WO2008030428A2 - Composition for forming a laser-markable coating and a laser-markable material containing organic absorption enhancement additives - Google Patents
Composition for forming a laser-markable coating and a laser-markable material containing organic absorption enhancement additives Download PDFInfo
- Publication number
- WO2008030428A2 WO2008030428A2 PCT/US2007/019299 US2007019299W WO2008030428A2 WO 2008030428 A2 WO2008030428 A2 WO 2008030428A2 US 2007019299 W US2007019299 W US 2007019299W WO 2008030428 A2 WO2008030428 A2 WO 2008030428A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- coating composition
- organic compound
- media
- formula
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 50
- 239000011248 coating agent Substances 0.000 title claims abstract description 41
- 239000000463 material Substances 0.000 title claims description 12
- 239000000203 mixture Substances 0.000 title description 14
- 238000010521 absorption reaction Methods 0.000 title description 9
- 239000000654 additive Substances 0.000 title description 7
- 239000008199 coating composition Substances 0.000 claims abstract description 79
- 238000005755 formation reaction Methods 0.000 claims abstract description 42
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 37
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 36
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract 5
- 150000001875 compounds Chemical class 0.000 claims description 43
- 239000002243 precursor Substances 0.000 claims description 29
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000001072 heteroaryl group Chemical group 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 2
- 230000001960 triggered effect Effects 0.000 claims 2
- 239000006185 dispersion Substances 0.000 description 36
- 230000035945 sensitivity Effects 0.000 description 26
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 239000007788 liquid Substances 0.000 description 15
- 238000010330 laser marking Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- 239000003094 microcapsule Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000001235 sensitizing effect Effects 0.000 description 6
- 229920003169 water-soluble polymer Polymers 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 229940068984 polyvinyl alcohol Drugs 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010068516 Encapsulation reaction Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 229920006378 biaxially oriented polypropylene Polymers 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000007760 free radical scavenging Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000013630 prepared media Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003385 ring cleavage reaction Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- DVQHRBFGRZHMSR-UHFFFAOYSA-N sodium methyl 2,2-dimethyl-4,6-dioxo-5-(N-prop-2-enoxy-C-propylcarbonimidoyl)cyclohexane-1-carboxylate Chemical compound [Na+].C=CCON=C(CCC)[C-]1C(=O)CC(C)(C)C(C(=O)OC)C1=O DVQHRBFGRZHMSR-UHFFFAOYSA-N 0.000 description 1
- 239000007962 solid dispersion Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000001334 starch sodium octenyl succinate Substances 0.000 description 1
- 235000013826 starch sodium octenyl succinate Nutrition 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/32—Radiation-absorbing paints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/46—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography characterised by the light-to-heat converting means; characterised by the heat or radiation filtering or absorbing means or layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/30—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
- B41M5/337—Additives; Binders
- B41M5/3375—Non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M2205/00—Printing methods or features related to printing methods; Location or type of the layers
- B41M2205/04—Direct thermal recording [DTR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/40—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
- B41M5/46—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography characterised by the light-to-heat converting means; characterised by the heat or radiation filtering or absorbing means or layers
- B41M5/465—Infrared radiation-absorbing materials, e.g. dyes, metals, silicates, C black
Definitions
- a method and composition are disclosed for forming a laser markable media, which is capable of providing superior mark quality with high contrast, high resolution, and a high degree of quality consistency, and that does not rely on physical damage to the material integrity on the exposed area, such as ablation, charring, or trapping of gaseous bubbles released from chemical decomposition of coating ingredients. Regardless of the differences in mark formation methods, media sensitization to the irradiation of the laser beam is generally necessary.
- high sensitivity can be especially important for the following reasons: a) a mark can be formed on or through a plastic substrate with lower laser energy dosage, so that the plastic substrate is subjected to minimum risk of damage by the laser power, or b) a large amount of marking needs to be completed at a high speed to enable high production throughput, without relying on a laser of higher power rating, or c) marking needs to be accomplished at a given marking speed with a laser tube of given power rating, but with a lower setting of the actual power output, so that a more consistent and sustainable power output level can easily be maintained.
- Laser marking sensitivity may be enhanced either by lowering the responding or mark formation threshold temperature of the media, or by optically sensitizing the media so that a larger amount of the laser energy can be effectively utilized for the mark formation process.
- sensitivity enhancement by lowering the responding threshold temperature usually is accomplished at an increased risk of storage stability of the coated media.
- optical sensitization may be achieved by incorporating laser-absorbing compounds into the coated imaging layer.
- laser-absorbing compounds for lasers, including CO 2 wavelength lasers, are known in the art.
- Some examples of these laser-absorbing compounds can include mica or aluminum oxide compounds. Application of these compounds have been disclosed in US Patent Nos. 5413629, 5608429, 5691757, 5866644,
- these inorganic compounds often have poor solubility in compositions such as coating dispersions. To disperse them evenly into the coating composition, these compounds need to be ground into very fine particles. It is often difficult to achieve a desired particle size. If the particle size is too large, for example above 10 micron, it often causes coating defects or problem of uneven distribution of the sensitizing compounds, especially if the desired coating film thickness is also within this same micron range. This not only leads to visual defects on the coated film, but also results in uneven marks due to unevenness in laser sensitivity. In addition, these inorganic compounds often have densities that are well above that of the coating composition.
- organic-based laser absorbing compounds that not only facilitate the mark formation at a lower laser dosing level, but can also easily be dissolved or dispersed with a very fine particle size into a liquid coating composition, providing minimal coating defects on the coated film.
- Organic-based laser absorbing compounds may also provide better physical stability of a liquid coating composition of low viscosity, and hence minimize settling and caking during long period of storage.
- the present invention relates to a coating composition as well as a media formed by applying such coating composition onto a substrate for non-contact marking using a focused beam of electromagnetic wave of specific frequencies and intensity to form human- visible marks on said media.
- the coating composition can comprise at least one organic compound that enhances the sensitivity of the media towards the irradiation of the focused beam of electromagnetic wave of given frequencies, which can in turn enable mark formation on the coated media at a lower energy density.
- a coating composition as well as a coated laser markable medium are provided with increased laser sensitivity with minimal impact on storage stability of both the coating compostion as well as the coated media.
- a laser sensitizing compound is provided that can be incorporated into a liquid coating composition with minimal caking or settling of the coating liquid, even at a high loading in the coating composition.
- a laser sensitive coating composition which contains organic compounds that themselves not only contribute to the absorption of laser energy and hence improve the laser sensitivity of coated media, but also provide a dispersion media for color forming agents and other components of the coating composition such as inorganic pigments that are known in the art. Use of these organic compounds can also provide better coating uniformity of the coated film, with minimal coating defects as well as improved uniformity toward sensitivity of laser exposure across the entire coated media.
- the above aspects can be obtained by the use of at least one organic compound in a liquid coating composition, which when coated on a media, can enhance the sensitivity of the coated layer towards laser beams of wavelength of from about 10.3 ⁇ m to about 10.6 ⁇ m.
- the organic compound can be represented by the following general formula I:
- Rj and R 2 are independently selected from the group consisting of H, alkyl, alkenyl, aryl, and substituted or unsubstituted heteroaromatic, and more preferably H or alkyl of 1 to 5 carbons, and n>10.
- n can be from about 20 to about 1000, or from about 30 to about 500.
- One or multiple organic compounds represented by the formula I can be used.
- the addition amount of the at least one compound represented by formula I can be from about 0.5% to about 40% in the dried coating film or mark formation layer, preferably from about 1% to about 20% in the dried coating film or mark formation layer. More preferably, the addition amount can be from about 5% to about 10% in the dried coating film or mark formation layer.
- the average molecular weight and solubility of the compounds represented by formula I in a coating composition can be determined, for example, by the size and type of the substitution groups, Ri and R 2 , as well as the chain length n. Compounds with high solubility in the solution of the liquid coating composition are preferred. In the case of low solubility compounds, a fine powder form of the organic compound may be selected, preferably a particle-size below about 10 ⁇ m is preferred, and more preferably, below about 1 ⁇ m.
- preferred substitution groups, R) and R 2 , and the chain length n can be selected based on the application and use of the coating composition; for example, aqueous based coatings or solvent based coatings may benefit from varying organic compounds.
- substitution groups and chain length Another factor that can be considered in the selection of preferred substitution groups and chain length is the type of color formation agents in the coating composition in order to allow maximum dispersion of these color forming agents in the coating composition. Based on the present disclosure, a person skilled in the art of laser markable coating compositions would be able to determine preferable selections of the substitution groups, R
- an exemplary organic compound represented by formula I has Rj and R 2 independently selected from the group consisting of H, alkyl of 1 to 5 carbons, alkenyl of 2 to 5 carbons, and n in the range of from about 20 to about 1000. More preferably the organic compound represented by formula I can have R
- the sensitivity enhancement of the inventive organic compounds can benefit coating compositions used in various different color forming systems.
- One specific embodiment of the disclosed invention is for forming a laser- markable material in a coating composition system disclosed in WO 2006/052843 A2 and WO 2006/063165 A2, in which the color forming agents comprise an electron acceptor species and electron donor dye precursor particles encapsulated with a polymer having a glass transition temperature, T g , of from about 150°C to about 190°C.
- T g glass transition temperature
- composition of the mark formation layer can comprise the following elements: an electron donor dye precursor preferably micro-encapsulated within a polymer of specific T g range, an electron acceptor compound which can react with the electron donor dye precursor to turn it into a dye with an absorption peak in the wavelength range of visible spectrum, inert organic compounds that absorb electromagnetic wave in the wavelength range of from about 10.3 ⁇ m to about 10.6 ⁇ m, and a polymer dispersion media in which all of the components are dispersed and coated in such a way that they are in close proximity of reaction length from each other.
- An electron donor dye precursor that can be preferably used in the present invention is not particularly limited as long as it is substantially colorless, and is preferably a colorless compound that has such a nature that it forms a color by donating an electron or by accepting a proton from an acid.
- a particularly preferred structural feature in the backbone of the electron donor dye precursor includes a ring structure which is subjected to ring opening reaction or cleavage in the case where it is in contact with an electron accepting compound. Typical examples of such structural feature are a lactone, a lactam, a saltone, or a spiropyran, among others. More detailed description and examples of preferred electron donor dye precursor and preferable embodiments are disclosed in WO 2006/052843 A2, the contents of which are incorporated herein by reference.
- the electron donor dye precursor in the composition of the present invention be used after being formed into a microcapsule, preferably via a surface polymerization process.
- the surface polymerization process can be employed such that the electron donor dye precursor for forming a core of the microcapsules is dissolved or dispersed in a hydrophobic organic solvent to prepare an oily phase.
- the oily phase can then be mixed with an aqueous phase obtained by, for example, dissolving a water-soluble polymer in water, and can then be subjected to emulsification and dispersion by using, for example, a homogenizer.
- Electron acceptor developer dispersion The electron acceptor developer compound, which reacts with the electron donor dye precursor, may be used singly or in a combination of two or more.
- the coating composition can be combined with a dispersion containing the electron acceptor developer compound. Examples of electron acceptor developer compounds are disclosed in WO 2006/052843 A2.
- the electron acceptor compound may be used as a solid dispersion prepared in a sand mill with water-soluble polymers, organic bases, and other color formation aids or may be used as an emulsion dispersion by dissolution in a high boiling point organic solvent that is only slightly water-soluble or is water- insoluble, mixing with a polymer aqueous solution (aqueous phase) containing a surface-active agent and/or a water-soluble polymer as a protective colloid, followed by emulsification, for example, by a homogenizer.
- a low boiling point solvent may be used as a dissolving assistant depending on necessity. More detailed description and exemplary embodiments are disclosed in WO 2006/052843 A2.
- Laser absorption sensitivity enhancement additives of this invention are selected based on the type of laser used and its emitting wavelength.
- the typical emitting wavelength of commercially available laser marking equipment is about 10.6 ⁇ m.
- the selected organic laser marking sensitivity enhancement compounds of this invention for 10.6 ⁇ m CO 2 lasers can be represented by the following general formula I:
- Ri(OCH 2 CH 2 )nOR2 where R) and R 2 can independently be selected from the group consisting of H, alkyl, alkenyl, aryl and substituted or unsubstituted heteroaromatic, and n>10.
- n can be from about 20 to about 1000, or from about 30 to about 500.
- the addition amount of these compounds can be from about 0.5% to about 40% in the dried coating composition or mark formation layer (see section
- the amount can be from about 1% to about 20% in the dried coating film or mark formation layer. Most preferably the addition amount can be from about 5% to about 10% in the dried coating film or mark formation layer. The addition amount can be selected to provide an optimized balance of performance factors which can include sensitivity, mark density, coating uniformity, as well as the stability of the liquid coating composition.
- the average molecular weight and solubility of the compounds represented by formula I in a coating composition can be determined by the size and type of the substitution groups, Ri and R 2 , as well as the chain length n. Compounds with high solubility in solution of the liquid coating composition are preferred. In case of low solubility compounds, fine powder form with most popular particle-size below about 10 ⁇ m is preferred, and most preferably, below about 1 ⁇ m.
- preferred substitution groups, Ri and R 2 , and the chain length n can be selected based on the application and use of the coating composition; for example, aqueous based coatings or solvent based coatings may require varying organic compounds.
- Another factor that can be considered in the selection of preferred substitution groups and chain length is the type of color formation agents in the coating composition in order to allow maximum dispersion of these color forming agents in the coating composition. Based on the present disclosure, a person skilled in the art of laser markable coating compositions would be able to determine preferable selections of the substitution groups, Ri and R 2 , as well as the chain length n based on the other components of the coating composition.
- an exemplary organic compound represented by formula I has Ri and R 2 independently selected from the group consisting of H, alkyl of 1 to 5 carbons, and alkenyl of 2 to 5 carbons, and n in the range of from about 20 to about 1000. Most preferably the organic compound represented by formula I has Ri and R ⁇ independently selected from the group consisting of H, alkyl of 1 to 5 carbons, and n in the range of from about 30 to about 500.
- organic laser sensitivity enhancement additives include, but are not limit to, polyethylene glycol compounds with a molecular weight in the range of from about 1,000 to about 20,000 and can be obtained commercially as such trade names as E 1450, E4000, E6000, E8000, and E20000, and methoxypolyethylene glycol compounds with a molecular weight in the range of of from about 350 to about 5,000 and can be obtained commercially.
- inventive organic laser absorption sensitivity enhancement compounds can be incorporated into either the micro-encapsulated leuco-dye dispersion portion, the electron-acceptor developer dispersion portion, or both. Two or more of the inventive organic laser sensitivity enhancement additives be selected and combined to optimize their effect. Said compounds may also be combined and mixed with typical inorganic laser absorbing compounds disclosed in the prior art. These include, but are not limited to, such compounds as mica to optimize the laser sensitivity of the coated media.
- inventive compounds of this invention it has been found that from about a 10% to about a 40% increase in laser marking sensitivity may be obtained, depending on selection of the inventive compound as well as the addition amount.
- about a 22% increase in marking speed is obtained by addition of methoxypolyethylene glycol 5000 at a level of about 5% of the dried coating composition.
- the coated film can also have an increased appearance of uniformity.
- the other components in the coating composition for mark formation layer are not particularly limited and can be appropriately selected depending on necessity, and examples thereof include surfactants, melting agents, foam- suppressing agents, UV absorbing agents, antioxidants and free-radical scavenging agents. More detailed description and exemplary embodiments are disclosed in WO 2006/052843 A2.
- composition for the mark formation layer of the present invention the above components can be mixed uniformly and dispersed within a selected polymer media as binder.
- the mix ratio of the coating composition of the present invention is such that the ratio of total weight of electron donor dye precursors and that of the electron acceptor compounds is between from about 1 :0.5 to about 1 :30, preferably from about 1 :1 to about 1:10.
- the amount of the electron donor dye precursor in the said mark formation layer is preferably in the range of from about 0.1 to about 5.0 g/m 2 . In this range, both a sufficient coloring density can be achieved and the transparency of the laser- sensitive recording layer can also be maintained. More preferably, the amount of the electron donor dye precursor is from about 1.0 to about 4.0 g/m 2 .
- multiple coating compositions can be formed wherein a first coating composition includes the electron donor dye precursor and the second coating composition includes the electron acceptor developer.
- first and second compositions can be maintained separately to improve stability of the compositions, and can be combined and/or mixed together prior to use.
- the organic absorption laser sensitivity enhancement compounds of this invention may be dissolved or uniformly dispersed in either of the above two portions, or both.
- both the water-soluble polymer used as the protective colloid when preparing the electron donor dye precursor composition or its microcapsule composition and the water- soluble polymer used as the protective colloid when preparing the electron acceptor dispersion of this invention function as the binder of the mark formation layer.
- the same function may also be partially contributed by the addition of selected organic laser sensitizing compounds of this invention at an appropriate level and with proper selection of molecular weight.
- water soluble polymers are generally used, and examples thereof include polyvinyl alcohol, hydroxyethyl cellulose, hydroxypropyl cellulose, epichlorohydrin-modified polyamide, ethylene- maleic anhydride copolymer, styrene-maleic anhydride copolymer, isobutylene- maleic salicylic anhydride copolymer, polyacrylic amide, methylol-modified polyacrylamide, casein and gelatin.
- At least one water resisting agent may be added thereto, and an emulsion of a hydrophobic polymer, specifically a styrene-butadiene rubber latex, a styrene acrylic polymer, a acrylic or methacrylic series polymer or a copolymer and their derivative thereof, a polyester or a copolymer thereof, may be added thereto.
- a hydrophobic polymer specifically a styrene-butadiene rubber latex, a styrene acrylic polymer, a acrylic or methacrylic series polymer or a copolymer and their derivative thereof, a polyester or a copolymer thereof
- the mark formation layer of the present invention may further contain methyl cellulose, carboxymethyl cellulose, carboxyl- modified polyvinyl alcohol, polystyrene or a copolymer thereof, polyether, polyurethane resin or a derivative thereof, polyether based polyurethane copolymer, polyethylene or a copolymer thereof, epoxy resin, polyamide resin, polyvinyl butyral resin or starch compounds.
- the laser-markable media of the present invention is preferably produced by the process described below, but it is not limited thereto.
- the production process of a laser-markable media of the present invention includes the steps of: coating the primer layer (if it is used) onto the support, coating a mark formation layer onto the primer layer (if it is used) on the support.
- other layers such as protective topcoat, may also be added.
- the laser-markable media of the present invention may be coated sequentially with known coating methods, in the following order: the primer layer, the mark formation layer, and the protective topcoat.
- coating methods include, but are not limit to, a blade coating method, an air knife coating method, a gravure or flexographic coating method, a roll coating method, a spray coating method, a dip coating method and a bar coating method.
- the laser markable media of the present invention may be marked with a CO 2 laser having a wavelength of from about 10.3 ⁇ m to about 10.6 ⁇ m.
- a preferred laser marking system is one in which a Galvonometer beam steering technology that allows computer to control the beam with one or more rotating mirrors in X or X/Y-axes is used. Both Vector and Raster scanning schemes may be used depending on the application.
- the combination of laser beam quality, f- ⁇ lens quality, and focal distance will allow the marking spot-size at the focal plane to be below about 300 micron, more preferably to be below about 100 micron.
- the laser-markable material, methods and systems of the current invention By employing the laser-markable material, methods and systems of the current invention, various advantages can be realized such as, for example, low equipment and running cost; high-speed marking with fine line letters and simple patterns (vector scan); flexible resolution adjustment, tone control and pattern change (raster scan); relatively large and flexible marking area; and/or small-lot (short-run) high throughput production with variable information marking.
- Use of the laser-markable material, methods and systems of the current invention can enable laser marking on a wide variety of substrates, especially materials that do not typically respond or have a weak response to low-powered CO 2 lasers, or materials that can be easily damaged by the laser irradiation without forming quality marks.
- Example of such materials includes hard and soft plastics for engineering materials or polymer films for packaging of commercial goods (PET, BOPP, HDPE, PMMA, poly-carbonate and Nylons).
- the final dispersion (B) has a particle size range between 0.3 to 2 ⁇ m (99% volume).
- Aqueous solution for emulsified dispersion (B) Water 68.4g
- Surfactant B 2% solution C 9 H , 9 (C 6 H 4 )O(CH 2 ) 4 SO 3 Na 11.2g
- composition 1 for coating the mark formation layer The above dispersion (A) and dispersion (B) were mixed as follows. Water 26%
- Dispersion (A) 16% Dispersion (B) 58%
- the above coating composition 1 was coated onto a 75 ⁇ m thick transparent OPP film using a draw-down wire bar coater, followed by 3 minutes of drying at 60 0 C.
- a Nutfield CodaFire-VlO 1OW CO 2 laser marker with an emitting wavelength of 10.6 ⁇ m was used.
- the laser pumping frequency was set at 20KHz, and the "mark-speed" was set at 1000 mm/sec.
- a single straight line of about 5cm length was marked by increasing the "laser power%” from 10% and gradually up, until a very light and solid line became just visible to the eye on the media.
- the laser power% at this point was recorded as the "threshold laser dosage", and the actual laser power output at this setting was measured using an Ophir laser power meter (with a 30A-SH-V1 thermal sensor and AN/2E display).
- the "threshold laser dosage" was measured to be 5.05W.
- EXAMPLE 2 (exemplary aspect of invention) The same dispersion (A) and dispersion (B) as above Example 1 were used to mix a coating composition 2 for coating the mark formation layer.
- Polyethylene glycol E4000 commercially available from BASF 0.9%
- Dispersion (A) 16% Dispersion (B) 58%
- the above coating composition 2 was coated onto the same substrate and under the same coating conditions as for coating composition 1 , and laser marking sensitivity was measured using the same laser marker under the same marking conditions.
- the threshold laser dosage was determined in the same way as in Example 1. For this sample the actual laser power output at the threshold setting was measured to be 4.09W. The results show a 19% reduction in threshold power dosage when compared to the reference example.
- Example 1 The same dispersion (A) and dispersion (B) as above Example 1 were used to mix a coating composition 3 for coating the mark formation layer.
- the above coating composition 3 was coated onto the same substrate and under the same coating conditions as used for coating composition 1 , and laser marking sensitivity was measured using the same laser marker under the same marking conditions.
- the threshold laser dosage was determined in the same way as in Example 1. For this sample the actual laser power output at the threshold setting was measured to be 3.96W. The results show a 21.6% reduction in threshold power dosage when compared to the reference example.
- Example 1 The same dispersion (A) and dispersion (B) as above Example 1 were used to mix a coating composition 4 for coating the mark formation layer.
- the above coating composition 4 was coated onto the same substrate and under the same coating conditions as for coating composition 1 , and laser marking sensitivity was measured using the same laser marker under the same marking conditions.
- the threshold laser dosage was determined in the same way as in Example 1. For this sample the actual laser power output at the threshold setting was measured to be 1.5 W. However, observation during stability studies of the coating composition 4 show settling of solid with time. In addition, many areas of coating defects were visible in the coated media when observed under a microscope.
- Example 2 The same dispersion (A) and dispersion (B) as above Example 1 were used to mix a coating composition 5 for coating the mark formation layer. Water 22.5%
- Dispersion (A) 16% Dispersion (B) 58%
- the above coating composition 5 was coated onto the same substrate and under the same coating conditions used for coating composition 1 , and laser marking sensitivity was measured using the same laser marker under the same marking conditions.
- the results show a similar threshold power dosage as the coated media in Example 4.
- the observations during stability studies of the coating composition 5 show no signs of solid settling with time.
- the coated laser sensitive media in Example 5 show improved coating uniformity over the coated media of Example 4. Under a microscope, only minimal coating defects were observed on the coated media from Example 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Heat Sensitive Colour Forming Recording (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT07837698T ATE512000T1 (en) | 2006-09-05 | 2007-09-05 | COMPOSITION FOR FORMING A LASER MARKABLE COATING AND A LASER MARKABLE MATERIAL WITH ORGANIC ABSORPTION REINFORCEMENT ADDITIVES |
JP2009527381A JP2010502487A (en) | 2006-09-05 | 2007-09-05 | Laser-marking substance comprising a composition for forming a laser-marking film and an organic absorption enhancing additive |
EP07837698A EP2067074B1 (en) | 2006-09-05 | 2007-09-05 | Composition for forming a laser-markable coating and a laser-markable material containing organic absorption enhancement additives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84201306P | 2006-09-05 | 2006-09-05 | |
US60/842,013 | 2006-09-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008030428A2 true WO2008030428A2 (en) | 2008-03-13 |
WO2008030428A3 WO2008030428A3 (en) | 2008-04-17 |
Family
ID=39157788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/019299 WO2008030428A2 (en) | 2006-09-05 | 2007-09-05 | Composition for forming a laser-markable coating and a laser-markable material containing organic absorption enhancement additives |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080194719A1 (en) |
EP (1) | EP2067074B1 (en) |
JP (1) | JP2010502487A (en) |
KR (1) | KR20090079194A (en) |
CN (1) | CN101595171A (en) |
AT (1) | ATE512000T1 (en) |
WO (1) | WO2008030428A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3173249A1 (en) * | 2015-11-30 | 2017-05-31 | Agfa-Gevaert | Laser markable compositions and methods to manufacture a packaging therewith |
EP3219503A1 (en) | 2016-03-16 | 2017-09-20 | Agfa-Gevaert | Process for manufacturing a laser markable packaging |
EP3252680A1 (en) | 2016-05-31 | 2017-12-06 | Agfa Graphics NV | Authentication method of a two dimensional bar code |
EP3306532A1 (en) | 2016-10-05 | 2018-04-11 | Agfa-Gevaert | A laser markable rfid tag |
WO2020126753A1 (en) | 2018-12-18 | 2020-06-25 | Agfa-Gevaert Nv | Aqueous adhesive layer |
WO2020127105A1 (en) | 2018-12-21 | 2020-06-25 | Agfa-Gevaert Nv | Aqueous adhesive layer |
DE102019102340A1 (en) | 2019-01-30 | 2020-07-30 | Leibniz-Institut Für Polymerforschung Dresden E.V. | METHOD FOR MODIFYING SURFACES |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103890162B (en) * | 2011-04-18 | 2016-08-17 | 英格朗公司 | Straw and the method for labelling straw |
TWI700183B (en) * | 2017-12-20 | 2020-08-01 | 日商旭化成股份有限公司 | Photosensitive resin laminate |
CN115537800B (en) * | 2022-09-29 | 2024-09-27 | 江苏大学 | Processing system of metal surface multistage super-hydrophobic structure and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5869095A (en) | 1981-10-20 | 1983-04-25 | Ricoh Co Ltd | Heat sensitive recording material |
EP1323540A2 (en) | 2001-12-27 | 2003-07-02 | The Pilot Ink Co., Ltd. | Thermally color-developing reversibly thermochromic pigment |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087829A (en) * | 1961-06-28 | 1963-04-30 | Du Pont | Micaceous pigment composition |
US3087828A (en) * | 1961-06-28 | 1963-04-30 | Du Pont | Nacreous pigment compositions |
BE759469A (en) * | 1969-11-29 | 1971-05-26 | Merck Patent Gmbh | PEARL GLOSS PIGMENT AND THEIR METHODS OF |
US3832208A (en) * | 1972-03-09 | 1974-08-27 | Du Pont | Nacreous pigments treated with methacrylatochromic chloride for improved humidity resistance |
DE2244298C3 (en) * | 1972-09-09 | 1975-06-19 | Merck Patent Gmbh, 6100 Darmstadt | Pearlescent pigments and processes for their manufacture |
US4086100A (en) * | 1975-05-22 | 1978-04-25 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Rutile-containing lustrous pigments |
DE3137808A1 (en) * | 1981-09-23 | 1983-03-31 | Merck Patent Gmbh, 6100 Darmstadt | PEARL SHINE PIGMENTS WITH IMPROVED LIGHT FASTNESS, METHOD FOR THE PRODUCTION AND USE |
DE3137809A1 (en) * | 1981-09-23 | 1983-03-31 | Merck Patent Gmbh, 6100 Darmstadt | "PEARL SHINE PIGMENTS, THEIR PRODUCTION AND THEIR USE" |
DE3151343A1 (en) * | 1981-12-24 | 1983-07-07 | Merck Patent Gmbh, 6100 Darmstadt | PEARL SHINE PIGMENTS WITH IMPROVED LIGHT RESISTANCE, THEIR PRODUCTION AND THEIR USE |
DE3151355A1 (en) * | 1981-12-24 | 1983-07-07 | Merck Patent Gmbh, 6100 Darmstadt | "PEARL SHINE PIGMENTS WITH IMPROVED LIGHT RESISTANCE, THEIR PRODUCTION AND USE" |
DE3151354A1 (en) * | 1981-12-24 | 1983-07-07 | Merck Patent Gmbh, 6100 Darmstadt | PEARL SHINE PIGMENTS, METHOD FOR THEIR PRODUCTION AND THEIR USE |
DE3211602A1 (en) * | 1982-03-30 | 1983-10-13 | Merck Patent Gmbh, 6100 Darmstadt | METHOD FOR THE PRODUCTION OF PEARL SHINE PIGMENTS WITH IMPROVED SHINE PROPERTIES |
DE3235017A1 (en) * | 1982-09-22 | 1984-03-22 | Merck Patent Gmbh, 6100 Darmstadt | PEARL PIGMENT |
JPS60224136A (en) * | 1984-04-23 | 1985-11-08 | Matsushita Electric Ind Co Ltd | Optical recording material and recording method |
US4859572A (en) * | 1988-05-02 | 1989-08-22 | Eastman Kodak Company | Dye sensitized photographic imaging system |
JP2734087B2 (en) * | 1988-05-31 | 1998-03-30 | 大日本インキ化学工業株式会社 | Laser marking method and resin composition for laser marking |
DE3842330A1 (en) * | 1988-12-16 | 1990-06-21 | Merck Patent Gmbh | CONDUCTIVE LABEL-SHAPED PIGMENTS |
JPH0470377A (en) * | 1990-07-03 | 1992-03-05 | Oji Paper Co Ltd | Manufacture of thermal recording sheet |
JP2751089B2 (en) * | 1992-11-30 | 1998-05-18 | 大日本インキ化学工業株式会社 | Laser marking method and printing ink |
US5608429A (en) * | 1993-08-02 | 1997-03-04 | Nippon Kayaku Kabushiki Kaisha | Laser marking method, laser marking composition and articles having color developing layer made of said composition |
US5691757A (en) * | 1993-12-22 | 1997-11-25 | Nippon Kayaku Kabushiki Kaisha | Laser marking method and aqueous laser marking composition |
US5584922A (en) * | 1994-09-14 | 1996-12-17 | Ciba-Geigy Corporation | Stir-in organic pigments |
DE19522397A1 (en) * | 1995-06-23 | 1997-01-02 | Merck Patent Gmbh | Laser-markable plastics |
JPH09263048A (en) * | 1996-03-27 | 1997-10-07 | Dainippon Ink & Chem Inc | Recording medium for laser marking and composition therefor |
DE19629675A1 (en) * | 1996-07-23 | 1998-01-29 | Merck Patent Gmbh | Laser-markable plastics |
US5866644A (en) * | 1997-03-17 | 1999-02-02 | General Electric Company | Composition for laser marking |
US5977514A (en) * | 1997-06-13 | 1999-11-02 | M.A. Hannacolor | Controlled color laser marking of plastics |
JP3282094B2 (en) * | 1997-08-29 | 2002-05-13 | 大日本インキ化学工業株式会社 | Recording body for laser marking and laser marking method |
US6075223A (en) * | 1997-09-08 | 2000-06-13 | Thermark, Llc | High contrast surface marking |
US6166210A (en) * | 1997-12-15 | 2000-12-26 | Ciba Specialty Chemicals Corporation | Perylene imide monocarboxylic acids |
JP3683713B2 (en) * | 1998-07-02 | 2005-08-17 | 富士写真フイルム株式会社 | Photosensitive thermal recording material |
US6482768B1 (en) * | 1999-07-30 | 2002-11-19 | Fuji Photo Film Co., Ltd. | Laser thermal transfer material |
DE10018600A1 (en) * | 2000-04-14 | 2001-10-25 | Merck Patent Gmbh | Laser markable plastics |
US6697315B1 (en) * | 2000-07-27 | 2004-02-24 | Polytris Ltd. | Medium, system and method for optical recording |
CN1620631A (en) * | 2000-09-21 | 2005-05-25 | 富士亨特感光化学品公司 | Single part color photographic developer concentrate |
JP2004524188A (en) * | 2001-02-28 | 2004-08-12 | シャーウッド・テクノロジー・リミテッド | Laser printing |
KR100499176B1 (en) * | 2002-11-27 | 2005-07-01 | 삼성전자주식회사 | Method for measurement of wafer contamination and apparatus for the same |
JP2005138558A (en) * | 2003-11-10 | 2005-06-02 | Fuji Photo Film Co Ltd | Color thermal recording method and color thermal recorder |
US20070098900A1 (en) * | 2004-11-05 | 2007-05-03 | Fuji Hunt Photographic Chemicals, Inc. | Media providing non-contacting formation of high contrast marks and method of using same, composition for forming a laser-markable coating, a laser-markable material and process of forming a marking |
WO2006052843A2 (en) * | 2004-11-05 | 2006-05-18 | Fuji Hunt Photographic Chemicals, Inc. | Media providing non-contacting formation of high contrast marks and method of use |
EP1827859B1 (en) * | 2004-12-08 | 2011-09-07 | Fuji Hunt Photographic Chemicals, Inc. | Composition for forming a laser-markable coating and process for forming a marking by laser exposure |
JP2007152686A (en) * | 2005-12-02 | 2007-06-21 | Fujifilm Corp | Recording method |
JP5255218B2 (en) * | 2006-03-14 | 2013-08-07 | 株式会社リコー | Image processing method |
-
2007
- 2007-09-05 WO PCT/US2007/019299 patent/WO2008030428A2/en active Application Filing
- 2007-09-05 EP EP07837698A patent/EP2067074B1/en not_active Not-in-force
- 2007-09-05 JP JP2009527381A patent/JP2010502487A/en active Pending
- 2007-09-05 KR KR1020097006781A patent/KR20090079194A/en not_active Application Discontinuation
- 2007-09-05 CN CNA2007800411420A patent/CN101595171A/en active Pending
- 2007-09-05 US US11/896,766 patent/US20080194719A1/en not_active Abandoned
- 2007-09-05 AT AT07837698T patent/ATE512000T1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5869095A (en) | 1981-10-20 | 1983-04-25 | Ricoh Co Ltd | Heat sensitive recording material |
EP1323540A2 (en) | 2001-12-27 | 2003-07-02 | The Pilot Ink Co., Ltd. | Thermally color-developing reversibly thermochromic pigment |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3173249A1 (en) * | 2015-11-30 | 2017-05-31 | Agfa-Gevaert | Laser markable compositions and methods to manufacture a packaging therewith |
WO2017093228A3 (en) * | 2015-11-30 | 2017-07-13 | Agfa-Gevaert | Laser markable compositions and methods to manufacture a packaging therewith |
EP3219503A1 (en) | 2016-03-16 | 2017-09-20 | Agfa-Gevaert | Process for manufacturing a laser markable packaging |
WO2017157888A1 (en) | 2016-03-16 | 2017-09-21 | Agfa-Gevaert | Process for manufacturing a laser markable packaging |
EP3252680A1 (en) | 2016-05-31 | 2017-12-06 | Agfa Graphics NV | Authentication method of a two dimensional bar code |
WO2017207344A1 (en) | 2016-05-31 | 2017-12-07 | Agfa Graphics Nv | Authentication method of a two dimensional bar code |
EP3306532A1 (en) | 2016-10-05 | 2018-04-11 | Agfa-Gevaert | A laser markable rfid tag |
WO2018065506A1 (en) | 2016-10-05 | 2018-04-12 | Agfa-Gevaert | A laser markable rfid tag |
WO2020126753A1 (en) | 2018-12-18 | 2020-06-25 | Agfa-Gevaert Nv | Aqueous adhesive layer |
WO2020127105A1 (en) | 2018-12-21 | 2020-06-25 | Agfa-Gevaert Nv | Aqueous adhesive layer |
DE102019102340A1 (en) | 2019-01-30 | 2020-07-30 | Leibniz-Institut Für Polymerforschung Dresden E.V. | METHOD FOR MODIFYING SURFACES |
Also Published As
Publication number | Publication date |
---|---|
CN101595171A (en) | 2009-12-02 |
KR20090079194A (en) | 2009-07-21 |
EP2067074B1 (en) | 2011-06-08 |
US20080194719A1 (en) | 2008-08-14 |
WO2008030428A3 (en) | 2008-04-17 |
JP2010502487A (en) | 2010-01-28 |
EP2067074A2 (en) | 2009-06-10 |
ATE512000T1 (en) | 2011-06-15 |
EP2067074A4 (en) | 2009-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2067074B1 (en) | Composition for forming a laser-markable coating and a laser-markable material containing organic absorption enhancement additives | |
US20070098900A1 (en) | Media providing non-contacting formation of high contrast marks and method of using same, composition for forming a laser-markable coating, a laser-markable material and process of forming a marking | |
EP2954373B1 (en) | Chemical coating for a laser-markable material | |
US8557510B2 (en) | Colour forming composition | |
TW200906995A (en) | Heat-sensitive coating compositions based on resorcinyl triazine derivatives | |
US20220348811A1 (en) | Photoinduced thermochromic or thermoluminescent composition | |
JP2004189900A (en) | Covered type fluorescent fine particle, water dispersion thereof and method for producing the water dispersion | |
FI71076B (en) | FOERFARANDE FOER FRAMSTAELLNING AV ISODIAMETRISKA MIKROKAPSLARMED DIAMETER AV BESTAEMD STORLEK | |
JP3639479B2 (en) | Ink composition | |
JP3617178B2 (en) | Laser marking method | |
JP2003276337A (en) | Information recording medium | |
EP1827859B1 (en) | Composition for forming a laser-markable coating and process for forming a marking by laser exposure | |
WO2006052843A2 (en) | Media providing non-contacting formation of high contrast marks and method of use | |
JP5188577B2 (en) | Powder mixture for heat-sensitive recording material and method for producing powder mixture for heat-sensitive recording material | |
JPH07507504A (en) | heat sensitive recording element | |
JPS5935985A (en) | Manufacture of heat-sensitive paper | |
JPH09254552A (en) | Laser marking composition and article obtained by using the same | |
JPH05278329A (en) | Thermal recording material for laser recording | |
JP2005074938A (en) | Inkjet recording medium and inkjet recording method | |
JPS5859098A (en) | Heat-sensitive recording material | |
JPH05318909A (en) | Thermal recording material | |
JP2002264499A (en) | Manufacturing method for microcapsule for pressure sensitive copying paper | |
JPS5955791A (en) | Heat sensitive recording material | |
JP2001131450A (en) | Ink composition for inkjet and printed matter | |
JPS61284482A (en) | Thermal recording material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780041142.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07837698 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2009527381 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007837698 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1820/CHENP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097006781 Country of ref document: KR |