backlight device, and a liquid crystal display device in which an afterimage hardly remains.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の第 1の実施の形態(embodiment)のバックライト装置について説明する ための図。  FIG. 1 is a diagram for explaining a backlight device according to a first embodiment (embodiment) of the present invention.
[図 2]図 1に示す蛍光ランプの断面について説明するための図。 [図 3]Y203:Eu3+の蛍光体を塗布した蛍光ランプの発光特性について説明するため の図。 2 is a diagram for explaining a cross section of the fluorescent lamp shown in FIG. FIG. 3 is a diagram for explaining the light emission characteristics of a fluorescent lamp coated with a Y203: Eu3 + phosphor.
[図 4]応答速度の異なる蛍光ランプで液晶上の動画を投影したときの残像の有無に ついて説明するための図。  [Fig. 4] A diagram for explaining the presence or absence of afterimages when moving images on a liquid crystal are projected by fluorescent lamps with different response speeds.
[図 5]実施例 (Example^のランプをブリンキング点灯により点滅点灯したときの発光特 性について説明するための図。  [Fig. 5] Example (a diagram for explaining the light emission characteristics when the lamp of Example ^ blinks by blinking lighting).
[図 6]比較例 (Comparison Example)lのランプをブリンキング点灯により点滅点灯した ときの発光特性をについて説明するための図。  FIG. 6 is a diagram for explaining the light emission characteristics when the lamp of Comparative Example l is blinking and blinking.
[図 7]実施例 1と比較例 1の相違について説明するための図。  FIG. 7 is a diagram for explaining a difference between Example 1 and Comparative Example 1.
[図 8]さまざまな蛍光体を用いたときの蛍光ランプの応答速度について説明するため の図。  [Fig. 8] A diagram for explaining the response speed of a fluorescent lamp when various phosphors are used.
[図 9]図 8の蛍光体を組み合わせたときの蛍光ランプの応答速度について説明するた めの図。  FIG. 9 is a diagram for explaining the response speed of a fluorescent lamp when the phosphors of FIG. 8 are combined.
[図 10]本発明の第 2の実施の形態のバックライト装置について説明するための図。  FIG. 10 is a diagram for explaining a backlight device according to a second embodiment of the present invention.
[図 11]本発明の第 3の実施の形態の液晶表示装置について説明するための図。  FIG. 11 is a diagram for explaining a liquid crystal display device according to a third embodiment of the present invention.
[図 12]本発明の液晶表示装置で得られる発光について説明するための図。  FIG. 12 is a diagram for explaining light emission obtained by the liquid crystal display device of the present invention.
発明の詳細な説明  Detailed Description of the Invention
[0017] 以下に、本発明の実施の形態の点滅点灯用蛍光ランプを用いたバックライト装置 について図面を参照して説明する。  Hereinafter, a backlight device using a blinking lighting fluorescent lamp according to an embodiment of the present invention will be described with reference to the drawings.
[0018] (第 1の実施の形態) [0018] (First embodiment)
図 1は本発明の第 1の実施の形態のバックライト装置について説明するための図で ある。  FIG. 1 is a diagram for explaining a backlight device according to a first embodiment of the present invention.
[0019] 本実施の形態のバックライト装置 BLは、直下型方式である。ノ ックライト装置 BLの 筐体は、フロントフレーム laとバックフレーム lbとで構成されている。フロントフレーム 1 aには、開口面が形成されている。バックフレーム lbは、有底開口形状であり、その内 側には高反射性の反射面が形成されている。  [0019] The backlight device BL of the present embodiment is a direct type. The casing of the knocklight BL is composed of a front frame la and a back frame lb. An opening surface is formed in the front frame 1a. The back frame lb has a bottomed opening shape, and a highly reflective reflecting surface is formed on the inner side.
[0020] ノ ックフレーム lbの内部には、細長形状の蛍光ランプ 2が複数本、それぞれの管軸 がほぼ平行になるように配置されている。なお、本実施の形態では冷陰極蛍光ランプ を使用しているが、熱陰極蛍光ランプ、外面電極蛍光ランプ、平面型蛍光ランプなど でもよく、種類や形状、大きさ等に制限はない。 [0020] A plurality of elongated fluorescent lamps 2 are arranged inside the knock frame lb so that their tube axes are substantially parallel to each other. In this embodiment, the cold cathode fluorescent lamp However, a hot cathode fluorescent lamp, an external electrode fluorescent lamp, a flat fluorescent lamp or the like may be used, and there is no limitation on the type, shape, size, and the like.
[0021] 蛍光ランプ 2の具体的な構造を図 2に示す。 A specific structure of the fluorescent lamp 2 is shown in FIG.
[0022] 蛍光ランプ 2は、例えば軟質ガラス製のガラス容器 21で主要部が構成されており、 その内部には、 Ne、 Arからなる混合ガスと水銀が封入されている。ガラス容器 21の両 端には、電極マウント 22a、 22bが封止されている。電極マウント 22a、 22bは、電極 22al 、 22blとビーズガラス 22a2、 22b2とで構成されている。  The main part of the fluorescent lamp 2 is composed of a glass container 21 made of, for example, soft glass, and a mixed gas composed of Ne and Ar and mercury are enclosed therein. Electrode mounts 22 a and 22 b are sealed at both ends of the glass container 21. The electrode mounts 22a and 22b are composed of electrodes 22al and 22bl and bead glasses 22a2 and 22b2.
[0023] ガラス容器 21の内面には、蛍光体 23が形成されている。本発明では、応答速度が 速い蛍光体を使用することが望ましい。図 3は、 Y203:Eu3+の蛍光体を塗布した蛍光 ランプの発光特性について説明するための図である。なお、同図の横軸は時間であ り、縦軸は電圧あるいは電流値を表している。同図の波形 (A)は蛍光ランプをオンォ フ制御するための電圧波形であるオンオフ信号、波形 (B)はランプ電圧波形、波形( C)はランプ電流波形、波形 )はランプの発光強度をフォトダイオードにより光電変 換して得られる出力電圧波形である。これらの波形は、オシロスコープにより測定表 示したものである。  A phosphor 23 is formed on the inner surface of the glass container 21. In the present invention, it is desirable to use a phosphor having a high response speed. FIG. 3 is a diagram for explaining the light emission characteristics of a fluorescent lamp coated with a Y203: Eu3 + phosphor. In the figure, the horizontal axis represents time, and the vertical axis represents voltage or current value. Waveform (A) in the figure is an on / off signal that is a voltage waveform for on / off control of the fluorescent lamp, waveform (B) is the lamp voltage waveform, waveform (C) is the lamp current waveform, waveform is the lamp emission intensity. It is an output voltage waveform obtained by photoelectric conversion with a photodiode. These waveforms are measured with an oscilloscope.
[0024] 図からわかるように、蛍光ランプ 2はオンオフ信号波形 (A)に対し、ランプ電圧及び ランプ電流波形 (B) (C)は遅滞なく反応しているが、ランプの発光波形 (D)の反応は 遅れる傾向がある。これは蛍光体の応答速度が影響した結果である。したがって、応 答速度がオンオフ信号 (A)と同じ速さの蛍光体を用いるのが最も望ましいが、そのよ うな蛍光体は実現困難である。  [0024] As can be seen from the figure, the fluorescent lamp 2 responds to the on / off signal waveform (A) with the lamp voltage and lamp current waveforms (B) and (C) without delay, but the lamp emission waveform (D). The reaction tends to be delayed. This is a result of the response speed of the phosphor. Therefore, it is most desirable to use a phosphor whose response speed is the same as that of the on / off signal (A), but such a phosphor is difficult to realize.
[0025] そこで、発明者は様々な蛍光体の応答速度を調査し、 1/10残光時間 (最大の明るさ を Aとしたとき、ランプの明るさ力 から 0.1Aになるまでの時間)がおよそ lmsec〜10mse cである 3波長蛍光ランプを作成した。そして、その蛍光ランプで液晶上の動画を投影 し、その動画に残像を感じるかどうか被験者 10人を対象に試験を行った。  [0025] Therefore, the inventor investigated the response speed of various phosphors, and 1/10 afterglow time (when the maximum brightness is A, the time from the brightness power of the lamp to 0.1A) A three-wavelength fluorescent lamp with a lmsec to 10 msc was made. Then, a moving image on the liquid crystal was projected with the fluorescent lamp, and a test was conducted on 10 subjects to see if there was an afterimage in the moving image.
[0026] その結果を図 4に示す。図 4からわ力、るように、 1/10残光時間が 5msec以下であれば 、人の目には残像として見えにくぐさらに 3msec以下であれば、残像としてほとんど 認識できないことが分かった。ちなみに、図 3に示した Y203:Eu3+の蛍光体は、 90%立 ち上がり時間、 1/10残光時間ともに約 2.5msecであるため、点滅点灯における応答速 度が速ぐ本発明の蛍光体として適している。なお、ほとんどの蛍光体において、発 光の立ち上がりと発光の立ち下がりとは相関があることがわかった。例えば、図 3の蛍 光体は、 1/10残光時間力 ¾.5msecであるのに対し、 90%発光立ち上がり時間 (ランプの 明るさが 0から 0.9Aになるまでの時間〉も約 3msecである。すなわち、 1/10残光時間と 90%発光立ち上がり時間は、ほぼ同じ結果になるため、発光の立ち下がりが早い蛍光 体は、発光の立ち上がりも早!/、蛍光体であると!/、える。 The results are shown in FIG. As can be seen from Fig. 4, it was found that if the 1/10 afterglow time was 5 msec or less, it was hardly visible to the human eye as an afterimage, and if it was 3 msec or less, it could hardly be recognized as an afterimage. Incidentally, the Y203: Eu3 + phosphor shown in Fig. 3 has a 90% rise time and 1/10 afterglow time of about 2.5 msec. It is suitable as the phosphor of the present invention, which is fast. In most phosphors, it was found that the rise of light emission and the fall of light emission are correlated. For example, the phosphor in Fig. 3 has a 1/10 afterglow time power of ¾.5 msec, while the 90% light emission rise time (the time until the lamp brightness reaches 0 to 0.9 A) is also about 3 msec. In other words, 1/10 afterglow time and 90% emission rise time are almost the same result, so a phosphor with a fast emission fall has a fast emission rise! / / Yeah.
[0027] 図 1において、バックフレーム lbの開口側には、拡散板 3が配置されている。拡散板  In FIG. 1, a diffusion plate 3 is arranged on the opening side of the back frame lb. Diffusion plate
3としては、発光ムラを低減でき、かつ効率が下がりすぎないよう、 50%〜85%の透過率 のものを使用するのが望まれる。  As for 3, it is desirable to use one having a transmittance of 50% to 85% so that unevenness in light emission can be reduced and efficiency is not lowered excessively.
[0028] 拡散板 3上には、光学シート 4が配設されて!/、る。光学シート 4としては、拡散シート、 プリズムシートなどを目的に合わせて一枚、又は複数枚使用することができる。  [0028] On the diffusing plate 3, an optical sheet 4 is disposed! As the optical sheet 4, one sheet or a plurality of sheets such as a diffusion sheet and a prism sheet can be used according to the purpose.
[0029] ノ ックフレーム lbの裏側には、点灯回路 5が配置されている。この点灯回路 5として は、蛍光ランプ 2が点滅点灯できるものであればよぐ例えば PWM(Pulse Width Mo dulation)回路が代表的である。この PWM回路の場合、周波数は 50〜300Hz、デュー ティ比は 10〜70%の範囲でランプを点灯するのが望ましい。その際当然ではあるが、 残像抑制の観点から、 1/10残光時間よりもランプのオフ期間が長くなるように、周波 数とデューティ比を設定するのが望まれる。  [0029] A lighting circuit 5 is arranged on the back side of the knock frame lb. The lighting circuit 5 is typically a PWM (Pulse Width Modulation) circuit as long as the fluorescent lamp 2 can be turned on and off. In the case of this PWM circuit, it is desirable to turn on the lamp with a frequency of 50 to 300 Hz and a duty ratio of 10 to 70%. In this case, as a matter of course, it is desirable to set the frequency and the duty ratio so that the lamp off period becomes longer than the 1/10 afterglow time from the viewpoint of afterimage suppression.
[0030] 下記に本発明のバックライト装置の実施例及び比較例の一仕様を示す。  [0030] One specification of an example of the backlight device of the present invention and a comparative example is shown below.
[0031] (実施例 1)  [Example 1]
バックライト装置 BL;サイズ =32インチ (約 760mm X約 440mm)、  Backlight device BL; size = 32 inches (about 760mm X about 440mm),
蛍光ランプ 2;冷陰極蛍光ランプ、内径 =2.0mm、外径 =3.0mm、ランプ電流 =6.0mA、 使用本数 =16本、ランプピッチ =23.8mm、蛍光ランプ 2と拡散板 3との距離 =14mm、 蛍光体 23;Y203:Eu3+(R)、 Y2Si5:Tb3+(G)、 BaMg2A110O17:Eu2+(B)、  Fluorescent lamp 2; cold cathode fluorescent lamp, inner diameter = 2.0 mm, outer diameter = 3.0 mm, lamp current = 6.0 mA, number of lamps used = 16, lamp pitch = 23.8 mm, distance between fluorescent lamp 2 and diffuser 3 = 14 mm , Phosphor 23; Y203: Eu3 + (R), Y2Si5: Tb3 + (G), BaMg2A110O17: Eu2 + (B),
拡散板 3;透過率 =60%、  Diffuser 3; transmittance = 60%,
光学シート 4;拡散シート、プリズムシート、 Optical sheet 4 ; diffusion sheet, prism sheet,
点灯回路 5:PWM回路、周波数 = 50Hz、デューティ比 = 50%。  Lighting circuit 5: PWM circuit, frequency = 50Hz, duty ratio = 50%.
[0032] (比較例 1) [0032] (Comparative Example 1)
蛍光体 23;Y203:Eu3+(R)、 LaP04:Ce3+、 Tb3+(G)、 BaMg2A110O17:Eu2+(B)、 蛍光体 23以外の構成は、実施例 1と同じ仕様。 Phosphor 23; Y203: Eu3 + (R), LaP04: Ce3 +, Tb3 + (G), BaMg2A110O17: Eu2 + (B), The configuration other than the phosphor 23 has the same specifications as in Example 1.
[0033] 図 5は実施例 1、図 6は比較例 1のランプをブリンキング点灯により点滅点灯したとき の発光特性について説明するための図である。これらの図において、横軸は時間で あり、縦軸は電圧あるいは電流値を表している。同図の波形 (A)は蛍光ランプをオン オフ制御するための電圧波形であるオンオフ信号、波形 (B)はランプ電圧波形、波 形(C)はランプ電流波形、波形 (D)はランプの発光強度をフォトダイオードにより光 電変換して得られる出力電圧波形である。  FIG. 5 is a diagram for explaining the light emission characteristics when the lamp of Example 1 and FIG. 6 are turned on by blinking lighting of the lamp of Comparative Example 1. In these figures, the horizontal axis represents time, and the vertical axis represents voltage or current value. Waveform (A) in the figure is an on / off signal that is a voltage waveform for controlling on / off of the fluorescent lamp, waveform (B) is the lamp voltage waveform, waveform (C) is the lamp current waveform, and waveform (D) is the lamp waveform. It is an output voltage waveform obtained by photoelectrically converting the emission intensity with a photodiode.
[0034] 図 5と図 6の発光波形を比較すると、実施例 1の方が比較例はりもランプの応答速度 が速いことがわかる。具体的には、実施例 1の 1/10残光時間は約 3mseC、比較例 1は 約 7msecであり、実施例 1の方が早く消灯している。また、 90%発光立ち上がり時間に ついても、実施例 1は 3msec弱であるのに対し、比較例 1は 8msec弱である。 [0034] Comparing the light emission waveforms of FIGS. 5 and 6, it can be seen that in Example 1, the response speed of the comparative example beam is faster. Specifically, the 1/10 afterglow time of Example 1 is about 3 mse C , and Comparative Example 1 is about 7 msec. Example 1 is turned off earlier. Also, regarding the 90% light emission rise time, Example 1 is less than 3 msec, while Comparative Example 1 is less than 8 msec.
[0035] なお、それぞれのランプを液晶表示装置に搭載し、動画を写した場合、実施例 1は 残像としてほとんど残らなかった力 比較例 1は残像が残り、動画がぼけて見えるのが 一目瞭然であった。また、残像をさらに消すためにランプのオフのタイミングに液晶を 閉じる状態で使用をした場合、すなわちランプがオンの期間しかランプ輝度が得られ ない状態で両者の輝度を比較した。その結果は、デューティ比が 100%のときのランプ の光束に対する両者の輝度は、実施例 1では約 95%、比較例 1では約 70%であった。 つまり、実施例 1を用いた液晶表示装置の方が明らかに明るく感じられた。  [0035] It should be noted that when each lamp is mounted on a liquid crystal display device and a moving image is taken, the force that Example 1 hardly left as an afterimage is comparatively clear in Example 1 that an afterimage remains and the moving image appears blurred. there were. In addition, in order to further eliminate the afterimage, the brightness was compared when the liquid crystal was closed at the lamp turn-off timing, that is, when the lamp brightness was obtained only during the lamp on-time. As a result, when the duty ratio was 100%, the luminance of both lamps relative to the luminous flux was about 95% in Example 1 and about 70% in Comparative Example 1. That is, the liquid crystal display device using Example 1 was clearly felt brighter.
[0036] このような結果になった理由としては、以下のように推測している。  [0036] The reason for such a result is presumed as follows.
[0037] 実施例 1と比較例 1との違いは、図 7に示すように、オンオフ信号に対して応答速度 が異なる緑色蛍光体を使った点のみである。しかし、図 5、 6から明らかなように、 3波 長蛍光体としたときにはランプの発光立ち上がり及び残光に大きな差が生じている。 このことから、 3波長蛍光体を塗布した蛍光ランプ 2を用いて点滅点灯する場合、 R (赤 )、 G (緑)、 B (青)の蛍光体のうちの一でも応答速度が遅ければ、蛍光ランプの応答速 度が遅くなつてしまうことが推測された。  The difference between Example 1 and Comparative Example 1 is only that a green phosphor having a different response speed with respect to the on / off signal is used as shown in FIG. However, as can be seen from FIGS. 5 and 6, when a three-wavelength phosphor is used, there is a large difference in the rise and afterglow of the lamp. From this, when flashing with the fluorescent lamp 2 coated with a three-wavelength phosphor, if one of the phosphors of R (red), G (green), and B (blue) has a slow response speed, It was speculated that the response speed of fluorescent lamps would slow down.
[0038] そこで、さまざまな蛍光体を組み合わせた 3波長蛍光体をランプに形成し、試験をし たところ、その全てにぉレ、て最も応答速度が遅!/、蛍光体が 3波長蛍光体の応答速度 を決定していることが確認された。したがって、点滅点灯用の 3波長蛍光ランプでは、 RGB全てにお!/、て応答速度が速!/、蛍光体を組み合わせて使用する必要がある。な お、赤、緑、青、深紅等の蛍光体を混合した 4波長蛍光体、又はそれ以上の蛍光体 を混合した多波長蛍光体においても、全ての蛍光体の応答速度が速い場合に限り、 発光の応答速度が速!/、蛍光ランプを実現可能である。 [0038] Therefore, when a three-wavelength phosphor combining various phosphors was formed on a lamp and tested, all of them were the slowest in response speed, and the phosphor was a three-wavelength phosphor. It was confirmed that the response speed was determined. Therefore, with a three-wavelength fluorescent lamp for blinking lighting, For all RGB! /, The response speed is fast! / And it is necessary to use a combination of phosphors. Even in the case of a four-wavelength phosphor mixed with phosphors such as red, green, blue, and crimson, or a multi-wavelength phosphor mixed with more phosphors, only when the response speed of all the phosphors is high. The response speed of light emission is fast! / A fluorescent lamp can be realized.
[0039] ここで、発明者によるさらなる研究により、蛍光体の応答速度は、主に蛍光体の付活 剤に関係するという を発見した。すなわち、蛍光体の組成は Y203:Eu3+のように 表現され、 Y203を母体、 Eu3+を付活剤と一般的に呼んでいる力 S、図 8からわかるよう に、蛍光体の応答速度は付活剤にほぼ依存することを発見した。そこで、蛍光体の 付活剤に注目して試験を行なったところ、 Sn2+、 Pr3+、 EU2+、 EU3+、 Ce3+、 Tb3+から 選択された付活剤からなる蛍光体であれば、 5msec以下の 1/10残光時間を実現しや すいことがわかった。ただし、 Eu3+や Tb3+の付活剤は応答速度が数 msecであるため 、母体との組み合わせによっては 1/10残光時間が 5msecを超える蛍光体も存在する 。したがって、これらの場合には 1/10残光時間が 5msec以下の蛍光体のみが点滅点 灯に適している。一方、 Sn2+、 Pr3+、 EU2+、 Ce3+の付活剤は、 90%発光立ち上がり 時間、 1/10残光時間がともに 0.1msec程度であり、オンオフ信号に対してほぼ遅滞な く蛍光体が応答するため、特に点滅点灯の用途に適しているといえる。ちなみに、付 活剤が複数使用されている場合には、その中で最も応答速度の遅い付活剤の特性 がその蛍光体の応答速度として得られる傾向がある。例えば比較例 1の緑色蛍光体 である LaP04 : Ce3+、 Tb3+の場合には、応答速度が早い Ce3+を含んでいる力 それ よりも応答速度の遅い Tb3+の応答速度となる。つまり、複数付活の場合では、その中 の一に応答速度が遅い付活剤を含むと点滅点灯に使用する蛍光体として好適では ない。 [0039] Here, further research by the inventors discovered that the response speed of the phosphor is mainly related to the activator of the phosphor. In other words, the composition of the phosphor is expressed as Y203: Eu3 +, the force S that generally calls Y203 as the matrix and Eu3 + as the activator S, as can be seen from FIG. It was found that it was almost dependent on the drug. Therefore, when a test was conducted by paying attention to the phosphor activator, a phosphor composed of an activator selected from Sn2 +, Pr3 +, EU2 +, EU3 +, Ce3 +, Tb3 + would be 1/10 of 5 msec or less. It turned out that it was easy to realize the afterglow time. However, since Eu3 + and Tb3 + activators have a response speed of several msec, there are phosphors whose 1/10 afterglow time exceeds 5 msec depending on the combination with the base material. Therefore, in these cases, only phosphors with 1/10 afterglow time of 5 msec or less are suitable for blinking lighting. On the other hand, Sn2 +, Pr3 +, EU2 +, and Ce3 + activators have 90% emission rise time and 1/10 afterglow time of about 0.1 msec, and the phosphor responds almost without delay to the on / off signal. In particular, it can be said that it is suitable for flashing lighting applications. Incidentally, when a plurality of activators are used, the characteristics of the activator having the slowest response speed tend to be obtained as the response speed of the phosphor. For example, in the case of LaP04: Ce3 +, Tb3 +, which is the green phosphor of Comparative Example 1, the response speed of Ceb + containing Ce3 + with a high response speed is obtained, and the response speed of Tb3 + with a slower response speed is obtained. That is, in the case of a plurality of activations, if one of them includes an activation agent having a slow response speed, it is not suitable as a phosphor used for blinking lighting.
[0040] なお、付活剤は、その種類や価数によって蛍光体の特性が変わるため、所望の発 光色ごとに使用できる付活剤と使用できない付活剤とがある。上記した Sn2+、 Pr3+、 Ε u2+、 Eu3+、 Ce3+、 Tb3+の付活剤であれば、 Sn2+、 Pr3+、 Eu2+、 Eu3+は赤色蛍光体 、 Eu2+、 Ce3+は緑色蛍光体、 Tb3+、 Eu2+は青色蛍光体に使用することができる。  [0040] In addition, since the characteristics of the phosphor vary depending on the type and valence of the activator, there are an activator that can be used for each desired emission color and an activator that cannot be used. Sn2 +, Pr3 +, Εu2 +, Eu3 +, Ce3 +, Tb3 + activators, Sn2 +, Pr3 +, Eu2 +, Eu3 + are red phosphors, Eu2 +, Ce3 + are green phosphors, Tb3 +, Eu2 + are blue phosphors Can be used.
[0041] 次に図 9のように、さまざまな RGB蛍光体を用いた 3波長蛍光ランプを作成し、応答 速度の試験を行った。その結果、 90%発光立ち上がり時間は、実施例 2、 3、 5が約 3ms ec、実施例 4が lmsec以下、比較例 2、 3が 10msec以上であった。また、 1/10残光時間 は、実施例 2、 3、 5が約 3msec、実施例 4が lmsec以下、比較例 2が約 6msec、比較例 3 が 10msec以上であった。以上から、応答速度の速い蛍光体同士の組み合わせであ ればどのような組み合わせであっても、応答速度が速ぐ点滅点灯方式のバックライト 装置に適用できることが確認された。 [0041] Next, as shown in Fig. 9, three-wavelength fluorescent lamps using various RGB phosphors were created and the response speed was tested. As a result, the 90% emission rise time is about 3 ms in Examples 2, 3, and 5. ec, Example 4 was lmsec or less, and Comparative Examples 2 and 3 were 10 msec or more. The 1/10 afterglow time was about 3 msec in Examples 2, 3, and 5, lmsec or less in Example 4, about 6 msec in Comparative Example 2, and 10 msec or more in Comparative Example 3. From the above, it was confirmed that any combination of phosphors with a fast response speed can be applied to a flashing lighting type backlight device with a fast response speed.
[0042] また、本発明の蛍光ランプは、 PWM方式によって調光を行う場合にも有効である。  [0042] The fluorescent lamp of the present invention is also effective when dimming by the PWM method.
すなわち、調光は主にコントラストを調整する目的で行われるが、結果として残像が 残りにくいと!/、う効果も得ること力 Sできる。  In other words, dimming is performed mainly for the purpose of adjusting the contrast, but as a result, it is difficult to leave afterimages!
[0043] したがって、第 1の実施の形態では、 1/10残光時間力 ^msec以下である RGBの蛍光 体 23をガラス容器 21の内面に塗布した蛍光ランプを使用し、ブリンキング点灯するこ とにより、残像が残りにくいバックライト装置を提供することができる。また、そのような 蛍光体はほとんどの場合、 90%発光立ち上がり時間も 5msec以下であるため、ランプと 液晶のオンオフを同期させて液晶表示装置を構成した場合には、ランプの輝度ロス が少なぐ高輝度を実現することができる。  Therefore, in the first embodiment, blinking lighting is performed using a fluorescent lamp in which an RGB phosphor 23 having a 1/10 afterglow time force of ^ msec or less is applied to the inner surface of the glass container 21. Thus, it is possible to provide a backlight device in which an afterimage hardly remains. Also, in most cases, such phosphors have a 90% emission rise time of 5 msec or less. Therefore, when the liquid crystal display device is configured by synchronizing the lamp and liquid crystal on / off, the luminance loss of the lamp is small. High brightness can be realized.
[0044] 具体的には、赤色蛍光体は Sn2+、 Pr3+、 Eu2+、 Eu3+、緑色蛍光体は Eu2+、 Ce3+、 Tb3+、青色蛍光体は Eu2+から選択された付活剤を含む 3波長蛍光体によりランプを 構成すれば、上記効果を再現することができる。  [0044] Specifically, the red phosphor is Sn2 +, Pr3 +, Eu2 +, Eu3 +, the green phosphor is Eu2 +, Ce3 +, Tb3 +, the blue phosphor is a lamp with a three-wavelength phosphor containing an activator selected from Eu2 +. If configured, the above effect can be reproduced.
[0045] 上記の実施形態においては、バックライト装置の点灯方式として、ブリンキング点灯 方式を用いたが、本発明は、スキャニング点灯方式のバックライト装置にも有効に適 用できる。  In the above embodiment, the blinking lighting method is used as the backlight device lighting method, but the present invention can also be effectively applied to a scanning lighting type backlight device.
[0046] 図 10は、スキャニング点灯方式のバックライト装置について説明するための図であ る。このバックライト装置においては、 12本のランプをそれぞれ 2本ずつに分けて 6つ のランプ群を構成するとともに、各ランプ群に 1/6ずつタイミングをずらしたオンオフ信 号を入力し、スキャニング点灯を行なっている。そのオンオフ信号は、周波数 =60Hz、 デューティ比 =50%であり、 PWM方式によって発生している。このスキャニング点灯方 式では、点灯状態において何れかのランプ群の一又は複数が常にオンになっている 点でブリンキング点灯方式と異なるが、上記と同様に、高輝度で残像が少なレ、バック ライト装置を実現できる。 [0047] (第 2の実施の形態) FIG. 10 is a diagram for explaining a scanning lighting type backlight device. In this backlight unit, each of the 12 lamps is divided into 2 lamps to form 6 lamp groups, and each lamp group is input with an on / off signal that is shifted by 1/6 time, and the scanning lights up. Is doing. The on / off signal has a frequency of 60 Hz and a duty ratio of 50%, and is generated by the PWM method. This scanning lighting method is different from the blinking lighting method in that one or more of the lamp groups are always turned on in the lighting state. A light device can be realized. [0047] (Second Embodiment)
図 11は、本発明の蛍光ランプを用いた液晶表示装置の実施形態を説明するための 図である。  FIG. 11 is a diagram for explaining an embodiment of a liquid crystal display device using the fluorescent lamp of the present invention.
[0048] 液晶表示装置は、フロントケース FCとバックケース BCにより、筐体が構成されている 。フロントケース FCの開口面には液晶パネル LCPが配設されている。バックケース BC は有底開口の形状であり、その内部にはバックライト装置 BLが配設される。  [0048] In the liquid crystal display device, a housing is constituted by a front case FC and a back case BC. A liquid crystal panel LCP is disposed on the opening surface of the front case FC. The back case BC has a shape of a bottomed opening, and a backlight device BL is disposed therein.
[0049] 液晶表示装置の場合、バックライト装置 BLの点滅点灯と液晶パネル LCPの開閉の 動作を組み合わせることが可能である。図 12は、バックライト装置 BLのランプを点滅 点灯したときの発光特性について説明するための図である。同図の横軸は時間であ り、縦軸は電圧あるいは電流値を表している。また、同図の波形 (A)は蛍光ランプを オンオフ制御するための電圧波形であるオンオフ信号、波形 (B)はランプ電圧波形 、波形(C)はランプ電流波形、波形 (D)はランプの発光強度をフォトダイオードにより 光電変換して得られる出力電圧波形である。さらに、波形 )は液晶パネル LCPを形 成する液晶を開閉するための信号であり、波形 )は液晶パネル LCPで得られる発 光波形、波形 (G)は液晶パネル LCPで得られない発光波形である。  [0049] In the case of a liquid crystal display device, it is possible to combine the blinking lighting of the backlight device BL and the operation of opening and closing the liquid crystal panel LCP. FIG. 12 is a diagram for explaining the light emission characteristics when the lamp of the backlight device BL is turned on and off. In the figure, the horizontal axis represents time, and the vertical axis represents voltage or current value. In addition, waveform (A) in the figure is an on / off signal that is a voltage waveform for controlling on / off of the fluorescent lamp, waveform (B) is the lamp voltage waveform, waveform (C) is the lamp current waveform, and waveform (D) is the lamp waveform. It is an output voltage waveform obtained by photoelectrically converting the emission intensity with a photodiode. Furthermore, the waveform) is a signal for opening and closing the liquid crystal forming the liquid crystal panel LCP, the waveform) is the emission waveform obtained by the liquid crystal panel LCP, and the waveform (G) is the emission waveform that cannot be obtained by the liquid crystal panel LCP. is there.
[0050] 図 12に示すように、バックライト装置 BLにオフ信号を入力したと同時に、液晶パネル LCPを閉めればランプの残光をカットすることができるため、両者の組み合わせによつ て動きぼけの発生をほぼ完全に防止することが可能である。しかし、カットされた光は 液晶の光として利用できないため、その分だけ輝度が低下することになつてしまう。例 えば、比較例 1では約 30%輝度が低下してしまう。その点、本発明の蛍光ランプを用い たバックライト装置であれば、ランプの応答速度が速いためにカットされる光は少なく なり、高輝度を達成できる。  [0050] As shown in FIG. 12, since the afterglow of the lamp can be cut by closing the liquid crystal panel LCP at the same time when the OFF signal is input to the backlight device BL, the motion blur is caused by the combination of both. Can be almost completely prevented. However, since the cut light cannot be used as liquid crystal light, the brightness is reduced accordingly. For example, in Comparative Example 1, the luminance is reduced by about 30%. In that respect, in the backlight device using the fluorescent lamp of the present invention, since the response speed of the lamp is fast, the light to be cut is reduced, and high luminance can be achieved.
[0051] したがって、第 2の実施の形態では、点滅点灯においても高輝度で残光が少ない 液晶表示装置を実現することができる。  Therefore, in the second embodiment, it is possible to realize a liquid crystal display device with high luminance and little afterglow even when flashing.

Claims

請求の範囲 The scope of the claims
[1] 放電媒体が封入されたガラス容器と、このガラス容器の端部に設けられた放電電極 と、前記ガラス容器の内面に形成された複数種類の蛍光体からなる多波長蛍光とを 備え、これらの蛍光体は 1/10残光時間が 5msec以下であることを特徴とする点滅点灯 用蛍光ランプ。  [1] A glass container in which a discharge medium is enclosed, a discharge electrode provided at an end of the glass container, and multi-wavelength fluorescence composed of a plurality of types of phosphors formed on the inner surface of the glass container, These phosphors have a 1/10 afterglow time of 5 msec or less.
[2] 前記蛍光体は 90%発光立ち上がり時間力 5msec以下であることを特徴とする請求項  [2] The phosphor is characterized in that a 90% emission rise time force is 5 msec or less.
1に記載の点滅点灯用蛍光ランプ。  1. A fluorescent lamp for blinking lighting according to 1.
[3] 前記蛍光体は Sn2+、 Pr3+、 EU2+、 EU3+、 Ce3+、 Tb3+から選択された付活剤を含ん でいることを特徴とする請求項 1に記載の点滅点灯用蛍光ランプ。 [3] The flashing fluorescent lamp according to claim 1, wherein the phosphor includes an activator selected from Sn2 +, Pr3 +, EU2 +, EU3 +, Ce3 +, and Tb3 +.
[4] 前記蛍光体は Sn2+、 Pr3+、 EU2+、 EU3+、 Ce3+、 Tb3+から選択された付活剤を含ん でいることを特徴とする請求項 2に記載の点滅点灯用蛍光ランプ。 [4] The fluorescent lamp for flashing lighting according to claim 2, wherein the phosphor includes an activator selected from Sn2 +, Pr3 +, EU2 +, EU3 +, Ce3 +, and Tb3 +.
[5] 前記蛍光体は赤色、緑色、青色の蛍光体を含む多波長蛍光体であり、赤色蛍光体 は Sn2+、 Pr3+、 EU2+、 EU3+、緑色蛍光体は EU2+、 Ce3+、 Tb3+、青色蛍光体は Eu2+ 力 選択された付活剤を含んでいることを特徴とする請求項 1に記載の点滅点灯用 蛍光ランプ。 [5] The phosphor is a multi-wavelength phosphor including red, green, and blue phosphors. The red phosphor is Sn2 +, Pr3 +, EU2 +, EU3 +, the green phosphor is EU2 +, Ce3 +, Tb3 +, and the blue phosphor is The fluorescent lamp for flashing lighting according to claim 1, characterized in that it contains a selected activator.
[6] 前記蛍光体は赤色、緑色、青色の蛍光体を含む多波長蛍光体であり、赤色蛍光体 は Sn2+、 Pr3+、 EU2+、 EU3+、緑色蛍光体は EU2+、 Ce3+、 Tb3+、青色蛍光体は Eu2+ 力 選択された付活剤を含んでいることを特徴とする請求項 2に記載の点滅点灯用 蛍光ランプ。  [6] The phosphor is a multi-wavelength phosphor including red, green, and blue phosphors. The red phosphor is Sn2 +, Pr3 +, EU2 +, EU3 +, the green phosphor is EU2 +, Ce3 +, Tb3 +, and the blue phosphor is The fluorescent lamp for flashing lighting according to claim 2, comprising a selected activator.
[7] 前記蛍光体は赤色、緑色、青色の蛍光体を含む多波長蛍光体であり、赤色蛍光体 は Sn2+、 Pr3+、 EU2+、緑色蛍光体は EU2+、 Ce3+、青色蛍光体は Eu2+から選択され た付活剤を含んでいることを特徴とする請求項 1に記載の点滅点灯用蛍光ランプ。  [7] The phosphor is a multi-wavelength phosphor including red, green, and blue phosphors. The red phosphor is selected from Sn2 +, Pr3 +, EU2 +, the green phosphor is selected from EU2 +, Ce3 +, and the blue phosphor is selected from Eu2 +. The fluorescent lamp for blinking lighting according to claim 1, further comprising an activator.
[8] 前記蛍光体は赤色、緑色、青色の蛍光体を含む多波長蛍光体であり、赤色蛍光体 は Sn2+、 Pr3+、 EU2+、緑色蛍光体は EU2+、 Ce3+、青色蛍光体は Eu2+から選択され た付活剤を含んでいることを特徴とする請求項 2に記載の点滅点灯用蛍光ランプ。  [8] The phosphor is a multi-wavelength phosphor including red, green, and blue phosphors. The red phosphor is selected from Sn2 +, Pr3 +, EU2 +, the green phosphor is selected from EU2 +, Ce3 +, and the blue phosphor is selected from Eu2 +. The fluorescent lamp for blinking lighting according to claim 2, further comprising an activator.
[9] 筐体と、前記筐体内に収容された請求項 5に記載の蛍光ランプと、前記蛍光ランプ を点滅点灯可能な点灯回路とを具備することを特徴とするバックライト装置。  [9] A backlight device comprising: a casing; the fluorescent lamp according to claim 5 housed in the casing; and a lighting circuit capable of blinking and lighting the fluorescent lamp.
[10] 筐体と、前記筐体内に収容された請求項 6に記載の蛍光ランプと、前記蛍光ランプ を点滅点灯可能な点灯回路とを具備することを特徴とするバックライト装置。 [10] The casing, the fluorescent lamp according to claim 6 accommodated in the casing, and the fluorescent lamp And a lighting circuit capable of blinking lighting.
[11] 請求項 9に記載のバックライト装置と、 [11] The backlight device according to claim 9,
前記バックライト装置の発光面側に配置された液晶パネルと、を具備したことを特徴と する液晶表示装置。  And a liquid crystal panel disposed on the light emitting surface side of the backlight device.
[12] 請求項 10に記載のバックライト装置と、 [12] The backlight device according to claim 10,
前記バックライト装置の発光面側に配置された液晶パネルと、を具備したことを特徴と する液晶表示装置。  And a liquid crystal panel disposed on the light emitting surface side of the backlight device.
PCT/JP2007/068695 2006-09-27 2007-09-26 Flashing fluorescent lamp, backlight device, and liquid crystal display device WO2008038670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536397A JPWO2008038670A1 (en) 2006-09-27 2007-09-26 Fluorescent lamp for flashing, backlight device, and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-263143 2006-09-27
JP2006263143 2006-09-27
JP2007-100368 2007-04-06
JP2007100368 2007-04-06

Publications (1)

Publication Number Publication Date
WO2008038670A1 true WO2008038670A1 (en) 2008-04-03

Family

ID=39230106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068695 WO2008038670A1 (en) 2006-09-27 2007-09-26 Flashing fluorescent lamp, backlight device, and liquid crystal display device

Country Status (4)

Country Link
JP (1) JPWO2008038670A1 (en)
KR (1) KR20090055023A (en)
TW (1) TW200822171A (en)
WO (1) WO2008038670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2002577C2 (en) * 2009-02-27 2010-08-30 Nieuwenhuis Window Film B V INFRARED LIGHT CONVERTING COMPOSITIONS.
JP2010217310A (en) * 2009-03-13 2010-09-30 Sony Corp Image display device, image display observation system, and image display method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105447A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Liquid crystal display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105447A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2002577C2 (en) * 2009-02-27 2010-08-30 Nieuwenhuis Window Film B V INFRARED LIGHT CONVERTING COMPOSITIONS.
JP2010217310A (en) * 2009-03-13 2010-09-30 Sony Corp Image display device, image display observation system, and image display method

Also Published As

Publication number Publication date
TW200822171A (en) 2008-05-16
KR20090055023A (en) 2009-06-01
JPWO2008038670A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
KR100686269B1 (en) Liquid crystal display device
US7683899B2 (en) Liquid crystal display device having an improved lighting device
JPWO2004055577A1 (en) Liquid crystal display
JP2004062134A (en) Liquid crystal display
US20090109248A1 (en) Display Apparatus Having a Multiplicity of Pixels and Method for Displaying Images
TWI344568B (en)
JP2006235461A (en) Liquid crystal display device
JP2004157373A (en) Liquid crystal display device
JP2006010790A (en) Liquid crystal display device
US20070262733A1 (en) Control method and control driving device for backlight module
US20150310809A1 (en) Backlight device and control method thereof
JPH04370650A (en) Color successive lighting apparatus
US20100097308A1 (en) Liquid crystal display device and method for driving a liquid crystal display device
JP4029053B2 (en) Liquid crystal display
WO2008038670A1 (en) Flashing fluorescent lamp, backlight device, and liquid crystal display device
JP2002105447A (en) Liquid crystal display
JP2001236034A (en) Display device
TWI272562B (en) Method for controlling light-emitting diode backlight module
US20100061082A1 (en) Backlight device and display apparatus
JP2001332394A (en) Optically-modulated information display device and lighting control device
JP2007065361A (en) Color liquid crystal display apparatus
JP2002313282A (en) White color light source and color display device using the white color light source
JP2010266774A (en) Liquid crystal image display apparatus
WO2009113036A1 (en) Liquid crystal display device and method for controlling a liquid crystal dysplay device
KR20060021426A (en) Back-light driving circuit and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536397

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097006210

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828441

Country of ref document: EP

Kind code of ref document: A1