WO2008031712A2 - Mélanges pesticides actifs comprenant des sulfamides - Google Patents

Mélanges pesticides actifs comprenant des sulfamides Download PDF

Info

Publication number
WO2008031712A2
WO2008031712A2 PCT/EP2007/058857 EP2007058857W WO2008031712A2 WO 2008031712 A2 WO2008031712 A2 WO 2008031712A2 EP 2007058857 W EP2007058857 W EP 2007058857W WO 2008031712 A2 WO2008031712 A2 WO 2008031712A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
methyl
pesticidal mixtures
mixtures according
Prior art date
Application number
PCT/EP2007/058857
Other languages
English (en)
Other versions
WO2008031712A3 (fr
Inventor
Wolfgang Von Deyn
Jürgen LANGEWALD
Matthias Pohlman
Florian Kaiser
Douglas D. Anspaugh
Henry Van Tuyl Cotter
Nigel Armes
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2008031712A2 publication Critical patent/WO2008031712A2/fr
Publication of WO2008031712A3 publication Critical patent/WO2008031712A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/06Sulfonic acid amides

Definitions

  • Pesticidal active mixtures comprising sulfonamides
  • the present invention relates to pesticidal mixtures comprising as active components
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl or propargyl
  • R 3 is chloride, methoxy or difluoromethoxy
  • R 4 is hydrogen or fluoro
  • Acetylcholine esterase inhibitors selected from triazemate or from the class of carbamates consisting of aldicarb, alanycarb, benfuracarb, carbaryl, carbofuran, carbosul- fan, methiocarb, methomyl, oxamyl, primicarb, propoxur and thiodicarb or from the class of organophosphates consisting of acephate, azinphos-ethyl, azinphos-methyl, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, demeton-S-methyl, diazinon, dichlor- vos/DDVP, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidaphos, methidathion, mevinphos, monocrotophos, oxymethoate, oxy
  • A.2 GABA-gated chloride channel antagonists selected from the cyclodiene or- ganochlorine endosulfan, from N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon or N-Ethyl ⁇ -dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon or from the class of phenylpyrazoles consisting of acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, va- niliprole and the phenyl pyrazole compound II.A 2 1 :
  • A.3 Sodium channel modulators selected from the class of pyrethroids consisiting of allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fen- propathrin, fenvalerate, flucythrinate, tau-fluvalinate, permethrin, silafluofen and tralomethrin;
  • Nicotinic acteylcholine receptor agonists/antagonists selected from nicotin, cartap hydrochloride or thiocyclam or selected from the class of neonicotinoids consisting of acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiameth- oxam and AKD-1022; or selected from the allosteric nicotinic acteylcholine receptor agonist spinosad;
  • A.5 Chloride channel activators selected from abamectin, emamectin benzoate, Ie- pimectin or milbemectin;
  • A.6 Juvenile hormone mimics selected from hydroprene, kinoprene, fenoxycarb or pyriproxyfen;
  • A.7 Compounds affecting the oxidative phosphorylation selected from diafenthiuron, fenbutatin oxide, propargite or chlorfenapyr;
  • A.8 Inhibitors of the chitin biosynthesis selected from buprofezin or from the class of benzylureas consisting of bistrifluron, diflubenzuron, flufenoxuron, hexaflumuron, lufenuron, novaluron or teflubenzuron;
  • A.9 Moulting disruptors selected from cyromazine or from the class of ecdysone agonists consisting of methoxyfenozide, tebufenozide and azadirachtin;
  • A.10 Mitochondrial electron transport inhibitors selected from pyridaben, tolfenpyrad or flufenerim;
  • A.1 Voltage-dependent sodium channel blockers selected from indoxacarb or meta- flumizone;
  • A.12 Inhibitors of the lipid synthesis selected from spirodiclofen, spiromesifen or spiro- tetramat;
  • A.13 A group of various compounds consisting of amidoflumet, amitraz, bifenazate, clofentezine, cyenopyrafen, cyflumetofen, etoxazole, flonicamid, flubendiamine, flu- pyrazophos, hexythiazox, piperonyl butoxide, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprole and the anthranilamid compound II.
  • a 13 1 A group of various compounds consisting of amidoflumet, amitraz, bifenazate, clofentezine, cyenopyrafen, cyflumetofen, etoxazole, flonicamid, flubendiamine, flu- pyrazophos, hexythiazox, piperonyl butoxide, pymetrozine, pyridalyl, pyrifluqui
  • the present invention also provides methods for the control of insects, acarids or nematodes comprising contacting the insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of mixtures of at least one compound I with one or more compounds II.
  • the present invention also relates to a method of protecting plants from at- tack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of a mixture of at least one compound I with one or more compounds II.
  • the invention also provides a method for the protection of seeds from soil insects and of the seedlings' roots and shoots from soil and foliar insects which comprises contacting the seeds before sowing and/or after pregermination with a pesticidally effective amount of a mixture of at least one compound I with one or more compounds II.
  • the invention also relates to the use of a mixture of at least one compound I with one or more compounds Il for combating insects, arachnids or nematodes.
  • One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control.
  • Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests.
  • this object is in part or in whole achieved by the combination of active compounds defined at the outset. Moreover, we have found that simultaneous, that is joint or separate, application of at least one compound I and one or more com- pounds Il or successive application of at least one compound I and one or more compounds Il allows enhanced control of pests compared to the control rates that are possible with the individual compounds.
  • R 2 is hydrogen, methyl or ethyl
  • R 3 is methoxy or difluoromethoxy
  • R 4 is hydrogen or fluoro; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl; R 3 is methoxy; and
  • R 4 is hydrogen or fluoro; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is difluoromethoxy
  • R 4 is hydrogen; or the salts thereof. Preferred are also pesticidal mixtures, wherein the substituents of the compound of formula I have the following meanings:
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is difluoromethoxy
  • R 4 is fluoro; or the salts thereof.
  • the compound selected from group A.1 as defined above is preferably triazemate or primicarb.
  • the compound selected from group A.2 as defined above is preferably endosulfan, N-Ethyl-2,2- dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon, N-Ethyl-2,2- dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hy- drazon, acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole or vaniliprole or the phenylpyrazole compound II.A 2 1 .
  • the compound Il is N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon, N-Ethyl ⁇ -dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon, acetoprole or fipronil.
  • the compound Il selected from group A.3 as defined above is preferably allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta- cypermethrin, deltamethrin, etofenprox, fenpropathrin, fenvalerate, flucythrinate, tau- fluvalinate, silafluofen or tralomethrin.
  • the compound Il is alpha-cypermethrin or deltamethrin.
  • the compound Il selected from group A.4 as defined above is preferably thiocyclam or from the class of neonicotinoids acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thia- cloprid, thiamethoxam and AKD-1022; or the allosteric nicotinic acteylcholine receptor agonist spinosad. More preferably the compound Il is clothianidine, imidacloprid or thiamethoxam.
  • the compound Il selected from group A.5 as defined above is preferably abamectin, emamectin benzo- ate, lepimectin or milbemectin. More preferably the compound Il is abamectin.
  • the compound Il selected from group A.7 as defined above is preferably diafenthiuron.
  • the compound Il selected from group A.8 as defined above is preferably buprofezin.
  • the compound Il selected from group A.10 as defined above is preferably pyridaben or flufenerim.
  • the compound Il selected from group A.1 1 as defined above is preferably indoxacarb or metaflumizone. More preferably the compound Il is metaflumizone.
  • the compound Il selected from group A.12 as defined above is preferably spirodiclofen, spiromesifen or spirotetramat. More preferably the compound Il is spiromesifen or spirotetramat.
  • the compound Il selected from group A.13 as defined above is preferably amitraz, flonicamid, fluben- diamine, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprole or the anthranil compound II.A 13 1 .
  • the compound Il is flonicamid, pymetrozine, pyrifluquinazon, chlorantraniliprole or the anthranil compound II.A 13 1 .
  • pesticidal mixtures containing acetoprole as compound II are especially preferred.
  • pesticidal mixtures containing fipronil as compound II are especially preferred.
  • pesticidal mixtures containing alpha-cypermethrin as compound II are especially preferred.
  • pesticidal mixtures containing clothianidin as compound II are especially preferred.
  • pesticidal mixtures containing imidacloprid as compound II are especially preferred.
  • pesticidal mixtures containing thiamethoxam as compound II are especially preferred.
  • pesticidal mixtures containing pymetrozine as compound II are especially preferred.
  • pesticidal mixtures containing flonicamid as compound II are especially preferred.
  • pesticidal mixtures containing spiromesifen as compound II are especially preferred.
  • pesticidal mixtures containing spirotetramat as compound II are especially preferred.
  • pesticidal mixtures containing pyrifluquinazon as compound II are especially preferred.
  • pesticidal mixtures containing chlorantraniliprole as compound Especially preferred are pesticidal mixtures containing the anthranilamid compound 11.
  • inventive mixtures wherein the compound Il of group A is ace- toprol and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is fipronil and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is N- Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is N- Ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p- tolyl) hydrazon and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is al- pha-cypermethrin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is del- tamethrin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is clothianidin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is imi- dacloprid and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is thiamethoxam and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is abamectin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is py- metrozine and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is floni- camid and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is diafenthiuron and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is bu- profezin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is pyri- daben and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is flufenerim and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is metaflumizone and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is spi- romesifen and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is spi- rotetramat and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is pyrifluquinazon and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is chlorantraniliprole and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is the anthranilamid compound II.A 13 1 and the compound of formula I is a compound of Table C.
  • Table M represents perferred combinations of compounds I as defined in table C and compounds Il of group A in mixtures according to the invention:
  • Another aspect of the present invention is when preparing the mixtures, it is preferred to employ the pure active compounds I and II, to which further active compounds, e.g. against harmful fungi or having herbicidal activity, or growth-regulating agents or fertilizers can be added.
  • Insects from the order of the lepidopterans for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheima- tobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandi- osella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bou- liana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha mo- lest
  • beetles Coldoptera
  • Agrilus sinuatus for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscu- rus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blasto- phagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Diabro
  • mosquitoes e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, An- astrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripal
  • thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Isoptera e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Re- ticulitermes santonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus;
  • cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuliggi- nosa, Periplaneta australasiae, and Blatta orientalis;
  • Atta cephalotes Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana,
  • Crematogaster spp. Hoplocampa minuta, Hoplocampa testudinea, Lasius niger, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri,
  • Paravespula vulgaris Paravespula pennsylvanica
  • Paravespula germanica Paravespula germanica
  • crickets grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina;
  • Orthoptera e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria
  • arachnoidea such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallina
  • Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa;
  • fleas e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
  • silverfish, firebrat e.g. Lepisma saccharina and Thermobia domestica
  • centipedes Chilopoda
  • Scutigera coleoptrata millipedes
  • Miplopoda e.g. Narceus spp.
  • Earwigs e.g. forficula auricularia
  • Pediculus humanus capitis e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovi- cola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus.
  • Collembola (springtails), e.g. Onychiurus ssp..
  • Nematodes plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema
  • the mixtures of the present are also useful for controlling arachnids (Arachnoidea), such as acarians (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp.
  • arachnoidea such as acarians (Acarina
  • Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus; tonemus pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and oligonychus pratensis.
  • insects preferably sucking or piercing insects such as insects from the genera Thysanoptera, Dip- tera and Hemiptera, in particular the following species:
  • Thysanoptera Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirto- thrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Diptera e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gam- biae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chryso- mya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia an- thropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex
  • Coleoptera for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Am- phimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthor- rhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vesper- tinus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica semipun
  • Hemiptera in particular aphids: Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gos- sypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae,
  • inventive mixtures are especially useful for the control of Lepidoptera, Coleoptera, Diptera, Thysanoptera and Hemiptera.
  • inventive mixtures are useful for the control of Thysanoptera and Hemiptera, especially Hemiptera.
  • the mixtures according to the present invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compounds according to the invention.
  • the formulations are prepared in a known manner (see e.g. for review US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning, "Agglomeration”, Chemical Engi- neering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and et seq.
  • auxiliaries suitable for the formulation of agrochemicals such as solvents and/or carriers, if desired emulsifiers, surfactants and dispersants, preservatives, anti- foaming agents, anti-freezing agents, for seed treatment formulation also optionally gelling agents.
  • solvents examples include water, aromatic solvents (for example Solvesso products, xylene), paraffins (for example mineral oil fractions), alcohols (for example methanol, butanol, pentanol, benzyl alcohol), ketones (for example cyclohexanone, gamma-butyrolactone), pyrrolidones (NMP(N-methyl-pyrrolidone), NOP (N-octyl- pyrrolidone)), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters. In principle, solvent mixtures may also be used.
  • aromatic solvents for example Solvesso products, xylene
  • paraffins for example mineral oil fractions
  • alcohols for example methanol, butanol, pentanol, benzyl alcohol
  • ketones for example cyclohexanone, gamma-butyrolactone
  • Suitable emulsifiers are nonionic and anionic emulsifiers (for example polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).
  • dispersants examples include lignin-sulfite waste liquors and methylcellulose.
  • Suitable surfactants used are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalene- sulfonic acid, alkylarylsulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, furthermore condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl
  • Substances which are suitable for the preparation of directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, etha- nol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, highly polar solvents, for example dimethyl sulfoxide, N-methylpyrrolidone or water.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, x
  • anti-freezing agents such as glycerin, ethylene glycol, propylene glycol and bactericides such as can be added to the formulation.
  • Suitable antifoaming agents are for example antifoaming agents based on silicon or magnesium stearate.
  • a suitable preservative is e.g. dichlorophen.
  • gelling agent is carrageen (Satiagel®)
  • Powders, materials for spreading and dustable products can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.
  • Granules for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers.
  • solid carriers examples include mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertiliz- ers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertiliz- ers, such as, for example, ammonium sulfate, ammoni
  • the formulations comprise from 0.01 to 95% by weight, preferably from 0.1 to 90% by weight, of the active compounds.
  • the active compounds are employed in a purity of from 90% to 100% by weight, preferably 95% to 100% by weight (according to NMR spectrum).
  • respective formulations can be diluted 2-10 fold leading to concentrations in the ready to use preparations of 0,01 to 60% by weight active compounds by weight, preferably 0,1 to 40% by weight.
  • the mixtures of the present invention can be used as such, in the form of their formulations or the use forms prepared therefrom, for example in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading or pouring.
  • the use forms depend entirely on the intended pur- poses; they are intended to ensure in each case the finest possible distribution of the active compounds according to the invention.
  • Aqueous use forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water.
  • emulsions, pastes or oil dispersions the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier.
  • concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil and such concentrates are suitable for dilution with water.
  • the active compound concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.01 to 1 % per weight.
  • the active compound(s) may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply formulations comprising over 95% by weight of active compound, or even to apply the active compound without additives.
  • UUV ultra-low-volume process
  • Products for dilution with water for foliar applications may be applied to the seed diluted or undiluted.
  • the active compound(s) 10 parts by weight of the active compound(s) are dissolved in 90 parts by weight of water or a water-soluble solvent. As an alternative, wetters or other auxiliaries are added. The active compound(s) dissolve(s) upon dilution with water, whereby a formu- lation with 10 % (w/w) of active compound(s) is obtained.
  • Emulsions EW, EO, ES
  • 25 parts by weight of the active compound(s) are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight).
  • This mixture is introduced into 30 parts by weight of water by means of an emulsifier machine (e.g. Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion, whereby a formulation with 25% (w/w) of active compound(s) is obtained.
  • an emulsifier machine e.g. Ultraturrax
  • 50 parts by weight of the active compound(s) are ground finely with addition of 50 parts by weight of dispersants and wetters and made as water-dispersible or water-soluble granules by means of technical appliances (for example extrusion, spray tower, fluid- ized bed). Dilution with water gives a stable dispersion or solution of the active compound ⁇ ), whereby a formulation with 50% (w/w) of active compound(s) is obtained.
  • 75 parts by weight of the active compound(s) are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetters and silica gel. Dilution with water gives a stable dispersion or solution of the active compound(s), whereby a formulation with 75% (w/w) of active compound(s) is obtained.
  • 0.5 part by weight of the active compound(s) is ground finely and associated with 95.5 parts by weight of carriers, whereby a formulation with 0.5% (w/w) of active com- pound(s) is obtained.
  • Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted for foliar use.
  • oils, wetters, adjuvants, herbicides, fungicides, other pesticides, or bactericides may be added to the active ingredients, if appropriate just immediately prior to use (tank mix). These agents usually are admixed with the agents according to the invention in a weight ratio of 1 :10 to 10:1.
  • inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through tro- phallaxis and transfer.
  • Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
  • the inventive mixtures are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • the bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it.
  • This attractant may be chosen from feeding stimulants or para and / or sex phero- mones readily known in the art.
  • Methods to control infectious diseases transmitted by insects with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like, lnsecticidal compositions for application to fibers, fabric, knitgoods, non- wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
  • inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
  • the quantity of active ingredient(s) ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 2O g per 100 m 2 .
  • Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound(s) per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
  • lnsecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.
  • the typical content of active ingredient(s) is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound.
  • the composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
  • the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • the rate of application of the mixture of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
  • the compounds I and the one or more compound(s) Il can be applied simultaneously, that is jointly or separately, or in succession, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • the compounds I and the one or more compound(s) Il are usually applied in a weight ratio of from 500:1 to 1 :100, preferably from 20:1 to 1 :50, in particular from 5:1 to 1 :20.
  • the application rates of the mixtures according to the invention are from 5 g/ha to 2000 g/ha, preferably from 50 to 1500 g/ha, in particular from 50 to 750 g/ha.
  • the mixtures according to the invention are effective through both contact and ingestion.
  • the mixtures according to the present invention are employed via soil application.
  • Soil application is especially favorable for use against ants, termites, crickets, or cockroaches.
  • the mixtures according to the present invention are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • compositions of this invention may further contain other active ingredients than those listed above.
  • active ingredients for example fungicides, herbicides, fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners.
  • additional ingredients may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix).
  • the plant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients.
  • the mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult.
  • the pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
  • "Locus” means a plant, seed, soil, area, material or environment in which a pest is growing or may grow.
  • pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various mixtures / compositions used in the invention.
  • a pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting a plant, or soil or water in which the plant is growing.
  • the term plant refers to an entire plant, a part of the plant or the propagation material of the plant, that is, the seed or the seedling.
  • Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
  • Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots against soil pests.
  • the mixtures according to the present invention are therfore suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant's roots and shoots against soil pests and foliar insects.
  • the protection of the resulting plant's roots and shoots is preferred.
  • the present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedlings' roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with mixtures according to the present invention.
  • a method wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected form piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
  • the present invention also comprises seeds coated with or containing the active compound ⁇ ).
  • coated with and/or containing generally signifies that the active ingredient(s) are for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product are (re)planted, it may absorb the active ingredient.
  • Suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • mixtures according to the invention may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.
  • the active mixtures can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imida- zolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No.
  • the mixtures according to the present invention can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures).
  • a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
  • the seed treatment application of the mixtures is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
  • the corresponding formulations are applied by treating the seeds with an effective amount of the mixture according to the present invention.
  • the application rates of the active compound(s) are generally from 0,1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2,5 kg per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
  • compositions which are especially useful for seed treatment are e.g.:
  • a Soluble concentrates (SL, LS)
  • Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pre- germinated the latter
  • a FS formulation is used for seed treatment.
  • a FS formulation may comprise 1-800 g/l of active ingredient(s), 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • Preferred FS formulations of compounds of formula I for seed treatment usually com- prise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient(s), from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g.
  • a binder (sticker /adhesion agent), optionally up to 5 % by weight, e.g. from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight.
  • a binder sticker /adhesion agent
  • a preservative such as a biocide, antioxidant or the like
  • Seed Treatment formulations may additionally also comprise binders and optionally colorants.
  • Binders can be added to improve the adhesion of the active materials on the seeds after treatment.
  • Suitable binders are block copolymers EO/PO surfactants but also po- lyvinylalcoholsl, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyle- neimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers.
  • colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pig- ment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
  • the invention also relates to seed comprising mixtures according to the present inven- tion.
  • the amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • Synergism can be described as an interaction where the combined effect of two or mo- re compounds is greater than the sum of the individual effects of each of the compounds.
  • the presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, Weeds, 15, 20-22):
  • test unit For evaluating control of vetch aphid (Megoura viciae) through contact or systemic means the test unit consisted of 24-well-microtiter plates containing broad bean leaf disks.
  • the compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the leaf disks at 2.5 ⁇ l, using a custom built micro atomizer, at two replica- tions.
  • the leaf disks were air-dried and 5 - 8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids were then allowed to suck on the treated leaf disks and incubated at 23 + 1 0 C, 50 + 5 % RH for 5 days. Aphid mortality and fecundity was then visually assessed. For the mixture tested the results are listed in table 1.
  • test unit For evaluating control of green peach aphid (Myzus persicae) through systemic means the test unit consisted of 96-well-microtiter plates containing liquid artificial diet under an artificial membrane.
  • the compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were pipetted into the aphid diet, using a custom built pipetter, at two replications.
  • test unit For evaluating control of boll weevil (Anthonomus grandis) the test unit consisted of 24- well-microtiter plates containing an insect diet and 20-30 A. grandis eggs. The compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 20 ⁇ l, using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at 23 + 1 0 C, 50 + 5 % RH for 5 days. Egg and larval mortality was then visually assessed. For the mixture tested the results are listed in table 3.
  • the test unit consisted of 96-well-microtiter plates containing an insect diet and 50-80 C. capitata eggs.
  • the compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 5 ⁇ l, using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at 28 + 1 0 C, 80 + 5 % RH for 5 days. Egg and larval mortality was then visually assessed. For the mixture tested the results are listed in table 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention concerne des mélanges pesticides comprenant comprenant en tant que composants actifs 1) au moins un composé sulfamide de formule (I) dans laquelle R1, R2, R3 et R4 sont tels que définis dans la description; et 2) un ou plusieurs composés II sélectionnés dans un groupe A comprenant des inhibiteurs d'acétylcholine estérase, des antagonistes de canaux chlorure à activation GABA, des modulateurs de canaux sodiques, des agonistes/antagonistes de récepteurs d'acétylcholine nicotinique, des activateurs de canaux chlorure, des analogues d'hormones juvéniles, des composés affectant la phosphorylation oxydante, des inhibiteurs de la biosynthèse de chitine, des perturbateurs de mue, des inhibiteurs de la méthionine, des inhibiteurs de canaux sodiques dépendants de la tension, des inhibiteurs de la synthèse lipide et d'autres composés tels que définis dans la description, en quantité efficaces en synergie. L'invention concerne également des procédés et l'utilisation de ces mélanges dans la lutte contre les insectes, arachnides ou nématodes dans ou sur les plantes, dans la protection de telles plantes infestées par des organismes nuisibles, et en particulier et en outre dans la protection des graines.
PCT/EP2007/058857 2006-09-11 2007-08-27 Mélanges pesticides actifs comprenant des sulfamides WO2008031712A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84360606P 2006-09-11 2006-09-11
US60/843,606 2006-09-11

Publications (2)

Publication Number Publication Date
WO2008031712A2 true WO2008031712A2 (fr) 2008-03-20
WO2008031712A3 WO2008031712A3 (fr) 2009-04-09

Family

ID=39038349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/058857 WO2008031712A2 (fr) 2006-09-11 2007-08-27 Mélanges pesticides actifs comprenant des sulfamides

Country Status (2)

Country Link
CL (1) CL2007002623A1 (fr)
WO (1) WO2008031712A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630691A (zh) * 2012-03-31 2012-08-15 陕西韦尔奇作物保护有限公司 一种含丁氟螨酯的农药组合物
EP2534952A1 (fr) 2007-05-25 2012-12-19 Bayer CropScience AG Compositions insecticides des 2-cyanobenzolsulfonamides et leurs formes isomères à effet amélioré
CN102845443A (zh) * 2011-06-27 2013-01-02 绩溪农华生物科技有限公司 一种含阿维菌素和丁硫克百威的水乳剂及其制备方法
CN103891741A (zh) * 2012-12-31 2014-07-02 青岛锦涟鑫商贸有限公司 一种杀螟丹复配农药
CN104255735A (zh) * 2014-09-19 2015-01-07 青岛瀚生生物科技股份有限公司 啶虫丙醚和四氯虫酰胺复配杀虫组合物
CN105794811A (zh) * 2014-12-30 2016-07-27 江苏龙灯化学有限公司 一种杀虫组合物及其控制农业害虫的方法
CN114391542A (zh) * 2012-11-06 2022-04-26 安道麦马克西姆有限公司 害虫防治混合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033984A1 (fr) * 1980-01-23 1981-08-19 Duphar International Research B.V Composés sulfonyliques, procédé pour leur préparation, ainsi que compositions anti-aphidiennes basées sur ces composés
WO2005035486A1 (fr) * 2003-10-02 2005-04-21 Basf Aktiengesellschaft 2-cyanobenzenesulfonamides destines a lutter contre les animaux nuisibles
WO2006056433A2 (fr) * 2004-11-26 2006-06-01 Basf Aktiengesellschaft Composes de 2-cyano-3-(halo)alcoxy-benzenesulfonamide destines au combat des parasites des animaux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033984A1 (fr) * 1980-01-23 1981-08-19 Duphar International Research B.V Composés sulfonyliques, procédé pour leur préparation, ainsi que compositions anti-aphidiennes basées sur ces composés
WO2005035486A1 (fr) * 2003-10-02 2005-04-21 Basf Aktiengesellschaft 2-cyanobenzenesulfonamides destines a lutter contre les animaux nuisibles
WO2006056433A2 (fr) * 2004-11-26 2006-06-01 Basf Aktiengesellschaft Composes de 2-cyano-3-(halo)alcoxy-benzenesulfonamide destines au combat des parasites des animaux

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534952A1 (fr) 2007-05-25 2012-12-19 Bayer CropScience AG Compositions insecticides des 2-cyanobenzolsulfonamides et leurs formes isomères à effet amélioré
US8604068B2 (en) 2007-05-25 2013-12-10 Bayer Cropscience Ag Insecticidal compositions of 2-cyanobenzene sulfonamide compounds and isomeric forms thereof having improved effect
CN102845443A (zh) * 2011-06-27 2013-01-02 绩溪农华生物科技有限公司 一种含阿维菌素和丁硫克百威的水乳剂及其制备方法
CN102630691A (zh) * 2012-03-31 2012-08-15 陕西韦尔奇作物保护有限公司 一种含丁氟螨酯的农药组合物
CN114391542A (zh) * 2012-11-06 2022-04-26 安道麦马克西姆有限公司 害虫防治混合物
CN103891741A (zh) * 2012-12-31 2014-07-02 青岛锦涟鑫商贸有限公司 一种杀螟丹复配农药
CN104255735A (zh) * 2014-09-19 2015-01-07 青岛瀚生生物科技股份有限公司 啶虫丙醚和四氯虫酰胺复配杀虫组合物
CN105794811A (zh) * 2014-12-30 2016-07-27 江苏龙灯化学有限公司 一种杀虫组合物及其控制农业害虫的方法
CN105794811B (zh) * 2014-12-30 2019-01-29 江苏龙灯化学有限公司 一种杀虫组合物及其控制农业害虫的方法

Also Published As

Publication number Publication date
WO2008031712A3 (fr) 2009-04-09
CL2007002623A1 (es) 2008-04-11

Similar Documents

Publication Publication Date Title
US9125416B2 (en) Pesticidal mixtures
EP2083629B1 (fr) Modification cristalline de fipronil
AU2007316639B2 (en) Crystalline modification of fipronil
EP1890536A1 (fr) Melange pesticide
EP1978806A2 (fr) Melanges pesticides
US20100137134A1 (en) Pesticidal Mixtures
US20090305886A1 (en) Pesticidal Mixtures
AU2007316640B2 (en) Crystalline modification of fipronil
WO2008031712A2 (fr) Mélanges pesticides actifs comprenant des sulfamides
WO2008092851A2 (fr) Compositions actives sur le plan pesticide comprenant des composés 3-acétyl-1-phénylpyrazole
EP2750503A1 (fr) Mélanges insecticides actifs comprenant des composés d'arylquinazolinone
US20080249182A1 (en) Crystalline Modification of N-Ethyl-2,2-Dichloro-1-Methylcyclopropane-Carboxamide-2-(2,6-Dichloro-Alpha, Alpha, Alpha-Trifluoro-P-Tolyl)Hydrazone
AU2014227476B2 (en) Pesticidal mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07802897

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07802897

Country of ref document: EP

Kind code of ref document: A2