WO2008032355A1 - Plasma display panel and method of forming phosphor layer thereof - Google Patents

Plasma display panel and method of forming phosphor layer thereof Download PDF

Info

Publication number
WO2008032355A1
WO2008032355A1 PCT/JP2006/317985 JP2006317985W WO2008032355A1 WO 2008032355 A1 WO2008032355 A1 WO 2008032355A1 JP 2006317985 W JP2006317985 W JP 2006317985W WO 2008032355 A1 WO2008032355 A1 WO 2008032355A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor layer
layer
blue
phosphor
cell
Prior art date
Application number
PCT/JP2006/317985
Other languages
French (fr)
Japanese (ja)
Inventor
Seiki Kurogi
Nobuyuki Hori
Original Assignee
Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Limited filed Critical Hitachi Plasma Display Limited
Priority to PCT/JP2006/317985 priority Critical patent/WO2008032355A1/en
Priority to JP2008534159A priority patent/JPWO2008032355A1/en
Publication of WO2008032355A1 publication Critical patent/WO2008032355A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/662Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates

Definitions

  • the present invention relates to a plasma display panel (hereinafter referred to as PDP) and a method for forming a phosphor layer thereof. More specifically, the present invention has a red phosphor layer, a green phosphor layer, and a blue phosphor layer.
  • the present invention relates to a PDP that performs full-color display with phosphors and a method for forming the phosphor layer.
  • PDPs can be displayed on television due to the development of colorization, and are attracting attention as the most promising candidates for large flat panel display realization devices.
  • an AC-driven three-electrode surface discharge type PDP is known!
  • This PDP is provided with a large number of display electrodes capable of surface discharge in the horizontal direction on the inner surface of one substrate (for example, the front substrate), and an address for selecting light emitting cells on the inner surface of the other substrate (for example, the rear substrate).
  • a large number of electrodes are provided in the direction intersecting the display electrode, and the intersection between the display electrode and the address electrode is formed as one cell (unit light emitting region).
  • One pixel consists of three sub-cells: a red (R) cell with a red phosphor layer, a green (G) cell with a green phosphor layer, and a blue (B) cell with a blue phosphor layer. Consists of pixels. These phosphor layers are generally formed on the substrate on the back side.
  • the display electrodes on the front substrate and the address electrodes on the rear substrate are each covered with a dielectric layer, and the dielectric layer of the front substrate is covered with a protective film made of MgO.
  • the PDP is manufactured by sealing the periphery with the front-side substrate and the back-side substrate made in this manner facing each other, and then enclosing a discharge gas inside.
  • red phosphor material (Y, Gd) BO: Eu, Y 2 O: Eu, or the like is used.
  • Zn SiO: Mn, Zn GeO: Mn, or the like is used as the color phosphor material.
  • BaMgAl 2 O 3: Eu, BaSrMgAl 2 O 3: Eu, etc. are often used.
  • blue phosphor materials such as BaMgAl 2 O 3: Eu and BaSrMgAl 2 O 3: Eu are red.
  • the crystal structure Compared with the phosphor material and the green phosphor material, the crystal structure has a layered structure, and moisture present in the air is selectively adsorbed on the surface of the Ba—O layer of the phosphor. End up. Therefore, moisture adhering to the blue phosphor material is taken into the panel (see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-213258
  • Moisture taken into the panel reacts with phosphors by discharge or reacts with MgO formed as a protective film, thereby causing deterioration of panel brightness, chromaticity change, or driving margin. Problems such as a decrease and an increase in discharge voltage may occur.
  • the present invention has been made in view of such circumstances, and a red or green phosphor layer is formed below the blue phosphor layer, while ensuring the amount of light emitted from the blue phosphor layer.
  • a red or green phosphor layer is formed below the blue phosphor layer, while ensuring the amount of light emitted from the blue phosphor layer.
  • the present invention relates to a cell in which a red phosphor layer is formed, a cell in which a green phosphor layer is formed, and a cell in which a blue phosphor layer is formed in a discharge space formed between a pair of substrates.
  • a plasma display panel in which a large number of cells are arranged in a matrix, and a phosphor layer of another color is formed as a reflective layer under the blue phosphor layer. It is a plasma display panel.
  • FIG. 1 is an explanatory diagram showing a configuration of a PDP of the present invention.
  • ⁇ 2] An explanatory view showing a phosphor layer of the PDP of the present invention.
  • FIG. 4 is an explanatory view showing the manufacturing process of the rear panel assembly of the present invention in the order of steps.
  • Display electrodes may be arranged in a certain direction on the substrates on the front side of the pair of substrates. Further, address electrodes may be arranged on the substrate on the back side in a direction intersecting with the display electrodes.
  • the display electrode and the address electrode can be formed using various materials and methods known in the art. Examples of materials used for the electrode include ITO and SnO.
  • conductive materials and metallic conductive materials such as Ag, Au, Al, Cu, Cr.
  • a method for forming the electrode various methods known in the art can be applied. For example, it may be formed using a thick film forming technique such as printing, or may be formed using a thin film forming technique such as physical deposition or chemical deposition. Examples of the thick film forming technique include a screen printing method.
  • examples of physical deposition methods include vapor deposition and sputtering. Examples of the chemical deposition method include a thermal CVD method, a photo-CVD method, and some! /, A plasma CVD method.
  • the red phosphor layer, the green phosphor layer, or the blue phosphor layer is formed by releasing a phosphor paste containing red, green, or blue phosphor powder, a binder resin, and a solvent in a groove-like shape between the partition walls. It can be formed by applying it into the electric space by screen printing or a method using a dispenser, repeating this for each color, and then baking.
  • the phosphor layer can be formed by a photolithography technique using a sheet-like phosphor layer material (so-called green sheet) containing phosphor powder, a photosensitive material, and a binder resin. In this case, a phosphor sheet of each color is formed between the corresponding barrier ribs by applying a sheet of a desired color to the entire display area on the substrate, exposing and developing, and repeating this for each color. It is out.
  • the red phosphor material used for the red phosphor paste includes (Y, Gd) BO: Eu and Y 2 O
  • blue phosphor materials used in the present invention include BaMgAl 2 O 3 Eu and BaSrMgAl 2 O 3 Eu.
  • the other color phosphor layer formed as the reflection layer is preferably a red phosphor layer or a green phosphor layer.
  • the total thickness of the blue phosphor layer and the underlying phosphor layer is approximately the same as that of the red phosphor layer or the green phosphor layer.
  • the blue phosphor material contained in the blue phosphor layer is BaMgAl 2 O 3:
  • BaSrMgAl 2 O 3: Eu may be used.
  • the present invention also provides a cell in which a red phosphor layer is formed, a cell in which a green phosphor layer is formed, and a blue phosphor layer in a discharge space formed between a pair of substrates.
  • a phosphor layer forming method comprising: applying a phosphor paste of each color to a region where each color phosphor layer is to be formed, drying the substrate, and firing the phosphor paste to form a phosphor layer.
  • Display panel comprising a step of applying the same phosphor paste to the blue phosphor layer formation planned area and drying, and then applying the blue phosphor paste to the blue phosphor layer formation planned area This is a phosphor layer forming method.
  • Fig. 1 (a) and Fig. 1 (b) are explanatory diagrams showing the configuration of the PDP of the present invention.
  • Fig. 1 (a) is an overall view
  • Fig. 1 (b) is a partially exploded perspective view.
  • This PDP is an AC-driven 3-electrode surface discharge PDP for color display.
  • the PDP 10 includes a front substrate 11 and a rear substrate 21.
  • a glass substrate, a quartz substrate, a ceramic substrate, or the like can be used as the substrate 11 on the front side and the substrate 21 on the back side.
  • Display electrodes X and Y are arranged at equal intervals in the horizontal direction on the inner side surface of the substrate 11 on the front side.
  • the display line L is entirely between the adjacent display electrode X and display electrode Y.
  • Each display electrode X, Y consists of a wide transparent electrode 12 such as ITO, SnO, etc., for example, Ag, Au, A
  • Cu, Cr, and their laminated bodies are composed of a narrow bus electrode 13 made of metal that also has equal force.
  • the desired number and thickness of Ag and Au can be obtained by using a thick film formation technology such as screen printing, and the others using thin film formation technology such as vapor deposition and sputtering, and etching technology. It can be formed with length, width and spacing.
  • a display electrode X and a display electrode Y are arranged at equal intervals, and a display line L is formed between adjacent display electrodes X and Y, which is a so-called ALIS structure PDP.
  • the present invention can also be applied to a PDP having a structure in which the pair of display electrodes X and Y are arranged with a gap (non-discharge gap) where no discharge occurs.
  • a dielectric layer 17 is formed on the display electrodes X and Y so as to cover the display electrodes X and ⁇ .
  • the dielectric layer 17 is formed by applying a low-melting glass paste to the front substrate 11 by screen printing and baking.
  • the dielectric layer 17 is made of SiO by plasma CVD.
  • a protective film 18 is formed on the dielectric layer 17 to protect the dielectric layer 17 from damage caused by ion collision caused by discharge during display.
  • This protective film is made of MgO.
  • the protective film can be formed by a thin film forming process known in the art, such as electron beam evaporation or sputtering.
  • a plurality of address electrodes A are formed on the inner side surface of the substrate 21 on the back side in a direction intersecting the display electrodes X and Y in plan view, and the dielectric layer 24 covers the address electrodes A. Is formed.
  • the address electrode A generates an address discharge for selecting a light emitting cell at an intersection with one display electrode Y, and is formed of a three-layer structure of CrZCuZCr.
  • the address electrode A can be formed of, for example, Ag, Au, Al, Cu, Cr, or the like.
  • the address electrode A also uses a thick film formation technique such as screen printing for Ag and Au, and a thin film formation technique such as vapor deposition and sputtering and an etching technique for the other. Thus, it can be formed with a desired number, thickness, width and interval.
  • the dielectric layer 24 can be formed using the same material and the same method as the dielectric layer 17.
  • a plurality of stripe-shaped partition walls 29 are formed on the dielectric layer 24 between the adjacent address electrodes A and A.
  • the shape of the barrier ribs 29 is not limited to this, and may be a mesh shape that divides the discharge space into cells. This mesh-like partition is also called a grid-like rib, a box rib, a waffle rib or the like.
  • the partition wall 29 can be formed by a sandblasting method, a printing method, a photoetching method, or the like.
  • a glass paste having a low melting point glass frit, a binder resin, a solvent and the like is applied on the dielectric layer 24 and dried, and then a cutting having a partition pattern opening on the glass paste layer. It is formed by spraying cutting particles with the mask provided, cutting the glass paste layer exposed at the opening of the mask, and further firing.
  • a photosensitive resin is used for the binder resin, and the mask is removed. It forms by baking after the used exposure and image development.
  • Red (R), green (G), and blue (B) phosphor layers 28R, 28G, and 28B are formed on the side and bottom surfaces of the groove-shaped discharge space between the barrier ribs 29! C Phosphor layer 28R, 28G, 28 ⁇ , phosphor powder containing phosphor powder, binder resin and solvent, screen printing in the grooved discharge space between the barrier ribs 29, or a method using a dispenser This is applied by repeating the process for each color and then firing. The force that the red phosphor layer 31R is formed in the lower layer of the blue phosphor layer 28 ⁇ according to the characteristics of the present invention will be described later.
  • the substrate 11 on the front side and the substrate 21 on the back side are arranged so that the display electrode X, ⁇ and the address electrode ⁇ cross each other, the periphery is sealed, and the partition wall 29
  • the discharge space 30 surrounded by is filled with a discharge gas mixed with Xe and Ne.
  • the discharge space 30 at the intersection of the display electrodes X and Y and the address electrode A is one cell (unit light emitting region) which is the minimum unit of display.
  • One pixel consists of three cells, R, G, and B.
  • FIG. 2 is an explanatory view showing a phosphor layer of the PDP of the present invention. This figure shows a state in which the PDP is cut in a direction perpendicular to the partition wall.
  • the red phosphor layer 28R, the green phosphor layer 28G, and the blue phosphor layer 28B are formed in the elongated concave groove-shaped discharge space between the partition walls 29.
  • a phosphor layer 31R of another color is formed as a reflective layer below the blue phosphor layer 28B.
  • the other color phosphor layer 31R is the red phosphor layer 31R.
  • the red phosphor layer 31R formed below the blue phosphor layer 28B has a thickness of 10 to 30 / ⁇ ⁇ at the thickest portion.
  • the blue phosphor layer 28 ⁇ thereon is formed with a thickness of 10 to 30 ⁇ m at the thickest portion.
  • FIG. 3 is an explanatory view showing a phosphor layer of a comparative example.
  • the red phosphor layer 28R, the green phosphor layer 28G, and the blue phosphor layer 28B are merely formed in the elongated concave groove-like discharge space between the partition walls 29 and 29. .
  • These phosphor layers 28R, 28G, and 28B are also formed by applying a phosphor paste by a method known in the art, that is, a screen printing method or a dispenser method, and drying and baking the phosphor paste.
  • 4 (a) to 4 (f) are explanatory views showing a manufacturing process of the rear panel assembly (panel assembly) of the present invention shown in FIG. 2 in the order of steps.
  • a substrate 21 on the back side that also has glass power is prepared.
  • a conductive film such as a three-layer structure of CrZCuZCr or A1 is formed on the inner side of the substrate 21 by sputtering or the like.
  • the conductive film is patterned into a desired shape by photolithography or the like to form the address electrode A (see FIG. 4 (a)).
  • Address electrode A is also called data electrode
  • the dielectric layer 24 is formed so as to cover the address electrode A in the next step.
  • the dielectric layer 24 is formed by applying a low-melting glass paste by a screen printing method and baking it (see FIG. 4B).
  • a partition wall 29 is formed on the dielectric layer 24 by a sandblasting method, a screen printing method, or the like (see FIG. 4C).
  • Red, green, and blue phosphor pastes are applied to the respective discharge cells, dried, and baked to form respective film thicknesses.
  • red phosphor paste to the B cell as well (see Fig. 4 (d)).
  • red phosphor paste is applied to R cell and B cell at a time, then green phosphor paste is applied to G cell and dried (see Fig. 4 (e)).
  • green phosphor paste is applied to G cell and dried (see Fig. 4 (e)).
  • blue phosphor paste to the B cell with a smaller filling amount than usual and dry it (see Fig. 4 (f)).
  • the red phosphor material used for the red phosphor paste includes (Y, Gd) BO: Eu, YO
  • the green phosphor material used for the green phosphor paste is Zn SiO
  • BaMgAl 2 O 3 Eu
  • BaSrMgAl 2 O 3 Eu
  • or the like is used as the material.
  • the substrate 21 on the back side is loaded into the firing furnace, and the phosphor paste is fired to form the phosphor layer of the present embodiment. (See Fig. 2).
  • the red phosphor layer is formed under the blue phosphor layer, but the green phosphor layer may be formed by forming a phosphor layer of a color other than blue under the blue phosphor layer. Form it.
  • light emission of a phosphor material excited by ultraviolet light in a PDP is light emission by a phosphor material up to a depth of about 10 / zm, and the underlying phosphor material below that acts as a reflector. ing. Therefore, it is desirable that the other color phosphor layer formed below the blue phosphor layer is formed by forming a phosphor material denser than the blue phosphor material as the reflective layer. Specifically, it is desirable to form a reflective layer having the same film thickness and a higher reflectance than the blue phosphor material.
  • the absolute amount of moisture taken into the panel is reduced by reducing the amount of blue phosphor material used.
  • the amount of light emitted from the blue phosphor layer is reduced as it is, so that a phosphor layer of another color is formed as a reflective layer on the base to supplement the amount of light emitted from the blue phosphor layer.
  • a white reflective layer is provided on the base of the blue phosphor layer
  • a step of forming a white reflective layer is required. Will increase and cost will increase. For this reason, from the viewpoint of shortening the manufacturing process and reducing the cost, a reflecting phosphor layer is formed under the blue phosphor layer using the existing red phosphor paste or green phosphor paste.
  • the phosphor paste of another color is applied to the area where the blue phosphor paste is to be applied in the same process.
  • a phosphor layer formed of another color phosphor paste is used as a reflective layer.

Abstract

The absolute amount of moisture trapped in the panel is reduced by forming a red or green phosphor layer as an underlayer of blue phosphor layer to thereby while ensuring the intensity of light emission from the blue phosphor layer, reduce the amount of blue phosphor material used. There is provided a plasma display panel (PDP) comprising an electric discharge space made between a pair of substrata and, disposed in matrix form therein, a multiplicity of cell sets each composed of a cell furnished with red phosphor layer (28R), a cell furnished with green phosphor layer (28G) and a cell furnished with blue phosphor layer (28B), wherein phosphor layer of other color (31R) is disposed as a reflective layer under the blue phosphor layer (28B).

Description

プラズマディスプレイパネル及びその蛍光体層形成方法  Plasma display panel and phosphor layer forming method thereof
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイパネル(以下、 PDPという)及びその蛍光体層形成 方法に関し、さらに詳しくは、赤色蛍光体層、緑色蛍光体層、青色蛍光体層を有し、 これら 3色の蛍光体でフルカラー表示を行う PDP及びその蛍光体層形成方法に関す る。近年の PDPは、カラー化の開発によりテレビ表示が可能となり、大型フラットパネ ルディスプレイ実現デバイスの最有力候補として注目されて 、る。  The present invention relates to a plasma display panel (hereinafter referred to as PDP) and a method for forming a phosphor layer thereof. More specifically, the present invention has a red phosphor layer, a green phosphor layer, and a blue phosphor layer. The present invention relates to a PDP that performs full-color display with phosphors and a method for forming the phosphor layer. In recent years, PDPs can be displayed on television due to the development of colorization, and are attracting attention as the most promising candidates for large flat panel display realization devices.
背景技術  Background art
[0002] 従来の PDPとして、 AC駆動型の 3電極面放電型 PDPが知られて!/ヽる。この PDP は、一方の基板 (例えば前面側の基板)の内面に面放電が可能な表示電極を水平 方向に多数設け、他方の基板 (例えば背面側の基板)の内面に発光セル選択用の アドレス電極を表示電極と交差する方向に多数設け、表示電極とアドレス電極との交 差部を 1つのセル (単位発光領域)とするものである。 1画素は、赤色蛍光体層を形成 した赤色 (R)セルと、緑色蛍光体層を形成した緑色 (G)セルと、青色蛍光体層を形 成した青色 (B)セルとの 3つのサブピクセルで構成される。これらの蛍光体層は一般 に背面側の基板に形成される。  [0002] As a conventional PDP, an AC-driven three-electrode surface discharge type PDP is known! This PDP is provided with a large number of display electrodes capable of surface discharge in the horizontal direction on the inner surface of one substrate (for example, the front substrate), and an address for selecting light emitting cells on the inner surface of the other substrate (for example, the rear substrate). A large number of electrodes are provided in the direction intersecting the display electrode, and the intersection between the display electrode and the address electrode is formed as one cell (unit light emitting region). One pixel consists of three sub-cells: a red (R) cell with a red phosphor layer, a green (G) cell with a green phosphor layer, and a blue (B) cell with a blue phosphor layer. Consists of pixels. These phosphor layers are generally formed on the substrate on the back side.
[0003] 前面側の基板の表示電極と背面側の基板のアドレス電極は、それぞれ誘電体層で 覆われ、前面側の基板の誘電体層は MgO力 なる保護膜で覆われて 、る。  [0003] The display electrodes on the front substrate and the address electrodes on the rear substrate are each covered with a dielectric layer, and the dielectric layer of the front substrate is covered with a protective film made of MgO.
PDPは、このように作製した前面側の基板と背面側の基板とを対向させて周辺を封 止した後、内部に放電ガスを封入することにより製造されている。  The PDP is manufactured by sealing the periphery with the front-side substrate and the back-side substrate made in this manner facing each other, and then enclosing a discharge gas inside.
[0004] この PDPにおいては、赤色、青色、緑色の 3色の蛍光体層から発生される蛍光を組 み合わせることにより、所望の色の発光を得ている。  [0004] In this PDP, light emission of a desired color is obtained by combining fluorescence generated from phosphor layers of three colors of red, blue, and green.
赤色蛍光体材料としては、 (Y, Gd) BO: Euや、 Y O: Eu等が使用されている。緑  As the red phosphor material, (Y, Gd) BO: Eu, Y 2 O: Eu, or the like is used. Green
3 2 3  3 2 3
色蛍光体材料としては、 Zn SiO: Mnや、 Zn GeO: Mn等が使用されている。青色  As the color phosphor material, Zn SiO: Mn, Zn GeO: Mn, or the like is used. Blue
2 4 2 2  2 4 2 2
蛍光体材料としては、 BaMgAl O : Euや、 BaSrMgAl O : Eu等がよく使用され  As phosphor materials, BaMgAl 2 O 3: Eu, BaSrMgAl 2 O 3: Eu, etc. are often used.
10 17 10 17  10 17 10 17
ている。 [0005] この内、 BaMgAl O : Euや、 BaSrMgAl O : Eu等の青色蛍光体材料は、赤色 ing. Of these, blue phosphor materials such as BaMgAl 2 O 3: Eu and BaSrMgAl 2 O 3: Eu are red.
10 17 10 17  10 17 10 17
蛍光体材料および緑色蛍光体材料と比較して、その構造上、結晶構造が層状構造 を有しており、蛍光体の Ba— O層の表面に空気中に存在する水分が選択的に吸着 してしまう。そのため、青色蛍光体材料に付着した水分がパネル内へ取り込まれるこ とになる (特許文献 1参照)。  Compared with the phosphor material and the green phosphor material, the crystal structure has a layered structure, and moisture present in the air is selectively adsorbed on the surface of the Ba—O layer of the phosphor. End up. Therefore, moisture adhering to the blue phosphor material is taken into the panel (see Patent Document 1).
特許文献 1:特開 2003— 213258号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-213258
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] このパネル内に取り込まれた水分は、放電によって蛍光体と反応したり、保護膜とし て形成した MgOと反応し、それによつて、パネルの輝度劣化や色度変化、あるいは 駆動マージンの低下や放電電圧の上昇といった不具合が発生することがある。 [0006] Moisture taken into the panel reacts with phosphors by discharge or reacts with MgO formed as a protective film, thereby causing deterioration of panel brightness, chromaticity change, or driving margin. Problems such as a decrease and an increase in discharge voltage may occur.
[0007] 本発明は、このような事情を考慮してなされたもので、青色蛍光体層の下層に赤色 または緑色蛍光体層を形成して、青色蛍光体層からの発光量を確保しながら、青色 蛍光体材料の使用量を減らしてやることにより、パネル内へ取り込まれる水分の絶対 量を低減するものである。  [0007] The present invention has been made in view of such circumstances, and a red or green phosphor layer is formed below the blue phosphor layer, while ensuring the amount of light emitted from the blue phosphor layer. By reducing the amount of blue phosphor material used, the absolute amount of moisture taken into the panel is reduced.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、一対の基板間に形成された放電空間に、赤色蛍光体層が形成された セルと、緑色蛍光体層が形成されたセルと、青色蛍光体層が形成されたセルとを一 組とする多数組のセルがマトリクス状に配置されたプラズマディスプレイパネルであつ て、青色蛍光体層の下層に反射層として他の色の蛍光体層が形成されていることを 特徴とするプラズマディスプレイパネルである。 The present invention relates to a cell in which a red phosphor layer is formed, a cell in which a green phosphor layer is formed, and a cell in which a blue phosphor layer is formed in a discharge space formed between a pair of substrates. Is a plasma display panel in which a large number of cells are arranged in a matrix, and a phosphor layer of another color is formed as a reflective layer under the blue phosphor layer. It is a plasma display panel.
発明の効果  The invention's effect
[0009] 本発明によれば、青色蛍光体層からの発光量を低下させることなぐかつ工程数の 増加を伴わず、低コストでパネル内の水分等の不純物ガスの低減を図ることができる 図面の簡単な説明  According to the present invention, it is possible to reduce impurity gas such as moisture in the panel at a low cost without reducing the amount of light emitted from the blue phosphor layer and without increasing the number of steps. Brief description of
[0010] [図 1]本発明の PDPの構成を示す説明図である。 圆 2]本発明の PDPの蛍光体層を示す説明図である。 FIG. 1 is an explanatory diagram showing a configuration of a PDP of the present invention. 圆 2] An explanatory view showing a phosphor layer of the PDP of the present invention.
圆 3]比較例の蛍光体層を示す説明図である。  圆 3] An explanatory view showing a phosphor layer of a comparative example.
[図 4]本発明の背面側のパネル組立体の製造プロセスを工程順に示す説明図である 符号の説明  FIG. 4 is an explanatory view showing the manufacturing process of the rear panel assembly of the present invention in the order of steps.
[0011] 10 PDP [0011] 10 PDP
11 前面側の基板  11 Front side board
12 透明電極  12 Transparent electrode
13 バス電極  13 Bus electrode
17, 24 誘電体層  17, 24 Dielectric layer
18 保護膜  18 Protective film
21 背面側の基板  21 Back side board
28R, 28G, 28B, 31R 蛍光体層  28R, 28G, 28B, 31R phosphor layer
29 隔壁  29 Bulkhead
30 放電空間  30 Discharge space
A アドレス電極  A Address electrode
L 表示ライン  L Display line
X, Y 表示電極  X, Y display electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明にお 、て、一対の基板としては、ガラス、石英、セラミックス等の基板や、これ らの基板上に、電極、絶縁膜、誘電体層、保護膜等の所望の構成要素を形成した基 板が含まれる。 In the present invention, as a pair of substrates, glass, quartz, ceramics and other substrates, and desired components such as electrodes, insulating films, dielectric layers and protective films on these substrates. Is included.
[0013] 一対の基板の前面側の基板には、一定の方向に表示電極が配置されていてもよい 。また、背面側の基板には、表示電極と交差する方向にアドレス電極が配置されてい てもよい。  [0013] Display electrodes may be arranged in a certain direction on the substrates on the front side of the pair of substrates. Further, address electrodes may be arranged on the substrate on the back side in a direction intersecting with the display electrodes.
[0014] 表示電極およびアドレス電極は、当該分野で公知の各種の材料と方法を用いて形 成することができる。電極に用いられる材料としては、例えば、 ITO、 SnOなどの透  The display electrode and the address electrode can be formed using various materials and methods known in the art. Examples of materials used for the electrode include ITO and SnO.
2 明な導電性材料や、 Ag、 Au、 Al、 Cu、 Crなどの金属の導電性材料が挙げられる。 電極の形成方法としては、当該分野で公知の各種の方法を適用することができる。た とえば、印刷などの厚膜形成技術を用いて形成してもよいし、物理的堆積法または 化学的堆積法力ゝらなる薄膜形成技術を用いて形成してもよ ヽ。厚膜形成技術として は、スクリーン印刷法などが挙げられる。薄膜形成技術の内、物理的堆積法としては 、蒸着法ゃスパッタ法などが挙げられる。化学的堆積方法としては、熱 CVD法や光 CVD法、ある!/、はプラズマ CVD法などが挙げられる。 2 Clear conductive materials and metallic conductive materials such as Ag, Au, Al, Cu, Cr. As a method for forming the electrode, various methods known in the art can be applied. For example, it may be formed using a thick film forming technique such as printing, or may be formed using a thin film forming technique such as physical deposition or chemical deposition. Examples of the thick film forming technique include a screen printing method. Among thin film formation techniques, examples of physical deposition methods include vapor deposition and sputtering. Examples of the chemical deposition method include a thermal CVD method, a photo-CVD method, and some! /, A plasma CVD method.
[0015] 赤色蛍光体層、緑色蛍光体層、または青色蛍光体層は、赤色、緑色または青色の 蛍光体粉末とバインダー榭脂と溶媒とを含む蛍光体ペーストを隔壁間の凹溝状の放 電空間内にスクリーン印刷、又はディスペンサーを用いた方法などで塗布し、これを 各色毎に繰り返した後、焼成することにより形成することができる。蛍光体層は、この 他に、蛍光体粉末と感光性材料とバインダー榭脂とを含むシート状の蛍光体層材料 (いわゆるグリーンシート)を使用し、フォトリソグラフィー技術で形成することもできる。 この場合、所望の色のシートを基板上の表示領域全面に貼り付けて、露光、現像を 行い、これを各色毎に繰り返すことで、対応する隔壁間に各色の蛍光体層を形成す ることがでさる。 [0015] The red phosphor layer, the green phosphor layer, or the blue phosphor layer is formed by releasing a phosphor paste containing red, green, or blue phosphor powder, a binder resin, and a solvent in a groove-like shape between the partition walls. It can be formed by applying it into the electric space by screen printing or a method using a dispenser, repeating this for each color, and then baking. In addition, the phosphor layer can be formed by a photolithography technique using a sheet-like phosphor layer material (so-called green sheet) containing phosphor powder, a photosensitive material, and a binder resin. In this case, a phosphor sheet of each color is formed between the corresponding barrier ribs by applying a sheet of a desired color to the entire display area on the substrate, exposing and developing, and repeating this for each color. It is out.
[0016] 赤色蛍光体ペーストに用いる赤色蛍光体材料としては、 (Y, Gd) BO: Euや、 Y O  [0016] The red phosphor material used for the red phosphor paste includes (Y, Gd) BO: Eu and Y 2 O
3 2 3 2
: Eu等を使用することができる。緑色蛍光体ペーストに用いる緑色蛍光体材料として: Eu or the like can be used. As a green phosphor material used for green phosphor paste
3 Three
は、 Zn SiO: Mnや、 Zn GeO: Mn等を使用することができる。青色蛍光体ペースト Zn SiO: Mn, Zn GeO: Mn, or the like can be used. Blue phosphor paste
2 4 2 2 2 4 2 2
に用いる青色蛍光体材料としては、 BaMgAl O : Euや、 BaSrMgAl O : Eu等を  Examples of blue phosphor materials used in the present invention include BaMgAl 2 O 3 Eu and BaSrMgAl 2 O 3 Eu.
10 17 10 17 使用することができる。  10 17 10 17 Can be used.
[0017] 本発明において、反射層として形成された他の色の蛍光体層は、赤色蛍光体層ま たは緑色蛍光体層であることが好ましい。この場合、青色蛍光体層とその下層の蛍 光体層との合計の層厚は、赤色蛍光体層または緑色蛍光体層とほぼ同程度の層厚 であることが望ましい。青色蛍光体層に含まれる青色蛍光体材料は、 BaMgAl O :  In the present invention, the other color phosphor layer formed as the reflection layer is preferably a red phosphor layer or a green phosphor layer. In this case, it is desirable that the total thickness of the blue phosphor layer and the underlying phosphor layer is approximately the same as that of the red phosphor layer or the green phosphor layer. The blue phosphor material contained in the blue phosphor layer is BaMgAl 2 O 3:
10 17 10 17
Euであってもよぐ BaSrMgAl O : Euであってもよい。 Eu may be used. BaSrMgAl 2 O 3: Eu may be used.
10 17  10 17
[0018] 本発明は、また、一対の基板間に形成された放電空間に、赤色蛍光体層が形成さ れたセルと、緑色蛍光体層が形成されたセルと、青色蛍光体層が形成されたセルと を一組とする多数組のセルがマトリクス状に配置されたプラズマディスプレイパネルの 蛍光体層形成方法であって、各色の蛍光体層形成予定領域に各色の蛍光体ペース トを塗布して乾燥させ、これを焼成することで蛍光体層を形成することからなり、蛍光 体ペーストの塗布に際し、赤色蛍光体層形成予定領域に赤色蛍光体ペーストを塗 布する時か、緑色蛍光体層形成予定領域に緑色蛍光体ペーストを塗布する時の 、 ずれか一方の時に、塗布している蛍光体ペーストと同じ蛍光体ペーストを青色蛍光 体層形成予定領域に塗布して乾燥させ、その後、青色蛍光体層形成予定領域に青 色蛍光体ペーストを塗布する工程を備えてなるプラズマディスプレイパネルの蛍光体 層形成方法である。 The present invention also provides a cell in which a red phosphor layer is formed, a cell in which a green phosphor layer is formed, and a blue phosphor layer in a discharge space formed between a pair of substrates. Of a plasma display panel in which a large number of cells are arranged in a matrix. A phosphor layer forming method comprising: applying a phosphor paste of each color to a region where each color phosphor layer is to be formed, drying the substrate, and firing the phosphor paste to form a phosphor layer. When applying red phosphor layer to the area where the red phosphor layer is to be formed, or when applying green phosphor paste to the area where the green phosphor layer is to be formed, either Display panel comprising a step of applying the same phosphor paste to the blue phosphor layer formation planned area and drying, and then applying the blue phosphor paste to the blue phosphor layer formation planned area This is a phosphor layer forming method.
[0019] 以下、図面に示す実施の形態に基づいて本発明を詳述する。なお、本発明はこれ によって限定されるものではなぐ各種の変形が可能である。  Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. It should be noted that the present invention can be variously modified without being limited thereto.
[0020] 図 1 (a)および図 1 (b)は本発明の PDPの構成を示す説明図である。図 1 (a)は全 体図、図 1 (b)は部分分解斜視図である。この PDPはカラー表示用の AC駆動型の 3 電極面放電型 PDPである。 [0020] Fig. 1 (a) and Fig. 1 (b) are explanatory diagrams showing the configuration of the PDP of the present invention. Fig. 1 (a) is an overall view, and Fig. 1 (b) is a partially exploded perspective view. This PDP is an AC-driven 3-electrode surface discharge PDP for color display.
[0021] 本 PDP10は、前面側の基板 11と背面側の基板 21から構成されている。前面側の 基板 11と背面側の基板 21としては、ガラス基板、石英基板、セラミックス基板等を使 用することができる。 The PDP 10 includes a front substrate 11 and a rear substrate 21. As the substrate 11 on the front side and the substrate 21 on the back side, a glass substrate, a quartz substrate, a ceramic substrate, or the like can be used.
[0022] 前面側の基板 11の内側面には、水平方向に表示電極 Xと表示電極 Yが等間隔に 配置されて ヽる。隣接する表示電極 Xと表示電極 Yとの間が全て表示ライン Lとなる。 各表示電極 X, Yは、 ITO、 SnOなどの幅の広い透明電極 12と、例えば Ag、 Au、 A  [0022] Display electrodes X and Y are arranged at equal intervals in the horizontal direction on the inner side surface of the substrate 11 on the front side. The display line L is entirely between the adjacent display electrode X and display electrode Y. Each display electrode X, Y consists of a wide transparent electrode 12 such as ITO, SnO, etc., for example, Ag, Au, A
2  2
1、 Cu、 Cr及びそれらの積層体 (例えば CrZCuZCrの積層構造)等力もなる金属製 の幅の狭いバス電極 13から構成されている。表示電極 X, Yは、 Ag、 Auについては スクリーン印刷のような厚膜形成技術を用い、その他については蒸着法、スパッタ法 等の薄膜形成技術とエッチング技術を用いることにより、所望の本数、厚さ、幅及び 間隔で形成することができる。  1, Cu, Cr, and their laminated bodies (for example, a laminated structure of CrZCuZCr) are composed of a narrow bus electrode 13 made of metal that also has equal force. For display electrodes X and Y, the desired number and thickness of Ag and Au can be obtained by using a thick film formation technology such as screen printing, and the others using thin film formation technology such as vapor deposition and sputtering, and etching technology. It can be formed with length, width and spacing.
[0023] なお、本 PDPでは、表示電極 Xと表示電極 Yが等間隔に配置され、隣接する表示 電極 Xと表示電極 Yとの間が全て表示ライン Lとなる、いわゆる ALIS構造の PDPとな つているが、対となる表示電極 X, Yが放電の発生しない間隔 (非放電ギャップ)を隔 てて配置された構造の PDPであっても、本発明を適用することができる。 [0024] 表示電極 X, Yの上には、表示電極 X, Υを覆うように誘電体層 17が形成されている 。誘電体層 17は、低融点ガラスペーストを、前面側の基板 11上にスクリーン印刷法 で塗布し、焼成することにより形成している。誘電体層 17は、プラズマ CVD法で SiO [0023] In this PDP, a display electrode X and a display electrode Y are arranged at equal intervals, and a display line L is formed between adjacent display electrodes X and Y, which is a so-called ALIS structure PDP. However, the present invention can also be applied to a PDP having a structure in which the pair of display electrodes X and Y are arranged with a gap (non-discharge gap) where no discharge occurs. A dielectric layer 17 is formed on the display electrodes X and Y so as to cover the display electrodes X and Υ. The dielectric layer 17 is formed by applying a low-melting glass paste to the front substrate 11 by screen printing and baking. The dielectric layer 17 is made of SiO by plasma CVD.
2 膜を成膜することにより形成してもよい。  2 You may form by forming a film.
[0025] 誘電体層 17の上には、表示の際の放電により生じるイオンの衝突による損傷から 誘電体層 17を保護するための保護膜 18が形成されている。この保護膜は MgOで形 成されている。保護膜は、電子ビーム蒸着法ゃスパッタ法のような、当該分野で公知 の薄膜形成プロセスによって形成することができる。  A protective film 18 is formed on the dielectric layer 17 to protect the dielectric layer 17 from damage caused by ion collision caused by discharge during display. This protective film is made of MgO. The protective film can be formed by a thin film forming process known in the art, such as electron beam evaporation or sputtering.
[0026] 背面側の基板 21の内側面には、平面的にみて表示電極 X, Yと交差する方向に複 数のアドレス電極 Aが形成され、そのアドレス電極 Aを覆って誘電体層 24が形成され ている。アドレス電極 Aは、一方の表示電極 Yとの交差部で発光セルを選択するため のアドレス放電を発生させるものであり、 CrZCuZCrの 3層構造で形成されている。 このアドレス電極 Aは、その他に、例えば Ag、 Au、 Al、 Cu、 Cr等で形成することもで きる。アドレス電極 Aも、表示電極 X, Yと同様に、 Ag、 Auについてはスクリーン印刷 のような厚膜形成技術を用い、その他については蒸着法、スパッタ法等の薄膜形成 技術とエッチング技術を用いることにより、所望の本数、厚さ、幅及び間隔で形成する ことができる。誘電体層 24は、誘電体層 17と同じ材料、同じ方法を用いて形成するこ とがでさる。  A plurality of address electrodes A are formed on the inner side surface of the substrate 21 on the back side in a direction intersecting the display electrodes X and Y in plan view, and the dielectric layer 24 covers the address electrodes A. Is formed. The address electrode A generates an address discharge for selecting a light emitting cell at an intersection with one display electrode Y, and is formed of a three-layer structure of CrZCuZCr. In addition, the address electrode A can be formed of, for example, Ag, Au, Al, Cu, Cr, or the like. As with the display electrodes X and Y, the address electrode A also uses a thick film formation technique such as screen printing for Ag and Au, and a thin film formation technique such as vapor deposition and sputtering and an etching technique for the other. Thus, it can be formed with a desired number, thickness, width and interval. The dielectric layer 24 can be formed using the same material and the same method as the dielectric layer 17.
[0027] 隣接するアドレス電極 Aとアドレス電極 Aとの間の誘電体層 24上には、ストライプ状 の複数の隔壁 29が形成されている。隔壁 29の形状はこれに限定されず、放電空間 をセルごとに区画するメッシュ状であってもよい。このメッシュ状の隔壁は、格子状リブ 、ボックスリブ、ワッフルリブ等とも呼ばれる。隔壁 29は、サンドブラスト法、印刷法、フ オトエッチング法等により形成することができる。例えば、サンドブラスト法では、低融 点ガラスフリット、バインダー榭脂、溶媒等力もなるガラスペーストを誘電体層 24上に 塗布して乾燥させた後、そのガラスペースト層上に隔壁パターンの開口を有する切削 マスクを設けた状態で切削粒子を吹きつけて、マスクの開口に露出したガラスペース ト層を切削し、さらに焼成することにより形成する。また、フォトエッチング法では、切 削粒子で切削することに代えて、バインダー榭脂に感光性の榭脂を使用し、マスクを 用いた露光及び現像の後、焼成することにより形成する。 On the dielectric layer 24 between the adjacent address electrodes A and A, a plurality of stripe-shaped partition walls 29 are formed. The shape of the barrier ribs 29 is not limited to this, and may be a mesh shape that divides the discharge space into cells. This mesh-like partition is also called a grid-like rib, a box rib, a waffle rib or the like. The partition wall 29 can be formed by a sandblasting method, a printing method, a photoetching method, or the like. For example, in the sandblasting method, a glass paste having a low melting point glass frit, a binder resin, a solvent and the like is applied on the dielectric layer 24 and dried, and then a cutting having a partition pattern opening on the glass paste layer. It is formed by spraying cutting particles with the mask provided, cutting the glass paste layer exposed at the opening of the mask, and further firing. In the photo-etching method, instead of cutting with cutting particles, a photosensitive resin is used for the binder resin, and the mask is removed. It forms by baking after the used exposure and image development.
[0028] 隔壁 29間の凹溝状の放電空間の側面及び底面には、赤 (R)、緑 (G)、青 (B)の蛍 光体層 28R, 28G, 28B力形成されて!ヽる c 光体層 28R, 28G, 28Βίま、 光体 粉末とバインダー榭脂と溶媒とを含む蛍光体ペーストを隔壁 29間の凹溝状の放電空 間内にスクリーン印刷、又はディスペンサーを用いた方法などで塗布し、これを各色 毎に繰り返した後、焼成することにより形成している。青色の蛍光体層 28Βの下層に は、本発明の特徴に従って赤色の蛍光体層 31Rが形成されている力 それについて は後述する。  [0028] Red (R), green (G), and blue (B) phosphor layers 28R, 28G, and 28B are formed on the side and bottom surfaces of the groove-shaped discharge space between the barrier ribs 29! C Phosphor layer 28R, 28G, 28 Βί, phosphor powder containing phosphor powder, binder resin and solvent, screen printing in the grooved discharge space between the barrier ribs 29, or a method using a dispenser This is applied by repeating the process for each color and then firing. The force that the red phosphor layer 31R is formed in the lower layer of the blue phosphor layer 28Β according to the characteristics of the present invention will be described later.
[0029] PDPは、上記した前面側の基板 11と背面側の基板 21とを、表示電極 X, Υとァドレ ス電極 Αとが交差するように対向配置し、周囲を封止し、隔壁 29で囲まれた放電空 間 30に Xeと Neとを混合した放電ガスを充填することにより作製されている。この PDP では、表示電極 X, Yとアドレス電極 Aとの交差部の放電空間 30が、表示の最小単位 である 1つのセル(単位発光領域)となる。 1画素は R、 G、 Bの 3つのセルで構成され る。  [0029] In the PDP, the substrate 11 on the front side and the substrate 21 on the back side are arranged so that the display electrode X, Υ and the address electrode Α cross each other, the periphery is sealed, and the partition wall 29 The discharge space 30 surrounded by is filled with a discharge gas mixed with Xe and Ne. In this PDP, the discharge space 30 at the intersection of the display electrodes X and Y and the address electrode A is one cell (unit light emitting region) which is the minimum unit of display. One pixel consists of three cells, R, G, and B.
[0030] 図 2は本発明の PDPの蛍光体層を示す説明図である。この図は PDPを隔壁と直交 する方向に切断した状態を示して 、る。  FIG. 2 is an explanatory view showing a phosphor layer of the PDP of the present invention. This figure shows a state in which the PDP is cut in a direction perpendicular to the partition wall.
上述したように、隔壁 29と隔壁 29との間の細長い凹溝状の放電空間内には、赤色 蛍光体層 28R、緑色蛍光体層 28G、青色蛍光体層 28Bが形成されている。そして、 青色蛍光体層 28Bの下層には反射層として他の色の蛍光体層 31Rが形成されて ヽ る。本実施形態では、他の色の蛍光体層 31Rは赤色蛍光体層 31Rである。これらの 蛍光体層 28R, 28G, 28B, 31Rは、当該分野で公知の方法、すなわちスクリーン印 刷法またはディスペンサー法などで蛍光体ペーストを塗布し、これを乾燥後、焼成す ることで形成している。  As described above, the red phosphor layer 28R, the green phosphor layer 28G, and the blue phosphor layer 28B are formed in the elongated concave groove-shaped discharge space between the partition walls 29. In addition, a phosphor layer 31R of another color is formed as a reflective layer below the blue phosphor layer 28B. In the present embodiment, the other color phosphor layer 31R is the red phosphor layer 31R. These phosphor layers 28R, 28G, 28B, and 31R are formed by applying a phosphor paste by a method known in the art, that is, a screen printing method or a dispenser method, and drying and baking the phosphor paste. ing.
[0031] 青色蛍光体層 28Bの下層に形成された赤色蛍光体層 31Rは、最も厚い部分で 10 〜30 /ζ πιの厚みで形成されている。その上の青色蛍光体層 28Βは、最も厚い部分 で 10〜30 μ mの厚みで形成されている。  [0031] The red phosphor layer 31R formed below the blue phosphor layer 28B has a thickness of 10 to 30 / ζ πι at the thickest portion. The blue phosphor layer 28Β thereon is formed with a thickness of 10 to 30 μm at the thickest portion.
青色蛍光体層 28Bと、その下層の赤色蛍光体層 31Rとの合計の層厚は、赤色蛍 光体層 28Rまたは緑色蛍光体層 28Gとほぼ同程度の層厚となっている。 [0032] 図 3は比較例の蛍光体層を示す説明図である。 The total layer thickness of the blue phosphor layer 28B and the red phosphor layer 31R below the blue phosphor layer 28B is substantially the same as that of the red phosphor layer 28R or the green phosphor layer 28G. FIG. 3 is an explanatory view showing a phosphor layer of a comparative example.
この比較例では、隔壁 29と隔壁 29との間の細長い凹溝状の放電空間内に、赤色 蛍光体層 28R、緑色蛍光体層 28G、青色蛍光体層 28Bが単に形成されているのみ である。青色蛍光体層 28Bは一層のみで、青色蛍光体層 28Bの下層には他の色の 蛍光体層は形成されていない。これらの蛍光体層 28R, 28G, 28Bも、当該分野で 公知の方法、すなわちスクリーン印刷法またはディスペンサー法などで蛍光体ペース トを塗布し、これを乾燥後、焼成することで形成している。  In this comparative example, the red phosphor layer 28R, the green phosphor layer 28G, and the blue phosphor layer 28B are merely formed in the elongated concave groove-like discharge space between the partition walls 29 and 29. . There is only one blue phosphor layer 28B, and no other color phosphor layer is formed under the blue phosphor layer 28B. These phosphor layers 28R, 28G, and 28B are also formed by applying a phosphor paste by a method known in the art, that is, a screen printing method or a dispenser method, and drying and baking the phosphor paste.
[0033] 図 4(a)〜図 4(f)は図 2に示した本発明の背面側のパネル組立体(パネルアセンブリ )の製造プロセスを工程順に示す説明図である。  4 (a) to 4 (f) are explanatory views showing a manufacturing process of the rear panel assembly (panel assembly) of the present invention shown in FIG. 2 in the order of steps.
まず、ガラス力もなる背面側の基板 21を用意し、つぎの工程において基板 21の内 側にスパッタ法などにより CrZCuZCrの三層構造の導電膜、あるいは A1等の導電 膜を成膜した後、この導電膜をフォトリソ法等により所望の形状にパターユングして、 アドレス電極 Aを形成する(図 4 (a)参照)。アドレス電極 Aはデータ電極とも呼ばれる  First, a substrate 21 on the back side that also has glass power is prepared. In the next step, a conductive film such as a three-layer structure of CrZCuZCr or A1 is formed on the inner side of the substrate 21 by sputtering or the like. The conductive film is patterned into a desired shape by photolithography or the like to form the address electrode A (see FIG. 4 (a)). Address electrode A is also called data electrode
[0034] そして、次の工程でアドレス電極 Aを覆うように誘電体層 24を形成する。誘電体層 2 4は、低融点ガラスペーストをスクリーン印刷法で塗布し、焼成することにより形成する (図 4 (b)参照)。 Then, the dielectric layer 24 is formed so as to cover the address electrode A in the next step. The dielectric layer 24 is formed by applying a low-melting glass paste by a screen printing method and baking it (see FIG. 4B).
次の工程では、誘電体層 24上に、サンドブラスト法やスクリーン印刷法等により隔 壁 29を形成する(図 4 (c)参照)。  In the next step, a partition wall 29 is formed on the dielectric layer 24 by a sandblasting method, a screen printing method, or the like (see FIG. 4C).
[0035] 次の工程で蛍光体層を形成するのである力 図 3に示した比較例の場合であれば[0035] The force that forms the phosphor layer in the next step In the case of the comparative example shown in FIG.
、赤色、緑色、青色の各蛍光体ペーストを、それぞれの放電セル内に塗布し、乾燥 後、焼成して、それぞれの膜厚に形成する。 , Red, green, and blue phosphor pastes are applied to the respective discharge cells, dried, and baked to form respective film thicknesses.
[0036] これに対し、本実施形態では、赤色蛍光体ペーストを Rセルに塗布する際、同時にOn the other hand, in the present embodiment, when the red phosphor paste is applied to the R cell,
Bセルにも赤色蛍光体ペーストを塗布する(図 4 (d)参照)。つまり、 Rセルと Bセルに 一度に赤色蛍光体ペーストを塗布し、次に緑色蛍光体ペーストを Gセルに塗布し、 乾燥させる(図 4 (e)参照)。塗布の順序はこの逆であってもよぐ特に限定はない。 その後、 Bセルに、通常よりも少ない充填量で青色蛍光体ペーストを塗布して乾燥 させる(図 4 (f)参照)。 [0037] 赤色蛍光体ペーストに用いる赤色蛍光体材料としては、 (Y, Gd) BO: Euや、 Y O Apply red phosphor paste to the B cell as well (see Fig. 4 (d)). In other words, red phosphor paste is applied to R cell and B cell at a time, then green phosphor paste is applied to G cell and dried (see Fig. 4 (e)). There is no particular limitation on the order of application. After that, apply blue phosphor paste to the B cell with a smaller filling amount than usual and dry it (see Fig. 4 (f)). [0037] The red phosphor material used for the red phosphor paste includes (Y, Gd) BO: Eu, YO
3 2 3 2
: Eu等を使用する。緑色蛍光体ペーストに用いる緑色蛍光体材料としては、 Zn SiO: Eu is used. The green phosphor material used for the green phosphor paste is Zn SiO
3 23 2
: Mnや、 Zn GeO: Mn等を使用する。青色蛍光体ペーストに用いる青色蛍光体材: Mn, Zn GeO: Mn, etc. are used. Blue phosphor material used for blue phosphor paste
4 2 2 4 2 2
料としては、 BaMgAl O : Euや、 BaSrMgAl O : Eu等を使用する。バインダー  As the material, BaMgAl 2 O 3: Eu, BaSrMgAl 2 O 3: Eu, or the like is used. Binder
10 17 10 17  10 17 10 17
榭脂と溶媒については、当該分野で公知のものを適宜使用する。  As the resin and the solvent, those known in the art are appropriately used.
[0038] 上記の工程で蛍光体ペーストを塗布して乾燥させた後、背面側の基板 21ごと焼成 炉内に搬入し、蛍光体ペーストを焼成することで、本実施形態の蛍光体層を形成す る(図 2参照)。 [0038] After the phosphor paste is applied and dried in the above process, the substrate 21 on the back side is loaded into the firing furnace, and the phosphor paste is fired to form the phosphor layer of the present embodiment. (See Fig. 2).
[0039] 上記においては、青色蛍光体層の下層に赤色蛍光体層を形成したが、青色蛍光 体層の下層には、青色以外の色の蛍光体層を形成すればよぐ緑色蛍光体層を形 成してちょい。  [0039] In the above, the red phosphor layer is formed under the blue phosphor layer, but the green phosphor layer may be formed by forming a phosphor layer of a color other than blue under the blue phosphor layer. Form it.
[0040] 一般的に PDPにおける紫外線により励起される蛍光体材料の発光は、 10 /z m程 度の深さまでの蛍光体材料による発光であり、それ以下の下地の蛍光体材料は反射 材として働いている。したがって、青色蛍光体層の下層に形成する他色の蛍光体層 は、青色蛍光体材料より緻密な蛍光体材料を反射層として形成してやることが望まし い。具体的には、同じ膜厚で青色蛍光体材料よりも反射率の大きいものを反射層とし て形成することが望ましい。  [0040] In general, light emission of a phosphor material excited by ultraviolet light in a PDP is light emission by a phosphor material up to a depth of about 10 / zm, and the underlying phosphor material below that acts as a reflector. ing. Therefore, it is desirable that the other color phosphor layer formed below the blue phosphor layer is formed by forming a phosphor material denser than the blue phosphor material as the reflective layer. Specifically, it is desirable to form a reflective layer having the same film thickness and a higher reflectance than the blue phosphor material.
[0041] このようにして、青色蛍光体材料の使用量を減らしてやることにより、パネル内へ取 り込まれる水分の絶対量を低減させる。当然ながら、青色蛍光体層からの発光量はこ のままでは低下するため、下地に反射層として、他の色の蛍光体層を形成し、青色 蛍光体層からの発光量を補う。  [0041] In this way, the absolute amount of moisture taken into the panel is reduced by reducing the amount of blue phosphor material used. Of course, the amount of light emitted from the blue phosphor layer is reduced as it is, so that a phosphor layer of another color is formed as a reflective layer on the base to supplement the amount of light emitted from the blue phosphor layer.
[0042] 青色蛍光体層からの発光量を補うために、例えば青色蛍光体層の下地に白色の 反射層を設けるようにした場合には、白色反射層の形成工程が必要になり、工程数 が増加し、コストアップとなってしまう。このため、製造工程の短縮ィ匕およびコスト低下 の観点から、既存の赤色蛍光体ペーストまたは緑色蛍光体ペーストを利用して、青 色蛍光体層の下層に反射用の蛍光体層を形成する。  [0042] In order to supplement the amount of light emitted from the blue phosphor layer, for example, when a white reflective layer is provided on the base of the blue phosphor layer, a step of forming a white reflective layer is required. Will increase and cost will increase. For this reason, from the viewpoint of shortening the manufacturing process and reducing the cost, a reflecting phosphor layer is formed under the blue phosphor layer using the existing red phosphor paste or green phosphor paste.
[0043] 以上説明したように、本実形態によれば、青色蛍光体ペーストを塗布する前に、同 じ工程で他色の蛍光体ペーストを青蛍光体ペーストの塗布予定エリアに塗布し、そ の他色の蛍光体ペーストで形成した蛍光体層を反射層として用いる。これにより、青 色蛍光体層からの発光量を低下させることなぐ工程数の増加を伴わず、すなわち低 コストで、パネル内の水分等の不純物ガスの低減を図ることができる。 [0043] As described above, according to the present embodiment, before applying the blue phosphor paste, the phosphor paste of another color is applied to the area where the blue phosphor paste is to be applied in the same process. A phosphor layer formed of another color phosphor paste is used as a reflective layer. As a result, it is possible to reduce impurity gas such as moisture in the panel without increasing the number of steps without reducing the amount of light emitted from the blue phosphor layer, that is, at low cost.

Claims

請求の範囲 The scope of the claims
[1] 一対の基板間に形成された放電空間に、赤色蛍光体層が形成されたセルと、緑色 蛍光体層が形成されたセルと、青色蛍光体層が形成されたセルとを一組とする多数 組のセルがマトリクス状に配置されたプラズマディスプレイパネルであって、  [1] A set of a cell in which a red phosphor layer is formed, a cell in which a green phosphor layer is formed, and a cell in which a blue phosphor layer is formed in a discharge space formed between a pair of substrates Is a plasma display panel in which a large number of cells are arranged in a matrix,
青色蛍光体層の下層に反射層として他の色の蛍光体層が形成されて ヽることを特 徴とするプラズマディスプレイパネル。  A plasma display panel characterized in that a phosphor layer of another color is formed as a reflective layer under the blue phosphor layer.
[2] 前記反射層として形成された他の色の蛍光体層が、赤色蛍光体層または緑色蛍光 体層である請求項 1記載のプラズマディスプレイパネル。  2. The plasma display panel according to claim 1, wherein the phosphor layer of another color formed as the reflective layer is a red phosphor layer or a green phosphor layer.
[3] 青色蛍光体層とその下層の蛍光体層との合計の層厚が、赤色蛍光体層または緑 色蛍光体層とほぼ同程度の層厚である請求項 1記載のプラズマディスプレイパネル。 3. The plasma display panel according to claim 1, wherein the total thickness of the blue phosphor layer and the phosphor layer below it is substantially the same as that of the red phosphor layer or the green phosphor layer.
[4] 青色蛍光体層に含まれる青色蛍光体材料が BaMgAl O : Euまたは BaSrMgAl [4] The blue phosphor material contained in the blue phosphor layer is BaMgAl 2 O 3: Eu or BaSrMgAl
10 17 1 10 17 1
O : Euである請求項 1記載のプラズマディスプレイパネル。 The plasma display panel according to claim 1, which is O: Eu.
0 17  0 17
[5] 一対の基板間に形成された放電空間に、赤色蛍光体層が形成されたセルと、緑色 蛍光体層が形成されたセルと、青色蛍光体層が形成されたセルとを一組とする多数 組のセルがマトリクス状に配置されたプラズマディスプレイパネルの蛍光体層形成方 法であって、  [5] A set of a cell in which a red phosphor layer is formed, a cell in which a green phosphor layer is formed, and a cell in which a blue phosphor layer is formed in a discharge space formed between a pair of substrates A method for forming a phosphor layer of a plasma display panel in which a large number of cells are arranged in a matrix,
各色の蛍光体層形成予定領域に各色の蛍光体ペーストを塗布して乾燥させ、これ を焼成することで蛍光体層を形成することからなり、  The phosphor layer of each color is applied to the region where the phosphor layer is to be formed, dried, and baked to form a phosphor layer.
蛍光体ペーストの塗布に際し、赤色蛍光体層形成予定領域に赤色蛍光体ペースト を塗布する時か、緑色蛍光体層形成予定領域に緑色蛍光体ペーストを塗布する時 のいずれか一方の時に、塗布している蛍光体ペーストと同じ蛍光体ペーストを青色 蛍光体層形成予定領域に塗布して乾燥させ、  When applying the phosphor paste, apply it either when applying the red phosphor paste to the area where the red phosphor layer is to be formed, or when applying the green phosphor paste to the area where the green phosphor layer is to be formed. Apply the same phosphor paste to the blue phosphor layer formation planned area and dry it.
その後、青色蛍光体層形成予定領域に青色蛍光体ペーストを塗布する工程を備え てなるプラズマディスプレイパネルの蛍光体層形成方法。  Thereafter, a phosphor layer forming method for a plasma display panel, comprising a step of applying a blue phosphor paste to a region where the blue phosphor layer is to be formed.
PCT/JP2006/317985 2006-09-11 2006-09-11 Plasma display panel and method of forming phosphor layer thereof WO2008032355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/317985 WO2008032355A1 (en) 2006-09-11 2006-09-11 Plasma display panel and method of forming phosphor layer thereof
JP2008534159A JPWO2008032355A1 (en) 2006-09-11 2006-09-11 Plasma display panel and phosphor layer forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317985 WO2008032355A1 (en) 2006-09-11 2006-09-11 Plasma display panel and method of forming phosphor layer thereof

Publications (1)

Publication Number Publication Date
WO2008032355A1 true WO2008032355A1 (en) 2008-03-20

Family

ID=39183429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317985 WO2008032355A1 (en) 2006-09-11 2006-09-11 Plasma display panel and method of forming phosphor layer thereof

Country Status (2)

Country Link
JP (1) JPWO2008032355A1 (en)
WO (1) WO2008032355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996614B1 (en) 2008-12-19 2010-11-25 한국세라믹기술원 Photoluminescence phosphor composite and plasma display panel using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185036A (en) * 1999-12-24 2001-07-06 Matsushita Electric Ind Co Ltd Plasma display panel
JP2004111179A (en) * 2002-09-18 2004-04-08 Matsushita Electric Ind Co Ltd Method of manufacturing plasma display panel
JP2005222914A (en) * 2004-02-09 2005-08-18 Pioneer Electronic Corp Color plasma display panel and its manufacturing method, as well as color plasma display device
JP2006031950A (en) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006031949A (en) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006059629A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Plasma display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185036A (en) * 1999-12-24 2001-07-06 Matsushita Electric Ind Co Ltd Plasma display panel
JP2004111179A (en) * 2002-09-18 2004-04-08 Matsushita Electric Ind Co Ltd Method of manufacturing plasma display panel
JP2005222914A (en) * 2004-02-09 2005-08-18 Pioneer Electronic Corp Color plasma display panel and its manufacturing method, as well as color plasma display device
JP2006031950A (en) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006031949A (en) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd Plasma display panel
JP2006059629A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Plasma display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996614B1 (en) 2008-12-19 2010-11-25 한국세라믹기술원 Photoluminescence phosphor composite and plasma display panel using the same

Also Published As

Publication number Publication date
JPWO2008032355A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP2004039309A (en) Panel assembly for plasma display panel (pdp), and manufacturing method therefor
JP3803256B2 (en) Plasma display panel and plasma display panel display device
JP2004273265A (en) Plasma display panel
WO2003075301A1 (en) Plasma display
WO2008032355A1 (en) Plasma display panel and method of forming phosphor layer thereof
JP3718095B2 (en) Plasma display panel and manufacturing method thereof
JP2008091092A (en) Plasma display panel and manufacturing method therefor
JP4375113B2 (en) Plasma display panel
US20090189524A1 (en) Plasma display panel and its manufacturing method
US20090302763A1 (en) Plasma display panel and method for manufacturing the same
JP4179345B2 (en) Method for manufacturing plasma display panel
JPH0757630A (en) Manufacture of surface discharge type plasma display panel
US20090135101A1 (en) Plasma display panel
JPH07320641A (en) Bulkhead forming method for pdp(plasma display panel)
KR100823514B1 (en) Plasma display panel
JP2005093340A (en) Front-side substrate for gas discharge panel and its manufacturing method
JPH11195375A (en) Manufacture of plasma display panel
JP4046162B2 (en) Method for forming phosphor layer of plasma display panel
JP2000285808A (en) Barrier rib structure on back substrate for discharge display device
JP2001273854A (en) Plasma display panel
JP2008091093A (en) Plasma display panel
JP2008130382A (en) Plasma display panel and its barrier rib forming method
US20090026950A1 (en) Plasma display panel
WO2007026424A1 (en) Plasma display panel
JP2006202673A (en) Full-color plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06797804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534159

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797804

Country of ref document: EP

Kind code of ref document: A1