WO2008035788A1 - Stirling engine for vehicle - Google Patents

Stirling engine for vehicle Download PDF

Info

Publication number
WO2008035788A1
WO2008035788A1 PCT/JP2007/068478 JP2007068478W WO2008035788A1 WO 2008035788 A1 WO2008035788 A1 WO 2008035788A1 JP 2007068478 W JP2007068478 W JP 2007068478W WO 2008035788 A1 WO2008035788 A1 WO 2008035788A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirling engine
cooling medium
vehicle
cooling
heat
Prior art date
Application number
PCT/JP2007/068478
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Abe
Yasushi Yamamoto
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006252683A external-priority patent/JP4765861B2/en
Priority claimed from JP2006252684A external-priority patent/JP4765862B2/en
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Publication of WO2008035788A1 publication Critical patent/WO2008035788A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/40Heat inputs using heat accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2256/00Coolers
    • F02G2256/50Coolers with coolant circulation

Definitions

  • the present invention relates to a so-called Stirling engine, which is a heat engine that converts thermal energy of a heat source into mechanical rotational energy by utilizing a state change caused by heating and cooling of a working fluid sealed in a gaseous state, and more particularly, a vehicle. This is related to the Stirling engine installed in. Background art
  • the Stirling engine has a high theoretical thermal efficiency, in which the working fluid enclosed in the working chamber is periodically heated and cooled to cause a change in state, and this is used to extract rotating energy from a high heat source. It is an external combustion engine, and its thermal efficiency increases as the temperature difference between the high and low heat sources increases. Unlike an internal combustion engine such as a gasoline engine or diesel engine, the Stirling engine, which is an external combustion engine, heats the heat generated by continuous combustion to the working fluid and heats it. Therefore, it is easy to control the combustion state of the fuel, and there are advantages in that the generation amount of harmful exhaust components such as N O x and C 2 O is small. In addition to heat generated by combustion, various heat sources such as exhaust heat from internal combustion engines can be used, and the engine has excellent characteristics in terms of energy saving and environmental measures.
  • a Stirling engine Taking advantage of the characteristics of such a Stirling engine, it is mounted on a vehicle, and the Stirling engine is operated using the technology that drives the vehicle by the Stirling engine or the exhaust heat of the internal combustion engine that drives the vehicle as a heat source. Development of technology to recover the power from the plant is also underway. In recent years, vehicle engines have been required to reduce emissions of harmful components of exhaust gas, and energy savings have been required to use petroleum alternative fuels. Stirling engines have the potential to meet such demands. It is one of the leading engines. By the way, a Stirling engine executes an engine cycle that generates power from the heat of a high heat source and dissipates exhaust heat to a low heat source.
  • Japanese Patent Laid-Open No. 8-2 1 9 5 6 9 discloses that a plurality of devices constituting a Stirling engine are combined with an internal combustion engine, and one of the devices performs an engine cycle to generate power from exhaust heat of the internal combustion engine.
  • a “Stirling cycle device” is disclosed which is configured to execute a cycle of a refrigerator or a heat pump by the power of the internal combustion engine and the power generated from the exhaust heat. Yes.
  • Stirling engines There are various types of Stirling engines, and in general, there are many displacers that periodically move the working fluid between the heating space and the cooling space.
  • a Stirling engine of the type with two pistons of compression side piston and expansion side piston is used.
  • the respective pistons are connected by a planetary gear mechanism so that the phases of both the pistons are variable.
  • the phase of each piston is controlled by adjusting the planetary gear mechanism so that each cycle is a phase in which each cycle is performed efficiently according to the load of the refrigerator or the temperature condition of the exhaust heat of the internal combustion engine. Is done.
  • the load acting on the vehicle varies greatly depending on the running state of the vehicle, such as vehicle speed and road surface conditions.
  • the Stirling engine that drives the vehicle has high thermal efficiency and at the same time can follow the load variation with good responsiveness.
  • the method of controlling the average pressure is inferior in terms of performance and requires a storage tank for the working fluid, which increases the weight and size of the engine.
  • the engine brake is applied in an engine that drives a vehicle, when the vehicle is braked, the engine is driven reversely from the wheels, and the braking force is applied to the vehicle by consuming the kinetic energy of the vehicle, that is, the engine brake is applied. desirable.
  • the engine brake consumes the kinetic energy of the vehicle by the engine.
  • the engine brake can be a regenerative brake when the engine is operated to convert energy into another form of energy.
  • the engine In the Stirling engine mounted on the vehicle, the engine is operated in a state of high thermal efficiency during normal driving of the vehicle, and the kinetic energy of the vehicle is efficiently absorbed and stored during braking.
  • the challenge is to increase the braking effect of engine brakes. Disclosure of the invention
  • the present invention provides a cooling medium that circulates a cooling medium to a cooling unit that cools the working fluid of the Stirling engine to achieve sufficient cooling, and switches the operation state of the Stirling engine when the vehicle is braked.
  • the temperature of the cooling medium is lowered and the kinetic energy of the two cars is converted to “temperature difference energy” and stored. That is, the present invention, as described in claim 1,
  • the Stirling engine includes a heating unit that heats the working fluid and a cooling unit that cools the working fluid.
  • the Stirling engine includes an operation state change device, and the operation state change device switches the Stirling engine to heat pump operation when the vehicle is braked, while the Stirling engine is operated as an engine during normal operation of the vehicle,
  • the heating unit is provided with a heat accumulator, and the cooling unit has a cooling medium circulation circuit including a pump that circulates the cooling medium and a radiator that radiates the heat of the cooling medium to the atmosphere. ,
  • the operation state change device sets the Stirling engine to engine operation
  • the pump is driven to circulate the cooling medium
  • the operation state change device switches the Stirling engine to heat pump operation.
  • the pump is stopped and the circulation of the cooling medium is prevented, the temperature of the working fluid and the cooling medium on the cooling unit side is lowered, and the temperature of the working fluid and the regenerator on the heating unit side is raised.
  • the Stirling engine of the present invention for driving a vehicle performs an engine cycle during normal driving of the vehicle, transfers heat from the heating section, which is a high heat source, to the working fluid, and dissipates heat from the cooling section, which is a low heat source. Is called.
  • a cooling circuit circulation circuit is formed in the cooling section, and the heat of the working fluid is transferred to the cooling medium in the liquid state, but since this heat transfer is heat transfer to the liquid, the heat transfer coefficient is large.
  • the working fluid is sufficiently cooled. As a result, the temperature difference between the heated working fluid and the cooled working fluid increases, and the Stirling engine operates in a highly efficient state.
  • the vehicle When the vehicle is braked, it is switched to heat pump operation by the operating state changing device.
  • the Stirling engine that generates power by heat from the heating unit during normal travel is driven as a heat pump through the power transmission system of the vehicle during braking.
  • the kinetic energy of the vehicle is consumed in a short time and the vehicle speed decreases, so the driving power when the Stirling engine is operated as a heat pump is very large, and the temperature of the working fluid in the cooling section decreases rapidly.
  • the temperature of the working fluid in the heating section rises rapidly.
  • a heat accumulator is disposed in the heating section of the Stirling engine of the present invention.
  • the temperature of the heat accumulator rises with the heat pump operation during braking, and the cooling medium is cooled in the cooling section.
  • the cooling section the pump that circulates the cooling medium is stopped and the circulation of the cooling medium is prevented, so that the temperature of the cooling medium rises by receiving heat from the atmosphere in the radiator. There is no.
  • the temperature of the cooling medium is lowered to a temperature lower than the atmospheric temperature when the vehicle is braked, and the so-called “cold heat J is stored in the cooling unit.
  • Lugi is regenerated in the form of being stored as temperature difference energy in the regenerator of the heating unit and the cooling medium of the cooling unit.
  • the Stirling engine is operated as an engine to drive the vehicle using the temperature difference energy stored in the regenerator and cooling medium of the heating unit.
  • the temperature of the heating part has risen more than usual, and the temperature of the cooling part has fallen, and the Stirling engine has increased the temperature difference between the high and low heat sources. Since it operates in a state, its output increases and the vehicle is smoothly accelerated. In addition, fuel economy is improved because the amount of fuel supplied to the heating section can be greatly reduced.
  • the Stirling engine is switched to the heat pump operation by the operation state change device even when the vehicle travels on the downhill road surface.
  • the power required to drive a Stirling engine as a heat pump is much greater than the power it absorbs when acting simply as an engine brake, and therefore the vehicle has a strong braking force.
  • the Stirling engine can be operated as a so-called speed reducer (retarder), reducing the burden of foot brakes and the like when traveling on a downhill road surface. This effect is particularly effective for large vehicles such as trucks with heavy vehicle weight, and can prevent a fade phenomenon due to overheating of the brake device.
  • the regenerative energy during heat pump operation is converted into temperature difference energy, stored in the heat accumulator, and used during subsequent travel, similar to the operation during the aforementioned control.
  • a valve can be installed in the circulation circuit so that when the vehicle is controlled, the pump is stopped and the valve is closed. With this configuration, it is possible to reliably prevent the cooling medium from circulating during braking of the vehicle. For example, even when natural convection occurs due to the temperature difference of the cooling medium, it can be prevented by closing the valve. And, as described in claim 3 of the present invention,
  • the Stirling engine includes a heating unit that heats the working fluid and a cooling unit that cools the working fluid.
  • the Stirling engine includes an operation state change device, and the operation state change device switches the Stirling engine to a heat pump operation when the vehicle is braked, and the Stirling engine is switched to a heat pump operation when the vehicle is braked.
  • the heating unit is provided with a heat accumulator, and the cooling unit is provided with a pump that circulates the cooling medium and a cooling medium that includes a radiator that radiates the heat of the cooling medium to the atmosphere.
  • a circuit is formed,
  • the circulation circuit is provided with a heat transfer section temperature detector that detects the temperature of the heat transfer section between the working fluid and the cooling medium, and a cooling medium temperature detector that detects the temperature of the cooling medium.
  • a heat transfer section temperature detector that detects the temperature of the heat transfer section between the working fluid and the cooling medium
  • a cooling medium temperature detector that detects the temperature of the cooling medium.
  • the Stirling engine according to claim 3 is a technical feature common to the Stirling engine according to Claim 1, that is, a Stirling engine having an operating state changing device and having a cooling part by a cooling medium. Switch to heat pump operation during braking and regenerate the kinetic energy of the vehicle as ⁇ cold heat '' in the cooling medium of the cooling unit, and prevent regeneration of the high-temperature cooling medium to the radiator during regeneration Is.
  • a heat transfer section temperature detector and a cooling medium temperature detector are installed in the circulation circuit, and when the temperature of the heat transfer section is lower than the temperature of the cooling medium, the circulation to the radiator To prevent.
  • the Stirling engine of Claim 3 has the same technical features as the Stirling engine of Claim 1. Therefore, the Stirling engine operates in the same manner as the Stirling engine of Claim 1, and has the same effects. Play. Further, the circulation circuit of the cooling unit is provided with a heat transfer unit temperature detector that detects the temperature of the heat transfer unit between the working fluid and the cooling medium, and a cooling medium temperature detector that detects the temperature of the cooling medium. When switching to heat pump operation during braking causes a drop in the temperature of the working fluid and the temperature of the heat transfer section drops below the temperature of the cooling medium, circulation of the cooling medium is prevented.
  • the circulation of the cooling medium is controlled by both temperature detectors, the temperature of the cooling medium can always be kept at the lowest temperature, and the situation in which the temperature rises by the radiator can be reliably avoided.
  • the pump is stopped.
  • the valve can be closed. In this case, the same effect as the Stirling engine in Item 2 can be achieved.
  • a bypass passage for bypassing the radiator and a three-way valve is provided in the cooling medium circulation circuit to prevent circulation to the radiator. The 3-way valve can be switched to bypass the coolant.
  • the Stirling engine When water or the like is used as the cooling medium, if water or the like is used as the cooling medium, if the circulation circuit pump is stopped during the heat pump operation of the Stirling engine, the accumulated cooling medium locally becomes extremely low in the heat transfer section between the working fluid and the cooling medium. The medium may freeze. When the cooling medium is circulated through the bypass passage without stopping the pump during heat pump operation as in Section 5, the entire temperature becomes uniform and freezing due to local supercooling can be prevented.
  • the Stirling engine is provided with a cylinder provided with a heating part and a cylinder provided with a cooling part, a piston is disposed in each cylinder, and communicated with each other.
  • a working fluid is enclosed in the cylinder, and a liquid cooling jacket to which a cooling medium for the circulation circuit is supplied is preferably formed in the cylinder provided with the cooling unit.
  • a liquid cooling jacket to which a cooling medium for the circulation circuit is supplied is preferably formed in the cylinder provided with the cooling unit.
  • Stirling engines include various types of engine mechanisms, such as those with displacers and those without them, but as described in claim 6, a cylinder with a heating unit and a cooling unit are installed. If a mechanism of a type in which pistons are arranged in the cylinders and the working fluid is sealed in communication with each other is used, the configuration of the operating state change device becomes simple. In other words, it is possible to adjust the output by changing the relative phase of the two pistons, and to switch the operating state of the Stirling engine from the engine operation to the heat pump operation. Then, the heat transfer between the working fluid and the cooling medium is improved by forming a liquid cooling jacket in which the cooling medium of the circulation circuit is supplied to the cylinder in which the cooling unit is installed. When operating the, the temperature of the working fluid in the cooling section can be sufficiently lowered.
  • FIG. 1 is a schematic view showing a first embodiment of the Stirling engine of the present invention.
  • FIG. 2 is a diagram showing a phase difference changing mechanism of the Stirling engine.
  • Fig. 3 is a control system diagram of the Stirling engine.
  • FIG. 4 is a graph showing the relationship between Stirling engine output and phase.
  • FIG. 5 is a schematic view showing a second embodiment of the Stirling engine of the present invention.
  • FIG. 6 is a schematic view showing a third embodiment of the Stirling engine of the present invention.
  • FIG. 7 is a schematic view showing a modified example of the Stirling engine of the present invention.
  • the Stirling engine of the present invention will be described below with reference to the drawings.
  • the Stirling engine of the first embodiment shown in FIG. 1 is of an engine type having two cylinders arranged in parallel, with the piston 1 being the expansion side piston and the viston 2 being the compression side piston. It has become.
  • the cylinder space above the piston 1 is the heating space 1 1
  • the cylinder space above the piston 2 is the cooling space 2 1
  • the heating space 1 1 and the cooling space 2 1 are communicated via the communication path 3. ing.
  • Both spaces 1 1 and 2 1 constitute the working chamber of the Stirling engine, in which a working fluid made of a gas having a small specific heat such as hydrogen or helium is enclosed.
  • the communication path 3 may be provided with a regenerator that stores the heat of the working fluid moving between both the spaces 1 1 and 1 2 and increases the cycle efficiency.
  • the piston 1 is connected to the crankpin of the crankshaft 13 by a rod, and the piston 2 is connected to the crankshaft 23 in the same manner.
  • the crankshaft 23 is connected to the drive wheels of the vehicle via a vehicle power transmission device, and the vehicle is driven by the output of the Stirling engine during normal vehicle travel.
  • a flywheel 4 is fixed to the crankshaft 1 3.
  • a heating unit 1 2 for heating the working fluid in the heating space 1 1 is disposed above the heating space 1 1.
  • combustion of fuel supplied from a fuel supply device (not shown) is performed.
  • the working fluid in the heating space 11 is heated.
  • a cooling part denoted as a whole by reference numeral 22 is arranged to cool the working fluid in the cooling space 21.
  • a heat accumulator 5 made of a massive object having a certain heat capacity, such as metal or ceramics, is installed in the heating section 12.
  • the cooling unit 22 cools the working fluid using a cooling medium such as water, and includes a pump 2 2 A that circulates the cooling medium and a radiator 2 2 B that radiates the heat of the cooling medium to the atmosphere. It is a circulation circuit.
  • the cooling medium liquids other than water can be used. For example, in order to prevent freezing due to a decrease in temperature, an antifreeze composed of ethylene glycol or the like can be mixed and used.
  • a liquid cooling tank portion 2 2 C having a large volume is provided, and a liquid cooling jacket 2 2 D is provided in the cylinder of the cooling space 21.
  • the cooling medium formed is pumped to the liquid cooling tank section 2 2 C and the liquid cooling jacket 2 2 D by the pump 2 2 A, circulates to the radiator 2 2 B after cooling the working fluid.
  • a valve 2 2 E is arranged in the middle of the circulation circuit.
  • the crankshaft 1 3 to which the piston 1 is connected and the crankshaft 2 3 to which the piston 2 is connected are connected via a phase difference changing mechanism 6 which is an operating state changing device. And the phase difference between Piston 2 can be changed. As shown in FIG.
  • the phase difference changing mechanism 6 is configured as a gear transmission mechanism similar to a planetary gear device using a bevel gear.
  • a through hole is formed in the frame body 61 of the phase difference changing mechanism 6, and an annular ring body 62 is rotatably fitted therein.
  • the ring body 62 includes two support shafts extending inward in the radial direction, and bevel gears 6 3 A and 6 3 B are rotatably attached to the support shafts.
  • the bevel gear 14 is fixed to the crankshaft 13 of the piston 1 as a whole, and the bevel gear 2 4 is fixed to the crankshaft 2 3 of the piston 2 as a whole.
  • the bevel gears 1 4 and 2 4 mesh with the support shaft bevel gears 6 3 A and 6 3 B. All four bevel gears have the same shape and the same number of teeth.
  • the Stirling engine operates as the engine that drives the vehicle.
  • the phase difference between the piston 1 and the piston 2 is set to approximately 90 ° which is optimal for the operation of the engine by the phase difference changing mechanism 6. That is, in the operation state of the engine cycle, the volume of the cooling space 21 is set to change at a phase delayed by 90 ° from the volume change of the heating space 11.
  • the working fluid in the working chamber composed of the heating space 1 1 and the cooling space 21 1 performs a Stirling cycle in which the state change is repeated while moving in both spaces according to the volume change of the working chamber.
  • the heat from the heating unit 12 is converted into power, and the drive wheels of the vehicle are driven to rotate from the crankshaft 23.
  • the pump 2 2 A During normal travel of the vehicle that executes the Stirling cycle, in the cooling section 2 2, the pump 2 2 A is driven and the valve 2 2 E is opened.
  • the pump 2 2 A pumps the cooling medium to the liquid cooling tank section 2 2 C and the liquid cooling jacket 2 2 D, and the expansion of the cooling medium in the liquid state mainly exists in the cooling space 21 Cool the fluid.
  • This cooling is performed by heat transfer to the liquid, and the liquid cooling jacket 2 2 D is formed so as to surround it in the vicinity of the cooling space 21, so that the working fluid is sufficiently cooled.
  • the temperature difference between the heated working fluid and the cooled working fluid increases, and the Stirling engine operates in a highly efficient state.
  • the brake system hydraulic pressure increases as the brake pedal of the foot brake is operated.
  • phase change mechanism 6 switches the phase between piston 1 and piston 2, and the volume of cooling space 2 1 is 90 ° ahead of the volume change of heating space 1 1.
  • the state change of the working fluid becomes a so-called reverse Stirling cycle, and the Stirling engine operates as a heat pump.
  • the kinetic energy of the vehicle is consumed in a short period of time, so a large amount of power is supplied from the drive wheels to the Stirling engine, and the cooling space 21 becomes cold and the heating space 11 becomes hot.
  • the pump 2 2 A is stopped and the valve 2 2 E is closed in the cooling section 2 2 to prevent the cooling medium from circulating, and the cooling medium is connected to the liquid cooling tank section 2 2 C and the liquid.
  • the cooling space 21 becomes cold, the temperature of the cooling medium decreases, and since the heat in the atmosphere is prevented from entering from the radiator 2 2 B by preventing the circulation of the cooling medium, the temperature of the cooling medium Drops below the atmospheric temperature and accumulates “cold heat”.
  • the volume of the liquid cooling tank section 2 2 C is set large, and a large amount of “cold heat” can be accumulated.
  • the heat accumulator 5 when the heating space 11 becomes high temperature, the heat accumulator 5 also becomes high temperature, and heat energy is accumulated here.
  • the kinetic energy of the vehicle is converted into temperature difference energy and stored in the heat accumulator 5 and the cooling medium.
  • the temperature difference energy stored when the vehicle is braked is used when the vehicle is re-accelerated.
  • the phase difference changing mechanism 6 is switched at the time of reacceleration, and the phases of the piston 1 and the piston 2 are in a phase state in which the engine cycle is executed.
  • the temperature stored in the heat accumulator 5 and the cooling medium The Stirling engine operates with the difference energy.
  • the Stirling engine can generate a large output commensurate with the acceleration of the vehicle. Also, Since the accumulated temperature difference energy is used, the amount of fuel supplied to the heating section can be greatly reduced.
  • the Stirling engine is switched to the heat pump operation by the phase difference changing mechanism 6 in accordance with the operation of the driver's brake pedal.
  • the power to drive the Stirling engine as a heat pump is much larger than the power absorbed when acting as an engine brake, so a strong braking force acts on the vehicle, reducing the load on the foot brake, etc. be able to.
  • the energy regenerated as temperature difference energy while traveling on a downhill road surface is used for subsequent vehicle travel, as in the case after braking.
  • Fig. 3 shows the control system for implementing such control.
  • a position signal of the accelerator pedal of the vehicle and a pressure signal of the brake device are input to the electronic control unit (E C U) that controls the phase difference changing mechanism.
  • E C U adjusts the position of the ring body of the phase difference changing mechanism so that the Stirling engine operates as an engine, and optimizes the phase of both pistons for engine operation. It is also possible to control the phase difference changing mechanism to change the output according to the position of the accelerator pedal. When the brake pedal is depressed, this is detected by the brake system pressure sensor, and ECU switches the position of the phase difference changing mechanism so that the Stirling engine operates as a heat pump.
  • a Stirling engine according to a second embodiment (corresponding to claim 3) of the present invention shown in FIG. 5 and a third embodiment (corresponding to claim 5) of FIG. 6 will be described.
  • parts corresponding to those of the first embodiment of the present invention are denoted by the same reference numerals as those in FIG.
  • the Stirling engines of the second and third embodiments have the same technical features as the Stirling engine of the first embodiment, and basically operate in the same manner as the Stirling engine of the first embodiment. .
  • it is an engine type equipped with two cylinder / piston mechanisms arranged in parallel.
  • Piston 1 is the expansion side piston and piston 2 is the compression side piston.
  • the driving state changing device 6 is the same as that shown in FIG.
  • the Stirling engine is switched to heat pump operation according to the same control method as the control system shown in FIG. 3, and the kinetic energy of the vehicle is stored as “cooling heat” in the cooling medium of the cooling unit 22.
  • two temperature detectors that is, a heat transfer section temperature detector S 1 and a cooling medium temperature detector S 2 are installed.
  • the motor that drives the pump 2 2 A is controlled according to the temperature detected by these two temperature detectors.
  • the heat transfer section temperature detector S 1 detects the temperature of the heat transfer section between the working fluid and the cooling medium, and is attached to the bottom wall surface of the liquid cooling tank section 2 2 C.
  • the cooling medium temperature detector S 2 detects the temperature of the cooling medium, and is attached to the outlet of the heat radiator 2 2 B.
  • Heat transfer section temperature detector S 1 may be installed in liquid cooling jacket 2 2 D ', and coolant temperature detector S 2 detects the temperature of the coolant on the discharge side of pump 2 2 A You may do it.
  • the temperature of the expanded working fluid that is mainly present in the cooling space 21 is higher than the temperature of the cooling medium, and the temperature detected by the heat transfer section temperature detector S1 is cooled. It is higher than the detection temperature of the medium temperature detector S2. Therefore, in the cooling unit 22, the pump 2 2 A is driven and the valve 2 2 E is opened. Pump 2 2 A pumps the cooling medium to liquid cooling tank section 2 2 C and liquid cooling jacket 2 2 D, and the cooling medium in the liquid state cools the working fluid in cooling space 21 1 ⁇ . The heat transferred to the cooling medium is dissipated from the radiator 2 2 B into the atmosphere, so that the working fluid is sufficiently cooled to near atmospheric temperature.
  • Blocking the circulation of the cooling medium prevents the heat from entering the air from the radiator 2 2 B.
  • the temperature of the medium drops below the atmospheric temperature and “cold heat” accumulates.
  • the volume of the liquid cooling tank section 2 2 C is set large, and a large amount of “cold heat” can be accumulated.
  • the regenerator 5 also becomes high temperature, and heat energy is accumulated here.
  • the kinetic energy of the vehicle is converted into temperature difference energy and stored in the heat accumulator 5 and the cooling medium.
  • This temperature difference energy is used when the vehicle is re-accelerated is the same as in the first embodiment.
  • a bypass passage 2 2 F and a three-way valve 2 2 G for bypassing the radiator 2 2 B are provided in the cooling medium circulation circuit.
  • the detection temperature of the heat transfer section temperature detector S 1 is lower than the detection temperature of the cooling medium temperature detector S 2 and the circulation of the cooling medium to the radiator 2 2 B is prevented Switch the three-way valve 2 2 G so that the coolant flows through the bypass passage 2 2 F without stopping the pump 2 2 A.
  • the accumulated cooling medium becomes extremely low locally in the heat transfer section between the working fluid and the cooling medium, and water or the like is used as the cooling medium. If used, the cooling medium may freeze.
  • the cooling medium when the cooling medium is circulated through the bypass passage 2 2 F during heat pump operation, the entire temperature becomes uniform and freezing due to local supercooling can be prevented.
  • a transmission device that can be reversed on the output shaft of the Stirling engine is arranged as an operation state change device, and when the Stirling engine is switched to the heat pump operation, the Stirling engine may be configured to be reversed.
  • a transmission device that can continuously change the rotation speed of the output shaft with respect to the rotation speed of the input shaft and can reverse the rotation speed is preferred.
  • FIG. 7 shows a modified example of the Stirling engine of the present invention in which the engine is reversely rotated to perform the heat pump operation.
  • the basic configuration of the engine is the same as that of the embodiment shown in FIG. 1 and the like, and the corresponding components are denoted by the same reference numerals.
  • Piston 1 and Piston 2 are connected to an integral crankshaft, and their phase is fixed at the optimum phase for engine operation.
  • the output shaft rotational speed can be continuously changed with respect to the input shaft rotational speed, and a transmission device 7 that can be reversed is placed at the output portion of the crankshaft.
  • the same operation as that of the embodiment of FIG. 1 can be realized by reversing the steering engine.
  • the present invention switches the operating state of the Stirling engine to operate as a heat pump when the vehicle is braked, etc., and converts the kinetic energy of the vehicle to temperature difference energy. It is converted and stored in the heat accumulator and cooling medium. Therefore, it is obvious that the Stirling engine of the present invention can be used for various vehicles as a power source for vehicles.
  • a Stirling engine provided with two pistons of expanded and compressed pistons is described.
  • the present invention is, for example, a power that takes out one piston as a displacer and takes out the output from the other piston. It is clear that it can be applied to various types of engines, such as the Stirling engine of the Biston type. It goes without saying that various modifications can be made to the embodiment, such as using phase changing means of another mechanism instead of a phase difference changing mechanism using a bevel gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A Stirling engine for a vehicle which provides sufficient cooling of working fluid when a vehicle is traveling and stores temperature difference energy converted from kinetic energy of the vehicle produced during a brake operation, thus enhancing fuel economy. The Stirling engine is equipped with two pistons, and a phase difference alteration mechanism (6) for altering the relative phase between a piston (1) and a piston (2) is installed as an operation state alteration device. Furthermore, a heat accumulator (5) is disposed in the heating section (12) of the engine, and a circulation circuit of cooling medium in which a radiator (2B) is arranged is formed in a cooling section (22). During brake operation of a vehicle, the phase difference alteration mechanism (6) switches the operating state of the Stirling engine to operate it as a heat pump and, at the same time, blocks circulation of cooling medium to a radiator (22B), thus accumulating kinetic energy of the vehicle during a brake operation as temperature difference energy in the heat accumulator (5) and the cooling medium. The regenerated temperature difference energy is utilized during subsequent traveling.

Description

明細書  Specification
車両用スターリングエンジン 技術分野 Stirling engine technology for vehicles
本発明は、 気体状態で封入された作動流体の加熱、 冷却による状態変化を利用 して、 熱源の有する熱エネルギを機械的な回転エネルギに変換する熱機関、 いわ ゆるスターリングエンジンに関し、 特に、 車両に搭載されたスターリングェンジ ンに関するものである。 背景技術  The present invention relates to a so-called Stirling engine, which is a heat engine that converts thermal energy of a heat source into mechanical rotational energy by utilizing a state change caused by heating and cooling of a working fluid sealed in a gaseous state, and more particularly, a vehicle. This is related to the Stirling engine installed in. Background art
スターリングエンジンは、 作動室内に封入された作動流体を周期的に加熱及び 冷却することにより状態変化を生じさせ、 これを利用して高熱源から回転エネル ギを取り出すようにした理論的な熱効率が高い外燃機関であって、その熱効率は、 高熱源と低熱源の温度差が大きいほど増大する。 外燃機関であるスターリングェ ンジンでは、 ガソリンエンジンやディーゼルエンジンのような内燃機関とは異な り、 連続燃焼によって生じた熱を作動流体に'熱伝達させこれを加熱する。 したが つて、 燃料の燃焼状態の制御が容易で、 N O x、 C O等、 燃焼による排気有害成 分の生成量が少ないという利点がある。 また、 燃焼による熱に限らず、 内燃機関 の排熱など各種の熱源を用いることが可能であり、 省エネルギ、 環境対策の面で も優れた特性を有するエンジンである。  The Stirling engine has a high theoretical thermal efficiency, in which the working fluid enclosed in the working chamber is periodically heated and cooled to cause a change in state, and this is used to extract rotating energy from a high heat source. It is an external combustion engine, and its thermal efficiency increases as the temperature difference between the high and low heat sources increases. Unlike an internal combustion engine such as a gasoline engine or diesel engine, the Stirling engine, which is an external combustion engine, heats the heat generated by continuous combustion to the working fluid and heats it. Therefore, it is easy to control the combustion state of the fuel, and there are advantages in that the generation amount of harmful exhaust components such as N O x and C 2 O is small. In addition to heat generated by combustion, various heat sources such as exhaust heat from internal combustion engines can be used, and the engine has excellent characteristics in terms of energy saving and environmental measures.
このようなスターリ ングエンジンの特性を活かし、 これを車両に搭載し、 スタ ーリングエンジンにより車両を駆動する技術、 あるいは車両を駆動する内燃機関 の排熱を熱源としてスターリングエンジンを作動させ、 排熱を動力として回収す る技術の開発も実施されている。 近年の車両用エンジンでは、 排気ガス有害成分 の排出量の低減が厳しく要請されるとともに、 省エネルギゃ石油代替燃料の使用 などが求められており、 スターリングエンジンは、 そうした要請に応える可能性 を備えた有力なエンジンの一つである。 ところで、 スターリングエンジンは、 高熱源の熱から動力を発生させて低熱源 に排熱を放熱するエンジンサイクルを実行するものであるが、 逆に、 外部動力に よってスターリングエンジンを駆動してヒ一トポンプサイクルを実行させ、 低熱 源から熱を汲み上げ低熱源を冷却することが可能である。 特開平 8— 2 1 9 5 6 9号公報には、 スターリングエンジンを構成する複数の機器と内燃機関とを組み 合わせ、 この機器の一方ではエンジンサイクルを行わせて内燃機関の排熱から動 力を発生させるようにすると同時に、 他方の機器では、 内燃機関の動力と排熱か ら発生した動力により、 冷凍機又はヒートポンプのサイクルを実行させるように 構成された 「スターリングサイクル機器」 が開示されている。 Taking advantage of the characteristics of such a Stirling engine, it is mounted on a vehicle, and the Stirling engine is operated using the technology that drives the vehicle by the Stirling engine or the exhaust heat of the internal combustion engine that drives the vehicle as a heat source. Development of technology to recover the power from the plant is also underway. In recent years, vehicle engines have been required to reduce emissions of harmful components of exhaust gas, and energy savings have been required to use petroleum alternative fuels. Stirling engines have the potential to meet such demands. It is one of the leading engines. By the way, a Stirling engine executes an engine cycle that generates power from the heat of a high heat source and dissipates exhaust heat to a low heat source. Therefore, it is possible to drive the Stirling engine and execute a heat pump cycle to pump heat from the low heat source and cool the low heat source. Japanese Patent Laid-Open No. 8-2 1 9 5 6 9 discloses that a plurality of devices constituting a Stirling engine are combined with an internal combustion engine, and one of the devices performs an engine cycle to generate power from exhaust heat of the internal combustion engine. In the other device, a “Stirling cycle device” is disclosed which is configured to execute a cycle of a refrigerator or a heat pump by the power of the internal combustion engine and the power generated from the exhaust heat. Yes.
スターリングエンジンには様々な形式があり、 一般的には、 作動流体を加熱空 間と冷却空間との間を周期的に移動させるディスプレーサを配置するものが多い けれども、 上記公報に示されるスターリングサイクル機器においては、 圧縮側ピ ス トンと膨張側ビス トンの 2ビス トンを備えた形式のスターリングエンジンが用 いられる。 エンジンサイクル及びヒートポンプサイクルを実施する機器では、 両 ビス トンの位相が可変となるよう各々のビス トンは遊星歯車機構によって連結さ れている。 各ピス トンの位相は、 冷凍機としての負荷や内燃機関の排熱の温度条 件等に応じて、 それぞれのサイクルが効率的に行われる位相となるように遊星歯 車機構を調整して制御される。 車両に作用する負荷は、 車速や路面状況等、 車両の走行状態に応じて大きく変 動する。 そのため、 車両を駆動するスターリングエンジンは、 熱効率の高いもの であると同時に、負荷の変動に応答性良く追随できるものであることが望ましい。 車両の負荷に対応させるようスターリングエンジンの出力を制御するには、 加熱 部に供給する燃料量を制御する方法や作動流体の平均圧力を調整する方法がある が、 燃料量を制御する方法は応答性の面で劣り、 平均圧力を制御する方法は、 作 動流体の貯蔵タンクを要するのでエンジンの重量の増加及び大型化を招く。 また、 車両を駆動するエンジンでは、 車両の制動時においては、 車輪から逆に エンジンを駆動し、 車両の運動エネルギを消費することによって車両に制動力を 加えること、 つまりエンジンブレーキを作用させることが望ましい。 特に、 車両 が坂道を下るときには、 エンジンブレーキを作用させてフッ トブレーキ等の制動 力を助勢し、 フッ トブレーキ等に掛かる負担を軽減する必要がある。 エンジンブ レーキは、 車両の運動エネルギをエンジンにより消費するものであるから、 運動 エネルギを別の形のエネルギに変換するようエンジンを作動させると、 エンジン ブレーキを回生ブレーキとすることも可能である。 There are various types of Stirling engines, and in general, there are many displacers that periodically move the working fluid between the heating space and the cooling space. , A Stirling engine of the type with two pistons of compression side piston and expansion side piston is used. In the equipment that implements the engine cycle and the heat pump cycle, the respective pistons are connected by a planetary gear mechanism so that the phases of both the pistons are variable. The phase of each piston is controlled by adjusting the planetary gear mechanism so that each cycle is a phase in which each cycle is performed efficiently according to the load of the refrigerator or the temperature condition of the exhaust heat of the internal combustion engine. Is done. The load acting on the vehicle varies greatly depending on the running state of the vehicle, such as vehicle speed and road surface conditions. For this reason, it is desirable that the Stirling engine that drives the vehicle has high thermal efficiency and at the same time can follow the load variation with good responsiveness. There are two methods for controlling the output of the Stirling engine to respond to the vehicle load: a method for controlling the amount of fuel supplied to the heating section and a method for adjusting the average pressure of the working fluid. The method of controlling the average pressure is inferior in terms of performance and requires a storage tank for the working fluid, which increases the weight and size of the engine. In addition, in an engine that drives a vehicle, when the vehicle is braked, the engine is driven reversely from the wheels, and the braking force is applied to the vehicle by consuming the kinetic energy of the vehicle, that is, the engine brake is applied. desirable. In particular, when the vehicle goes down a hill, it is necessary to apply an engine brake to assist the braking force of the foot brake and reduce the load on the foot brake. The engine brake consumes the kinetic energy of the vehicle by the engine. The engine brake can be a regenerative brake when the engine is operated to convert energy into another form of energy.
本発明は、 車両に搭載したスターリングエンジンにおいて、 車両の通常走行時 には熱効率の高い状態でエンジンを作動させ、 制動時には、 車両の運動エネルギ を効率的に吸収してこれを蓄積し再加速時の利用を図るとともに、 エンジンブレ ーキの制動効果を増大させることを課題とする。 発明の開示  In the Stirling engine mounted on the vehicle, the engine is operated in a state of high thermal efficiency during normal driving of the vehicle, and the kinetic energy of the vehicle is efficiently absorbed and stored during braking. The challenge is to increase the braking effect of engine brakes. Disclosure of the invention
上記の課題に鑑み、 本発明は、 スターリングエンジンの作動流体を冷却する冷 却部に冷却媒体を循環させて十分な冷却を図り、 車両の制動時には、 スターリン グエンジンの運転状態を切換えてヒートポンプとして作動させることにより、 冷 却媒体を低温化して車两の運動エネルギをいわば 「温度差エネルギ」 に変換し、 蓄積するものである。 すなわち、 本発明は、 請求の範囲第 1項に記載のように、 In view of the above problems, the present invention provides a cooling medium that circulates a cooling medium to a cooling unit that cools the working fluid of the Stirling engine to achieve sufficient cooling, and switches the operation state of the Stirling engine when the vehicle is braked. By operating, the temperature of the cooling medium is lowered and the kinetic energy of the two cars is converted to “temperature difference energy” and stored. That is, the present invention, as described in claim 1,
「車両に搭載され、 これを駆動するスターリングエンジンであって、 "A Stirling engine that is mounted on a vehicle and drives it,
前記スターリングエンジンは、 作動流体を加熱する加熱部と作動流体を冷却する 冷却部とを備え、 さらに、 The Stirling engine includes a heating unit that heats the working fluid and a cooling unit that cools the working fluid.
前記スターリングエンジンは運転状態変更装置を備えており、 前記運転状態変更 装置が、 前記車両の通常運転時には前記スターリングエンジンをエンジン運転と し、 前記車両の制動時には前記スターリングエンジンをヒートポンプ運転に切換 え、 The Stirling engine includes an operation state change device, and the operation state change device switches the Stirling engine to heat pump operation when the vehicle is braked, while the Stirling engine is operated as an engine during normal operation of the vehicle,
前記加熱部には蓄熱器が配置されるとともに、 前記冷却部には、 冷却媒体を循環 するポンプ及び冷却媒体の熱を大気に放熱する放熱器を備えた冷却媒体の循環 回路が形成されており、 The heating unit is provided with a heat accumulator, and the cooling unit has a cooling medium circulation circuit including a pump that circulates the cooling medium and a radiator that radiates the heat of the cooling medium to the atmosphere. ,
前記運転状態変更装置が前記スターリングエンジンをエンジン運転とするときは、 前記ポンプが駆動されて冷却媒体が循環され、 かつ、 前記運転状態変更装置が前 記スターリングエンジンをヒ一トポンプ運転に切換えた きは、 前記ポンプが停 止され冷却媒体の循環が阻止されて、 前記冷却部側の作動流体及び冷却媒体の温 度を低温とし、 前記加熱部側の作動流体及び前記蓄熱器の温度を高温とするよう 構成された」 When the operation state change device sets the Stirling engine to engine operation, the pump is driven to circulate the cooling medium, and the operation state change device switches the Stirling engine to heat pump operation. The pump is stopped and the circulation of the cooling medium is prevented, the temperature of the working fluid and the cooling medium on the cooling unit side is lowered, and the temperature of the working fluid and the regenerator on the heating unit side is raised. Configured to do "
ことを特徴とするスターリングエンジンとなっている。 車両を駆動する本発明のスターリングエンジンは、 車両の通常走行時にはェン ジンサイクルが実行され、 高熱源である加熱部からの熱が作動流体に伝達され、 低熱源となる冷却部から放熱が行われる。 冷却部には冷却媒体の循環回路が形成 されており、 作動流体の熱は、 液体状態にある冷却媒体に伝達されるが、 この熱 伝達は液体への熱伝達であるから熱伝達係数が大きく、 作動流体は十分に冷却さ れる。この結果、加熱された作動流体と冷却された作動流体との温度差が増大し、 スターリングエンジンは高効率状態で作動する。 エンジンサイクルが実行される ときは、 冷却媒体が放熱器へ循環されるため、 冷却媒体に伝達された作動流体の 熱は最終的には放熱器から大気中に放出される。 It is a Stirling engine characterized by that. The Stirling engine of the present invention for driving a vehicle performs an engine cycle during normal driving of the vehicle, transfers heat from the heating section, which is a high heat source, to the working fluid, and dissipates heat from the cooling section, which is a low heat source. Is called. A cooling circuit circulation circuit is formed in the cooling section, and the heat of the working fluid is transferred to the cooling medium in the liquid state, but since this heat transfer is heat transfer to the liquid, the heat transfer coefficient is large. The working fluid is sufficiently cooled. As a result, the temperature difference between the heated working fluid and the cooled working fluid increases, and the Stirling engine operates in a highly efficient state. When the engine cycle is executed, since the cooling medium is circulated to the radiator, the heat of the working fluid transferred to the cooling medium is finally released from the radiator to the atmosphere.
車両の制動時には、 運転状態変更装置によってヒートポンプ運転に切換えられ る。 つまり、 通常走行時に加熱部からの熱によって動力を発生していたスターリ ングエンジンは、 制動時には車両の動力伝達系を経てヒートポンプとして駆動さ れることとなる。 制動時には、 短時間の中に車両の運動エネルギを消費して車速 が低下するから、 スターリングエンジンをヒートポンプ運転とした際の駆動動力 は非常に大きく、 冷却部の作動流体の温度が急速に低下するとともに、 加熱部の 作動流体の温度は急速に上昇する。  When the vehicle is braked, it is switched to heat pump operation by the operating state changing device. In other words, the Stirling engine that generates power by heat from the heating unit during normal travel is driven as a heat pump through the power transmission system of the vehicle during braking. During braking, the kinetic energy of the vehicle is consumed in a short time and the vehicle speed decreases, so the driving power when the Stirling engine is operated as a heat pump is very large, and the temperature of the working fluid in the cooling section decreases rapidly. At the same time, the temperature of the working fluid in the heating section rises rapidly.
本発明のスターリングエンジンの加熱部には蓄熱器が配置されており、 制動時 のヒートポンプ運転に伴い、 蓄熱器の温度が上昇するとともに、 冷却部では冷却 媒体が冷却されることとなる。 ここで、 冷却部においては冷却媒体を循環するポ ンプが停止されて冷却媒体の循環が阻止されるため、 冷却媒体は、 放熱器におい て大気中の熱を受けることによりその温度が上昇することはない。 つまり、 冷却 媒体の温度は、車両の制動時には大気温以下に低下して、冷却部にはいわゆる「冷 熱 J が蓄えられた状態となる。 このように、 本発明においては、 車両の運動エネ ルギは、 加熱部の蓄熱器と冷却部の冷却媒体とに温度差エネルギとして蓄積する 形で回生される。  A heat accumulator is disposed in the heating section of the Stirling engine of the present invention. The temperature of the heat accumulator rises with the heat pump operation during braking, and the cooling medium is cooled in the cooling section. Here, in the cooling section, the pump that circulates the cooling medium is stopped and the circulation of the cooling medium is prevented, so that the temperature of the cooling medium rises by receiving heat from the atmosphere in the radiator. There is no. In other words, the temperature of the cooling medium is lowered to a temperature lower than the atmospheric temperature when the vehicle is braked, and the so-called “cold heat J is stored in the cooling unit. Lugi is regenerated in the form of being stored as temperature difference energy in the regenerator of the heating unit and the cooling medium of the cooling unit.
車両の制動後の再加速時には、 加熱部の蓄熱器と冷却媒体に蓄えられた温度差 エネルギを利用して、 スターリングエンジンをエンジンとして作動させ車両を駆 動する。 このときには、 通常時よりも加熱部の温度が上昇し、 かつ、 冷却部の温 度は低下しており、 スターリングエンジンは高熱源と低熱源の温度差が増大した 状態で作動するから、 その出力が増加し車両はスムースに加速される。 また、 加 熱部に供給する燃料量を大幅に低減できるので燃料経済性が向上することとなる。 車両が下り勾配の路面を走行するときにも、 スターリングエンジンは、 運転状 態変更装置によってヒートポンプ運転に切換えられる。 ヒートポンプとしてスタ ーリングエンジンを駆動するために要する動力は、 単にエンジンブレーキとして 作用させるときに吸収する動力よりもはるかに大きく、 したがって、 車両には強 力な制動力が働く。 つまり、 スターリングエンジンを、 いわゆる減速装置 (リタ ーダ) として作動させることが可能であり、 下り勾配の路面を走行する際のフッ トブレ^キ等の負担が軽減される。 この効果は、 車両重量の大きいトラック等の 大型車両では特に有効なものとなり、 ブレーキ装置の過熱によるフエ一ド現象等 を防止することができる。 ヒートポンプ運転中の回生エネルギが温度差エネルギ に変換されて蓄熱器に蓄えられ、 その後の走行時に利用されることは、 前述の制 動時の作動と同様である。 請求の範囲第 2項に記載のとおり、 前記循環回路にバルブを設置し、 車両の制 動時には、 前記ポンプが停止されるとともに前記バルブが閉鎖されるようにする ことができる。 このように構成すると、 車両の制動時における冷却媒体の循環を 確実に防止できる。 例えば、 冷却媒体の温度差に起因して自然対流が生じるよう な場合でも、 バルブの閉鎖によりその発生を阻止できる。 そして、 本発明は、 請求の範囲第 3項に記載のように、 At the time of re-acceleration after braking of the vehicle, the Stirling engine is operated as an engine to drive the vehicle using the temperature difference energy stored in the regenerator and cooling medium of the heating unit. At this time, the temperature of the heating part has risen more than usual, and the temperature of the cooling part has fallen, and the Stirling engine has increased the temperature difference between the high and low heat sources. Since it operates in a state, its output increases and the vehicle is smoothly accelerated. In addition, fuel economy is improved because the amount of fuel supplied to the heating section can be greatly reduced. The Stirling engine is switched to the heat pump operation by the operation state change device even when the vehicle travels on the downhill road surface. The power required to drive a Stirling engine as a heat pump is much greater than the power it absorbs when acting simply as an engine brake, and therefore the vehicle has a strong braking force. In other words, the Stirling engine can be operated as a so-called speed reducer (retarder), reducing the burden of foot brakes and the like when traveling on a downhill road surface. This effect is particularly effective for large vehicles such as trucks with heavy vehicle weight, and can prevent a fade phenomenon due to overheating of the brake device. The regenerative energy during heat pump operation is converted into temperature difference energy, stored in the heat accumulator, and used during subsequent travel, similar to the operation during the aforementioned control. As described in claim 2, a valve can be installed in the circulation circuit so that when the vehicle is controlled, the pump is stopped and the valve is closed. With this configuration, it is possible to reliably prevent the cooling medium from circulating during braking of the vehicle. For example, even when natural convection occurs due to the temperature difference of the cooling medium, it can be prevented by closing the valve. And, as described in claim 3 of the present invention,
「車両に搭載され、 これを駆動するスターリングエンジンであって、  "A Stirling engine that is mounted on a vehicle and drives it,
前記スターリングエンジンは、 作動流体を加熱する加熱部と作動流体を冷却する 冷却部とを備え、 さらに、 The Stirling engine includes a heating unit that heats the working fluid and a cooling unit that cools the working fluid.
前記スターリングエンジンは運転状態変更装置を備えており、 前記運転状態変更 装置が、 前記車両の通常運転時には前記スターリングエンジンをエンジン運転と し、 前記車両の制動時には前記スターリングエンジンをヒートポンプ運転に切換 え、 The Stirling engine includes an operation state change device, and the operation state change device switches the Stirling engine to a heat pump operation when the vehicle is braked, and the Stirling engine is switched to a heat pump operation when the vehicle is braked.
前記加熱部には蓄熱器が配置されるとともに、 前記冷却部には、 冷却媒体を循環 するポンプ及び冷却媒体の熱を大気に放熱する放熱器を備えた冷却媒体の循環 回路が形成されており、 The heating unit is provided with a heat accumulator, and the cooling unit is provided with a pump that circulates the cooling medium and a cooling medium that includes a radiator that radiates the heat of the cooling medium to the atmosphere. A circuit is formed,
前記循環回路には、 作動流体と冷却媒体との伝熱部の温度を検出する伝熱部温度 検出器及び冷却媒体の温度を検出する冷却媒体温度検出器が設置され、 冷却媒体 は、 前記伝熱部温度検出器で検出された温度が前記冷却媒体温度検出器で検出さ れた温度よりも高いときには、 前記放熱器に循環され、 低いときには、 前記放熱 器への循環が阻止されるよう構成された」 The circulation circuit is provided with a heat transfer section temperature detector that detects the temperature of the heat transfer section between the working fluid and the cooling medium, and a cooling medium temperature detector that detects the temperature of the cooling medium. When the temperature detected by the hot section temperature detector is higher than the temperature detected by the cooling medium temperature detector, it is circulated to the radiator, and when it is lower, the circulation to the radiator is prevented. Was done "
ことを特徴とするスターリングエンジンとしても実施することができる。 請求の範囲第 3項のスターリングエンジンは、 第 1項のスターリングエンジン と共通する技術的特徴、 つまり、 運転状態変更装置を備えるとともに冷却媒体に よる冷却部を有するスタ一リングエンジンであって、 車両の制動時にはヒートポ ンプ運転に切換えて、 車両の運動エネルギを冷却部の冷却媒体に 「冷熱」 として 回生し、 かつ、 回生時には高温の冷却媒体の放熱器への循環を阻止するという構 成を備えるものである。 また、 第 3項のスターリングエンジンでは、 循環回路に 伝熱部温度検出器及び冷却媒体温度検出器を設置し、 伝熱部の温度が冷却媒体の 温度よりも低いときに、 放熱器への循環を阻止する。 It can implement also as a Stirling engine characterized by this. The Stirling engine according to claim 3 is a technical feature common to the Stirling engine according to Claim 1, that is, a Stirling engine having an operating state changing device and having a cooling part by a cooling medium. Switch to heat pump operation during braking and regenerate the kinetic energy of the vehicle as `` cold heat '' in the cooling medium of the cooling unit, and prevent regeneration of the high-temperature cooling medium to the radiator during regeneration Is. In the Stirling engine of item 3, a heat transfer section temperature detector and a cooling medium temperature detector are installed in the circulation circuit, and when the temperature of the heat transfer section is lower than the temperature of the cooling medium, the circulation to the radiator To prevent.
請求の範囲第 3項のスターリングエンジンは、 第 1項のスターリングエンジン と共通する上記の技術的特徴を有しているので、 第 1項のスターリングエンジン と同様な作動を行い、同様な作用効果を奏する。 さらに、冷却部の循環回路には、 作動流体と冷却媒体との伝熱部の温度を検出する伝熱部温度検出器及び冷却媒体 の温度を検出する冷却媒体温度検出器が設置され、 車両の制動時におけるヒート ポンプ運転への切換えにより、 作動流体の温度降下が生じ伝熱部の温度が冷却媒 体の温度よりも低下すると、 冷却媒体の循環が阻止される。 冷却媒体の循環は両 方の温度検出器により制御されるから、 冷却媒体の温度を常時最低の温度に保つ ことが可能で、 その温度が放熱器により上昇する事態を確実に回避できる。 請求の範囲第 4項に記載のとおり、 第 3項に記載のスタ一リングエンジンにお いても、 循環回路にバルブを設置し、 放熱器への循環を阻止するときは、 ポンプ を停止するとともに前記バルブを閉鎖するようにすることができる。 この場合に は、 第 2項のスターリングエンジンと同様な作用効果を達成できる。 また、 請求の範囲第 5項に記載のとおり、 冷却媒体の循環回路に放熱器をバイ パスするバイパス通路と 3方弁とを設け、 放熱器への循環を阻止するときに、 放 熱器をバイパスして冷却媒体を流すよう 3方弁を切換えることもできる。 The Stirling engine of Claim 3 has the same technical features as the Stirling engine of Claim 1. Therefore, the Stirling engine operates in the same manner as the Stirling engine of Claim 1, and has the same effects. Play. Further, the circulation circuit of the cooling unit is provided with a heat transfer unit temperature detector that detects the temperature of the heat transfer unit between the working fluid and the cooling medium, and a cooling medium temperature detector that detects the temperature of the cooling medium. When switching to heat pump operation during braking causes a drop in the temperature of the working fluid and the temperature of the heat transfer section drops below the temperature of the cooling medium, circulation of the cooling medium is prevented. Since the circulation of the cooling medium is controlled by both temperature detectors, the temperature of the cooling medium can always be kept at the lowest temperature, and the situation in which the temperature rises by the radiator can be reliably avoided. As described in claim 4, even in the stalling engine described in claim 3, when installing a valve in the circulation circuit to prevent circulation to the radiator, the pump is stopped. The valve can be closed. In this case, the same effect as the Stirling engine in Item 2 can be achieved. In addition, as described in claim 5, a bypass passage for bypassing the radiator and a three-way valve is provided in the cooling medium circulation circuit to prevent circulation to the radiator. The 3-way valve can be switched to bypass the coolant.
冷却媒体として水等を用いた場合、 スターリングエンジンのヒートポンプ運転 時に循環回路のポンプを停止すると、 作動流体と冷却媒体との伝熱部等では滞留 した冷却媒体が局所的に非常に低温となり、 冷却媒体が凍結する虞れがある。 第 5項のように、 ヒートポンプ運転時にポンプを停止することなく冷却媒体をバイ パス通路を通過させて循環したときは、 全体の温度が均一となり局所的な過冷却 に伴う凍結を防止できる。 請求の範囲第 6項に記載のとおり、 スターリングエンジンには、 加熱部が設置 されたシリンダ及び冷却部が設置されたシリンダを設け、 それぞれのシリンダ内 にはピストンを配置し、 かつ、 互いに連通して内部に作動流体を封入した形式の ものとし、 冷却部が設置されたシリンダには、 循環回路の冷却媒体が供給される 液冷ジャケッ トを形成することが好ましい。 こう した構成は、 第 1項のスターリ ングエンジンであっても第 3項のスターリングエンジンであっても、 共通して採 用することができる。  When water or the like is used as the cooling medium, if the circulation circuit pump is stopped during the heat pump operation of the Stirling engine, the accumulated cooling medium locally becomes extremely low in the heat transfer section between the working fluid and the cooling medium. The medium may freeze. When the cooling medium is circulated through the bypass passage without stopping the pump during heat pump operation as in Section 5, the entire temperature becomes uniform and freezing due to local supercooling can be prevented. As described in claim 6, the Stirling engine is provided with a cylinder provided with a heating part and a cylinder provided with a cooling part, a piston is disposed in each cylinder, and communicated with each other. It is preferable that a working fluid is enclosed in the cylinder, and a liquid cooling jacket to which a cooling medium for the circulation circuit is supplied is preferably formed in the cylinder provided with the cooling unit. Such a configuration can be commonly applied to the Stirling engine of the first term and the Stirling engine of the third term.
スターリングエンジンには、 ディスプレーサを備えたものやこれを持たないも のなど種々の形式のエンジン機構があるが、 請求の範囲第 6項のように、 加熱部 が設置されたシリンダ及び冷却部が設置されたシリンダにビス トンを配置し、 か つ、 互いに連通して内部に作動流体を封入した形式の機構を採用すると、 運転状 態変更装置の構成が簡易なものとなる。 すなわち、 2個のピス トンの相対的な位 相を変更することによって出力を調整し、 さらに、 スターリングエンジンの運転 状態を、 エンジンの作動からヒートポンプの作動に切換えることが可能である。 そして、 冷却部が設置されたシリンダに、 循環回路の冷却媒体が供給される液冷 ジャケッ トを形成することにより作動流体と冷却媒体との熱伝達が改善され、 ェ ンジンサイクルとしてスタ一リングエンジンを作動させる際、 冷却部の作動流体 の温度を十分に低下させることが可能となる。 図面の簡単な説明 Stirling engines include various types of engine mechanisms, such as those with displacers and those without them, but as described in claim 6, a cylinder with a heating unit and a cooling unit are installed. If a mechanism of a type in which pistons are arranged in the cylinders and the working fluid is sealed in communication with each other is used, the configuration of the operating state change device becomes simple. In other words, it is possible to adjust the output by changing the relative phase of the two pistons, and to switch the operating state of the Stirling engine from the engine operation to the heat pump operation. Then, the heat transfer between the working fluid and the cooling medium is improved by forming a liquid cooling jacket in which the cooling medium of the circulation circuit is supplied to the cylinder in which the cooling unit is installed. When operating the, the temperature of the working fluid in the cooling section can be sufficiently lowered. Brief Description of Drawings
図 1は、 本発明のスターリングエンジンの第 1実施例を示す概略図である。 図 2は、 スターリングエンジンの位相差変更機構を示す図である。  FIG. 1 is a schematic view showing a first embodiment of the Stirling engine of the present invention. FIG. 2 is a diagram showing a phase difference changing mechanism of the Stirling engine.
図 3は、 スターリングエンジンの制御系統図である。  Fig. 3 is a control system diagram of the Stirling engine.
図 4は、 スターリングエンジンの出力と位相との関係を表すグラフである。 図 5は、 本発明のスターリングエンジンの第 2実施例を示す概略図である。 図 6は、 本発明のスタ一リングエンジンの第 3実施例を示す概略図である。 図 7は、 本発明のスターリングエンジンの変形例を示す概略図である。 発明を実施するための最良の形態  Fig. 4 is a graph showing the relationship between Stirling engine output and phase. FIG. 5 is a schematic view showing a second embodiment of the Stirling engine of the present invention. FIG. 6 is a schematic view showing a third embodiment of the Stirling engine of the present invention. FIG. 7 is a schematic view showing a modified example of the Stirling engine of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に基づき本発明のスターリングエンジンについて説明する。 ここで は、 まず図 1乃至図 4を参照して、 本発明の第 1実施例のスターリングエンジン に関して、 その構成及び作動等について述べる。 図 1の第 1実施例のスターリングエンジンは、 並列に配置された 2個のシリン ダ'ビス トン機構を備えたエンジン形式のもので、ビス トン 1が膨張側ビス トン、 ビストン 2が圧縮側ビストンとなっている。 ピストン 1の上部のシリンダ空間は 加熱空間 1 1であり、ピストン 2の上部のシリンダ空間は冷却空間 2 1であって、 加熱空間 1 1 と冷却空間 2 1 とは連通路 3を介して連通されている。 両方の空間 1 1、 2 1はスターリングエンジンの作動室を構成し、 この中には、 水素、 ヘリ ゥム等の比熱の小さい気体からなる作動流体が封入される。 連通路 3には、 両方 の空間 1 1、 1 2の間を移動する作動流体の熱を蓄熱しサイクル効率を上昇させ る再生器を設置してもよい。  The Stirling engine of the present invention will be described below with reference to the drawings. Here, first, with reference to FIGS. 1 to 4, the configuration and operation of the Stirling engine of the first embodiment of the present invention will be described. The Stirling engine of the first embodiment shown in FIG. 1 is of an engine type having two cylinders arranged in parallel, with the piston 1 being the expansion side piston and the viston 2 being the compression side piston. It has become. The cylinder space above the piston 1 is the heating space 1 1, and the cylinder space above the piston 2 is the cooling space 2 1, and the heating space 1 1 and the cooling space 2 1 are communicated via the communication path 3. ing. Both spaces 1 1 and 2 1 constitute the working chamber of the Stirling engine, in which a working fluid made of a gas having a small specific heat such as hydrogen or helium is enclosed. The communication path 3 may be provided with a regenerator that stores the heat of the working fluid moving between both the spaces 1 1 and 1 2 and increases the cycle efficiency.
ビス トン 1は、クランク軸 1 3のクランクピンにコンロッ ドによって連結され、 ピス トン 2は、 同様にしてクランク軸 2 3に連結される。 クランク軸 2 3は、 車 両の動力伝達装置を経て車両の駆動輪に接続されており、 通常の車両走行時にお いては、 スターリングエンジンの出力によって車両の駆動が行われる。 クランク 軸 1 3にはフライホイール 4が固着されている。  The piston 1 is connected to the crankpin of the crankshaft 13 by a rod, and the piston 2 is connected to the crankshaft 23 in the same manner. The crankshaft 23 is connected to the drive wheels of the vehicle via a vehicle power transmission device, and the vehicle is driven by the output of the Stirling engine during normal vehicle travel. A flywheel 4 is fixed to the crankshaft 1 3.
加熱空間 1 1の上部には、 加熱空間 1 1内の作動流体を加熱する加熱部 1 2が 配置されており、 ここでは、 図示しない燃料供給装置から供給された燃料の燃焼 が行われ、 加熱空間 1 1内の作動流体が加熱される。 冷却空間 2 1の上部には、 全体を符号 2 2で示す冷却部が配置され、冷却空間 2 1内の作動流体を冷却する。 図 1のスターリングェンジシでは、 金属あるいはセラミックス等の、 一定の熱 容量を備えた塊状の物体からなる蓄熱器 5が加熱部 1 2内に設置される。 冷却部 2 2は、 水等の冷却媒体を用いて作動流体を冷却するものであって、 冷却媒体を 循環するポンプ 2 2 A及び冷却媒体の熱を大気に放熱する放熱器 2 2 Bを備えた 循環回路となっている。 なお、 冷却媒体としては水以外の液体を使用することが 可能であり、 例えば、 温度低下による凍結を防止するためエチレングリコール等 からなる不凍液を混合して用いることもできる。 A heating unit 1 2 for heating the working fluid in the heating space 1 1 is disposed above the heating space 1 1. Here, combustion of fuel supplied from a fuel supply device (not shown) is performed. And the working fluid in the heating space 11 is heated. On the upper part of the cooling space 21, a cooling part denoted as a whole by reference numeral 22 is arranged to cool the working fluid in the cooling space 21. In the Stirling agency of FIG. 1, a heat accumulator 5 made of a massive object having a certain heat capacity, such as metal or ceramics, is installed in the heating section 12. The cooling unit 22 cools the working fluid using a cooling medium such as water, and includes a pump 2 2 A that circulates the cooling medium and a radiator 2 2 B that radiates the heat of the cooling medium to the atmosphere. It is a circulation circuit. As the cooling medium, liquids other than water can be used. For example, in order to prevent freezing due to a decrease in temperature, an antifreeze composed of ethylene glycol or the like can be mixed and used.
この実施例では、 冷却空間 2 1内の作動流体を冷却するため、 容積の大きい液 冷タンク部 2 2 Cが設けられるとともに、 冷却空間 2 1のシリンダには液冷ジャ ケッ ト 2 2 Dが形成してあり、 冷却媒体は、 ポンプ 2 2 Aにより液冷タンク部 2 2 Cと液冷ジャケッ ト 2 2 Dとに圧送され、 作動流体を冷却した後放熱器 2 2 B に循環する。 循環回路の途中にはバルブ 2 2 Eが配置されている。 また、 ビストン 1が連結されたクランク軸 1 3とビス トン 2が連結されたクラ ンク軸 2 3とは、 運転状態変更装置である位相差変更機構 6を介して連結されて おり、 ピス トン 1 とピス トン 2との相互の位相差が変更可能となっている。 位相 差変更機構 6は、 図 2に示すように、 傘歯車を用いた遊星歯車装置と類似する歯 車伝動機構として構成される。 位相差変更機構 6の枠体 6 1には貫通孔が形成さ れ、 この中に、 環状のリング体 6 2が回動可能に嵌め込まれている。 リング体 6 2は、径方向で内部に延びる 2本の支持軸を備え、この支持軸には傘歯車 6 3 A、 6 3 Bがそれぞれ回転可能に取り付けてある。 そして、 ピス トン 1のクランク軸 1 3には傘歯車 1 4がー体的に固着され、 かつ、 ピス トン 2のクランク軸 2 3に は傘歯車 2 4がー体的に固着されており、 傘歯車 1 4、 2 4は、 支持軸の傘歯車 6 3 A、 6 3 Bと嚙み合っている。 4個の傘歯車は全て同一形状で同一の歯数を 有している。  In this embodiment, in order to cool the working fluid in the cooling space 21, a liquid cooling tank portion 2 2 C having a large volume is provided, and a liquid cooling jacket 2 2 D is provided in the cylinder of the cooling space 21. The cooling medium formed is pumped to the liquid cooling tank section 2 2 C and the liquid cooling jacket 2 2 D by the pump 2 2 A, circulates to the radiator 2 2 B after cooling the working fluid. A valve 2 2 E is arranged in the middle of the circulation circuit. In addition, the crankshaft 1 3 to which the piston 1 is connected and the crankshaft 2 3 to which the piston 2 is connected are connected via a phase difference changing mechanism 6 which is an operating state changing device. And the phase difference between Piston 2 can be changed. As shown in FIG. 2, the phase difference changing mechanism 6 is configured as a gear transmission mechanism similar to a planetary gear device using a bevel gear. A through hole is formed in the frame body 61 of the phase difference changing mechanism 6, and an annular ring body 62 is rotatably fitted therein. The ring body 62 includes two support shafts extending inward in the radial direction, and bevel gears 6 3 A and 6 3 B are rotatably attached to the support shafts. The bevel gear 14 is fixed to the crankshaft 13 of the piston 1 as a whole, and the bevel gear 2 4 is fixed to the crankshaft 2 3 of the piston 2 as a whole. The bevel gears 1 4 and 2 4 mesh with the support shaft bevel gears 6 3 A and 6 3 B. All four bevel gears have the same shape and the same number of teeth.
ビストン 1が往復動しクランク軸 1 3が矢印 1 Aの方向に回転すると、 リング 体 6 2の位置が固定されているときは、 傘歯車 1 4によって支持軸の傘歯車 6 3 A、 6 3 Bが支持軸の周りを回転して、 これに嚙み合う傘歯車 2 4を、 傘歯車 1 4とは反対方向に回転させる。 そのため、 ピス トン 2のクランク軸 2 3は、 クラ ンク軸 1 3の回転方向とは逆方向となる矢印 2 Aの方向に、 クランク軸 1 3と同 一速度で回転する。 このとき、 リング体 6 2の位置を矢印 Cの方向に移動させる と、 その移動量に応じて支持軸の傘歯車 6 3 A、 6 3 Bが僅かに回転し、 クラン ク軸 1 3に対するクランク軸 2 3の位相を変更することができる。 つまり、 リン グ体 6 2の位置をァクチュ 一タ等を用いて調整することによって、 同一周期で 往復動するビス トン 1及びビス トン 2の位相差を調整することが可能となる。 位 相差の調整は、 車両の運転者が操作するアクセルペダル及びブレーキペダルの操 作状態を検出し、 図 3に示す制御系統図に従って実行される。 ここで、 第 1実施例のスターリングエンジンの作動について、 図 3及ぴ図 4も 参照しながら説明する。 When Biston 1 reciprocates and crankshaft 1 3 rotates in the direction of arrow 1 A, when the position of ring body 6 2 is fixed, bevel gear 1 4 supports bevel gear 6 3 on the support shaft. A, 6 3 B rotate around the support shaft, and the bevel gear 2 4 that meshes with this rotates in the opposite direction to the bevel gear 14. Therefore, the crankshaft 2 3 of the piston 2 rotates at the same speed as the crankshaft 1 3 in the direction of the arrow 2 A, which is the direction opposite to the rotation direction of the crankshaft 13. At this time, if the position of the ring body 62 is moved in the direction of arrow C, the bevel gears 6 3 A and 6 3 B of the support shaft rotate slightly according to the amount of movement, and the crank shaft 13 The phase of axes 2 and 3 can be changed. In other words, by adjusting the position of the ring body 62 using an actuator or the like, it is possible to adjust the phase difference between the piston 1 and the piston 2 that reciprocate in the same cycle. Adjustment of the phase difference is performed according to the control system diagram shown in Fig. 3 by detecting the operating state of the accelerator pedal and brake pedal operated by the vehicle driver. Here, the operation of the Stirling engine of the first embodiment will be described with reference to FIGS.
車両の通常走行時においては、 スターリングエンジンは車両を駆動するェンジ ンとして作動する。 ピス トン 1及びピス トン 2の間の位相差は、 位相差変更機構 6によってエンジンとしての作動に最適の略 9 0 ° に設定される。 すなわち、 ェ ンジンサイクルの作動状態では、 冷却空間 2 1の容積が加熱空間 1 1の容積変化 よりも 9 0 ° 遅れた位相で変化するように設定される。 加熱空間 1 1 と冷却空間 2 1で構成される作動室内の作動流体は、 作動室の容積変化に応じて両方の空間 を移動しながら状態変化を繰り返すスターリングサイクルを行う。 これにより、 加熱部 1 2からの熱が動力に変換され、 クランク軸 2 3から車両の駆動輪が回転 駆動されることとなる。 エンジンとして作動させるときは、 図 4に示すとおり、 位相差を 9 0 ° よりも小さくすると、 スターリングエンジンの出力が減少する。 したがって、 位相差変更機構 6により、 スターリ ングエンジンの出力を制御する ことが可能であって、 位相を調整する制御は、 加熱部 1 2に供給する燃料量を調 整するものと比べ、 応答性の優れた制御が実現できる。  During normal driving of the vehicle, the Stirling engine operates as the engine that drives the vehicle. The phase difference between the piston 1 and the piston 2 is set to approximately 90 ° which is optimal for the operation of the engine by the phase difference changing mechanism 6. That is, in the operation state of the engine cycle, the volume of the cooling space 21 is set to change at a phase delayed by 90 ° from the volume change of the heating space 11. The working fluid in the working chamber composed of the heating space 1 1 and the cooling space 21 1 performs a Stirling cycle in which the state change is repeated while moving in both spaces according to the volume change of the working chamber. As a result, the heat from the heating unit 12 is converted into power, and the drive wheels of the vehicle are driven to rotate from the crankshaft 23. When operating as an engine, as shown in Fig. 4, if the phase difference is less than 90 °, the output of the Stirling engine will decrease. Therefore, it is possible to control the output of the Stirling engine by the phase difference changing mechanism 6, and the control for adjusting the phase is more responsive than that for adjusting the amount of fuel supplied to the heating section 1 or 2. Excellent control can be realized.
スターリングサイクルを実行する車両の通常走行時では、 冷却部 2 2において は、 ポンプ 2 2 Aが駆動されてバルブ 2 2 Eが開放される。 ポンプ 2 2 Aにより 冷却媒体が液冷タンク部 2 2 Cと液冷ジャケッ ト 2 2 Dとに圧送され、 液体状態 にある冷却媒体が、主に冷却空間 2 1内に存在する膨張後の作動流体を冷却する。 この冷却は液体への熱伝達により行われ、 また、 液冷ジャケッ ト 2 2 Dは冷却空 間 2 1の近傍にこれを取り巻くように形成されているので、 作動流体が十分に冷 却される結果、 加熱された作動流体と冷却された作動流体との温度差が増大し、 スターリングエンジンは高効率状態で作動する。 車両の制動時には、 フッ トブレーキのブレーキペダルの操作に伴い、 ブレーキ 系統の油圧が上昇する。 油圧の上昇を感知して、 位相差変更機構 6がピス トン 1 とビス トン 2の位相を切換え、 冷却空間 2 1の容積が加熱空間 1 1の容積変化よ りも 9 0 ° 進んだ位相で変化するように設定する。 この切換えにより、 作動流体 の状態変化は、 いわゆる逆スターリングサイクルとなって、 スターリングェンジ ンはヒートポンプとして作動する。 制動時には車両の運動エネルギを短時間の中 に消費するから、 駆動輪からスターリングエンジンに大きな動力が供給され、 冷 却空間 2 1が低温となると同時に加熱空間 1 1が高温となる。 During normal travel of the vehicle that executes the Stirling cycle, in the cooling section 2 2, the pump 2 2 A is driven and the valve 2 2 E is opened. The pump 2 2 A pumps the cooling medium to the liquid cooling tank section 2 2 C and the liquid cooling jacket 2 2 D, and the expansion of the cooling medium in the liquid state mainly exists in the cooling space 21 Cool the fluid. This cooling is performed by heat transfer to the liquid, and the liquid cooling jacket 2 2 D is formed so as to surround it in the vicinity of the cooling space 21, so that the working fluid is sufficiently cooled. As a result, the temperature difference between the heated working fluid and the cooled working fluid increases, and the Stirling engine operates in a highly efficient state. When braking the vehicle, the brake system hydraulic pressure increases as the brake pedal of the foot brake is operated. Detecting a rise in hydraulic pressure, phase change mechanism 6 switches the phase between piston 1 and piston 2, and the volume of cooling space 2 1 is 90 ° ahead of the volume change of heating space 1 1. Set to change. By this switching, the state change of the working fluid becomes a so-called reverse Stirling cycle, and the Stirling engine operates as a heat pump. During braking, the kinetic energy of the vehicle is consumed in a short period of time, so a large amount of power is supplied from the drive wheels to the Stirling engine, and the cooling space 21 becomes cold and the heating space 11 becomes hot.
そして、 車両の制動時には、 冷却部 2 2においてはポンプ 2 2 Aが停止される とともにバルブ 2 2 Eが閉鎖されて冷却媒体の循環が阻止され、 冷却媒体は液冷 タンク部 2 2 Cと液冷ジャケッ ト 2 2 Dとに滞留する。 冷却空間 2 1が低温とな ると冷却媒体の温度が低下し、 冷却媒体の循環の阻止により放熱器 2 2 Bから大 気中の熱が入り込むことが防止されているので、 冷却媒体の温度は大気温以下に 降下して 「冷熱」 が蓄積される。 この実施例では、 液冷タンク部 2 2 Cの容積が 大きく設定されており、 大量の 「冷熱」 の蓄積が可能である。 一方、 加熱空間 1 1が高温となると蓄熱器 5も高温となり、 ここに熱エネルギが蓄積される。 こう して、 車両の制動時には車両の運動エネルギが温度差エネルギに変換され、 蓄熱 器 5と冷却媒体と蓄えられる。 車両の制動時に蓄えられた温度差エネルギは、 車両の再加速時に利用される。 つまり、 再加速時には位相差変更機構 6が切換えられ、 ピス トン 1 とピス トン 2 の位相はエンジンサイクルを実行する位相状態となるが、 このときに、 蓄熱器 5 と冷却媒体に蓄えられた温度差エネルギでスターリングエンジンが稼動する。 蓄 熱器 5と冷却媒体との温度差は通常の走行時よりも増大しているので、 スターリ ングエンジンは、車両の加速に見合う大きな出力を発生することができる。また、 蓄積された温度差エネルギを使用するため、 加熱部に供給する燃料量を大幅に低 減できる。 During braking of the vehicle, the pump 2 2 A is stopped and the valve 2 2 E is closed in the cooling section 2 2 to prevent the cooling medium from circulating, and the cooling medium is connected to the liquid cooling tank section 2 2 C and the liquid. Stay in cold jacket 2 2 D. When the cooling space 21 becomes cold, the temperature of the cooling medium decreases, and since the heat in the atmosphere is prevented from entering from the radiator 2 2 B by preventing the circulation of the cooling medium, the temperature of the cooling medium Drops below the atmospheric temperature and accumulates “cold heat”. In this embodiment, the volume of the liquid cooling tank section 2 2 C is set large, and a large amount of “cold heat” can be accumulated. On the other hand, when the heating space 11 becomes high temperature, the heat accumulator 5 also becomes high temperature, and heat energy is accumulated here. Thus, at the time of braking of the vehicle, the kinetic energy of the vehicle is converted into temperature difference energy and stored in the heat accumulator 5 and the cooling medium. The temperature difference energy stored when the vehicle is braked is used when the vehicle is re-accelerated. In other words, the phase difference changing mechanism 6 is switched at the time of reacceleration, and the phases of the piston 1 and the piston 2 are in a phase state in which the engine cycle is executed. At this time, the temperature stored in the heat accumulator 5 and the cooling medium The Stirling engine operates with the difference energy. Since the temperature difference between the regenerator 5 and the cooling medium is larger than that during normal driving, the Stirling engine can generate a large output commensurate with the acceleration of the vehicle. Also, Since the accumulated temperature difference energy is used, the amount of fuel supplied to the heating section can be greatly reduced.
車両が下り勾配の路面を走行するときにも、 運転者めブレーキペダルの操作に 伴い、 位相差変更機構 6によりスターリングエンジンをヒートポンプ運転に切換 える。 ヒートポンプとしてスターリングエンジンを駆動するための動力は、 ェン ジンブレーキとして作用させるときに吸収する動力よりもはるかに大きいので、 車両には強力な制動力が働き、フッ トブレーキ等の負担を軽減することができる。 下り勾配の路面の走行中に温度差エネルギとして回生されたエネルギは、 制動後 の場合と同様、 その後の車両走行に利用される。 図 3に、 このような制御を実施するときの制御系統を示す。 位相差変更機構を 制御する電子制御装置 (E C U ) には、 車両のアクセルペダルの位置信号と、 ブ レーキ装置の圧力信号とが入力される。 アクセルペダルが踏み込まれていれば、 E C Uは、 スターリングエンジンがエンジンとして作動するように位相差変更機 構のリング体の位置を調整し、 両ピス トンの位相をエンジン作動に最適なものと する。 アクセルペダルの位置に応じて出力を変更するよう位相差変更機構を制御 することもできる。 また、 ブレーキペダルが踏み込まれたときは、 これをブレー キ系統の圧力センサで検出し、 E C Uは、 スターリングエンジンがヒートポンプ として作動するように位相差変更機構の位置を切換える。 次いで、 図 5に示す本発明の第 2実施例 (請求の範囲第 3項に対応) 及び図 6 に示す第 3実施例 (請求の範囲第 5項に対応) のスターリングエンジンについて 説明する。 これらの図面において、 本発明の第 1実施例の部品等と対応するもの については、 図 1と同一の符号が付されている。  Even when the vehicle travels on a downhill road surface, the Stirling engine is switched to the heat pump operation by the phase difference changing mechanism 6 in accordance with the operation of the driver's brake pedal. The power to drive the Stirling engine as a heat pump is much larger than the power absorbed when acting as an engine brake, so a strong braking force acts on the vehicle, reducing the load on the foot brake, etc. be able to. The energy regenerated as temperature difference energy while traveling on a downhill road surface is used for subsequent vehicle travel, as in the case after braking. Fig. 3 shows the control system for implementing such control. A position signal of the accelerator pedal of the vehicle and a pressure signal of the brake device are input to the electronic control unit (E C U) that controls the phase difference changing mechanism. If the accelerator pedal is depressed, E C U adjusts the position of the ring body of the phase difference changing mechanism so that the Stirling engine operates as an engine, and optimizes the phase of both pistons for engine operation. It is also possible to control the phase difference changing mechanism to change the output according to the position of the accelerator pedal. When the brake pedal is depressed, this is detected by the brake system pressure sensor, and ECU switches the position of the phase difference changing mechanism so that the Stirling engine operates as a heat pump. Next, a Stirling engine according to a second embodiment (corresponding to claim 3) of the present invention shown in FIG. 5 and a third embodiment (corresponding to claim 5) of FIG. 6 will be described. In these drawings, parts corresponding to those of the first embodiment of the present invention are denoted by the same reference numerals as those in FIG.
第 2実施例及び第 3実施例のスターリングエンジンは、 第 1実施例のスターリ ングエンジンと共通する技術的特徴を備え、 基本的には、 第 1実施例のスターリ ングエンジンと同様な作動を行う。すなわち、並列に配置された 2個のシリンダ · ピストン機構を備えたエンジン形式のもので、 ピス トン 1が膨張側ピス トン、 ピ ストン 2が圧縮側ビス トンとなっており、 これらが運転状態変更装置 6により連 結される。 運転状態変更装置 6は、 図 2に示すものと同一であり、 車両の制動時 には、 図 3に示す制御系統と同一の制御方法に従って、 スターリングエンジンを ヒートポンプ運転に切換え、 車両の運動エネルギを冷却部 2 2の冷却媒体に 「冷 熱」 として蓄積する。 図 5に示すように、 第 2実施例の冷却部 2 2における循環回路には 2つの温度 検出器、 すなわち伝熱部温度検出器 S 1、 冷却媒体温度検出器 S 2が設置されて おり、 ポンプ 2 2 Aを駆動するモータは、 これら 2つの温度検出器の検出温度に 応じて制御される。 伝熱部温度検出器 S 1は、 作動流体と冷却媒体との伝熱部の 温度を検出するものであり、 液冷タンク部 2 2 Cの底部壁面に取り付けられる。 一方、 冷却媒体温度検出器 S 2は、 冷却媒体の温度を検出するものであって、 放 熱器 2 2 Bの出口に取り付けられる。 伝熱部温度検出器 S 1は液冷ジャケッ ト 2 2 D '内に設置してもよく、 冷却媒体温度検出器 S 2は、 ポンプ 2 2 Aの吐出側に おける冷却媒体の温度を検出するようにしてもよい。 The Stirling engines of the second and third embodiments have the same technical features as the Stirling engine of the first embodiment, and basically operate in the same manner as the Stirling engine of the first embodiment. . In other words, it is an engine type equipped with two cylinder / piston mechanisms arranged in parallel.Piston 1 is the expansion side piston and piston 2 is the compression side piston. Connected by device 6. The driving state changing device 6 is the same as that shown in FIG. For this, the Stirling engine is switched to heat pump operation according to the same control method as the control system shown in FIG. 3, and the kinetic energy of the vehicle is stored as “cooling heat” in the cooling medium of the cooling unit 22. As shown in FIG. 5, in the circulation circuit in the cooling section 22 of the second embodiment, two temperature detectors, that is, a heat transfer section temperature detector S 1 and a cooling medium temperature detector S 2 are installed. The motor that drives the pump 2 2 A is controlled according to the temperature detected by these two temperature detectors. The heat transfer section temperature detector S 1 detects the temperature of the heat transfer section between the working fluid and the cooling medium, and is attached to the bottom wall surface of the liquid cooling tank section 2 2 C. On the other hand, the cooling medium temperature detector S 2 detects the temperature of the cooling medium, and is attached to the outlet of the heat radiator 2 2 B. Heat transfer section temperature detector S 1 may be installed in liquid cooling jacket 2 2 D ', and coolant temperature detector S 2 detects the temperature of the coolant on the discharge side of pump 2 2 A You may do it.
スターリングサイクルを実行する車両の通常走行時では、 主に冷却空間 2 1に 存在する膨張後の作動流体の温度は冷却媒体の温度よりも高く、 伝熱部温度検出 器 S 1の検出温度が冷却媒体温度検出器 S 2の検出温度よりも高い。 そのため、 冷却部 2 2においてはポンプ 2 2 Aが駆動されてバルブ 2 2 Eが開放される。 ポ ンプ 2 2 Aにより冷却媒体が液冷タンク部 2 2 Cと液冷ジャケッ ト 2 2 Dとに圧 送され、 液体状態にある冷却媒体が冷却空間 2 1內の作動流体を冷却する。 冷却 媒体に伝達された熱は、 放熱器 2 2 Bからが大気中に放熱される結果、 作動流体 は大気温近傍まで十分に冷却される。  During normal driving of a vehicle that performs the Stirling cycle, the temperature of the expanded working fluid that is mainly present in the cooling space 21 is higher than the temperature of the cooling medium, and the temperature detected by the heat transfer section temperature detector S1 is cooled. It is higher than the detection temperature of the medium temperature detector S2. Therefore, in the cooling unit 22, the pump 2 2 A is driven and the valve 2 2 E is opened. Pump 2 2 A pumps the cooling medium to liquid cooling tank section 2 2 C and liquid cooling jacket 2 2 D, and the cooling medium in the liquid state cools the working fluid in cooling space 21 1 內. The heat transferred to the cooling medium is dissipated from the radiator 2 2 B into the atmosphere, so that the working fluid is sufficiently cooled to near atmospheric temperature.
スターリングエンジンがヒートポンプ運転に切換えられる車両の制動時には、 駆動輪からスターリングエンジンに大きな動力が供給され、 冷却空間 2 1が低温 となると同時に加熱空間 1 1が高温となる。 冷却空間 2 1の温度が低下すると、 作動流体と冷却媒体との伝熱部である液冷タンク部 2 2 Cの底部壁面が低温とな り、 伝熱部温度検出器 S 1の検出温度が冷却媒体温度検出器 S 2の検出温度より も低くなる。 冷却部 2 2においてはポンプ 2 2 Aが停止されるとともにバルブ 2 2 Eが閉鎖されて、 冷却媒体の放熱器 2 2 Bへの循環が阻止され、 冷却媒体は液 冷タンク部 2 2 Cと液冷ジャケッ ト 2 2 Dとに滞留する。 冷却媒体の循環の阻止 により放熱器 2 2 Bから大気中の熱が入り込むことが防止されているので、 冷却 媒体の温度は大気温以下に降下して 「冷熱」 が蓄積される。 この実施例では、 液 冷タンク部 2 2 Cの容積が大きく設定されており、 大量の 「冷熱」 の蓄積が可能 である。 一方、 加熱空間 1 1が高温となると蓄熱器 5も高温となり、 ここに熱ェ ネルギが蓄積される。 こうして、 車両の制動時には車両の運動エネルギが温度差 エネルギに変換され、 蓄熱器 5と冷却媒体と蓄えられる。 この温度差エネルギが 車両の再加速時等に利用されることは、 第 1実施例のものと変わりはない。 図 6に示す本発明の第 3実施例においては、 冷却媒体の循環回路に放熱器 2 2 Bをバイパスするバイパス通路 2 2 Fと 3方弁 2 2 Gとを設けてある。 この第 3 実施例では、 伝熱部温度検出器 S 1の検出温度が冷却媒体温度検出器 S 2の検出 温度よりも低下し、 冷却媒体の放熱器 2 2 Bへの循環を阻止するときは、 ポンプ 2 2 Aを停止することなく、 バイパス通路 2 2 Fを通して冷却媒体を流すよう 3 方弁 2 2 Gを切換える。 When braking a vehicle in which the Stirling engine is switched to heat pump operation, a large amount of power is supplied from the drive wheels to the Stirling engine, so that the cooling space 21 becomes cold and the heating space 11 becomes hot. When the temperature of the cooling space 2 1 decreases, the bottom wall surface of the liquid cooling tank 2 2 C, which is the heat transfer part between the working fluid and the cooling medium, becomes low temperature, and the detection temperature of the heat transfer part temperature detector S 1 It becomes lower than the detected temperature of the coolant temperature detector S2. In the cooling section 2 2, the pump 2 2 A is stopped and the valve 2 2 E is closed to prevent the cooling medium from circulating to the radiator 2 2 B. The cooling medium is connected to the liquid cooling tank section 2 2 C. Stays in liquid-cooled jacket 2 2 D. Blocking the circulation of the cooling medium prevents the heat from entering the air from the radiator 2 2 B. The temperature of the medium drops below the atmospheric temperature and “cold heat” accumulates. In this embodiment, the volume of the liquid cooling tank section 2 2 C is set large, and a large amount of “cold heat” can be accumulated. On the other hand, when the heating space 11 becomes high temperature, the regenerator 5 also becomes high temperature, and heat energy is accumulated here. Thus, at the time of braking of the vehicle, the kinetic energy of the vehicle is converted into temperature difference energy and stored in the heat accumulator 5 and the cooling medium. The fact that this temperature difference energy is used when the vehicle is re-accelerated is the same as in the first embodiment. In the third embodiment of the present invention shown in FIG. 6, a bypass passage 2 2 F and a three-way valve 2 2 G for bypassing the radiator 2 2 B are provided in the cooling medium circulation circuit. In this third embodiment, when the detection temperature of the heat transfer section temperature detector S 1 is lower than the detection temperature of the cooling medium temperature detector S 2 and the circulation of the cooling medium to the radiator 2 2 B is prevented Switch the three-way valve 2 2 G so that the coolant flows through the bypass passage 2 2 F without stopping the pump 2 2 A.
スターリングエンジンのヒ一トポンプ運転時にポンプ 2 2 Aを停止すると、 作 動流体と冷却媒体との伝熱部等では滞留した冷却媒体が局所的に非常に低温とな り、 冷却媒体として水等を用いた場合、 冷却媒体が凍結する虞れがある。 第 3実 施例のように、 ヒートポンプ運転時に冷却媒体をバイパス通路 2 2 Fを通過させ て循環したときは、 全体の温度が均一となり局所的な過冷却に伴う凍結を防止で さる。 ところで、 スターリングエンジンをヒートポンプ運転に切換えるには、 ェンジ ン自体を逆転させる方法もある。 つまり、 スターリングエンジンの出力軸に逆転 可能な伝動装置を運転状態変更装置として配置し、 スターリングエンジンをヒー トポンプ運転に切換えるときは、 スターリングエンジンを逆転させるように構成 してもよく、 この方法は種々の形式のスターリングエンジンに適用できる。 この ときの運転状態変更装置としては、 出力軸の回転数を入力軸の回転数に対して連 続的に変更可能であり、 逆転させることも可能な伝動装置 (このような伝動装置 は、 例えば特開 2 0 0 1— 1 2 4 1 6 6号公報に開示されている) が好ましい。 図 7は、 エンジンを逆回転させてヒートポンプ運転を行わせる、 本発明のスタ —リングエンジンの変形例を示すものである。 図 7の変形例におけるスターリン グエンジンの基本的な機器の構成は、図 1等に示す実施例のものと同一であって、 対応するものには同一の符号が付してある。 ただし、 ピス トン 1 とピス トン 2と は一体のクランク軸に連結され、 その位相は、 エンジンとしての作動に最適な位 相に固定される。 運転状態変更装置としては、 出力軸回転数が入力軸回転数に対 して連続的に変更可能であり、 逆転させることも可能な伝動装置 7がクランク軸 の出力部分に置かれている。 制動時等にヒートポンプ運転を行わせる場合は、 ス タ一リングエンジンを逆転させると、 図 1等の実施例のものと同様な作動を実現 することができる。 産業上の利用可能性 If the pump 2 2 A is stopped during the operation of the heat pump of the Stirling engine, the accumulated cooling medium becomes extremely low locally in the heat transfer section between the working fluid and the cooling medium, and water or the like is used as the cooling medium. If used, the cooling medium may freeze. As in the third embodiment, when the cooling medium is circulated through the bypass passage 2 2 F during heat pump operation, the entire temperature becomes uniform and freezing due to local supercooling can be prevented. By the way, to switch the Stirling engine to heat pump operation, there is a method of reversing the engine itself. In other words, a transmission device that can be reversed on the output shaft of the Stirling engine is arranged as an operation state change device, and when the Stirling engine is switched to the heat pump operation, the Stirling engine may be configured to be reversed. Applicable to Stirling engines of the form As an operation state change device at this time, a transmission device that can continuously change the rotation speed of the output shaft with respect to the rotation speed of the input shaft and can reverse the rotation speed (such a transmission device is, for example, JP-A 2 0 0 1-1 2 4 1 6 6) is preferred. FIG. 7 shows a modified example of the Stirling engine of the present invention in which the engine is reversely rotated to perform the heat pump operation. Stalin in the variation of FIG. The basic configuration of the engine is the same as that of the embodiment shown in FIG. 1 and the like, and the corresponding components are denoted by the same reference numerals. However, Piston 1 and Piston 2 are connected to an integral crankshaft, and their phase is fixed at the optimum phase for engine operation. As the operating state changing device, the output shaft rotational speed can be continuously changed with respect to the input shaft rotational speed, and a transmission device 7 that can be reversed is placed at the output portion of the crankshaft. When the heat pump operation is performed during braking or the like, the same operation as that of the embodiment of FIG. 1 can be realized by reversing the steering engine. Industrial applicability
以上詳述したように、 本発明は、 車両に搭載したスターリングエンジンにおい て、 車両の制動時等にはスターリングエンジンの運転状態を切換えてヒートポン プとして作動させ、 車両の運動エネルギを温度差エネルギに変換して、 蓄熱器及 び冷却媒体に蓄積するものである。 したがって、 本発明のスターリ ングエンジン が、 車両用動力源として各種の車両に利用できることは明白である。  As described above in detail, in the Stirling engine mounted on the vehicle, the present invention switches the operating state of the Stirling engine to operate as a heat pump when the vehicle is braked, etc., and converts the kinetic energy of the vehicle to temperature difference energy. It is converted and stored in the heat accumulator and cooling medium. Therefore, it is obvious that the Stirling engine of the present invention can be used for various vehicles as a power source for vehicles.
上記の実施例では、 膨張ビス トンと圧縮ビストンの 2ビス トンを備えたスター リングエンジンについて述べているが、 本発明は、 例えば、 一方のピス トンをデ イスプレーザとし他方のビストンを出力を取り出すパワービストンとした形式の スターリングエンジンなど、 多種の形式のエンジンに適用できることは明らかで ある。 また、 傘歯車を用いる位相差変更機構に代え他の機構の位相変更手段を使 用する等、 実施例に対し種々の変更が可能であることも言うまでもない。  In the above embodiment, a Stirling engine provided with two pistons of expanded and compressed pistons is described. However, the present invention is, for example, a power that takes out one piston as a displacer and takes out the output from the other piston. It is clear that it can be applied to various types of engines, such as the Stirling engine of the Biston type. It goes without saying that various modifications can be made to the embodiment, such as using phase changing means of another mechanism instead of a phase difference changing mechanism using a bevel gear.

Claims

請求の範囲 車両に搭載され、 これを駆動するスターリングエンジンであって、 前記スターリングエンジンは、 作動流体を加熱する加熱部と作動流体を冷却 する冷却部とを備え、 さらに、 A Stirling engine mounted on and driving a vehicle, wherein the Stirling engine includes a heating unit that heats the working fluid and a cooling unit that cools the working fluid, and
前記スターリングエンジンは運転状態変更装置を備えており、 前記運転状態 変更装置が、 前記車両の通常運転時には前記スターリングエンジンをェンジ ン運転とし、 前記車両の制動時には前記スターリングエンジンをヒートボン プ運転に切換え、 The Stirling engine includes an operation state changing device, and the operation state changing device switches the Stirling engine to engine operation during normal operation of the vehicle, and switches the Stirling engine to heat pump operation during braking of the vehicle,
前記加熱部には蓄熱器が配置されるとともに、 前記冷却部には、 冷却媒体を 循環するポンプ及び冷却媒体の熱を大気に放熱する放熱器を備えた冷却媒体 の循環回路が形成されており、 The heating unit is provided with a heat accumulator, and the cooling unit is formed with a cooling medium circulation circuit including a pump that circulates the cooling medium and a radiator that radiates the heat of the cooling medium to the atmosphere. ,
前記運転状態変更装置が前記スターリングエンジンをエンジン運転とすると きは、 前記ポンプが駆動されて冷却媒体が循環され、 かつ、 前記運転状態変 更装置が前記スターリングエンジンをヒートポンプ運転に切換えたときは、 前記ポンプが停止され冷却媒体の循環が阻止されて、 前記冷却部側の作動流 体及び冷却媒体の温度を低温とし、 前記加熱部側の作動流体及び前記蓄熱器 の温度を高温とするよう構成されたことを特徴とするスターリングエンジン。 前記循環回路にはバルブが設置されており、 前記運転状態変更装置が前記ス タ一リングエンジンをヒートポンプ運転に切換えたときは、 前記ポンプが停 止されるとともに前記バルブが閉鎖され、 冷却媒体の循環が阻止される第 1 項に記載のスターリングエンジン。 When the operating state changing device sets the Stirling engine to engine operation, the pump is driven to circulate the cooling medium, and when the operating state changing device switches the Stirling engine to heat pump operation, The pump is stopped and the circulation of the cooling medium is prevented, the temperature of the working fluid and the cooling medium on the cooling unit side is lowered, and the temperature of the working fluid and the heat accumulator on the heating unit side is raised. Stirling engine characterized by being. A valve is installed in the circulation circuit, and when the operation state change device switches the steering engine to heat pump operation, the pump is stopped and the valve is closed, and The Stirling engine according to Item 1, wherein circulation is prevented.
車両に搭載され、 これを駆動するスターリングエンジンであって、 前記スターリングエンジンは、 作動流体を加熱する加熱部と作動流体を冷却 する冷却部とを備え、 さらに、 A Stirling engine that is mounted on a vehicle and drives the Stirling engine, the Stirling engine comprising a heating unit that heats the working fluid and a cooling unit that cools the working fluid,
前記スターリングエンジンは運転状態変更装置を備えており、 前記運転状態 変更装置が、 前記車両の通常運転時には前記スターリングエンジンをェンジ ン運転とし、 前記車両の制動時には前記スターリングエンジンをヒ一トポン プ運転に切換え、 The Stirling engine includes an operation state change device, and the operation state change device sets the Stirling engine to engine operation during normal operation of the vehicle, and sets the Stirling engine to heat pump operation during braking of the vehicle. Switching,
前記加熱部には蓄熱器が配置されるとともに、 前記冷却部には、 冷却媒体を 循環するポンプ及び冷却媒体の熱を大気に放熱する放熱器を備えた冷却媒体 の循環回路が形成されており、 A heat accumulator is disposed in the heating unit, and a cooling medium is provided in the cooling unit. A circulation circuit for the cooling medium is formed with a circulating pump and a radiator that radiates the heat of the cooling medium to the atmosphere.
前記循環回路には、 作動流体と冷却媒体との伝熱部の温度を検出する伝熱部 温度検出器及び冷却媒体の温度を検出する冷却媒体温度検出器が設置され、 冷却媒体は、 前記伝熱部温度検出器で検出された温度が前記冷却媒体温度検 出器で検出された温度よりも高いときには、 前記放熱器に循環され、 低いと きには、 前記放熱器への循環が阻止されるよう構成されたことを特徴とする スターリングエンジン。 The circulation circuit is provided with a heat transfer section temperature detector that detects the temperature of the heat transfer section between the working fluid and the cooling medium, and a cooling medium temperature detector that detects the temperature of the cooling medium. When the temperature detected by the hot section temperature detector is higher than the temperature detected by the cooling medium temperature detector, it is circulated to the radiator, and when it is lower, circulation to the radiator is blocked. A Stirling engine characterized by being configured as follows.
前記循環回路にはバルブが設置されており、 前記放熱器への循環を阻止する ときは、 前記ポンプを停止するとともに前記バルブを閉鎖する第 3項に記載 のスターリングエンジン。 The Stirling engine according to claim 3, wherein a valve is installed in the circulation circuit, and when the circulation to the radiator is prevented, the pump is stopped and the valve is closed.
前記循環回路には、 前記放熱器をバイパスするバイパス通路及び 3方弁が設 置されており、 前記放熱器への循環を阻止するときは、 冷却媒体を前記バイ パス通路に流すよう前記 3方弁を切換える第 3項に記載のスターリングェン ジン。 The circulation circuit is provided with a bypass passage that bypasses the radiator and a three-way valve. When the circulation to the radiator is prevented, the three-way passage is performed so that a cooling medium flows through the bypass passage. The Stirling engine according to Item 3, which switches the valve.
前記スターリングエンジンは、 前記加熱部が設置されたシリンダ及び前記冷 却部が設置されたシリンダを有し、 それぞれのシリンダ内にはビス トンが配 置され、 かつ、 互いに連通されて作動流体が封入されており、 前記冷却部が 設置されたシリンダには、 前記循環回路の冷却媒体が供給される液冷ジャケ ッ 卜が形成されている第 1項又は第 3項に記載のスターリングエンジン。 The Stirling engine has a cylinder in which the heating unit is installed and a cylinder in which the cooling unit is installed. In each cylinder, pistons are arranged and communicated with each other to enclose a working fluid. The Stirling engine according to claim 1 or 3, wherein a liquid cooling jacket to which a cooling medium of the circulation circuit is supplied is formed in the cylinder in which the cooling unit is installed.
PCT/JP2007/068478 2006-09-19 2007-09-14 Stirling engine for vehicle WO2008035788A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006252683A JP4765861B2 (en) 2006-09-19 2006-09-19 Stirling engine for vehicles
JP2006252684A JP4765862B2 (en) 2006-09-19 2006-09-19 Temperature-controlled liquid-cooled regenerative vehicle Stirling engine
JP2006-252683 2006-09-19
JP2006-252684 2006-09-19

Publications (1)

Publication Number Publication Date
WO2008035788A1 true WO2008035788A1 (en) 2008-03-27

Family

ID=39200610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068478 WO2008035788A1 (en) 2006-09-19 2007-09-14 Stirling engine for vehicle

Country Status (1)

Country Link
WO (1) WO2008035788A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123893A1 (en) * 2008-05-20 2009-11-25 Sincron S.r.l. Engine assembly for a motor vehicle in general and particularly for an urban motor vehicle
WO2010139318A2 (en) * 2009-06-05 2010-12-09 Danfoss Compressors Gmbh Displacer unit of a stirling cooling arrangement, and stirling cooling arrangement
WO2011091576A1 (en) * 2010-02-01 2011-08-04 Lei Tao Zero-leakage external combustion heat engine
CN102562358A (en) * 2012-01-02 2012-07-11 孔令斌 Stirling heat engine radiator
JP2012163023A (en) * 2011-02-04 2012-08-30 Toyota Motor Corp Device for controlling output of stirling engine for exhaust heat recovery
WO2012125107A1 (en) * 2011-03-17 2012-09-20 Scania Cv Ab Arrangement for converting thermal energy to mechanical energy in a vehicle
EP3762599A4 (en) * 2018-03-07 2021-11-24 Maston AB Stirling engine comprising a cooling tube on a working cylinder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121618A (en) * 1975-04-01 1976-10-25 Philips Nv Heat gas reciprocating engine
JPH07233758A (en) * 1994-02-23 1995-09-05 Unyusho Senpaku Gijutsu Kenkyusho Stirling engine with variable phase difference mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121618A (en) * 1975-04-01 1976-10-25 Philips Nv Heat gas reciprocating engine
JPH07233758A (en) * 1994-02-23 1995-09-05 Unyusho Senpaku Gijutsu Kenkyusho Stirling engine with variable phase difference mechanism

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123893A1 (en) * 2008-05-20 2009-11-25 Sincron S.r.l. Engine assembly for a motor vehicle in general and particularly for an urban motor vehicle
WO2009141120A1 (en) * 2008-05-20 2009-11-26 Sincron S.R.L. Engine assembly for a motor vehicle in general and particularly for an urban motor vehicle
US9341138B2 (en) 2008-05-20 2016-05-17 Ariante Limited Engine assembly for a motor vehicle in general and particularly for an urban motor vehicle
WO2010139318A2 (en) * 2009-06-05 2010-12-09 Danfoss Compressors Gmbh Displacer unit of a stirling cooling arrangement, and stirling cooling arrangement
WO2010139318A3 (en) * 2009-06-05 2011-04-28 Danfoss Compressors Gmbh Displacer unit of a stirling cooling arrangement, and stirling cooling arrangement
WO2011091576A1 (en) * 2010-02-01 2011-08-04 Lei Tao Zero-leakage external combustion heat engine
JP2012163023A (en) * 2011-02-04 2012-08-30 Toyota Motor Corp Device for controlling output of stirling engine for exhaust heat recovery
WO2012125107A1 (en) * 2011-03-17 2012-09-20 Scania Cv Ab Arrangement for converting thermal energy to mechanical energy in a vehicle
CN103442960A (en) * 2011-03-17 2013-12-11 斯堪尼亚商用车有限公司 Arrangement for converting thermal energy to mechanical energy in a vehicle
RU2539716C1 (en) * 2011-03-17 2015-01-27 Сканиа Св Аб Vehicle device for conversion of heat energy into mechanical power
US9062593B2 (en) 2011-03-17 2015-06-23 Scania Cv Ab Arrangement for converting thermal energy to mechanical energy in a vehicle
KR101877944B1 (en) * 2011-03-17 2018-07-13 스카니아 씨브이 악티에볼라그 Arrangement for converting thermal energy to mechanical energy in a vehicle
CN102562358A (en) * 2012-01-02 2012-07-11 孔令斌 Stirling heat engine radiator
EP3762599A4 (en) * 2018-03-07 2021-11-24 Maston AB Stirling engine comprising a cooling tube on a working cylinder

Similar Documents

Publication Publication Date Title
JP4756356B2 (en) Stirling engine for vehicles
JP4765862B2 (en) Temperature-controlled liquid-cooled regenerative vehicle Stirling engine
WO2008035788A1 (en) Stirling engine for vehicle
CN108005811B (en) Waste heat recovery for power generation and engine warm-up
EP2686183B1 (en) Arrangement for converting thermal energy to mechanical energy in a vehicle
CN101413407B (en) Supercritical organic Rankine double-circulation waste heat recovery system
KR20020068067A (en) Hydraulic hybrid vehicle
JPH02103350A (en) Air cooling and heating combination power generator utilizing waste heat of automobile
CA2681492A1 (en) Vehicle power supply system
CN101092915B (en) Charged combustion engine with an expander unit in a heat recovery loop
CN104214006A (en) Motor vehicle with a couplable waste heat recovery system
JP4765861B2 (en) Stirling engine for vehicles
US20130305703A1 (en) Integrated Heat and Stirling Engine
US5979394A (en) Method of operating a piston-type internal combustion engine
CN103644026A (en) Waste heat thrust augmentation pneumatic internal combustion engine
CN114654995A (en) Hybrid refrigerated truck configuration of coupling cold-electricity cogeneration type waste heat recovery system
KR101755804B1 (en) Recovered power transfer apparatus of waste heat recovery system
Rijpkema et al. Experimental results of a waste heat recovery system with ethanol using the exhaust gases of a light-duty engine
RU2189323C2 (en) Vehicle pneumatic drive
US20240159171A1 (en) Efficiency and comfort system for motorized vehicles
EP3931449B1 (en) Pressure fluid handling system
JP5375514B2 (en) Steam engine for vehicles
WO2022203626A1 (en) An efficiency and comfort system for motorized vehicles
CN101526284A (en) Residual energy recovery and air-conditioning system for internal-combustion engine
JP5299330B2 (en) Engine intake air temperature control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828311

Country of ref document: EP

Kind code of ref document: A1