WO2008035485A1 - Backlight unit and liquid crystal display device - Google Patents

Backlight unit and liquid crystal display device Download PDF

Info

Publication number
WO2008035485A1
WO2008035485A1 PCT/JP2007/060113 JP2007060113W WO2008035485A1 WO 2008035485 A1 WO2008035485 A1 WO 2008035485A1 JP 2007060113 W JP2007060113 W JP 2007060113W WO 2008035485 A1 WO2008035485 A1 WO 2008035485A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
path changing
linear light
light source
light
Prior art date
Application number
PCT/JP2007/060113
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoki Kubo
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008035485A1 publication Critical patent/WO2008035485A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a backlight unit that emits light and a liquid crystal display device that uses light from a powerful backlight unit.
  • the light source included in the area light type backlight unit or the like includes a hot cathode tube or a cold cathode tube fluorescent tube.
  • a hot cathode tube has electrodes made of filaments at both ends of the tube, a rare gas such as mercury or argon is sealed inside the tube, and a phosphor film is provided on the inner surface of the tube. Yes.
  • a hot cathode tube collides the thermoelectrons emitted through the electrodes with the mercury atoms latent in the discharge tube. Then, the ultraviolet rays generated by the collision are converted into visible light by exciting the phosphor applied to the inner surface of the tube, and emitted outside the tube.
  • a cold cathode tube like a hot cathode tube, converts ultraviolet light into visible light.
  • the electrons emitted into the discharge tube are not thermal electrons. Therefore, a small electrode different from a relatively large filament can be used.
  • the cold cathode tube has a lower luminance than the hot cathode tube although it is small because a relatively small electrode is used. Therefore, a relatively large amount of cold cathode tubes must be mounted on the knock light unit in order to irradiate the large-screen liquid crystal display panel with light. This will increase the size of the knocklight unit itself. As a result, a thin liquid crystal television cannot be realized as in the case of using a hot cathode tube. In addition, use of a large amount of cold cathode fluorescent lamp It also leads to an increase in the cost of the unit
  • the fluorescent tube is a hot-cathode tube or a cold-cathode tube that emits a large amount of light (in other words, a fluorescent tube that emits light with high efficiency)
  • the size of the knock-light unit can be reduced by reducing the number of fluorescent tubes. As a result, the cost of the backlight unit can be reduced.
  • the fluorescent tubes 141. 141 are shown in the cross-sectional view of FIG. Spacing V increases. Then, although the upper part of the fluorescent tube 141 is bright, the upper part of the distance V ′ between the fluorescent tubes 141 and 141 becomes darker on the contrary (the upper part is the direction from the fluorescent tube 141 toward the reflection frame 142). Meaning the reverse direction). That is, there is a relatively large difference in brightness (light intensity unevenness) between the upper side of the fluorescent tube 141 and the upper side of the interval between the fluorescent tube tubes 141 and 141. Therefore, the display quality of the backlight unit 152 is degraded.
  • Patent Document 1 discloses a backlight unit conceived to overcome such limitations.
  • a groove is formed on the light receiving surface of the light guide plate that receives light from the fluorescent tube, and the light is scattered on the light output surface of the light guide plate (for example, having a V-shaped cross section).
  • Groove light quantity correction surface
  • the light from the fluorescent tube is scattered by passing through the groove and the light amount correction surface, and unevenness in the amount of light is less likely to occur.
  • Patent Document 1 Patent No. 3319945
  • the light guide plate (particularly the groove) is a fluorescent tube. Covering. For this reason, when a powerful backlight unit is used in a thin and large-screen liquid crystal television, the size of the light guide plate covering the fluorescent tube becomes extremely large. Therefore, the weight of the knocklight unit is very heavy. In addition, the cost of the backlight unit increases due to the large light guide plate.
  • the light amount correction surface is positioned so as to overlap above the interval between the fluorescent tubes at a position overlapping above the fluorescent tubes. For this reason, light traveling directly above the fluorescent tube (light directly above) is not sufficiently scattered, and unevenness in the amount of light cannot be sufficiently suppressed.
  • the groove portion of the light guide plate covers the fluorescent tube, the light reflected by this groove portion may return to the fluorescent tube and be absorbed by the fluorescent tube as it is. Then, the light emission amount of the fluorescent tube is not fully utilized, and the light emission amount is lost.
  • the present invention has been made to solve the above problems. And the objective is to provide the backlight unit which can suppress light quantity nonuniformity efficiently, and also to provide a liquid crystal display device provided with this backlight unit. Means for solving the problem
  • the present invention includes a single linear light source that emits light, and includes a single optical path changing block that overlaps with the linear light source and refracts incident light to change the optical path. It is a knock light unit.
  • the optical path changing block in the backlight unit having power is provided with an incident surface on which light is incident, and an output surface on which light having the rear force and incident surface force is emitted.
  • the exit surface has a notch that is recessed.
  • BWout The shortest length from the wall surface of the notch that appears on the exit surface of the optical path changing block to the end of the nearest exit surface along the same direction as the width direction of the linear light source.
  • L The width of the backlight unit in the direction along the width direction of the linear light source.
  • the knock light unit of the present invention includes a plurality of linear light sources that emit light, and overlaps with each linear light source to refract the incident light and change the optical path.
  • a plurality of optical path changing blocks may be included.
  • the optical path changing block includes an incident surface on which light is incident and an output surface on which light from the incident surface is emitted from the back surface.
  • the exit surface has a notch that is recessed.
  • BWout The shortest length from the wall surface of the notch that appears on the exit surface of the optical path changing block to the end of the nearest exit surface along the same direction as the width direction of the linear light source.
  • the side surface of the optical path changing block having the end of the entrance surface and the end of the exit surface as a part of the outer periphery is It is desirable to have a curved surface that is concave from the outside to the inside, or from the inside to the outside!
  • the present invention includes a plurality of linear light sources that emit light, and is arranged so as to overlap corresponding to each linear light source, and refracts incident linear light source light.
  • This backlight unit includes a plurality of optical path changing blocks that change the optical path.
  • the optical path changing block in the knock light unit is positioned closest to the fluorescent tube, so that an incident surface that allows light from the fluorescent tube to enter and an outgoing surface that emits light most distant from the incident surface. It has.
  • the incident surface overlaps both ends of the width of the incident surface and both ends of the width of the linear light source in the overlapping direction of the linear light source and the optical path changing block.
  • the exit surface extends in the same direction as the extending direction of the linear light source and has a notch that is V-shaped in the vertical cross section of the extending direction, and in the overlapping direction of the linear light source and the optical path changing block, Superimpose both ends of the width and the ends of the width of the linear light source.
  • CA Critical angle of optical path change block
  • BWout Linear light from the notched wall surface that appears on the exit surface of the optical path changing block The shortest length to the end of the nearest exit surface along the same direction as the width direction of the source,
  • the optical path changing block overlapping the linear light source includes at least an entrance surface and an exit surface. Then, both ends of the width on the incident surface and both ends of the width of the linear light source overlap in the overlapping direction of the linear light source and the optical path changing block.
  • the width and incidence of the linear light from the linear light source ⁇ particularly, the light traveling in the vertical direction (directly above) with respect to the arrangement surface of the linear light source arranged in the plane; Since the width of the light source and the width of the surface coincide with each other, it becomes easy for the linear light to enter the incident surface without leakage (if the longitudinal direction of the incident surface and the extending direction of the linear light source match) Linear light is more difficult to leak).
  • This notch is formed by extending both ends of the width of the notch itself in the overlapping direction of the linear light source and the optical path changing block just extending in the same direction as the extending direction of the linear light source. Superimpose on both ends. For this reason, the notch is likely to receive linear light traveling through the incident surface.
  • the cut has a groove that is V-shaped in a vertical section in the extending direction of the linear light source. For this reason, the light that reaches this notch is refracted by the wall surface of the notch (the inner wall of the groove). The factor determining the refraction progress of such light is the incident angle with respect to the wall surface of the cut. Therefore, in the optical path changing block, the inclination angle of the wall surface satisfies the above conditional expression (3).
  • the optical path changing block suppresses the generation of both a space that becomes excessively bright due to the concentration of light and a space that becomes excessively dark because the light does not reach. is doing. Therefore, there is no unevenness in the amount of light in the knocklight unit. In other words, the optical path changing block corresponding to each linear light source efficiently prevents unevenness in the light amount of the backlight unit.
  • the surface shape of the side surface of the optical path changing block in which the entrance surface, the exit surface, and the end of the entrance surface and the end of the exit surface are part of the outer periphery in the optical path change block is particularly limited. is not. However, there are desirable surface shapes.
  • the incident surface in the optical path changing block is preferably a plane parallel to the arrangement surface of the linear light source. If this is the case, the light directly above is difficult to be refracted by the incident surface, and proceeds directly as it is, so that it becomes easy to reach the cut at the exit surface of the optical path changing block.
  • the exit surface in the optical path changing block is also preferably a plane parallel to the arrangement surface of the linear light source.
  • the distance between the linear light source and the optical path changing block in the overlapping direction becomes the minimum length, and the thickness of the backlight unit becomes relatively thin. It is.
  • the side surface of the optical path changing block has a concave curved surface from the outside to the inside. In this way, when the light that also advances the cutting force reaches the side where the force is applied and passes through, the light travels while diverging. Therefore, if the space between the linear light sources is located at the travel destination of the light, the light reaches the space between them sufficiently.
  • the side surface of the optical path changing block is not limited to a concave curved surface from the outside to the inside. That is, the side force of the optical path changing block having the end portion of the entrance surface and the end portion of the exit surface as a part of the outer periphery may be a curved surface with a raised surface facing outward.
  • a sharp portion for example, corner, edge, corner; edge
  • a sharp portion is generated on the surface of the optical path changing block.
  • a bright or dark state can occur excessively depending on the shape of the edge, the incident angle of light, and the like. Therefore, it is desirable that the sharp part to prevent such a situation is curved.
  • the bottom portion of the cut, the connection portion between the entrance surface and the side surface, the connection portion between the exit surface and the side surface, and the connection portion between the cut wall surface and the exit surface are curved surfaces. It should be noted that it is not necessary for all the enumerated parts to have curved surfaces, and at least one part may be curved.
  • a triangular prism-shaped optical path changing column having at least two side walls as reflecting surfaces is arranged, and the optical path changing column is one Desirably, with the side walls at the bottom, the two side walls, which are reflective surfaces, facing the linear light source, and the connecting portion between the reflective surfaces is close to the optical path changing block.
  • the optical path changing column has a tapered shape with a tapered top, which may be!
  • the side wall (reflecting surface) of the optical path changing pillar is inclined so as to look up toward the optical path changing block. Therefore, when the light from the linear light source and the light that has passed through the optical path changing block are incident on the reflecting surface of the optical path changing column, light (reflected light) that jumps between the linear light sources is generated. For this reason, the light also travels upward between the linear light sources, which are relatively hard to reach light. It will be.
  • the end of the linear light source closest to the optical path changing block is the first end, and the end of the linear light source facing the first end If the is the second end, it is desirable that the top of the optical path changing column is located corresponding to the distance between the first end and the second end in the overlapping direction.
  • the reflection surface becomes relatively large, while the optical path changing If the top of the column is lower than the second end in the stacking direction, the reflecting surface becomes a relatively small area. Then, depending on the width of the reflecting surface, a phenomenon in which light is refracted excessively or a phenomenon in which only a small amount of light refracts may occur. Energetic phenomena can contribute to uneven light intensity. Therefore, when the top of the optical path changing column is positioned lower than the first end and higher than the second end in the overlapping direction, the size of the reflecting surface becomes appropriate and causes no unevenness in the amount of light. It will be.
  • ⁇ ⁇ is the angle of inclination from the inside of the reflecting surface of the optical path changing column toward the inside of the side wall that is the bottom of the optical path changing column.
  • the directional force matches, and the wall surface of the slit and the reflection surface of the optical path changing column become parallel.
  • the reflecting surface of the optical path changing column easily receives the light traveling from the wall surface of the notch, and the light is efficiently reflected. As a result, the light reliably travels upward between the linear light sources.
  • the light path changing block force includes a diffusing plate that diffuses the traveling light, and that the diffusing plate and the incident surface of the optical path changing block are parallel.
  • a liquid crystal display device having the above backlight unit and a liquid crystal display panel that receives light from the powerful backlight unit can also be said to be the present invention.
  • the optical path changing block is arranged corresponding to each linear light source.
  • this optical path changing block is arranged to easily receive linear light (especially light directly above) from the light source! /, And at the same time, the linear light is easily refracted in directions other than directly above. have. For this reason, unevenness in the light quantity (brightness unevenness, lamp unevenness, lamp image) of the knock light unit due to light directly above is efficiently prevented.
  • FIG. 1 is a cross-sectional view showing a plurality of optical path changing blocks in the same cross section as FIG.
  • FIG. 2 is a perspective view of an optical path changing block.
  • FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 4 is a perspective view of an optical path changing block showing another example of FIG.
  • FIG. 5 is a cross-sectional view taken along line BB ′ of FIG.
  • FIG. 6 is a plan view showing the lamp holder.
  • FIG. 7 is an illuminance distribution diagram of the backlight unit equipped with the optical path changing block shown in Fig. 2.
  • FIG. 8 is an illuminance distribution diagram of the backlight unit equipped with the optical path changing block shown in FIG.
  • FIG. 9 is an illuminance distribution diagram in a backlight unit not equipped with an optical path changing block.
  • FIG. 10 is a cross-sectional view of a backlight unit equipped with a single fluorescent tube and an optical path changing block.
  • FIG. 11A is a cross-sectional view of a backlight unit in which the width of the incident surface and the width of the cut in the optical path changing block are narrower than the width of the fluorescent tube.
  • FIG. 11C is a cross-sectional view of the backlight unit in which the width of the incident surface and the width of the cut in the optical path changing block are wider than the width of the fluorescent tube.
  • FIG. 11D is a cross-sectional view of the knock light unit in which the width of the entrance surface in the optical path changing block is wider than the width of the fluorescent tube, and the width of the cut is narrower than the width of the fluorescent tube.
  • FIG. 12A is a cross-sectional view of a backlight unit in which the side surface of the optical path changing block is a flat surface.
  • FIG. 12B is a cross-sectional view of the backlight unit in which the side surface of the optical path changing block is a raised curved surface facing the inner side force.
  • FIG. 13 is an exploded perspective view of the liquid crystal display device.
  • FIG. 14 is a three-sided view of a liquid crystal display device.
  • FIG. 15 is a cross-sectional view of a conventional backlight unit.
  • the liquid crystal display 59 includes a liquid crystal display panel 51 and a backlight unit 5 And have.
  • both drawings omit a later-described lamp holder 45 for the sake of convenience, and the longitudinal sectional view of FIG. 14 does not illustrate an optical path changing column PE which will be described later for the sake of convenience.
  • the liquid crystal display panel 51 is a non-light-emitting display panel, and exhibits a display function by receiving light from the backlight unit 52 (backlight light). Therefore, if the light from the knock light unit 52 can irradiate the entire surface of the liquid crystal display panel 51 uniformly, the liquid crystal display panel The display quality of Nell 51 will be improved.
  • the knock light unit 52 includes a fluorescent tube (light source) 41, an optical path changing pillar PE, a reflection frame 42, an optical path changing block BK, a diffusion sheet 43, and an optical sheet 44 to generate knock light. Is included.
  • the fluorescent tube (linear light source) 41 is, for example, a cold cathode tube or a hot cathode tube, and has a linear shape (bar shape, cylindrical shape, etc.) as shown in FIGS. Multiple units are arranged in parallel in the crite unit 52 (however, for convenience, only a part of the numbers are shown in the drawing). Therefore, the arrangement direction of the fluorescent tubes 41 can be defined as the first direction Dl, the extending direction (longitudinal direction) of the fluorescent tubes 41 can be defined as the second direction D2, and the arrangement plane of the fluorescent tubes 41 arranged in the plane can be defined as the arrangement plane S. .
  • the optical path changing column PE is a reflecting member made of white resin having a reflecting function such as polycarbonate, and is disposed between the fluorescent tube 41 and the fluorescent tube 41. Therefore, the arrangement direction of the optical path changing pillars PE is the same as the first direction D1, which is the arrangement direction of the fluorescent tubes 41.
  • the optical path changing column PE is a triangular column and is a linear member (column member) having the column direction as a longitudinal direction, and the linear extending direction (longitudinal direction) is the extending direction of the fluorescent tube 41. It is in the same direction as the second direction D2. Since the optical path changing column PE is disposed between the fluorescent tube 41 and the fluorescent tube 41, the light reaching the fluorescent tube 41 is reflected to be refracted.
  • the reflection frame 42 is a box-shaped member having an open surface, and covers the box-shaped inner surface with a resin or metal having a reflection function. And the fluorescent tube 41 etc. are located in this box-shaped inner surface. Therefore, a part of the radial light emitted from the fluorescent tube 41 (radial light centered on the fluorescent tube 41) is reflected and guided to the open surface.
  • the constituent members of the reflection frame 42 may be made of a resin or metal having a reflection function. This is because the resin or metal that covers the inner surface of the reflection frame 42 can be removed.
  • the optical path changing block BK is a block made of transparent resin such as acrylic resin or polycarbonate, and is positioned so as to overlap the fluorescent tube 41 to cover the powerful fluorescent tube 41 (note that The direction in which the optical path changing block BK overlaps the fluorescent tube 41 is defined as the overlapping direction P). For this reason, the arrangement direction of the optical path changing blocks BK is the same as the first direction D1, which is the arrangement direction of the fluorescent tubes 41.
  • the optical path changing block BK extends to cover the length of the fluorescent tube 41. Since it has a shape (linear, bar-like, etc.), the extending direction (longitudinal direction) of the optical path changing block BK is the same as the second direction D2, which is the extending direction of the fluorescent tube 41.
  • the diffusion sheet 43 is formed of a resin such as PET (Poly Ethylene Terephthalate) having a function of scattering and diffusing light, and is positioned so as to cover the optical path changing block BK. For this reason, when light that has also advanced the optical path changing block BK force is incident on the diffusion sheet 2, the light is scattered and diffused, and spreads in the in-plane direction.
  • PET Poly Ethylene Terephthalate
  • the optical sheet 44 is, for example, a lens sheet that has a lens shape in the sheet surface and deflects (condenses) light radiation characteristics, and is positioned so as to cover the diffusion sheet 43. Therefore, when the light traveling from the diffusion sheet 43 is incident on the optical sheet 44, the light is collected and the light emission luminance per unit area is improved.
  • FIG. 2 is a perspective view of the optical path changing block BK
  • FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2 (however, for convenience, the fluorescent tube 41 is also shown).
  • the main body 1 is positioned closest to the fluorescent tube 41 so that light is incident thereon, and an exit surface 12 that is most distant from the incident surface 11 and emits light.
  • side surfaces 13 13a ′ 13b having the end of the incident surface 11 and the end of the output surface 12 as a part of the outer periphery.
  • the incident surface 11 extends in the same direction as the second direction D2 in which the fluorescent tube 41 extends.
  • the incident surface 11 is formed by superimposing both ends 1 la '11a of the width of the incident surface 11 and both ends 41a' 41a of the width of the fluorescent tube 41 in the overlapping direction P of the fluorescent tube 41 and the optical path changing block BK. (The width direction of the incident surface 11 and the width direction of the fluorescent tube 41 are the same as the first direction D1).
  • the linear light from the fluorescent tube 41 in particular, the width of the light directly above that is the light traveling in the direction perpendicular to the arrangement surface S of the fluorescent tubes 41 arranged in the plane, and the width of the incident surface 11
  • the light directly above the light easily enters the incident surface 11 without leaking (the vertical direction with respect to the arrangement surface S is referred to as the direct upward direction).
  • the exit surface 12 extends in the same direction as the second direction D2, which is the extending direction of the fluorescent tube 41, similarly to the entrance surface 11 (note that the width direction of the exit surface 12 is the same as the first direction D1). In the same direction).
  • the exit surface 12 has a cut CT that extends in the same direction as the second direction D2 and is V-shaped in a vertical section in the extending direction. That is, a groove-shaped cut CT having two wall surfaces 14 (14a, 14b) is formed on the output surface 12.
  • the emission surface 12 has both ends CTa.
  • CTa and both ends 41a and 41a of the width of the fluorescent tube 41 in the overlapping direction P of the fluorescent tube 41 and the optical path changing block BK. are superimposed. For this reason, the width of the directly overhead light traveling through the incident surface 11 and the width of the cut CT coincide with each other, and the strong direct light easily enters the cut CT without leakage.
  • Fluorescent tubes 41 ⁇ 41 are arranged at intervals (pitch interval)
  • BWout Cuts appearing on the exit surface 12 From the CT wall surface 14 in the same direction as the width of the fluorescent tube 41 Along the shortest length BW1 to the end of the nearest exit surface 12,
  • the center force of the width of the fluorescent tube 41 is perpendicular to the arrangement surface S of the fluorescent tube 41 so that it extends along the same direction as the width direction of the fluorescent tube 41 from the wall surface 14 of the CT that appears on the emission surface 12.
  • the knock light unit 52 includes a plurality of fluorescent tubes 41 that emit light, and is arranged so as to overlap with the fluorescent tubes 41 to receive incident light. It contains multiple optical path changing blocks ⁇ ⁇ ⁇ that change the optical path by refracting.
  • the optical path changing block has an incident surface 11, an output surface 12, and side surfaces 13 (13a-13b).
  • the incident surface 11 overlaps both ends 1 la '11a of the width of the incident surface 11 and both ends 41a' 41a of the width of the fluorescent tube 41.
  • the emission surface 12 extends in the same direction as the extending direction of the fluorescent tube 41 (second direction D2), and has a cut CT that is V-shaped in the vertical cross section of the extending direction, and also has an optical path change pro In the overlapping direction P with the CK, the both ends CTa'CTa of the width of the cut CT and the both ends 41a'41a of the fluorescent tube 41 are overlapped.
  • the width of the linear light including the light directly above the fluorescent tube 41 and the width of the incident surface 11 match, so that the linear light is incident without leaking.
  • the linear light passing through the incident surface 11 can easily reach the slit CT extending in the same direction as the fluorescent tube 41. For this reason, the linear light refracts in various directions due to the wall surface 14 of the cut CT, making it difficult to concentrate.
  • the size of the optical path changing block ⁇ , particularly the output The emission surface 12 and the side surface 13 are appropriately sized, and light traveling through at least one of the emission surface 12 and the side surface 13 reliably reaches between the fluorescent tubes 41 and 41. Therefore, the power space cannot be an excessively dark space. Therefore, in the knock light unit 52, the light amount unevenness of the knock light unit 52 due to an excessively bright space and an excessively dark space occurs. Uneven light intensity in the knock light 52 may be less likely to occur).
  • the optical path changing block BK covers each of the fluorescent tubes 41. That is, the optical path changing block BK does not cover a plurality of fluorescent tubes 41 together like a light guide plate or the like. Therefore, the light mainly entering the optical path changing block BK becomes light from the corresponding fluorescent tube 41, and thus is not easily affected by other fluorescent tubes 41 (adjacent fluorescent tubes 41, etc.).
  • the optical path changing block BK can efficiently guide the light from the fluorescent tube 41 in a desired direction without considering the influence of various lights. That is, the knock light unit 52 equipped with the optical path changing block BK efficiently prevents unevenness in the amount of light. In addition, since the knock light unit 52 does not include a light guide plate, an increase in weight, an increase in cost, and a loss of light amount due to the light guide plate can be prevented.
  • the surface shapes of the incident surface 11, the exit surface 12, and the side surface 13 of the optical path changing block BK that have been described are not particularly limited. However, there are desirable surface shapes.
  • the surface shape of the incident surface 11 may be a flat surface. This is because, if the incident surface 11 is a plane parallel to the arrangement surface S of the fluorescent tube 41, the light directly above is not bent by the incident surface 11 and proceeds in the upward direction as it is, so that the output surface 12 This is because the notch in CT reaches CT.
  • the surface shape of the emission surface 12 in the optical path changing block BK may be a flat surface.
  • the distance between the fluorescent tube 41 and the optical path changing block BK in the overlapping direction P becomes the minimum length. This is because the thickness of the light light unit 52 is relatively thin.
  • the surface shape of the side surface 13 in the optical path changing block BK is a concave curved surface (curved surface) from the outside to the inside. Because the side 13 This is because when the light traveling through the slit CT is transmitted, the light diverges. And if the light which diverges in this way arrives between fluorescent tubes 41 * 41, the space between them does not become a space with insufficient light quantity. In particular, the divergent light power between the different side surfaces of the adjacent optical path changing blocks ⁇ ' ⁇ 13 13 13 is insufficient, and the amount of light between the fluorescent tubes 41 41 41 is insufficient. It will be a space! /
  • connection part J2'J2 As shown in Figs. 4 and 5 ( ⁇ - ⁇ in Fig. 4, cross-sectional view taken along line arrow), incident surface 11 and side surface 13 (13a, 13a, 13b) Connection part J2'J2, Output surface 12 and side surface 13 (13a '13b) connection part J3' J3, Notch CT wall 14 (14a '14b) and output surface 12 connection part J4' J4 may be a curved surface (that is, the various portions may be 1 to 4 in shape).
  • the supports 2 ⁇ 2 are provided at both ends of the optical path changing block BK in the longitudinal direction of the main body 1 (in the drawings, for convenience, one of the supports 2 Only shown).
  • the support bodies 2 and 2 protrude in a direction perpendicular to the longitudinal direction of the optical path changing block BK, and are provided with a curved notch 21 along the outer periphery of the fluorescent tube 41 at the protruding end (protruding end). Therefore, when the curved cutouts 21 and 21 come into close contact with both ends of the fluorescent tube 41, the optical path changing block ⁇ is positioned so as to be separated from the fluorescent tube 41 by the protruding amount of the support member 2.2.
  • the optical path changing block ⁇ is the support 2 ⁇ 2
  • the lamp holder 45 presses against the fluorescent tube 41 through which the fluorescent tube 41 is covered.
  • the optical path changing block BK and the fluorescent tube 41 are fixed in the reflection frame 42.
  • the optical path changing column PE has a triangular column shape and a linear shape with the column direction as the longitudinal direction.
  • the optical path changing pillar PE located between the fluorescent tubes 41 and 41 has one side wall SW1 of the three side walls SW (SW1 to SW3) as the bottom and the remaining side walls SW1 to SW3.
  • the two side walls SW2 and SW3 are facing the fluorescent tubes 41 and 41. Therefore, the sidewall SW2 ′ SW3 functions as a reflecting surface (also referred to as a reflecting surface SW2 ′ SW3).
  • the optical path changing column PE is brought close to the optical path changing block BK with the connecting portion 31 of the reflecting surfaces SW2 'and SW3 as the apex!
  • the optical path changing column PE is tapered with the apex 31 tapered. Therefore, the reflecting surface SW2-S W3 of the optical path changing column PE which is the tapered side wall SW is inclined so as to face the optical path changing block BK. Then, when the light from the fluorescent tube 41 and the light that has passed through the optical path changing block BK enter the reflecting surface SW2 'SW3, it is reflected so as to jump up to the optical path changing block BK (the reflected light jumps up the light). Also called). As a result, the light also travels upward between the fluorescent tubes 41 and 41, where the light is relatively difficult to reach, and the light quantity unevenness of the knock light unit 52 is surely prevented.
  • the end of the fluorescent tube 41 closest to the optical path changing block ⁇ is the first end 41b, and the fluorescence facing the first end 41b.
  • the apex 31 of the optical path changing column PE is positioned in the overlapping direction P corresponding to the distance between the first end portion 41b and the second end portion 41c. That is, the apex 31 is positioned lower than the first end 41b and higher than the second end 41c in the overlapping direction P.
  • the size of the optical path changing column PE is The size becomes relatively large, and the reflecting surface SW2 'SW3 also becomes relatively large. Then, the light is excessively refracted due to the large reflective surface SW2 'SW3, which may cause a non-uniform light amount.
  • the optical path changing column PE when the bottom of the optical path changing column PE is at a fixed position and the top 31 of the optical path changing column PE is lower than the second end 41c in the overlapping direction P, the optical path changing column PE The size is relatively small, and the reflecting surface SW2 'SW3 is also relatively small in association with it. Then, due to the reflective area SW2 'SW3 having a small area, only a small amount of light is refracted, which may cause unevenness in the amount of light.
  • ⁇ ⁇ is the angle of inclination toward the inside of the side surface SW1, which is the bottom of the optical path changing column ⁇ E, on the reflecting surface SW2 'SW3 of the optical path changing column ⁇ .
  • the notch CT walls 14 &'141) facing each other and the reflecting surface 3 1 ⁇ 3' 3 1 ⁇ 2 of the optical path changing pillar 13 ⁇ 4 are formed as shown in FIG. Become parallel. More specifically, in the two optical path changing blocks BK'BK that sandwich one optical path changing pillar PE, the wall 14a of one optical path changing block BK and the reflecting surface SW3 are parallel, and the other optical path is changed. The wall 14b of the block BK and the reflecting surface SW2 are parallel. Therefore, the reflecting surfaces SW2 and SW3 of the optical path changing pillar PE are easy to receive the light traveling from the wall surfaces 14b'14a, and the light jumps efficiently. As a result, the light reliably travels upward between the fluorescent tubes 41 and 41.
  • the horizontal axis is the first direction D1 in which the fluorescent tubes 41 are arranged, and the vertical axis is the illuminance [1 x].
  • the position Z on the illuminance distribution diagram indicates the position [mm] of the fluorescent tube 41 in the first direction D1. Therefore, the illuminance at position Z on the horizontal axis corresponds to the light directly above, and the illuminance on the horizontal axis excluding position Z corresponds to the interval V (arrangement interval V) between the fluorescent tubes 41 and 41. .
  • the illuminance corresponding to the light directly above is approximately 7000 [lx]
  • the fluorescent tubes 41 ⁇ The illuminance corresponding to the interval V of 41 is about 7000 [lx]. Therefore, the difference between the illuminance corresponding to the light directly above and the illuminance corresponding to the distance V between the fluorescent tubes 41 and 41 is extremely small.
  • the illuminance corresponding to the light directly above is about 8500 [lx], while the fluorescent tubes 41.
  • the illuminance corresponding to the interval V of 41 is also about 6500 [lx]. Therefore, the difference between the illuminance corresponding to the light directly above and the illuminance corresponding to the distance V between the fluorescent tubes 41 and 41 is about 1500 [lx].
  • the backlight unit 52 having a plurality of fluorescent tubes 41 is taken as an example, but the present invention is not limited to this. That is, as shown in FIG. 10, a single fluorescent tube 41 that emits light is included, and an optical path change block ⁇ ⁇ ⁇ that overlaps with the fluorescent tube 41 to refract the incident light and change the optical path is provided.
  • Backlight unit including one 52 It may be.
  • the shape of the cut CT is not limited to a V-shape in a cross section perpendicular to the second direction D2.
  • the wall surface 14 (14a '14b) of the cut CT may be a curved surface.
  • the cut CT should have a shape that is recessed from the exit surface 12.
  • the backlight unit 52 including the single fluorescent tube 41 and the optical path changing block BK satisfies the following conditional expression (D) ⁇ Conditional expression (1) ⁇ in order to suppress the uneven light amount. And desirable.
  • BWout notch appearing on the exit surface 12
  • the center force of the width of the fluorescent tube 41 is perpendicular to the arrangement surface S of the fluorescent tube 41 so that it extends along the same direction as the width direction of the fluorescent tube 41 from the wall surface 14 of the CT that appears on the emission surface 12.
  • L The width of the backlight unit 52 in the direction along the width direction of the fluorescent tube 41.
  • the optical path changer includes a plurality of fluorescent tubes 41 and has a cut CT having a curved wall 14 (14a '14b) or a V-shaped cut CT having a flat wall 14 (14a' 14b).
  • the light quantity unevenness of the knock light unit 52 may not easily occur even if the following conditional expression E ⁇ conditional expression (2) ⁇ is satisfied.
  • V Arrangement interval between linear light sources arranged in the plane
  • BWout Linear light from the notched wall surface that appears on the exit surface of the optical path changing block The shortest length to the end of the nearest exit surface along the same direction as the width direction of the source,
  • both ends l la ′ l la of the width of the incident surface 11 and both ends 41a′41a of the width of the fluorescent tube 41 do not overlap each other.
  • both ends CTa ⁇ CTa of the width of the cut CT on the emission surface 12 and both ends 41a′41a of the fluorescent tube 41 need not overlap.
  • the width of the incident surface 11 may be wider or narrower than the width of the fluorescent tube 41.
  • the width of the cut CT may be wider or narrower than the width of the fluorescent tube 41.
  • the degree of the curved surface of the side surface 13 of the optical path changing block BK is not particularly limited. However, the side surface 13 diverges light from the inside and travels to the outside. For example, the center of curvature of the curved surface that is the side surface 13 may be outside the side surface 13 instead of inside.
  • the degree of curved surfaces of the portions J1 to J4 in the optical path changing block BK is not limited. The point is that the curved surface can prevent an excessively bright state or an excessively dark state in the portions J1 to J4.
  • the surface shape of the side surface 13 is not limited to a concave curved surface facing from the outside to the inside. That is, as shown in FIG. 12A, the side surface 13 may be a flat surface, or as shown in FIG. 12B, the side surface 13 may be a raised curved surface with the inner force facing outward.
  • the optical path changing block BK can be expressed in various ways.
  • the main body 1 of the optical path changing block BK has a rod-like shape, and the outer periphery has an incident surface 11 that is a plane, an exit surface 12 that has a cut CT, and has a larger area than the incident surface, and a side surface 13 that is a curved surface (13a , 13b) Is arranged.
  • the cross section perpendicular to the extending direction of the main body 1 can be said to be a trapezoid consisting of the incident surface 11, the output surface 12, and the side surfaces 13a '13b, and the main body 1 can also be referred to as a trapezoidal column (however, a part of the outer periphery of the column A trapezoidal column with a curved surface (a modified trapezoidal column) ⁇ .
  • the knock light unit 52 changes the optical path of the trapezoidal column with the top surface facing the fluorescent tube 41. More block BK is installed!

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A backlight unit (52) includes a single light-emitting fluorescent tube (41) and a single light path-changing block (BK) covering the fluorescent tube (41) and refracting incoming light to change its path. The light path-changing block (BK) has an entrance surface (11) through which light enters and an exit surface (12) from the back side of which the light exits. The exit surface (12) has a recessed cut (CT).

Description

明 細 書  Specification
ノ ックライトユニットおよび液晶表示装置  Knocklight unit and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、光を発するバックライトユニットと、力かるバックライトユニットからの光を 利用する液晶表示装置とに関するものである。  The present invention relates to a backlight unit that emits light and a liquid crystal display device that uses light from a powerful backlight unit.
背景技術  Background art
[0002] 従来から液晶表示装置における液晶表示パネル (非発光型表示パネル)に光を供 給するバックライトユニットは種々開発されている。そして、エリアライト型バックライトュ ニット等に含まれる光源としては、熱陰極管または冷陰極管の蛍光管が挙げられる。  Conventionally, various backlight units for supplying light to a liquid crystal display panel (non-light emitting display panel) in a liquid crystal display device have been developed. The light source included in the area light type backlight unit or the like includes a hot cathode tube or a cold cathode tube fluorescent tube.
[0003] 熱陰極管は、管の両端にフィラメントから成る電極を有するとともに、管の内部に水 銀およびアルゴン等の希ガスを封入し、さら〖こ、管の内面に蛍光体被膜を設けている 。そして、かかる熱陰極管は、電極を介して放射される熱電子を放電管内に潜在する 水銀原子に衝突させる。すると、この衝突により発生する紫外線が、管内面に塗布さ れた蛍光体を励起させることで可視光に変換し、管外に出射する。  [0003] A hot cathode tube has electrodes made of filaments at both ends of the tube, a rare gas such as mercury or argon is sealed inside the tube, and a phosphor film is provided on the inner surface of the tube. Yes. Such a hot cathode tube collides the thermoelectrons emitted through the electrodes with the mercury atoms latent in the discharge tube. Then, the ultraviolet rays generated by the collision are converted into visible light by exciting the phosphor applied to the inner surface of the tube, and emitted outside the tube.
[0004] 一方、冷陰極管は、熱陰極管同様、紫外線を可視光に変換させる。しかし、放電管 内に放出される電子は熱電子ではない。そのため、比較的大型なフィラメントとは異 なる小型な電極を使用できる。  [0004] On the other hand, a cold cathode tube, like a hot cathode tube, converts ultraviolet light into visible light. However, the electrons emitted into the discharge tube are not thermal electrons. Therefore, a small electrode different from a relatively large filament can be used.
[0005] これらの陰極管が昨今の薄型かつ大画面の液晶テレビ (液晶表示装置)に使用さ れると、問題が生じる。例えば、熱陰極管は比較的大型なフィラメントを用いるために 大型である。そのため、大画面の液晶表示パネルに光を照射させるために、大型な 熱陰極管がノ ックライトユニットに搭載されると、ノ ックライトユニット自体のサイズが大 型化する。その結果、薄型の液晶テレビが実現しない。  [0005] Problems arise when these cathode tubes are used in a thin-type and large-screen liquid crystal television (liquid crystal display device). For example, a hot cathode tube is large because it uses a relatively large filament. Therefore, when a large hot cathode tube is mounted on the knocklight unit to irradiate light on a large-screen liquid crystal display panel, the size of the knocklight unit itself increases. As a result, a thin liquid crystal television cannot be realized.
[0006] また、冷陰極管は、比較的小型な電極を用いるために小型ではあるものの熱陰極 管よりも低輝度である。そのため、大画面の液晶表示パネルに光を照射させるために 、比較的多量の冷陰極管がノ ックライトユニットに搭載されなくてはならない。すると、 ノ ックライトユニット自体のサイズが大型化する。その結果、熱陰極管を使用した場合 同様に、薄型の液晶テレビが実現しない。また、多量の冷陰極管の使用は、ノ ックラ イトユニットのコストアップにもつながる。 [0006] Also, the cold cathode tube has a lower luminance than the hot cathode tube although it is small because a relatively small electrode is used. Therefore, a relatively large amount of cold cathode tubes must be mounted on the knock light unit in order to irradiate the large-screen liquid crystal display panel with light. This will increase the size of the knocklight unit itself. As a result, a thin liquid crystal television cannot be realized as in the case of using a hot cathode tube. In addition, use of a large amount of cold cathode fluorescent lamp It also leads to an increase in the cost of the unit
[0007] 力かるようなバックライトユニットの大型化およびコストアップを抑制するためには、 ノ ックライトユニットにおける各蛍光管の発光量の増加が必要となる。発光量の大き な熱陰極管または冷陰極管の蛍光管であれば (要は高効率で発光する蛍光管であ れば)、ノ ックライトユニットにおける蛍光管の本数の削減によって大型化が抑制され 、ひいては、バックライトユニットのコストダウンも図れるためである。  [0007] In order to suppress an increase in the size and cost of a backlight unit that is powerful, it is necessary to increase the light emission amount of each fluorescent tube in the knocklight unit. If the fluorescent tube is a hot-cathode tube or a cold-cathode tube that emits a large amount of light (in other words, a fluorescent tube that emits light with high efficiency), the size of the knock-light unit can be reduced by reducing the number of fluorescent tubes. As a result, the cost of the backlight unit can be reduced.
[0008] しかし、高効率で発光する蛍光管を用いることで、ノ ックライトユニットにおける蛍光 管の本数が削減されていくと、図 15の断面図に示すように、蛍光管同士 141. 141の 間隔 V,が広がる。すると、蛍光管 141の上方は明るいものの、蛍光管同士 141 · 141 の間隔 V'の上方は逆に暗くなる(なお、上方とは、蛍光管 141から反射フレーム 142 に向力う方向に対して逆方向を意味する)。すなわち、蛍光管 141の上方と蛍光管同 士 141 · 141の間隔の上方とで、比較的大きく明暗の差 (光量ムラ)が生じる。そのた め、バックライトユニット 152の表示品位が低下してしまう。  [0008] However, when the number of fluorescent tubes in the knocklight unit is reduced by using fluorescent tubes that emit light with high efficiency, the fluorescent tubes 141. 141 are shown in the cross-sectional view of FIG. Spacing V increases. Then, although the upper part of the fluorescent tube 141 is bright, the upper part of the distance V ′ between the fluorescent tubes 141 and 141 becomes darker on the contrary (the upper part is the direction from the fluorescent tube 141 toward the reflection frame 142). Meaning the reverse direction). That is, there is a relatively large difference in brightness (light intensity unevenness) between the upper side of the fluorescent tube 141 and the upper side of the interval between the fluorescent tube tubes 141 and 141. Therefore, the display quality of the backlight unit 152 is degraded.
[0009] また、高効率で発光する蛍光管に起因する光量ムラと、通常の効率で発光する蛍 光管に起因する光量ムラとを比較した場合、両蛍光管が同本数であっても、高効率 で発光する蛍光管に起因する光量ムラのほうが顕著に現れる。そのため、高効率で 発光する蛍光管を用いることで蛍光管の本数を削減しながら、ノ ックライトユニットの 光量ムラを抑えることには限界がある。  [0009] Further, when comparing the amount of light unevenness caused by fluorescent tubes emitting light with high efficiency and the amount of light unevenness caused by fluorescent tubes emitting light with normal efficiency, even if both fluorescent tubes have the same number, The unevenness in the amount of light caused by fluorescent tubes that emit light with high efficiency appears more prominently. For this reason, there is a limit to reducing the uneven light quantity of the knocklight unit while reducing the number of fluorescent tubes by using fluorescent tubes that emit light with high efficiency.
[0010] そこで、このような限界を打破するために考えられたバックライトユニットが、特許文 献 1に開示されている。この特許文献 1のバックライトユニットでは、蛍光管の光を受 光する導光板の受光面に溝部が形成されるとともに、導光板の光出射面に光を散乱 させる形状 (例えば断面 V字状の溝;光量補正面)が形成されている。このようになつ ていると、蛍光管からの光が溝部と光量補正面とを通過することによって散乱し、光 量ムラが生じにくくなる。  [0010] Therefore, Patent Document 1 discloses a backlight unit conceived to overcome such limitations. In the backlight unit of Patent Document 1, a groove is formed on the light receiving surface of the light guide plate that receives light from the fluorescent tube, and the light is scattered on the light output surface of the light guide plate (for example, having a V-shaped cross section). Groove (light quantity correction surface) is formed. In this case, the light from the fluorescent tube is scattered by passing through the groove and the light amount correction surface, and unevenness in the amount of light is less likely to occur.
特許文献 1 :特許第 3319945号  Patent Document 1: Patent No. 3319945
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力しながら、特許文献 1のバックライトユニットでは、導光板 (特に溝部)が蛍光管 を覆っている。そのため、薄型かつ大画面の液晶テレビに、力かるバックライトユニット が使用される場合、蛍光管を覆う導光板のサイズが極めて大型化する。したがって、 ノ ックライトユニットの重量は非常に重くなる。その上、大型の導光板に起因して、バ ックライトユニットのコストがアップする。 However, in the backlight unit of Patent Document 1, the light guide plate (particularly the groove) is a fluorescent tube. Covering. For this reason, when a powerful backlight unit is used in a thin and large-screen liquid crystal television, the size of the light guide plate covering the fluorescent tube becomes extremely large. Therefore, the weight of the knocklight unit is very heavy. In addition, the cost of the backlight unit increases due to the large light guide plate.
[0012] また、光量補正面は、蛍光管の上方に重なり合う位置ではなぐ蛍光管同士の間隔 の上方に重なるように位置している。そのため、蛍光管の上方に進む光 (直上光)が十 分に散乱されず、光量ムラが十分に抑えられない。  [0012] Further, the light amount correction surface is positioned so as to overlap above the interval between the fluorescent tubes at a position overlapping above the fluorescent tubes. For this reason, light traveling directly above the fluorescent tube (light directly above) is not sufficiently scattered, and unevenness in the amount of light cannot be sufficiently suppressed.
[0013] また、複数本の蛍光管を覆う比較的広面積の導光板の内部では、光が様々な方向 にいき力 (導光板内部において種々の方向力も伝播する伝播光が多い)。そのため 、直上光の光が導光板の溝部で散乱されたとしても、他の方向からの光が蛍光管の 上方に向力つて進行してくることあり、総合的に、蛍光管の上方における輝度を抑制 しにくい。  [0013] In the light guide plate having a relatively large area that covers the plurality of fluorescent tubes, light travels in various directions (there is much propagating light that also propagates various directional forces in the light guide plate). For this reason, even if the light directly above is scattered by the groove of the light guide plate, light from other directions may be directed toward the upper side of the fluorescent tube. Is difficult to suppress.
[0014] その上、導光板の溝部が蛍光管を覆うために、この溝部にて反射する光が蛍光管 に戻ってしまい、そのまま蛍光管に吸収されることもある。すると、蛍光管の発光量が 十分に生かされず、発光量に損失が生じる。  In addition, since the groove portion of the light guide plate covers the fluorescent tube, the light reflected by this groove portion may return to the fluorescent tube and be absorbed by the fluorescent tube as it is. Then, the light emission amount of the fluorescent tube is not fully utilized, and the light emission amount is lost.
[0015] 本発明は、上記の問題点を解決するためになされたものである。そして、その目的 は、効率よく光量ムラを抑制できるバックライトユニットを提供し、さらに、かかるバック ライトユニットを備える液晶表示装置を提供することにある。 課題を解決するための手段  [0015] The present invention has been made to solve the above problems. And the objective is to provide the backlight unit which can suppress light quantity nonuniformity efficiently, and also to provide a liquid crystal display device provided with this backlight unit. Means for solving the problem
[0016] 本発明は、光を発する単数個の線状光源を含むとともに、線状光源に対応して重 なって、入射してくる光を屈折させ光路を変更させる光路変更ブロックを単数個含む ノ ックライトユニットである。そして、力かるバックライトユニット内の光路変更ブロックは 、光を入射させる入射面と、その背面力 入射面力 の光を出射させる出射面と、を 備えている。さらに、出射面は、窪み形状となる切れ込みを有している。  [0016] The present invention includes a single linear light source that emits light, and includes a single optical path changing block that overlaps with the linear light source and refracts incident light to change the optical path. It is a knock light unit. The optical path changing block in the backlight unit having power is provided with an incident surface on which light is incident, and an output surface on which light having the rear force and incident surface force is emitted. In addition, the exit surface has a notch that is recessed.
[0017] なお、以上のバックライトユニットでは、以下の条件式(1)が満たされていると望まし い。  [0017] In the above backlight unit, it is desirable that the following conditional expression (1) is satisfied.
BWout≤L/2 … 条件式(1)  BWout≤L / 2… Conditional expression (1)
ただし、 BWout:光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、最も近い出射面の端部に至るま での最短の長さと、 However, BWout: The shortest length from the wall surface of the notch that appears on the exit surface of the optical path changing block to the end of the nearest exit surface along the same direction as the width direction of the linear light source. ,
光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、線状光源における幅の中心から 線状光源の配置面に対して垂直でありかつ線状光源の延び方向に平 行になった仮想面に至るまでの最短の長さと、  From the wall surface of the notch that appears on the exit surface of the optical path changing block, along the same direction as the width direction of the linear light source, from the center of the width of the linear light source, perpendicular to the arrangement surface of the linear light source And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和  Sum of
L :線状光源の幅方向に沿う方向でのバックライトユニットの幅 である。  L: The width of the backlight unit in the direction along the width direction of the linear light source.
[0018] また、本発明のノ ックライトユニットは、光を発する複数個の線状光源を含むととも に、各線状光源に対応して重なって、入射してくる光を屈折させ光路を変更させる光 路変更ブロックを複数個含んでいてもよい。そして、力かるバックライトユニットでは、 光路変更ブロックは、光を入射させる入射面と、その背面カゝら入射面からの光を出射 させる出射面と、を備えている。さらに、出射面は、窪み形状となる切れ込みを有して いる。  [0018] The knock light unit of the present invention includes a plurality of linear light sources that emit light, and overlaps with each linear light source to refract the incident light and change the optical path. A plurality of optical path changing blocks may be included. In the powerful backlight unit, the optical path changing block includes an incident surface on which light is incident and an output surface on which light from the incident surface is emitted from the back surface. In addition, the exit surface has a notch that is recessed.
[0019] なお、以上のバックライトユニットでは、以下の条件式(2)が満たされていると望まし い。  [0019] In the above backlight unit, it is desirable that the following conditional expression (2) is satisfied.
BWout≤V/ 2 … 条件式(2)  BWout≤V / 2… Conditional expression (2)
ただし、  However,
BWout:光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、最も近い出射面の端部に至るま での最短の長さと、  BWout: The shortest length from the wall surface of the notch that appears on the exit surface of the optical path changing block to the end of the nearest exit surface along the same direction as the width direction of the linear light source. ,
光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、線状光源における幅の中心から 線状光源の配置面に対して垂直でありかつ線状光源の延び方向に平行 になった仮想面に至るまでの最短の長さと、  From the wall surface of the notch that appears on the exit surface of the optical path changing block, along the same direction as the width direction of the linear light source, from the center of the width of the linear light source, perpendicular to the arrangement surface of the linear light source And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和 V :面内配置されている線状光源同士の配置間隔 Sum of V: Arrangement interval between linear light sources arranged in the plane
である。  It is.
[0020] また、線状光源および光路変更ブロックの個数にかかわらず、ノ ックライトユニットで は、入射面の端部および出射面の端部を外周の一部としている光路変更ブロックの 側面が、外側から内側に向いた窪んだ曲面になっている、または、内側から外側に 向!、て盛り上がった曲面になって 、ると望まし!/、。  [0020] Regardless of the number of linear light sources and optical path changing blocks, in the knock light unit, the side surface of the optical path changing block having the end of the entrance surface and the end of the exit surface as a part of the outer periphery is It is desirable to have a curved surface that is concave from the outside to the inside, or from the inside to the outside!
[0021] 特に、光路変更ブロックから進行してくる光を拡散する拡散板が含まれており、拡散 板と、光路変更ブロックの入射面とが平行であると望ま 、。  In particular, it is desirable that a diffusing plate for diffusing light traveling from the optical path changing block is included, and that the diffusing plate and the incident surface of the optical path changing block be parallel.
[0022] また、本発明は、光を発する複数個の線状光源を含むとともに、各線状光源に対応 して重ねるように配置され、入射してくる線状光源力 の光を屈折させることで光路を 変更させる光路変更ブロックを複数個含むバックライトユニットである。そして、ノック ライトユニット内の光路変更ブロックは、蛍光管に最も近くに位置することでその蛍光 管からの光を入射させる入射面と、その入射面から最も乖離して光を出射させる出射 面とを備えている。  [0022] Further, the present invention includes a plurality of linear light sources that emit light, and is arranged so as to overlap corresponding to each linear light source, and refracts incident linear light source light. This backlight unit includes a plurality of optical path changing blocks that change the optical path. The optical path changing block in the knock light unit is positioned closest to the fluorescent tube, so that an incident surface that allows light from the fluorescent tube to enter and an outgoing surface that emits light most distant from the incident surface. It has.
[0023] 入射面は、線状光源と光路変更ブロックとの重ね方向にぉ ヽて、入射面の幅の両 端と線状光源の幅の両端とを重ね合わせている。一方、出射面は、線状光源の延び 方向と同方向に延びるとともにその延び方向の垂直断面で V字状となる切れ込みを 有し、線状光源と光路変更ブロックとの重ね方向において、切れ込みの幅の両端と 線状光源の幅の両端とを重ね合わせて 、る。  [0023] The incident surface overlaps both ends of the width of the incident surface and both ends of the width of the linear light source in the overlapping direction of the linear light source and the optical path changing block. On the other hand, the exit surface extends in the same direction as the extending direction of the linear light source and has a notch that is V-shaped in the vertical cross section of the extending direction, and in the overlapping direction of the linear light source and the optical path changing block, Superimpose both ends of the width and the ends of the width of the linear light source.
[0024] さらに、ノ ックライトユニットでは、以下の条件式(3)および (4)が満たされている。 [0024] Further, the following conditional expressions (3) and (4) are satisfied in the knocklight unit.
CA< B 0 … 条件式(3)  CA <B 0… Conditional expression (3)
V/5≤BWout≤V/2 … 条件式(4)  V / 5≤BWout≤V / 2… Conditional expression (4)
ただし、  However,
CA :光路変更ブロックの臨界角  CA: Critical angle of optical path change block
B Θ :切れ込みにおける壁面の傾斜角(ただし、壁面の内側から光路変更プロ ックの入射面に向力つている傾斜角)  B Θ: Inclination angle of the wall surface at the notch (however, the inclination angle that is directed from the inside of the wall surface to the incident surface of the optical path changing block)
V :面内配置されている線状光源同士の配置間隔  V: Arrangement interval between linear light sources arranged in the plane
BWout:光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、最も近い出射面の端部に至るま での最短の長さと、 BWout: Linear light from the notched wall surface that appears on the exit surface of the optical path changing block The shortest length to the end of the nearest exit surface along the same direction as the width direction of the source,
光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、線状光源における幅の中心から 線状光源の配置面に対して垂直でありかつ線状光源の延び方向に平行 になった仮想面に至るまでの最短の長さと、  From the wall surface of the notch that appears on the exit surface of the optical path changing block, along the same direction as the width direction of the linear light source, from the center of the width of the linear light source, perpendicular to the arrangement surface of the linear light source And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和  Sum of
である。  It is.
[0025] 力かるようなバックライトユニットでは、線状光源に重なる光路変更ブロックが、少な くとも入射面および出射面を含んでいる。そして、入射面における幅の両端と線状光 源における幅の両端とが、線状光源と光路変更ブロックとの重ね方向において重なり 合っている。このようになっていると、線状光源からの線状光 {特に、面内配置された 線状光源の配置面に対して垂直方向(直上方向)に進む光;直上光 }の幅と入射面と の幅とがー致することになるので、線状光が漏れなく入射面に入射しやすくなる(な お、入射面の長手方向と線状光源の延び方向とがー致していれば、線状光が一層 漏れにくくなる)。  [0025] In such a backlight unit, the optical path changing block overlapping the linear light source includes at least an entrance surface and an exit surface. Then, both ends of the width on the incident surface and both ends of the width of the linear light source overlap in the overlapping direction of the linear light source and the optical path changing block. In such a case, the width and incidence of the linear light from the linear light source {particularly, the light traveling in the vertical direction (directly above) with respect to the arrangement surface of the linear light source arranged in the plane; Since the width of the light source and the width of the surface coincide with each other, it becomes easy for the linear light to enter the incident surface without leakage (if the longitudinal direction of the incident surface and the extending direction of the linear light source match) Linear light is more difficult to leak).
[0026] 一方、出射面には、切れ込みが形成されて!、る。そして、この切れ込みは、線状光 源の延び方向と同方向に延びているだけでなぐ線状光源と光路変更ブロックとの重 ね方向において、切れ込み自身における幅の両端を線状光源における幅の両端に 重ね合わせる。そのため、切れ込みは入射面を介して進行してくる線状光を受光し やすい。  On the other hand, a cut is formed on the exit surface! This notch is formed by extending both ends of the width of the notch itself in the overlapping direction of the linear light source and the optical path changing block just extending in the same direction as the extending direction of the linear light source. Superimpose on both ends. For this reason, the notch is likely to receive linear light traveling through the incident surface.
[0027] ただし、切れ込みは、線状光源の延び方向の垂直断面で V字状となる溝を有して いる。そのため、この切れ込みに到達する光は、切れ込みの壁面 (溝の内壁)によつ て屈折進行する。このような光の屈折進行先を決定付ける要因は、切れ込みの壁面 に対する入射角になる。そこで、光路変更ブロックでは、壁面の傾斜角が上記の条件 式(3)を満たすようになって 、る。  [0027] However, the cut has a groove that is V-shaped in a vertical section in the extending direction of the linear light source. For this reason, the light that reaches this notch is refracted by the wall surface of the notch (the inner wall of the groove). The factor determining the refraction progress of such light is the incident angle with respect to the wall surface of the cut. Therefore, in the optical path changing block, the inclination angle of the wall surface satisfies the above conditional expression (3).
[0028] 条件式(3)が満たされて 、る場合、線状光 (特に直上光)が切れ込みの壁面に入 射すると、入射角は光路変更ブロックの臨界角よりも大きくなる。そのため、壁面に入 射する光は全反射することになる。すると、線状光の一部は、切れ込みの壁面を通過 して直上方向に進むことなぐ直上方向とは異なる方向へと進行する。その結果、線 状光源の光が直上方向に向力つて集中しに《なり、過度に明るい空間が生じない。 その上、直上方向とは異なる方向に進行する光が、線状光源同士の間に到達するよ うになって!/、れば、過度に喑 、空間の発生も抑制される。 [0028] When the conditional expression (3) is satisfied, when the linear light (particularly light directly above) is incident on the cut wall surface, the incident angle becomes larger than the critical angle of the optical path changing block. Therefore, enter the wall The light to be reflected is totally reflected. Then, a part of the linear light travels in a direction different from the directly upward direction without passing through the wall surface of the cut and proceeding in the directly upward direction. As a result, the light from the linear light source concentrates in a direct upward direction, and an excessively bright space does not occur. In addition, if light traveling in a direction different from the direction directly above reaches between the linear light sources! /, Generation of space is suppressed excessively.
[0029] なお、直上方向とは異なる方向に進む光の一部は、光路変更ブロックの出射面お よび側面 (入射面の端部および出射面の端部を外周の一部としている面)を介して線 状光源同士の間に到達するが、出射面のサイズが小さすぎると側面のサイズも小さく なりすぎ、両面(出射面および側面)を通じて、線状光源同士の間に到達する光量が 比較的少量になる。逆に、出射面のサイズが大きいと、隣り合う光路変更ブロック同 士が干渉してしまう。そこで、ノ ックライトユニットでは、線状光源同士の間に到達する 光量を確保しつつも隣り合う光路変更ブロック同士を干渉させないようなバランスを規 定して 、る上記の条件式 (4)が満たされるようになって 、る。  [0029] It should be noted that a part of the light traveling in a direction different from the direction directly above the light exit surface and side surface of the optical path changing block (a surface in which the end of the entrance surface and the end of the exit surface are part of the outer periphery) However, if the size of the exit surface is too small, the size of the side surface becomes too small, and the amount of light that reaches between the linear light sources through both sides (the exit surface and the side surface) is compared. A small amount. Conversely, if the size of the exit surface is large, adjacent optical path changing blocks will interfere with each other. Therefore, in the knocklight unit, the above conditional expression (4) is established so as to define a balance that does not cause interference between adjacent optical path changing blocks while ensuring the amount of light reaching between the linear light sources. It will be satisfied.
[0030] したがって、以上のようなバックライトユニットでは、光路変更ブロックは、光が集中 することで過度に明るくなる空間と光が到達しないために過度に暗くなる空間との両 空間の発生を抑制している。そのため、ノ ックライトユニットでの光量ムラが起きない。 つまり、線状光源に各々対応する光路変更ブロックが、効率よくバックライトユニットの 光量ムラを防止している。  [0030] Therefore, in the backlight unit as described above, the optical path changing block suppresses the generation of both a space that becomes excessively bright due to the concentration of light and a space that becomes excessively dark because the light does not reach. is doing. Therefore, there is no unevenness in the amount of light in the knocklight unit. In other words, the optical path changing block corresponding to each linear light source efficiently prevents unevenness in the light amount of the backlight unit.
[0031] なお、光路変更ブロックにおける入射面、出射面、および、入射面の端部および出 射面の端部を外周の一部としている光路変更ブロックの側面の面形状は特に限定さ れるものではない。ただし、望ましい面形状は存在する。  In addition, the surface shape of the side surface of the optical path changing block in which the entrance surface, the exit surface, and the end of the entrance surface and the end of the exit surface are part of the outer periphery in the optical path change block is particularly limited. is not. However, there are desirable surface shapes.
[0032] 例えば、光路変更ブロックにおける入射面は、線状光源の配置面に対して平行な 平面であると望ましい。このようになっていると、直上光が入射面によって屈折しにくく なり、そのまま直上方向に進行して、光路変更ブロックの出射面における切れ込みに 到達しやすくなるためである。  For example, the incident surface in the optical path changing block is preferably a plane parallel to the arrangement surface of the linear light source. If this is the case, the light directly above is difficult to be refracted by the incident surface, and proceeds directly as it is, so that it becomes easy to reach the cut at the exit surface of the optical path changing block.
[0033] また、光路変更ブロックにおける出射面も、線状光源の配置面に対して平行な平面 であると望ましい。このようになっていると、線状光源と光路変更ブロックとの重ね方向 における間隔が最小の長さとなり、バックライトユニットの厚みが比較的薄くなるため である。 [0033] Further, the exit surface in the optical path changing block is also preferably a plane parallel to the arrangement surface of the linear light source. In this case, the distance between the linear light source and the optical path changing block in the overlapping direction becomes the minimum length, and the thickness of the backlight unit becomes relatively thin. It is.
[0034] また、光路変更ブロックにおける側面は、外側から内側に向 、た窪んだ曲面になつ ていると望ましい。このようになっていると、力かる側面に切れ込み力も進行してくる光 が到達して透過する場合、光は発散しながら進行する。そのため、かかる光の進行先 に、線状光源同士の間が位置していれば、その間の空間には光が十分に到達する ことになる。  [0034] Further, it is preferable that the side surface of the optical path changing block has a concave curved surface from the outside to the inside. In this way, when the light that also advances the cutting force reaches the side where the force is applied and passes through, the light travels while diverging. Therefore, if the space between the linear light sources is located at the travel destination of the light, the light reaches the space between them sufficiently.
[0035] ただし、光路変更ブロックにおける側面は、外側から内側に向 、た窪んだ曲面にな つているものに限定されない。すなわち、入射面の端部および上記出射面の端部を 外周の一部としている光路変更ブロックの側面力 内側力も外側に向いた盛り上がつ た曲面になつていてもよい。  [0035] However, the side surface of the optical path changing block is not limited to a concave curved surface from the outside to the inside. That is, the side force of the optical path changing block having the end portion of the entrance surface and the end portion of the exit surface as a part of the outer periphery may be a curved surface with a raised surface facing outward.
[0036] ところで、光路変更ブロックの表面には、形状的に鋭利な部分 (例えば隅部、縁、角 ;エッジ)が生じる。そして、このようなエッジでは、エッジの形状や光の入射角等に応 じて、明暗のいずれかの状態が過度に生じ得る。そこで、このような事態を防止すベ ぐ鋭利な部分が曲面になっていると望ましい。  Incidentally, a sharp portion (for example, corner, edge, corner; edge) is generated on the surface of the optical path changing block. In such an edge, either a bright or dark state can occur excessively depending on the shape of the edge, the incident angle of light, and the like. Therefore, it is desirable that the sharp part to prevent such a situation is curved.
[0037] 例えば、切れ込みの底部分、入射面と側面との繋がり部分、出射面と側面との繋が り部分、および切れ込みの壁面と上記出射面との繋がり部分が、曲面になっていると 望ましい。なお、列挙した全ての部分に曲面が形成されている必要はなぐ少なくとも 1つの部分が曲面になっているだけでもよい。  [0037] For example, it is desirable that the bottom portion of the cut, the connection portion between the entrance surface and the side surface, the connection portion between the exit surface and the side surface, and the connection portion between the cut wall surface and the exit surface are curved surfaces. . It should be noted that it is not necessary for all the enumerated parts to have curved surfaces, and at least one part may be curved.
[0038] また、面内配置されている線状光源同士の間には、少なくとも 2つ側壁を反射面とし て有する三角柱状の光路変更柱が配置されており、その光路変更柱は、 1つの側壁 を底にし、反射面である 2つの側壁を線状光源に向け、さらに、反射面同士の繋がり 部分を頂として光路変更ブロックに近づけて 、ると望ま 、。  [0038] Further, between the linear light sources arranged in the plane, a triangular prism-shaped optical path changing column having at least two side walls as reflecting surfaces is arranged, and the optical path changing column is one Desirably, with the side walls at the bottom, the two side walls, which are reflective surfaces, facing the linear light source, and the connecting portion between the reflective surfaces is close to the optical path changing block.
[0039] このようになって 、ると、光路変更柱は頂を先細らせたテーパ状になって 、るとも!、 える。そして、力かる光路変更柱の頂側に光路変更ブロックが位置すると、光路変更 柱の側壁 (反射面)は光路変更ブロックに向かって仰ぐように傾斜する。そのため、線 状光源からの光および光路変更ブロックを通過してきた光が光路変更柱の反射面に 入射すると、線状光源同士の間に跳ね上がる光 (反射光)が生じることになる。そのた め、比較的光が届きにくい部分であった線状光源同士の間の上方にも光が進行する ことになる。 [0039] In this way, the optical path changing column has a tapered shape with a tapered top, which may be! When the optical path changing block is positioned on the top side of the striking optical path changing pillar, the side wall (reflecting surface) of the optical path changing pillar is inclined so as to look up toward the optical path changing block. Therefore, when the light from the linear light source and the light that has passed through the optical path changing block are incident on the reflecting surface of the optical path changing column, light (reflected light) that jumps between the linear light sources is generated. For this reason, the light also travels upward between the linear light sources, which are relatively hard to reach light. It will be.
[0040] さらに、線状光源と光路変更ブロックとの重ね方向において、光路変更ブロックに 最も近い線状光源の端部を第 1端部、この第 1端部に対向する線状光源の端部を第 2端部とすると、光路変更柱の頂は、重ね方向において、第 1端部と第 2端部との間 隔に対応して位置すると望ま ヽ。  [0040] Further, in the overlapping direction of the linear light source and the optical path changing block, the end of the linear light source closest to the optical path changing block is the first end, and the end of the linear light source facing the first end If the is the second end, it is desirable that the top of the optical path changing column is located corresponding to the distance between the first end and the second end in the overlapping direction.
[0041] 例えば、光路変更柱の底が一定位置にあり、光路変更柱の頂が重ね方向におい て第 1端部よりも高くなつていると反射面が比較的広面積になる一方、光路変更柱の 頂が重ね方向において第 2端部よりも低くなつていると反射面が比較的狭面積になる 。すると、反射面の広狭に依存して、過度に光が屈折進行する現象または少量の光 しか屈折進行しない現象が生じ得る。力かるような現象は光量ムラの一因となりかね ない。したがって、光路変更柱の頂が、重ね方向において、第 1端部よりも低くかつ 第 2端部よりも高く位置している場合、反射面のサイズが適切となり、光量ムラ発生の 原因が生じないことになる。  [0041] For example, if the bottom of the optical path changing column is at a fixed position and the top of the optical path changing column is higher than the first end in the overlapping direction, the reflection surface becomes relatively large, while the optical path changing If the top of the column is lower than the second end in the stacking direction, the reflecting surface becomes a relatively small area. Then, depending on the width of the reflecting surface, a phenomenon in which light is refracted excessively or a phenomenon in which only a small amount of light refracts may occur. Energetic phenomena can contribute to uneven light intensity. Therefore, when the top of the optical path changing column is positioned lower than the first end and higher than the second end in the overlapping direction, the size of the reflecting surface becomes appropriate and causes no unevenness in the amount of light. It will be.
[0042] また、光路変更ブロックの入射面と光路変更柱の底となる側壁が平行になっている 場合に、光路変更柱の反射面の傾斜角である P Θ力 以下の条件式 (5)を満たして いると望ましい。  [0042] In addition, when the incident surface of the optical path changing block and the side wall that forms the bottom of the optical path changing column are parallel, the following conditional expression (5) It is desirable to satisfy
Ρ θ =Β Θ … 条件式(5)  Ρ θ = Β Θ… Conditional expression (5)
ただし、  However,
Ρ Θは、光路変更柱の反射面における内側から光路変更柱の底となる側壁の 内側に向かっている傾斜角である。  Θ Θ is the angle of inclination from the inside of the reflecting surface of the optical path changing column toward the inside of the side wall that is the bottom of the optical path changing column.
[0043] このようになって 、ると、向力 、合って 、る切れ込みの壁面と光路変更柱の反射面 とが平行になる。そのため、光路変更柱の反射面は切れ込みの壁面からの進行して くる光を受光しやすくなり、効率よく光が反射することになる。その結果、線状光源同 士の間の上方に、光が確実に進行することになる。 [0043] In this way, the directional force matches, and the wall surface of the slit and the reflection surface of the optical path changing column become parallel. For this reason, the reflecting surface of the optical path changing column easily receives the light traveling from the wall surface of the notch, and the light is efficiently reflected. As a result, the light reliably travels upward between the linear light sources.
[0044] なお、光路変更ブロック力 進行してくる光を拡散する拡散板が含まれており、その 拡散板と、光路変更ブロックの入射面とが平行であると望まし 、。 [0044] It is desirable that the light path changing block force includes a diffusing plate that diffuses the traveling light, and that the diffusing plate and the incident surface of the optical path changing block are parallel.
[0045] また、以上のようなバックライトユニットと、力かるバックライトユニットからの光を受光 する液晶表示パネルとを有する液晶表示装置も本発明といえる。 発明の効果 [0045] A liquid crystal display device having the above backlight unit and a liquid crystal display panel that receives light from the powerful backlight unit can also be said to be the present invention. The invention's effect
[0046] 本発明によれば、各線状光源に対応して光路変更ブロックが配置されて 、る。そし て、この光路変更ブロックは、光源からの線状光 (特に直上光)を受光しやすい配置 になって!/、るとともに、線状光を直上方向以外の方向に屈折進行させやす 、形状を 有している。そのため、直上光等に起因するノ ックライトユニットの光量ムラ (輝度ムラ 、ランプムラ、ランプイメージ)が効率よく防止される。  [0046] According to the present invention, the optical path changing block is arranged corresponding to each linear light source. In addition, this optical path changing block is arranged to easily receive linear light (especially light directly above) from the light source! /, And at the same time, the linear light is easily refracted in directions other than directly above. have. For this reason, unevenness in the light quantity (brightness unevenness, lamp unevenness, lamp image) of the knock light unit due to light directly above is efficiently prevented.
図面の簡単な説明  Brief Description of Drawings
[0047] [図 1]は、図 3と同断面で、複数個の光路変更ブロックを示す断面図である。 [0047] FIG. 1 is a cross-sectional view showing a plurality of optical path changing blocks in the same cross section as FIG.
[図 2]は、光路変更ブロックの斜視図である。  FIG. 2 is a perspective view of an optical path changing block.
[図 3]は、図 2の A—A'線矢視断面図である。  FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG.
[図 4]は、図 2の他の一例を示す光路変更ブロックの斜視図である。  FIG. 4 is a perspective view of an optical path changing block showing another example of FIG.
[図 5]は、図 4の B— B'線矢視断面図である。  FIG. 5 is a cross-sectional view taken along line BB ′ of FIG.
[図 6]は、ランプホルダを示す平面図である。  FIG. 6 is a plan view showing the lamp holder.
[図 7]は、図 2に示す光路変更ブロックを搭載したバックライトユニットでの照度分布図 である。  [Fig. 7] is an illuminance distribution diagram of the backlight unit equipped with the optical path changing block shown in Fig. 2.
[図 8]は、図 4に示す光路変更ブロックを搭載したバックライトユニットでの照度分布図 である。  [FIG. 8] is an illuminance distribution diagram of the backlight unit equipped with the optical path changing block shown in FIG.
[図 9]は、光路変更ブロックを搭載しないバックライトユニットでの照度分布図である。  [FIG. 9] is an illuminance distribution diagram in a backlight unit not equipped with an optical path changing block.
[図 10]は、単数の蛍光管および光路変更ブロックを搭載したバックライトユニットの断 面図である。  [FIG. 10] is a cross-sectional view of a backlight unit equipped with a single fluorescent tube and an optical path changing block.
[図 11A]は、光路変更ブロックにおける入射面の幅および切れ込みの幅が、蛍光管 の幅よりも狭くなつているバックライトユニットの断面図である。  FIG. 11A is a cross-sectional view of a backlight unit in which the width of the incident surface and the width of the cut in the optical path changing block are narrower than the width of the fluorescent tube.
[図 11B]は、光路変更ブロックにおける入射面の幅が蛍光管の幅よりも狭ぐ切れ込 みの幅が蛍光管の幅よりも広くなつているバックライトユニットの断面図である。  FIG. 11B is a cross-sectional view of the backlight unit in which the width of the entrance surface in the optical path changing block is narrower than the width of the fluorescent tube and the width of the notch is wider than the width of the fluorescent tube.
[図 11C]は、光路変更ブロックにおける入射面の幅および切れ込みの幅が、蛍光管 の幅よりも広くなつているバックライトユニットの断面図である。  FIG. 11C is a cross-sectional view of the backlight unit in which the width of the incident surface and the width of the cut in the optical path changing block are wider than the width of the fluorescent tube.
[図 11D]は、光路変更ブロックにおける入射面の幅が蛍光管の幅よりも広ぐ切れ込 みの幅が蛍光管の幅よりも狭くなつているノ ックライトユニットの断面図である。 [図 12A]は、光路変更ブロックにおける側面が平面になっているバックライトユニットの 断面図である。 [FIG. 11D] is a cross-sectional view of the knock light unit in which the width of the entrance surface in the optical path changing block is wider than the width of the fluorescent tube, and the width of the cut is narrower than the width of the fluorescent tube. FIG. 12A is a cross-sectional view of a backlight unit in which the side surface of the optical path changing block is a flat surface.
[図 12B]は、光路変更ブロックにおける側面が内側力 外側に向いた盛り上がった曲 面になっているバックライトユニットの断面図である。  [FIG. 12B] is a cross-sectional view of the backlight unit in which the side surface of the optical path changing block is a raised curved surface facing the inner side force.
圆 13]は、液晶表示装置の分解斜視図である。 FIG. 13] is an exploded perspective view of the liquid crystal display device.
[図 14]は、液晶表示装置の 3面図である。  FIG. 14 is a three-sided view of a liquid crystal display device.
[図 15]は、従来のバックライトユニットの断面図である。  FIG. 15 is a cross-sectional view of a conventional backlight unit.
符号の説明 Explanation of symbols
BK 光路変更ブロック  BK optical path change block
1 光路変更ブロックにおける本体  1 Main body in optical path change block
11 光路変更ブロックの入射面  11 Incident surface of optical path change block
11a 光路変更ブロックにおける入射面の幅の両端  11a Both ends of the incident surface width in the optical path changing block
12 光路変更ブロックの出射面  12 Outgoing surface of optical path change block
13 光路変更ブロックの側面  13 Side of the optical path change block
CT 切れ込み  CT cut
CTa 切れ込みの幅の両端  Both ends of CTa cut width
14 切れ込みの壁面  14 Wall with slit
2 光路変更ブロックにおける支持体  2 Support in optical path changing block
PE 光路変更柱  PE optical path change pillar
SW 光路変更柱の側壁  SW Optical path change pillar side wall
SW1 光路変更柱の底となる側壁  SW1 Side wall that becomes the bottom of the optical path change pillar
SW2 光路変更柱にぉ 、て反射面として機能する側壁  SW2 Side wall that functions as a reflecting surface at the optical path changing column
SW3 光路変更柱にぉ 、て反射面として機能する側壁  SW3 Side wall that functions as a reflection surface at the optical path changing column
31 光路変更柱における反射面同士の繋がり部分 (頂)  31 Connection between reflection surfaces in the optical path changing column (top)
J1 切れ込みの底部分  J1 notch bottom
J2 光路変更ブロックでの入射面と側面との繋がり部分  J2 Connection between incident surface and side surface in optical path changing block
J3 光路変更ブロックでの出射面と側面との繋がり部分  J3 Connection between the exit surface and side surface in the optical path changing block
J4 光路変更ブロックでの切れ込みと出射面との繋がり部分 41 蛍光管 (線状光源) J4 Connection between notch and exit surface in optical path changing block 41 Fluorescent tube (Linear light source)
41a 蛍光管の端部 (線状光源の幅の両端)  41a End of fluorescent tube (both ends of the width of the linear light source)
41b 蛍光管の端部 (線状光源の第 1端部)  41b End of fluorescent tube (first end of linear light source)
41c 蛍光管の端部 (線状光源の第 2端部)  41c End of fluorescent tube (second end of linear light source)
D1 蛍光管の並び方向、光路変更ブロックの並び方向、光路変更柱の並び 方向  D1 Fluorescent tube alignment direction, optical path change block alignment direction, optical path change column alignment direction
D2 蛍光管の延び方向、光路変更ブロックの延び方向、光路変更柱の延び 方向  D2 Fluorescent tube extending direction, optical path changing block extending direction, optical path changing column extending direction
S 蛍光管の配置面  S Fluorescent tube placement surface
P 蛍光管と光路変更ブロックとの重ね方向  P Stacking direction of fluorescent tube and optical path changing block
V 蛍光管同士の配置間隔  V Interval between fluorescent tubes
51 液晶表示装置  51 Liquid crystal display
52 ノ ックライトユニット  52 knock light unit
59 液晶表示装置  59 Liquid crystal display
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] [実施の形態 1]  [0049] [Embodiment 1]
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである 。なお、図面によっては便宜上、部材番号およびハッチングを省略する場合もあるが 、かかる場合、他の図面を参照するものとする。また、図面上での黒丸は紙面に対し 垂直方向を意味する。  An embodiment of the present invention will be described below with reference to the drawings. In addition, although a member number and hatching may be abbreviate | omitted for convenience for some drawings, in such a case, other drawings shall be referred to. Also, the black circle on the drawing means the direction perpendicular to the page.
[0050] [1.液晶表示装置について]  [0050] [1. Liquid crystal display device]
図 13の分解斜視図、および、平面図'短手断面図'長手断面図から成る図 14の 3 面図に示すように、液晶表示装置 59は、液晶表示パネル 51と、バックライトユニット 5 2とを有している。ただし、両図は、便宜上、後述のランプホルダ 45を省略し、図 14の 長手断面図は、便宜上、後述の光路変更柱 PEを避けて図示している。  As shown in an exploded perspective view of FIG. 13 and a three-sided view of FIG. 14 comprising a plan view “short cross-sectional view” and a long cross-sectional view, the liquid crystal display 59 includes a liquid crystal display panel 51 and a backlight unit 5 And have. However, both drawings omit a later-described lamp holder 45 for the sake of convenience, and the longitudinal sectional view of FIG. 14 does not illustrate an optical path changing column PE which will be described later for the sake of convenience.
[0051] 液晶表示パネル 51は、非発光型の表示パネルであり、バックライトユニット 52から の光 (バックライト光)を受光することで表示機能を発揮する。そのため、ノ ックライトュ ニット 52からの光が液晶表示パネル 51の全面を均一に照射できれば、液晶表示パ ネル 51の表示品位が向上することになる。 [0051] The liquid crystal display panel 51 is a non-light-emitting display panel, and exhibits a display function by receiving light from the backlight unit 52 (backlight light). Therefore, if the light from the knock light unit 52 can irradiate the entire surface of the liquid crystal display panel 51 uniformly, the liquid crystal display panel The display quality of Nell 51 will be improved.
[0052] ノ ックライトユニット 52は、ノ ックライト光を生成するために、蛍光管(光源) 41、光路 変更柱 PE、反射フレーム 42、光路変更ブロック BK、拡散シート 43、および光学シ ート 44を含んでいる。 [0052] The knock light unit 52 includes a fluorescent tube (light source) 41, an optical path changing pillar PE, a reflection frame 42, an optical path changing block BK, a diffusion sheet 43, and an optical sheet 44 to generate knock light. Is included.
[0053] 蛍光管 (線状光源) 41は、例えば冷陰極管や熱陰極管であって、図 13および図 14 に示すように線状 (棒状、円柱状等)になっており、ノ ックライトユニット 52内に複数本 で並列配置されている(ただし、便宜上、図面では一部の本数のみが示されている) 。そのため、蛍光管 41の並び方向を第 1方向 Dl、蛍光管 41の延び方向(長手方向 )を第 2方向 D2、面内配置されている蛍光管 41の配置面を配置面 S、と定義できる。  [0053] The fluorescent tube (linear light source) 41 is, for example, a cold cathode tube or a hot cathode tube, and has a linear shape (bar shape, cylindrical shape, etc.) as shown in FIGS. Multiple units are arranged in parallel in the crite unit 52 (however, for convenience, only a part of the numbers are shown in the drawing). Therefore, the arrangement direction of the fluorescent tubes 41 can be defined as the first direction Dl, the extending direction (longitudinal direction) of the fluorescent tubes 41 can be defined as the second direction D2, and the arrangement plane of the fluorescent tubes 41 arranged in the plane can be defined as the arrangement plane S. .
[0054] 光路変更柱 PEは、ポリカーボネート等の反射機能を有する白色榭脂から成る反射 部材であり、蛍光管 41と蛍光管 41との間に配置されている。そのため、光路変更柱 PEの並び方向は蛍光管 41の並び方向である第 1方向 D1と同方向になる。また、光 路変更柱 PEは、三角柱状で、柱方向を長手とする線状の部材 (柱部材)になってお り、その線状の延び方向(長手方向)は蛍光管 41の延び方向である第 2方向 D2と同 方向になっている。そして、光路変更柱 PEは、蛍光管 41と蛍光管 41との間に配置さ れていることから、蛍光管 41から到達する光を反射させて屈折進行させる。  The optical path changing column PE is a reflecting member made of white resin having a reflecting function such as polycarbonate, and is disposed between the fluorescent tube 41 and the fluorescent tube 41. Therefore, the arrangement direction of the optical path changing pillars PE is the same as the first direction D1, which is the arrangement direction of the fluorescent tubes 41. In addition, the optical path changing column PE is a triangular column and is a linear member (column member) having the column direction as a longitudinal direction, and the linear extending direction (longitudinal direction) is the extending direction of the fluorescent tube 41. It is in the same direction as the second direction D2. Since the optical path changing column PE is disposed between the fluorescent tube 41 and the fluorescent tube 41, the light reaching the fluorescent tube 41 is reflected to be refracted.
[0055] 反射フレーム 42は、開放面を有する箱状の部材であり、反射機能を備える榭脂ま たは金属等で箱状の内面を覆っている。そして、この箱状の内面に、蛍光管 41等が 位置する。そのため、蛍光管 41から出射される放射状の光 (蛍光管 41を中心とした 放射状の光)の一部が反射され、開放面に導かれる。なお、反射フレーム 42の構成 部材自体が、反射機能を有する榭脂または金属等で構成されていてもよい。このよう になっていれば、反射フレーム 42の内面を覆わせる榭脂または金属等を除くことが できるためである。  [0055] The reflection frame 42 is a box-shaped member having an open surface, and covers the box-shaped inner surface with a resin or metal having a reflection function. And the fluorescent tube 41 etc. are located in this box-shaped inner surface. Therefore, a part of the radial light emitted from the fluorescent tube 41 (radial light centered on the fluorescent tube 41) is reflected and guided to the open surface. Note that the constituent members of the reflection frame 42 may be made of a resin or metal having a reflection function. This is because the resin or metal that covers the inner surface of the reflection frame 42 can be removed.
[0056] 光路変更ブロック BKは、アクリル榭脂またはポリカーボネート等の透明榭脂から成 るブロックであり、蛍光管 41に重なるように位置することで、力かる蛍光管 41を覆って いる(なお、光路変更ブロック BKが蛍光管 41に重なる方向を重ね方向 Pとする)。そ のため、光路変更ブロック BKの並び方向は蛍光管 41の並び方向である第 1方向 D 1と同方向になる。また、光路変更ブロック BKは蛍光管 41の長手を覆うように延びる 形状 (線状、棒状等)になっていることから、光路変更ブロック BKの延び方向(長手 方向)は蛍光管 41の延び方向である第 2方向 D2と同方向になっている。 [0056] The optical path changing block BK is a block made of transparent resin such as acrylic resin or polycarbonate, and is positioned so as to overlap the fluorescent tube 41 to cover the powerful fluorescent tube 41 (note that The direction in which the optical path changing block BK overlaps the fluorescent tube 41 is defined as the overlapping direction P). For this reason, the arrangement direction of the optical path changing blocks BK is the same as the first direction D1, which is the arrangement direction of the fluorescent tubes 41. The optical path changing block BK extends to cover the length of the fluorescent tube 41. Since it has a shape (linear, bar-like, etc.), the extending direction (longitudinal direction) of the optical path changing block BK is the same as the second direction D2, which is the extending direction of the fluorescent tube 41.
[0057] 拡散シート 43は、光を散乱させる機能および拡散させる機能を有する PET (Poly E thylene Terephthalate)等の榭脂で形成されており、光路変更ブロック BKを覆うように 位置している。そのため、この拡散シート 2に、光路変更ブロック BK力も進行してきた 光が入射すると、その光は散乱および拡散し、面内方向にいきわたる。  The diffusion sheet 43 is formed of a resin such as PET (Poly Ethylene Terephthalate) having a function of scattering and diffusing light, and is positioned so as to cover the optical path changing block BK. For this reason, when light that has also advanced the optical path changing block BK force is incident on the diffusion sheet 2, the light is scattered and diffused, and spreads in the in-plane direction.
[0058] 光学シート 44は、例えばシート面内にレンズ形状を有し、光の放射特性を偏向させ る(集光させる)レンズシートであり、拡散シート 43を覆うように位置している。そのため 、この光学シート 44に、拡散シート 43から進行してきた光が入射すると、その光は集 光し、単位面積あたりの発光輝度を向上させる。  The optical sheet 44 is, for example, a lens sheet that has a lens shape in the sheet surface and deflects (condenses) light radiation characteristics, and is positioned so as to cover the diffusion sheet 43. Therefore, when the light traveling from the diffusion sheet 43 is incident on the optical sheet 44, the light is collected and the light emission luminance per unit area is improved.
[0059] [1 1.光路変更ブロックについて]  [0059] [1 1. About optical path change block]
ここで、光路変更ブロック BKについて、図 2および図 3を用いて詳説する。図 2は光 路変更ブロック BKの斜視図であり、図 3は図 2の A— A'線矢視断面図である(ただし 、便宜上、蛍光管 41も図示している)。光路変更ブロック BKは、一方向に延びた板 状の本体 1と、本体 1における延び方向(=第 2方向 D2)の両端に位置する支持体 2 とを有している。そして、以降ではまず、本体 1を主体的に説明する。  Here, the optical path changing block BK will be described in detail with reference to FIG. 2 and FIG. 2 is a perspective view of the optical path changing block BK, and FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2 (however, for convenience, the fluorescent tube 41 is also shown). The optical path changing block BK has a plate-like main body 1 extending in one direction and supports 2 positioned at both ends of the main body 1 in the extending direction (= second direction D2). In the following, first, the main body 1 will be described mainly.
[0060] 本体 1は、図 3に示すように、蛍光管 41に最も近くに位置することで光を入射させる 入射面 11と、その入射面 11から最も乖離して光を出射させる出射面 12と、入射面 1 1の端部および出射面 12の端部を外周の一部としている側面 13 (13a' 13b)と、を 有している。  As shown in FIG. 3, the main body 1 is positioned closest to the fluorescent tube 41 so that light is incident thereon, and an exit surface 12 that is most distant from the incident surface 11 and emits light. And side surfaces 13 (13a ′ 13b) having the end of the incident surface 11 and the end of the output surface 12 as a part of the outer periphery.
[0061] 入射面 11は、蛍光管 41の延び方向である第 2方向 D2と同方向に延びている。そ の上、入射面 11は、蛍光管 41と光路変更ブロック BKとの重ね方向 Pにおいて、入射 面 11の幅の両端 1 la' 11aと蛍光管 41の幅の両端 41a'41aとを重ね合わせている( なお、入射面 11の幅方向および蛍光管 41の幅方向は第 1方向 D1と同方向である) 。そのため、蛍光管 41からの線状光、特に、面内配置された蛍光管 41 · · ·の配置面 Sに対して垂直方向に進む光である直上光の幅と、入射面 11の幅とがー致すること になり、力かる直上光が漏れなく入射面 11に入射しやすくなる(なお、配置面 Sに対 する垂直方向を直上方向と称する)。 [0062] 一方、出射面 12は、入射面 11同様に、蛍光管 41の延び方向である第 2方向 D2と 同方向に延びている(なお、出射面 12の幅方向は第 1方向 D1と同方向である)。そ の上、出射面 12には、第 2方向 D2と同方向に延び、その延び方向の垂直断面で V 字状となる切れ込み CTが存在する。すなわち、 2つの壁面 14 (14a, 14b)を有する 溝状の切れ込み CTが出射面 12に形成されて!、る。 The incident surface 11 extends in the same direction as the second direction D2 in which the fluorescent tube 41 extends. In addition, the incident surface 11 is formed by superimposing both ends 1 la '11a of the width of the incident surface 11 and both ends 41a' 41a of the width of the fluorescent tube 41 in the overlapping direction P of the fluorescent tube 41 and the optical path changing block BK. (The width direction of the incident surface 11 and the width direction of the fluorescent tube 41 are the same as the first direction D1). Therefore, the linear light from the fluorescent tube 41, in particular, the width of the light directly above that is the light traveling in the direction perpendicular to the arrangement surface S of the fluorescent tubes 41 arranged in the plane, and the width of the incident surface 11 As a result, the light directly above the light easily enters the incident surface 11 without leaking (the vertical direction with respect to the arrangement surface S is referred to as the direct upward direction). On the other hand, the exit surface 12 extends in the same direction as the second direction D2, which is the extending direction of the fluorescent tube 41, similarly to the entrance surface 11 (note that the width direction of the exit surface 12 is the same as the first direction D1). In the same direction). In addition, the exit surface 12 has a cut CT that extends in the same direction as the second direction D2 and is V-shaped in a vertical section in the extending direction. That is, a groove-shaped cut CT having two wall surfaces 14 (14a, 14b) is formed on the output surface 12.
[0063] また、出射面 12は、蛍光管 41と光路変更ブロック BKとの重ね方向 Pにおいて、切 れ込み CTの幅の両端 CTa . CTaと蛍光管 41の幅の両端 41 a · 41 aとを重ね合わせ ている。そのため、入射面 11を介して進行してくる直上光の幅と、切れ込み CTの幅 とが一致することになり、力かる直上光が漏れなく切れ込み CTに入射しやすくなる。  [0063] In addition, the emission surface 12 has both ends CTa. CTa and both ends 41a and 41a of the width of the fluorescent tube 41 in the overlapping direction P of the fluorescent tube 41 and the optical path changing block BK. Are superimposed. For this reason, the width of the directly overhead light traveling through the incident surface 11 and the width of the cut CT coincide with each other, and the strong direct light easily enters the cut CT without leakage.
[0064] そして、切れ込み CTに入射した光、すなわち切れ込み CTの壁面 14に入射した光 は、入射角に応じて屈折進行 (反射進行または透過進行)する。すると、壁面 14に到 達した直上光等の進行先は、壁面 14の傾斜角 B Θの影響を受ける。そこで、傾斜角 B 0は、以下の条件式 A{条件式 (3) }を満たすようになつている(図 3参照)。  [0064] The light incident on the cut CT, that is, the light incident on the wall 14 of the cut CT, is refracted (reflected or transmitted) depending on the incident angle. Then, the travel destination of the light directly on the wall surface 14 is affected by the inclination angle B Θ of the wall surface 14. Therefore, the inclination angle B 0 satisfies the following conditional expression A {conditional expression (3)} (see FIG. 3).
[0065] CA< B 0 … 条件式 A  [0065] CA <B 0… Conditional expression A
ただし、  However,
CA :光路変更ブロック BKの臨界角  CA: Optical path change block BK critical angle
B Θ :切れ込み CTにおける壁面 14の傾斜角(ただし、壁面 14の内側から 入射面 11の内側に向力つている傾斜角)  B Θ: Inclination angle of wall 14 in notch CT (however, the inclination angle that is directed from the inside of wall 14 to the inside of incident surface 11)
である。  It is.
[0066] 光路変更ブロック BKは材質固有の臨界角 CAを有しており、この臨界角 CAを超え る入射角で入射する光は全反射される。すると、条件式 Aを満たすような壁面 14であ れば、例えば図 3に示すように、蛍光管 41からの直上光 SBの入射角 Θ in (壁面 14に 対する法線 NLからの角度)は、壁面 14の傾斜角 B Θと同角度( Θ in=B Θ )となる。 そのため、直上光 SBは全反射し、入射角 Θ inと同角度である反射角 0 out ( Θ out = Θ in)で屈折進行する。  [0066] The optical path changing block BK has a critical angle CA specific to the material, and light incident at an incident angle exceeding the critical angle CA is totally reflected. Then, if the wall surface 14 satisfies the conditional expression A, for example, as shown in FIG. 3, the incident angle Θ in (angle from the normal NL to the wall surface 14) of the light SB just above the fluorescent tube 41 is The inclination angle B of the wall 14 is the same as B Θ (Θ in = B Θ). Therefore, the directly overhead light SB is totally reflected and proceeds with refraction at a reflection angle 0 out (Θ out = Θ in) which is the same angle as the incident angle Θ in.
[0067] すなわち、条件式 Aを満たすように壁面 14が傾斜して 、れば、直上光等の蛍光管 41からの線状光の一部が全反射した後、出射面 12または側面 13に向力つて進行 する。つまり、条件式 Aが満たされていると、直上光を含む線状光の一部が直上方向 に進みに《なる。なお、光路変更ブロック BKの材料の一例であるアクリル榭脂の臨 界角 CAは 42. 15 [° ]となっており、ポリカーボネートの臨界角は 38. 9 [° ]となつ ている。 That is, if the wall surface 14 is inclined so as to satisfy the conditional expression A, a part of the linear light from the fluorescent tube 41 such as directly above light is totally reflected, and then the light exits on the emission surface 12 or the side surface 13. Proceed with strength. In other words, if conditional expression A is satisfied, a part of the linear light including the direct light will be in the direct upward direction. Go to <<. The critical angle CA of acrylic resin, which is an example of the material of the optical path changing block BK, is 42.15 [°], and the critical angle of polycarbonate is 38.9 [°].
[0068] ところで、壁面 14にて全反射した光の一部は、光路変更ブロック BKの出射面 12に て反射した後に側面 13を透過して蛍光管同士 41 ·41の間にも到達する (もちろん、 出射面 12を介さずに側面 13を透過して蛍光管 41 ·41の間に到達する光も存在する )。そのため、蛍光管同士 41 ·41の間が暗くなりすぎるような現象が防止される。ただ し、以下のような条件式 Β{条件式 (4) }を満たさなければ不具合が生じる(図 3と同断 面でみる図 1を参照)。  [0068] By the way, a part of the light totally reflected by the wall surface 14 is reflected by the emission surface 12 of the optical path changing block BK, then passes through the side surface 13 and reaches between the fluorescent tubes 41 and 41 ( Of course, there is also light that passes through the side surface 13 without passing through the emission surface 12 and reaches between the fluorescent tubes 41 and 41). For this reason, a phenomenon in which the space between the fluorescent tubes 41 and 41 becomes too dark is prevented. However, if the following conditional expression Β {conditional expression (4)} is not satisfied, a problem will occur (see Fig. 1 in the same section as Fig. 3).
[0069] V/5≤BWout≤V/2 … 条件式 B  [0069] V / 5≤BWout≤V / 2… Conditional expression B
ただし、  However,
V :面内配置されて!、る蛍光管同士 41 · 41の配置間隔 (ピッチ間隔) BWout:出射面 12上に表出する切れ込み CTの壁面 14から、蛍光管 41の幅 方向と同方向に沿うようにして、最も近い出射面 12の端部に至るまで の最短の長さ BW1と、  V: Arranged in-plane! Fluorescent tubes 41 · 41 are arranged at intervals (pitch interval) BWout: Cuts appearing on the exit surface 12 From the CT wall surface 14 in the same direction as the width of the fluorescent tube 41 Along the shortest length BW1 to the end of the nearest exit surface 12,
出射面 12上に表出する切れ込み CTの壁面 14から、蛍光管 41の幅 方向と同方向に沿うようにして、蛍光管 41における幅の中心力も蛍光 管 41の配置面 Sに対して垂直でありかつ蛍光管 41の延び方向である 第 2方向 D2に平行になった仮想面 Eに至るまでの最短の長さ BW2 と、  The center force of the width of the fluorescent tube 41 is perpendicular to the arrangement surface S of the fluorescent tube 41 so that it extends along the same direction as the width direction of the fluorescent tube 41 from the wall surface 14 of the CT that appears on the emission surface 12. And the shortest length BW2 to reach the virtual plane E parallel to the second direction D2, which is the extending direction of the fluorescent tube 41, and
の和  Sum of
である。  It is.
[0070] 例えば、 BWout ( = BWl +BW2)力 条件式 Bの下限値を下回ると、各々の光路 変更ブロック BKにおける出射面 12のサイズ (例えば BW1)が小さくなりすぎる。その ため、側面 13の外周でもある出射面 12の端部と、入射面 11の端部との間隔が短く なり、側面 13のサイズまでも小さくなりすぎる。そのため、両面(出射面 12および側面 13)の少なくとも一方を介して、蛍光管同士 41 ·41の間に到達する光量が低下する という不具合が生じる。 [0071] 一方、 BWoutが、条件式 Bの上限値を上回ると、出射面 12のサイズが大きくなりす ぎ、光路変更ブロック BKが大型化する。そのため、隣り合う光路変更ブロック同士 B[0070] For example, when the BWout (= BWl + BW2) force conditional expression B is less than the lower limit value, the size (eg, BW1) of the exit surface 12 in each optical path changing block BK becomes too small. Therefore, the distance between the end of the exit surface 12 that is also the outer periphery of the side surface 13 and the end of the entrance surface 11 is shortened, and the size of the side surface 13 is too small. For this reason, there arises a problem that the amount of light reaching between the fluorescent tubes 41 and 41 is reduced via at least one of both surfaces (the emission surface 12 and the side surface 13). On the other hand, when BWout exceeds the upper limit value of conditional expression B, the size of the exit surface 12 becomes too large, and the optical path changing block BK increases in size. Therefore, adjacent optical path change blocks B
Κ·ΒΚが干渉してしまう不具合が生じる。 不 具 合 · ΒΚ interferes with the problem.
[0072] したがって、条件式 Βの範囲内に収まるように、 BWoutが設定されると、蛍光管同士[0072] Therefore, if BWout is set so that it falls within the range of conditional expression Β,
41 ·41の間に到達する光量が確保されつつ、光路変更ブロック同士 ΒΚ'ΒΚの干渉 が防止される。 While the amount of light reaching between 41 and 41 is secured, interference between the light path changing blocks is prevented.
[0073] 以上のように、ノ ックライトユニット 52は、光を発する複数個の蛍光管 41を含むとと もに、各蛍光管 41に対応して重ねるように配置され入射してくる光を屈折させること で光路を変更させる光路変更ブロック ΒΚを複数個含んでいる。そして、かかるバック ライトユニット 52では、光路変更ブロック ΒΚは、入射面 11、出射面 12、および側面 1 3 (13a- 13b)を備えている。  [0073] As described above, the knock light unit 52 includes a plurality of fluorescent tubes 41 that emit light, and is arranged so as to overlap with the fluorescent tubes 41 to receive incident light. It contains multiple optical path changing blocks さ せ る that change the optical path by refracting. In the backlight unit 52, the optical path changing block has an incident surface 11, an output surface 12, and side surfaces 13 (13a-13b).
[0074] そして、入射面 11は、蛍光管 41と光路変更ブロック BKとの重ね方向 Pにおいて、 入射面 11の幅の両端 1 la' 11aと蛍光管 41の幅の両端 41a'41aとを重ね合わせ、 出射面 12は、蛍光管 41の延び方向(第 2方向 D2)と同方向に延び、その延び方向 の垂直断面で V字状となる切れ込み CTを有するとともに、蛍光管 41と光路変更プロ ック BKとの重ね方向 Pにおいて、切れ込み CTの幅の両端 CTa'CTaと蛍光管 41の 幅の両端 41a'41aとを重ね合わせている。  [0074] Then, in the overlapping direction P of the fluorescent tube 41 and the optical path changing block BK, the incident surface 11 overlaps both ends 1 la '11a of the width of the incident surface 11 and both ends 41a' 41a of the width of the fluorescent tube 41. In addition, the emission surface 12 extends in the same direction as the extending direction of the fluorescent tube 41 (second direction D2), and has a cut CT that is V-shaped in the vertical cross section of the extending direction, and also has an optical path change pro In the overlapping direction P with the CK, the both ends CTa'CTa of the width of the cut CT and the both ends 41a'41a of the fluorescent tube 41 are overlapped.
[0075] このようになって 、ると、蛍光管 41から発せられる直上光等を含む線状光の幅と入 射面 11との幅とがー致するので、線状光が漏れなく入射面 11に入射するだけでなく 、蛍光管 41と同方向に延びている切れ込み CTに、入射面 11を透過してくる線状光 が到達しやすくなる。そのため、切れ込み CTの壁面 14によって、線状光が種々方向 に屈折進行し、集中しにくくなる。  [0075] In this way, the width of the linear light including the light directly above the fluorescent tube 41 and the width of the incident surface 11 match, so that the linear light is incident without leaking. In addition to being incident on the surface 11, the linear light passing through the incident surface 11 can easily reach the slit CT extending in the same direction as the fluorescent tube 41. For this reason, the linear light refracts in various directions due to the wall surface 14 of the cut CT, making it difficult to concentrate.
[0076] 特に、上記の条件式 Aが満たされていると、線状光 (特に直上光)の一部は全反射 されるため、確実に直上方向に向力つて集中しに《なる。そのため、光が集中するこ とに起因する過度に明るい空間は生じない。その上、直上方向とは異なる方向へ進 行する光が蛍光管同士 41 ·41の間に到達するようになっていれば、過度に暗い空間 も生じない。  [0076] In particular, when the above conditional expression A is satisfied, a part of the linear light (especially light directly above) is totally reflected, so that it is surely concentrated by directing the force directly upward. Therefore, an excessively bright space due to the concentration of light does not occur. Moreover, if the light traveling in a direction different from the direction directly above reaches between the fluorescent tubes 41 and 41, an excessively dark space does not occur.
[0077] また、上記の条件式 Βが満たされて 、ると、光路変更ブロック ΒΚのサイズ、特に出 射面 12と側面 13とが適切なサイズとなり、出射面 12および側面 13の少なくとも一方 を介して進行してくる光が蛍光管同士 41 ·41の間に確実に到達する。そのため、力 力る空間が過度に暗い空間になり得ない。したがって、ノ ックライトユニット 52では、 過度に明るい空間と過度に暗い空間とに起因するノ ックライトユニット 52の光量ムラ が生じに《なる(なお、 BWoutが条件式 Βの上限値以下であれば、ノ ックライトュ- ット 52の光量ムラが生じにくくなり得る)。 [0077] When the above conditional expression Β is satisfied, the size of the optical path changing block 、, particularly the output The emission surface 12 and the side surface 13 are appropriately sized, and light traveling through at least one of the emission surface 12 and the side surface 13 reliably reaches between the fluorescent tubes 41 and 41. Therefore, the power space cannot be an excessively dark space. Therefore, in the knock light unit 52, the light amount unevenness of the knock light unit 52 due to an excessively bright space and an excessively dark space occurs. Uneven light intensity in the knock light 52 may be less likely to occur).
[0078] その上、力かるようなバックライトユニット 52では、光路変更ブロック BKは蛍光管 41 を各々覆うようになっている。つまり、光路変更ブロック BKは、導光板等のように複数 の蛍光管 41をまとめて覆っているのではない。そのため、光路変更ブロック BKへ主 に進入してくる光は、対応する蛍光管 41からの光になるので、他の蛍光管 41 (隣り合 つている蛍光管 41等)の影響を受けにくい。  In addition, in the backlight unit 52 that is powerful, the optical path changing block BK covers each of the fluorescent tubes 41. That is, the optical path changing block BK does not cover a plurality of fluorescent tubes 41 together like a light guide plate or the like. Therefore, the light mainly entering the optical path changing block BK becomes light from the corresponding fluorescent tube 41, and thus is not easily affected by other fluorescent tubes 41 (adjacent fluorescent tubes 41, etc.).
[0079] その結果、光路変更ブロック BKは導光板等と異なり、種々の光の影響を考慮せず に、効率よく蛍光管 41の光を所望の方向へ導ける。すなわち、光路変更ブロック BK を搭載するノ ックライトユニット 52は、効率よく光量ムラを防止していることになる。ま た、ノ ックライトユニット 52では、導光板を搭載しないことから、導光板に起因する重 量の増加、コストアップ、光量の損失等までも防止される。  As a result, unlike the light guide plate or the like, the optical path changing block BK can efficiently guide the light from the fluorescent tube 41 in a desired direction without considering the influence of various lights. That is, the knock light unit 52 equipped with the optical path changing block BK efficiently prevents unevenness in the amount of light. In addition, since the knock light unit 52 does not include a light guide plate, an increase in weight, an increase in cost, and a loss of light amount due to the light guide plate can be prevented.
[0080] なお、説明してきた光路変更ブロック BKの入射面 11、出射面 12、および側面 13 の面形状は、特に限定されるものではない。ただし、望ましい面形状は存在する。例 えば、入射面 11の面形状は平面になっているとよい。なぜなら、入射面 11が、蛍光 管 41の配置面 Sに対して平行な平面になって 、ると、直上光が入射面 11によって屈 折しなくなり、そのまま直上方向に進行して、出射面 12における切れ込み CTに到達 しゃすくなるためである。  Note that the surface shapes of the incident surface 11, the exit surface 12, and the side surface 13 of the optical path changing block BK that have been described are not particularly limited. However, there are desirable surface shapes. For example, the surface shape of the incident surface 11 may be a flat surface. This is because, if the incident surface 11 is a plane parallel to the arrangement surface S of the fluorescent tube 41, the light directly above is not bent by the incident surface 11 and proceeds in the upward direction as it is, so that the output surface 12 This is because the notch in CT reaches CT.
[0081] また、光路変更ブロック BKにおける出射面 12の面形状も平面になっているとよい。  [0081] Further, the surface shape of the emission surface 12 in the optical path changing block BK may be a flat surface.
なぜなら、出射面 12が、蛍光管 41の配置面 Sに対して平行な平面になっていると、 蛍光管 41と光路変更ブロック BKとの重ね方向 Pにおける間隔が最小の長さになり、 ノ ックライトユニット 52の厚みが比較的薄くなるためである。  This is because if the emission surface 12 is a plane parallel to the arrangement surface S of the fluorescent tube 41, the distance between the fluorescent tube 41 and the optical path changing block BK in the overlapping direction P becomes the minimum length. This is because the thickness of the light light unit 52 is relatively thin.
[0082] ただし、光路変更ブロック BKにおける側面 13の面形状は外側から内側に向 、た 窪んだ曲面 (湾曲面)になっていると望ましい。なぜなら、力かるような側面 13は凹レ ンズのように機能し、切れ込み CTから進行してくる光を透過させる場合に、発散させ るためである。そして、このように発散する光が蛍光管同士 41 ·41の間に到達すれば 、その間の空間は光量不足な空間にはならない。特に、隣り合う光路変更ブロック同 士 ΒΚ'ΒΚでの相異なる側面同士 13 · 13の間で、発散光力^、き力うようになると、蛍 光管同士 41 · 41の間が光量不足の空間になり得な!/、。 However, it is desirable that the surface shape of the side surface 13 in the optical path changing block BK is a concave curved surface (curved surface) from the outside to the inside. Because the side 13 This is because when the light traveling through the slit CT is transmitted, the light diverges. And if the light which diverges in this way arrives between fluorescent tubes 41 * 41, the space between them does not become a space with insufficient light quantity. In particular, the divergent light power between the different side surfaces of the adjacent optical path changing blocks ΒΚ'ΒΚ 13 13 13 is insufficient, and the amount of light between the fluorescent tubes 41 41 41 is insufficient. It will be a space! /
[0083] なお、図 4および図 5 (図 4の Β— Β,線矢視断面図)に示すように、切れ込み CTの 底部分 J1、光路変更ブロック ΒΚにおける入射面 11と側面 13 (13a, 13b)との繋がり 部分 J2'J2、出射面 12と側面 13 (13a' 13b)との繋がり部分 J3 'J3、および切れ込み CTの壁面 14 (14a' 14b)と出射面 12との繋がり部分 J4'J4、が曲面になっていても よ ヽ(すなわち、種々の部分】1〜】4カ¾形状になって 、てもよ 、)。  [0083] As shown in Figs. 4 and 5 (Β-Β in Fig. 4, cross-sectional view taken along line arrow), incident surface 11 and side surface 13 (13a, 13a, 13b) Connection part J2'J2, Output surface 12 and side surface 13 (13a '13b) connection part J3' J3, Notch CT wall 14 (14a '14b) and output surface 12 connection part J4' J4 may be a curved surface (that is, the various portions may be 1 to 4 in shape).
[0084] 力かるような種々の部分 J1〜J4は、光路変更ブロック BKの表面に位置し、形状的 に鋭利な部分 (例えば隅部、縁、角;エッジ)になっていたとする。このようなエッジで は、エッジの形状や、力かるエッジへの光の入射角等に応じて、明暗のいずれかの 状態が過度に生じ得る。ただし、これらの部分が曲面になっていれば、かかるような エッジでの過度の明暗状態が生じに《なる。  [0084] It is assumed that various portions J1 to J4 that are powerful are located on the surface of the optical path changing block BK and are sharply shaped (for example, corners, edges, corners; edges). In such an edge, either a bright or dark state can be excessively generated depending on the shape of the edge, the incident angle of light to the strong edge, and the like. However, if these parts are curved, an excessive light / dark state at such an edge will occur.
[0085] なお、これらの部分 J1〜J4の全てが曲面になっている必要はなぐ少なくとも 1つの 部分だけでも曲面になって 、ればよ 、。 1力所だけでもエッジにおける過度の明暗状 態が抑制されれば、ノ ックライトユニット 52としての光量ムラの抑制に貢献するためで ある。  [0085] Note that it is not necessary that all of these portions J1 to J4 are curved surfaces, as long as at least one portion is curved. This is because if excessive light and dark conditions at the edge are suppressed even at only one power point, the light quantity unevenness of the knock light unit 52 can be suppressed.
[0086] 次に、支持体 2について説明する。図 2および図 4に示すように、支持体 2· 2は、光 路変更ブロック BKの本体 1における長手方向での両端に設けられている(なお、両 図では、便宜上、一方の支持体 2のみ図示)。この支持体 2· 2は、光路変更ブロック B Kの長手方向に対して垂直方向に突き出るとともに、突き出た端 (突端)に蛍光管 41 の外周に沿うような湾曲切欠 21を設けている。そのため、力かる湾曲切欠 21 · 21が 蛍光管 41の両端に密着するようになると、光路変更ブロック ΒΚは、支持体 2· 2の突 き出し量分ほど蛍光管 41から乖離して位置する。  [0086] Next, the support 2 will be described. As shown in FIGS. 2 and 4, the supports 2 · 2 are provided at both ends of the optical path changing block BK in the longitudinal direction of the main body 1 (in the drawings, for convenience, one of the supports 2 Only shown). The support bodies 2 and 2 protrude in a direction perpendicular to the longitudinal direction of the optical path changing block BK, and are provided with a curved notch 21 along the outer periphery of the fluorescent tube 41 at the protruding end (protruding end). Therefore, when the curved cutouts 21 and 21 come into close contact with both ends of the fluorescent tube 41, the optical path changing block ΒΚ is positioned so as to be separated from the fluorescent tube 41 by the protruding amount of the support member 2.2.
[0087] そして、図 6の平面図に示すように (便宜上、光路変更柱 ΡΕを省略し、光路変更ブ ロック ΒΚおよび蛍光管 41を主体的に示す)、光路変更ブロック ΒΚが支持体 2 · 2を 介して蛍光管 41に乗りかかり、その蛍光管 41を覆うようになっているところを、ランプ ホルダ 45が押さえつける。その結果、光路変更ブロック BKおよび蛍光管 41は、反射 フレーム 42内に固定される。 Then, as shown in the plan view of FIG. 6 (for the sake of convenience, the optical path changing column 変 更 is omitted and the optical path changing block ΒΚ and the fluorescent tube 41 are mainly shown), the optical path changing block ΒΚ is the support 2 · 2 The lamp holder 45 presses against the fluorescent tube 41 through which the fluorescent tube 41 is covered. As a result, the optical path changing block BK and the fluorescent tube 41 are fixed in the reflection frame 42.
[0088] [1 - 2.光路変更柱について]  [0088] [1-2. Optical path change pillar]
続いて、光路変更柱 PEについて詳説する。光路変更柱 PEは、三角柱状で、柱方 向を長手とする線状の形になっている。そして、蛍光管 41と蛍光管 41との間に位置 する光路変更柱 PEは、図 1に示すように、 3つある側壁 SW(SW1〜SW3)のうちの 1つの側壁 SW1を底、残りの 2つの側壁 SW2. SW3を蛍光管 41 · 41に向けている。 そのため、側壁 SW2' SW3が反射面 (反射面 SW2' SW3とも称す)として機能する。 さらに、光路変更柱 PEは、反射面同士 SW2' SW3の繋がり部分 31を頂として光路 変更ブロック BKに近づけて!/、る。  Next, I will explain in detail about the optical path change pillar PE. The optical path changing column PE has a triangular column shape and a linear shape with the column direction as the longitudinal direction. As shown in FIG. 1, the optical path changing pillar PE located between the fluorescent tubes 41 and 41 has one side wall SW1 of the three side walls SW (SW1 to SW3) as the bottom and the remaining side walls SW1 to SW3. The two side walls SW2 and SW3 are facing the fluorescent tubes 41 and 41. Therefore, the sidewall SW2 ′ SW3 functions as a reflecting surface (also referred to as a reflecting surface SW2 ′ SW3). Furthermore, the optical path changing column PE is brought close to the optical path changing block BK with the connecting portion 31 of the reflecting surfaces SW2 'and SW3 as the apex!
[0089] このようになっていると、光路変更柱 PEは頂 31を先細らせたテーパ状になっている ともいえる。そのため、テーパ状の側壁 SWである光路変更柱 PEの反射面 SW2- S W3は光路変更ブロック BKに向力つて仰ぐように傾斜する。すると、蛍光管 41からの 光および光路変更ブロック BKを通過してきた光が反射面 SW2' SW3に入射すると、 光路変更ブロック BKにむ力つて跳ね上がるように反射する(かかる反射光を跳ね上 げ光とも称す)。その結果、比較的光が届きにくい部分であった蛍光管同士 41 ·41の 間の上方にも光が進行し、ノ ックライトユニット 52の光量ムラが確実に防止される。  [0089] If this is the case, it can be said that the optical path changing column PE is tapered with the apex 31 tapered. Therefore, the reflecting surface SW2-S W3 of the optical path changing column PE which is the tapered side wall SW is inclined so as to face the optical path changing block BK. Then, when the light from the fluorescent tube 41 and the light that has passed through the optical path changing block BK enter the reflecting surface SW2 'SW3, it is reflected so as to jump up to the optical path changing block BK (the reflected light jumps up the light). Also called). As a result, the light also travels upward between the fluorescent tubes 41 and 41, where the light is relatively difficult to reach, and the light quantity unevenness of the knock light unit 52 is surely prevented.
[0090] なお、蛍光管 41と光路変更ブロック ΒΚとの重ね方向 Ρにおいて、光路変更ブロック ΒΚに最も近い蛍光管 41の端部を第 1端部 41b、この第 1端部 41bに対向する蛍光 管 41の端部を第 2端部 41cとすると、光路変更柱 PEの頂 31は、重ね方向 Pにおい て、第 1端部 41bと第 2端部 41cとの間隔に対応して位置する。すなわち、頂 31は、 重ね方向 Pにおいて、第 1端部 41bよりも低くかつ第 2端部 41cよりも高く位置する。  [0090] In the overlapping direction Ρ of the fluorescent tube 41 and the optical path changing block ΒΚ, the end of the fluorescent tube 41 closest to the optical path changing block を is the first end 41b, and the fluorescence facing the first end 41b. When the end portion of the tube 41 is the second end portion 41c, the apex 31 of the optical path changing column PE is positioned in the overlapping direction P corresponding to the distance between the first end portion 41b and the second end portion 41c. That is, the apex 31 is positioned lower than the first end 41b and higher than the second end 41c in the overlapping direction P.
[0091] 例えば、光路変更柱 PEの底が一定位置にあり、光路変更柱 PEの頂 31が重ね方 向 Pにおいて第 1端部 41bよりも高くなつていると、光路変更柱 PEのサイズは比較的 大型になり、それに付随して反射面 SW2' SW3も比較的広面積になる。すると、広 面積な反射面 SW2' SW3に起因して、過度に光が屈折進行し、光量ムラの一因が 生じかねない。 [0092] 逆に、例えば光路変更柱 PEの底が一定位置にあり、光路変更柱 PEの頂 31が重 ね方向 Pにおいて第 2端部 41cよりも低くなつていると、光路変更柱 PEのサイズは比 較的小型になり、それに付随して反射面 SW2' SW3も比較的狭面積になる。すると 、狭い面積な反射面 SW2' SW3に起因して、少量の光しか屈折進行しなくなり、光 量ムラの一因が生じかねな 、。 [0091] For example, if the bottom of the optical path changing column PE is at a fixed position and the top 31 of the optical path changing column PE is higher than the first end 41b in the overlapping direction P, the size of the optical path changing column PE is The size becomes relatively large, and the reflecting surface SW2 'SW3 also becomes relatively large. Then, the light is excessively refracted due to the large reflective surface SW2 'SW3, which may cause a non-uniform light amount. [0092] On the other hand, for example, when the bottom of the optical path changing column PE is at a fixed position and the top 31 of the optical path changing column PE is lower than the second end 41c in the overlapping direction P, the optical path changing column PE The size is relatively small, and the reflecting surface SW2 'SW3 is also relatively small in association with it. Then, due to the reflective area SW2 'SW3 having a small area, only a small amount of light is refracted, which may cause unevenness in the amount of light.
[0093] したがって、光路変更柱 PEの頂 31が、重ね方向 Pにおいて、第 1端部 41bよりも低 くかつ第 2端部 41cよりも高く位置している場合、光量ムラ発生の原因が生じに《な る。  [0093] Therefore, if the top 31 of the optical path changing pillar PE is positioned lower than the first end 41b and higher than the second end 41c in the overlapping direction P, the cause of unevenness in the amount of light occurs. become.
[0094] また、光路変更ブロック BKの入射面 11と光路変更柱 PEの底となる側壁 SW1が平 行になっていれば、光路変更柱 PEの反射面 SW2' SW3の傾斜角である P Θ力 以 下の条件式 C{条件式 (5) }を満たすとよい。  [0094] If the incident surface 11 of the optical path changing block BK and the side wall SW1 that is the bottom of the optical path changing pillar PE are parallel, the inclination angle of the reflecting surface SW2 'SW3 of the optical path changing pillar PE is P Θ The following conditional expression C {conditional expression (5)} should be satisfied.
Ρ θ =Β Θ … 条件式 C  Ρ θ = Β Θ… Conditional expression C
ただし、  However,
Ρ Θは、光路変更柱 ΡΕの反射面 SW2 ' SW3における内側力 光路変更柱 Ρ Eの底となる側面 SW1の内側に向かって 、る傾斜角である。  Ρ Θ is the angle of inclination toward the inside of the side surface SW1, which is the bottom of the optical path changing column Ρ E, on the reflecting surface SW2 'SW3 of the optical path changing column ΡΕ.
[0095] このようになっていると、図 1に示すように、向かい合つている切れ込み CTの壁面 1 4&' 141)と光路変更柱1¾の反射面31^3 ' 31^2とが平行になる。詳説すると、 1個の 光路変更柱 PEを挟持する 2個の光路変更ブロック BK'BKにあって、一方の光路変 更ブロック BKの壁面 14aと反射面 SW3とが平行になり、他方の光路変更ブロック BK の壁面 14bと反射面 SW2とが平行になる。そのため、光路変更柱 PEの反射面 SW2 •SW3は、壁面 14b ' 14aからの進行してくる光を受光しやすくなり、効率よく光が跳 ね上がる。その結果、蛍光管同士 41 ·41の間の上方に、光が確実に進行することに なる。 [0095] In this way, as shown in Fig. 1, the notch CT walls 14 &'141) facing each other and the reflecting surface 3 1 ^ 3' 3 1 ^ 2 of the optical path changing pillar 1¾ are formed as shown in FIG. Become parallel. More specifically, in the two optical path changing blocks BK'BK that sandwich one optical path changing pillar PE, the wall 14a of one optical path changing block BK and the reflecting surface SW3 are parallel, and the other optical path is changed. The wall 14b of the block BK and the reflecting surface SW2 are parallel. Therefore, the reflecting surfaces SW2 and SW3 of the optical path changing pillar PE are easy to receive the light traveling from the wall surfaces 14b'14a, and the light jumps efficiently. As a result, the light reliably travels upward between the fluorescent tubes 41 and 41.
[0096] [1 - 3.照度分布図の比較]  [0096] [1-3. Comparison of illuminance distribution maps]
ここで、図 2·図 4の光路変更ブロック ΒΚを備えるバックライトユニット 52· 52の照度 分布図である図 7·図 8と、これらの光路変更ブロックを搭載していないバックライトュ ニットの照度分布図である図 9とを比較する。  Here, the illuminance distribution diagrams of the backlight units 52 and 52 with the optical path changing block の in Figs. 2 and 4 and Figs. 7 and 8 and the illuminance distribution diagrams of the backlight units not equipped with these optical path changing blocks. Compare this with Figure 9.
[0097] 照度分布図は、横軸を蛍光管 41の並び方向である第 1方向 D1とし、縦軸を照度 [1 x]としている。そして、照度分布図上での位置 Zが、第 1方向 D1における蛍光管 41 の位置 [mm]を示す。したがって、横軸での位置 Zでの照度が直上光に対応し、位 置 Zを除く横軸の部分での照度が蛍光管同士 41 ·41の間隔 V (配置間隔 V)に対応 している。 [0097] In the illuminance distribution diagram, the horizontal axis is the first direction D1 in which the fluorescent tubes 41 are arranged, and the vertical axis is the illuminance [1 x]. The position Z on the illuminance distribution diagram indicates the position [mm] of the fluorescent tube 41 in the first direction D1. Therefore, the illuminance at position Z on the horizontal axis corresponds to the light directly above, and the illuminance on the horizontal axis excluding position Z corresponds to the interval V (arrangement interval V) between the fluorescent tubes 41 and 41. .
[0098] 図 7·図 8に示すように、光路変更ブロック ΒΚを含むバックライトユニット 52· 52では 、直上光に対応する照度は、およそ 7000[lx]になっているとともに、蛍光管同士 41 · 41の間隔 Vに対応する照度も、およそ 7000[lx]程度となっている。そのため、直上 光に対応する照度と蛍光管同士 41 ·41の間隔 Vに対応する照度との差は極めて小 さい。  [0098] As shown in FIGS. 7 and 8, in the backlight units 52 and 52 including the optical path changing block ΒΚ, the illuminance corresponding to the light directly above is approximately 7000 [lx], and the fluorescent tubes 41 · The illuminance corresponding to the interval V of 41 is about 7000 [lx]. Therefore, the difference between the illuminance corresponding to the light directly above and the illuminance corresponding to the distance V between the fluorescent tubes 41 and 41 is extremely small.
[0099] 一方、図 9に示すように、光路変更ブロックを搭載していないバックライトユニットで は、直上光に対応する照度は、およそ 8500[lx]になっている一方、蛍光管同士 41 · 41の間隔 Vに対応する照度も、およそ 6500[lx]となっている。そのため、直上光に対 応する照度と蛍光管同士 41 ·41の間隔 Vに対応する照度との差は 1500[lx]程度に なる。  On the other hand, as shown in FIG. 9, in the backlight unit not equipped with the optical path changing block, the illuminance corresponding to the light directly above is about 8500 [lx], while the fluorescent tubes 41. The illuminance corresponding to the interval V of 41 is also about 6500 [lx]. Therefore, the difference between the illuminance corresponding to the light directly above and the illuminance corresponding to the distance V between the fluorescent tubes 41 and 41 is about 1500 [lx].
[0100] すると、図 9と図 7·図 8との比較から明らかなように、光路変更ブロックを搭載してい ないバックライトユニットでは、直上光に対応する照度と蛍光管同士 41 ·41の間隔 V に対応する照度との差、すなわち光量ムラが顕著に現れる一方、光路変更ブロック Β Κを備えるノ ックライトユニット 52· 52では、直上光に対応する照度と蛍光管同士 41 · 41の間隔 Vに対応する照度との間の差は生じにくく(すなわち照度に均一性が生じ) 、光量ムラが防止される。したがって、本発明のノ ックライトユニット 52が光量ムラを抑 制していることは明らかである。  [0100] Then, as is clear from the comparison between Fig. 9 and Fig. 7 and Fig. 8, in the backlight unit without the optical path changing block, the illuminance corresponding to the light directly above and the distance between the fluorescent tubes 41 · 41 The difference between the illuminance corresponding to V, i.e., the unevenness of the light intensity appears remarkably. On the other hand, in the knocklight units 52 and 52 equipped with the optical path change block Β 照度The difference between the illuminance and the illuminance corresponding to is difficult to occur (that is, the illuminance is uniform), and unevenness in the amount of light is prevented. Therefore, it is clear that the knock light unit 52 of the present invention suppresses unevenness in the amount of light.
[0101] [その他の実施の形態]  [0101] [Other embodiments]
なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲 で、種々の変更が可能である。  The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0102] 例えば、以上の説明では複数の蛍光管 41を搭載したバックライトユニット 52を例に 挙げてきたが、これに限定されない。すなわち、図 10に示すような、光を発する単数 個の蛍光管 41を含むとともに、この蛍光管 41に対応して重なって、入射してくる光を 屈折させ光路を変更させる光路変更ブロック ΒΚを単数個含むバックライトユニット 52 であってもよい。 For example, in the above description, the backlight unit 52 having a plurality of fluorescent tubes 41 is taken as an example, but the present invention is not limited to this. That is, as shown in FIG. 10, a single fluorescent tube 41 that emits light is included, and an optical path change block さ せ る that overlaps with the fluorescent tube 41 to refract the incident light and change the optical path is provided. Backlight unit including one 52 It may be.
[0103] また、切れ込み CTの形状も、第 2方向 D2に対する垂直断面で V字状に限定され ない。例えば、図 10に示すように、切れ込み CTの壁面 14 (14a' 14b)が曲面になつ ていてもよい。要は、切れ込み CTは、出射面 12から窪むような形状になっていれば よい。  [0103] Further, the shape of the cut CT is not limited to a V-shape in a cross section perpendicular to the second direction D2. For example, as shown in FIG. 10, the wall surface 14 (14a '14b) of the cut CT may be a curved surface. In short, the cut CT should have a shape that is recessed from the exit surface 12.
[0104] なお、単数の蛍光管 41と光路変更ブロック BKとを含むバックライトユニット 52が光 量ムラを抑制するには、以下の条件式 (D) {条件式(1) }を満たしていると望ましい。  [0104] The backlight unit 52 including the single fluorescent tube 41 and the optical path changing block BK satisfies the following conditional expression (D) {Conditional expression (1)} in order to suppress the uneven light amount. And desirable.
BWout≤L/2 … 条件式(D)  BWout≤L / 2… Conditional expression (D)
ただし、  However,
BWout:出射面 12上に表出する切れ込み CTの壁面 14から、蛍光管 41の幅 方向と同方向に沿うようにして、最も近い出射面 12の端部に至るまで の最短の長さ BW1と、  BWout: notch appearing on the exit surface 12 The shortest length BW1 from the CT wall surface 14 to the end of the nearest exit surface 12 along the width direction of the fluorescent tube 41 ,
出射面 12上に表出する切れ込み CTの壁面 14から、蛍光管 41の幅 方向と同方向に沿うようにして、蛍光管 41における幅の中心力も蛍光 管 41の配置面 Sに対して垂直でありかつ蛍光管 41の延び方向である 第 2方向 D2に平行になった仮想面 Eに至るまでの最短の長さ BW2 と、  The center force of the width of the fluorescent tube 41 is perpendicular to the arrangement surface S of the fluorescent tube 41 so that it extends along the same direction as the width direction of the fluorescent tube 41 from the wall surface 14 of the CT that appears on the emission surface 12. And the shortest length BW2 to reach the virtual plane E parallel to the second direction D2, which is the extending direction of the fluorescent tube 41, and
の和  Sum of
L :蛍光管 41の幅方向に沿う方向でのバックライトユニット 52の幅 である。  L: The width of the backlight unit 52 in the direction along the width direction of the fluorescent tube 41.
[0105] また、複数の蛍光管 41を含むとともに、壁面 14 (14a' 14b)を曲面にした切れ込み CT、または壁面 14 (14a ' 14b)を平面にした V字状の切れ込み CTを有する光路変 更ブロック BKを複数含むバックライトユニット 52にあっては、下記条件式 E{条件式( 2) }を満たすだけでも、ノ ックライトユニット 52の光量ムラが生じにくくなり得る。  [0105] Further, the optical path changer includes a plurality of fluorescent tubes 41 and has a cut CT having a curved wall 14 (14a '14b) or a V-shaped cut CT having a flat wall 14 (14a' 14b). In the backlight unit 52 including a plurality of further blocks BK, the light quantity unevenness of the knock light unit 52 may not easily occur even if the following conditional expression E {conditional expression (2)} is satisfied.
[0106] BWout≤V/ 2 … 条件式 E  [0106] BWout≤V / 2… Conditional expression E
ただし、  However,
V :面内配置されている線状光源同士の配置間隔  V: Arrangement interval between linear light sources arranged in the plane
BWout:光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、最も近い出射面の端部に至るま での最短の長さと、 BWout: Linear light from the notched wall surface that appears on the exit surface of the optical path changing block The shortest length to the end of the nearest exit surface along the same direction as the width direction of the source,
光路変更ブロックの出射面上に表出する切れ込みの壁面から、線状光 源の幅方向と同方向に沿うようにして、線状光源における幅の中心から 線状光源の配置面に対して垂直でありかつ線状光源の延び方向に平行 になった仮想面に至るまでの最短の長さと、  From the wall surface of the notch that appears on the exit surface of the optical path changing block, along the same direction as the width direction of the linear light source, from the center of the width of the linear light source, perpendicular to the arrangement surface of the linear light source And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和  Sum of
である。  It is.
[0107] また、図 11A〜図 11Dに示すように、重ね方向 Pにおいて、入射面 11の幅の両端 l la' l laと蛍光管 41の幅の両端 41a'41aとが重なり合わなくてもよい。また、重ね 方向 Pにおいて、出射面 12における切れ込み CTの幅の両端 CTa · CTaと蛍光管 41 の幅の両端 41a'41aとも重なり合わなくてもよい。  Further, as shown in FIGS. 11A to 11D, in the overlapping direction P, both ends l la ′ l la of the width of the incident surface 11 and both ends 41a′41a of the width of the fluorescent tube 41 do not overlap each other. Good. Further, in the overlapping direction P, both ends CTa · CTa of the width of the cut CT on the emission surface 12 and both ends 41a′41a of the fluorescent tube 41 need not overlap.
[0108] すなわち、入射面 11の幅は、蛍光管 41の幅よりも広くても狭くてもよい。また、切れ 込み CTの幅も、蛍光管 41の幅よりも広くても狭くてもよい。  That is, the width of the incident surface 11 may be wider or narrower than the width of the fluorescent tube 41. Further, the width of the cut CT may be wider or narrower than the width of the fluorescent tube 41.
[0109] また、光路変更ブロック BKの側面 13の曲面の度合いは特に限定されな 、。ただし 、側面 13は、内部からの光を発散させて外部に進行させるので、発散可能な形状だ と望ましい。例えば、側面 13である曲面の曲率中心は、側面 13の内側ではなく外側 にあるとよい。  [0109] The degree of the curved surface of the side surface 13 of the optical path changing block BK is not particularly limited. However, the side surface 13 diverges light from the inside and travels to the outside. For example, the center of curvature of the curved surface that is the side surface 13 may be outside the side surface 13 instead of inside.
[0110] また、光路変更ブロック BKにおける部分 J1〜J4の曲面の度合いも限定されるもの ではない。要は、部分 J1〜J4における過度の明状態または過度の暗状態が防止でき るような曲面であればよい。  [0110] Further, the degree of curved surfaces of the portions J1 to J4 in the optical path changing block BK is not limited. The point is that the curved surface can prevent an excessively bright state or an excessively dark state in the portions J1 to J4.
[0111] ただし、図 3に示すように、側面 13の面形状は、外側から内側に向いた窪んだ曲面 に限定されるものではない。すなわち、図 12Aに示すように、側面 13が平面であって もよいし、図 12Bに示すように、側面 13が内側力も外側に向いた盛り上がった曲面に なっていてもよい。  However, as shown in FIG. 3, the surface shape of the side surface 13 is not limited to a concave curved surface facing from the outside to the inside. That is, as shown in FIG. 12A, the side surface 13 may be a flat surface, or as shown in FIG. 12B, the side surface 13 may be a raised curved surface with the inner force facing outward.
[0112] また、光路変更ブロック BKを種々に表現することも可能である。例えば、光路変更 ブロック BKの本体 1は棒状になっており、外周に、平面である入射面 11、切れ込み CTを備え入射面よりも広面積な出射面 12、および湾曲面である側面 13 (13a, 13b) を配している。そのため、本体 1の延び方向に対する垂直断面は、入射面 11、出射 面 12、および側面 13a' 13bから成る台形ともいえ、ひいては、本体 1は台形柱ともい える {ただし、柱の外周の一部に曲面を含む台形柱 (変形台形柱)である }。 [0112] In addition, the optical path changing block BK can be expressed in various ways. For example, the main body 1 of the optical path changing block BK has a rod-like shape, and the outer periphery has an incident surface 11 that is a plane, an exit surface 12 that has a cut CT, and has a larger area than the incident surface, and a side surface 13 that is a curved surface (13a , 13b) Is arranged. Therefore, the cross section perpendicular to the extending direction of the main body 1 can be said to be a trapezoid consisting of the incident surface 11, the output surface 12, and the side surfaces 13a '13b, and the main body 1 can also be referred to as a trapezoidal column (however, a part of the outer periphery of the column A trapezoidal column with a curved surface (a modified trapezoidal column)}.
[0113] そして、台形柱である光路変更ブロック BKの入射面 11を天面、出射面 12を底面と すると、ノ ックライトユニット 52では、蛍光管 41に天面を対向させる台形柱の光路変 更ブロック BKが搭載されて!、ることになる。  [0113] Then, assuming that the incident surface 11 of the light path changing block BK, which is a trapezoidal column, is the top surface and the output surface 12 is the bottom surface, the knock light unit 52 changes the optical path of the trapezoidal column with the top surface facing the fluorescent tube 41. More block BK is installed!
[0114] 最後に、上記で開示された技術を適宜組み合わせて得られる実施形態にっ 、ても 、本発明の技術的範囲に含まれることは 、うまでもな!/、。  [0114] Finally, an embodiment obtained by appropriately combining the techniques disclosed above is naturally included in the technical scope of the present invention! /.

Claims

請求の範囲 The scope of the claims
[1] 光を発する単数個の線状光源を含むとともに、  [1] Including a single linear light source that emits light,
上記線状光源に対応して重なって、入射してくる上記光を屈折させ光路を変更させ る光路変更ブロックを単数個含んでおり、  It includes a single optical path changing block that overlaps with the linear light source and refracts the incident light to change the optical path.
上記光路変更ブロックは、上記光を入射させる入射面と、その背面から上記入射面 力 の上記光を出射させる出射面と、を備えており、  The optical path changing block includes an incident surface on which the light is incident and an exit surface on which the light having the incident surface force is emitted from the back surface.
上記出射面は、窪み形状となる切れ込みを有して 、るバックライトユニット。  The exit surface has a notch that has a hollow shape.
[2] 以下の条件式(1)を満たす請求項 1に記載のバックライトユニット。  [2] The backlight unit according to claim 1, wherein the following conditional expression (1) is satisfied.
BWout≤L/2 … 条件式(1)  BWout≤L / 2… Conditional expression (1)
ただし、  However,
BWout:上記出射面上に表出する上記切れ込みの壁面から、線状光源の幅方 向と同方向に沿うようにして、最も近 、出射面の端部に至るまでの最短 の長さと、  BWout: The shortest length from the wall surface of the notch exposed on the exit surface to the end of the exit surface, along the same direction as the width direction of the linear light source,
上記の出射面上に表出する切れ込みの壁面から、線状光源の幅方向と 同方向に沿うようにして、線状光源における幅の中心力 線状光源の配 置面に対して垂直でありかつ線状光源の延び方向に平行になった仮想 面に至るまでの最短の長さと、  The central force of the width of the linear light source is perpendicular to the arrangement surface of the linear light source so as to extend along the same direction as the width direction of the linear light source from the wall surface of the notch exposed on the exit surface. And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和  Sum of
L :線状光源の幅方向に沿う方向でのバックライトユニットの幅 である。  L: The width of the backlight unit in the direction along the width direction of the linear light source.
[3] 光を発する複数個の線状光源を含むとともに、  [3] Including a plurality of linear light sources that emit light,
各線状光源に対応して重なって、入射してくる上記光を屈折させ光路を変更させる 光路変更ブロックを複数個含んでおり、  Overlapping corresponding to each linear light source, includes a plurality of optical path changing blocks that refract the incident light and change the optical path,
上記光路変更ブロックは、上記光を入射させる入射面と、その背面から上記入射面 力 の上記光を出射させる出射面と、を備えており、  The optical path changing block includes an incident surface on which the light is incident and an exit surface on which the light having the incident surface force is emitted from the back surface.
上記出射面は、窪み形状となる切れ込みを有して 、るバックライトユニット。  The exit surface has a notch that has a hollow shape.
[4] 以下の条件式 (2)を満たす請求項 3に記載のバックライトユニット。 [4] The backlight unit according to claim 3, wherein the following conditional expression (2) is satisfied.
BWout≤V/ 2 … 条件式(2) ただし、 BWout≤V / 2… Conditional expression (2) However,
BWout:上記出射面上に表出する上記切れ込みの壁面から、線状光源の幅方 向と同方向に沿うようにして、最も近 、出射面の端部に至るまでの最短 の長さと、  BWout: The shortest length from the wall surface of the notch exposed on the exit surface to the end of the exit surface, along the same direction as the width direction of the linear light source,
上記の出射面上に表出する切れ込みの壁面から、線状光源の幅方向と 同方向に沿うようにして、線状光源における幅の中心力 線状光源の配 置面に対して垂直でありかつ線状光源の延び方向に平行になった仮想 面に至るまでの最短の長さと、  The central force of the width of the linear light source is perpendicular to the arrangement surface of the linear light source so as to extend along the same direction as the width direction of the linear light source from the wall surface of the notch exposed on the exit surface. And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和  Sum of
V :面内配置されている線状光源同士の配置間隔  V: Arrangement interval between linear light sources arranged in the plane
である。  It is.
[5] 上記入射面の端部および上記出射面の端部を外周の一部としている光路変更ブ ロックの側面力 外側から内側に向いた窪んだ曲面になっている、または、内側から 外側に向いて盛り上がった曲面になっている請求項 1に記載のバックライトユニット。  [5] Side force of the optical path changing block having the end portion of the entrance surface and the end portion of the exit surface as a part of the outer periphery, or a concave curved surface directed from the outside to the inside, or from the inside to the outside The backlight unit according to claim 1, wherein the backlight unit has a curved surface that is raised.
[6] 上記光路変更ブロックから進行してくる光を拡散する拡散板が含まれており、 上記拡散板と、上記光路変更ブロックの入射面とが平行である請求項 1に記載のバ ックライトユニット。  6. The backlight according to claim 1, further comprising a diffusing plate for diffusing light traveling from the optical path changing block, wherein the diffusing plate and an incident surface of the optical path changing block are parallel to each other. unit.
[7] 上記入射面の端部および上記出射面の端部を外周の一部としている光路変更ブ ロックの側面力 外側から内側に向いた窪んだ曲面になっている、または、内側から 外側に向いて盛り上がった曲面になっている請求項 3に記載のバックライトユニット。  [7] The side force of the optical path changing block having the end of the entrance surface and the end of the exit surface as a part of the outer periphery is a curved surface that is concave from the outside to the inside, or from the inside to the outside. 4. The backlight unit according to claim 3, wherein the backlight unit has a curved surface that is raised.
[8] 上記光路変更ブロックから進行してくる光を拡散する拡散板が含まれており、 上記拡散板と、上記光路変更ブロックの入射面とが平行である請求項 3に記載のバ ックライトユニット。 8. The backlight according to claim 3, further comprising a diffuser that diffuses light traveling from the optical path changing block, wherein the diffuser and the incident surface of the optical path changing block are parallel to each other. unit.
[9] 光を発する複数個の線状光源を含むとともに、 [9] including a plurality of linear light sources emitting light,
各線状光源に対応して重なって、入射してくる上記光を屈折させ光路を変更させる 光路変更ブロックを複数個含んでおり、  Overlapping corresponding to each linear light source, includes a plurality of optical path changing blocks that refract the incident light and change the optical path,
上記光路変更ブロックは、上記線状光源に最も近くに位置することで上記光を入射 させる入射面と、その入射面力 最も乖離し上記光を出射させる出射面と、を備えて おり、 The optical path changing block includes an incident surface on which the light is incident by being located closest to the linear light source, and an output surface on which the incident surface force is most dissociated to emit the light. And
上記入射面は、線状光源と光路変更ブロックとの重ね方向において、入射面の幅 の両端と線状光源の幅の両端とを重ね合わせ、  The incident surface overlaps both ends of the width of the incident surface and both ends of the width of the linear light source in the overlapping direction of the linear light source and the optical path changing block,
上記出射面は、線状光源の延び方向と同方向に延びるとともにその延び方向の垂 直断面で V字状となる切れ込みを有し、線状光源と光路変更ブロックとの重ね方向に おいて、上記切れ込みの幅の両端と線状光源の幅の両端とを重ね合わせ、 さらに、以下の条件式(3)および (4)が満たされるバックライトユニット; CA< B 0 … 条件式(3)  The exit surface extends in the same direction as the extending direction of the linear light source and has a notch that is V-shaped in a vertical section in the extending direction. In the overlapping direction of the linear light source and the optical path changing block, The both ends of the width of the notch are overlapped with both ends of the width of the linear light source, and the backlight unit satisfying the following conditional expressions (3) and (4); CA <B 0 ... Conditional expression (3)
V/5≤BWout≤V/2 … 条件式(4)  V / 5≤BWout≤V / 2… Conditional expression (4)
ただし、  However,
CA :光路変更ブロックの臨界角  CA: Critical angle of optical path change block
B Θ :上記切れ込みにおける壁面の傾斜角(ただし、壁面の内側から上記入 射面の内側に向力つている傾斜角)  B Θ: Inclination angle of the wall surface at the above-mentioned notch (however, the inclination angle that is directed from the inside of the wall surface to the inside of the incident surface)
V :面内配置されている線状光源同士の配置間隔  V: Arrangement interval between linear light sources arranged in the plane
BWout:上記出射面上に表出する上記切れ込みの壁面から、線状光源の幅方 向と同方向に沿うようにして、最も近 、出射面の端部に至るまでの最短 の長さと、  BWout: The shortest length from the wall surface of the notch exposed on the exit surface to the end of the exit surface, along the same direction as the width direction of the linear light source,
上記の出射面上に表出する切れ込みの壁面から、線状光源の幅方向と 同方向に沿うようにして、線状光源における幅の中心力 線状光源の配 置面に対して垂直でありかつ線状光源の延び方向に平行になった仮想 面に至るまでの最短の長さと、  The central force of the width of the linear light source is perpendicular to the arrangement surface of the linear light source so as to extend along the same direction as the width direction of the linear light source from the wall surface of the notch exposed on the exit surface. And the shortest length to reach a virtual plane parallel to the extending direction of the linear light source,
の和  Sum of
である。  It is.
[10] 上記光路変更ブロックにおける入射面が、上記線状光源の配置面に対して平行な 平面である請求項 9に記載のバックライトユニット。  10. The backlight unit according to claim 9, wherein the incident surface in the optical path changing block is a plane parallel to the arrangement surface of the linear light source.
[11] 上記光路変更ブロックにおける出射面が、上記線状光源の配置面に対して平行な 平面である請求項 9に記載のバックライトユニット。 11. The backlight unit according to claim 9, wherein the exit surface in the optical path changing block is a plane parallel to the arrangement surface of the linear light source.
[12] 上記入射面の端部および上記出射面の端部を外周の一部としている光路変更ブ ロックの側面が、外側から内側に向 、た窪んだ曲面になって!/、る請求項 9に記載の ノ ックライトユニット。 [12] An optical path changing block in which the end of the entrance surface and the end of the exit surface are part of the outer periphery. 10. The knock light unit according to claim 9, wherein a side surface of the lock becomes a concave curved surface from the outside to the inside! /.
[13] 上記入射面の端部および上記出射面の端部を外周の一部としている光路変更ブ ロックの側面が、内側力も外側に向いた盛り上がった曲面になっている請求項 9に記 載のバックライトユニット。  [13] The side of the optical path changing block having the end of the entrance surface and the end of the exit surface as a part of the outer periphery is a raised curved surface whose inner force is also directed outward. Backlight unit.
[14] 上記の切れ込みの底部分、上記入射面と上記側面との繋がり部分、上記出射面と 上記側面との繋がり部分、および上記切れ込みの壁面と上記出射面との繋がり部分[14] The bottom portion of the cut, a connection portion between the incident surface and the side surface, a connection portion between the emission surface and the side surface, and a connection portion between the wall surface of the cut and the emission surface.
、の少なくとも 1つが曲面になって!/、る請求項 9に記載のバックライトユニット。 10. The backlight unit according to claim 9, wherein at least one of the surfaces is a curved surface! /.
[15] 上記の面内配置されている線状光源同士の間には、少なくとも 2つ側壁を反射面と して有する三角柱状の光路変更柱が配置されており、 [15] Between the linear light sources arranged in the plane, a triangular prism-shaped optical path changing column having at least two side walls as reflecting surfaces is arranged.
上記光路変更柱は、 1つの側壁を底にし、反射面である 2つの側壁を線状光源に 向け、さらに、上記の反射面同士の繋がり部分を頂として上記光路変更ブロックに近 づけて ヽる請求項 9に記載のノ ックライトユニット。  The optical path changing column has one side wall at the bottom, the two side walls, which are reflective surfaces, are directed to the linear light source, and the connecting portion between the reflecting surfaces is the top to approach the optical path changing block. The knocklight unit according to claim 9.
[16] 上記の線状光源と光路変更ブロックとの重ね方向において、光路変更ブロックに最 も近い線状光源の端部を第 1端部、この第 1端部に対向する線状光源の端部を第 2 端部とすると、 [16] In the overlapping direction of the linear light source and the optical path changing block, the end of the linear light source closest to the optical path changing block is the first end, and the end of the linear light source facing this first end is Is the second end,
光路変更柱の上記頂は、上記の重ね方向において、上記第 1端部と上記第 2端部 との間隔に対応して位置する請求項 15に記載のバックライトユニット。  16. The backlight unit according to claim 15, wherein the top of the optical path changing column is located corresponding to a distance between the first end and the second end in the overlapping direction.
[17] 上記光路変更ブロックの入射面と上記光路変更柱の底となる側壁とが平行になつ ている場合に、 [17] When the incident surface of the optical path changing block is parallel to the side wall that is the bottom of the optical path changing column,
上記光路変更柱の反射面の傾斜角である P Θ力 以下の条件式(5)を満たしてい る請求項 16に記載のバックライトユニット;  The backlight unit according to claim 16, which satisfies the following conditional expression (5): P Θ force which is an inclination angle of the reflecting surface of the optical path changing column;
Ρ Θ = Β Θ ■■■ 条件式(5)  Ρ Θ = Β Θ ■■■ Conditional expression (5)
ただし、  However,
Ρ Θは、光路変更柱の反射面における内側から光路変更柱の底となる側壁の 内側に向かっている傾斜角である。  Θ Θ is the angle of inclination from the inside of the reflecting surface of the optical path changing column toward the inside of the side wall that is the bottom of the optical path changing column.
[18] 上記光路変更ブロックから進行してくる光を拡散する拡散板が含まれており、 上記拡散板と、上記光路変更ブロックの入射面とが平行である請求項 9に記載のバ ックライトユニット。 18. A diffusing plate that diffuses light traveling from the optical path changing block is included, and the diffusion plate and the incident surface of the optical path changing block are parallel to each other. Light unit.
請求項 1〜18のいずれ力 1個に記載のバックライトユニットと、 上記バックライトユニットからの光を受光する液晶表示パネルと、 を有する液晶表示装置。  A liquid crystal display device comprising: the backlight unit according to any one of claims 1 to 18; and a liquid crystal display panel that receives light from the backlight unit.
PCT/JP2007/060113 2006-09-21 2007-05-17 Backlight unit and liquid crystal display device WO2008035485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-255257 2006-09-21
JP2006255257 2006-09-21

Publications (1)

Publication Number Publication Date
WO2008035485A1 true WO2008035485A1 (en) 2008-03-27

Family

ID=39200315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060113 WO2008035485A1 (en) 2006-09-21 2007-05-17 Backlight unit and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2008035485A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245123A (en) * 1990-02-23 1991-10-31 Hitachi Ltd Panel light source device
JP2006093148A (en) * 2004-09-24 2006-04-06 Shogen Koden Kofun Yugenkoshi Lighting apparatus
JP2006173624A (en) * 2004-12-15 2006-06-29 Shogen Koden Kofun Yugenkoshi Led light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245123A (en) * 1990-02-23 1991-10-31 Hitachi Ltd Panel light source device
JP2006093148A (en) * 2004-09-24 2006-04-06 Shogen Koden Kofun Yugenkoshi Lighting apparatus
JP2006173624A (en) * 2004-12-15 2006-06-29 Shogen Koden Kofun Yugenkoshi Led light source

Similar Documents

Publication Publication Date Title
KR100982980B1 (en) Plane light source and lcd backlight unit comprising the same
JP4357477B2 (en) Prism sheet and backlight unit using the same
KR100914875B1 (en) Liquid crystal display and light guide plate
JP2001312916A (en) Surface light source device
JP2007287479A (en) Illumination device and liquid crystal display device using this
JP5766044B2 (en) Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device
JPH1172625A (en) Back light and liquid crystal display device using it
KR101692888B1 (en) Light guiding panel and back light unit using the same
JP2000222925A (en) Surface lighting system
JPH10283818A (en) Planar illuminant and method of uniforming its luminance
WO2006057282A1 (en) Light guide plate for display device
US7628526B2 (en) Back light unit
KR20060102360A (en) Optical sheet and back light unit including the same
JP4848511B2 (en) Backlight unit for LCD
WO2012133118A1 (en) Lighting device and display device
JP2011243439A (en) Backlight unit, and liquid crystal module
JPH09330610A (en) Back-light lighting system
KR101255300B1 (en) Prism sheet
WO2008035485A1 (en) Backlight unit and liquid crystal display device
JP2005302659A (en) Illumination equipment and display apparatus provided with the same
JP4182075B2 (en) Light guide plate and flat illumination device
JP2003228065A (en) Liquid crystal display
KR100830099B1 (en) The backlight unit of liquid crystal display
JPH08201810A (en) Lighting system
KR20110015758A (en) Optical sheet and backlight unit using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP