WO2008031363A1 - Procédé de commutation dans un système de relais, système de relais sans fil et appareil d'exécution de commutation - Google Patents

Procédé de commutation dans un système de relais, système de relais sans fil et appareil d'exécution de commutation Download PDF

Info

Publication number
WO2008031363A1
WO2008031363A1 PCT/CN2007/070681 CN2007070681W WO2008031363A1 WO 2008031363 A1 WO2008031363 A1 WO 2008031363A1 CN 2007070681 W CN2007070681 W CN 2007070681W WO 2008031363 A1 WO2008031363 A1 WO 2008031363A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
signal
data
information
service station
Prior art date
Application number
PCT/CN2007/070681
Other languages
English (en)
French (fr)
Inventor
Zheng Shang
Aimin Zhang
Yuanyuan Wang
Jiang Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008031363A1 publication Critical patent/WO2008031363A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a handover method in a wireless relay system and a wireless relay system and apparatus for implementing handover.
  • the wireless communication system due to the path attenuation of electromagnetic waves and the occlusion of buildings, some places become areas where the strength of wireless communication signals is relatively high, and the communication quality of mobile terminals located in these areas will become poor.
  • the demand for broadband wireless communication grows, the demand for wireless bandwidth becomes larger and larger, so higher and higher carrier frequencies are used in new protocols and systems, but the attenuation of radio waves The frequency increases and increases. Therefore, the high carrier frequency is bound to face the problem of high attenuation, further limiting the coverage of the base station.
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Worldwide Interoperability for Microwave Access
  • the wireless communication signal between the base station and the terminal is enhanced by introducing a relay station, so that the base station can provide services for terminals outside its coverage area through the relay station.
  • the structure of the wireless communication system including the relay station is as shown in FIG. 1 , wherein the relay station (RS, Relay Station) is responsible for forwarding data or signaling information between the base station (BS, Base Station) and the mobile station (MS, Mobile Station).
  • the base station cannot directly cover the mobile station 2 and the mobile station 3, but can pass the relay station 1 and the relay station 2 respectively. Send to achieve coverage.
  • the working principle of the relay station is as follows:
  • the link between the base station and the relay station is regarded as a virtual connection, and the connection is directional, that is, the uplink connection and the downlink connection are different.
  • Each connection can be distinguished by a connection identifier (CID), which has different CIDs, and the CID is uniformly assigned by the BS.
  • CID connection identifier
  • Each RS maintains a CID binding table of its own managed connections, and forwards the data corresponding to the connections it governs according to the maintained CID binding table.
  • the BS will inform the RS and the MS of the corresponding CID.
  • the BS broadcasts the correspondence between the CID and the time-frequency resource to all the terminals in the coverage area in the frame header of the data frame. After the terminal learns the correspondence between the CID and the time-frequency resource from the frame header, the BS can downlink from the BS.
  • the service frame extracts its own data and sends its own data in the uplink service frame.
  • RS is equivalent to one terminal
  • RS is equivalent to one base station.
  • the BS and each RS can orthogonally multiplex the same time-frequency resource within the allowed interference range, or can multiplex the same time-frequency resource non-orthogonally.
  • the RS Before starting the relay function, the RS will first apply to the BS to initiate the relay function. After obtaining the approval of the BS, it will return a response to the BS and start the relay function.
  • the process of forwarding data by using the RS is: the BS or the MS encodes and modulates the data to be transmitted, and sends the data; the RS that has activated the relay function demodulates and decodes the received data, and then re-encodes and modulates the data; Or the BS receives the data forwarded by the RS, estimates the channel coefficient, and performs demodulation and decoding to obtain the transmitted data.
  • the MS determines whether handover is needed according to the received BS downlink signal quality, and the SBS determines whether to trigger the handover of the MS according to the network load and the neighbor BS characteristics.
  • NBS Neighbor BS
  • the introduction of the relay base station must be limited to be invisible to the MS, ie the MS cannot perceive the existence of the RS. Therefore, when the MS moves between multiple RSs in the same cell, the MS cannot be switched between the RS and the RS or the MS is switched between the RS and the BS by the change of the downlink signal; when moving between different cells
  • the handover can be triggered by sensing the downlink quality of different cells, the MS cannot perceive the existence of the RS, and therefore cannot trigger the handover between the RS and the RS or the MS in the RS by the change of the downlink signal. Switching between BSs. Summary of the invention
  • an embodiment of the present invention provides a handover method in a wireless relay system, which can enable the original MS to perform free handover in a wireless relay system without any upgrade.
  • Another aspect of the present invention provides a wireless relay system and apparatus for implementing handover.
  • the system and apparatus can enable the original MS to perform free handover in a wireless relay system without any upgrade.
  • the relay station RS dynamically monitors the uplink signal quality of the MS, and reports the signal quality information to the service station;
  • the service station determines the anchor point RS according to the MS uplink signal quality information reported by the RS;
  • step C determine whether the anchor RS changes, if there is no change, then return to step A; if a change occurs, step D;
  • step D Switch to forward the service data between the service station and the MS by the anchor point RS determined this time; then return to step A.
  • the wireless relay system for implementing handover includes: a service station, an MS And multiple RSs, among them,
  • MS configured to receive data of the service station, and send the data to the service station
  • RSs for dynamically monitoring the quality of the uplink signal of the MS, and reporting the signal quality information to the service station, and determining whether to forward the service data between the service station and the MS according to the indication of the service station;
  • the service station is configured to determine an anchor RS according to the MS uplink signal quality information reported by the received RS, and switch to forward the service data between the service station and the MS by the anchor RS.
  • the RS provided by the embodiment of the present invention includes: a transmitter, a receiver, a duplexer and an antenna, a downlink data processing module, an uplink data processing module, and a control processor, where
  • the downlink data processing module is configured to receive, by the receiver, data sent by the service station to the MS, demodulate and decode the received data, extract a control command of the service station, and send the control command to the control processor. And then, under the control of the control processor, code-modulate the demodulated and decoded data according to the indication information of the control command, and send the coded and modulated data to the specified time-frequency resource position through the transmitter, or Discarding the demodulated decoded data;
  • the uplink data processing module is configured to receive, by the receiver, data sent by the MS to the service station, and after demodulating and decoding the received data, according to a control command of the service station extracted from the downlink data processing module, Controlling, by the control processor, encoding and modulating the demodulated and decoded data according to the indication information of the control command, and transmitting the coded and modulated data through the transmitter at a specified time-frequency resource position;
  • the quality is measured, and under the control of the control processor, the measured signal quality information is transmitted together with the above-mentioned coded modulated signal through the transmitter, or only the measured signal quality information is transmitted through the transmitter;
  • the control processor is configured to complete control of the transmitter, the receiver, the uplink data processing module, and the downlink data processing module.
  • the BS provided by the embodiment of the present invention includes: a transmitter, a receiver, a duplexer and an antenna, an uplink data processing module, a downlink data processing module, and a control processor, where
  • the uplink data processing module is configured to receive, by the receiver, data sent by the MS to the BS, and under the control of the control processor, demodulate and decode the received data, obtain the transmitted data, and decode the data from the demodulation. Extracting the feedback information including the quality information of the RS receiving the current MS uplink signal, and transmitting the feedback information to the control processor; measuring the quality of the received uplink signal, and transmitting the measured quality information to the control processor;
  • the control processor is configured to complete control of the transmitter, the receiver, the uplink data processing module, and the downlink data processing module; and select an RS suitable for the MS service according to the received feedback information and quality information from the uplink data processing module.
  • the BS itself acts as an anchor RS, and generates a control message with indication information, and sends the control message to the downlink data processing module; after selecting the anchor point RS for the current MS, maintaining an association table between the CID of the MS and the anchor RS;
  • the downlink data processing module is configured to perform code modulation on the data to be transmitted under the control of the control processor, and encode the modulated data and a control message sent by the control processor to be allocated to the data.
  • the time-frequency resource location is sent out through the transmitter.
  • the control capable RS provided by the embodiment of the present invention includes: a transmitter, a receiver, a duplexer and an antenna, an uplink data processing module, a downlink data processing module, and a control processor, where
  • the downlink data processing module is configured to process downlink data received by the receiver, demodulate and decode the received data, and extract a control command from the BS or other control capable RS, and send the control command to the control command. Controlling the processor, and then, under the control of the control processor, encoding and modulating the demodulated and decoded data according to the indication information of the control command, and transmitting the data at the specified time-frequency resource position; or together with the control message sent by the control processor , sent at the specified time-frequency resource location;
  • the uplink data processing module is configured to process uplink data received by the receiver, and connect the uplink data. After the received data is demodulated and decoded, according to the control command extracted from the downlink data processing module, under the control of the control processor, the demodulated and decoded data is coded and modulated according to the instruction information of the control command, and then transmitted through the transmitter.
  • the control processor is configured to complete control of the transmitter, the receiver, the uplink data processing module, and the downlink data processing module, and select an RS suitable for the MS or the BS itself according to the feedback information and the quality information received from the uplink data processing module.
  • an anchor point RS and generating a control message including indication information indicating that the RS as the anchor point is activated as the relay function of the current MS, and sending the message to the downlink data processing module; determining, according to the quality information sent by the uplink data processing module, The reported information controls the uplink data processing module to send the information that needs to be reported.
  • the method, the system and the device provided by the present invention dynamically monitor the quality information of the uplink signal of the MS by using the RS, and report the quality information, and then the BS selects the RS that is most suitable for the MS service as the anchor point RS from the report result. If the anchor RS does not change, it runs normally, and continues to dynamically monitor the uplink signal of the MS. If the anchor RS changes, it switches to the newly determined anchor RS for the current MS service, and then continues to dynamically monitor the MS uplink. signal. Therefore, the problem that the MS cannot trigger the handover by triggering the change of the downlink signal is not solved, so that the MS can freely switch in the wireless relay network without upgrading. BRIEF DESCRIPTION OF THE DRAWINGS
  • 1 is a schematic structural diagram of a wireless relay communication system in the background art of the present invention
  • 2 is a flowchart of a first preferred embodiment of a handover method in a wireless relay system according to the present invention
  • FIG. 3 is a schematic diagram of an RS active set in the embodiment shown in FIG. 2;
  • FIG. 4 is a schematic diagram showing the relationship between signal quality and threshold level in the first method for judging whether the quality of the received MS uplink signal satisfies the reporting condition in the embodiment shown in FIG. 2;
  • FIG. 5 is a flowchart of a first method for determining, by the RS, whether the quality of the received MS uplink signal satisfies the upper condition in the embodiment shown in FIG. 2;
  • FIG. 6 is a schematic diagram showing relationship between signal quality and threshold level in a second method for judging whether the quality of the received MS uplink signal satisfies the reporting condition in the embodiment shown in FIG. 2;
  • FIG. 7 is a flowchart of a second method for determining, by the RS, whether the quality of the received MS uplink signal satisfies the upper condition in the embodiment shown in FIG. 2;
  • FIG. 8 is a flow chart of a method for forwarding data between a BS and an MS when there are more than one anchor point in the embodiment shown in FIG. 2;
  • FIG. 9 is a flowchart of a method for downlink transmission in a case where a BS is included in an anchor RS in the transmission method shown in FIG. 8;
  • FIG. 10 is a flowchart of a method for uplink transmission in a case where an anchor point RS includes a BS in the transmission method shown in FIG. 8;
  • FIG. 11 is a flow chart of triggering an RS activation set and an anchor RS update in the embodiment shown in FIG. 2;
  • FIG. 12 is a flowchart of a second preferred embodiment of a handover method in a wireless relay system according to the present invention, when the MS initially accesses the network;
  • 13 is a flowchart of an inter-cell handover in a second preferred embodiment of a handover method in a wireless relay system according to the present invention
  • 14 is a flowchart of a method for using CDMA to compete for bandwidth in a third preferred embodiment of a handover method in a wireless relay system according to the present invention
  • FIG. 15 is a flowchart of a polling manner in a third preferred embodiment of a handover method in a wireless relay system according to the present invention.
  • 16 is a flowchart of data transmission when an anchor point is changed in a fourth preferred embodiment of the handover method in the wireless relay system according to the present invention.
  • FIG. 17 is a flow chart of a fourth preferred embodiment of a handover method in a wireless relay system according to the present invention.
  • FIG. 18 is a flow chart of a fifth preferred embodiment of a handover method in a wireless relay system according to the present invention.
  • FIG. 19 is a schematic diagram of a system networking of a preferred embodiment of a wireless relay system implementing handover according to the present invention.
  • FIG. 20 is a schematic structural diagram of an RS in the embodiment shown in FIG. 19;
  • Figure 21 is a schematic structural view of a BS in the embodiment shown in Figure 19;
  • FIG. 22 is a block diagram showing the structure of the control capability RS in the present invention. Mode for carrying out the invention
  • the basic idea of the present invention is: dynamically monitoring the uplink signal quality of the MS through the RS, and transmitting the quality information of the uplink signal to the service station, and determining, by the service station, the RS activation set according to the reporting result of the RS, and selecting and satisfying from the RS activation set.
  • the RS with the best quality of service requires the RS as the anchor. If the anchor RS does not change, it runs normally and continues to dynamically monitor the MS's uplink signal. If the anchor RS changes, it switches to the newly determined RS forwarding service. The service data between the station and the MS, and then continue to dynamically monitor the MS's uplink signal.
  • the service station includes a BS or an RS with control capabilities.
  • the embodiments in the present invention are described by taking BS as an example.
  • changing the BS in the embodiment to the RS with control capability becomes an embodiment of the RS with control capability.
  • the RS participating in the relay forwarding in the present invention may also be a RS with control capability.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Figure 2 is a flow chart of a first preferred embodiment of the handover method of the present invention. The process includes:
  • Step 201 The RS dynamically monitors the uplink signal quality of the MS. This step may also include the BS monitoring the uplink signal quality of the MS.
  • the RS obtains the quality information of the uplink MS ⁇ RS link according to its own measurement, that is, the quality information of the uplink signal.
  • Steps 202 to 203 the RS determines whether the received uplink signal quality satisfies the reporting condition, and the RS reports the uplink signal quality to the BS when the reporting condition is satisfied, and then performs step 204; if the reporting condition is not satisfied, the process returns to step 201.
  • the reported signal quality information includes signal strength, signal to interference and noise ratio, and the like.
  • the RS There are many methods for the RS to judge whether the received uplink signal quality satisfies the reporting condition and report it, which will be described in detail in the following description of FIGS. 4-7. Alternatively, the signal quality information may be directly reported without determining in this step.
  • Step 204 The BS receives the uplink signal quality reported by the RS.
  • Step 205 The BS determines, according to the received report result of the RS and the signal quality of the MS monitored by itself, the relay switching parameter, that is, the RS active set and the anchor RS.
  • the BS first determines the RS activation set according to the reported result of the received RS and the signal quality of the MS monitored by itself, and combines the load conditions of each RS and the BS itself, or the information quality of the service quality required by the MS. Select, such as selecting the RS with the best uplink signal quality as the RS serving the current MS, or receiving the uplink signal quality.
  • a good RS selects an RS that satisfies the MS quality of service requirement and is not heavily loaded as the RS serving the current MS, that is, the determined anchor RS.
  • the anchor point RS is selected and determined from the RS active set.
  • the BS maintains an RS active set.
  • the RS active set represents a set of RSs capable of receiving signals of the current MS and capable of serving the MS, wherein the RS active set may include the BS itself, and the label of the BS may be denoted as RS0.
  • the data can be directly transmitted between the BS and the MS through the RS, or directly between the BS and the MS.
  • the following is a general description of the RS active set and the anchor point RS is the relay switching parameter.
  • an RS with the best quality of the forwarded signal and the load is not heavy and can meet the service requirement can be found as an anchor point
  • the number of the anchor RS is one; if the quality of the forwarded signal is not found, the best quality is obtained. And an RS that is not heavy in load and can meet the service requirement is used as an anchor point.
  • more than one RS or all RSs in the active set may be selected as the anchor point RS to participate in the relay forwarding according to the situation. , then the number of anchor points RS is more than one.
  • Step 206 The BS determines whether the anchor RS is changed. If no change occurs, the normal operation returns to step 201. If the anchor RS changes, step 207 is performed.
  • the anchor point RS is considered to have changed.
  • Step 207 The BS switches to forward the service data between the BS and the MS by the re-determined anchor RS.
  • the BS sends a control message to notify the re-determined anchor RS as a relay forwarding station, and forwards the service data between the BS and the MS. Send if there is an old anchor RS The control message notifies the old anchor to stop forwarding data as a relay forwarding station.
  • the method for the BS to notify the anchor RS may be: The BS sends a control message to notify the anchor RS to increase the CID of the MS.
  • the method for the BS to notify the original anchor RS may be: The BS sends a control message to notify the anchor RS to delete the CID of the MS.
  • the data between the BS and the MS is forwarded in a conventional manner. If the number of anchor RSs is more than one, the service data between the BS and the MS is forwarded according to the following process shown in FIG. 8.
  • an update timer TR may be set for the current MS, and two thresholds, a first threshold and a second threshold, and the second threshold are greater than the first threshold.
  • the update timer TR When the BS has downlink data to be transmitted, by determining the update timer TR, it can be decided which RS to use to forward the data. If the update timer is less than or equal to the first threshold, the original RS active set and the anchor RS remain unchanged. If the update timer TR is greater than the first threshold and less than the second threshold, if the number of the original anchor RSs is one, then the BS notifies the more than one RS in the RS active set to jointly forward the data as the anchor RS, that is, a single The anchor RS is adjusted to more than one anchor point RS.
  • the method further includes: the BS actively sends a channel measurement command to the MS, and the MS receives the channel measurement command, according to the BS
  • the allocated resource information sends an uplink signal, which is monitored by step 201, and then further includes, in step 205, clearing TR and restarting counting.
  • an update timer TR can be set for the current MS, and three threshold values are set, a first threshold, a second threshold, and a third threshold.
  • the second threshold is greater than the first threshold
  • the third threshold is greater than the second threshold.
  • an update to the relay switching parameter is triggered; Clear timer TR and recount.
  • the BS has downlink data to be transmitted, by determining the update timer TR, it may be determined which RS to use to forward data. If the update timer is less than or equal to the first threshold, the original RS active set and the anchor RS remain unchanged; If the update timer TR is greater than the first threshold and less than the second threshold, the single anchor RS is adjusted to more than one anchor RS; if the update timer TR is greater than the second threshold and less than the third threshold, the relay is triggered The update of the switch parameters is the same as above. It can be seen that there are more than four ways to set the timer.
  • a cycle timer can be set. Each time the timer counts, the relay switching parameter is updated once.
  • the update method is the same as above.
  • the BS may determine whether to trigger an update of the relay handover parameter according to the state of the received signal. If the BS does not receive the expected signal on the expected uplink resource within the specified number of times, triggering the relay handover parameter Update; or when the BS receives more than one anchor RS jointly forwarded signal, when the signal quality cannot guarantee the quality of service, the update of the relay handover parameter is triggered.
  • the threshold can be set according to different signal to interference and noise ratios or signal strengths of the received signals.
  • the quality CQ of the uplink signal is less than the exit RS activation set threshold VAS-D, it is determined that the reporting condition is satisfied.
  • TR>0 is reported to the BS after the time T that the above-mentioned reporting condition is satisfied is greater than TR.
  • Step 501 The RS determines whether it is in the original RS active set, that is, whether the quality information of the uplink signal reported by the RS last time is greater than or equal to VAR_A, and if yes, step 502 is performed; otherwise, step 503 is performed.
  • Step 502 The RS determines whether the quality of the received uplink signal is less than VAR-D, and if yes, performs step 504; otherwise, returns to step 501.
  • Step 503 The RS determines whether the quality of the received uplink signal is greater than or equal to VAR_A, and if yes, performs step 505; otherwise, returns to step 501.
  • step 504 it is determined whether NR consecutive times is less than VAR-D, and if yes, step 506 is performed; otherwise, step 501 is returned.
  • step 501 if TR is set, it is determined whether the TR time is less than VAR-D, and if yes, step 506 is performed; otherwise, step 501 is returned.
  • Step 505 Determine whether NR consecutive times is greater than or equal to VAR_A, and if yes, execute step 506; otherwise, return to step 501.
  • step 501 if TR is set, it is judged whether the TR time is longer than VAR_A, and if yes, step 506 is performed; otherwise, step 501 is returned.
  • Step 506 the RS determines that the reporting condition is met.
  • the second method Due to the RS-associated RS active set associated with the current MS, the link quality and maximum transmission rate between the respective MSs and the link quality and the maximum transmission rate between the RS and the BS are different.
  • the RS activation set is grouped and managed, and the basis of the packet may be the link quality between the MS and the RS or the maximum transmission that can be achieved. Rate, etc., where the link quality can refer to the signal to interference and noise ratio of the received signal or the strength of the signal.
  • VAS-D threshold allows for different groupings.
  • the RS compares the measured quality of the received uplink signal of the current MS with the threshold value, compares the threshold interval of the group, and knows the RS active set group of the MS corresponding to the group. Do not correspond to different levels of link quality or different levels of transmission rate.
  • the decision point of the RS active set packet is RS, and the RS is reported to the BS after the decision. As shown in FIG.
  • the RS active set is divided into three groups, that is, three sets of thresholds are set for the RS active set, and the three sets of thresholds divide the entire interval into four regions, where GO represents an RS that cannot be associated with the current MS.
  • the set, GO is the initial default value of each RS; Gl, G2, G3 represent 3 different groups in the RS active set.
  • the specific flow chart is shown in Figure 7. In this process, the link quality is taken as an example. The process includes:
  • Step 701 The RS determines the group Gn in the RS active set by comparing the received uplink signal quality information with each threshold.
  • the corresponding group of an MS in a certain RS is GO at the beginning, and when the MS moves to the RS, the quality of the uplink signal monitored by the RS is increasing, when determining the link.
  • the MS gradually leaves the RS the quality of the uplink signal monitored by the RS is reduced.
  • the link quality CQ_e ⁇ VAS_D2 it is judged that the belonging group is G2.
  • Step 702 Determine whether the current group value, that is, the group Gc to which the previous state belongs is consistent. If yes, go back to step 701; otherwise, go to step 703.
  • step 704 is performed; otherwise, if the group information does not change, the process returns to step 701 to monitor the uplink signal quality of the MS.
  • Step 703 Determine whether NR consecutive times in the state Gn, if yes, execute step 705, otherwise return to step 701.
  • the number of times the condition is satisfied N is greater than NR and then reported to the BS.
  • a maximum value TR that lasts longer than the threshold time, TR>0 may be set, that is, when the time T of the above reported condition is greater than TR, and then reported to the BS.
  • the current group value is updated to G1, and the other cases are the same.
  • Step 705 the RS determines that the reporting condition is met. The method flow ends.
  • the RS divides the link quality between the RS-MS, including the uplink and downlink link qualities, into a number of areas according to a certain range, and different areas correspond to different RS active set groups, when the link quality When changing from one area to another, it is reported to the BS.
  • the link quality is NR times in a certain area
  • the RS active set corresponding to the area can be confirmed.
  • each RS is not initially in the RS active set.
  • the BS may be marked as RS0, which is considered as a special case.
  • the first type of RS used in step 202 in the embodiment shown in FIG. 2 determines whether the received uplink signal quality satisfies the reporting condition, then in step 203 of the embodiment shown in FIG. 2, the RS that satisfies the reporting condition is satisfied.
  • the quality information of the uplink signal reported to the BS includes the signal strength, the signal to interference and noise ratio, and the like.
  • the method for determining the activation set may be: the quality information of the uplink signal reported by the BS according to the RS. , directly determine the activation set.
  • the second type of RS used in step 202 in the embodiment shown in FIG. 2 determines whether the received uplink signal quality satisfies the reporting condition, in step 203 of the embodiment shown in FIG. 2, the RS direction that satisfies the reporting condition is satisfied.
  • the quality information of the uplink signal reported by the BS includes the group information of the quality of the uplink signal received by the RS, and the like. The group shown in FIG. 6 is still taken as an example.
  • the BS analyzes that the previous state of the RS is GO, so it is known that the RS is expected to join G1, and the trend of signal quality is enhanced, that is, the link quality range is within the range of [VAS-Al, VAS-A2).
  • the RS reports 11 to the BS.
  • the BS analyzes the previous state of the RS as G1, so it knows that the RS is hoping to join G3, and the signal quality trend is enhanced, that is, the link quality is greater than VAS. – A3;
  • the RS enters G2 from G3, the RS reports 10 to the BS, and the BS analyzes the previous state of the RS as G3.
  • the RS is expected to join G2, and the signal quality is weakened, that is, the link quality.
  • the range is in the range of [VAS-D2, VAS-D3). Therefore, the RS only needs to feed back information of 2 bits (bits) to the BS, which can save the reporting overhead of the RS, that is, it does not report the quality information of all received uplink signals.
  • the method for determining the activation set may be: according to what group the result of the RS report is, it is directly determined that the RS is activated in addition to the RS entering the GO group. Concentrated, and belong to different groups, wherein different groups correspond to different quality levels of receiving uplink signals. The higher the level, the better the quality of the received uplink signals.
  • the group divided in Figure 6 is in the RS of the G3 group. The quality of the received uplink signal is the best.
  • the anchor point When more than one RS is selected as the anchor point, it may be according to the method one or the second method described in step 202. If it is the first method, the RS activation set quality information is greater than a certain set value as an anchor point; if it is according to the second method, the group highest or the group highest and the second highest can be selected as the anchor. point. Or select all of the RS active sets as anchor points.
  • FIG. 8 is a flowchart of a method for forwarding data between a BS and an MS when there are more than one anchor point in the embodiment shown in FIG. 2. The process includes the following steps:
  • Step 801 The BS or the MS encodes and modulates the to-be-transmitted information to generate a transmission signal XBS or
  • the CID of the MS may be carried in the transmission signal.
  • Step 802 Each anchor RS demodulates and decodes the signal sent by the received BS/MS, and then re-encodes the modulated data to generate data X ss , and then forms forwarding data ⁇ 0, and then all anchor RSs follow the indication information of the BS.
  • the same time-frequency resources jointly forward the forwarded data to the MS/BS.
  • the anchor RS determines whether the signal needs to be forwarded according to the CID information carried in the received signal, and if it needs to be forwarded, according to the indication letter of the BS
  • the time-frequency resource location information in the information forwards the signal at the time-frequency resource location, because the same signal carries the same CID, and the time-frequency resource information allocated for the signal is the same, so all anchors can be guaranteed
  • the point RS forwards the same signal received on the same time-frequency resource.
  • the BS can send a control message to tell all the anchors RS which coding modulation mode to use, and then the anchor RS uses the code modulation mode to re-encode the demodulated and decoded data.
  • All RSs in the RS active set receive signals sent by the BS/MS, demodulate and decode the received signals, and determine whether they need to participate in forwarding.
  • the judgment condition is: First, the signal from the BS/MS is correctly received, and then Determine whether it is the anchor RS, that is, whether the BS sends a control message to inform the current MS as the anchor point for data forwarding. If it is a WiMAX system, the CID list maintained in the anchor RS will have the current MS CID, and the judgment is made. The CID in the received signal can know whether it is the anchor RS of the current MS. If the forwarding condition is satisfied after the judgment, the RS re-encodes the data after demodulation and decoding to generate data X RS .
  • the RS knows the channel information between itself and the MS/BS at this time, the RSi is known.
  • This processing is called pre-equalization technology; if the channel information is unknown, the coded and modulated data is directly sent out; if the forwarding condition is not satisfied after the judgment, the relay RS will demodulate the decoded data. Discard, end this process.
  • the channel information between the RS and the MS or the BS may not be pre-equalized.
  • PMPP mode This transmission method in which data is commonly forwarded by more than one anchor RS is referred to as PMPP mode.
  • PMPP mode This transmission method in which data is commonly forwarded by more than one anchor RS.
  • the direct transmission of signals between the BS and the MS may also be included.
  • FIG. 9 is a flowchart of a case where a BS is included in an anchor RS in a downlink PMPP transmission process, that is, a direct signal transmission between a BS and an MS exists.
  • the process includes the following steps: Step 901: The BS sends a signal X BS .
  • the RS in the RS active set receives the signal X BS from the BS and demodulates the decoding.
  • Step 906 The MS receives the signal sent from the RS and the BS simultaneously, and estimates an equivalent composite channel coefficient, and demodulates and decodes the received signal.
  • this step there are many methods for estimating channel coefficients in the prior art, such as estimating channel coefficient information from pilot information in a received signal.
  • the processing method in this step is the same as that without the BS to the MS.
  • the data is sent directly when the data is consistent, and no special handling is required.
  • the MS may not receive signals directly transmitted by the BS. Then the processing method is still as shown in the flow shown in FIG.
  • the transmission ends. If the signal transmission is incorrect, the corresponding retransmission mechanism needs to be used for retransmission.
  • FIG. 10 is a flowchart of a case where the anchor RS in the uplink PMPP transmission includes a BS, that is, there is a direct signal transmission between the BS and the MS.
  • the process includes the following steps:
  • step 1001 the MS sends a signal X MS .
  • Step 1002 The RS in the RS active set receives the signal X MS sent by the MS , and demodulates and decodes. If there is direct signal transmission from the MS to the BS, the BS also receives the signal, and sets the received signal to be.
  • Step 1003 The RS determines whether it needs to forward.
  • the condition of the RSi forwarding signal is: RSi correctly receives the signal from the MS and the RSi is an anchor point. If the RSi does not need to be forwarded, the signal is discarded, and the process ends. Go to step 1004.
  • Step 1005 the BS receives the superimposed signal sent from more than one RS simultaneously, and then performs step 1006 to determine whether there is a direct signal transmission from the MS to the BS. If X s is equal to X MS , that is, RS and MS use the same coding modulation mode, step 1007 is performed; if there is x s is not equal to X MS , that is, RS and MS adopt different coding modulation modes, step 1008 is performed; If there is no direct signal transmission from the MS to the BS, the BS estimates the equivalent composite channel, performs demodulation decoding, and then ends the flow.
  • Step 1008 The BS estimates an equivalent composite channel, performs demodulation and decoding, and checks a check bit (CRC) to determine whether it is correct. If it is correct, the process ends. If not, step 1009 is performed.
  • CRC check bit
  • Step 1009 The BS demodulates and decodes 1, and ends the process.
  • step 1008 and step 1009 can be reversed. That is, the BS can demodulate and decode the first, and check the CRC to determine whether it is correct. If it is correct, it ends. If it is not correct, the equivalent composite channel is estimated, and the demodulation and decoding are performed.
  • the BS may not receive signals directly transmitted by the MS. Then the processing method is still as shown in the flow shown in FIG.
  • the transmission ends. If the signal transmission is incorrect, the corresponding retransmission mechanism needs to be used for retransmission.
  • an update response timer T1 and a preset maximum number of retries N may be set, and an update timer TR is also preset.
  • the specific process is shown in Figure 11, including the following steps:
  • Step 1101 The BS actively sends a channel measurement command to the MS, where the command carries time-frequency resource information allocated for the MS.
  • the channel measurement command in this step can be forwarded by all RSs. Broadcast to ensure that the MS can receive it.
  • the timer Tl is started.
  • Step 1102 The MS receives the channel measurement command, and sends an uplink signal to the BS according to the time-frequency resource information allocated by the BS.
  • Step 1103 The RS dynamically monitors the uplink signal of the MS, determines whether the quality of the received uplink signal meets the reporting condition, and satisfies the report to the BS.
  • the method of judging whether the reporting condition is satisfied is the same as the description of step 202 in this embodiment.
  • Step 1104 The BS receives the response of the channel measurement command, that is, the result reported by the RS.
  • Step 1105 The BS clears the timer TI because it receives the response of the channel measurement command, and performs step 1106; otherwise, steps 1108 to 1110 are executed, that is, if the command response is not received after the timeout, the number of retries is increased by 1, and it is judged whether it is used up. If the number of retries is N, the process returns to step 1101. If the number of retries is exhausted, the update of the relay switching parameters fails, and the MS is disconnected.
  • step 1106 the RS activation set is updated with the anchor RS, and the process is the same as step 205 to step 207 in this embodiment.
  • Step 1107 clear the timer TR, set 0 to restart the timing. At this point, the update process of the RS activation set and the anchor RS is successfully completed.
  • the following is a detailed description of the handover method in different situations, such as the initial access network of the MS, the transmission of the uplink signal, the transmission of the data, and the transmission of the downlink signal.
  • the WiMAX system is taken as an example in the following embodiments.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the handover method When the MS initially accesses the serving base station BS network, or switches to the serving base station BS when switching between cells, or returns from the deep power saving state to the normal state, the handover method performs step 201 in the first embodiment shown in FIG. Previously included:
  • Step 1) the MS searches for a downlink channel sent by the serving base station BS or forwarded by the RS, And establishing downlink channel synchronization with the serving base station BS;
  • Step 2) the MS obtains the transmission parameter of the uplink channel from the downlink channel, and sends an uplink signal to the BS according to this, and the signal is monitored by step 201.
  • FIG. 12 is a flowchart of a handover method when the MS first boots into the network. The process includes the following steps:
  • Step 1201 After powering on, the MS first searches for a downlink channel sent by the base station BS or forwarded by the RS, and establishes a downlink channel synchronization with the base station BS, and then the MS obtains an uplink channel from an uplink channel description (UCD) message of the downlink signal. Transmit parameters.
  • UCD uplink channel description
  • Step 1202 The MS obtains Ranging channel information from an uplink channel mapping message (UL-MAP), and transmits a randomly selected CDMA codeword using a Ranging channel.
  • UL-MAP uplink channel mapping message
  • Step 1203 Both the BS and the RS receive the CDMA codeword sent by the MS, and the RS that receives the CDMA codeword monitors the quality of the received uplink signal, and determines whether the reporting condition is reached. The determining method is the same as the description in step 202 of the first embodiment. If the reporting condition is reached, step 1204 is performed; otherwise, the data is discarded and the relay is exited.
  • Step 1204 The RS that reaches the reporting condition sends the CDMA codeword of the MS, the time-frequency resource location used by the MS transmission codeword, and the signal quality of the RS receiving the signal to the BS.
  • Step 1205 The BS determines, according to the result received by itself and the result of the RS report, a unit that is optimally configured to send the MS service of the CDMA codeword, and the service unit is an RS or a BS itself.
  • Step 1206 The BS sends a ranging response of the BS to the MS by using the service unit. (RNG-RSP) signal.
  • RNG-RSP service unit.
  • the ranging response signal may include a ranging "continue” indication and information indicating that the MS performs related parameter adjustment; if the MS performs ranging, the measurement is performed.
  • the distance response signal includes a "success” indication of the ranging, and the MS performs related parameter adjustment information, and carries the uplink time-frequency resource location information allocated by the CDMA Allocation IE for the MS, but at this time, the BS Neither RS nor the identity of the MS.
  • Step 1207 the MS receives the RNG-RSP signal of the BS.
  • Ranging request (RNG-REQ) information including its own physical address (MAC address) is sent to the BS, and the information is forwarded or received by the unit specified by the BS, which is most suitable for the MS, that is, an RS or the BS itself. .
  • RNG-REQ Ranging request
  • Step 1208 the BS receives the RNG-REQ information of the MS, extracts the identity of the MS, allocates a CID, and notifies the MS by using an RNG-RSP message, and the BS receives the quality information of the uplink signal according to itself and in step 1204.
  • the result reported by the RS determines the RS active set and the anchor RS that is most suitable for serving the MS. If the anchor point is itself, it sends data to the MS by itself, and the process ends; if the anchor point is an RS, the steps are performed. 1209.
  • Step 1209 the BS notifies the anchor RS as a relay forwarding station to forward data between the BS and the MS.
  • the BS sends the CID of the MS to the anchor RS, and tells the anchor RS to add the CID to the service list.
  • the BS establishes an association between the CID of the MS and the corresponding relay handover parameter, thereby determining a relay handover parameter corresponding to the MS.
  • FIG. 13 is a flowchart of a method for switching a wireless relay in the present invention when an inter-cell handover occurs when an MS moves from another cell to the local cell.
  • the basic procedure is similar to that in the first embodiment when switching between cells. The difference is that, when switching between cells, the traditional inter-cell handover is first performed, that is, the MS monitors the BS of the neighboring cell or the downlink signal broadcasted by the RS of the neighboring cell, and then the MS will broadcast the BS of the neighboring cell. Performing a Ranging process, and reporting the signal quality of the BS of the neighboring cell to the BS serving the MS by the cell, and the handover request is initiated by the MS or initiated by the BS.
  • Step 1301 The MS searches for a downlink channel sent by the BS or forwarded by the RS, and establishes a downlink channel synchronization with the BS, and then the MS obtains a transmission parameter of the uplink channel from the downlink channel.
  • Step 1302 The MS sends a CDMA codeword according to a dedicated Ranging channel allocated by the BS.
  • Step 1303 Both the BS and the RS receive the CDMA codeword sent by the MS, and the RS receiving the CDMA codeword monitors the quality of the received uplink signal, and determines whether the reporting condition is reached. The determining method is the same as the method in the first step of the first embodiment. If the reporting condition is reached, step 1304 is performed; otherwise, the received signal data is discarded, and the relay is exited.
  • Step 1304 The RS that reaches the upper condition sends the CDMA codeword of the MS, the time-frequency resource location used by the MS transmission codeword, and the signal quality of the RS received by the RS to the BS.
  • Step 1305 The BS determines an RS active set and an anchor RS that is most suitable for serving the MS according to the result received by the self and the result of the RS report, and allocates a CID to the MS, and notifies the MS by using the RNG-RSP message. If the anchor point is the BS itself, it is sent directly by the BS. Send the data to the MS and end the process. If the anchor is an RS, go to step 1306. Step 1306, the BS notifies the anchor RS as a relay forwarding station to forward data between the BS and the MS. In the WiMAX system of this embodiment, the BS sends the CID of the MS to the anchor RS, and tells the service list. Increase the CID.
  • the BS After the handover method is completed, the BS establishes an association between the CID of the MS and the corresponding relay handover parameter, thereby determining a relay handover parameter corresponding to the MS.
  • the MS When the MS recovers from the deep power saving state to the normal state, the MS can use the dedicated Ranging channel allocated for it, or can use the content-based Ranging channel.
  • the process is the same as the process shown in FIG. Steps 1201 through 1209 are the same.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the MS has an uplink (UL) signal to be transmitted, and the BS needs to determine the RS active set and anchor RS of the MS.
  • the handover method in the present invention further includes the step of requesting bandwidth before performing the step 201 in the first embodiment.
  • the request bandwidth may be allocated by the CDMA through the CDMA competition mode or by polling.
  • the MS sends a CDMA codeword to request an access channel. Since the CDMA codeword is transmitted on the contention channel, the RS and the BS do not know who sent the CDMA code, all The RS receiving the CDMA code reports the corresponding information, including CDMA codeword, time-frequency location and signal quality. Only after the MS sends a BW Request message in the specified UL resource, and the BS receives the BW Request Message, the BS can know which MS sends the request message according to the connection identifier CID, and The relay handover parameter is adjusted according to the report information of the RS.
  • the anchor RS If the BS does not receive the PDU forwarded by the anchor RS on the expected uplink resource, the anchor RS is considered to be no longer suitable, and the relay handover parameter update is triggered. For the message loss caused by the anchor RS not receiving the UL bandwidth request signal of the MS, the system itself's error mechanism, such as retransmission, guarantees the corresponding quality of service.
  • Steps 1401 ⁇ 1402 the MS determines whether the bandwidth needs to be requested, and the MS sends a CDMA codeword bandwidth request on the CDMA competing channel; otherwise, the normal operation continues.
  • Step 1403 The RS monitors the uplink signal, receives the CDMA codeword, time-frequency position information of the uplink signal, and monitors the quality of the received uplink signal.
  • Step 1404 because the MS uses the CDMA competitive channel, the RS and the BS do not know the identity of the MS, so all the RSs that receive the bandwidth request of the MS will have corresponding information, that is, include the CDMA codeword, time-frequency. Parameters such as position and signal quality are forwarded to the BS.
  • Step 1405 The BS responds to the bandwidth request information, and the CDMA allocation message entity specifies the uplink time-frequency resource for sending the bandwidth request message for the MS and forwards it by all the RSs.
  • Step 1406 The MS sends a MAC bandwidth request message on the specified uplink time-frequency resource.
  • Step 1407 The RS that receives the bandwidth request extracts and analyzes the MAC bandwidth request message, and identifies the identity of the MS.
  • Steps 1408 to 1409 the RS determines whether it is an anchor point. If yes, the bandwidth request information is sent to the BS, and then step 1410 is performed; otherwise, step 1410 is directly executed.
  • Steps 1410 ⁇ 1411 the RS determines whether it satisfies the reporting condition, and the determination method is the same as that in the first step 202 of the embodiment. If the data is not satisfied, the data is discarded, and the process is terminated. If the data is satisfied, the uplink signal quality information is reported to the BS.
  • Step 1412 The BS determines whether it has received the bandwidth request MAC PDU information of the MS on the expected uplink resource, and if not, triggers the RS activation set and the anchor point.
  • RS is the update of the relay switching parameter, and the process ends. After the update is completed, the data is received; otherwise, step 1413 is performed.
  • Step 1413 The BS adjusts the relay switching parameter of the MS according to the report result of the RS. This process is the same as steps 205 to 207 in the first embodiment.
  • Steps 1414 to 1416 the BS determines whether the anchor point RS after the relay switching parameter adjustment satisfies the requirement. If the requirement is met, it determines whether the anchor point RS is changed. If the change occurs, the BS sends a relay switching parameter adjustment indication to the corresponding RS, that is, notifying the adjusted new anchor RS to start the relay function, notifying the old anchor point RS before the adjustment to stop the relay function, and then the BS resets the update timer TR set to the MS to 0, and restarts the timing.
  • step 1418 if there is no change of the anchor RS, the BS directly resets the update timer TR set to the MS to 0, and restarts the timing, and then performs step 1418; if it determines the anchor of the relay switching parameter adjustment If the point RS does not satisfy the requirement, step 1417 is performed.
  • Step 1417 When it is determined that the single anchor RS does not meet the requirement, it is determined that more than one anchor RS jointly activates the relay function, that is, starts the PMPP transmission mode, where the PMPP mode works in the same manner as the uplink PMPP transmission mode introduced in FIG. .
  • Step 1418 The BS allocates an uplink transmission bandwidth resource to the MS, and indicates the resource information by using an uplink channel mapping message (UL-MAP), and the indication information is forwarded through the designated RS or directly sent by the BS.
  • UL-MAP uplink channel mapping message
  • Step 1419 the MS determines whether the bandwidth is allocated. If the bandwidth is allocated, the bandwidth information is used to send the data, and is forwarded to the BS through the RS; otherwise, the error processing is performed.
  • the BS specifies an access channel for the MS in the uplink channel mapping message (UL-MAP), and if the MS has UL data to transmit, the bandwidth request information is sent on the access channel (BW) Request Message) to apply for UL resources, if not, send a specific signal on the UL resource.
  • BW access channel
  • this UL resource will be filled with information.
  • the anchor RS of the MS receives the UL information and forwards it to the BS. If the anchor RS does not receive the response message to the polling, the BS does not receive the response message, and the anchor RS is considered to be no longer suitable.
  • the MS service, BS triggers relay switching parameter updates.
  • All RSs monitor the UL signal quality of the MS.
  • the RS can know which MS sends the signal according to the UL resource location allocated by the BS for Polling, and each RS determines whether to report according to the signal quality.
  • the RS is only responsible for monitoring the UL signal quality, and does not forward the received UL signal unless the BS starts the PMPP mode.
  • the system itself's error mechanism such as retransmission, guarantees the corresponding quality of service.
  • the related processing flow is shown in Figure 15, and includes the following steps:
  • Step 1501 The BS sends a polling message, that is, the BS specifies the access channel information for the MS in the uplink channel mapping message (UL-MAP), and the uplink channel mapping message is jointly forwarded by the BS itself and all the RSs.
  • a polling message that is, the BS specifies the access channel information for the MS in the uplink channel mapping message (UL-MAP), and the uplink channel mapping message is jointly forwarded by the BS itself and all the RSs.
  • Step 1502 The MS receives the message and sends the polling response information. That is, if there is uplink data to be transmitted, the MAC bandwidth request message is sent at the allocated uplink resource location, and then the bandwidth allocation indication is waited; otherwise, the specific signal is transmitted at the allocated uplink resource location, and then continues to operate normally.
  • Step 1503 all RSs monitor the quality of the uplink signal.
  • Steps 1504 ⁇ 1505 the RS determines whether it is an anchor point. If yes, the polling response information is sent to the BS, and then step 1506 is performed; if it is not the anchor point, step 1506 is directly executed.
  • Steps 1506 to 1507 the RS determines whether the report condition is satisfied, and the determination method is the same as that in the first step 202 of the embodiment. If the data is not satisfied, the data is discarded, and the process is terminated. If the data is satisfied, the uplink signal quality information is reported to the BS.
  • Step 1508 the BS determines whether it has received the MS on the expected uplink resource. Polling response information, if not received, triggers the update of the relay switching parameter, ends the process, and receives data after the update is completed; otherwise, step 1509 is performed.
  • Step 1509 The BS adjusts the relay switching parameter of the MS according to the report result of the RS. This process is the same as steps 205 to 207 in the first embodiment.
  • Steps 1510 to 1512 the BS determines whether the anchor point RS after the relay switching parameter adjustment satisfies the requirement. If the requirement is met, it determines whether the anchor point RS is changed. If the change occurs, the BS sends a relay switching parameter adjustment indication to the corresponding RS, that is, the adjusted new anchor RS starts the relay function, notifies the old anchor RS before the adjustment to stop the relay function, and then the BS resets the update timer TR set to the MS to 0, and restarts the timing.
  • step 1514 if there is no change of the anchor point RS, the BS directly resets the update timer TR set to the MS to 0, and restarts the timing, and then performs step 1514; if it determines the anchor of the relay switching parameter adjustment If the point RS does not satisfy the requirement, step 1513 is performed.
  • Step 1513 When it is determined that the single anchor RS does not meet the requirement, it is determined that more than one anchor RS jointly activates the relay function, that is, starts the PMPP transmission mode, where the PMPP mode works in the same manner as the uplink PMPP transmission mode introduced in FIG. .
  • Step 1514 The BS determines whether the received polling response is a bandwidth request. If not, the process ends and continues normal operation; otherwise, step 1515 is performed.
  • Step 1515 The BS allocates an uplink transmission bandwidth resource to the MS, and indicates the resource information by using an uplink channel mapping message (UL-MAP), and the indication information is forwarded through the designated RS or directly sent by the BS.
  • UL-MAP uplink channel mapping message
  • Step 1516 If the MS sends a bandwidth request message, the MS determines whether the bandwidth is allocated. If the bandwidth is allocated, the bandwidth information is used to send data to the BS through the RS; otherwise, error processing is performed.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • each frame is divided into a downlink subframe (D) and an uplink subframe (U), and the downlink subframe is further divided into BS/RS ⁇ MS (D1) and BS ⁇ RS (D2).
  • the uplink subframe is also divided into two parts: MS ⁇ BS/RS (U1) and RS ⁇ BS (U2).
  • the BS decision anchor is switched from RS1 to RS2.
  • the BS informs RS1 and RS2 to suspend and initiate the relay to the MS at D2, but the RS cannot immediately resolve the command.
  • the command takes effect and executes in the n+1th frame. .
  • the RS1 continues to forward the downlink data sent by the n-1th frame BS to the MS, but the BS does not send the downlink data of the nth frame of the MS to the RS1.
  • the RS1 continues to receive the uplink data from the MS, and forwards the MS uplink data received in the n-1th frame to the BS.
  • RS1 performs the handover command of the BS, and is no longer serving the MS, because there is no downlink data of the MS nth frame and subsequent frames in the RS1, but the subframe is still transmitted to the nth frame. Received MS uplink data.
  • the BS sends a handover command to the RS2, where the BS sends a control signal to notify the RS as an anchor RS command, and the BS sends the downlink data of the MS to the RS2, but the RS2 cannot parse the handover command.
  • the uplink data of the MS is not received.
  • the RS2 performs a handover command, and the downlink data received in the nth frame is transmitted to the MS in the downlink subframe, and the uplink data of the MS is received in the uplink subframe.
  • the MS does not interrupt the uplink data and downlink data transmission when the anchor point changes, that is, it has no effect on the MS. And for MS, the process is transparent to it, ie the MS can be applied without any upgrades.
  • Figure 17 is a flow chart of an embodiment of a method for switching a wireless relay system in data transmission. As shown in the figure, the process includes the following steps:
  • Step 1701 all RSs monitor the quality of the uplink signal of the MS.
  • Steps 1702 ⁇ 1703 the RS that receives the uplink signal determines the link quality information, and determines whether the reporting condition is met. The determining method is the same as the description in step 202 of the first embodiment. If yes, the uplink signal quality information is reported to the BS, and then step 1704 is performed; otherwise, the process ends, and the uplink signal of the MS is continuously monitored.
  • Step 1704 The BS adjusts the relay switching parameter according to the report result of the RS and the quality condition of the uplink signal received by the BS. This process is the same as steps 205 to 207 in the first embodiment.
  • Step 1705 The BS determines, according to the adjustment condition of the relay switching parameter, whether the update needs to be triggered. If it is not necessary to trigger the update, it is determined whether there is a change of the anchor RS after the relay switching parameter is adjusted, if yes, step 1706 is performed, otherwise step 1707 is performed; if the update needs to be triggered, it is determined whether an anchor RS occurs after the update Change, if yes, go to step 1706, otherwise go to step 1707.
  • the link quality of the RS does not meet the service requirements of the MS, or there are several RSs in the RS active set, the link quality is poor, or other conditions.
  • the relay switching parameter needs to be updated, the update of the relay switching parameter is triggered.
  • Step 1706 the BS notifies the corresponding RS of the change information of the relay handover parameter.
  • the BS sends a control message to the corresponding RS.
  • the BS needs to inform the corresponding RS whether to add the CID of the new MS or delete the CID of the existing MS.
  • Steps 1707 to 1708 the BS determines whether the PMPP mode is changed, that is, whether the PMPP mode needs to be started, where the working mode of the PMPP mode is based on the uplink PMPP transmission mode described in FIG. 10 or FIG. 9 in the first embodiment according to whether the uplink transmission or the downlink transmission is performed. Or downlink PMPP transmission mode. Or when the original PMPP mode is changed to the mode of working by the current single anchor RS, the PMPP mode needs to be aborted. These changes require the BS to send a control message to the corresponding RS to inform whether to initiate or terminate the relay. After that, the data transfer process continues.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the method further includes, after step 206 in the first embodiment, the BS setting an update timer for the MS, and setting two thresholds, a first threshold TL and a The second threshold TH, and TH>TL, at this time, the switching method in the wireless relay system in this embodiment is:
  • FIG. 18 shows the processing flow of the handover method when DL data arrives. As shown in the figure, the process includes the following steps:
  • Step 1801 When there is downlink burst data to be transmitted, the BS first checks the update timer TR. Step 1802, the BS determines whether the update timer TR is greater than or equal to the set second threshold TH. If yes, step 1803 is performed; otherwise, step 1804 is performed.
  • the anchor RS acts as a relay forwarding station; if a single anchor point that satisfies the service requirement cannot be found, the PMPP mode is started, more than one
  • the RS acts as a relay forwarding station between the MS and the BS, and then the BS transmits the downlink burst data.
  • step 1807 is performed.
  • the BS determines whether the update timer TR is less than or equal to the set first threshold TL, and if so, keeps the relay handover parameter unchanged; otherwise, the PMPP mode is started, and more than one anchor RS is selected.
  • Step 1806 the BS sends the downlink burst data.
  • Steps 1807 ⁇ 1808, the RS receives the downlink burst data to determine whether it is an anchor point, that is, whether the downlink burst data needs to be forwarded, and if yes, forwards the downlink burst data to the MS, and then ends the process, the data The transfer continues; otherwise, step 1809 is performed.
  • Steps 1809 to 1811 the RS that does not need to forward the downlink data discards the downlink burst data, and continues to monitor the uplink signal quality of the MS, and determines whether the link quality of the link meets the reporting condition.
  • the determining method is the same as the first step of the embodiment. Introduction in 202. If it is not satisfied, the process ends; if it is satisfied, the uplink signal quality information is reported to the BS.
  • Steps 1812 to 1814 the BS adjusts the relay switching parameters according to the report result of the RS and the quality result of the uplink signal received by the BS itself, and the adjustment method is the same as the step 205 to the step 207 in the first embodiment. Then, the adjusted relay switching parameters are judged to determine whether there is a change of the PMPP mode.
  • the PMPP mode works in the same manner as the downlink PMPP transmission mode described in the first embodiment of FIG. If there is a change in the PMPP mode, the BS notifies the corresponding RS to start or stop forwarding the service data between the BS and the MS. Then, the BS determines whether there is an anchor point change in the relay switching parameter, and if there is an anchor point change, the adjustment information is notified to the corresponding RS.
  • the above is the flow of the handover method when there is a need for transmission of downlink data.
  • FIG. 19 is a schematic diagram of networking of an embodiment of a wireless relay system for implementing handover in the present invention. As shown in the figure, the system in this embodiment includes: BS, MS, and multiple RS.
  • the MS is configured to receive data of the BS and send the data to the BS.
  • a plurality of RSs are used to dynamically monitor the quality of the uplink signal of the MS, and report the signal quality information to the BS, and determine whether to forward the service data between the BS and the MS according to the indication of the BS.
  • the BS is configured to determine, according to the MS uplink signal quality information reported by the received RS, that the RS that receives the best uplink signal quality is the anchor RS, and switch to forward the service data between the BS and the MS by the anchor RS.
  • the RS is composed of a transmitter, a receiver, a duplexer and an antenna, an uplink data processing module, a downlink data processing module, and a control processor, as shown in FIG.
  • the duplexer is connected to the antenna for time-sharing transmission and reception of the antenna.
  • the receiver is configured to receive data transmitted by the BS or the MS through the antenna of the duplexer, and convert the data from the radio frequency signal to the baseband signal.
  • a downlink data processing module configured to receive, by the receiver, data sent by the BS to the MS, demodulate and decode the received data, extract a control command of the BS, send the control command to the control processor, and then control Under the control of the processor, the demodulated and decoded data is coded and modulated according to the indication information of the control command, and the data is transmitted through the transmitter at a specified time-frequency resource location, or the data is discarded.
  • An uplink data processing module configured to receive, by the receiver, data sent by the MS to the BS, perform demodulation and decoding on the received data, and control the control processor according to a control command of the BS extracted from the downlink data processing module. And demodulating and decoding the decoded data according to the indication information of the control command, and transmitting the data through the transmitter at the specified time-frequency resource location, and measuring the quality of the received uplink signal, and measuring the measured
  • the signal quality information is transmitted through the transmitter together with the above-described coded modulated signal, or only the measured signal quality information is transmitted through the transmitter.
  • the uplink data processing module and the downlink data processing module share the transmitter and the receiver in a time sharing manner.
  • the transmitter is configured to receive data of the uplink data processing module and the downlink data processing module, convert the data from the baseband signal to the radio frequency signal, and send the data through the antenna of the duplexer.
  • the control processor is configured to perform control on the transmitter, the receiver, the uplink data processing module, and the downlink data processing module.
  • the uplink data processing module of the RS specifically includes: an uplink demodulation and decoding unit, an uplink data buffer unit, an uplink quality measurement unit, a feedback information generation unit, an uplink coding modulation unit, and a multiplexer.
  • the uplink demodulation decoding unit is configured to perform demodulation, de-symbol mapping, de-interleaving, and channel decoding on the baseband signal sent by the MS to the BS under the control of the control processor to obtain uncoded original information data, and The resulting raw information data is output.
  • the uplink data buffer unit is configured to buffer original information data output by the uplink demodulation decoding unit.
  • An uplink quality measuring unit configured to measure, according to an output of the receiver and an output of the uplink demodulation decoding unit, a quality of the received uplink signal under control of the control processor, and send the measured signal quality information to the control processor
  • the control processor analyzes and determines the quality information of the received uplink signal, and determines whether the report needs to be reported. If the report needs to be reported, the reported information is output to the feedback signal generating unit. If the report does not need to be reported, the measured quality information is lost. abandoned.
  • a feedback signal generating unit configured to generate, by the control processor, signal quality information output by the uplink quality measuring unit, generate information, and generate report information by using a load condition of the relay station that is determined by the control processor to report.
  • an uplink code modulation unit configured to perform channel coding, interleaving, symbol mapping, and modulation on the original information data in the uplink data buffer unit under the control of the control processor.
  • a multiplexer configured to, by the control processor, multiplex the report information generated by the feedback information generating unit and the uplink forwarding data generated by the uplink code modulation unit Transmitter.
  • the downlink data processing module of the RS specifically includes: a downlink demodulation decoding unit, a downlink data buffer unit, a base station command extraction unit, and a downlink code modulation unit.
  • the downlink demodulation decoding unit is configured to perform demodulation, de-symbol mapping, de-interleaving, and channel decoding on the baseband signal sent by the BS to the MS under the control of the control processor to obtain uncoded original information data, and The resulting raw information data is output.
  • a downlink data buffer unit configured to buffer original information data output by the downlink demodulation decoding unit.
  • the base station command extracting unit is configured to extract a command of the BS in the original information data outputted by the downlink demodulation decoding unit, and send the command to the control processor.
  • a downlink code modulation unit configured to perform channel coding, interleaving, symbol mapping, and modulation on the original information data in the downlink data buffer unit under the control of the control processor.
  • the BS is composed of a transmitter, a receiver, a duplexer and an antenna, an uplink data processing module, a downlink data processing module, and a control processor, as shown in FIG.
  • the duplexer is connected to the antenna and is used for time-sharing transmission and reception of the antenna.
  • the receiver is configured to receive data sent by the MS through the antenna of the duplexer, and convert the data from the radio frequency signal to the baseband signal.
  • An uplink data processing module configured to receive, by the receiver, data sent by the MS to the BS, and under the control of the control processor, demodulate and decode the received data, obtain the transmitted data, and simultaneously demodulate the decoded data.
  • the feedback information is extracted and sent to the control processor, where the feedback information includes: the RS receives the quality information of the current MS uplink signal.
  • control processor configured to complete control of the transmitter, the receiver, the uplink data processing module, and the downlink data processing module, and select an RS or a BS that is suitable for the MS service as an anchor according to the feedback information received from the uplink data processing module.
  • Point RS and generate a control message with indication information, and send it to the downlink data processing module; select an anchor RS for the current MS. After that, the association table of the CID of the MS and the anchor RS is maintained.
  • the control message includes: indicating that the RS as the anchor is activated as the relay function of the current MS.
  • a downlink data processing module configured to perform code modulation on the data to be transmitted under the control of the control processor, and encode the modulated data and the control message sent by the control processor at a time-frequency resource location allocated to the data Send it out through the transmitter.
  • the uplink data processing module and the downlink data processing module share the transmitter and the receiver in a time sharing manner.
  • the transmitter is configured to receive data of the uplink data processing module and the downlink data processing module, convert the data from the baseband signal to the radio frequency signal, and send and send through the antenna of the duplexer.
  • the uplink data processing module of the BS specifically includes: an uplink demodulation and decoding unit, an uplink data buffer unit, an uplink quality measurement unit, and a feedback information extraction unit.
  • the uplink demodulation and decoding unit is configured to perform demodulation, de-symbol mapping, de-interleaving, and channel decoding on the baseband signal sent by the MS received by the receiver to the BS under the control of the control processor to obtain uncoded original information. Data, and output the resulting raw information data.
  • the uplink data buffer unit is configured to buffer the original information data output by the uplink demodulation decoding unit, and output the data under the control of the control processor.
  • An uplink quality measuring unit configured to measure, according to an output of the receiver and an output of the uplink demodulation decoding unit, a quality of the received uplink signal under control of the control processor, and send the measured signal quality information to the control processor .
  • a feedback information extracting unit configured to extract feedback information in the original information data output by the downlink demodulation decoding unit, and send the feedback information to the control processor, where the feedback information is used by the control processor and the uplink quality measurement unit of the uplink
  • the result of the measurement is analyzed and determined, and the RS or the BS itself suitable for the current MS service is selected as the anchor RS.
  • the downlink data processing module of the BS specifically includes: a downlink data buffer unit, a downlink code modulation unit, and a multiplexer.
  • the downlink data buffer unit is configured to cache original information data to be sent.
  • a downlink code modulation unit configured to perform channel coding, interleaving, symbol mapping, and modulation on the original information data in the downlink data buffer unit under the control of the control processor.
  • the multiplexer is configured to, under the control of the control processor, multiplex the control message generated by the control processor and the downlink transmission data generated by the downlink coding unit to the transmitter.
  • the RS having control capability since the RS having control capability has both the function of the ordinary RS and the corresponding control function of the BS, the RS having the control capability is separately described below.
  • FIG. 22 is a schematic structural diagram of an RS having control capability according to the present invention.
  • the controllable RS includes: a transmitter, a receiver, a duplexer and an antenna, a data processing module, a downlink data processing module, and a control processor.
  • the duplexer is connected to the antenna and is used for time-sharing transmission and reception of the antenna.
  • a receiver for receiving data through an antenna of the duplexer and converting the received data from a radio frequency signal to a baseband signal.
  • a downlink data processing module configured to process downlink data received by the receiver, demodulate and decode the received data, and extract a control command from the BS or other control capable RS, and send the control command to the control
  • the processor then, under the control of the control processor, encodes and modulates the demodulated and decoded data according to the indication information of the control command, and then sends the data at a specified time-frequency resource location; or together with the control message sent by the control processor, Send out at the specified time-frequency resource location.
  • the uplink data processing module is configured to process the uplink data received by the receiver, demodulate and decode the received data, and according to the control command extracted from the downlink data processing module, under the control of the control processor, according to the control
  • the instruction information of the command encodes and modulates the demodulated and decoded data, and then transmits the data through the transmitter at a specified time-frequency resource location; measures the quality of the received uplink signal, generates quality information, and generates report information for the quality information to be reported.
  • the transmitter sends out the feedback information from the demodulated and decoded data, and sends the feedback information to the control processor.
  • the feedback information includes: the RS receives the current MS uplink signal. Quality information.
  • the uplink data processing module and the downlink data processing module share the transmitter and the receiver in a time sharing manner.
  • the transmitter is configured to receive data output by the uplink data processing module and the downlink data processing module, convert the data from the baseband signal into a radio frequency signal, and send and send through the antenna of the duplexer.
  • control processor configured to complete control of the transmitter, the receiver, the uplink data processing module, and the downlink data processing module, and select an RS or a BS that is suitable for the MS service as an anchor point according to the feedback information received from the uplink data processing module.
  • RS and generates a control message with indication information, and sends it to the downlink data processing module; after selecting the anchor RS for the current MS, the association table of the CID of the MS and the anchor RS is maintained.
  • the control message includes: indicating that the RS as the anchor is activated as the relay function of the current MS.
  • the uplink data processing module includes: an uplink demodulation decoding unit, an uplink data buffer unit, an uplink channel measurement unit, a feedback signal generation unit, a feedback information extraction unit, a uplink code modulation unit, and a multiplexer.
  • An uplink demodulation decoding unit configured to demodulate, de-symbol map, deinterleave, and channel decode the uplink baseband signal received by the receiver under control of the control processor to obtain uncoded original information data, and obtain the obtained Raw information data output.
  • the uplink data buffer unit is configured to buffer original information data output by the uplink demodulation decoding unit.
  • An uplink channel measuring unit configured to measure, according to an output of the receiver and an output of the uplink demodulation decoding unit, a quality of the received uplink signal under control of the control processor, and send the measured quality information to the control processor, where The processor determines whether the report needs to be reported according to the received quality information. If the report needs to be reported, the control processor outputs the quality information that needs to be reported to the feedback signal generating unit. If the report does not need to be reported, the control processor does not need to report the quality information. throw away.
  • a feedback signal generating unit configured to measure an uplink channel under the control of the control processor The quality information output by the unit, the generated information, and the information generated by the control processor to determine the load condition of the RS.
  • the feedback information extracting unit is configured to extract feedback information in the data output by the uplink demodulation decoding unit, and send the extracted feedback information to the control processor.
  • an uplink code modulation unit configured to perform channel coding, interleaving, symbol mapping, and modulation on the original information data output by the uplink data buffer unit under the control of the control processor.
  • the multiplexer is configured to multiplex the report information generated by the feedback information generating unit and the uplink forwarding data generated by the uplink code modulation unit, and send the signal to the transmitter.
  • the downlink data processing module includes: a downlink demodulation decoding unit, a control command extraction unit, a downlink data buffer unit, a downlink code modulation unit, and a multiplexer.
  • a downlink demodulation decoding unit configured to demodulate, de-symbol map, deinterleave, and channel decode the downlink baseband signal received by the receiver under control of the control processor to obtain uncoded original information data, and obtain the obtained Raw information data output.
  • a control command extracting unit configured to extract a control command sent by the BS or other control capable RS in the original information data processed by the downlink demodulation decoding unit, and send the control command to the control processor.
  • the downlink data buffer unit is configured to buffer the original information data output by the downlink demodulation decoding unit, and output the data to the downlink coding modulation unit according to the control command under the control of the control processor.
  • a downlink code modulation unit configured to perform channel coding, interleaving, symbol mapping, and modulation on the original information data output by the downlink data buffer unit under the control of the control processor.
  • a multiplexer configured to multiplex the control message generated by the control processor with the downlink forwarding data generated by the downlink code modulation unit and send the signal to the transmitter.
  • the method, the system and the device provided by the present invention dynamically monitor the quality information of the uplink signal of the MS by using the RS, and report the quality information, and then the BS selects the report result from the report. Take the RS that is most suitable for the MS service as the anchor RS. If the anchor RS does not change, it runs normally, and continues to dynamically monitor the uplink signal of the MS. If the anchor RS changes, it switches to the newly determined anchor. The point RS is the current MS service, and then continues to dynamically monitor the MS's uplink signal. Therefore, the problem that the MS cannot trigger the handover by triggering the change of the downlink signal is not solved, so that the MS can freely switch in the wireless relay network without upgrading.
  • the BS may trigger an update of the anchor RS according to whether the state of the received signal satisfies the requirement, and by setting some timers, when the timer reaches a predetermined value. Prevent MS disconnection or poor signal quality.
  • the method provided by the present invention selects and forwards the RS with the best uplink signal quality in the process of moving the MS, it can replace the RS with weakened signal quality, so that the MS can always be in the best service, avoiding no The impact of poor link quality during handover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

中继系统中的切换方法及实现切换的无线中继系统和装置 技术领域
本发明涉及移动通信技术, 尤其涉及一种无线中继系统中的切换方 法及一种实现切换的无线中继系统和装置。 发明背景
在无线通信系统中, 由于电磁波的路径衰减以及建筑物的遮挡等原 因, 使得有些地方成为无线通信信号强度较^ ^的地区, 位于这些地区的 移动终端的通信质量将变得艮差。 随着人们对宽带无线通信需求的曰益 增长, 对无线带宽的需求变得越来越大, 因此越来越高的载频被使用到 新的协议和系统中, 但无线电波的衰减随着频率的增加而增加。 因此, 高载频必然面临着高衰减的问题, 进一步限制了基站的覆盖范围。
如基于 IEEE 802.16 协议的微波接入全球互通 ( Worldwide Interoperability for Microwave Access , WiMAX ) 系统, 由于采用高频传 输, 电磁波的衰减严重, 因此该系统覆盖范围较小, 并且在组网初期, 由于用户较少, 在负载较低的情况下, 该系统覆盖范围内的时频资源很 可能得不到充分利用。
因此, 可以通过在基站和终端之间增设中继站来解决这个问题。 通 过引入中继站来对基站和终端之间的无线通信信号进行增强, 使基站除 了能为其覆盖范围内的终端提供服务, 还可以通过中继站为其覆盖范围 之外的终端提供服务。 含有中继站的无线通信系统结构如图 1所示, 其 中, 中继站(RS, Relay Station ) 负责基站 ( BS, Base Station )与移动 台 (MS, Mobile Station )之间数据或信令信息的转发。 图中基站无法直 接覆盖移动台 2和移动台 3 , 但可以分别通过中继站 1和中继站 2的转 发来实现覆盖。
中继站的工作原理为: 将基站与中继站之间的链路看作是一种虚拟 的连接, 连接是有方向性的, 即上行链路的连接和下行链路的连接是不 同的。 每个连接可以采用连接标识(CID )进行区分, 不同的连接具有 不同的 CID, CID是由 BS统一分配的。每个 RS维护自身管理的连接的 CID绑定表,并根据所维护的 CID绑定表转发自己所管辖的连接对应的 数据。 BS与终端的连接建立过程中, BS会将相应的 CID告知 RS及 MS。 BS会在数据帧的帧头中将 CID与时频资源的对应关系广播给自身 覆盖范围内的所有终端,终端从帧头中获知 CID与时频资源的对应关系 后, 便可以从 BS的下行业务帧中提取属于自己的数据, 以及在上行业 务帧中发送自己的数据。 对基站而言, RS 相当于一个终端, 而对于终 端而言, RS又相当于一个基站。 一个区域内有一个 BS和多个 RS, BS 和各 RS在允许的干扰范围内可以正交复用同一时频资源, 也可以非正 交复用同一时频资源。 RS在启动中继功能之前, 会先向 BS申请启动中 继功能, 在得到 BS的批准之后, 向 BS返回响应并启动中继功能。 其中 利用 RS转发数据的过程为: BS或 MS将待发送数据进行编码调制后发 送出去; 启动了中继功能的 RS对接收的数据进行解调解码后重新进行 编码调制之后将数据转发出去; MS或者 BS接收到 RS转发的数据后对 其估计信道系数并进行解调解码, 得到所传数据。
但是, 由于在没有引入中继站的传统无线系统中, 比如在 WiMAX 系统中,只存在 MS在不同 BS之间的切换,此时移动台和服务基站 (SBS, Serving Base Station)都会维护一个相邻基站 (NBS, Neighbor BS)列表, MS根据收到的 BS下行链路信号质量来判断是否需要切换, SBS根据网 络负载及相邻 BS特征来决定是否触发 MS的切换。 但在引入了中继站 RS的 WiMAX系统中, 除了存在不同 BS之间的切换外, 还存在 MS在 RS与 BS , 以及 RS与 RS之间的切换问题。 此外, 考虑到后向兼容性, 包括兼容传统 WiMAX终端, 必须限定中继基站的引入对 MS不可见, 即 MS不能感知 RS的存在。因此 MS在相同小区内的多个 RS间移动时, 不能通过下行链路信号的改变来触发 MS在 RS与 RS之间的切换或者 MS在 RS与 BS之间的切换; 在不同小区间移动时, 虽然可以通过感知 不同小区的下行链路质量来触发切换, 但 MS不能感知 RS的存在, 因 此也不能通过下行链路信号的改变来触发 MS在 RS与 RS之间的切换或 者 MS在 RS与 BS之间的切换。 发明内容
有鉴于此, 本发明实施例一方面提供一种无线中继系统中的切换方 法, 应用该方法可以使原有 MS在无需做任何升级的情况下即可实现在 无线中继系统中进行自如切换。
本发明实施例另一方面提供一种实现切换的无线中继系统和装置, 该系统和装置可以使原有 MS在无需做任何升级的情况下即可实现在无 线中继系统中进行自如切换。
本发明实施例提供的无线中继系统中的切换方法, 包括如下步骤:
A、 中继站 RS动态监测终端 MS的上行信号质量, 并将信号质量信 息上报给服务站;
B、 服务站根据 RS上报的 MS上行信号质量信息确定锚点 RS;
C、 判断锚点 RS是否发生变更, 如果没有发生变更, 则返回执行步 骤 A; 如果发生变更, 则执行步骤 D;
D、切换为由本次确定的锚点 RS转发服务站与 MS之间的业务数据; 之后返回执行步骤 A。
本发明实施例提供的实现切换的无线中继系统, 包括: 服务站、 MS 以及多个 RS , 其中,
MS, 用于接收服务站的数据, 并发送数据给服务站;
多个 RS , 用于动态监测 MS的上行信号的质量, 并将信号质量信息 上报给服务站, 并根据服务站的指示决定是否转发服务站与 MS之间的 业务数据;
服务站, 用于根据接收的 RS上报的 MS上行信号质量信息确定锚 点 RS , 并切换为由该锚点 RS转发服务站与 MS之间的业务数据。
本发明实施例提供的 RS , 包括: 发射机、 接收机、 双工器及天线、 下行数据处理模块、 上行数据处理模块以及控制处理器, 其中,
所述下行数据处理模块用于通过接收机接收服务站发送给 MS的数 据, 对所接收的数据进行解调解码后, 从中提取出服务站的控制命令, 将该控制命令发送给控制处理器, 然后在所述控制处理器的控制下, 根 据控制命令的指示信息对解调解码后的数据进行编码调制, 并将编码调 制后的数据在指定的时频资源位置上通过发射机发送出去, 或者将解调 解码后的数据丟弃;
所述上行数据处理模块用于通过接收机接收 MS发送给服务站的数 据, 对所接收的数据进行解调解码后, 根据从下行数据处理模块中提取 出的服务站的控制命令, 在所述控制处理器的控制下, 根据控制命令的 指示信息对解调解码后的数据进行编码调制, 并将编码调制后的数据在 指定的时频资源位置上通过发射机发送出去; 对接收上行信号的质量进 行测量, 并在控制处理器的控制下, 将测得的信号质量信息与上述编码 调制后的信号一起通过发射机发送出去, 或者只将测得的信号质量信息 通过发射机发送出去;
所述控制处理器, 用于完成对所述发射机、 接收机、 上行数据处理 模块及下行数据处理模块的控制。 本发明实施例提供的 BS, 包括: 发射机、 接收机、 双工器及天线、 上行数据处理模块、 下行数据处理模块以及控制处理器, 其中,
所述上行数据处理模块用于通过接收机接收 MS发送给 BS的数据, 在所述控制处理器的控制下, 对所接收的数据进行解调解码后, 得到所 传数据, 并从解调解码后的数据中提取出包含 RS接收当前 MS上行信 号的质量信息的反馈信息, 发送给控制处理器; 测量接收上行信号的质 量, 将测量得到的质量信息发送给控制处理器;
所述控制处理器用于完成对所述发射机、 接收机、 上行数据处理模 块及下行数据处理模块的控制; 根据接收的来自上行数据处理模块的反 馈信息及质量信息,选择适合为 MS服务的 RS或 BS本身作为锚点 RS, 并生成含指示信息的控制消息, 发送给下行数据处理模块; 在为当前 MS选好锚点 RS之后, 维护该 MS的 CID与锚点 RS的关联表;
所述下行数据处理模块用于将待发送数据在所述控制处理器的控制 下, 进行编码调制, 并将编码调制后的数据以及控制处理器发送过来的 控制消息, 在分配给所述数据的时频资源位置上通过发射机发送出去。
本发明实施例提供的有控制能力的 RS 包括: 发射机、 接收机、 双 工器及天线、 上行数据处理模块、 下行数据处理模块以及控制处理器, 其中,
所述下行数据处理模块用于处理接收机接收到的下行数据, 对所接 收的数据进行解调解码后,从中提取出来自 BS或其它有控制能力的 RS 的控制命令, 将该控制命令送给控制处理器, 然后在控制处理器的控制 下, 根据控制命令的指示信息对解调解码后的数据进行编码调制后在指 定时频资源位置上发送出去; 或者连同控制处理器发送过来的控制消 息, 在指定时频资源位置上发送出去;
所述上行数据处理模块用于处理接收机接收到的上行数据, 对所接 收的数据进行解调解码后, 根据从下行数据处理模块中提取出的控制命 令, 在控制处理器的控制下, 根据控制命令的指示信息对解调解码后的 数据进行编码调制后通过发射机在指定时频资源位置上发送; 并对接收 上行信号的质量进行测量, 生成质量信息, 发送给控制处理器, 或在控 制处理器的控制下, 将需要上报的质量信息生成上报信息通过发射机发 送出去; 同时从解调解码后的数据中提取出包含 RS接收当前 MS上行 信号的质量信息的反馈信息, 发送给控制处理器;
所述控制处理器用于完成对发射机、 接收机、 上行数据处理模块及 下行数据处理模块的控制, 根据接收来自上行数据处理模块的反馈信息 以及质量信息, 选择适合为 MS服务的 RS或 BS本身作为锚点 RS , 并 生成包含指示作为锚点的 RS启动为当前 MS的中继功能的指示信息的 控制消息, 发送给下行数据处理模块; 根据上行数据处理模块发送来的 质量信息, 判断出需要上报的信息, 控制上行数据处理模块将需要上报 的信息发送出去。
本发明提供的方法、 系统及装置, 通过采用 RS动态监测 MS的上 行信号的质量信息, 并将质量信息进行上报, 之后 BS从上报结果中选 取最适合为 MS服务的 RS作为锚点 RS, 如果锚点 RS没有发生变更, 则正常运行, 并继续动态监测 MS的上行信号; 如果锚点 RS发生了变 更, 则切换为由新确定的锚点 RS为当前 MS服务, 然后继续动态监测 MS的上行信号。从而解决了 MS由于不能感知 RS所有无法通过下行链 路信号的改变来触发切换的问题, 使 MS无需进行升级便可自如的在无 线中继网络中实现切换。 附图简要说明
图 1为本发明背景技术中无线中继通信系统结构示意图; 图 2 为本发明无线中继系统中切换方法的第一较佳实施例的流程 图;
图 3为图 2所示实施例中 RS激活集的示意图;
图 4为图 2所示实施例中 RS判断接收 MS上行信号质量是否满足 上报条件的方法的第一种判断方法中信号质量与门限电平的关系示意 图;
图 5为图 2所示实施例中 RS判断接收 MS上行信号质量是否满足 上才艮条件的方法的第一种判断方法的流程图;
图 6为图 2所示实施例中 RS判断接收 MS上行信号质量是否满足 上报条件的方法的第二种判断方法中信号质量与门限电平的关系示意 图;
图 7为图 2所示实施例中 RS判断接收 MS上行信号质量是否满足 上才艮条件的方法的第二种判断方法的流程图;
图 8为图 2所示实施例中锚点为多于一个时转发 BS与 MS之间数 据的方法流程图;
图 9为图 8所示传输方法中锚点 RS中包含 BS的情况下的下行传输 的方法流程图;
图 10为图 8所示传输方法中锚点 RS中包含 BS的情况下的上行传 输的方法流程图;
图 11为图 2所示实施例中触发 RS激活集与锚点 RS更新时的流程 图;
图 12为本发明无线中继系统中切换方法的第二较佳实施例中 MS初 始接入网络时的流程图;
图 13 为本发明无线中继系统中切换方法的第二较佳实施例中发生 小区间切换时的流程图; 图 14 为本发明无线中继系统中切换方法的第三较佳实施例中采用 CDMA竟争带宽的方式时的流程图;
图 15 为本发明无线中继系统中切换方法的第三较佳实施例中采用 轮询方式的流程图;
图 16 为本发明无线中继系统中切换方法的第四较佳实施例中有锚 点变更时数据传输的流程图;
图 17 为本发明无线中继系统中切换方法的第四较佳实施例的流程 图;
图 18 为本发明无线中继系统中切换方法的第五较佳实施例的流程 图;
图 19 为本发明实现切换的无线中继系统的较佳实施例的系统组网 示意图;
图 20为图 19所示实施例中 RS的结构示意图;
图 21为图 19所示实施例中 BS的结构示意图;
图 22为本发明中有控制能力 RS的结构示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下面结合实施 例和附图, 对本发明进一步详细说明。
本发明的基本思想是: 通过 RS对 MS的上行信号质量进行动态监 测, 并将上行信号的质量信息发送给服务站, 由服务站根据这些 RS的 上报结果确定 RS激活集, 并从中选出满足 RS服务质量要求最好的 RS 作为锚点, 如果锚点 RS没有发生变更, 则正常运行, 并继续动态监测 MS的上行信号; 如果锚点 RS发生变更, 则切换为由新确定的 RS转发 服务站与 MS之间的业务数据, 然后继续动态监测 MS的上行信号。 其中, 服务站包括 BS或有控制能力的 RS。 为了描述方便, 本发明 中的实施例均以 BS为例进行说明。相应的将实施例中 BS换为有控制能 力的 RS, 便成为有控制能力的 RS的实施例。
本发明中参与中继转发的 RS也可以为有控制能力的 RS。
实施例一:
参见图 2, 图 2是本发明切换方法的第一个较佳实施例的流程图。 该流程包括:
步骤 201 , RS动态监测 MS的上行信号质量。 本步骤中还可以包括 BS监测 MS的上行信号质量。
其中, RS根据自己的测量获得上行 MS→RS链路的质量信息, 即 接收上行信号的质量信息。
步骤 202 ~ 203 , RS判断所接收的上行信号质量是否满足上报条件, 满足上报条件时 RS向 BS上报上行信号质量, 之后执行步骤 204; 不满 足上报条件则返回执行步骤 201。
此处, 上报的信号质量信息中包括信号强度, 信干噪比等。
其中 RS判断所接收的上行信号质量是否满足上报条件并进行上报 的方法可以有很多种, 将在下面对附图 4 ~ 7 的说明中进行详细介绍。 或者本步骤中也可以不进行判断, 直接将信号质量信息进行上报。
步骤 204, BS接收 RS上报的上行信号质量。
步骤 205 , BS根据接收到的 RS的上报结果以及自身监测到的 MS 的信号质量确定中继切换参数, 即确定 RS激活集和锚点 RS。
本步骤中, BS 先根据接收到的 RS 的上报结果以及自身监测到的 MS的信号质量确定出 RS激活集,再结合各 RS及 BS自身的负荷情况, 或者结合 MS需求的服务质量等信息情况进行选择, 如选择接收上行信 号质量最好的 RS作为为当前 MS服务的 RS, 或者从接收上行信号质量 好的 RS中选择能满足 MS服务质量需求的且负荷不重的 RS作为为当前 MS服务的 RS, 即确定出的锚点 RS。
本实施例中是从 RS激活集中选择和确定锚点 RS。 BS维护着 RS激 活集。如图 3所示, RS激活集表示能够接收到当前 MS的信号并能为该 MS服务的 RS的集合, 其中 RS激活集中可以包括 BS本身, BS的标号 可以记为 RS0。在 RS激活集中选择一个或多于一个的锚点 RS作为当前 为 MS服务的 RS, 如图 3所示。 其中, 如果 BS为接收 MS的上行信号 质量最好的, 则锚点 RS为 BS本身, 为了统一记号, 可以记为 RS0; 或 者锚点 RS为多于一个时, 其中也可以有 BS, 即数据发送过程中, 数据 在 BS与 MS之间不仅可以通过 RS转发, 也可以在 BS与 MS之间直接 发送。 以下统称 RS激活集与锚点 RS为中继切换参数。
本步骤中, 如果能找出转发信号质量最好的且负荷不重并能满足服 务要求的一个 RS作为锚点,则锚点 RS的个数为一个;如果找不出转发 信号质量最好的且负荷不重, 并能满足服务要求的一个 RS作为锚点, 此时为了保证信号的传输质量, 可以根据情况选择由激活集中多于一个 的 RS或全部 RS作为锚点 RS同时参与中继转发, 则此时锚点 RS的个 数为多于一个。
步骤 206, BS判断锚点 RS是否发生变更, 如果没有发生变更, 则 正常运行并返回执行步骤 201; 如果锚点 RS发生变更则执行步骤 207。
本步骤中, 初次确定锚点 RS , 或在动态监测过程中, 重新确定出的 锚点 RS与当前服务的锚点 RS不一致时, 均认为锚点 RS发生了变更。
步骤 207, BS切换为由重新确定的锚点 RS转发 BS与 MS之间的 业务数据。
本步骤中, BS会发送控制消息通知重新确定出的锚点 RS作为中继 转发站, 转发 BS与 MS之间的业务数据。 如果存在旧锚点 RS, 则发送 控制消息通知旧锚点停止作为中继转发站转发数据。
如果是 WiMAX系统, 由于在 WiMAX系统中 RS维护着一个 MS 的连接标识 CID列表, 则 BS通知锚点 RS的方法可以为: BS发送控制 消息通知锚点 RS增加该 MS的 CID。 BS通知原锚点 RS的方法可以为: BS发送控制消息通知锚点 RS删除该 MS的 CID。
本步骤中, 如果锚点 RS的个数为 1个时, 则按传统的方式转发 BS 与 MS之间的数据。如果锚点 RS的个数为多于一个时,则按照后续图 8 所示流程转发 BS与 MS之间的业务数据。
至此, 实施例一的过程描述完成。
实际应用中,还可以为当前 MS设置一个更新定时器 TR, 并设置两 个门限值, 第一门限和第二门限, 且第二门限大于第一门限。
用于 BS有下行数据需要传输时, 通过判断该更新定时器 TR, 可以 决策用哪个 RS进行转发数据。 若更新定时器小于等于第一门限, 则原 有 RS激活集和锚点 RS保持不变。若更新定时器 TR大于第一门限且小 于第二门限, 如果原锚点 RS的个数为一个, 则此时 BS通知 RS激活集 中的多于一个的 RS作为锚点 RS共同转发数据, 即将单个锚点 RS调整 为多于一个的锚点 RS。 若更新定时器 TR大于等于第二门限, 则触发对 中继切换参数的更新, 即在执行步骤 201 之前还包括: BS主动向 MS 发送信道测量命令, MS接收到信道测量命令,根据 BS为其分配的资源 信息发送上行信号, 由步骤 201对该信号进行监测, 之后在步骤 205中 进一步包括: 将 TR清零, 并重新开始计数。
此外,还可以为当前 MS设置一个更新定时器 TR, 并设置三个门限 值, 第一门限、 第二门限和第三门限, 第二门限大于第一门限, 第三门 限大于第二门限。
定时器次计数达到第三门限值, 则触发对中继切换参数的更新; 并 将定时器 TR清零, 重新计数。 当 BS有下行数据需要传输时, 通过判 断该更新定时器 TR, 可以决策用哪个 RS进行转发数据, 若更新定时器 小于等于第一门限,则原有 RS激活集和锚点 RS保持不变; 若更新定时 器 TR大于第一门限且小于第二门限, 将单个锚点 RS调整为多于一个 的锚点 RS; 若更新定时器 TR大于第二门限且小于第三门限, 则触发对 中继切换参数的更新, 更新方法同上。 可见, 关于定时器的设置方式可 以有 4艮多种。
另外, 还可以设置一个周期定时器, 定时器每计数一周, 便触发一 次对中继切换参数的更新, 更新方法同上。
在实际应用中, BS可以根据接收信号的状态决定是否触发对中继切 换参数的更新, 如果 BS在规定次数内没有在预期的上行资源上收到预 期的信号, 则触发对中继切换参数的更新; 或者 BS接收多于一个的锚 点 RS共同转发的信号时, 信号质量不能保证服务质量时, 则触发对中 继切换参数的更新。
以下先对图 2的步骤 202中 RS判断所接收的上行信号质量是否满 足上报条件的两种方法进行详细介绍。
第一种方法:
对 RS预置两个门限 VAS— A、 VAS D, 分别表示加入 RS激活集的 信号质量门限和退出 RS激活集的信号质量门限, 且 VAS— A>=VAS— D, 如图 4所示。 其中门限可以根据接收信号的不同的信干噪比或是信号强 度来设置。 当某个 MS的原激活集外面的 RS接收的 MS上行信号的质 量 CQ大于等于加入 RS激活集门限 VAS— A时, 确定满足上报条件; 或 者某个 RS的原激活集里面的 RS接收的 MS上行信号的质量 CQ小于退 出 RS激活集门限 VAS— D , 则确定满足上报条件。 为了避免由于 MS的 状态不稳定, 而出现 RS的接收信号质量瞬时改变的情况, 即为了降低 虚警概率,本方法中,定义一个连续超过门限次数的最大值 NR, NR>=1 , 即当上述上报条件满足的次数 N大于 NR之后再向 BS进行上报, 或者 也可以设置一个持续超过门限时间的最大值 TR, TR>0, 即当上述上报 条件满足的时间 T大于 TR之后再向 BS进行上报。 也即当 MS上行信 号质量 CQ满足 ((CQ>=VAS_A) OR (CQ<VAR_D)) AND((N>=NR) OR (T>=TR))时向 BS进行上 ·艮。 其中, 当 RS激活集包括 BS时, 可将 BS 标记为 RS0, 作为一种特例统一考虑。 具体流程图如图 5所示:
步骤 501 , 该 RS判断是否处于原 RS激活集中, 即该 RS上次上报 的上行信号的质量信息是否大于等于 VAR— A, 如果是则执行步骤 502; 否则执行步骤 503。
步骤 502, 该 RS判断接收的上行信号的质量是否小于 VAR— D, 如 果是则执行步骤 504; 否则返回执行步骤 501。
步骤 503 ,该 RS判断接收的上行信号的质量是否大于等于 VAR— A, 如果是则执行步骤 505; 否则返回执行步骤 501。
步骤 504,判断是否连续 NR次小于 VAR— D,如果是则执行步骤 506; 否则返回执行步骤 501。
本步骤中, 若设置了 TR, 则判断是否持续 TR时间小于 VAR— D, 如果是则执行步骤 506; 否则返回执行步骤 501。
步骤 505, 判断是否连续 NR次大于等于 VAR— A, 如果是则执行步 骤 506; 否则返回执行步骤 501。
本步骤中, 若设置了 TR, 则判断是否持续 TR时间大于 VAR— A, 如果是则执行步骤 506; 否则返回执行步骤 501。
步骤 506, RS确定满足上报条件。
至此, 第一种判断方法的流程结束。
第二种方法: 由于与当前 MS相联系的 RS即 RS激活集中,各自与 MS之间的链 路质量及最大传输率,以及 RS与 BS之间的链路质量及最大传输率都不 同。 为了描述这种不同性, 并对这些不同性加以利用, 在本方法中对 RS 激活集进行分组管理, 分组的依据可以是 MS与 RS之间的链路质量也 可以是所能达到的最大传输速率等, 其中链路质量可以指接收信号的信 干噪比或是信号的强度。
对每组 RS , 都有两个预置门限: VAS— A、 VAS D, 分别表示加入 和退出该组 RS 的信号质量门限, VAS— A>=VAS— D, 通过设置不同的 VAS— A、 VAS— D门限, 可以得到不同的分组。 这样, RS将测量得到的 接收的当前 MS的上行信号的质量与门限值进行比较, 比较属于哪个组 别的门限区间, 就可以知道自己所对应的该 MS的 RS激活集组别, 不 同组别对应不同级别的链路质量或不同级别的传输速率。 在本方法中, RS激活集分组的决策点为 RS , RS决策后再向 BS上报。 如图 6所示, 将 RS激活集划分为 3个组别, 即对 RS激活集设置三组门限,三组门限 将整个区间划分成 4个区域, 其中 GO表示不能与当前 MS相联系的 RS 集合, GO为各 RS的初始默认值; Gl、 G2、 G3表示 RS激活集中的 3 个不同组。 具体流程图如图 7所示, 本流程中以链路质量为例, 该流程 包括:
步骤 701 , RS通过将接收的上行信号质量信息与各门限值比较, 判 断所属的 RS激活集中的组别 Gn。
按图 6中所示组别,假设起始时某 MS在某 RS中对应的组别为 GO, 当该 MS向该 RS移动时,该 RS监测到的上行信号质量在增加, 当确定 链路质量 CQ— e>=VAS— A1时, 判断所属组别为 G1 ; 当 MS快速移动到 该 RS中心区域时, RS确定链路质量 CQ— e>=VAS— A3时, 判断所属组 别为 G3; 当 MS逐渐离开该 RS时, RS监测到的上行信号质量会减小, 当确定链路质量 CQ— e<VAS— D2时, 判断所属组别为 G2。
步骤 702, 判断与当前组别值即前一状态所属组别 Gc是否一致。 一 致则返回执行步骤 701 ; 否则执行步骤 703。
仍以图 6中所示组别为例, 当 MS由状态 GO进入状态 G1时, 或由 状态 G1进入状态 G3 ,或从状态 G3退出到状态 G2,其判断结果为所属 组别发生了改变, 则执行步骤 704; 否则如果其组别信息没有变化则返 回执行步骤 701监测 MS的上行信号质量。
步骤 703 , 判断是否连续 NR次在状态 Gn中, 如果是, 则执行步骤 705, 否则返回执行步骤 701。
本步骤中, 为了避免由于 MS状态不稳定, 相应 RS的状态出现瞬 时改变的情况, 即为了降低虚警概率, 设置了一个连续超过门限次数的 最大值 NR, NR>=1 , 即当上述上报条件满足的次数 N大于 NR之后再 向 BS进行上报。
其中, 为了降低虚警概率, 也可以设置一个持续超过门限时间的最 大值 TR, TR>0, 即当上述上报条件满足的时间 T大于 TR之后再向 BS 进行上报。
步骤 704,将当前状态组别值更新为目前所属的组别, 即令 Gc=Gn。 本步骤中,当 RS由状态 GO进入状态 G1 ,且连续进入次数大于 NR, 则将当前组别值更新为 G1 , 其他情况同理。
步骤 705, RS确定满足上报条件。 本方法流程结束。
在本方法中, RS将 RS-MS之间的链路质量, 包括上行和下行的链 路质量, 按照一定的范围分为若干区域, 不同区域对应不同的 RS激活 集组别, 当链路质量从一个区域变化到另一个区域时则向 BS上报。 同 时, 为降低虚警概率, 需要定义门限 NR ( NR>=1 ), 当链路质量连续 NR次在某个区域范围时, 才能确认属于该区域所对应的 RS激活集组 别; 或者为了降低虚警概率, 也可以设置一个持续超过门限时间的最大 值 TR, TR>0, 当链路质量持续 TR时间在某个区域范围时, 才能确认 属于该区域所对应的 RS激活集组别。默认各 RS初始不在 RS激活集内。 其中, 当 RS激活集包括 BS时, 可将 BS标记为 RS0, 作为一种特例统 一考虑。
这样如果图 2所示实施例中步骤 202采用的上述第一种 RS判断所 接收的上行信号质量是否满足上报条件的方法, 则在图 2所示实施例的 步骤 203中,满足上报条件的 RS向 BS上报的上行信号的质量信息包括 信号强度、 信干噪比等, 则在图 2所示实施例的步骤 205中, 激活集的 确定方法可以为: BS根据 RS上报的上行信号的质量信息, 直接确定激 活集。
如果图 2所示实施例中步骤 202采用的上述第二种 RS判断所接收 的上行信号质量是否满足上报条件的方法, 则在图 2所示实施例的步骤 203 中, 满足上报条件的 RS向 BS上报的上行信号的质量信息包括该 RS接收上行信号的质量所处的组别信息等, 仍以前面所述的图 6 中所 示组别为例, 当 RS由 GO进入 G1时, 向 BS上报 01 , BS分析该 RS的 前一状态为 GO, 因此知道该 RS是希望加入 G1 , 且信号质量的变化趋 势是增强, 即链路质量范围在 [VAS— Al, VAS— A2)区间范围内; 当 RS由 G1进入 G3时, RS向 BS上报 11 , BS分析该 RS的前一状态为 G1 , 因 此知道该 RS是希望加入 G3 , 且信号质量的变化趋势是增强, 即链路质 量大于 VAS— A3 ; 当 RS由 G3进入 G2时, RS向 BS上报 10, BS分析 该 RS的前一状态为 G3 , 因此知道该 RS是希望加入 G2 ,且信号质量的 变化趋势是减弱, 即链路质量范围在 [VAS— D2, VAS— D3)区间范围内。 由 此可见, RS只需要向 BS反馈 2位(bit )字节的信息, 这样可以节省 RS的上报开销, 即不用上报全部的接收上行信号的质量信息。 则在图 2所示实施例的步骤 205中, 激活集的确定方法可以为: 根 据 RS上报的结果是处于什么组别, 便可直接确定除了进入 GO组的 RS 以外, 其他的均在 RS激活集中, 并且分属不同的组别, 其中不同组别 对应不同的接收上行信号的质量等级, 等级越高, 接收上行信号的质量 越好, 图 6中划分的组别,则处于 G3组的 RS接收上行信号的质量是最 好的。
然后对图 2所示实施例的步骤 207中锚点 RS是多于一个时, 所有 锚点 RS进行数据转发的方法进行介绍。
选用多于一个的 RS作为锚点时, 可以根据步骤 202中介绍的方法 一或方法二。 如果是 居方法一, 则可以选择 RS激活集中质量信息大 于某一设定值的作为锚点; 如果是根据方法二, 则可以选择组别最高的 或者组别最高的和次高的共同作为锚点。 或者选择 RS激活集中的全部 作为锚点。
参见图 8, 图 8为图 2所示实施例中锚点为多于一个时转发 BS与 MS之间数据的方法流程图。 该流程包括以下步骤:
步骤 801 , BS或 MS将待发送信息经编码调制后生成发送信号 XBS
X 发送出去。
本步骤中, 发送信号中可以携带有 MS的 CID。
步骤 802, 各个锚点 RS对接收到的 BS/MS发送来的信号解调解码 后再重新进行编码调制生成数据 Xss , 之后形成转发数据 ≥0 , 然 后所有锚点 RS按照 BS的指示信息在相同时频资源共同将转发数据向 MS/BS转发出去。
本步骤中, 锚点 RS根据接收的信号中携带的 CID信息, 判定是否 需要将该信号进行转发, 如果需要对其进行转发, 则根据 BS的指示信 息中的时频资源位置信息将信号在该时频资源位置上进行转发, 因为相 同的信号携带的 CID是相同的,并且为该信号分配的时频资源信息是相 同的, 因此可以保证所有锚点 RS对接收的相同信号在相同时频资源上 进行转发。
其中,可以由 BS发送控制消息告诉所有锚点 RS采用何种编码调制 方式, 然后锚点 RS采用该编码调制方式对解调解码后的数据重新进行 编码调制。
RS激活集中的全部 RS接收 BS/MS发送来的信号, 对所接收的信 号进行解调解码, 并判断自己是否需要参与转发, 判断条件为: 首先要 正确接收到来自 BS/MS的信号, 然后判断自身是否为锚点 RS, 即是否 由 BS 发送控制消息告知作为当前 MS 的锚点进行数据转发, 如果是 WiMAX系统, 则锚点 RS中维护的 CID列表中会有当前 MS的 CID, 通过判断接收的信号中的 CID即可知道自己是否为当前 MS的锚点 RS。 如果经过判断之后满足转发条件, 则该 RS会对解调解码之后的数据进 行重新编码调制生成数据 XRS , 如果该 RS此时已知自身与 MS/BS之间 的信道信息, 即已知 RSi到 MS/BS的信道系数 , ≥0 , 该信息可以通 过信号中的导频信息得到,则 RS将待发送信号乘上信道系数的共轭 , 形成转发数据 = XRS , 然后再发送出去, 并称这种处理过程为采用 了预均衡技术; 若信道信息未知, 则直接将进行编码调制后的数据发送 出去; 如果判断之后不满足转发条件, 则该中继 RS将解调解码后的数 据丟弃, 结束本次流程。
步骤 803 , MS或 BS接收步骤 802中所有锚点 RS同时转发的合成 信号 = ^^ , 即所有锚点 RS转发的信号的叠加, 对该信号进行解 调解码,得到所传信息。如果没有采用预均衡技术, ^ =∑^XSS; 如果采用了预均衡技术, = I = ΧΚ8 。 本步骤中可以发现, 通过采用预均衡技术, 可以获得多于一个 RS 转发数据的分集增益, 传输的可靠性更高。 当然如果不知道参与转发的
RS与 MS或与 BS之间的信道信息, 也可以不采用预均衡技术。
将这种由多于一个的锚点 RS共同转发数据的传输方式称为 PMPP 模式。 这种方式中也可以包含 BS与 MS之间的信号直接传送, 此时, 在上行传输与下行传输中会稍有不同, 以下分别进行详细介绍。
参见图 9, 图 9为下行 PMPP传输过程中锚点 RS中包括 BS, 即存 在 BS与 MS的直接信号传送的情况下的流程图。该流程包括以下步骤: 步骤 901 , BS发送信号 XBS
步骤 902, RS激活集中的 RS接收来自 BS的信号 XBS ,并解调解码。 步骤 903 , RS判断自己是否需要转发该信号, RSi转发信号的条件 为: RSi正确接收来自 BS的信号且 RSi为锚点 RS, 如果 RSi不需要转 发, 则丟弃该信号, 结束本次过程, 如果需要转发, 进入步骤 904。
步骤 904, 参与转发的 RS对解调解码后的比特流按 BS指示重新编 码调制后得到信号 i s , 再形成发送信号 = ^ .« , 其中, 启用预均衡 技术时 没有启用预均衡技术时《; = 1。
步骤 905,如果存在 BS到 MS的直接信号传送,则 BS在相同时刻, 在相同的时频资源上发送信号 X。 = XRS ·«。* ,式中的 XRS为 BS采用和参与 转发的中继 RS相同的编码调制方式对待发送信号进行编码调制后生成 的数据, 故与参与转发的 RS编码调制后的数据相同, 当启用预均衡技 术时《。= /¾ , 为 BS到 MS的信道系数, 没有启用预均衡技术时《。= 1。
步骤 906, MS接收来自 RS与 BS同时发送的信号, 并估计等效的 合成信道系数, 对接收信号解调解码。 本步骤中, 估计信道系数的方法现有技术中有很多种, 如可以从接 收的信号中的导频信息估计信道系数信息。 另外, 本流程中因为 BS采 用了和参与转发的 RS 的相同的编码调制方式, 并且和参与转发的 RS 在相同时刻相同时频资源上发送信号, 所以本步骤中的处理方法同没有 BS到 MS的数据直接发送时的情况一致, 不需要其他特别处理。
此外, MS也可以不接收 BS直接传送的信号。 则处理方法仍然如图 8中所示流程。
至此本次传输结束, 如果本次信号传输出错, 需要靠相应的重传机 制来进行重传。
参见图 10, 图 10为上行 PMPP传输过程中锚点 RS中包括 BS, 即 存在 BS与 MS的直接信号传送的情况下的流程图。 该流程包括以下步 骤:
步骤 1001 , MS发送信号 XMS
步骤 1002, RS激活集中的 RS接收 MS发送的信号 XMS , 并解调解 码, 如果存在 MS到 BS的直接信号传送, 则 BS也接收该信号, 设收到 的信号为 。
步骤 1003 , RS判断自己是否需要转发, RSi转发信号的条件为: RSi正确接收来自 MS的信号且 RSi为锚点, 如果 RSi不需要转发, 则 丟弃该信号, 结束本次过程, 如果需要转发, 进入步骤 1004。
步骤 1004, 参与转发的 RS对解调解码后的比特流按照 BS指示重 新编码调制后得到信号 X s , 再形成转发信号 = X S .« , 其中, 启用预 均衡技术时《; = , 没有启用预均衡技术时《; = 1。
步骤 1005, BS接收到来自多于一个的 RS同时发送的叠加信号 , 之后执行步骤 1006, 判断是否存在 MS到 BS的直接信号传送, 如果存 在且 X s等于 XMS , 即 RS与 MS采用相同的编码调制方式, 则执行步骤 1007; 如果存在但 x s不等于 XMS , 即 RS与 MS采用不同的编码调制方 式, 则执行步骤 1008; 如果不存在 MS到 BS的直接信号传送, 则 BS 估计等效的合成信道, 对 进行解调解码, 之后结束本流程。
步骤 1007, BS构造合成信号 = 当启用预均衡技术时 a0 = h0 , /¾为 MS到 BS的信道系数, 没有启用预均衡技术时 。 = 1 , 之 后估计等效的合成信道, 对 进行解调解码, 结束本流程。
步骤 1008, BS估计等效的合成信道, 对 进行解调解码, 并检验 校验位(CRC ), 判断是否正确, 正确则结束, 不正确则执行步骤 1009。
步骤 1009, BS对 1进行解调解码, 结束本流程。
其中,步骤 1008和步骤 1009的次序可以颠倒。 即 BS可以先对 1进 行解调解码, 并检验 CRC, 判断是否正确, 正确则结束, 不正确则估计 等效的合成信道, 对 进行解调解码。
此外, BS也可以不接收 MS直接传送的信号。 则处理方法仍然如图 8中所示流程。
至此本次传输结束, 如果本次信号传输出错, 需要靠相应的重传机 制来进行重传。
然后再对图 2所示实施例中提到的触发对中继切换参数的更新的方 法进行详细介绍。
其中, 为了对更新状况有个监测, 可以设置一个更新响应定时器 T1 和预置一个最大重试次数 N, 另外还预先设置了更新定时器 TR。 具体 流程如图 11所示, 包括如下步骤:
步骤 1101 , BS主动向 MS发送信道测量命令, 该命令中携带有为 MS分配的时频资源信息。本步骤中信道测量命令可以由所有 RS转发广 播出去, 以确保 MS能接收到。 同时启动定时器 Tl。
步骤 1102, MS接收到信道测量命令, 根据 BS为其分配的时频资 源信息向 BS发送上行信号。
步骤 1103 , RS动态监测 MS的上行信号, 判断接收上行信号的质 量是否满足上报条件, 满足则向 BS上报。 判断是否满足上报条件的方 法同本实施例中步骤 202的介绍。
步骤 1104, BS接收到信道测量命令的响应即 RS上报的结果。
步骤 1105 , BS 因为接收到了信道测量命令的响应所以清除定时器 TI, 并执行步骤 1106; 否则执行步骤 1108~1110, 即超时没有收到命令 响应, 则重试次数加 1 , 并判断是否用完了重试次数 N, 没用完则返回 执行步骤 1101 , 若重试次数用完, 则此次对中继切换参数的更新失败, 按 MS断线处理。
步骤 1106, RS激活集与锚点 RS进行更新, 此过程同本实施例中的 步骤 205至步骤 207。
步骤 1107, 清除定时器 TR, 置 0重新开始计时。 至此对 RS激活集 与锚点 RS的更新过程成功完成。
下面分别以 MS初始接入网络、有上行信号需要传输、数据传输中、 有下行信号需要发送等不同情况下的切换方法配合具体实施例进行详 细描述。
下面的实施例中均以 WiMAX系统为例。
实施例二:
当 MS初始接入服务基站 BS网络, 或在小区间切换时切换到该服 务基站 BS, 或从深度节能状态恢复到正常状态时, 则切换方法在执行 图 1所示实施例一中的步骤 201之前还包括:
步骤 1 ), MS搜索由服务基站 BS发出的或者由 RS转发的下行信道, 并建立与服务基站 BS的下行信道同步;
步骤 2 ), MS从下行信道中获得上行信道的发射参数, 并据此向 BS 发送上行信号, 由步骤 201对该信号进行监测。
其中, 当 MS处于不同情况时, 其执行步骤 1 )和步骤 2 )的具体过 程略有差异。 下面分别对各种情况结合整个切换过程进行介绍。
初始开机接入时:
参见图 12, 图 12是 MS初次开机接入网络时, 切换方法的流程图。 该流程包括以下步骤:
步骤 1201 , 开机后, MS首先搜索由基站 BS发出的或者由 RS转 发的下行信道, 并建立与基站 BS的下行信道同步, 然后 MS从下行信 号的上行信道描述(UCD ) 消息中获得上行信道的发射参数。
步骤 1202, MS从上行信道映射消息 (UL-MAP ) 中获得竟争测距 ( Ranging )信道信息, 并使用 Ranging信道发送随机选择的 CDMA码 字。
步骤 1203 , BS与 RS都接收到 MS发送的 CDMA码字,收到 CDMA 码字的 RS监测接收的上行信号的质量, 判断是否达到上报条件, 判断 方法同实施例一步骤 202中的介绍。 达到上报条件则执行步骤 1204; 否 则将数据舍弃, 退出中继。
步骤 1204, 达到上报条件的 RS将该 MS的 CDMA码字、 MS发送 码字所使用的时频资源位置, 以及 RS接收该信号的信号质量等发送给 BS。
步骤 1205, BS根据自己接收的结果和 RS上报的结果, 决策出最适 合为发送该 CDMA码字的 MS服务的单元, 该服务单元为某个 RS或 BS自身。
步骤 1206 , BS 通过该服务单元向 MS 发送 BS 的测距响应 ( RNG-RSP )信号。
本步骤中如果 MS执行测距过程后需要继续执行测距过程, 则测距 响应信号中会包含测距"继续"指示以及指示 MS进行相关参数调整的信 息; 如果 MS执行测距成功, 则测距响应信号中会包含测距"成功"指示, MS进行相关参数调整信息,并会携带有由 CDMA分配消息实体( CDMA Allocation IE ) 为该 MS分配的上行时频资源位置信息, 但此时 BS与 RS都不知道该 MS的身份。
步骤 1207, MS接收到 BS的 RNG-RSP信号。
其中, 如果所接收的信号中的信息指示"继续"执行测距, 则将相关 参数调整后重新执行测距过程, 如果信息显示执行测距成功, 则 MS会 在由 BS分配的上行时频资源位置上发送包含自己的物理地址(MAC地 址) 的测距请求(RNG-REQ )信息给 BS, 该信息通过 BS指定的最适 合为该 MS服务的单元, 即某个 RS或 BS自身转发或接收。
步骤 1208, BS接收到 MS的 RNG-REQ信息, 从中提取出该 MS 的身份, 为其分配 CID, 并通过 RNG-RSP消息告知该 MS, 同时 BS根 据自己接收上行信号的质量信息及步骤 1204 中 RS上报的结果确定出 RS激活集及最适合为该 MS服务的锚点 RS, 如果锚点是自身, 则由自 己发送数据给 MS,该过程结束;如果锚点是某个 RS,则执行步骤 1209。
步骤 1209, BS通知锚点 RS作为中继转发站对 BS与 MS之间的数 据进行转发。
在本实施例的 WiMAX系统中, BS将该 MS的 CID发送给锚点 RS, 告诉锚点 RS在服务列表中增加该 CID。
之后, BS建立 MS的 CID与相应的中继切换参数的关联, 从而确 定出对应于该 MS的中继切换参数。
小区间切换时: 参见图 13 , 图 13为 MS从其它小区移动到本小区时, 发生小区间 切换时, 本发明中无线中继切换方法的流程图。 在小区间进行切换时, 基本过程同实施例一中相似。 不同点在于, 在小区间切换时, 首先进行 传统小区间的切换, 即 MS监测相邻小区的 BS或者由相邻小区的 RS 共同转发广播出去的下行信号, 然后 MS会对相邻小区的 BS进行扫描 执行 Ranging过程,并将相邻小区的 BS的信号质量报告给本小区为 MS 服务的 BS, 切换请求由该 MS发起或者 BS发起, 当 MS切换到目标 BS即相邻小区的 BS以后, 传统切换方式结束, 但此时目标小区已经知 道了该 MS的身份, 所以少了图 12所示流程中步骤 1205至步骤 1207 的步骤。 具体方法流程如下:
步骤 1301 , MS搜索由 BS发出的或者由 RS转发的下行信道, 并建 立与 BS的下行信道同步, 然后 MS从下行信道中获得上行信道的发射 参数。
步骤 1302, MS根据 BS为其分配的专用 Ranging信道发送 CDMA 码字。
步骤 1303 , BS与 RS都接收到 MS发送的 CDMA码字,收到 CDMA 码字的 RS监测接收的上行信号的质量, 判断是否达到上报条件, 判断 方法同实施例一步骤 202中的介绍。 达到上报条件则执行步骤 1304; 否 则将所接收的信号数据丟弃, 退出中继。
步骤 1304, 达到上 条件的 RS将该 MS的 CDMA码字、 MS发送 码字所使用的时频资源位置, 以及 RS收到该信号的信号质量等发送给 BS。
步骤 1305, BS根据自己接收的结果及 RS上报的结果确定出 RS激 活集及最适合为该 MS服务的锚点 RS, 并为该 MS分配 CID, 将该 CID 通过 RNG-RSP消息告知该 MS, 如果锚点是 BS 自身, 则由 BS直接发 送数据给 MS, 并结束本流程; 如果锚点是某个 RS, 则执行步骤 1306。 步骤 1306, BS通知锚点 RS作为中继转发站对 BS与 MS之间的数 据进行转发, 在本实施例的 WiMAX系统中, BS将该 MS的 CID发送 给锚点 RS, 告诉其在服务列表中增加该 CID。
切换方法完成后, BS建立 MS的 CID与相应的中继切换参数的关 联, 从而确定出对应于该 MS的中继切换参数。
由深度节能状态恢复到正常状态时:
当 MS从深度节能状态恢复到正常状态时, MS可以使用为其分配 的专用 Ranging信道, 也可以使用基于竟争的 Ranging信道, 当使用基 于竟争的 Ranging信道时, 过程同图 12所示流程中的步骤 1201至步骤 1209相同。
实施例三:
MS有上行( UL )信号需要发送, BS需要确定该 MS的 RS激活集 和锚点 RS。 则本发明中的切换方法在执行实施例一中的步骤 201之前, 还包括先请求带宽的步骤, 请求带宽可以是通过 CDMA竟争方式, 也 可以通过轮询 (polling )方式由 BS分配。
下面分别就两种请求带宽方式, 对本发明中的切换方法在有上行信 号需要传输时的实施例作一个详细介绍。
采用 CDMA竟争带宽请求:
当采用 CDMA竟争带宽请求时, MS会发送 CDMA码字来请求接 入信道, 由于 CDMA码字是在竟争信道上发送的, 因此, RS和 BS不 知道该 CDMA码是谁发的, 所有收到该 CDMA码的 RS都将相应信息 上报, 这些信息包括 CDMA码字, 时频位置和信号质量等。 只有当 MS 在指定的 UL资源内发送带宽请求消息 (B W Request Message) , 且被 BS 收到后, BS才能根据连接标识 CID知道是哪个 MS发的请求消息, 并 根据 RS的上报信息调整中继切换参数;如果 BS没有在预期的上行资源 上收到锚点 RS转发的该 PDU, 则认为锚点 RS不再适合, 就触发中继 切换参数更新。 对由于锚点 RS没有收到 MS的 UL带宽请求信号而造 成的消息丟失, 由系统本身的出错机制,如重传来保证相应的服务质量。
下面结合流程图 14对上述过程进行详细描述,如图所示,该流程包 括以下步骤:
步骤 1401~1402, MS判断是否需要请求带宽,需要则 MS在 CDMA 竟争信道上发送 CDMA码字带宽请求; 否则继续正常运行。
步骤 1403 , RS监测到该上行信号,接收该上行信号的 CDMA码字、 时频位置信息、 并监测接收上行信号的质量。
步骤 1404, 因为 MS使用的是 CDMA的竟争信道, 所以这些 RS以 及 BS都不知道该 MS的身份,故所有收到 MS的带宽请求的 RS都将相 应信息, 即包括 CDMA码字, 时频位置和信号质量等参数转发给 BS。
步骤 1405, BS响应该带宽请求信息, 由 CDMA分配消息实体为该 MS指定发送带宽请求消息的上行时频资源并由所有 RS转发出去。
步骤 1406, MS在指定的上行时频资源上发送 MAC带宽请求消息。 步骤 1407,接收到带宽请求的 RS提取并分析 MAC带宽请求消息, 辨识出 MS的身份。
步骤 1408~1409, RS判断自己是否是锚点, 如果是, 则将该带宽请 求信息发送给 BS, 之后执行步骤 1410; 否则直接执行步骤 1410。
步骤 1410~1411 , RS判断自己是否满足上报条件, 判断方法同实 施例一步骤 202中的介绍。 不满足则将数据丟弃, 结束本流程; 满足则 将上行信号质量信息上报给 BS。
步骤 1412, BS判断自己有没有在预期的上行资源上接收到 MS的 带宽请求 MAC PDU信息, 如果没有收到, 则触发对 RS激活集与锚点 RS 即中继切换参数的更新, 结束本流程, 更新完成后再接收数据; 否 则执行步骤 1413。
步骤 1413 , BS根据 RS的上报结果, 对该 MS的中继切换参数进行 调整。 此过程同实施例一中的步骤 205至步骤 207。
步骤 1414~1416, BS判断中继切换参数调整后的锚点 RS是否满足 要求, 如果满足要求, 则判断锚点 RS是否发生变更, 如果发生变更, 则 BS发送中继切换参数调整指示给相应的 RS, 即通知调整后的新锚点 RS启动中继功能, 通知调整前的旧锚点 RS停止中继功能, 然后 BS重 置为该 MS设置的更新定时器 TR为 0, 并重新开始计时, 然后执行步 骤 1418, 如果没有锚点 RS发生变更, 则 BS直接重置为该 MS设置的 更新定时器 TR为 0, 并重新开始计时, 然后执行步骤 1418; 如果判断 中继切换参数调整后的锚点 RS不满足要求, 则执行步骤 1417。
步骤 1417, 判断单个锚点 RS不满足要求时, 则确定多于一个的锚 点 RS共同启动中继功能, 即启动 PMPP传输模式, 这里 PMPP模式的 工作方式同图 10中介绍的上行 PMPP传输模式。
步骤 1418, BS为该 MS分配上行传输带宽资源, 并通过上行信道 映射消息 (UL-MAP )对资源信息进行指示, 将该指示信息通过指定的 RS转发出去或者包括 BS直接发送过去。
步骤 1419, MS判断是否带宽被分配, 如果被分配了带宽, 则使用 该带宽信息发送数据, 并通过 RS转发给 BS; 否则进行出错处理。
轮询 ( polling ) 的方式:
在轮询 (polling ) 的方式下, BS在上行信道映射消息 ( UL-MAP ) 中为 MS指定接入信道, 如果 MS有 UL数据要传, 便在该接入信道上 发送带宽请求信息( BW Request Message )来申请 UL资源, 如果没有, 则在该 UL资源上发送一个特定的信号。也就是说, 不论 MS有没有 UL 数据发送, 在 polling方式下, 这块 UL资源都会被填上信息。 该 MS的 锚点 RS会接收该 UL信息,并转发给 BS;如果锚点 RS收不到对 polling 的回应消息,则 BS也收不到该回应消息,此时认为锚点 RS不再适合为 该 MS服务, BS触发中继切换参数更新。 所有的 RS都会监测该 MS的 UL信号质量,这时 RS可以根据 BS为 Polling分配的 UL资源位置知道 是哪个 MS发的信号, 各 RS会根据信号质量决定是否上报。 此时 RS 只负责监测 UL信号质量,对收到的 UL信号不进行转发, 除非 BS启动 了 PMPP模式。 对由于锚点 RS没有收到 MS的 UL带宽请求信号而造 成的消息丟失, 由系统本身的出错机制,如重传来保证相应的服务质量。 相关处理流程如图 15所示, 包括如下步骤:
步骤 1501 , BS发送轮询消息,即 BS在上行信道映射消息( UL-MAP ) 中为 MS指定接入信道信息, 该上行信道映射消息由 BS自身及所有 RS 共同转发出去。
步骤 1502, MS接收到该消息, 将轮询响应信息发送出去。 即如果 有上行数据需要传输, 则在被分配的上行资源位置上发送 MAC带宽请 求消息, 然后等待带宽分配指示; 否则在被分配的上行资源位置上发送 特定信号, 然后继续正常运行。
步骤 1503 , 所有 RS监测该上行信号的质量。
步骤 1504~1505, RS判断自己是否是锚点, 如果是, 则将轮询响应 信息发送给 BS, 之后执行步骤 1506; 如果不是锚点, 则直接执行步骤 1506。
步骤 1506~1507, RS判断自己是否满足上报条件, 判断方法同实 施例一步骤 202中的介绍。 不满足则将数据丟弃, 结束该过程; 满足则 将上行信号质量信息上报给 BS。
步骤 1508, BS判断自己有没有在预期的上行资源上接收到 MS的 轮询响应信息, 如果没有收到, 则触发对中继切换参数的更新, 结束本 流程, 更新完成后再接收数据; 否则执行步骤 1509。
步骤 1509, BS根据 RS的上报结果, 对该 MS的中继切换参数进行 调整。 此过程同实施例一中的步骤 205至步骤 207。
步骤 1510~1512, BS判断中继切换参数调整后的锚点 RS是否满足 要求, 如果满足要求, 则判断锚点 RS是否发生变更, 如果发生变更, 则 BS发送中继切换参数调整指示给相应的 RS , 即通知调整后的新锚点 RS启动中继功能, 通知调整前的旧锚点 RS停止中继功能, 然后 BS重 置为该 MS设置的更新定时器 TR为 0, 并重新开始计时, 然后执行步 骤 1514, 如果没有锚点 RS发生变更, 则 BS直接重置为该 MS设置的 更新定时器 TR为 0, 并重新开始计时, 然后执行步骤 1514; 如果判断 中继切换参数调整后的锚点 RS不满足要求, 则执行步骤 1513。
步骤 1513 , 判断单个锚点 RS不满足要求时, 则确定多于一个的锚 点 RS共同启动中继功能, 即启动 PMPP传输模式, 这里 PMPP模式的 工作方式同图 10中介绍的上行 PMPP传输模式。
步骤 1514, BS判断收到的轮询响应是否为带宽请求, 如果不是, 则结束本流程, 继续正常运行; 否则执行步骤 1515。
步骤 1515 , BS为该 MS分配上行传输带宽资源, 并通过上行信道 映射消息 (UL-MAP )对资源信息进行指示, 将该指示信息通过指定的 RS转发出去或者包括 BS直接发送过去。
步骤 1516, 如果 MS发送的是带宽请求消息, 则 MS判断是否带宽 被分配,如果被分配了带宽,则使用该带宽信息通过 RS发送数据给 BS; 否则进行出错处理。
实施例四:
下面对本发明的切换方法在数据传输过程中的应用进行详细介绍。 首先对切换过程中有锚点变更的情况下数据在 BS、 RS以及 MS之 间的传输情况做一个详细介绍, 方便后续流程理解。
在 WiMAX系统中, 数据是按帧进行传输的, 每帧分为下行子帧 (D) 和上行子帧 (U), 下行子帧又分成 BS/RS→MS (D1)和 BS→RS (D2)两部 分, 上行子帧也分为 MS→BS/RS (U1)和 RS→BS (U2)两部分。 在第 n 帧, BS决策锚点由 RS1切换为 RS2, BS在 D2告知 RS1和 RS2中止和 启动对 MS的中继, 但 RS不能立刻解析该命令, 该命令在第 n+1帧生 效并执行。 参见图 16, 如图所示, 在第 n帧的下行子帧, RS1 继续向 MS转发第 n-1帧 BS发来的下行数据,但 BS不再向 RS1发送该 MS的 第 n帧下行数据, 在第 n帧的上行子帧, RS1继续接收来自 MS的上行 数据, 并向 BS转发第 n-1帧收到的 MS上行数据。 在第 n+1帧, RS1 执行 BS的切换命令, 不再为 MS服务, 因为此时 RS1中已经没有 MS 第 n帧及其以后帧的下行数据了,但仍会向 BS发送在第 n帧收到的 MS 上行数据。
在第 n帧, BS向 RS2发送切换命令, 该切换命令即 BS发送控制信 号通知该 RS作为锚点 RS的命令,同时 BS将 MS的下行数据发给 RS2, 但此时 RS2不能解析切换命令,不去接收 MS的上行数据;在第 n+1帧, RS2执行切换命令, 在下行子帧向 MS发送第 n帧收到的下行数据, 在 上行子帧接收 MS的上行数据。
由此可见, MS 在锚点变更时其上行数据和下行数据传输都不会中 断, 即对 MS没有影响。 而且对 MS而言, 这个过程对它是透明的, 即 MS无需进行任何升级便可应用其中。
参见图 17, 图 17为在数据传输中无线中继系统的切换方法实施例 的流程图。 如图所示, 该流程包括如下步骤:
步骤 1701 , 所有 RS监测 MS的上行信号的质量。 步骤 1702~1703 ,接收到该上行信号的 RS对其链路质量信息进行判 断, 判断是否满足上报条件, 判断方法同实施例一步骤 202中的介绍。 如果满足则将上行信号质量信息上报给 BS, 之后执行步骤 1704; 否则 结束本流程, 继续监测 MS的上行信号。
步骤 1704, BS根据 RS的上报结果及自身接收上行信号的质量情况, 对中继切换参数进行调整。此过程同实施例一中的步骤 205至步骤 207。
步骤 1705, BS根据对中继切换参数的调整情况, 判断是否需要触 发更新。 如果不需要触发更新, 则判断中继切换参数调整后, 是否有锚 点 RS发生变更, 如果有则执行步骤 1706, 否则执行步骤 1707; 如果需 要触发更新, 则判定更新后是否有锚点 RS发生变更, 如果有则执行步 骤 1706, 否则执行步骤 1707。
本步骤中, 如果通过调整发现 RS激活集中只有一个 RS, 且该 RS 的链路质量并不能满足 MS的服务要求, 或者 RS激活集中有几个 RS, 但链路质量都很差, 或者其它情况需要对中继切换参数进行更新时, 则 触发对中继切换参数的更新。
步骤 1706, BS将中继切换参数的变更信息告知相应的 RS。
本步骤中, 发生锚点变更的情况时, 需要 BS发控制消息给相应的 RS,在 WiMAX系统中, BS需要告知相应的 RS是增加新的 MS的 CID, 还是删除已有 MS的 CID。
步骤 1707~1708, BS判断 PMPP模式是否变更, 即是否需要启动 PMPP模式, 这里 PMPP模式的工作方式根据是上行传输还是下行传输 采用同实施例一中图 10或图 9 中介绍的上行 PMPP传输模式或下行 PMPP传输模式。 或者由原来的 PMPP模式变为由现在的单个锚点 RS 工作的模式时, 需要中止 PMPP模式, 这些变更情况需要 BS发控制消 息给相应的 RS , 告知启动中继还是中止中继。 之后, 数据传输过程继续进行。
实施例五:
有 MS的下行( DL )信号需要传输时, BS需要确定该 MS的 RS激 活集和锚点 RS。 在本实施例中, 为了避免 MS频繁的发送上行信号, 该 方法在实施例一中的步骤 206之后进一步包括 BS为该 MS设置一个更 新定时器, 并设置两个门限, 第一门限 TL和第二门限 TH, 且 TH>TL, 此时本实施例中的无线中继系统中的切换方法为:
当有某个 MS的 DL数据时, BS先查询定时器 TR, 如果 TR<=TL, 就将其数据发给锚点 RS, 由其为 MS服务; 如果 TL<TR<TH, BS启动 PMPP模式,由 RS激活集中的 RS将 DL数据在指定的资源上同时发送, 确保 MS能收到其 DL信号。 同时 MS在通信中会发送 UL信号, 所有 的 RS都对 UL信号进行监测, 满足条件时上报, 由 BS根据上报结果动 态调整该 MS的中继切换参数,如有需要, BS在合适的时间触发对中继 切换参数的更新。 在 BS确定合适的锚点 RS后, 结束 PMPP模式, 由 更新后的锚点 RS为 MS服务; 如果 TR>=TH, 则先触发信道测量命令, 更新中继切换参数后, 再由锚点 RS为 MS服务。 图 18给出了 DL数据 到来时的切换方法的处理流程。 如图所示, 该流程包括如下步骤:
步骤 1801 ,有下行突发数据需要发送时, BS先检查更新定时器 TR。 步骤 1802, BS判断更新定时器 TR是否大于等于设定的第二门限 TH, 如果是则执行步骤 1803; 否则执行步骤 1804。
步骤 1803 , TR>=TH, 触发对中继切换参数的更新。 找出新的锚点 RS,如果单个锚点 RS能满足服务质量则由该锚点 RS作为中继转发站; 若不能找出满足服务要求的单个锚点, 则启动 PMPP模式, 由多于一个 的 RS作为该 MS与 BS之间的中继转发站, 之后 BS将下行突发数据发 送出去。 然后执行步骤 1807。 步骤 1804~1805 , BS判断更新定时器 TR是否小于等于设定的第一 门限 TL, 如果是则保持中继切换参数不变; 否则启动 PMPP模式, 选 择多于一个的锚点 RS。
步骤 1806, BS将下行突发数据发送出去。
步骤 1807~1808, RS接收到该下行突发数据判断自己是否是锚点, 即是否需要转发该下行突发数据, 如果是, 则将下行突发数据转发给 MS , 之后结束此次流程, 数据传输继续; 否则执行步骤 1809。
步骤 1809~1811 ,不需要对下行数据进行转发的 RS将下行突发数据 丟弃, 并继续监测 MS的上行信号质量, 并判断自己的链路质量是否满 足上报条件, 判断方法同实施例一步骤 202中的介绍。 不满足, 则结束 本流程; 满足则将上行信号质量信息上报给 BS。
步骤 1812~1814, BS根据 RS的上报结果及 BS本身接收上行信号 的质量结果, 对中继切换参数进行调整, 调整方法同实施例一中的步骤 205 至步骤 207。 之后对调整后的中继切换参数进行判断, 判断是否有 PMPP模式的变更, 这里 PMPP模式的工作方式同实施例一图 9中介绍 的下行 PMPP传输模式。 如果有 PMPP模式的变更, 则 BS通知相应的 RS启动或者停止转发 BS与 MS之间的业务数据。 之后 BS判断中继切 换参数中是否有锚点发生变更, 如果有锚点发生变更, 则将调整信息通 知给相应的 RS。
上述为有下行数据需要传输时的切换方法的流程。
上述对切换方法在各种情况下的过程结合实施例进行了详细描述, 下面再以服务站为 BS为例, 结合实施例对本发明中实现切换的无线中 继系统进行进一步详细描述。
参见图 19, 图 19为本发明中实现切换的无线中继系统的一个实施 例的组网示意图。 如图所示, 本实施例中的系统包括: BS、 MS及多个 RS。
其中, MS, 用于接收 BS的数据, 并发送数据给 BS。
多个 RS , 用于动态监测 MS的上行信号的质量, 并将信号质量信息 上报给 BS ,并根据 BS的指示决定是否转发 BS与 MS之间的业务数据。
BS, 用于根据接收的 RS上报的 MS上行信号质量信息, 确定接收 上行信号质量最好的 RS为锚点 RS , 并切换为由该锚点 RS转发 BS与 MS之间的业务数据。
其中, RS由发射机、 接收机、 双工器及天线、 上行数据处理模块、 下行数据处理模块以及控制处理器组成, 如图 20所示。
双工器与天线相连, 用于实现天线的分时发送与接收。
接收机, 用于通过双工器的天线接收 BS或 MS发送的数据, 将数 据从射频信号转换为基带信号。
下行数据处理模块, 用于通过接收机接收 BS发送给 MS的数据, 对所接收的数据进行解调解码后, 从中提取出 BS的控制命令, 将该控 制命令发送给控制处理器, 然后在控制处理器的控制下, 根据控制命令 的指示信息对解调解码后的数据进行编码调制并在指定的时频资源位 置上通过发射机将数据发送出去, 或者将数据丟弃。
上行数据处理模块, 用于通过接收机接收 MS发送给 BS的数据, 对所接收的数据进行解调解码后, 根据从下行数据处理模块中提取出的 BS 的控制命令, 在控制处理器的控制下, 根据控制命令的指示信息对 解调解码后的数据进行编码调制并在指定的时频资源位置上通过发射 机将数据发送出去, 并对接收的上行信号的质量进行测量, 将测得的信 号质量信息与上述编码调制后的信号一起通过发射机发送出去, 或只将 测得的信号质量信息通过发射机发送出去。
上行数据处理模块与下行数据处理模块分时共享发射机及接收机。 发射机, 用于接收上行数据处理模块及下行数据处理模块的数据, 将数据从基带信号转换为射频信号, 通过双工器的天线发送出去。
控制处理器, 用于完成对发射机、 接收机、 上行数据处理模块及下 行数据处理模块的控制。
其中, RS的上行数据处理模块具体包括: 上行解调解码单元、 上行 数据緩存单元、 上行链路质量测量单元、 反馈信息生成单元、 上行编码 调制单元以及复用器。
其中, 上行解调解码单元, 用于在控制处理器的控制下, 将 MS发 送给 BS的基带信号经解调、 解符号映射、 解交织和信道解码, 得到未 编码的原始信息数据, 并将所得到的原始信息数据输出。
上行数据緩存单元, 用于緩存上行解调解码单元输出的原始信息数 据。
上行链路质量测量单元, 用于在控制处理器的控制下, 根据接收机 的输出以及上行解调解码单元的输出测量接收上行信号的质量, 并将测 得的信号质量信息发送给控制处理器, 由控制处理器对接收上行信号的 质量信息进行分析决策, 判断是否需要上报, 如果需要上报, 则将上报 的信息输出给反馈信号生成单元, 如果不需要上报, 则将测得的质量信 息丟弃。
反馈信号生成单元, 用于在控制处理器的控制下, 将上行链路质量 测量单元输出的信号质量信息, 生成上 信息, 以及将控制处理器决定 进行上报的该中继站的负载情况生成上报信息。
上行编码调制单元, 用于在控制处理器的控制下, 对上行数据緩存 单元中的原始信息数据进行信道编码、 交织、 符号映射和调制。
复用器, 用于在控制处理器的控制下, 将反馈信息生成单元生成的 上报信息与上行编码调制单元生成的上行转发数据复用在一起发送给 发射机。
RS的下行数据处理模块具体包括: 下行解调解码单元、 下行数据緩 存单元、 基站命令提取单元以及下行编码调制单元。
其中, 下行解调解码单元, 用于在控制处理器的控制下, 将 BS发 送给 MS的基带信号经解调、 解符号映射、 解交织和信道解码, 得到未 编码的原始信息数据, 并将所得到的原始信息数据输出。
下行数据緩存单元, 用于緩存下行解调解码单元输出的原始信息数 据。
基站命令提取单元, 用于在下行解调解码单元输出的原始信息数据 中提取 BS的命令, 并将命令发送到控制处理器。
下行编码调制单元, 用于在控制处理器的控制下, 对下行数据緩存 单元中的原始信息数据进行信道编码、 交织、 符号映射和调制。
BS由发射机、 接收机、 双工器及天线、 上行数据处理模块、 下行数 据处理模块以及控制处理器组成, 如图 21所示。
其中, 双工器与天线相连, 用于实现天线的分时发送与接收。
接收机, 用于通过双工器的天线接收 MS发送的数据, 将数据从射 频信号转换为基带信号。
上行数据处理模块, 用于通过接收机接收 MS发送给 BS的数据, 在控制处理器的控制下, 对所接收的数据进行解调解码后, 得到所传数 据, 同时从解调解码后的数据中提取出反馈信息, 发送给控制处理器, 反馈信息中包括: RS接收当前 MS上行信号的质量信息。
控制处理器, 用于完成对发射机、 接收机、 上行数据处理模块及下 行数据处理模块的控制, 同时根据接收自上行数据处理模块的反馈信 息, 选择适合为 MS服务的 RS或 BS本身作为锚点 RS, 并生成含指示 信息的控制消息,发送给下行数据处理模块;在为当前 MS选好锚点 RS 之后,会维护该 MS的 CID与锚点 RS的关联表。其中控制消息中包括: 指示作为锚点的 RS启动为当前 MS的中继功能。
下行数据处理模块, 用于将待发送数据在控制处理器的控制下, 进 行编码调制, 并将编码调制后的数据以及控制处理器发送过来的控制消 息, 在分配给数据的时频资源位置上通过发射机发送出去。
上行数据处理模块与下行数据处理模块分时共享发射机及接收机。 发射机, 用于接收上行数据处理模块及下行数据处理模块的数据, 将数据从基带信号转换为射频信号, 通过双工器的天线发送给出去。
其中, BS的上行数据处理模块具体包括: 上行解调解码单元、 上行 数据緩存单元、 上行链路质量测量单元以及反馈信息提取单元。
其中, 上行解调解码单元, 用于在控制处理器的控制下, 将接收机 接收的 MS发送给 BS的基带信号经解调、 解符号映射、 解交织和信道 解码, 得到未编码的原始信息数据, 并将所得到的原始信息数据输出。
上行数据緩存单元, 用于緩存上行解调解码单元输出的原始信息数 据, 并在控制处理器的控制下, 将数据输出。
上行链路质量测量单元, 用于在控制处理器的控制下, 根据接收机 的输出以及上行解调解码单元的输出测量接收上行信号的质量, 并将测 量得到的信号质量信息发送给控制处理器。
反馈信息提取单元, 用于在下行解调解码单元输出的原始信息数据 中提取反馈信息, 并将反馈信息发送到控制处理器, 由控制处理器对这 些反馈信息以及自身的上行链路质量测量单元测量的结果进行分析决 策, 选取适合为当前 MS服务的 RS或 BS本身做为锚点 RS。
BS的下行数据处理模块具体包括: 下行数据緩存单元、 下行编码调 制单元以及复用器。
其中, 下行数据緩存单元, 用于緩存待发送的原始信息数据。 下行编码调制单元, 用于在控制处理器的控制下, 对下行数据緩存 单元中的原始信息数据进行信道编码、 交织、 符号映射和调制。
复用器, 用于在控制处理器的控制下, 将控制处理器生成的控制消 息与下行编码单元生成的下行发送数据复用在一起发送给发射机。
本发明中因为有控制能力的 RS既具有普通 RS的功能, 又具有 BS 的相应控制功能, 因此下面对有控制能力的 RS进行单独描述。
参见图 22, 图 22为本发明中有控制能力的 RS的结构示意图。如图 22所示, 有控制能力的 RS包括: 发射机、 接收机、 双工器及天线、 上 行数据处理模块、 下行数据处理模块以及控制处理器。
其中, 双工器与天线相连, 用于实现天线的分时发送与接收。
接收机, 用于通过双工器的天线接收数据, 将所接收的数据从射频 信号转换为基带信号。
下行数据处理模块, 用于处理接收机接收到的下行数据, 对所接收 的数据进行解调解码后, 从中提取出来自 BS 或其它有控制能力的 RS 的控制命令, 将该控制命令送给控制处理器, 然后在控制处理器的控制 下, 根据控制命令的指示信息对解调解码后的数据进行编码调制后在指 定时频资源位置上发送出去; 或者连同控制处理器发送过来的控制消 息, 在指定时频资源位置上发送出去。
上行数据处理模块, 用于处理接收机接收到的上行数据, 对所接收 的数据进行解调解码后, 根据从下行数据处理模块中提取出的控制命 令, 在控制处理器的控制下, 根据控制命令的指示信息对解调解码后的 数据进行编码调制后通过发射机在指定时频资源位置上发送; 并对接收 上行信号的质量进行测量, 生成质量信息, 将需要上报的质量信息生成 上报信息通过发射机发送出去; 同时从解调解码后的数据中提取出反馈 信息, 发送给控制处理器, 反馈信息中包括: RS接收当前 MS上行信号 的质量信息。
上行数据处理模块与下行数据处理模块分时共享发射机及接收机。 发射机, 用于接收上行数据处理模块及下行数据处理模块输出的数 据,将数据从基带信号转换为射频信号,通过双工器的天线发送给出去。
控制处理器, 用于完成对发射机、 接收机、 上行数据处理模块及下 行数据处理模块的控制, 根据接收自上行数据处理模块的反馈信息, 选 择适合为 MS服务的 RS或 BS本身作为锚点 RS, 并生成含指示信息的 控制消息, 发送给下行数据处理模块; 在为当前 MS选好锚点 RS之后, 会维护该 MS的 CID与锚点 RS的关联表。 其中控制消息中包括: 指示 作为锚点的 RS启动为当前 MS的中继功能。
其中, 上行数据处理模块包括: 上行解调解码单元、 上行数据緩存 单元、 上行信道测量单元、 反馈信号生成单元、 反馈信息提取单元、 上 行编码调制单元以及复用器。
上行解调解码单元, 用于在控制处理器的控制下, 将接收机接收的 上行基带信号经解调、 解符号映射、 解交织和信道解码, 得到未编码的 原始信息数据, 并将所得到的原始信息数据输出。
上行数据緩存单元, 用于緩存上行解调解码单元输出的原始信息数 据。
上行信道测量单元, 用于在控制处理器的控制下, 根据接收机的输 出以及上行解调解码单元的输出测量接收上行信号的质量, 并将测量得 到的质量信息发送给控制处理器, 由控制处理器根据所接收的质量信 息, 判断是否需要上报, 如果需要上报, 则控制处理器将需要上报的质 量信息输出给反馈信号生成单元, 如果不需要上报, 则控制处理器将无 需上报的质量信息丟弃。
反馈信号生成单元, 用于在控制处理器的控制下, 将上行信道测量 单元输出的质量信息, 生成上 信息, 以及将控制处理器决定进行上才艮 的该 RS的负载情况生成上才艮信息。
反馈信息提取单元, 用于在上行解调解码单元输出的数据中提取反 馈信息, 并将提取的反馈信息发送到控制处理器。
上行编码调制单元, 用于在控制处理器的控制下, 对上行数据緩存 单元输出的原始信息数据进行信道编码、 交织、 符号映射和调制。
复用器, 用于将反馈信息生成单元生成的上报信息与上行编码调制 单元生成的上行转发数据复用在一起发送给发射机。
其中, 下行数据处理模块包括: 下行解调解码单元、 控制命令提取 单元、 下行数据緩存单元、 下行编码调制单元以及复用器。
下行解调解码单元, 用于在控制处理器的控制下, 将接收机接收的 下行基带信号经解调、 解符号映射、 解交织和信道解码, 得到未编码的 原始信息数据, 并将所得到的原始信息数据输出。
控制命令提取单元, 用于在下行解调解码单元处理过的原始信息数 据中提取 BS或其它有控制能力的 RS发送来的控制命令,并将控制命令 发送到控制处理器。
下行数据緩存单元, 用于緩存下行解调解码单元输出的原始信息数 据, 并在控制处理器的控制下, 根据控制命令将数据输出给下行编码调 制单元。
下行编码调制单元, 用于在控制处理器的控制下, 对下行数据緩存 单元输出的原始信息数据进行信道编码、 交织、 符号映射和调制。
复用器, 用于将控制处理器生成的控制消息与下行编码调制单元生 成的下行转发数据复用在一起发送给发射机。
本发明提供的方法、 系统及装置, 通过采用 RS动态监测 MS的上 行信号的质量信息, 并将质量信息进行上报, 之后 BS从上报结果中选 取最适合为 MS服务的 RS作为锚点 RS, 如果锚点 RS没有发生变更, 则正常运行, 并继续动态监测 MS的上行信号; 如果锚点 RS发生了变 更, 则切换为由新确定的锚点 RS为当前 MS服务, 然后继续动态监测 MS的上行信号。从而解决了 MS由于不能感知 RS所有无法通过下行链 路信号的改变来触发切换的问题, 使 MS无需进行升级便可自如的在无 线中继网络中实现切换。
此外, 为了及时完成对 MS的锚点 RS的更新, BS可以根据接收 信号的状态是否满足要求, 以及通过设定一些定时器, 定时器达到预定 值时, 便触发对锚点 RS的更新, 从而防止 MS出现断线或信号质量变 差等情况。
另外由于本发明提供的方法在 MS移动的过程中, 随时选择转发上 行信号质量最好的 RS来代替转发信号质量变弱的 RS, 从而可以使 MS 总是处于最好的服务中, 避免了没有切换时链路质量变差带来的影响。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之 内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
1、 一种无线中继系统中的切换方法, 其特征在于, 该方法包括如 下步骤:
A、 中继站 RS监测终端 MS的上行信号质量, 并将 MS上行信号质 量信息上报给服务站;
B、 服务站根据 RS上报的 MS上行信号质量信息确定锚点 RS;
C、 判断锚点 RS是否发生变更, 如果没有发生变更, 则返回执行步 骤 A; 如果发生变更, 则执行步骤 D;
D、切换为由本次确定的锚点 RS转发服务站与 MS之间的业务数据; 之后返回执行步骤 A。
2、 如权利要求 1所述的方法, 其特征在于, 所述步骤 B为: 服务 站根据 RS上报的 MS上行信号质量信息, 确定接收上行信号质量最好 的 RS为错点 RS;
或者为: 服务站根据 RS上报的 MS上行信号质量信息, 确定能满 足 MS服务质量需求且负荷不重的 RS作为锚点 RS。
3、 如权利要求 1所述的方法, 其特征在于, 所述步骤 A中 RS将质 量信息上报给服务站之前进一步包括: RS 判断监测到的上行信号的质 量是否满足上报条件, 如果满足, 则将信号质量信息发送给服务站, 否 则将信号质量信息丟弃。
4、 如权利要求 3所述的方法, 其特征在于, 步骤 A中所述 RS判断 监测到的上行信号的质量是否满足上报条件为: 对 RS预置两个门限, 分别为加入门限和退出门限, 当 RS接收的 MS上行信号的质量大于等 于加入门限或者 RS接收的 MS上行信号的质量小于退出门限时, 则满 足上报条件。
5、 如权利要求 4所述的方法, 其特征在于, 步骤 A中所述发送给 服务站的信号质量信息包括: 信号强度、 信干噪比、 信噪比中的一种或 几种; 所述预置门限为: 根据信干噪比或者根据信号强度预先设置的门 限。
6、 如权利要求 3所述的方法, 其特征在于, 步骤 A中所述 RS判断 监测到的上行信号的质量是否满足上报条件为: 对 RS进行分组, 为每 组 RS预置两个门限,分别为加入该组 RS的加入门限和退出该组 RS的 退出门限, RS通过将接收到的 MS的上行信号的质量信息与不同门限相 比较, 确定自身所对应的组别, 当组别发生改变时满足上报条件。
7、 如权利要求 6所述的方法, 其特征在于, 步骤 A中所述对 RS进 行分组为: 对 MS与 RS之间的链路质量或者所能达到的最大传输速率 划分不同的区间组别。
8、 如权利要求 6所述的方法, 其特征在于, 步骤 A中所述发送给 服务站的信号质量信息为: RS所处的组别信息, 其中不同组别的 RS接 收上行信号质量不同。
9、如权利要求 4或 6所述的方法,其特征在于,该方法进一步包括: 预先设置一个需要超过的门限次数的最大值或设置一个持续超过门限 时间的最大值; 则所述 RS满足上报条件进一步包括: 接收上行信号的 质量连续超过门限的次数达到设置的需要超过的门限次数的最大值; 或 接收上行信号的质量超过门限的持续时间大于设置的持续超过门限时 间的最大值。
10、 如权利要求 1所述的方法, 其特征在于, 步骤 B中确定的所述 锚点 RS为 1个;
或者步骤 B中确定的所述锚点 RS大于 1个; 此时所述步骤 D中由 锚点 RS转发服务站与 MS之间的业务数据为: Dl、 服务站 /MS将需要转发的数据经编码调制后生成发送信号发送 出去;
D2、 所有锚点 RS对接收到的信号进行解调解码, 并重新进行编码 调制, 然后将得到的信号在相同的时频资源上共同转发出去;
D3、 MS/服务站接收来自锚点 RS 同时转发的信号, 该信号为锚点 RS 转发的信号的叠加, 估计信道系数并对该信号进行解调解码, 得到 所传数据。
11、 如权利要求 10所述的方法, 其特征在于, 步骤 D2中所述锚点 RS对接收的信号重新进行编码调制为:锚点 RS采用和服务站 /MS相同 的编码调制方式, 或者采用和服务站 /MS不同的编码调制方式对接收的 信号重新进行编码调制;
则步骤 D3中采用与该编码调制方式对应的解调解码方法。
12、 如权利要求 10所述的方法, 其特征在于, 锚点 RSi已知自身到 MS/服务站的信道系数 > 0 , 则步骤 D2中所述锚点 RS对所接收到 的信号进行重新编码调制后, 将信号转发出去之前, 进一步包括: 用该 信道系数 对待发送信号进行预均衡处理。
13、 如权利要求 12所述的方法, 其特征在于, 步骤 D2中所述预均 衡处理为: 将待发送信号乘上信道系数/ 的共轭 。
14、如权利要求 1至 8、 10至 13中任一项所述的方法,其特征在于, 步骤 B所述确定锚点 RS之前进一步包括: 从上报 MS上行信号质量信 息的 RS中确定出能够接收当前 MS的信号并为当前 MS服务的 RS的集 合, 作为 RS激活集; 则所述确定锚点 RS为: 从该 RS激活集中确定锚 点 RS。
15、 如权利要求 14所述的方法, 其特征在于, 步骤 B中所述 RS激 活集中进一步包括: 能够接收当前 MS的信号并能为当前 MS直接服务 的服务站本身, 若 RS激活集中服务站为接收 MS上行信号质量最好的, 则所述确定锚点 RS包括: 将服务站确定为锚点 RS;
若锚点 RS发生变更, 则所述步骤 D包括: 由服务站直接向 MS发 送业务数据, 之后返回执行步骤 A。
16、 如权利要求 13所述的方法, 其特征在于, 所述锚点 RS中进一 步包括能够接收当前 MS的信号并能为当前 MS直接服务的服务站; 则 所述传输方法在服务站向 MS的下行传输时,
步骤 D2中进一步包括:服务站采用与其它锚点 RS相同的编码调制 方式, 对待发送信息进行编码调制后与其它锚点 RS在相同时频资源上 共同发送出去, 采用预均衡处理时, 服务站在发送信息之前先乘以系数 h , 为服务站与 MS之间的信道系数 的共轭;
步骤 D3中接收的叠加信号中包括: 直接接收的服务站发送的信号。
17、 如权利要求 13所述的方法, 其特征在于, 所述锚点 RS中进一 步包括能够接收当前 MS的信号并能为当前 MS直接服务的服务站, 且 RS采用与 MS相同的编码调制方式;则所述传输方法在 MS向服务站的 上行传输时,
步骤 D2中进一步包括: 服务站也接收该 MS发送的信号; 步骤 D3 中进一步包括: 服务站将直接接收的 MS的信号与接收的 其它锚点 RS转发的叠加信号进行累加, 若采用了预均衡处理, 则在累 加前先对直接接收的 MS的信号乘以系数 h , hi为 MS与服务站之间的 信道系数/ ¾的共轭。
18、 如权利要求 15所述的方法, 其特征在于, 所述锚点 RS中进一 步包括能够接收当前 MS的信号并能为当前 MS直接服务的服务站, 且 RS采用与 MS不同的编码调制方式,则所述传输方法在 MS向服务站的 上行传输时,
步骤 D2中进一步包括: 服务站也接收该 MS发送的信号; 步骤 D3中服务站先对接收的其它锚点 RS转发的叠加信号进行解调 解码, 并检验校验位, 判断是否正确, 正确则结束, 不正确再对直接接 收的 MS 的信号进行解调解码; 或者步骤 C 中服务站先对直接接收的 MS的信号进行解调解码, 并检验校验位, 判断是否正确, 正确则结束, 不正确再对接收的其它锚点 RS转发的叠加信号进行解调解码。
19、 如权利要求 10所述的方法, 其特征在于, 该方法进一步包括: 预先设置更新定时器, 并对该更新定时器设置两个门限: 第一门限和第 二门限, 且第二门限大于第一门限;
若服务站有下行数据需要传输, 则有:
若更新定时器大于第一门限且小于第二门限, 所述步骤 B中确定的 锚点 RS为大于 1个;
若更新定时器大于等于第二门限, 则触发一次对锚点 RS 的更新, 步骤 A之前进一步包括:
A1、 服务站主动向该 MS发送信道测量命令并由全部 RS共同转发 广播出去, 其中该信道测量命令携带有为 MS分配的上行信道资源;
A2、 MS接收到该命令并根据分配的上行信道资源发送上行信号, 步骤 A中对该信号进行监测;
所述步骤 B中进一步包括: 将更新定时器清零。
20、 如权利要求 19所述的方法, 其特征在于, 所述更新定时器进一 步包括: 设置第三门限, 且第三门限大于第二门限; 则所述更新定时器 计数达到第三门限时, 触发一次对锚点 RS的更新, 步骤 A之前进一步 包括:
A1、 服务站主动向该 MS发送信道测量命令并由全部 RS共同转发 广播出去, 其中该信道测量命令携带有为 MS分配的上行信道资源; A2、 MS接收到该命令并根据分配的上行信道资源发送上行信号, 步骤 A中对该信号进行监测;
所述步骤 B中进一步包括: 将更新定时器清零。
21、 如权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 预先设置周期定时器; 定时器每计数一周, 触发一次对锚点 RS的更新, 步骤 A之前进一步包括:
A1、 服务站主动向该 MS发送信道测量命令并由全部 RS共同转发 广播出去, 其中该信道测量命令携带有为 MS分配的上行信道资源;
A2、 MS接收到该命令并根据分配的上行信道资源发送上行信号, 步骤 A中对该信号进行监测。
22、 如权利要求 1所述的方法, 其特征在于, 若服务站在规定次数 内没有在预期的上行资源上收到预期的信号, 或者锚点 RS为多于一个 时, 服务站接收多于一个的锚点 RS共同转发的信号时, 信号质量不能 保证服务质量, 则触发对锚点 RS的更新, 步骤 A之前, 进一步包括:
A1、 服务站主动向该 MS发送信道测量命令并由全部 RS共同转发 广播出去, 其中该信道测量命令携带有为 MS分配的上行信道资源;
A2、 MS接收到该命令并根据分配的上行信道资源发送上行信号, 步骤 A中对该信号进行监测。
23、 如权利要求 19、 20、 21、 或 22所述的方法, 其特征在于, 该 方法进一步包括: 预先设置更新响应定时器和重试次数最大值,
当更新响应定时器时间超过允许的更新响应时间时, 重试次数力口 1 , 同时更新过程重新执行, 当重试次数超过重试次数最大值时,更新失败, 按 MS断线处理。
24、 如权利要求 1所述的方法, 其特征在于, 终端 MS为初始接入 服务站网络, 或在小区间切换时切换到该服务站, 或从深度节能状态恢 复到正常状态时, 步骤 A之前, 进一步包括:
1 ) MS搜索由服务站发出的或者由 RS转发的下行信号, 并建立与 服务站的下行信道同步;
2 ) MS从下行信道中获得上行信道的发射参数, 并根据上行信道的 发射参数中的时频资源信息发送上行信号, 步骤 A 中对该信号进行监 测。
25、 如权利要求 1所述的方法, 其特征在于, 所述步骤 D中由锚点 RS转发服务站与 MS之间的业务数据之前,进一步包括: 由服务站发送 控制消息通知该锚点 RS开始对业务数据的转发, 如果存在旧锚点 RS, 则服务站也发送控制消息通知旧锚点 RS取消对业务数据的转发。
26、 如权利要求 25所述的方法, 其特征在于, RS维护 MS的连接 标识 CID列表,所述由服务站发送控制消息通知锚点 RS为: 服务站通 知新锚点 RS增加该 MS的 CID, 通知旧锚点时, 服务站通知旧锚点 RS 删除该 MS的 CID。
27、 根据权利要求 1所述的方法, 其特征在于, MS有上行信号需 要传输时, 步骤 A之前, 进一步包括:
MS向服务站发送带宽请求, 该请求采用 CDMA竟争信道发送, 采 用 CDMA竟争信道发送带宽请求时,服务站返回含有为 MS分配的上行 资源的响应信息, 然后 MS利用该上行资源发送含有身份信息的带宽请 求上行信号; 或者由服务站采用轮询方式为 MS分配上行信道资源, 之 后 MS利用该上行资源发送含有身份信息的带宽请求上行信号;
服务站与 RS获取该 MS的身份信息后, 步骤 A中对 MS的上行信 号进行监测。
28、 如权利要求 1至 8、 10至 13、 16至 22、 24至 27中任意一项所 述的方法, 其特征在于, 所述服务站为: 基站 BS , 或有控制能力的 RS。
29、 一种实现切换的无线中继系统, 其特征在于, 该系统包括: 服 务站、 MS以及多个 RS , 其中,
MS, 用于接收服务站的数据, 并发送数据给服务站;
多个 RS , 用于监测 MS的上行信号质量, 并将信号质量信息上报给 服务站, 并根据服务站的指示决定是否转发服务站与 MS之间的业务数 据;
服务站, 用于根据接收的 RS上报的 MS上行信号质量信息确定锚 点 RS , 并切换为由该锚点 RS转发服务站与 MS之间的业务数据。
30、 如权利要求 29 所述的系统, 其特征在于, 所述服务站为基站 BS , 或有控制能力的 RS。
31、 一种 RS , 包括: 发射机、 接收机、 双工器及天线、 下行数据处 理模块、 上行数据处理模块以及控制处理器, 其特征在于,
所述下行数据处理模块用于通过接收机接收服务站发送给 MS的数 据, 对所接收的数据进行解调解码后, 从中提取出服务站的控制命令, 将该控制命令发送给控制处理器, 然后在所述控制处理器的控制下, 根 据控制命令的指示信息对解调解码后的数据进行编码调制, 并将编码调 制后的数据在指定的时频资源位置上通过发射机发送出去, 或者将解调 解码后的数据丟弃;
所述上行数据处理模块用于通过接收机接收 MS发送给服务站的数 据, 对所接收的数据进行解调解码后, 根据从下行数据处理模块中提取 出的服务站的控制命令, 在所述控制处理器的控制下, 根据控制命令的 指示信息对解调解码后的数据进行编码调制, 并将编码调制后的数据在 指定的时频资源位置上通过发射机发送出去; 对接收上行信号的质量进 行测量, 并在控制处理器的控制下, 将测得的信号质量信息与上述编码 调制后的信号一起通过发射机发送出去, 或者只将测得的信号质量信息 通过发射机发送出去;
控制处理器, 用于完成对所述发射机、 接收机、 上行数据处理模块 及下行数据处理模块的控制。
32、 根据权利要求 31所述的 RS , 其特征在于, 所述上行数据处理 模块包括:
上行解调解码单元, 用于将 MS发送给服务站的基带信号经解调、 解符号映射、 解交织和信道解码, 得到未编码的原始信息数据, 并将所 得到的原始信息数据输出;
上行数据緩存单元, 用于緩存所述上行解调解码单元输出的原始信 息数据;
上行链路质量测量单元, 用于根据所述接收机的输出以及所述上行 解调解码单元的输出测量接收上行信号的质量, 并将测得的信号质量信 息发送给控制处理器;
控制处理器接收到来自上行链路质量测量单元的质量信息, 判断是 否需要上报, 将需要上报的信息输出给反馈信号生成单元;
反馈信号生成单元, 用于将上行链路质量测量单元输出的信号质量 信息, 生成上报信息, 以及将控制处理器决定进行上报的该中继站的负 载情况生成上报信息;
上行编码调制单元, 用于对上行数据緩存单元中的原始信息数据进 行信道编码、 交织、 符号映射和调制;
复用器, 用于将反馈信息生成单元生成的上报信息与上行编码调制 单元生成的上行转发数据复用在一起发送给发射机。
33、根据权利要求 31或 32所述的 RS , 其特征在于, 所述下行数据 处理模块包括: 下行解调解码单元, 用于将服务站发送给 MS的基带信号经解调、 解符号映射、 解交织和信道解码, 得到未编码的原始信息数据, 并将所 得到的原始信息数据输出;
下行数据緩存单元, 用于緩存所述下行解调解码单元输出的原始信 息数据;
基站命令提取单元, 用于从所述下行解调解码单元处理后得到的数 据中提取服务站的命令, 并将所述命令发送到所述控制处理器;
下行编码调制单元, 用于对下行数据緩存单元中的原始信息数据进 行信道编码、 交织、 符号映射和调制。
34、 一种 BS, 包括: 发射机、 接收机、 双工器及天线、 上行数据处 理模块、 下行数据处理模块以及控制处理器, 其特征在于,
所述上行数据处理模块用于通过接收机接收 MS发送给 BS的数据, 在所述控制处理器的控制下, 对所接收的数据进行解调解码后, 得到所 传数据, 并从解调解码后的数据中提取出包含 RS接收当前 MS上行信 号的质量信息的反馈信息, 发送给控制处理器; 测量接收上行信号的质 量, 将测量得到的质量信息发送给控制处理器;
所述控制处理器用于完成对所述发射机、 接收机、 上行数据处理模 块及下行数据处理模块的控制; 根据接收的来自上行数据处理模块的反 馈信息及质量信息,选择适合为 MS服务的 RS或 BS本身作为锚点 RS, 并生成含指示信息的控制消息, 发送给下行数据处理模块; 在为当前 MS选好锚点 RS之后, 维护该 MS的 CID与锚点 RS的关联表;
所述下行数据处理模块用于将待发送数据在所述控制处理器的控制 下, 进行编码调制, 并将编码调制后的数据以及控制处理器发送过来的 控制消息, 在分配给所述数据的时频资源位置上通过发射机发送出去。
35、 如权利要求 34所述的 BS, 其特征在于, 所述上行数据处理模 块包括:
上行解调解码单元, 用于将接收机接收的 MS发送给 BS的基带信 号经解调、 解符号映射、 解交织和信道解码, 得到未编码的原始信息数 据, 并将所得到的原始信息数据输出;
上行数据緩存单元, 用于緩存所述上行解调解码单元输出的原始信 息数据, 并在所述控制处理器的控制下, 将数据输出;
上行链路质量测量单元, 用于根据所述接收机的输出以及所述上行 解调解码单元的输出测量接收上行信号的质量, 并将测量得到的信号质 量信息发送给控制处理器;
反馈信息提取单元, 用于在所述下行解调解码单元输出的数据中提 取反馈信息, 并将所述反馈信息发送到所述控制处理器。
36、 如权利要求 34或 35所述的 BS, 其特征在于, 所述下行数据处 理模块包括:
下行数据緩存单元, 用于緩存待发送的原始信息数据;
下行编码调制单元, 用于对下行数据緩存单元中的原始信息数据进 行信道编码、 交织、 符号映射和调制;
复用器, 用于将控制处理器生成的控制消息与下行编码单元生成的 下行发送数据复用在一起发送给发射机。
37、 一种有控制能力的 RS, 该 RS包括: 发射机、 接收机、 双工器 及天线、 上行数据处理模块、 下行数据处理模块以及控制处理器, 其特 征在于,
所述下行数据处理模块用于处理接收机接收到的下行数据, 对所接 收的数据进行解调解码后,从中提取出来自 BS或其它有控制能力的 RS 的控制命令, 将该控制命令送给控制处理器, 然后在控制处理器的控制 下, 根据控制命令的指示信息对解调解码后的数据进行编码调制后在指 定时频资源位置上发送出去; 或者连同控制处理器发送过来的控制消 息, 在指定时频资源位置上发送出去;
所述上行数据处理模块用于处理接收机接收到的上行数据, 对所接 收的数据进行解调解码后, 根据从下行数据处理模块中提取出的控制命 令, 在控制处理器的控制下, 根据控制命令的指示信息对解调解码后的 数据进行编码调制后通过发射机在指定时频资源位置上发送; 并对接收 上行信号的质量进行测量, 生成质量信息, 发送给控制处理器, 或在控 制处理器的控制下, 将需要上报的质量信息生成上报信息通过发射机发 送出去; 同时从解调解码后的数据中提取出包含 RS接收当前 MS上行 信号的质量信息的反馈信息, 发送给控制处理器;
所述控制处理器用于完成对发射机、 接收机、 上行数据处理模块及 下行数据处理模块的控制, 根据接收来自上行数据处理模块的反馈信息 以及质量信息, 选择适合为 MS服务的 RS或 BS本身作为锚点 RS , 并 生成包含指示作为锚点的 RS启动为当前 MS的中继功能的指示信息的 控制消息, 发送给下行数据处理模块; 根据上行数据处理模块发送来的 质量信息, 判断出需要上报的信息, 控制上行数据处理模块将需要上报 的信息发送出去。
38、 如权利要求 37所述的 RS, 其特征在于, 所述上行数据处理模 块包括:
上行解调解码单元, 用于将接收机接收的上行基带信号经解调、 解 符号映射、 解交织和信道解码, 得到未编码的原始信息数据, 并将所得 到的原始信息数据输出;
上行数据緩存单元, 用于緩存上行解调解码单元输出的原始信息数 据;
上行信道测量单元, 用于根据接收机的输出以及上行解调解码单元 的输出测量接收上行信号的质量, 并将测量得到的质量信息发送给控制 处理器;
反馈信号生成单元, 用于将上行信道测量单元输出的质量信息, 生 成上 信息, 以及将控制处理器决定进行上"¾的该 RS的负载情况生成 上报信息;
反馈信息提取单元, 用于在上行解调解码单元输出的数据中提取反 馈信息, 并将提取的反馈信息发送到控制处理器;
上行编码调制单元, 用于对上行数据緩存单元输出的原始信息数据 进行信道编码、 交织、 符号映射和调制;
复用器, 用于将反馈信息生成单元生成的上报信息与上行编码调制 单元生成的上行转发数据复用在一起发送给发射机。
39、 如权利要求 37或 38所述的 RS, 其特征在于, 所述下行数据处 理模块包括:
下行解调解码单元, 用于将接收机接收的下行基带信号经解调、 解 符号映射、 解交织和信道解码, 得到未编码的原始信息数据, 并将所得 到的原始信息数据输出;
控制命令提取单元, 用于在下行解调解码单元处理过的原始信息数 据中提取 BS或其它有控制能力的 RS发送来的控制命令,并将控制命令 发送到控制处理器;
下行数据緩存单元, 用于緩存下行解调解码单元输出的原始信息数 据, 并在控制处理器的控制下, 根据控制命令将数据输出给下行编码调 制单元;
下行编码调制单元, 用于对下行数据緩存单元输出的原始信息数据 进行信道编码、 交织、 符号映射和调制;
复用器, 用于将控制处理器生成的控制消息与下行编码调制单元生 成的下行转发数据复用在一起发送给发射机。
PCT/CN2007/070681 2006-09-12 2007-09-12 Procédé de commutation dans un système de relais, système de relais sans fil et appareil d'exécution de commutation WO2008031363A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610127524.2 2006-09-12
CN2006101275242A CN101146327B (zh) 2006-09-12 2006-09-12 无线中继系统中的切换方法及实现切换的无线中继系统

Publications (1)

Publication Number Publication Date
WO2008031363A1 true WO2008031363A1 (fr) 2008-03-20

Family

ID=39183397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070681 WO2008031363A1 (fr) 2006-09-12 2007-09-12 Procédé de commutation dans un système de relais, système de relais sans fil et appareil d'exécution de commutation

Country Status (2)

Country Link
CN (1) CN101146327B (zh)
WO (1) WO2008031363A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084685A (zh) * 2008-06-11 2011-06-01 三菱电机研发中心欧洲有限公司 用于判定电信设备的操作模式是否必须接入不同操作模式的方法和设备
CN102342147A (zh) * 2009-03-09 2012-02-01 上海贝尔股份有限公司 用于实现域内第一层切换的方法、相关网络单元及系统
CN103067138A (zh) * 2013-01-21 2013-04-24 电信科学技术研究院 基于网络编码表建立通讯的方法、信号传输方法及装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063552A4 (en) 2006-10-25 2014-05-28 Fujitsu Ltd RADIO BASE STATION, RELAY STATION, RADIO COMMUNICATION SYSTEM, AND RADIO COMMUNICATION METHOD
CN101772113B (zh) * 2008-12-31 2013-06-05 华为技术有限公司 切换方法及基站节点
US8937901B2 (en) 2009-03-17 2015-01-20 Qualcomm Incorporated Carrier timing for wireless communications systems
EP2410790B1 (en) 2009-03-17 2021-11-03 Huawei Technologies Co., Ltd. Method and device for sending data packet
US9793982B2 (en) * 2009-04-21 2017-10-17 Commscope Technologies Llc System for automatic configuration of a mobile communication system
ES2694056T3 (es) * 2009-04-29 2018-12-17 Koninklijke Philips N.V. Un método de comunicación en una red móvil
CN101925126B (zh) * 2009-06-10 2013-08-07 电信科学技术研究院 一种数据包发送的方法、系统和装置
US9131428B2 (en) * 2012-10-31 2015-09-08 Broadcom Corporation Probe request for relay discovery within single user, multiple user, multiple access, and/or MIMO wireless communications
CN104283621A (zh) * 2013-07-12 2015-01-14 普天信息技术研究院有限公司 一种信道传输质量监测方法
WO2016055834A1 (en) * 2014-10-08 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Activation of carriers
CN104320818B (zh) * 2014-10-27 2018-02-23 深圳市蜂联科技有限公司 一种应用于无线局域网的无线中继器的终端连接管理机制
CN107466062A (zh) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 下行监测方法及装置
CN106685589B (zh) * 2016-11-30 2019-12-17 上海华为技术有限公司 一种反馈信号状态的方法,基站以及终端
JP7257274B2 (ja) * 2019-06-27 2023-04-13 本田技研工業株式会社 通信システム、プログラム、及び情報処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228908A (zh) * 1996-07-25 1999-09-15 诺基亚电信公司 采用频率转换中继站的时分蜂窝系统中的小区扩展
CN1239634A (zh) * 1997-09-08 1999-12-22 阿尔卡塔尔公司 在数字蜂窝式移动无线网的两个小区之间的越区切换呼叫的方法
CN1239635A (zh) * 1997-09-08 1999-12-22 阿尔卡塔尔公司 蜂窝式数字无线电通信网络的一个小区内的控制呼叫的基站及相应的控制方法
US6161014A (en) * 1998-05-04 2000-12-12 Alcatel Method of handling over a call between two relay stations of a cell of a digital cellular mobile radio system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98686C (fi) * 1993-11-01 1998-07-22 Nokia Telecommunications Oy Menetelmä suorakanavalla liikennöivän tilaaja-aseman hallitsemiseksi radiojärjestelmässä ja radiojärjestelmä
JP4153394B2 (ja) * 2003-09-10 2008-09-24 株式会社エヌ・ティ・ティ・ドコモ プロトコル終端方法、制御信号終端サーバ装置及び移動通信ネットワーク
CN100459788C (zh) * 2004-12-24 2009-02-04 华为技术有限公司 实现集中的移动性管理的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228908A (zh) * 1996-07-25 1999-09-15 诺基亚电信公司 采用频率转换中继站的时分蜂窝系统中的小区扩展
CN1239634A (zh) * 1997-09-08 1999-12-22 阿尔卡塔尔公司 在数字蜂窝式移动无线网的两个小区之间的越区切换呼叫的方法
CN1239635A (zh) * 1997-09-08 1999-12-22 阿尔卡塔尔公司 蜂窝式数字无线电通信网络的一个小区内的控制呼叫的基站及相应的控制方法
US6161014A (en) * 1998-05-04 2000-12-12 Alcatel Method of handling over a call between two relay stations of a cell of a digital cellular mobile radio system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084685A (zh) * 2008-06-11 2011-06-01 三菱电机研发中心欧洲有限公司 用于判定电信设备的操作模式是否必须接入不同操作模式的方法和设备
CN102084685B (zh) * 2008-06-11 2014-07-02 三菱电机研发中心欧洲有限公司 用于判定电信设备的操作模式是否必须接入不同操作模式的方法和设备
CN102342147A (zh) * 2009-03-09 2012-02-01 上海贝尔股份有限公司 用于实现域内第一层切换的方法、相关网络单元及系统
CN103067138A (zh) * 2013-01-21 2013-04-24 电信科学技术研究院 基于网络编码表建立通讯的方法、信号传输方法及装置
CN103067138B (zh) * 2013-01-21 2015-07-01 电信科学技术研究院 基于网络编码表建立通讯的方法、信号传输方法及装置

Also Published As

Publication number Publication date
CN101146327B (zh) 2011-02-16
CN101146327A (zh) 2008-03-19

Similar Documents

Publication Publication Date Title
WO2008031363A1 (fr) Procédé de commutation dans un système de relais, système de relais sans fil et appareil d&#39;exécution de commutation
TWI786400B (zh) 無線通訊方法及裝置、電腦可讀介質
JP6626846B2 (ja) ユーザ端末、基地局、及び方法
RU2436244C2 (ru) Процедура назначения ресурсов для несинхронизированного радиодоступа к беспроводной связи
EP1871131B1 (en) Mobile communication system, mobile station, base station, and communication control method
KR100593866B1 (ko) 통신 시스템을 위한 순방향 링크 기반의 구제 채널 방법및 장치
RU2408169C2 (ru) Способ выделения канала связи, система радиосвязи и структура канала связи на участке радиолинии
KR100996087B1 (ko) 이동통신 시스템에서 공용 채널을 이용하기 위한 통신의 초기화 방법 및 장치
CN109196791B (zh) 支持ue的方法和接入节点、ue和由ue执行的方法
EP0942550A1 (en) Adaptive radio link
US20040037257A1 (en) Method and apparatus for assuring quality of service in wireless local area networks
US9717097B2 (en) Apparatus and method for random access based on call priority in a mobile communication system
KR20070121505A (ko) 무선링크 재설정 방법
WO2009022805A1 (en) Method of reporting measurement result in wireless communication system
KR20010021507A (ko) 무선 에이티엠 네트워크에서의 임시 포워더를 이용한 에러복구 메카니즘
US20130294388A1 (en) Method for wireless data transmission, communication system, wireless terminal apparatus and wireless base station apparatus
US6519469B1 (en) Uplink detection of schedule mobiles for avoiding access delays
EP4265048A1 (en) Failure monitoring and recovery mechanism in case of sl relay
US10887901B2 (en) Method and apparatus for transmitting uplink data in wireless communication system
WO2018062249A1 (ja) 無線端末及び基地局
KR20120095018A (ko) 계층적 셀 구조의 무선통신 시스템에서 초기 접속을 위한 장치 및 방법
JP5018456B2 (ja) 通信方法、無線通信装置
US20060259617A1 (en) Method and system for transmitting data between nodes in a mesh network
JP5648555B2 (ja) 通信装置、移動端末、データ通信方法
WO2006059827A1 (en) Methods for managing the band adaptive modulation and coding (band amc) in portable internet system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07801089

Country of ref document: EP

Kind code of ref document: A1