WO2008029831A1 - Light receiving element, and illumination device and display device using the same - Google Patents

Light receiving element, and illumination device and display device using the same Download PDF

Info

Publication number
WO2008029831A1
WO2008029831A1 PCT/JP2007/067269 JP2007067269W WO2008029831A1 WO 2008029831 A1 WO2008029831 A1 WO 2008029831A1 JP 2007067269 W JP2007067269 W JP 2007067269W WO 2008029831 A1 WO2008029831 A1 WO 2008029831A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
band
receiving element
emission
Prior art date
Application number
PCT/JP2007/067269
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Hayashi
Kentaro Kamada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008029831A1 publication Critical patent/WO2008029831A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/506Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by screens, monitors, displays or CRTs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • Light receiving element illumination device using the same, and display device
  • the present invention relates to a light receiving element, an illumination device using the same, and a display device, and in particular, a light receiving element that detects the light amounts of a plurality of color LED light sources and a color of a plurality of color LED light sources using the light receiving elements
  • the present invention relates to a lighting device that compensates for balance, and a display device using the lighting device.
  • LEDs light emitting diodes
  • a three-color LED of red LED, green LED, and blue LED or a four-color LED with white added to obtain white light. is there.
  • LEDs do not always have a constant brightness even when the same current with large manufacturing variation is applied. Therefore, when LED is used as a light source for backlight, there is a problem that the color balance (generally white balance) must be adjusted. In addition, since the characteristics of LEDs tend to change depending on the temperature, even if the white balance was adjusted during the manufacture of the knocklight, the amount of light emitted changed with the temperature change during use, causing the white balance to be lost.
  • a light receiving element is provided in the vicinity of each color LED to detect the amount of each color light emitted from these LEDs, and the supply current to the LED is controlled according to the amount of light detected by this light receiving element.
  • a display device that adjusts the white balance is known (Japanese Patent Publication No. 2004-184852).
  • the light receiving element is configured to detect the amount of light from each color LED, there are the following problems.
  • a photodetector having sensitivity to the color wavelength is used as a light receiving element that detects the amount of color light.
  • a photodetector having a sensitivity peak around 630 nm is used as a light-receiving element that detects the amount of light emitted from a red LED, as a photodetector having a sensitivity peak around 630 nm is used, as shown in Fig. 10 (a).
  • the light receiving surface of the light receiving element is generally divided into three parts as shown in FIG.
  • a light receiving element provided with a red filter 97R, a green filter 97G, and a blue filter 97B is used.
  • the change in the light intensity of the LED is mainly caused by changes in the color of the emitted light due to temperature changes (shifts in the emission wavelength) and in cases where the absolute light intensity changes due to aging degradation of the LED (such as emission).
  • the emission wavelength shift is particularly remarkable in red LEDs.
  • the characteristic curve rl of Fig. 10 (b) when the emission wavelength of the LED shifts to the longer wavelength side than the original characteristic curve r, the peak wavelength of the emitted light amount changes from the sensitivity peak of the light receiving element. The amount of light detected by the light receiving element is reduced.
  • the emission wavelength shift is significant in the red LED. Therefore, when the environmental temperature changes, the light receiving element output to the red LED is greatly reduced. In this case, if feed knock control is performed to increase the supply current to the red LED based on the light receiving element output, the amount of light at the peak emission wavelength shifted in the red LED increases, and the white balance deteriorates. End up.
  • the present invention has been made in view of the above problems, and a light receiving element that can detect a change in wavelength of received light with a simple configuration, and a color variation by using the light receiving element.
  • the aim is to provide an illuminating device capable of appropriately adjusting the illuminance and a display device using the illuminating device.
  • a light receiving element is a light receiving element that detects light amounts in a plurality of different optical bands, and has a sensitivity corresponding to each of the plurality of optical bands.
  • a plurality of narrow-band light receiving regions having a sensitivity band extending to at least two of the plurality of optical bands, and a ratio of sensitivity to light in each of the optical bands is narrow. It is further characterized by having a broadband light receiving area different from the sensitivity ratio of the band light receiving area.
  • the ratio of the sensitivity to the light in each optical band is further provided with a broadband light-receiving area different from the sensitivity ratio of the narrow-band light-receiving area, so that compared to a conventional light-receiving element having only a narrow-band light-receiving area,
  • detecting light in the broadband light receiving region it is possible to detect the emission wavelength shift of the received light. Accordingly, it is possible to provide a light receiving element that can detect a wavelength change of received light with a simple configuration.
  • the plurality of narrow-band light receiving regions have a sensitivity corresponding to an optical band of 400 ⁇ m to 450nm, an optical band of 480nm to 550nm, and an optical band of 650nm to 700nm. It is preferable that the three light receiving regions each have
  • an illumination device includes a light receiving element according to the present invention, a plurality of light sources having different light emission bands, and narrow-band light reception of the light receiving element.
  • a dimming circuit that controls the emission intensity of at least one of the plurality of light sources based on a change between an intensity signal of light received by at least one of the areas and an intensity signal of light received by the broadband light receiving area It is characterized by comprising.
  • the dimming circuit includes the broadband light receiving region. Based on a difference intensity signal obtained by subtracting a signal obtained by multiplying a light intensity signal received in at least one of the narrow-band light receiving areas by a specific coefficient from an intensity signal of light received in the area, and It is preferable to control at least one emission intensity of the plurality of light sources.
  • the dimming circuit receives light in the narrowband light receiving region having sensitivity according to the light emission band on the longest wavelength side among the plurality of narrowband light receiving regions. Based on the change between the light intensity signal and the light intensity signal received by the broadband light receiving region, the light source that emits at least the light emission band on the longest wavelength side among the plurality of light sources, and the long wavelength It is preferable to control the emission intensity of at least two light sources, with the light source emitting in the second emission band from the side.
  • the dimming circuit further receives light in a narrow-band light receiving region having sensitivity corresponding to the light emission band on the longest wavelength side among the plurality of narrow-band light receiving regions.
  • the intensity of light increases and the intensity of light received by the broadband light receiving region decreases, the emission intensity of the light source that emits light in the second emission band from the long wavelength side among the plurality of light sources is It is preferable to control to increase.
  • a display device includes an illumination device according to the present invention and a transmissive or transflective display element irradiated by the illuminator. It is characterized by having.
  • a liquid crystal display element is preferably used. This reduces the display device that can adjust the color balance appropriately by controlling the emission intensity of the light source of the lighting device using a light receiving element that can detect the wavelength change of the light emitted from the light source with a simple configuration. Can be provided at a cost.
  • a light receiving element that can detect a wavelength change of light emitted from a light source with a simple configuration, and an illumination that can appropriately adjust the color balance by using this light receiving element. It is possible to provide a device and a display device using the lighting device.
  • FIG. 1 is a plan view showing a schematic configuration of a light receiving element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 3 (a) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
  • FIG. 3 (b) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
  • FIG. 3 (c) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
  • FIG. 3 (d) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
  • FIG. 3 (e) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
  • FIG. 4 is a plan view showing a schematic configuration of a backlight device for a liquid crystal display device as an illumination device according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a liquid crystal display device including the backlight device shown in FIG. 4, and shows a cross-sectional structure at a position corresponding to line BB in FIG.
  • FIG. 6 is a plan view showing an internal schematic configuration of the LED package.
  • FIG. 7 is a wiring diagram showing a wiring state on a mounting board on which an LED package is mounted.
  • FIG. 8 is a block diagram showing a schematic configuration of a circuit that performs feedback control on each color LED based on the output of the light receiving element in the backlight device.
  • Fig. 9 is a graph showing the sensitivity characteristics of the light receiving element according to the embodiment of the present invention, and Fig. 9 (b) shows two kinds of changes in the light emission characteristics of the LED. Is a graph
  • FIG. 10 is a graph showing the sensitivity characteristics of a conventional light receiving element
  • FIG. 10 (b) is a graph showing two types of changes in the light emission characteristics of the LED.
  • FIG. 11 is a plan view showing a schematic configuration of a conventional light receiving element.
  • FIG. 12 (a) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element having only a region for detecting each color light of RGB.
  • FIG. 12 (b) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
  • FIG. 12 (c) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
  • FIG. 12 (d) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
  • FIG. 12 (e) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
  • FIG. 1 is a plan view showing a schematic configuration of a light receiving element 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
  • the light receiving element 1 includes a silicon photodiode substrate 2, an electrode 3 connected to the silicon photodiode substrate 2, a lead wire 4 connected to the electrode 3, and a force metal case 5. It is a configuration enclosed in Four electrodes 3 are formed on the light receiving surface of the silicon photodiode substrate 2 and on the opposite surface, respectively.
  • the lead spring 4 is pulled out of the metal case 5 and connected to a feedback control circuit or the like described later.
  • electrodes 3 and the lead wires 4 are represented as, for example, electrodes 3R and 3R and lead wires 4R and 4R, depending on the positions where they are formed. Where “3" or "4"
  • the letters ⁇ R '', ⁇ G '', ⁇ B '', or ⁇ W '' shown later indicate the electrode and lead, respectively. It distinguishes the type of filter that covers the area where the line is formed (details will be described later).
  • the subscript “1” following the letter “R” or the like indicates that the electrode 3 and the lead wire 4 are provided on the light receiving surface side of the light receiving element 1. In addition, when the subscript is “2”, it indicates that the electrode 3 and the lead wire 4 are provided on the side opposite to the light receiving surface of the light receiving element 1.
  • a filter layer 10 is laminated on the light receiving surface of the light receiving element 1, that is, the upper surface of the silicon photodiode substrate 2.
  • FIG. 2 in order to show the configuration of the light receiving element 1 in an easy-to-understand manner, a gap is shown between the filter layer 10 and the silicon photodiode substrate 2, but in actuality, the filter layer 10 Is formed in close contact with the surface of the silicon photodiode substrate 2 and the electrode 3 formed on the surface.
  • the light receiving surface of the light receiving element 1 has a substantially disk shape and is divided into four fan-shaped regions having a central angle of approximately 90 °.
  • the silicon photodiode substrate 2 is also divided into four at the same position as the light receiving surface, and the divided regions are insulated from each other.
  • the filter layer 10 stacked on the light-receiving surface includes the deep red filter 10R, the green filter 10G, and the blue filter 10B that are stacked on the surface of three of the four regions, and the remaining one region. And a visual sensitivity correction filter 10 W stacked on the substrate.
  • the deep red finoleta 10R transmits light in the wavelength range of about 650 nm to about 700 nm.
  • the green filter 10G transmits light in a wavelength range of about 480 nm to about 550 nm.
  • the blue filter 10B transmits light having a wavelength range of about 400 nm to about 450 nm.
  • the visibility correction filter 10W transmits the entire visible light wavelength range and has a transmittance spectrum substantially along the visibility curve.
  • As the visibility correction filter 10W for example, “Lumicle UCF (trade name)” manufactured by Kureha Chemical Industry Co., Ltd. can be used.
  • the visibility correction filter 10W may extend to the upper layer of other light receiving regions (crimson finoretta 10R, green finoleta 10G, and blue filter 1OB). However, for the purpose of increasing the signal strength and increasing the S / N ratio, it is desirable that the visibility correction filter 10W be stacked only in one of the four areas where the light receiving surface is divided.
  • a substantially transparent visibility correction filter is provided on the light receiving surface side of the light receiving element 1.
  • Electrode 3W, 3R, 3G, 3B respectively
  • the electrodes 3W, 3R, 3G, and 3B are provided on the surface opposite to the light receiving surface of the light receiving element 1 (see FIG. 2).
  • Lead wires 4W, 4R, 4G and 4B are connected to the electrodes 3W, 3R, 3G and 3B, respectively.
  • the light receiving element 1 receives the received light amount in the region where the crimson filter 10R is provided, the received light amount in the region where the green filter 10G is provided, the received light amount in the region where the blue filter 10B is provided, Separately outputs the received light amount of the area where only the sensitivity correction filter 10W is provided.
  • FIGS. 3 (a) to 3 (e) the left side is a plan view of the light receiving element, and the right side is a cross-sectional view taken along the line AA in the plan view.
  • a slit is made in the silicon photodiode substrate 2 shown in Fig. 3 (a), and it is divided into four regions 2W, 2R, 2G, and 2B as shown in Fig. 3 (b), and the dividing boundaries of these regions are divided. Insulate.
  • FIG. 3 (c) an electrode 3 and a lead wire 4 are attached to each region of the silicon photodiode substrate 2 divided into four.
  • FIG. 3 (c) an electrode 3 and a lead wire 4 are attached to each region of the silicon photodiode substrate 2 divided into four.
  • the deep red filter 10R, the green filter 10G, and the blue color are formed on the surface of the regions 2R, 2G, and 2B of the regions divided into four in the silicon photodiode substrate 2.
  • Filters 10B are formed sequentially.
  • a visibility correction filter 10W is formed on the surface of the region 2W.
  • FIGS. 12 (a) to 12 (e) For comparison with the manufacturing process of the light receiving element 1 according to the present embodiment, conventional light receiving having only regions for detecting each color light of RGB is shown in FIGS. 12 (a) to 12 (e).
  • the manufacturing process of the device (see Fig. 11) is shown.
  • FIGS. 12 (a) to 12 (e) a plan view of the conventional light receiving element on the left side is shown, and a cross-sectional view taken along the CC line in the plan view is shown on the right side.
  • the silicon photodiode substrate 92 shown in FIG. As shown in Fig. 12 (b), divide the area 92R, 92G, and 92B into 3 parts and insulate the dividing boundaries of these areas.
  • an electrode 93 and a lead wire 94 are attached to each region of the silicon photodiode substrate 92 divided into three.
  • figure 12 (d) a red filter 97R, a green filter 97G, and a blue filter 97B are sequentially formed on the respective surfaces of the regions 92R, 92G, and 92B divided into three in the silicon photodiode substrate 92.
  • a visibility correction filter 97W (see FIG. 12 (e)) is formed on the entire surface of these filter layers.
  • the silicon photodiode substrate 92 is placed in a metal case 95 and sealed with a lid 96 as shown in FIG. This completes the conventional light receiving element.
  • the number of manufacturing steps of the light receiving element 1 is the same as the number of manufacturing steps of the conventional light receiving element. Accordingly, the light receiving element 1 can be easily manufactured without increasing the manufacturing cost as much as the conventional light receiving element having only the region for detecting each color light of RGB.
  • FIG. 4 is a plan view showing a schematic configuration of a backlight device 20 for a liquid crystal display device as a lighting device according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 30 including the backlight device 20 shown in FIG. 4, and shows a cross-sectional structure at a position corresponding to the line BB in FIG.
  • the backlight device 20 includes a bottomed case 21 having an opening on the side on which the liquid crystal panel 31 is installed, and an LED package 22 arranged on the bottom surface of the case 21. Yes.
  • the LED drive circuit board 28 that controls the lighting of the LED package 22 is arranged on the lower side of the bottom surface of the case 21.
  • FIGS. 4 and 5 are diagrams showing only schematic components of the backlight device 20 and the liquid crystal display device 30, and the actual backlight device and the liquid crystal display device are shown in these drawings. There may be no optional components. For example, in FIG. 5, a frame and the like for holding the constituent members of the liquid crystal display device 30 are not shown.
  • liquid crystal panel 31 a transmissive or transflective liquid crystal panel can be used.
  • the configuration and operation mode of the liquid crystal panel 31 are arbitrary, and any known liquid crystal panel can be used.
  • FIG. 6 is a plan view showing a schematic internal configuration of the LED package 22. LED package
  • a red LED 22R, a green LED 22G, and a blue LED 22B are enclosed in one package, as shown in FIG.
  • the top surface of the LED package 22 is transparent Sealed with a grease case 29.
  • the transparent resin case 29 may have a lens effect in order to give directivity to the emitted light.
  • a predetermined number of LED packages 22 are arranged on the mounting board 23, and the mounting boards 23 are spread on the bottom surface of the case 21.
  • a white diffuse reflection member 27 is disposed on the mounting substrate 23 so that the light emitted from the LED and the light reflected from the diffuser 32 (see Fig. 5) are reflected toward the diffuser 32. I am letting.
  • FIG. 4 a force exemplifying a configuration in which a plurality of mounting boards 23 on which the LED packages 22 are mounted is laid on the bottom surface of the case 21.
  • the number of LED packages on the mounting board In addition, the number of mounting boards arranged in the case is not limited to the example in FIG. Further, the shape of the LED package 22 and each color LED, the arrangement of each color LED in the LED package 22, and the like are not limited to the example of FIG.
  • FIG. 7 is a wiring diagram showing a state of wiring on the mounting board 23.
  • the LED package 22 on the mounting board 23 supplies current to the red LED 22R.
  • Wiring line 24a, wiring to supply current to the green LED 22G 24b, and wiring to supply current to the blue LED 22B 24c is arranged.
  • the red LED 22R, green LED 22G, and blue LED 22B of the LED package 22 can be controlled independently.
  • the wiring 24a, the wiring 24b, and the wiring 24c are connected in series or in parallel with each of the LEDs 22R, 22G, and 22B in the LED package 22 mounted on the same mounting board 23. Electric power is supplied from the LED drive circuit board 28 to the LED 22 through the wiring 24a, the selfish line 24b, and the selfish line 24c.
  • the inner surface of the case 21 is a white reflecting surface.
  • the light receiving element 1 is attached in the vicinity of the upper end of the opening of the case 21 so that the light receiving surface faces the vicinity of the center of the bottom surface of the case 21.
  • optical sheets such as a diffusion plate 32, diffusion sheets 33 and 35, and a prism sheet 34 are laminated between the opening of the case 21 and the liquid crystal panel 31. By these optical sheets, red light, green light, and blue light emitted from the LEDs of each color of the LED package 22 are mixed and irradiated to the liquid crystal panel 31 as white planar light.
  • FIG. 8 shows a circuit for performing feedback control on the red LED 22 R, the green LED 22 G, and the blue LED 22 B based on the output of the light receiving element 1 in the backlight device 20. It is a block diagram which shows schematic structure. As shown in FIG. 8, the backlight device 20 inputs the detection result from the light receiving element 1, and controls the supply current to the red LED 22R, the green LED 22G, and the blue LED 22B based on the detection result. It is equipped with a light control circuit 25 that adjusts the amount of light of each color!
  • a signal SR indicating the amount of received light in the region where the deep red filter 10R is provided, a signal SG indicating the amount of received light in the region where the green filter 10G is provided, and a blue filter 10B are provided.
  • a signal SB indicating the amount of light received in the region thus obtained and a signal SW indicating the amount of light received in the region where the visibility correction filter 10W is provided are output to the dimming circuit 25.
  • the light control circuit 25 includes a red light fluctuation analysis unit 251, a green light fluctuation analysis unit 252, a blue light fluctuation analysis unit 253, a red LED control unit 254, a green LED control unit 255, and a blue LED control unit 2 56. It has.
  • the red light fluctuation analysis unit 251 inputs the signal SR, the signal SB, and the signal SW, and analyzes the light quantity change of the red LED 22R and the presence / absence of the wavelength shift based on these signals.
  • the green light fluctuation analysis unit 252 analyzes the change in the amount of light of the green LED 22G based on the signal SG.
  • the blue light fluctuation analysis unit 253 analyzes the change in the light amount of the blue LED 22B based on the signal SB.
  • the red light fluctuation analysis unit 251 calculates the light amount of the red LED 22R.
  • ⁇ and / 3 are correction constants that have been set in advance to correct the difference in signal intensity for each light receiving area
  • the red light fluctuation analysis unit 251 detects that the light amount of the red LED 22R is decreased, the light amount decrease of the red LED 22R is caused by the emission wavelength shift of the red LED 22R based on the signal SR and the signal SW. It is determined whether it is caused by the decrease in absolute light intensity of the red LED22R.
  • the red light fluctuation analysis unit 251 includes a memory (not shown) that stores the previous calculation result of the signal SR from the light receiving element 1 and the above SR ′. If the intensity increases from the previous time and the above SR 'calculation result decreases from the previous time, the red Color Judge that the emission wavelength shift of LED22R has occurred. On the other hand, when the intensity of the signal SR is less than or equal to the previous level, and the intensity of the calculated SR ′ is lower than the previous level, the red light fluctuation analysis unit 251 Judge that the absolute light intensity has decreased. The contents of the memory are updated to new values each time the signal SR, signal SW, etc. are sent from the light receiving element 1 to the dimming circuit 25 and feedback control is performed.
  • the red light fluctuation analysis unit 251 supplies the green LED 22G, not the supply current to the red LED 22R. Sends an instruction to the green LED control 255 to increase the current.
  • the emission wavelength of the red LED 22R shifts to the longer wavelength side, and the red LED 22R develops high-purity red, resulting in mixing the light rays from the red LED 22R, green LED 22G, and blue LED 22B White coloring power
  • the whiteness shifts toward red and black rather than the original whiteness.
  • the color coordinates of white obtained as a result of color mixing are expressed as a vector sum on the chromaticity coordinates of the colors emitted by the red LED 22R, the green LED 22G, and the blue LED 22B. Therefore, in order to obtain the desired whiteness, it is necessary to correct the amount of white shift by increasing the light emission amount of the green LED 22G and the blue LED 22B. Since the increase in the amount of light required at this time needs to be 3x green compared to X times blue, it is actually only necessary to add correction to the amount of light emitted by the green LED 22G.
  • the red light fluctuation analysis unit 251 increases the supply current to the red LED 22R so as to increase the supply current. Sends instructions to LED control unit 254.
  • the light receiving sensitivity for each region in the light receiving element 1 is as shown in FIG. 9 (a).
  • the photosensitivity curve in the region where the blue filter 10B is provided is si
  • the photosensitivity curve in the region where the green filter 10G is provided is s2
  • the deep red filter 10R is provided.
  • the light reception sensitivity curve in the region where the light is received is s3, and the light reception sensitivity curve in the region where the visibility correction filter 10W is provided is s4.
  • the red LED22R force S was originally emitting light with the characteristics shown in the characteristic curve r in FIG. 9 (b). If the light emission characteristics of the red LED22R shift to the long wavelength side as shown in the characteristic curve rl due to temperature change (temperature rise), it can be seen from the comparison between Fig. 9 (a) and Fig. 9 (b). In addition, the intensity of the signal SR tends to increase because the amount of light having a wavelength that matches the sensitivity peak in the region where the deep red filter 10R is provided increases.
  • the light emission characteristic of the red LED 22R shifts to the longer wavelength side, so the amount of light with a wavelength that matches the sensitivity peak in the region where the visibility correction filter 10W is provided decreases, so the intensity of the signal SW tends to decrease.
  • the intensity of the signal SR tends to decrease because the amount of light having a wavelength matching the sensitivity peak in the region where the crimson filter 10R is provided decreases.
  • the intensity of the signal SW tends to increase.
  • the green light fluctuation analysis unit 252 obtains the light amount of the green LED 22G from the signal SG, and when the light amount of the green LED 22G increases, the green LED control unit 255 is caused to increase the supply current to the green LED 22G. Send instructions. Further, when the light amount of the green LED 22G decreases, the green light fluctuation analysis unit 252 sends an instruction to the green LED control unit 255 to decrease the supply current to the green LED 22G.
  • the blue light fluctuation analysis unit 253 obtains the light amount of the blue LED 22B from the signal SB, and when the light amount of the blue LED 22B increases, the blue LED control unit 256 increases the supply current to the blue LED 22B. Send instructions. Further, when the light amount of the blue LED 22B decreases, the blue light fluctuation analysis unit 253 sends an instruction to the blue LED control unit 256 to decrease the supply current to the blue LED 22B.
  • the light control circuit 25 of the backlight device 20 includes the light receiving element.
  • the red LED 22R shifts the emission wavelength and the absolute light amount! Force can be detected. If the emission wavelength shift of the red LED 22R occurs, increase the supply current to the green LED 22G instead of the red LED 22R. When the white light balance is adjusted and the absolute light intensity of the red LED 22R is decreasing, the white balance is adjusted by increasing the supply current to the red LED 22R.
  • the backlight device 20 it is possible to appropriately adjust the color balance without using, for example, a high-performance light receiving element that measures spectral characteristics and wavelength changes.
  • the force S shown in the configuration example in which the feedback current is supplied to the LEDs of three colors of red, green, and blue It is also possible to control only the LEDs with colors that have a significant effect on the color balance that is not necessary.
  • a light receiving element provided with a light sensitivity correction filter on the light receiving surface in addition to the crimson color filter, the green color filter, and the blue color filter is exemplified, but the visibility correction filter is not essential.
  • the visibility correction filter is not essential.
  • a filter that absorbs near infrared rays approximately 850 nm or more
  • What is needed here is to prevent the silicon photodiode substrate 2 of the light receiving element 1 from generating an electromotive force due to near infrared rays and erroneously outputting a signal added to the visible light intensity. .
  • the LED colors to which the present invention can be applied are not limited to the three primary colors RGB.
  • the configuration is not limited to the configuration in which the same number of LEDs of each color are provided, and the ratio of the number of LEDs of each color is not uniform depending on the light emission characteristics of each color LED and the color tone of light desired as illumination light. Also good.
  • the present invention uses a light receiving element that can detect a change in wavelength of received light with a simple configuration, a lighting device that can appropriately adjust the color balance by using the light receiving device, and the lighting device.
  • the display device can be used industrially.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Led Devices (AREA)

Abstract

It is possible to provide a light receiving element capable of detecting a wavelength change of a received light by using a simple configuration and to provide an illumination device capable of appropriately adjusting the color balance by using the light receiving element and a display device using the illumination device. The light receiving element (1) detects a light quantity from a plurality of light sources having different light emission bands. The light receiving element (1) has a plurality of narrow-band light receiving regions (10R, 10G, 10B) having a sensitivity based on the respective light emission bands of the light sources and a wide-band light receiving region (10W) having sensitivity based on the light emission bands of at least two light sources among the light sources.

Description

明 細 書  Specification
受光素子およびこれを用いた照明装置並びに表示装置  Light receiving element, illumination device using the same, and display device
技術分野  Technical field
[0001] 本発明は、受光素子およびこれを用いた照明装置並びに表示装置に関し、特に、 複数色の LED光源の光量を検知する受光素子と、この受光素子を用いて複数色の LED光源の色バランスを補償する照明装置と、この照明装置を用いた表示装置とに 関する。  TECHNICAL FIELD [0001] The present invention relates to a light receiving element, an illumination device using the same, and a display device, and in particular, a light receiving element that detects the light amounts of a plurality of color LED light sources and a color of a plurality of color LED light sources using the light receiving elements The present invention relates to a lighting device that compensates for balance, and a display device using the lighting device.
背景技術  Background art
[0002] 近年、液晶表示装置のバックライト用光源として、これまで主流であった冷陰極管に 代えて、発光ダイオード(LED : Light Emitting Diode)が採用され始めている。 LED をバックライト用光源として用いる場合、白色光を得るために、赤色 LED、緑色 LED 、および青色 LEDの 3色の LED、またはこれに白色を加えた 4色の LEDを用いること が一般的である。  In recent years, light emitting diodes (LEDs) have begun to be used as light sources for backlights of liquid crystal display devices in place of cold cathode tubes that have been mainstream. When using an LED as a light source for a backlight, it is common to use a three-color LED of red LED, green LED, and blue LED, or a four-color LED with white added to obtain white light. is there.
[0003] ただし、 LEDは一般的に製造バラツキが大きぐ同じ電流を印加したとしても、一定 の明るさにならない場合が多い。従って、 LEDをバックライト用光源として用いる場合 は、色バランス(一般的にはホワイトバランス)を調整しなければならないという課題が ある。また、 LEDは温度によっても特性が変わりやすいので、ノ ックライトの製造時に ホワイトバランスを調整したとしても、使用時に温度変化によって発光量が変化し、ホ ワイトバランスが崩れるという問題もあった。  [0003] However, in general, LEDs do not always have a constant brightness even when the same current with large manufacturing variation is applied. Therefore, when LED is used as a light source for backlight, there is a problem that the color balance (generally white balance) must be adjusted. In addition, since the characteristics of LEDs tend to change depending on the temperature, even if the white balance was adjusted during the manufacture of the knocklight, the amount of light emitted changed with the temperature change during use, causing the white balance to be lost.
[0004] このため、各色 LEDの近傍に、これらの LEDから出射される各色光の光量を検出 するための受光素子を設け、この受光素子で検出した光量に応じて LEDへの供給 電流を制御することにより、ホワイトバランスの調整を行う表示装置が知られている(特 開 2004— 184852号公報)。  For this reason, a light receiving element is provided in the vicinity of each color LED to detect the amount of each color light emitted from these LEDs, and the supply current to the LED is controlled according to the amount of light detected by this light receiving element. By doing so, a display device that adjusts the white balance is known (Japanese Patent Publication No. 2004-184852).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、受光素子で各色 LEDからの光量を検出する構成とした場合、以下の ような課題があった。すなわち、色光の光量を検出する受光素子としては、検出対象 色の波長に対して感度を有するフォトディテクタが用いられる。例えば、赤色 LEDか らの出射光量を検出する受光素子としては、図 10 (a)に示すように、およそ 630nm 付近に感度ピークを持つフォトディテクタが用いられる。従来一般的には、赤色、緑 色、および青色の三色の LEDの光量を検出するために、図 11に示すように、受光素 子の受光面を三分割し、分割面のそれぞれに、赤色フィルタ 97R、緑色フィルタ 97G 、および青色フィルタ 97Bを設けた受光素子が用いられて!/、る。 However, when the light receiving element is configured to detect the amount of light from each color LED, there are the following problems. In other words, as a light receiving element that detects the amount of color light, A photodetector having sensitivity to the color wavelength is used. For example, as a light-receiving element that detects the amount of light emitted from a red LED, a photodetector having a sensitivity peak around 630 nm is used, as shown in Fig. 10 (a). Conventionally, in order to detect the light quantity of three colors of red, green, and blue LEDs, the light receiving surface of the light receiving element is generally divided into three parts as shown in FIG. A light receiving element provided with a red filter 97R, a green filter 97G, and a blue filter 97B is used.
[0006] ところ力 LEDの光量変化は、主に温度変化が原因で出射光の色みが変化する場 合 (発光波長のシフト)と、 LEDの経年劣化等によって絶対光量が変化する場合 (発 光量低下)との二通りがある。なお、発光波長のシフトは、赤色 LEDにおいて特に顕 著である。すなわち、図 10 (b)の特性曲線 rlに示すように、 LEDの発光波長が、本 来の特性曲線 rよりも長波長側へシフトすると、発光量のピーク波長が受光素子の感 度ピークからずれ、受光素子で検出される光量が減少する。また、図 10 (b)の特性 曲線 r2に示すように、 LEDの絶対光量が低下した場合は、発光量のピーク波長は同 じであるが、発光波長のシフト時と同様に、受光素子で検出される光量は減少する。 すなわち、発光波長のシフトと発光量の低下とのいずれが生じているかを、従来の受 光素子の出力だけから判断することはできない。  [0006] However, the change in the light intensity of the LED is mainly caused by changes in the color of the emitted light due to temperature changes (shifts in the emission wavelength) and in cases where the absolute light intensity changes due to aging degradation of the LED (such as emission). There are two ways of reducing the amount of light. The emission wavelength shift is particularly remarkable in red LEDs. In other words, as shown in the characteristic curve rl of Fig. 10 (b), when the emission wavelength of the LED shifts to the longer wavelength side than the original characteristic curve r, the peak wavelength of the emitted light amount changes from the sensitivity peak of the light receiving element. The amount of light detected by the light receiving element is reduced. Also, as shown in the characteristic curve r2 in Fig. 10 (b), when the absolute light quantity of the LED decreases, the peak wavelength of the light emission quantity is the same. The amount of light detected is reduced. In other words, it cannot be determined from the output of the conventional light receiving element alone whether the emission wavelength shift or the emission amount reduction occurs.
[0007] 前述のとおり、発光波長のシフトは赤色 LEDにおいて顕著であるので、環境温度 が変化した場合、赤色 LEDに対する受光素子出力が最も大きく低下することとなる。 この場合、受光素子出力に基づいて、赤色 LEDへの供給電流を増加させるフィード ノ ック制御を行うと、赤色 LEDにおいてシフトしたピーク発光波長における光量が増 加し、却ってホワイトバランスが悪化してしまう。  As described above, the emission wavelength shift is significant in the red LED. Therefore, when the environmental temperature changes, the light receiving element output to the red LED is greatly reduced. In this case, if feed knock control is performed to increase the supply current to the red LED based on the light receiving element output, the amount of light at the peak emission wavelength shifted in the red LED increases, and the white balance deteriorates. End up.
[0008] なお、上記特開 2004— 184852号公報には、受光素子として、光量の他に、分光 特性、或!/、はそれに準じる光の波長の変化を測定する波長検出機能を備えるものを 使用して、波長に基づいてホワイトバランスを調整することも記載されている。し力、し、 このような構成とすると、分光特性や波長変化を測定する高機能な受光素子を使用 する必要があり、コスト増を招くという問題がある。  [0008] In addition, in the above Japanese Patent Application Laid-Open No. 2004-184852, as a light receiving element, in addition to the amount of light, a device having a wavelength detection function for measuring a spectral characteristic or! / It is also described to use and adjust white balance based on wavelength. However, with such a configuration, it is necessary to use a high-performance light-receiving element that measures spectral characteristics and wavelength changes, resulting in an increase in cost.
[0009] そこで、本発明は、上記の課題を鑑みなされたものであって、簡単な構成で、受け た光の波長変化を検出できる受光素子と、この受光素子を用いることにより、色バラ ンスを適切に調整可能な照明装置およびその照明装置を用いた表示装置とを提供 することを目白勺としている。 [0009] Therefore, the present invention has been made in view of the above problems, and a light receiving element that can detect a change in wavelength of received light with a simple configuration, and a color variation by using the light receiving element. The aim is to provide an illuminating device capable of appropriately adjusting the illuminance and a display device using the illuminating device.
課題を解決するための手段  Means for solving the problem
[0010] 上記の目的を達成するために、本発明にかかる受光素子は、互いに異なる複数の 光帯域での光量を検出する受光素子であって、前記複数の光帯域のそれぞれに応 じた感度を有する複数の狭帯域受光領域に加えて、前記複数の光帯域のうちの少な くとも 2つの光帯域に及ぶ感度帯域を有するとともに、各々の光帯域の光に対する感 度の比が、前記狭帯域受光領域の感度の比と異なる広帯域受光領域をさらに備え たことを特徴とする。 In order to achieve the above object, a light receiving element according to the present invention is a light receiving element that detects light amounts in a plurality of different optical bands, and has a sensitivity corresponding to each of the plurality of optical bands. In addition to a plurality of narrow-band light receiving regions having a sensitivity band extending to at least two of the plurality of optical bands, and a ratio of sensitivity to light in each of the optical bands is narrow. It is further characterized by having a broadband light receiving area different from the sensitivity ratio of the band light receiving area.
[0011] このように、複数の光帯域のそれぞれに応じた感度を有する複数の狭帯域受光領 域に加えて、前記複数の光帯域のうちの少なくとも 2つの光帯域に及ぶ感度帯域を 有するとともに、各々の光帯域の光に対する感度の比力 前記狭帯域受光領域の感 度の比と異なる広帯域受光領域をさらに備えたことにより、狭帯域受光領域だけを有 する従来の受光素子に比べて、広帯域受光領域で光を検出することにより、受けた 光の発光波長シフトを検出することが可能となる。これにより、簡単な構成で、受けた 光の波長変化を検出できる受光素子を提供することができる。  [0011] Thus, in addition to a plurality of narrow-band light receiving areas having a sensitivity corresponding to each of a plurality of optical bands, it has a sensitivity band covering at least two of the plurality of optical bands. The ratio of the sensitivity to the light in each optical band is further provided with a broadband light-receiving area different from the sensitivity ratio of the narrow-band light-receiving area, so that compared to a conventional light-receiving element having only a narrow-band light-receiving area, By detecting light in the broadband light receiving region, it is possible to detect the emission wavelength shift of the received light. Accordingly, it is possible to provide a light receiving element that can detect a wavelength change of received light with a simple configuration.
[0012] 上記の本発明に力、かる発光素子において、前記複数の狭帯域受光領域が、 400η m〜450nmの光帯域、 480nm〜550nmの光帯域、および 650nm〜700nmの光 帯域に応じた感度をそれぞれ有する 3つの受光領域であることが好ましい。  [0012] In the light-emitting element according to the present invention, the plurality of narrow-band light receiving regions have a sensitivity corresponding to an optical band of 400ηm to 450nm, an optical band of 480nm to 550nm, and an optical band of 650nm to 700nm. It is preferable that the three light receiving regions each have
[0013] また、上記の目的を達成するために、本発明にかかる照明装置は、本発明にかか る受光素子と、発光帯域が互いに異なる複数の光源と、前記受光素子の狭帯域受 光領域の少なくとも一つで受光される光の強度信号と、前記広帯域受光領域で受光 される光の強度信号との変化に基づいて、前記複数の光源の少なくとも一つの発光 強度を制御する調光回路とを備えたことを特徴とする。  In order to achieve the above object, an illumination device according to the present invention includes a light receiving element according to the present invention, a plurality of light sources having different light emission bands, and narrow-band light reception of the light receiving element. A dimming circuit that controls the emission intensity of at least one of the plurality of light sources based on a change between an intensity signal of light received by at least one of the areas and an intensity signal of light received by the broadband light receiving area It is characterized by comprising.
[0014] この構成によれば、簡単な構成で光源からの出射光の波長変化を検出できる受光 素子を用いることにより、色バランスを適切に調整可能な照明装置を低コストで提供 できる。  [0014] According to this configuration, it is possible to provide an illumination device capable of appropriately adjusting the color balance at a low cost by using the light receiving element that can detect the wavelength change of the light emitted from the light source with a simple configuration.
[0015] 上記の本発明にかかる照明装置において、前記調光回路が、前記広帯域受光領 域で受光される光の強度信号から、前記狭帯域受光領域の少なくとも一つで受光さ れる光の強度信号に特定の係数を乗じたものを減算して得られる差分強度信号に基 づき、前記複数の光源の少なくとも一つの発光強度を制御することが好ましい。 [0015] In the lighting device according to the present invention, the dimming circuit includes the broadband light receiving region. Based on a difference intensity signal obtained by subtracting a signal obtained by multiplying a light intensity signal received in at least one of the narrow-band light receiving areas by a specific coefficient from an intensity signal of light received in the area, and It is preferable to control at least one emission intensity of the plurality of light sources.
[0016] 上記の本発明にかかる照明装置において、前記調光回路が、前記複数の狭帯域 受光領域のうち、最も長波長側の発光帯域に応じた感度を有する狭帯域受光領域 で受光される光の強度信号と、前記広帯域受光領域で受光される光の強度信号との 変化に基づいて、前記複数の光源のうち、少なくとも、最も長波長側の発光帯域で発 光する光源と、長波長側から二番目の発光帯域で発光する光源との少なくとも二つ の光源の発光強度を制御することが好ましレ、。  [0016] In the illumination device according to the present invention, the dimming circuit receives light in the narrowband light receiving region having sensitivity according to the light emission band on the longest wavelength side among the plurality of narrowband light receiving regions. Based on the change between the light intensity signal and the light intensity signal received by the broadband light receiving region, the light source that emits at least the light emission band on the longest wavelength side among the plurality of light sources, and the long wavelength It is preferable to control the emission intensity of at least two light sources, with the light source emitting in the second emission band from the side.
[0017] この構成によれば、最も長波長側の発光帯域で発光する光源において、発光帯域 力 Sシフトする現象が生じた場合に、長波長側から二番目の発光帯域で発光する光源 の発光強度を制御することにより、最も長波長側の発光帯域で発光する光源の発光 帯域のシフトによる色バランスの崩れを補償することができる。  [0017] According to this configuration, in the light source that emits light in the light emission band on the longest wavelength side, the light emission of the light source that emits light in the second light emission band from the long wavelength side when the phenomenon of light emission band force S shift occurs. By controlling the intensity, it is possible to compensate for the loss of color balance due to the shift of the light emission band of the light source that emits light in the light emission band on the longest wavelength side.
[0018] 上記の好ましい構成の場合、さらに、前記調光回路が、前記複数の狭帯域受光領 域のうち、最も長波長側の発光帯域に応じた感度を有する狭帯域受光領域で受光さ れる光の強度が増加し、かつ、前記広帯域受光領域で受光される光の強度が減少し た場合、前記複数の光源のうち、長波長側から二番目の発光帯域で発光する光源 の発光強度が上昇するよう制御することが好ましい。  [0018] In the case of the above-described preferable configuration, the dimming circuit further receives light in a narrow-band light receiving region having sensitivity corresponding to the light emission band on the longest wavelength side among the plurality of narrow-band light receiving regions. When the intensity of light increases and the intensity of light received by the broadband light receiving region decreases, the emission intensity of the light source that emits light in the second emission band from the long wavelength side among the plurality of light sources is It is preferable to control to increase.
[0019] なお、上記の目的を達成するために、本発明にかかる表示装置は、本発明にかか る照明装置と、前記照明装置によって照射される透過型または半透過型の表示素子 とを備えたことを特徴とする。上記の表示素子としては、液晶表示素子が好適に用い られる。これにより、簡単な構成で光源からの出射光の波長変化を検出できる受光素 子を用いて、照明装置の光源の発光強度を制御することにより、色バランスを適切に 調整可能な表示装置を低コストで提供できる。  [0019] In order to achieve the above object, a display device according to the present invention includes an illumination device according to the present invention and a transmissive or transflective display element irradiated by the illuminator. It is characterized by having. As the display element, a liquid crystal display element is preferably used. This reduces the display device that can adjust the color balance appropriately by controlling the emission intensity of the light source of the lighting device using a light receiving element that can detect the wavelength change of the light emitted from the light source with a simple configuration. Can be provided at a cost.
発明の効果  The invention's effect
[0020] 以上のとおり、本発明によれば、簡単な構成で光源からの出射光の波長変化を検 出できる受光素子と、この受光素子を用いることにより、色バランスを適切に調整可能 な照明装置およびその照明装置を用いた表示装置とを提供できる。 図面の簡単な説明 As described above, according to the present invention, a light receiving element that can detect a wavelength change of light emitted from a light source with a simple configuration, and an illumination that can appropriately adjust the color balance by using this light receiving element. It is possible to provide a device and a display device using the lighting device. Brief Description of Drawings
[図 1]図 1は、本発明の一実施形態にかかる受光素子の概略構成を示す平面図であ FIG. 1 is a plan view showing a schematic configuration of a light receiving element according to an embodiment of the present invention.
[図 2]図 2は、図 1に示す A— A線における矢視断面図である。 FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
[図 3(a)]図 3 (a)は、受光素子の主要な一製造工程における構造を示す平面図およ び断面図である。  [FIG. 3 (a)] FIG. 3 (a) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
[図 3(b)]図 3 (b)は、受光素子の主要な一製造工程における構造を示す平面図およ び断面図である。  [FIG. 3 (b)] FIG. 3 (b) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
[図 3(c)]図 3 (c)は、受光素子の主要な一製造工程における構造を示す平面図およ び断面図である。  [FIG. 3 (c)] FIG. 3 (c) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
[図 3(d)]図 3 (d)は、受光素子の主要な一製造工程における構造を示す平面図およ び断面図である。  [FIG. 3 (d)] FIG. 3 (d) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
[図 3(e)]図 3 (e)は、受光素子の主要な一製造工程における構造を示す平面図およ び断面図である。  [FIG. 3 (e)] FIG. 3 (e) is a plan view and a cross-sectional view showing a structure in one main manufacturing process of the light receiving element.
[図 4]図 4は、本発明の一実施形態にかかる照明装置としての、液晶表示装置用バッ クライト装置の概略構成を示す平面図である。  FIG. 4 is a plan view showing a schematic configuration of a backlight device for a liquid crystal display device as an illumination device according to an embodiment of the present invention.
[図 5]図 5は、図 4に示すバックライト装置を備えた液晶表示装置の概略構成を示す 断面図であり、図 4における B— B線に対応する位置における断面構造を示す。  FIG. 5 is a cross-sectional view showing a schematic configuration of a liquid crystal display device including the backlight device shown in FIG. 4, and shows a cross-sectional structure at a position corresponding to line BB in FIG.
[図 6]図 6は、 LEDパッケージの内部概略構成を示す平面図である。 FIG. 6 is a plan view showing an internal schematic configuration of the LED package.
[図 7]図 7は、 LEDパッケージを搭載した実装基板における配線の様子を示す配線 図である。 [FIG. 7] FIG. 7 is a wiring diagram showing a wiring state on a mounting board on which an LED package is mounted.
[図 8]図 8は、バックライト装置において、受光素子の出力に基づいて、各色 LEDに 対してフィードバック制御を行う回路の概略構成を示すブロック図である。  FIG. 8 is a block diagram showing a schematic configuration of a circuit that performs feedback control on each color LED based on the output of the light receiving element in the backlight device.
[図 9]図 9 (a)は、本発明の一実施形態にかかる受光素子の感度特性を示すグラフで あり、図 9 (b)は、 LEDの発光特性における二通りの変化の様子を示すグラフである [Fig. 9] Fig. 9 (a) is a graph showing the sensitivity characteristics of the light receiving element according to the embodiment of the present invention, and Fig. 9 (b) shows two kinds of changes in the light emission characteristics of the LED. Is a graph
[図 10]図 10 (a)は、従来の受光素子の感度特性を示すグラフであり、図 10 (b)は、 L EDの発光特性における二通りの変化の様子を示すグラフである。 [図 11]図 11は、従来の受光素子の概略構成を示す平面図である。 [FIG. 10] FIG. 10 (a) is a graph showing the sensitivity characteristics of a conventional light receiving element, and FIG. 10 (b) is a graph showing two types of changes in the light emission characteristics of the LED. FIG. 11 is a plan view showing a schematic configuration of a conventional light receiving element.
[図 12(a)]図 12 (a)は、 RGBの各色光を検出する領域のみを有する従来の受光素子 の一製造工程における構造を示す平面図および断面図である。  [FIG. 12 (a)] FIG. 12 (a) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element having only a region for detecting each color light of RGB.
[図 12(b)]図 12 (b)は、従来の受光素子の一製造工程における構造を示す平面図お よび断面図である。  [FIG. 12 (b)] FIG. 12 (b) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
[図 12(c)]図 12 (c)は、従来の受光素子の一製造工程における構造を示す平面図お よび断面図である。  [FIG. 12 (c)] FIG. 12 (c) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
[図 12(d)]図 12 (d)は、従来の受光素子の一製造工程における構造を示す平面図お よび断面図である。  [FIG. 12 (d)] FIG. 12 (d) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
[図 12(e)]図 12 (e)は、従来の受光素子の一製造工程における構造を示す平面図お よび断面図である。  [FIG. 12 (e)] FIG. 12 (e) is a plan view and a cross-sectional view showing a structure in one manufacturing process of a conventional light receiving element.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施形態について、図面を参照しながら説明する。ただし、以下で 参照する各図は、説明の便宜上、本発明の一実施形態の構成部材のうち、本発明を 説明するために必要な主要部材のみを簡略化して示したものである。従って、本発 明の実施品は、本明細書が参照する各図に示されていない任意の構成部材を備え 得る。また、各図中に示した部材の寸法は、実際の構成部材の寸法および各部材の 寸法比率等を忠実に表したものではなレ、。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, for convenience of explanation, the drawings referred to below show only the main members necessary for explaining the present invention in a simplified manner among the constituent members of one embodiment of the present invention. Therefore, the implementation of the present invention may include any component not shown in the drawings to which this specification refers. In addition, the dimensions of the members shown in each figure do not faithfully represent the dimensions of the actual component members and the dimensional ratios of the members.
[0023] 図 1は、本発明の一実施形態にかかる受光素子 1の概略構成を示す平面図である 。図 2は、図 1に示す A— A線における矢視断面図である。図 1および図 2に示すよう に、受光素子 1は、シリコンフォトダイオード基板 2と、シリコンフォトダイオード基板 2に 接続された電極 3と、電極 3に接続されたリード線 4と力 金属ケース 5内に封入され た構成である。電極 3は、シリコンフォトダイオード基板 2の受光面とその反対面にそ れぞれ 4つずつ形成されている。リード泉 4は、金属ケース 5の外へ引き出され、後述 するフィードバック制御回路等に接続される。  FIG. 1 is a plan view showing a schematic configuration of a light receiving element 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line AA shown in FIG. As shown in FIGS. 1 and 2, the light receiving element 1 includes a silicon photodiode substrate 2, an electrode 3 connected to the silicon photodiode substrate 2, a lead wire 4 connected to the electrode 3, and a force metal case 5. It is a configuration enclosed in Four electrodes 3 are formed on the light receiving surface of the silicon photodiode substrate 2 and on the opposite surface, respectively. The lead spring 4 is pulled out of the metal case 5 and connected to a feedback control circuit or the like described later.
[0024] なお、電極 3およびリード線 4は、それぞれが形成されている位置に応じて、例えば 、電極 3R , 3R、リード線 4R , 4Rのように表記されている。ここで、「3」または「4」の  Note that the electrodes 3 and the lead wires 4 are represented as, for example, electrodes 3R and 3R and lead wires 4R and 4R, depending on the positions where they are formed. Where "3" or "4"
1 2 1 2  1 2 1 2
後に示した「R」、「G」、「B」、または「W」の文字は、それぞれ、当該電極およびリード 線が形成されている領域を覆うフィルタの種類 (詳細については後述)を区別するも のである。また、前記の「R」等の文字に続く「1」の添え字は、当該電極 3およびリード 線 4が受光素子 1の受光面側に設けられていることを表す。また、添え字が「2」である 場合は、当該電極 3およびリード線 4が受光素子 1の受光面とは反対側に設けられて いることを表す。 The letters `` R '', `` G '', `` B '', or `` W '' shown later indicate the electrode and lead, respectively. It distinguishes the type of filter that covers the area where the line is formed (details will be described later). The subscript “1” following the letter “R” or the like indicates that the electrode 3 and the lead wire 4 are provided on the light receiving surface side of the light receiving element 1. In addition, when the subscript is “2”, it indicates that the electrode 3 and the lead wire 4 are provided on the side opposite to the light receiving surface of the light receiving element 1.
[0025] 金属ケース 5の上面は、光を透過するガラスまたは樹脂製の蓋 6によって、密封され ている。また、受光素子 1の受光面、すなわちシリコンフォトダイオード基板 2の上面に は、フィルタ層 10が積層されている。なお、図 2では、受光素子 1の構成を分かりやす く示すために、フィルタ層 10とシリコンフォトダイオード基板 2との間に空隙があるよう に図示されているが、実際には、フィルタ層 10はシリコンフォトダイオード基板 2の表 面並びにこの表面に形成された電極 3に密着するよう形成されている。  The upper surface of the metal case 5 is sealed with a glass or resin lid 6 that transmits light. A filter layer 10 is laminated on the light receiving surface of the light receiving element 1, that is, the upper surface of the silicon photodiode substrate 2. In FIG. 2, in order to show the configuration of the light receiving element 1 in an easy-to-understand manner, a gap is shown between the filter layer 10 and the silicon photodiode substrate 2, but in actuality, the filter layer 10 Is formed in close contact with the surface of the silicon photodiode substrate 2 and the electrode 3 formed on the surface.
[0026] 図 1に示すように、受光素子 1の受光面は、ほぼ円板状であり、中心角がほぼ 90° の扇形状の領域に 4分割されている。なお、シリコンフォトダイオード基板 2も、受光面 と同じ位置で 4分割され、分割されたそれぞれの領域は互いに絶縁されている。受光 面に積層されたフィルタ層 10は、上記 4つの領域のうち 3つの領域の表面にそれぞ れ積層された深紅色フィルタ 10R、緑色フィルタ 10G、および青色フィルタ 10Bと、残 りの 1つの領域に積層された視感度補正フィルタ 10Wとを有して!/、る。深紅色フィノレ タ 10Rは、約 650nm〜約 700nmの波長域の光を透過する。緑色フィルタ 10Gは、 約 480nm〜約 550nmの波長域の光を透過する。青色フィルタ 10Bは、約 400nm 〜約 450nmの波長域の光を透過する。視感度補正フィルタ 10Wは、可視光の全波 長域を透過させ、かつ視感度曲線にほぼ沿った透過率スペクトルを有する。視感度 補正フィルタ 10Wとしては、例えば、呉羽化学工業株式会社製の「ルミクル UCF (商 品名)」等を用いることができる。視感度補正フィルタ 10Wは、他の受光領域 (深紅色 フィノレタ 10R、緑色フィノレタ 10G、および青色フィルタ 1 OB)の上層に及んでいてもか まわない。ただし、各々の信号強度を強くし S/N比を高める目的で、視感度補正フ ィルタ 10Wが受光面を 4分割した領域の 1つのみに積層されていることが望ましい。  [0026] As shown in FIG. 1, the light receiving surface of the light receiving element 1 has a substantially disk shape and is divided into four fan-shaped regions having a central angle of approximately 90 °. The silicon photodiode substrate 2 is also divided into four at the same position as the light receiving surface, and the divided regions are insulated from each other. The filter layer 10 stacked on the light-receiving surface includes the deep red filter 10R, the green filter 10G, and the blue filter 10B that are stacked on the surface of three of the four regions, and the remaining one region. And a visual sensitivity correction filter 10 W stacked on the substrate. The deep red finoleta 10R transmits light in the wavelength range of about 650 nm to about 700 nm. The green filter 10G transmits light in a wavelength range of about 480 nm to about 550 nm. The blue filter 10B transmits light having a wavelength range of about 400 nm to about 450 nm. The visibility correction filter 10W transmits the entire visible light wavelength range and has a transmittance spectrum substantially along the visibility curve. As the visibility correction filter 10W, for example, “Lumicle UCF (trade name)” manufactured by Kureha Chemical Industry Co., Ltd. can be used. The visibility correction filter 10W may extend to the upper layer of other light receiving regions (crimson finoretta 10R, green finoleta 10G, and blue filter 1OB). However, for the purpose of increasing the signal strength and increasing the S / N ratio, it is desirable that the visibility correction filter 10W be stacked only in one of the four areas where the light receiving surface is divided.
[0027] なお、図 1では、受光素子 1の受光面側において、ほぼ透明な視感度補正フィルタ  In FIG. 1, a substantially transparent visibility correction filter is provided on the light receiving surface side of the light receiving element 1.
10Wの下にある電極 3Wのみが見える状態を図示しているが、深紅色フィルタ 10R 、緑色フィルタ 10G、および青色フィルタ 10Bの下にも、図 1において破線で示したよ うに、電極 3R , 3G , 3Bが設けられている。電極 3W , 3R , 3G , 3Bのそれぞれ Although only the electrode 3W under 10W is visible, the crimson filter 10R The electrodes 3R, 3G, and 3B are also provided below the green filter 10G and the blue filter 10B, as indicated by broken lines in FIG. Electrode 3W, 3R, 3G, 3B respectively
1 1 1 1 1 1 1  1 1 1 1 1 1 1
にはリード線 4W , 4R , 4G , 4Bが接続されている。また、図 1には図示されていな  Connected to the lead wires 4W, 4R, 4G, 4B. Also not shown in Figure 1.
1 1 1 1  1 1 1 1
いが、受光素子 1の受光面とは反対側の面に、電極 3W , 3R , 3G , 3Bが設けられ ている(図 2参照)。電極 3W , 3R , 3G , 3Bのそれぞれにはリード線 4W , 4R , 4 G , 4Bが接続されている。これにより、受光素子 1は、深紅色フィルタ 10Rが設けら れた領域の受光量と、緑色フィルタ 10Gが設けられた領域の受光量と、青色フィルタ 10Bが設けられた領域の受光量と、視感度補正フィルタ 10Wのみが設けられた領域 の受光量とを別個に出力する。  However, the electrodes 3W, 3R, 3G, and 3B are provided on the surface opposite to the light receiving surface of the light receiving element 1 (see FIG. 2). Lead wires 4W, 4R, 4G and 4B are connected to the electrodes 3W, 3R, 3G and 3B, respectively. As a result, the light receiving element 1 receives the received light amount in the region where the crimson filter 10R is provided, the received light amount in the region where the green filter 10G is provided, the received light amount in the region where the blue filter 10B is provided, Separately outputs the received light amount of the area where only the sensitivity correction filter 10W is provided.
[0028] ここで、図 3を参照しながら、受光素子 1の製造方法について説明する。なお、図 3 ( a)〜図 3 (e)のそれぞれにおいて、左側に受光素子の平面図を示し、右側に当該平 面図における A— A線断面図を示す。まず、図 3 (a)に示すシリコンフォトダイオード 基板 2にスリットを入れて、図 3 (b)に示すように 4つの領域 2W, 2R, 2G, 2Bに分割 すると共に、これらの領域の分割境界を絶縁する。次に、図 3 (c)に示すように、 4分 割したシリコンフォトダイオード基板 2の各領域に、電極 3とリード線 4とを取り付ける。 次に、図 3 (d)に示すように、シリコンフォトダイオード基板 2において 4分割された領 域のうちの領域 2R, 2G, 2Bの表面に、深紅色フィルタ 10R、緑色フィルタ 10G、お よび青色フィルタ 10Bを順次形成する。また、領域 2Wの表面に、視感度補正フィル タ 10Wを形成する。次に、シリコンフォトダイオード基板 2を、図 3 (e)に示すように、金 属ケース 5に入れ、蓋 6によって封止することにより、受光素子 1が完成する。  Here, a method for manufacturing the light receiving element 1 will be described with reference to FIG. In each of FIGS. 3 (a) to 3 (e), the left side is a plan view of the light receiving element, and the right side is a cross-sectional view taken along the line AA in the plan view. First, a slit is made in the silicon photodiode substrate 2 shown in Fig. 3 (a), and it is divided into four regions 2W, 2R, 2G, and 2B as shown in Fig. 3 (b), and the dividing boundaries of these regions are divided. Insulate. Next, as shown in FIG. 3 (c), an electrode 3 and a lead wire 4 are attached to each region of the silicon photodiode substrate 2 divided into four. Next, as shown in FIG. 3 (d), the deep red filter 10R, the green filter 10G, and the blue color are formed on the surface of the regions 2R, 2G, and 2B of the regions divided into four in the silicon photodiode substrate 2. Filters 10B are formed sequentially. Also, a visibility correction filter 10W is formed on the surface of the region 2W. Next, the silicon photodiode substrate 2 is placed in a metal case 5 and sealed with a lid 6 as shown in FIG.
[0029] なお、本実施形態にかかる受光素子 1の製造工程との比較のために、図 12 (a)〜 図 12 (e)に、 RGBの各色光を検出する領域のみを有する従来の受光素子(図 11参 照)の製造工程を示す。なお、図 12 (a)〜図 12 (e)のそれぞれにおいて、左側に従 来の受光素子の平面図を示し、右側に当該平面図における C C線断面図を示す。 従来の受光素子の製造工程では、まず、図 12 (a)に示すシリコンフォトダイオード基 板 92にス!;ッ卜を入れて、図 12 (b)に示すように、領域 92R, 92G, 92Bに 3分害 Uし、 これらの領域の分割境界を絶縁する。次に、図 12 (c)に示すように、 3分割したシリコ ンフォトダイオード基板 92の各領域に、電極 93とリード線 94とを取り付ける。次に、図 12 (d)に示すように、シリコンフォトダイオード基板 92において 3分割された領域 92R , 92G, 92Bのそれぞれの表面に、赤色フィルタ 97R、緑色フィルタ 97G、および青 色フィルタ 97Bを順次形成する。その後、これらのフィルタ層の表面全体に、視感度 補正フィルタ 97W (図 12 (e)参照)を形成する。次に、シリコンフォトダイオード基板 9 2を、図 12 (e)に示すように、金属ケース 95に入れ、蓋 96によって封止する。これに より、従来の受光素子が完成する。 [0029] For comparison with the manufacturing process of the light receiving element 1 according to the present embodiment, conventional light receiving having only regions for detecting each color light of RGB is shown in FIGS. 12 (a) to 12 (e). The manufacturing process of the device (see Fig. 11) is shown. In each of FIGS. 12 (a) to 12 (e), a plan view of the conventional light receiving element on the left side is shown, and a cross-sectional view taken along the CC line in the plan view is shown on the right side. In the conventional light receiving element manufacturing process, first, the silicon photodiode substrate 92 shown in FIG. ; As shown in Fig. 12 (b), divide the area 92R, 92G, and 92B into 3 parts and insulate the dividing boundaries of these areas. Next, as shown in FIG. 12 (c), an electrode 93 and a lead wire 94 are attached to each region of the silicon photodiode substrate 92 divided into three. Next, figure 12 (d), a red filter 97R, a green filter 97G, and a blue filter 97B are sequentially formed on the respective surfaces of the regions 92R, 92G, and 92B divided into three in the silicon photodiode substrate 92. Thereafter, a visibility correction filter 97W (see FIG. 12 (e)) is formed on the entire surface of these filter layers. Next, the silicon photodiode substrate 92 is placed in a metal case 95 and sealed with a lid 96 as shown in FIG. This completes the conventional light receiving element.
[0030] 図 3と図 12とを比較することから分かるように、受光素子 1の製造工程数は、従来の 受光素子の製造工程数と同じである。従って、受光素子 1は、 RGBの各色光を検出 する領域のみを有する従来の受光素子と同じぐ製造コストを増大させずに、容易に 製造すること力 Sでさる。 As can be seen from a comparison between FIG. 3 and FIG. 12, the number of manufacturing steps of the light receiving element 1 is the same as the number of manufacturing steps of the conventional light receiving element. Accordingly, the light receiving element 1 can be easily manufactured without increasing the manufacturing cost as much as the conventional light receiving element having only the region for detecting each color light of RGB.
[0031] 図 4は、本発明の一実施形態にかかる照明装置としての、液晶表示装置用バックラ イト装置 20の概略構成を示す平面図である。図 5は、図 4に示すバックライト装置 20 を備えた液晶表示装置 30の概略構成を示す断面図であり、図 4における B— B線に 対応する位置における断面構造を示す。図 4および図 5に示すように、バックライト装 置 20は、液晶パネル 31が設置される側が開口した有底状のケース 21と、ケース 21 の底面に配列された LEDパッケージ 22とを備えている。図 5において、ケース 21の 底面下側に配置されているのは、 LEDパッケージ 22の点灯を制御する LED駆動回 路基板 28である。なお、図 4および図 5は、バックライト装置 20および液晶表示装置 30の概略的な構成要素のみを示した図であり、実際のバックライト装置および液晶 表示装置は、これらの図に示されていない任意の構成要素を備え得る。例えば、図 5 においては、液晶表示装置 30の構成部材を保持するためのフレーム等の図示は省 略されている。  FIG. 4 is a plan view showing a schematic configuration of a backlight device 20 for a liquid crystal display device as a lighting device according to an embodiment of the present invention. FIG. 5 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 30 including the backlight device 20 shown in FIG. 4, and shows a cross-sectional structure at a position corresponding to the line BB in FIG. As shown in FIGS. 4 and 5, the backlight device 20 includes a bottomed case 21 having an opening on the side on which the liquid crystal panel 31 is installed, and an LED package 22 arranged on the bottom surface of the case 21. Yes. In FIG. 5, the LED drive circuit board 28 that controls the lighting of the LED package 22 is arranged on the lower side of the bottom surface of the case 21. 4 and 5 are diagrams showing only schematic components of the backlight device 20 and the liquid crystal display device 30, and the actual backlight device and the liquid crystal display device are shown in these drawings. There may be no optional components. For example, in FIG. 5, a frame and the like for holding the constituent members of the liquid crystal display device 30 are not shown.
[0032] なお、液晶パネル 31としては、透過型または半透過型の液晶パネルを用いることが できる。液晶パネル 31の構成や動作モードは任意であり、公知の任意の液晶パネル を用いることができるので、詳細な説明は省略する。  As the liquid crystal panel 31, a transmissive or transflective liquid crystal panel can be used. The configuration and operation mode of the liquid crystal panel 31 are arbitrary, and any known liquid crystal panel can be used.
[0033] 図 6は、 LEDパッケージ 22の内部概略構成を示す平面図である。 LEDパッケージ  FIG. 6 is a plan view showing a schematic internal configuration of the LED package 22. LED package
22は、図 6に示すように、 1つのパッケージ内に、赤色 LED22R、緑色 LED22G、お よび青色 LED22Bが封入されたものである。 LEDパッケージ 22の上面は、透明樹 脂ケース 29によって封止されている。透明樹脂ケース 29は、出射光に指向性を与え るために、レンズ効果を有するものであっても良い。 LEDパッケージ 22は、所定の数 ずつ実装基板 23に配置され、この実装基板 23が、ケース 21の底面に敷き詰められ ている。また、実装基板 23の上に白色の拡散反射部材 27を貼り合わせて配置し、 L EDからの出射光や、拡散板 32 (図 5参照)などからの反射光線を拡散板 32側へ反 射させている。 As shown in FIG. 6, a red LED 22R, a green LED 22G, and a blue LED 22B are enclosed in one package, as shown in FIG. The top surface of the LED package 22 is transparent Sealed with a grease case 29. The transparent resin case 29 may have a lens effect in order to give directivity to the emitted light. A predetermined number of LED packages 22 are arranged on the mounting board 23, and the mounting boards 23 are spread on the bottom surface of the case 21. In addition, a white diffuse reflection member 27 is disposed on the mounting substrate 23 so that the light emitted from the LED and the light reflected from the diffuser 32 (see Fig. 5) are reflected toward the diffuser 32. I am letting.
[0034] なお、図 4では、ケース 21の底面に、 LEDパッケージ 22を搭載した複数の実装基 板 23が敷き詰められた構成を一具体例として例示した力 実装基板上の LEDパッケ 一ジの数や、ケース内に配置される実装基板の数は、図 4の例に限定されない。また 、 LEDパッケージ 22や各色 LEDの形状や、 LEDパッケージ 22内における各色 LE Dの配置などは、図 6の例に限定されない。  [0034] In FIG. 4, a force exemplifying a configuration in which a plurality of mounting boards 23 on which the LED packages 22 are mounted is laid on the bottom surface of the case 21. The number of LED packages on the mounting board In addition, the number of mounting boards arranged in the case is not limited to the example in FIG. Further, the shape of the LED package 22 and each color LED, the arrangement of each color LED in the LED package 22, and the like are not limited to the example of FIG.
[0035] 図 7は、実装基板 23における配線の様子を示す配線図である。図 6に示すように、 実装基板 23における LEDパッケージ 22に対して、赤色 LED22Rへ電流を供給する 酉己線 24aと、緑色 LED22Gへ電流を供給する配線 24bと、青色 LED22Bへ電流を 供給する配線 24cとが配設されている。これにより、 LEDパッケージ 22の赤色 LED2 2R、緑色 LED22G、および青色 LED22Bをそれぞれ独立して制御することができ る。なお、配線 24a、配線 24b、および配線 24cは、同一の実装基板 23に実装された LEDパッケージ 22内の LED22R, 22G, 22Bの各々について直列または並列に接 続してある。これらの配線 24a、酉己線 24b、および酉己線 24cにより、 LED駆動回路基 板 28から LED22へ電力が供給される。  FIG. 7 is a wiring diagram showing a state of wiring on the mounting board 23. As shown in Figure 6, the LED package 22 on the mounting board 23 supplies current to the red LED 22R. Wiring line 24a, wiring to supply current to the green LED 22G 24b, and wiring to supply current to the blue LED 22B 24c is arranged. As a result, the red LED 22R, green LED 22G, and blue LED 22B of the LED package 22 can be controlled independently. Note that the wiring 24a, the wiring 24b, and the wiring 24c are connected in series or in parallel with each of the LEDs 22R, 22G, and 22B in the LED package 22 mounted on the same mounting board 23. Electric power is supplied from the LED drive circuit board 28 to the LED 22 through the wiring 24a, the selfish line 24b, and the selfish line 24c.
[0036] ケース 21の内面は、白色反射面となっている。受光素子 1は、ケース 21の開口の 上端近傍に、受光面がケース 21の底面中央付近に対向するように取り付けられてい る。また、図 5に示すように、ケース 21の開口部と液晶パネル 31との間には、拡散板 32、拡散シート 33, 35、プリズムシート 34等の光学シートが積層されている。これら の光学シートにより、 LEDパッケージ 22の各色 LEDから出射した赤色光、緑色光、 および青色光が混合され、白色の面状光として液晶パネル 31へ照射される。  [0036] The inner surface of the case 21 is a white reflecting surface. The light receiving element 1 is attached in the vicinity of the upper end of the opening of the case 21 so that the light receiving surface faces the vicinity of the center of the bottom surface of the case 21. In addition, as shown in FIG. 5, optical sheets such as a diffusion plate 32, diffusion sheets 33 and 35, and a prism sheet 34 are laminated between the opening of the case 21 and the liquid crystal panel 31. By these optical sheets, red light, green light, and blue light emitted from the LEDs of each color of the LED package 22 are mixed and irradiated to the liquid crystal panel 31 as white planar light.
[0037] 図 8は、バックライト装置 20において、受光素子 1の出力に基づいて、赤色 LED22 R、緑色 LED22G、および青色 LED22Bに対してフィードバック制御を行う回路の 概略構成を示すブロック図である。図 8に示すように、バックライト装置 20は、受光素 子 1から検出結果を入力し、その検出結果に基づいて、赤色 LED22R、緑色 LED2 2G、および青色 LED22Bへの供給電流を制御することにより、各色光の光量を調整 する調光回路 25を備えて!/、る。 FIG. 8 shows a circuit for performing feedback control on the red LED 22 R, the green LED 22 G, and the blue LED 22 B based on the output of the light receiving element 1 in the backlight device 20. It is a block diagram which shows schematic structure. As shown in FIG. 8, the backlight device 20 inputs the detection result from the light receiving element 1, and controls the supply current to the red LED 22R, the green LED 22G, and the blue LED 22B based on the detection result. It is equipped with a light control circuit 25 that adjusts the amount of light of each color!
[0038] 受光素子 1からは、深紅色フィルタ 10Rが設けられた領域の受光量を表す信号 SR と、緑色フィルタ 10Gが設けられた領域の受光量を表す信号 SGと、青色フィルタ 10 Bが設けられた領域の受光量を表す信号 SBと、視感度補正フィルタ 10Wが設けられ た領域の受光量を表す信号 SWとが、調光回路 25へ出力される。  [0038] From the light receiving element 1, a signal SR indicating the amount of received light in the region where the deep red filter 10R is provided, a signal SG indicating the amount of received light in the region where the green filter 10G is provided, and a blue filter 10B are provided. A signal SB indicating the amount of light received in the region thus obtained and a signal SW indicating the amount of light received in the region where the visibility correction filter 10W is provided are output to the dimming circuit 25.
[0039] 調光回路 25は、赤色光変動解析部 251、緑色光変動解析部 252、青色光変動解 析部 253、赤色 LED制御部 254、緑色 LED制御部 255、および青色 LED制御部 2 56を備えている。赤色光変動解析部 251は、信号 SR、信号 SB、信号 SWを入力し、 これらの信号に基づレ、て、赤色 LED22Rの光量変化と波長シフトの有無を解析する 。緑色光変動解析部 252は、信号 SGに基づいて、緑色 LED22Gの光量変化を解 析する。青色光変動解析部 253は、信号 SBに基づいて、青色 LED22Bの光量変化 を解析する。  [0039] The light control circuit 25 includes a red light fluctuation analysis unit 251, a green light fluctuation analysis unit 252, a blue light fluctuation analysis unit 253, a red LED control unit 254, a green LED control unit 255, and a blue LED control unit 2 56. It has. The red light fluctuation analysis unit 251 inputs the signal SR, the signal SB, and the signal SW, and analyzes the light quantity change of the red LED 22R and the presence / absence of the wavelength shift based on these signals. The green light fluctuation analysis unit 252 analyzes the change in the amount of light of the green LED 22G based on the signal SG. The blue light fluctuation analysis unit 253 analyzes the change in the light amount of the blue LED 22B based on the signal SB.
[0040] 赤色光変動解析部 251は、赤色 LED22Rの光量を、  [0040] The red light fluctuation analysis unit 251 calculates the light amount of the red LED 22R.
SR' =信号 SWの強度 X信号 SGの強度 + 13 X信号 SBの強度)  SR '= signal SW strength X signal SG strength + 13 X signal SB strength)
(ただし、 α , /3は信号強度が受光領域ごとに異なるのを補正するために予 め定めた補正定数)  (However, α and / 3 are correction constants that have been set in advance to correct the difference in signal intensity for each light receiving area)
力、ら求める。赤色 LED22Rの光量が増加したことを検知した場合は、赤色 LED制御 部 254へ、赤色 LED22Rへの供給電流を減少させるよう指示を送る。  Seek strength. When it is detected that the light intensity of the red LED 22R has increased, an instruction is sent to the red LED control unit 254 to decrease the supply current to the red LED 22R.
[0041] また、赤色光変動解析部 251は、赤色 LED22Rの光量が減少したことを検知した 場合、信号 SRと信号 SWとに基づいて、赤色 LED22Rの光量減少が、赤色 LED22 Rの発光波長シフトによるもの力、、赤色 LED22Rの絶対光量の低下によるものかを判 断する。 [0041] Further, when the red light fluctuation analysis unit 251 detects that the light amount of the red LED 22R is decreased, the light amount decrease of the red LED 22R is caused by the emission wavelength shift of the red LED 22R based on the signal SR and the signal SW. It is determined whether it is caused by the decrease in absolute light intensity of the red LED22R.
[0042] すなわち、赤色光変動解析部 251は、前回の受光素子 1からの信号 SRおよび上 記の SR'の算出結果を記憶しておくメモリ(図示せず)を備えており、信号 SRの強度 が前回よりも増加し、かつ、上記の SR'の算出結果が前回よりも減少した場合は、赤 色 LED22Rの発光波長シフトが生じたものと判断する。一方、信号 SRの強度が前回 と同程度以下の強度となっており、かつ、上記の SR'の算出結果の強度が前回よりも 減少した場合は、赤色光変動解析部 251は、赤色 LED22Rの絶対光量の低下が生 じたものと判断する。なお、前記のメモリの内容は、受光素子 1から信号 SRおよび信 号 SW等が調光回路 25へ送られ、フィードバック制御が行われる度に、新しい値に更 新される。 That is, the red light fluctuation analysis unit 251 includes a memory (not shown) that stores the previous calculation result of the signal SR from the light receiving element 1 and the above SR ′. If the intensity increases from the previous time and the above SR 'calculation result decreases from the previous time, the red Color Judge that the emission wavelength shift of LED22R has occurred. On the other hand, when the intensity of the signal SR is less than or equal to the previous level, and the intensity of the calculated SR ′ is lower than the previous level, the red light fluctuation analysis unit 251 Judge that the absolute light intensity has decreased. The contents of the memory are updated to new values each time the signal SR, signal SW, etc. are sent from the light receiving element 1 to the dimming circuit 25 and feedback control is performed.
[0043] 赤色 LED22Rの光量が減少し、かつ、赤色 LED22Rの発光波長シフトが生じてい ると判断した場合、赤色光変動解析部 251は、赤色 LED22Rへの供給電流ではなく 、緑色 LED22Gへの供給電流を増加させるよう、緑色 LED制御部 255へ指示を送 る。すなわち、この場合、赤色 LED22Rの発光波長が長波長側へシフトして赤色 LE D22Rが純度の高い赤を発色する結果、赤色 LED22R、緑色 LED22G、および青 色 LED22Bからの光線を混色した結果得られる白の色み力 本来あるべき白色度よ りも、赤黒い方向へシフトすることになる。これは、混色の結果得られる白の色座標は 、赤色 LED22R、緑色 LED22G、および青色 LED22Bが出す色の色度座標上で のベクトル和で表されるためである。よって、本来あるべき白色度を得るためには、緑 色 LED22Gおよび青色 LED22Bの発光量を増して、白色のシフト分を補正する必 要がある。この際必要になる光量増は、青 X倍に対し、緑 3x倍にする必要があること から、実質は、緑色 LED22Gの発光量のみに補正を加えればよい。  [0043] When it is determined that the light intensity of the red LED 22R has decreased and the emission wavelength shift of the red LED 22R has occurred, the red light fluctuation analysis unit 251 supplies the green LED 22G, not the supply current to the red LED 22R. Sends an instruction to the green LED control 255 to increase the current. In other words, in this case, the emission wavelength of the red LED 22R shifts to the longer wavelength side, and the red LED 22R develops high-purity red, resulting in mixing the light rays from the red LED 22R, green LED 22G, and blue LED 22B White coloring power The whiteness shifts toward red and black rather than the original whiteness. This is because the color coordinates of white obtained as a result of color mixing are expressed as a vector sum on the chromaticity coordinates of the colors emitted by the red LED 22R, the green LED 22G, and the blue LED 22B. Therefore, in order to obtain the desired whiteness, it is necessary to correct the amount of white shift by increasing the light emission amount of the green LED 22G and the blue LED 22B. Since the increase in the amount of light required at this time needs to be 3x green compared to X times blue, it is actually only necessary to add correction to the amount of light emitted by the green LED 22G.
[0044] 一方、赤色 LED22Rの光量が減少し、かつ、赤色 LED22Rの絶対光量が低下し ていると判断した場合、赤色光変動解析部 251は、赤色 LED22Rへの供給電流を 増加させるよう、赤色 LED制御部 254へ指示を送る。  [0044] On the other hand, when it is determined that the light intensity of the red LED 22R has decreased and the absolute light intensity of the red LED 22R has decreased, the red light fluctuation analysis unit 251 increases the supply current to the red LED 22R so as to increase the supply current. Sends instructions to LED control unit 254.
[0045] ここで、信号 SRと信号 SWとに基づいて、赤色 LED22Rの光量減少が、赤色 LED 22Rの発光波長シフトによるもの力、、赤色 LED22Rの絶対光量の低下によるものか を判断できる理由を、図 9を参照しながら説明する。受光素子 1における領域ごとの 受光感度は、図 9 (a)に示すとおりである。図 9 (a)において、青色フィルタ 10Bが設 けられた領域の受光感度曲線は siであり、緑色フィルタ 10Gが設けられた領域の受 光感度曲線は s2であり、深紅色フィルタ 10Rが設けられた領域の受光感度曲線は s3 であり、視感度補正フィルタ 10Wが設けられた領域の受光感度曲線は s4である。 [0046] 赤色 LED22R力 S、当初、図 9 (b)の特性曲線 rに示すような特性で発光していたも のとする。温度変化(温度上昇)によって赤色 LED22Rの発光特性が、特性曲線 rl に示すように長波長側にシフトした場合、図 9 (a)と図 9 (b)とを対比することから分か るように、深紅色フィルタ 10Rが設けられた領域の感度ピークに合致する波長の光量 が増加するので、信号 SRの強度が増加傾向となる。また、赤色 LED22Rの発光特 性が長波長側にシフトすることにより、視感度補正フィルタ 10Wが設けられた領域の 感度ピークに合致する波長の光量は減少するので、信号 SWの強度が減少傾向とな [0045] Here, based on the signal SR and the signal SW, the reason why it is possible to determine whether the decrease in the light amount of the red LED 22R is due to the emission wavelength shift of the red LED 22R or the decrease in the absolute light amount of the red LED 22R. This will be described with reference to FIG. The light receiving sensitivity for each region in the light receiving element 1 is as shown in FIG. 9 (a). In FIG. 9 (a), the photosensitivity curve in the region where the blue filter 10B is provided is si, the photosensitivity curve in the region where the green filter 10G is provided is s2, and the deep red filter 10R is provided. The light reception sensitivity curve in the region where the light is received is s3, and the light reception sensitivity curve in the region where the visibility correction filter 10W is provided is s4. [0046] It is assumed that the red LED22R force S was originally emitting light with the characteristics shown in the characteristic curve r in FIG. 9 (b). If the light emission characteristics of the red LED22R shift to the long wavelength side as shown in the characteristic curve rl due to temperature change (temperature rise), it can be seen from the comparison between Fig. 9 (a) and Fig. 9 (b). In addition, the intensity of the signal SR tends to increase because the amount of light having a wavelength that matches the sensitivity peak in the region where the deep red filter 10R is provided increases. In addition, the light emission characteristic of the red LED 22R shifts to the longer wavelength side, so the amount of light with a wavelength that matches the sensitivity peak in the region where the visibility correction filter 10W is provided decreases, so the intensity of the signal SW tends to decrease. Na
[0047] 一方、図 9 (b)の特性曲線 r2に示すように、赤色 LED22Rの絶対光量の低下が生 じた場合は、図 9 (a)と図 9 (b)とを対比すれば分かるように、深紅色フィルタ 10Rが設 けられた領域の感度ピークに合致する波長の光量が減少するので、信号 SRの強度 が減少傾向となる。また、視感度補正フィルタ 10Wが設けられた領域の感度ピークに 合致する波長の光量は増加するので、信号 SWの強度が増加傾向となる。 [0047] On the other hand, as shown by the characteristic curve r2 in FIG. 9 (b), when the absolute light amount of the red LED 22R is reduced, it can be understood by comparing FIG. 9 (a) and FIG. 9 (b). As described above, the intensity of the signal SR tends to decrease because the amount of light having a wavelength matching the sensitivity peak in the region where the crimson filter 10R is provided decreases. In addition, since the amount of light having a wavelength that matches the sensitivity peak in the region where the visibility correction filter 10W is provided increases, the intensity of the signal SW tends to increase.
[0048] 緑色光変動解析部 252は、緑色 LED22Gの光量を信号 SGから求め、緑色 LED2 2Gの光量が増加した場合は、緑色 LED制御部 255へ、緑色 LED22Gへの供給電 流を増加させるよう指示を送る。また、緑色光変動解析部 252は、緑色 LED22Gの 光量が減少した場合は、緑色 LED制御部 255へ、緑色 LED22Gへの供給電流を 減少させるよう指示を送る。  [0048] The green light fluctuation analysis unit 252 obtains the light amount of the green LED 22G from the signal SG, and when the light amount of the green LED 22G increases, the green LED control unit 255 is caused to increase the supply current to the green LED 22G. Send instructions. Further, when the light amount of the green LED 22G decreases, the green light fluctuation analysis unit 252 sends an instruction to the green LED control unit 255 to decrease the supply current to the green LED 22G.
[0049] 青色光変動解析部 253は、青色 LED22Bの光量を信号 SBから求め、青色 LED2 2Bの光量が増加した場合は、青色 LED制御部 256へ、青色 LED22Bへの供給電 流を増加させるよう指示を送る。また、青色光変動解析部 253は、青色 LED22Bの 光量が減少した場合は、青色 LED制御部 256へ、青色 LED22Bへの供給電流を 減少させるよう指示を送る。  [0049] The blue light fluctuation analysis unit 253 obtains the light amount of the blue LED 22B from the signal SB, and when the light amount of the blue LED 22B increases, the blue LED control unit 256 increases the supply current to the blue LED 22B. Send instructions. Further, when the light amount of the blue LED 22B decreases, the blue light fluctuation analysis unit 253 sends an instruction to the blue LED control unit 256 to decrease the supply current to the blue LED 22B.
[0050] 以上のとおり、本実施形態にかかるバックライト装置 20の調光回路 25は、受光素子  [0050] As described above, the light control circuit 25 of the backlight device 20 according to the present embodiment includes the light receiving element.
1からの出力信号 SR, SWに基づいて、受光素子 1における赤色光の受光量が低下 した場合、赤色 LED22Rの発光波長シフトと絶対光量の低下との!/、ずれが生じて!/ヽ る力、を検知することができる。そして、赤色 LED22Rの発光波長シフトが生じている 場合は、赤色 LED22Rではなく緑色 LED22Gへの供給電流を増加させることにより ホワイトバランスを調整し、赤色 LED22Rの絶対光量低下が生じている場合は、赤色 LED22Rへの供給電流を増加させることによりホワイトバランスを調整する。このよう に、バックライト装置 20によれば、例えば分光特性や波長変化を測定する高機能な 受光素子を用いることなぐ色バランスを適切に調整することが可能となる。 When the amount of red light received by the light receiving element 1 decreases based on the output signals SR and SW from 1, the red LED 22R shifts the emission wavelength and the absolute light amount! Force can be detected. If the emission wavelength shift of the red LED 22R occurs, increase the supply current to the green LED 22G instead of the red LED 22R. When the white light balance is adjusted and the absolute light intensity of the red LED 22R is decreasing, the white balance is adjusted by increasing the supply current to the red LED 22R. Thus, according to the backlight device 20, it is possible to appropriately adjust the color balance without using, for example, a high-performance light receiving element that measures spectral characteristics and wavelength changes.
[0051] 以上、本発明の具体的な実施形態について説明したが、上記の具体例は、あくま でも本発明の一実施形態であり、本発明の技術的範囲を限定するものではなぐ種 々の変更が可能である。  [0051] While specific embodiments of the present invention have been described above, the above specific examples are merely embodiments of the present invention, and are not intended to limit the technical scope of the present invention. It can be changed.
[0052] 例えば、上記の実施形態では、赤色、緑色、青色の三色の LEDへの供給電流をフ イードバック制御する構成例を示した力 S、必ずしも三色すベての LEDをフィードバック 制御しなくても良ぐ色バランスに大きな影響を与える色の LEDのみを制御するよう にしても良い。  [0052] For example, in the above-described embodiment, the force S shown in the configuration example in which the feedback current is supplied to the LEDs of three colors of red, green, and blue. It is also possible to control only the LEDs with colors that have a significant effect on the color balance that is not necessary.
[0053] また、上記の実施形態では、深紅色フィルタ、緑色フィルタ、青色フィルタに加えて 、視感度補正フィルタを受光面に備えた受光素子を例示したが、視感度補正フィル タは必須ではない。たとえば上記の視感度補正フィルタ 10Wの代わりに近赤外線( 概ね 850nm以上の波長域)を吸収するフィルタを用いても、実用上問題はない。ここ で必要となることは、受光素子 1のシリコンフォトダイオード基板 2が、近赤外線によつ て起電力を生じて、可視光強度に上乗せした信号を誤って出力することを防止する ことである。  In the above embodiment, a light receiving element provided with a light sensitivity correction filter on the light receiving surface in addition to the crimson color filter, the green color filter, and the blue color filter is exemplified, but the visibility correction filter is not essential. . For example, there is no practical problem even if a filter that absorbs near infrared rays (approximately 850 nm or more) is used in place of the above-described visibility correction filter 10W. What is needed here is to prevent the silicon photodiode substrate 2 of the light receiving element 1 from generating an electromotive force due to near infrared rays and erroneously outputting a signal added to the visible light intensity. .
[0054] また、上記の実施形態では、 LEDパッケージ 22に赤色 LED、緑色 LED、青色 LE Dの合計 3個の LEDが封入された構成を例示した。しかし、本発明を適用可能な LE Dの色は RGBの三原色に限定されない。また、各色 LEDが同数ずつ設けられた構 成に限定されず、各色 LEDの発光特性や、照明光として所望される光の色調によつ ては、各色 LEDの個数の比率が均等でなくても良い。  In the above embodiment, a configuration in which a total of three LEDs of a red LED, a green LED, and a blue LED are enclosed in the LED package 22 is exemplified. However, the LED colors to which the present invention can be applied are not limited to the three primary colors RGB. In addition, the configuration is not limited to the configuration in which the same number of LEDs of each color are provided, and the ratio of the number of LEDs of each color is not uniform depending on the light emission characteristics of each color LED and the color tone of light desired as illumination light. Also good.
産業上の利用可能性  Industrial applicability
[0055] 本発明は、簡単な構成で、受けた光の波長変化を検出できる受光素子と、この受 光素子を用いることにより、色バランスを適切に調整可能な照明装置およびその照明 装置を用いた表示装置として、産業上利用可能である。 [0055] The present invention uses a light receiving element that can detect a change in wavelength of received light with a simple configuration, a lighting device that can appropriately adjust the color balance by using the light receiving device, and the lighting device. The display device can be used industrially.

Claims

請求の範囲 The scope of the claims
[1] 互いに異なる複数の光帯域での光量を検出する受光素子であって、  [1] A light receiving element that detects light amounts in a plurality of different optical bands,
前記複数の光帯域のそれぞれに応じた感度を有する複数の狭帯域受光領域に加 えて、  In addition to a plurality of narrow-band light receiving areas having a sensitivity corresponding to each of the plurality of light bands,
前記複数の光帯域のうちの少なくとも 2つの光帯域に及ぶ感度帯域を有するととも に、各々の光帯域の光に対する感度の比が、前記狭帯域受光領域の感度の比と異 なる広帯域受光領域をさらに備えたことを特徴とする受光素子。  A broadband light-receiving region having a sensitivity band that covers at least two of the plurality of light bands, and having a sensitivity ratio to light in each light band different from a sensitivity ratio of the narrow-band light receiving region A light receiving element characterized by further comprising:
[2] 前記複数の狭帯域受光領域が、 400nm〜450nmの光帯域、 480nm〜550nm の光帯域、および 650nm〜700nmの光帯域に応じた感度をそれぞれ有する 3つの 受光領域である、請求項 1に記載の受光素子。 [2] The plurality of narrow-band light receiving regions are three light receiving regions each having a sensitivity corresponding to an optical band of 400 nm to 450 nm, an optical band of 480 nm to 550 nm, and an optical band of 650 nm to 700 nm. The light receiving element described in 1.
[3] 請求項 1または 2に記載の受光素子と、 [3] The light receiving element according to claim 1 or 2,
発光帯域が互いに異なる複数の光源と、  A plurality of light sources having different emission bands,
前記受光素子の狭帯域受光領域の少なくとも一つで受光される光の強度信号と、 前記広帯域受光領域で受光される光の強度信号との変化に基づいて、前記複数の 光源の少なくとも一つの発光強度を制御する調光回路とを備えたことを特徴とする照 明装置。  At least one light emission of the plurality of light sources based on a change between an intensity signal of light received by at least one of the narrow-band light receiving regions of the light receiving element and an intensity signal of light received by the broadband light receiving region. An illumination device comprising a dimming circuit for controlling intensity.
[4] 前記調光回路が、前記広帯域受光領域で受光される光の強度信号から、前記狭 帯域受光領域の少なくとも一つで受光される光の強度信号に特定の係数を乗じたも のを減算して得られる差分強度信号に基づき、前記複数の光源の少なくとも一つの 発光強度を制御する、請求項 3に記載の照明装置。  [4] The light control circuit is obtained by multiplying a light intensity signal received in at least one of the narrow-band light receiving areas by a specific coefficient from a light intensity signal received in the wide-band light receiving area. The lighting device according to claim 3, wherein the light emission intensity of at least one of the plurality of light sources is controlled based on a difference intensity signal obtained by subtraction.
[5] 前記調光回路が、前記複数の狭帯域受光領域のうち、最も長波長側の発光帯域 に応じた感度を有する狭帯域受光領域で受光される光の強度信号と、前記広帯域 受光領域で受光される光の強度信号との変化に基づいて、前記複数の光源のうち、 少なくとも、最も長波長側の発光帯域で発光する光源と、長波長側から二番目の発 光帯域で発光する光源との少なくとも二つの光源の発光強度を制御する、請求項 3 または 4に記載の照明装置。  [5] The light control circuit includes an intensity signal of light received in a narrowband light receiving region having sensitivity according to a light emission band on the longest wavelength side among the plurality of narrowband light receiving regions, and the wideband light receiving region. Based on the change in the intensity signal of the light received at the light source, at least the light source that emits light in the emission band on the longest wavelength side and the light emission in the second emission band from the long wavelength side among the plurality of light sources The lighting device according to claim 3 or 4, which controls the light emission intensity of at least two light sources with the light source.
[6] 前記調光回路が、前記複数の狭帯域受光領域のうち、最も長波長側の発光帯域 に応じた感度を有する狭帯域受光領域で受光される光の強度が増加し、かつ、前記 広帯域受光領域で受光される光の強度が減少した場合、前記複数の光源のうち、長 波長側から二番目の発光帯域で発光する光源の発光強度が上昇するよう制御する、 請求項 5に記載の照明装置。 [6] The light control circuit increases an intensity of light received in a narrow band light receiving region having sensitivity according to a light emission band on a longest wavelength side among the plurality of narrow band light receiving regions, and 6. When the intensity of light received in a broadband light receiving region decreases, control is performed so that the emission intensity of a light source that emits light in a second emission band from the long wavelength side among the plurality of light sources is increased. Lighting equipment.
[7] 前記光源が発光ダイオードである、請求項 3〜6のいずれか一項に記載の照明装 置。 7. The lighting device according to any one of claims 3 to 6, wherein the light source is a light emitting diode.
[8] 請求項 3〜7のいずれか一項に記載の照明装置と、  [8] The lighting device according to any one of claims 3 to 7,
前記照明装置によって照射される透過型または半透過型の表示素子とを備えたこ とを特徴とする表示装置。  A display device comprising: a transmissive or transflective display element irradiated by the illumination device.
[9] 前記表示素子が液晶表示素子である、請求項 8に記載の表示装置。 9. The display device according to claim 8, wherein the display element is a liquid crystal display element.
PCT/JP2007/067269 2006-09-05 2007-09-05 Light receiving element, and illumination device and display device using the same WO2008029831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006240663 2006-09-05
JP2006-240663 2006-09-05

Publications (1)

Publication Number Publication Date
WO2008029831A1 true WO2008029831A1 (en) 2008-03-13

Family

ID=39157257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067269 WO2008029831A1 (en) 2006-09-05 2007-09-05 Light receiving element, and illumination device and display device using the same

Country Status (1)

Country Link
WO (1) WO2008029831A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580384A (en) * 1978-12-11 1980-06-17 Fujitsu Ltd Oprical communication device
JPH01251681A (en) * 1988-03-25 1989-10-06 Topcon Corp Semiconductor laser oscillation frequency/oscillation output stabilizing device
JPH04320385A (en) * 1991-04-19 1992-11-11 Fujitsu Ltd Semiconductor laser temperature control system
JPH09186654A (en) * 1995-12-28 1997-07-15 Nec Corp Light transmission circuit
WO2006006537A1 (en) * 2004-07-12 2006-01-19 Sony Corporation Drive device for back light unit and drive method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580384A (en) * 1978-12-11 1980-06-17 Fujitsu Ltd Oprical communication device
JPH01251681A (en) * 1988-03-25 1989-10-06 Topcon Corp Semiconductor laser oscillation frequency/oscillation output stabilizing device
JPH04320385A (en) * 1991-04-19 1992-11-11 Fujitsu Ltd Semiconductor laser temperature control system
JPH09186654A (en) * 1995-12-28 1997-07-15 Nec Corp Light transmission circuit
WO2006006537A1 (en) * 2004-07-12 2006-01-19 Sony Corporation Drive device for back light unit and drive method therefor

Similar Documents

Publication Publication Date Title
US7388665B2 (en) Multicolour chromaticity sensor
US7474294B2 (en) Use of a plurality of light sensors to regulate a direct-firing backlight for a display
KR100781479B1 (en) Surface illuminator and liquid crystal display having the same
US7709774B2 (en) Color lighting device
EP2087772B1 (en) Light source comprising light-emitting clusters
JP5401689B2 (en) Illumination light color correction method, light source module employing the color correction method, and illumination device using the light source module
CN101453812B (en) Light source assembly, liquid crystal display having the same, and method of driving light source assembly
US20100060172A1 (en) Hollow Planar Illuminating Apparatus
CN1917731A (en) Calibrated led light module
US20140055038A1 (en) Device and Method for Generating Light of a Predetermined Spectrum with at Least Four Differently Colored Light Sources
KR20040053750A (en) Light source unit and display device
JP5213707B2 (en) Color point control system
JP2004021147A (en) Planar light source device, and liquid crystal display using the same
US7576309B2 (en) Illuminating device, electro-optical device, and electronic apparatus
EP1919262B1 (en) Light emitting module and display device having the same
JP2006310307A (en) Light source of lcd backlight display
US20100321418A1 (en) Illuminating device and display device
US20120139975A1 (en) Display Device
US20100117941A1 (en) Color-controlled backlit display device
US10607516B2 (en) Display device and light source device having various types of light-emitting components
WO2008029831A1 (en) Light receiving element, and illumination device and display device using the same
US20070075217A1 (en) Backlight module
TW201024595A (en) Light source module and application thereof
US11272599B1 (en) Calibration procedure for a light-emitting diode light source
JP7043277B2 (en) Light source module and backlight device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP