WO2008029775A1 - Color conversion substrate - Google Patents

Color conversion substrate Download PDF

Info

Publication number
WO2008029775A1
WO2008029775A1 PCT/JP2007/067158 JP2007067158W WO2008029775A1 WO 2008029775 A1 WO2008029775 A1 WO 2008029775A1 JP 2007067158 W JP2007067158 W JP 2007067158W WO 2008029775 A1 WO2008029775 A1 WO 2008029775A1
Authority
WO
WIPO (PCT)
Prior art keywords
color conversion
color
light
medium
color filter
Prior art date
Application number
PCT/JP2007/067158
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sekiya
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/557,282 external-priority patent/US20080057342A1/en
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2008533151A priority Critical patent/JPWO2008029775A1/en
Publication of WO2008029775A1 publication Critical patent/WO2008029775A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a color conversion substrate.
  • the present invention relates to a color conversion substrate that can form an organic electoluminescence color light emitting device in combination with an organic electroluminescence device.
  • the present invention relates to a color conversion substrate in which a color conversion medium containing nanocrystal luminescent fine particles and a color filter having a transmission band width of 70 nm or more with a transmittance of 0.5 or more are combined.
  • a color conversion medium that converts the wavelength of light emitted from a light source using a fluorescent material has been applied to various fields including the electronic display field.
  • an organic electroluminescent material that emits blue light or blue-green light hereinafter, the electroluminescent material may be referred to as EL
  • EL organic electroluminescent material that emits blue light or blue-green light
  • An EL element in which a fluorescent material part that emits photofluorescence is disposed is disclosed (for example, see Patent Document 1).
  • a blue light source is used and color conversion is performed with a color conversion medium to obtain three primary colors. That is, in the color conversion medium, blue light is irradiated to excite the fluorescent dye to generate longer wavelength green light or red light.
  • organic fluorescent dyes and organic fluorescent pigments have been commonly used as fluorescent materials for color conversion media.
  • a red color comprising a rhodamine fluorescent pigment and a fluorescent pigment having absorption in the blue region and inducing energy transfer or reabsorption to the rhodamine fluorescent pigment dispersed in a light-transmitting medium.
  • a conversion medium is disclosed (see, for example, Patent Document 2).
  • Patent Document 3 As a method for improving the color purity of an EL element using a color conversion medium and improving the contrast ratio in the presence of external light, a technique using a color conversion medium in combination with a color filter has been disclosed ( Patent Document 3).
  • the peak wavelength of transmittance is in the range of 490 to 530 nm. It has been proposed to use a phthalocyanine dye as the element! /, (Patent Document 4).
  • Patent Document 15 described above is a technique using an organic fluorescent dye or pigment as a fluorescence conversion material.
  • Patent Document 6 proposes a full-color technology for organic EL elements using inorganic nanocrystals.
  • a film in which CdS, CdSe, and CdTe are dispersed in a light-transmitting resin as an inorganic nanocrystal is used as a color conversion medium, and combined with an organic EL device that emits blue monochromatic light with a peak wavelength of 450 nm. Yes.
  • the conversion colors such as red and green are controlled by controlling the particle size of inorganic nanocrystals.
  • Patent Document 7 discloses a color light emitting device that combines an organic EL light source unit and a color conversion medium in which inorganic nanocrystals are dispersed to achieve high fluorescence conversion efficiency and high durability. Considering the high refractive index of inorganic nanocrystals, the color conversion medium is optimally designed to maximize the conversion efficiency.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-152897
  • Patent Document 2 JP-A-8-286603
  • Patent Document 3 Patent No. 2838064
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-3786
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001_52866
  • Patent Document 6 U.S. Pat.No. 6,608,439
  • Patent Document 7 WO2005 / 097939 Nonfret
  • the present invention has been made in view of the above problems, and provides a color conversion substrate using inorganic nanocrystals and having an improved contrast ratio in the presence of external light. With the goal.
  • the following color conversion substrate is provided.
  • a color conversion medium comprising at least inorganic nanocrystal light-emitting fine particles, and a color filter having a transmission band width of 70 nm or more with a transmittance of 0.5 or more on one side of the color conversion medium.
  • the color conversion substrate in which the absorbance of the color conversion medium is 0.1 or more and 2 or less at the wavelength of the short wavelength side transmission band where the transmittance of the color filter is 0.5
  • a color color conversion board wherein the at least one color pixel includes the color conversion board according to any one of! [[00001111]]
  • the conversion efficiency efficiency is very high and the high contrast contrast is achieved in the presence of external light.
  • the color and color conversion substrate board that can be produced in actual realization can be provided.
  • the color-to-color conversion substrate board here is suitable for the organic EELL Kakarara light emitting / emitting device, and it is used for the light emitting / emitting device using this. Then, it becomes possible to increase power saving and power saving. .
  • [[00001122]] [[FIG. 11]] is a schematic, schematic cross-sectional view of a color-color conversion substrate board according to an embodiment 11 of the present invention. There is. .
  • FIG. 44 is a diagram showing a transmission and overband region of a Kakaralar filter used in calculation. .
  • FIG. 7 is a schematic cross-sectional view of a color color conversion substrate according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a color conversion substrate according to Embodiment 1 of the present invention.
  • the color conversion substrate 1 has a structure in which a color filter 12 and a color conversion medium 13 are laminated on a base material 11 in this order.
  • the base material 11 supports the color filter 12 and the like, and those used in this field such as a transparent glass substrate and resin substrate can be used without any problem.
  • the color filter 12 has a function of adjusting the emission color to a desired color.
  • the color conversion medium emits fluorescence by light incident from the outside of the light emitting device, such as sunlight or indoor illumination light, or the incident light is reflected by the reflective electrode and re-emitted, so that the contrast ratio, The ratio of the brightness when the light-emitting device is in the light-emitting state and in the non-light-emitting state is prevented from decreasing. Stop.
  • the color conversion medium 13 is a film in which luminous particles 13b are dispersed in a transparent medium 13a, which absorbs excitation light emitted from a light source (not shown) and emits light having a spectrum different from that of the light source (fluorescence). To emit.
  • the color conversion medium contains nanocrystal luminescent fine particles, and the width of the transmission band where the transmittance of the power filter is 0.5 or more is 70 nm or more.
  • the transmission band means a wavelength range where the light transmittance of the color filter is 0.5 (50%) or more, and the width of the transmission band means that the transmittance of the color filter is 0.5. It means the width between two wavelengths (short wavelength end and long wavelength end).
  • the transmission band of the color filter can be obtained by measuring the transmittance of the color filter using an ultraviolet-visible spectrophotometer and measuring the wavelength region where the transmittance is 0.5 or more.
  • a color filter having a narrow transmission band is used to cut outside light and improve the contrast ratio.
  • a transmission band having a width of about 60 to 70 nm is used.
  • the present inventor has found that a unique performance can be exhibited by combining a color filter having a wide transmission band with a color conversion medium using inorganic nanocrystals.
  • Fig. 2 shows the emission spectrum of a fluorescent lamp that is external light, the absorbance spectrum of a color conversion medium (green, CdSe / ZnS core-shell semiconductor nanocrystal, emission peak wavelength 525 nm, emission half-value width 30 nm), and The transmission spectrum of a virtual color filter (transmission characteristics are parabolic, and the transmission band width of transmittance 0.5 or more is 70 nm).
  • FIG. 3 shows a reflected light spectrum calculated from these.
  • the reflectance of the organic EL element (light source) combined with the color conversion substrate was set to 0.8.
  • the spectrum of the reflected light was calculated as follows.
  • the external light is filtered by the set color filter and then enters the color conversion medium.
  • This light is propagated toward the light source while being absorbed by the color conversion medium, reflected by the light source, and then passes through the color conversion medium while being absorbed again.
  • the light is transmitted through the color filter.
  • the light absorbed by the color conversion medium re-emits longer wavelengths with a certain fluorescence quantum yield (assuming 0.8).
  • the re-emitted light propagates toward the color filter and the light source unit while being reabsorbed by the color conversion medium.
  • the light directed to the color filter passes through the color filter and is emitted.
  • the light directed to the light source unit reaches the light source unit while being absorbed by the color conversion medium, is reflected, passes through the color conversion medium again, passes through the color filter, and exits. Considering the above process, the reflected light vector was calculated.
  • the reflected light includes a re-emission component of the semiconductor nanocrystal in addition to the reflection component of the external light passing through the color filter.
  • a unique characteristic of using inorganic nanocrystals is that reflected light is strongly suppressed on the short wavelength side of the transmission band of the color filter. This is due to the absorption by the absorption edge of inorganic nanocrystals (absorption maximum near 500 nm), and almost all external light is absorbed.
  • FIG. 4 shows the transmission band of the color filter used in the calculation. In this manner, the performance as a color conversion substrate was calculated by changing the width of the transmission band from 40 to OOnm.
  • the reflected light luminance is the luminance of light emitted by external light (the sum of the reflected light and the re-emission component: arbitrary unit).
  • the conversion efficiency is estimated based on the performance of the color conversion substrate assuming that a bottom emission type organic EL device with a peak emission wavelength of 470 nm is used as the light source.
  • the conversion efficiency is the ratio of the brightness of the outgoing converted light to the brightness of the incident organic EL element light, and its unit is%. That is, this conversion efficiency may be considered to represent the light emission luminance when a constant power is applied. Therefore, the value obtained by dividing the conversion efficiency by the reflected light luminance represents the contrast ratio, so this value was scaled appropriately to obtain the contrast index [arbitrary unit].
  • FIG. 5 is a graph showing the relationship between the reflected light intensity, the contrast index and the conversion efficiency, and the width of the transmission band of the color filter.
  • a transmission band width of 7 Onm or more is preferable, and 70 nm to 120 nm is particularly preferable. Especially 80nm or more and 1 lOnm or less is preferred!
  • the color conversion substrate of the present invention can be preferably used as a green color conversion substrate having an emission peak wavelength in the range of 470 to 550 nm.
  • the absorbance of the color conversion medium is 0.1 or more and 2 or less at the wavelength at the end of the transmission band on the short wavelength side where the transmittance of the color filter is 0.5.
  • the absorbance of the color conversion medium can be obtained as follows using a general ultraviolet-visible spectrophotometer.
  • the transmitted light intensity I at the wavelength of an uncoated substrate on which no color conversion medium is formed is calculated.
  • the substrate on which the color conversion medium is formed is placed, and the transmitted light intensity I is measured.
  • absorption of inorganic nanocrystals is important in the present invention. Therefore, by changing the concentration of inorganic nanocrystals, the reflected light brightness, conversion efficiency, and contrast index for the absorbance at the transmission band edge of the color filter (510 nm for the short wavelength side, transmission band 70 ⁇ m color filter). was calculated.
  • Fig. 6 shows the relationship between reflected light intensity, contrast index, and conversion efficiency, and the absorbance of the color conversion medium. From this, the absorbance of the color conversion medium is 0.;! ⁇ 2, and 0.2 ⁇ 2 is particularly preferable. I know that there is. If it is smaller than 0.1, neither the light emission brightness nor the contrast ratio may be sufficient. If it is greater than 2, it indicates that the concentration of inorganic nanocrystals is very high, and the dispersibility in a transparent medium may be impaired.
  • FIG. 7 is a schematic cross-sectional view of a color color conversion substrate according to Embodiment 2 of the present invention.
  • the color color conversion substrate 2 uses the color conversion substrate of the first embodiment.
  • Color change The replacement substrate 2 includes a blue color filter 21B, a green color filter 21G and a green color conversion medium 22G stack, and a red color filter 21R and a red color conversion medium 22R stack.
  • a blue pixel B is formed by a light source (not shown) and a blue color filter 21B.
  • the stacked body of the light source, the green color filter 21G and the green conversion medium 22G forms a green pixel G
  • the stacked body of the light source, the red color filter 21R and the red conversion medium 22R forms a red pixel R.
  • a black matrix 23 may be formed between the pixels.
  • Full-color display is possible by independently driving the light source corresponding to each pixel by a known method.
  • the color conversion substrate of Embodiment 1 particularly in a green pixel.
  • the configuration of Patent Document 7 described above can be suitably used.
  • FIG. 8 is a schematic cross-sectional view of an organic EL color light emitting device in which a color color conversion substrate and an organic EL element are combined.
  • the organic EL color light emitting device 3 has a configuration in which an organic EL element 30 serving as a light source and a color color conversion substrate 2 are stacked with a transparent medium 40 interposed therebetween.
  • organic EL element for example, those exemplified in Patent Document 7 can be used.
  • the transparent medium an organic material, an organic material, a laminate thereof, and the like can be appropriately used as long as the transparent medium has a transmittance of visible light of 50% or more.
  • inorganic materials inorganic oxide layers, inorganic nitride layers, and inorganic oxynitride layers are preferable.
  • examples include silica, alumina, AION, SiAlON, SiNx (l ⁇ x ⁇ 2), SiOxNy (preferably 0.l ⁇ x ⁇ l, 0.l ⁇ y ⁇ l).
  • silicone gel fluorinated hydrocarbon liquid, acrylic resin, epoxy resin, silicone resin, or the like can be used.
  • the transparent medium can be formed by a sputtering method, a CVD method, a sol-gel method, or the like.
  • the spin coating method, printing method, dripping method, etc. can be used.
  • the layer thickness of the transparent medium is preferably 0 ⁇ Ol ⁇ m-lOmm, more preferably 0.l ⁇ umlmm.
  • the luminescent fine particles used in the present invention are composed of inorganic nanocrystals in which inorganic crystals are made ultrafine to the nanometer order.
  • the inorganic nanocrystal a material that absorbs visible and / or near-ultraviolet light and emits visible fluorescence is used. Since the transparency is high and the scattering loss is small, it is preferable to use inorganic nanocrystals with ultrafine particles having a particle size of 20 nm or less, more preferably 10 nm or less.
  • the surface of the inorganic nanocrystal is preferably subjected to a compatibilizing treatment in order to improve dispersibility in the resin.
  • a compatibilizing treatment include a treatment such as modifying or coating the surface with a long-chain alkyl group, phosphoric acid, resin or the like.
  • inorganic nanocrystal used in the present invention include the following.
  • Nano crystal phosphors doped with transition metal ions in metal oxides include Y O, G
  • Nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions As nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions,
  • Metal chalcogenides such as ZnS, CdS, and CdSe doped with transition metal ions that absorb visible light, such as Eu 2+ , Eu 3+ , Ce 3+ , and Tb 3+ .
  • the surface may be modified with a metal oxide such as silica or an organic substance.
  • Nanocrystal phosphor semiconductor nanocrystal
  • the semiconductor nano-kustal materials include group IV elements, group Ila elements VI group elements, group Ilia elements, group Vb elements, and group Illb elements, group Vb elements in the long-period periodic table.
  • crystallization which consists of a chalcopyrite type compound can be mentioned.
  • Type semiconductors such as ZnSe, ZnTe, GaAs, CdS, CdTe, InP, CuInS, CuInSe
  • the luminous efficiency is high, and it is more preferable in terms of points.
  • the emission wavelength can be easily controlled by the particle size, and has a large absorption in the blue wavelength range and the near-ultraviolet wavelength range, and the degree of overlap between absorption and emission in the emission range is large.
  • a semiconductor nanocrystal is used.
  • these semiconductor materials are bandages of 0.5 to 4. OeV at room temperature for Balta materials (meaning non-particulate materials). Has a gap. By forming fine particles with these materials and making the particle size nanosized, electrons in the semiconductor are confined in the nanocrystal. As a result, the band gap in the nanocrystal increases.
  • the width in which the band gap increases is theoretically inversely proportional to the square of the particle diameter of the semiconductor fine particles. Therefore, it is possible to control the band gap by controlling the particle size of the semiconductor particles.
  • These semiconductors absorb light having a wavelength shorter than the wavelength corresponding to the band gap, and emit fluorescence having a wavelength corresponding to the band gap.
  • the band gap of the Balta semiconductor is preferably 1.0 eV to 3. OeV at 20 ° C. 1. Below OeV, when nanocrystallized, the fluorescence wavelength shifts too sensitively to changes in particle size, which is not preferable in terms of difficulty in production control. Also, when it exceeds 3. OeV, it emits only fluorescence with a wavelength shorter than the near ultraviolet region, and it can be applied as a color light emitting device. If it ’s difficult, it ’s a good point.
  • the semiconductor nanocrystal can be produced by a known method, for example, a method described in US Pat. No. 6,501,091.
  • trioctylphosphine oxide obtained by heating a precursor solution in which trioctylphosphine (TOP) is mixed with trioctylphosphine selenide and dimethylcadmium to 350 ° C is used. ).
  • the semiconductor nanocrystal preferably includes a core particle made of a semiconductor nanocrystal, and a core layer made of a semiconductor material having a band gap larger than that of the semiconductor material used for the core particle.
  • 'Shell-type semiconductor nanocrystal This has a structure in which, for example, the surface of a core fine particle made of CdSe (band gap: 1.74 eV) is coated with a shell of a semiconductor material having a large band gap, such as ZnS (node gap: 3.8 eV). This facilitates the confinement effect of excitons generated in the core fine particles.
  • the surface may be modified with a metal oxide such as silica or an organic substance.
  • the core-shell type semiconductor nanocrystal can be produced by a known method, for example, the method described in US Pat. No. 6,501,091.
  • a CdSe core / ZnS shell structure it can be produced by introducing a precursor solution in which jethyl zinc and trimethylsilyl sulfide are mixed with TOP into a TOPO liquid in which CdSe core particles are dispersed and heated to 140 ° C.
  • the carrier forming excitons is separated between the core and the shell, so-called Type
  • a nanocrystal (Angewandte Chemie, Vol. 2) with a multi-shell structure by laminating two or more layers on the core to improve stability, light emission efficiency, and emission wavelength adjustment.
  • the above light-emitting fine particles may be used alone or in combination of two or more. May be used.
  • Particularly suitable in the present invention are inorganic light-emitting fine particles having an emission peak wavelength of fluorescence of 470 to 550 nm, and the ability S to obtain good results in combination with a color filter described later.
  • the transparent medium is a medium for dispersing and holding inorganic nanocrystals, and a transparent material such as glass or transparent resin can be selected.
  • a resin such as a non-curable resin, a thermosetting resin, or a photocurable resin is preferably used.
  • oligomeric or polymeric melamine resin phenolic resin, alkyd resin, epoxy resin, polyurethane resin, maleic acid resin, polyamide resin, polymethylol methacrylate, polyacrylate, polycarbonate, polybulualcohol
  • examples thereof include polyvinyl pyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose, and the like, and copolymers having monomers forming them as constituent components.
  • a photocurable resin For the purpose of patterning the color conversion medium, a photocurable resin can be used.
  • a photocurable resin a photopolymerization type such as acrylic acid having a reactive bur group or a methacrylic acid-based photopolymerization type or a polycacinic acid bur is generally used.
  • a thermosetting type may be used if it contains no photosensitizer.
  • a color conversion medium is formed in which phosphor layers separated from each other are arranged in a matrix.
  • the matrix resin transparent medium
  • matrix resins one kind of resin may be used alone, or a plurality of kinds may be mixed and used.
  • a light-emitting pattern can be formed by printing such as screen printing.
  • the color conversion medium is produced by using a dispersion obtained by mixing and dispersing luminous particles and matrix resin (transparent medium) using a known method such as a mill method or an ultrasonic dispersion method. At this time, a good solvent for the matrix resin can be used.
  • This luminous fine particle dispersion is A color conversion medium is produced by forming a film on a support substrate by a known film formation method, for example, a spin coating method, a screen printing method, or the like.
  • an ultraviolet absorber in the range which does not impair the object of the present invention, an ultraviolet absorber, a dispersant, a leveling agent and the like may be added to the color conversion medium in addition to the luminescent fine particles and the transparent medium.
  • the color filter adjusts the color of emitted light to a desired color
  • the color conversion medium emits fluorescence by light incident from the outside of the light emitting device, such as sunlight or indoor illumination light, or incident light is reflected by the reflective electrode.
  • a reduction in contrast ratio that is, the specific power of brightness when the light emitting device is in a light emitting state and in a non-light emitting state.
  • Examples of the color filter used in the present invention include the following dyes alone or those in a solid state in which a dye is dissolved or dispersed in a binder resin.
  • Red (R) dye Perylene pigment, lake pigment, azo pigment, etc.
  • Green (G) dyes Halogen polysubstituted phthalocyanine pigments, halogen polysubstituted copper phthalocyanine pigments, trifelmethane basic dyes, etc.
  • Blue (B) dye Copper phthalocyanine pigment, indanthrone pigment, indophenol pigment, cyanine pigment, etc.
  • the binder resin is preferably a transparent material (visible light transmittance of 50% or more).
  • transparent resins polymers
  • polymers such as polymethylmethacrylate, polyacrylate, polycarbonate, polybutyl alcohol, polyvinylpyrrolidone, hydroxyethinoresenorelose, canolepoxymethinoresolerose, etc.
  • the photosensitive resin to which the method can be applied include photocurable resist materials having a reactive bur group such as acrylic acid or methacrylic acid.
  • a printing ink (medium) using a transparent resin such as polychlorinated bur resin, melamine resin, or phenol resin is selected.
  • the film is formed by vacuum deposition or sputtering through a mask of a desired color filter pattern.
  • the color filter is composed of a dye and a binder resin
  • the fluorescent dye and the above-described dye are formed.
  • Resin and resist are mixed, dispersed, or solubilized, formed into a film by a method such as spin coating, roll coating, or casting, and patterned with a desired color filter pattern by a photolithography method or desired by a method such as printing.
  • Color filter It is common to pattern with this pattern.
  • the color filter of the present invention has a transmission band width of 70 nm or more.
  • the adjustment of the transmission band of the power filter is, for example, a yellow pigment that absorbs light on the short wavelength side and transmits light on the long wavelength side (for example, PY138, manufactured by BASF), short wavelength side, and long wavelength side It can be carried out by appropriately combining with a green pigment having absorption in both (for example, PG7, manufactured by BASF).
  • ITO Indium Tin Oxide
  • a glass substrate having a thickness of 0.7 mm ITO was deposited to a thickness of 130 nm by sputtering. This substrate was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes, and then the substrate with the ITO electrode was mounted on the substrate holder of the vacuum deposition apparatus.
  • an HT1 film that functions as a hole injection layer is formed at a thickness of 60 nm, and then an HT2 film that functions as a hole transport layer is formed at a thickness of 20 nm.
  • a medium layer Compound BH and Compound BD were co-deposited at a film thickness of 42 nm so as to have a film thickness ratio of 40: 2.
  • an Alq film was formed as an electron transport material layer with a thickness of 20 nm
  • a LiF film was formed as an electron injection layer with a thickness of 1 nm
  • A1 was deposited as a cathode with a thickness of 150 nm to produce an organic EL device.
  • organic pigments for the green color filter the four types shown in Table 1 were used.
  • An ink was prepared by dissolving these pigments in an Atalinole negative photoresist (V259PA, solid content concentration 50%: manufactured by Nippon Steel Chemical Co., Ltd.). This ink is spin-coated on a glass substrate, exposed to ultraviolet light, developed with a 2% aqueous sodium carbonate solution, and baked at 200 ° C to form a green conversion film pattern (film thickness 1.5 111). did.
  • the formulation of the organic pigment of the ink was prepared, and four kinds of colorinoleta (CF;! To CF4) shown in Table 1 were prepared.
  • Table 1 shows the pigment composition of the color filter, the film thickness, the width of the transmission band where the transmittance is 50% or more, and the wavelength at the short wavelength end where the transmittance is 50%.
  • the transmission band and its width were determined by measuring the transmittance spectrum of the color filter with an ultraviolet-visible spectrophotometer.
  • Figure 9 shows the transmittance spectrum of each color filter.
  • a core-shell type semiconductor nanocrystal with a ZnS shell attached to a CdSe core (diameter 3.9 nm) was used. Fluorescence peak wavelength is 525nm, emission half width is 30 ⁇ m.
  • the above light-emitting particles, the solids concentration in the film 5. put into 0 X 10- 3 mol / transparent medium solution so that L, and was subjected to dispersion treatment.
  • This dispersion is formed on the color filter film of the green color filter substrate (CF1) prepared in Production Example 2 by spin coating, dried at 200 ° C for 30 minutes, and converted to a color with a thickness of 20 111 The medium was formed into a film to obtain a color conversion substrate (CCM1).
  • CF1 green color filter substrate
  • a color conversion medium was formed on a glass substrate in the same manner as the film formation on the color conversion substrate.
  • the absorption spectrum of this color conversion medium was measured with an ultraviolet-visible spectrophotometer.
  • Silicone oil with a refractive index of 1.53 so that the glass substrate side (light extraction side) of the organic EL device produced in Production Example 1 and the color conversion medium layer of the color conversion substrate produced in (1) above face each other. A light-emitting device was obtained by pasting them together.
  • the light emission luminance (luminance: A [nit]) from the color conversion substrate was measured under the condition that the organic EL device emits light at 150 [nit].
  • the brightness of reflected light (brightness B [nit]) from the color conversion board under fluorescent lighting (5001x) with the organic EL element turned off is measured, and the contrast ratio is obtained from the ratio (A / B). It was.
  • the emission luminance when the organic EL element was turned on was 218 nits
  • the emission luminance when the organic EL element was turned off (under fluorescent lighting) was 0.59 nits
  • the contrast ratio was 370.
  • the absorbance of the color conversion medium at the short wavelength end wavelength (480 nm) at which the transmittance of the color filter (CF1) is 50% was 0.571.
  • Table 2 shows the configuration and evaluation results of the color conversion substrate prepared in Example 1 and each example described later.
  • a color conversion substrate was prepared and evaluated in the same manner as in Example 1 except that the color filter (CF2) was used instead of the color filter (CF1).
  • the light emission brightness when the organic EL element is on is 210 nits, and the light emission when the organic EL element is off
  • the brightness was 0.57 nit and the contrast ratio was 370, which was good.
  • the absorbance of the color conversion medium at the short wavelength end wavelength (486 nm) at which the transmittance of the color filter (C F2) is 50% was 0.670.
  • a color conversion substrate was prepared and evaluated in the same manner as in Example 1 except that the color filter (CF3) was used instead of the color filter (CF1).
  • the emission brightness when the organic EL element was turned on was 198 nits
  • the emission brightness when the organic EL element was turned off was 0.57 nits
  • the contrast ratio was 350, which was slightly lower than in Examples 1 and 2, but was good. there were.
  • the absorbance of the color conversion medium at the wavelength (503 nm) at the short wavelength end where the transmittance of the color filter (CF3) is 50% was 1.07.
  • a color conversion substrate was prepared and evaluated in the same manner as in Example 1 except that the color filter (CF4) was used instead of the color filter (CF1).
  • the emission luminance when the organic EL element was turned on decreased to 172 nits
  • the emission luminance when the organic EL element was turned off was 0.57 nits
  • the absorbance of the color conversion medium at the short wavelength end wavelength (522 nm) at which the transmittance of the color filter (CF4) was 50% was 0.728.
  • the luminescent particles, solid content concentration in the film 1. put into 0 X 10- 2 mol / transparent medium solution so that L, and was subjected to dispersion treatment.
  • This dispersion was formed on the color filter film of the green color filter substrate (CF2) prepared in Production Example 2 by spin coating, and dried at 200 ° C for 30 minutes.
  • a color conversion medium was formed into a film to obtain a color conversion substrate (CCM2).
  • a color conversion medium was formed on a glass substrate in the same manner as the film formation on the color conversion substrate.
  • the absorption spectrum of this color conversion medium was measured with an ultraviolet-visible spectrophotometer.
  • a light emitting device was formed and evaluated in the same manner as in Example 1. As a result, the light emission luminance when the organic EL element was turned on decreased to lOOnit, the light emission luminance when the organic EL element was turned off was 0.48 nit, and the contrast ratio also decreased to 210.
  • the absorbance of the color conversion medium at the short wavelength (486 nm) at which the transmittance of the color filter (CF2) was 50% was 2.68.
  • the emission luminance when the organic EL element was turned on decreased to 122 nits
  • the emission luminance when the organic EL element was turned off was 0.64 nits
  • the absorbance of the color conversion medium was 0.04 at the short wavelength (486 nm) at which the transmittance of the color filter (CF2) was 50%.
  • the color conversion substrate of the present invention can be suitably used as a member for forming a light-emitting device in combination with various light sources such as an organic EL element and a light-emitting diode.
  • various light sources such as an organic EL element and a light-emitting diode.
  • it is suitable as a color conversion substrate for organic EL elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A color conversion substrate is provided with a color conversion medium containing at least organic nano-crystal light emitting fine particles, and a color filter which is provided with a 70nm or wider transmissive region having a transmissivity of 0.5 or more on one side of the color conversion medium. The light absorbance of the color conversion medium is 0.1 or more but not more than 2, at a wavelength of a transmissive region end on a short wavelength side where the transmissivity of the color filter is 0.5.

Description

明 細 書  Specification
色変換基板  Color conversion board
技術分野  Technical field
[0001] 本発明は、色変換基板に関する。例えば、有機エレクト口ルミネッセンス素子と組み あわせて有機エレクト口ルミネッセンスカラー発光装置を形成できる色変換基板に関 する。より詳しくは、ナノクリスタル発光微粒子を含んでなる色変換媒体と、透過率が 0 . 5以上となる透過帯域の幅が 70nm以上であるカラーフィルタとを組み合わせた色 変換基板に関する。  [0001] The present invention relates to a color conversion substrate. For example, the present invention relates to a color conversion substrate that can form an organic electoluminescence color light emitting device in combination with an organic electroluminescence device. More specifically, the present invention relates to a color conversion substrate in which a color conversion medium containing nanocrystal luminescent fine particles and a color filter having a transmission band width of 70 nm or more with a transmittance of 0.5 or more are combined.
背景技術  Background art
[0002] 蛍光材料を用いて光源から発せられる光の波長を変換する色変換媒体は、電子デ イスプレイ分野をはじめとした様々な分野に応用されている。例えば、青色発光又は 青緑色発光を示す有機エレクト口ルミネッセンス材料(以下、エレクト口ルミネッセンス を ELと表すことがある)と、前記発光層の発光を吸収し青緑色から赤色までの少なく とも一色の可視光蛍光を発光する蛍光材料部を配設してなる EL素子が開示されて いる(例えば、特許文献 1参照。)。  A color conversion medium that converts the wavelength of light emitted from a light source using a fluorescent material has been applied to various fields including the electronic display field. For example, an organic electroluminescent material that emits blue light or blue-green light (hereinafter, the electroluminescent material may be referred to as EL), and absorbs the light emitted from the light emitting layer, and at least one visible color from blue-green to red is visible. An EL element in which a fluorescent material part that emits photofluorescence is disposed is disclosed (for example, see Patent Document 1).
[0003] この方法によれば、青色光源を使用し、色変換媒体で色変換を行って三原色を得 る。即ち、色変換媒体においては、青色光を照射して蛍光色素を励起し、より長波長 の緑色光又は赤色光を発生させて!/、る。  [0003] According to this method, a blue light source is used and color conversion is performed with a color conversion medium to obtain three primary colors. That is, in the color conversion medium, blue light is irradiated to excite the fluorescent dye to generate longer wavelength green light or red light.
色変換媒体に用いる蛍光材料としては、従来は有機系蛍光色素、有機系蛍光顔 料が一般的であった。例えば、ローダミン系蛍光顔料と、青色領域に吸収を有し、か つこのローダミン系蛍光顔料へのエネルギー移動又は再吸収を誘起する蛍光顔料と を、光透過性媒体に分散したものからなる赤色色変換媒体が開示されている (例え ば、特許文献 2参照。)。  Conventionally, organic fluorescent dyes and organic fluorescent pigments have been commonly used as fluorescent materials for color conversion media. For example, a red color comprising a rhodamine fluorescent pigment and a fluorescent pigment having absorption in the blue region and inducing energy transfer or reabsorption to the rhodamine fluorescent pigment dispersed in a light-transmitting medium. A conversion medium is disclosed (see, for example, Patent Document 2).
[0004] 色変換媒体を用いた EL素子の色純度を向上させ、外光存在下でのコントラスト比 を改善する方法として、色変換媒体をカラーフィルタと組み合わせて用いる技術が開 示されている(特許文献 3)。  [0004] As a method for improving the color purity of an EL element using a color conversion medium and improving the contrast ratio in the presence of external light, a technique using a color conversion medium in combination with a color filter has been disclosed ( Patent Document 3).
また、緑色の性能改善のために、透過率のピーク波長が 490〜530nmにあり、色 素としてフタロシアニン色素を用いることが提案されて!/、る(特許文献 4)。 In order to improve the green performance, the peak wavelength of transmittance is in the range of 490 to 530 nm. It has been proposed to use a phthalocyanine dye as the element! /, (Patent Document 4).
さらに、色純度を向上させるために、波長 450〜500nmでの吸光度が 1以上、 550 〜650nmでの吸光度が 0. 1以上とする技術が開示されている(特許文献 5)。  Furthermore, in order to improve color purity, a technique is disclosed in which the absorbance at a wavelength of 450 to 500 nm is 1 or more and the absorbance at 550 to 650 nm is 0.1 or more (Patent Document 5).
[0005] しかしながら、上記の特許文献 1 5は、蛍光変換材料として、有機蛍光色素又は 顔料を用いた技術であった。  [0005] However, Patent Document 15 described above is a technique using an organic fluorescent dye or pigment as a fluorescence conversion material.
この場合、濃度消光に起因する変換効率の限界や、製造プロセスにおける熱'化 学反応履歴による変換性能劣化の問題があった。また、有機系の蛍光材料の発光ス ベクトルはその発光帯域が広いため、色純度を向上させるためには、帯域の狭い力 ラーフィルタを用いて、一部の蛍光をカットする必要があった。そのため、せっかくの 蛍光のエネルギーをロスし、素子としての効率を下げて!/、た。  In this case, there was a problem of the conversion efficiency deterioration due to the limit of conversion efficiency due to concentration quenching and the thermal chemical reaction history in the manufacturing process. In addition, since the emission band of the organic fluorescent material has a wide emission band, in order to improve the color purity, it was necessary to cut off some of the fluorescence using a narrow band of power filter. Therefore, the energy of fluorescence was lost and the efficiency of the device was lowered! /.
[0006] こうした問題を解決するため、特許文献 6では、無機ナノクリスタルを応用した有機 E L素子のフルカラー化技術が提案されている。無機ナノクリスタルとして CdS、 CdSe 、 CdTeを光透過性樹脂に分散した膜を色変換媒体とし、ピーク波長 450nmの青色 単色光を発する有機 EL素子と結合することで、赤色発光、緑色発光を得ている。赤 色、緑色のような変換色の制御は、無機ナノクリスタルの粒径を制御することによって fiつている。  [0006] In order to solve these problems, Patent Document 6 proposes a full-color technology for organic EL elements using inorganic nanocrystals. A film in which CdS, CdSe, and CdTe are dispersed in a light-transmitting resin as an inorganic nanocrystal is used as a color conversion medium, and combined with an organic EL device that emits blue monochromatic light with a peak wavelength of 450 nm. Yes. The conversion colors such as red and green are controlled by controlling the particle size of inorganic nanocrystals.
[0007] 特許文献 7には、有機 EL光源部と無機ナノクリスタルを分散した色変換媒体を組 合せ、高い蛍光変換効率と高耐久性を実現したカラー発光装置が開示されている。 無機ナノクリスタルの持つ高い屈折率を考慮し、色変換媒体の最適設計を行い、変 換効率を最大にしている。  [0007] Patent Document 7 discloses a color light emitting device that combines an organic EL light source unit and a color conversion medium in which inorganic nanocrystals are dispersed to achieve high fluorescence conversion efficiency and high durability. Considering the high refractive index of inorganic nanocrystals, the color conversion medium is optimally designed to maximize the conversion efficiency.
[0008] 特許文献 6、 7記載の技術では、蛍光変換材料として、無機ナノクリスタルを用いる ことで、濃度消光に起因する変換効率の限界や、製造プロセスにおける熱'化学反 応履歴による変換性能劣化の問題を解消している。しかし、無機ナノクリスタル、特に 半導体ナノクリスタルを用いた場合、その発光ピーク波長近傍に強い吸収 ·励起を持 つため、カラーフィルタを併用したとしても、カラーフィルタを透過する外光によって無 機ナノクリスタルが励起され、蛍光発光が生じ、それによつてコントラスト比が低下する という問題があった。  [0008] In the techniques described in Patent Documents 6 and 7, by using inorganic nanocrystals as fluorescence conversion materials, conversion efficiency limits due to concentration quenching, and conversion performance deterioration due to thermal chemical reaction history in the manufacturing process The problem is solved. However, when inorganic nanocrystals, especially semiconductor nanocrystals, have strong absorption and excitation near the emission peak wavelength, even if a color filter is used in combination, the organic nanocrystal is affected by external light that passes through the color filter. Is excited, and fluorescence is emitted, which causes a reduction in contrast ratio.
特許文献 1:特開平 3— 152897号公報 特許文献 2 :特開平 8— 286033号公報 Patent Document 1: Japanese Patent Laid-Open No. 3-152897 Patent Document 2: JP-A-8-286603
特許文献 3:特許第 2838064号  Patent Document 3: Patent No. 2838064
特許文献 4 :特開 2000— 3786号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-3786
特許文献 5:特開 2001 _ 52866号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2001_52866
特許文献 6 :米国特許第 6, 608, 439号明細書  Patent Document 6: U.S. Pat.No. 6,608,439
特許文献 7: WO2005/097939号ノ ンフレット  Patent Document 7: WO2005 / 097939 Nonfret
[0009] 本発明は上述の問題に鑑みなされたものであり、無機ナノクリスタルを用いた色変 換基板であって、外光存在下でのコントラスト比を向上した色変換基板を提供するこ とを目的とする。 [0009] The present invention has been made in view of the above problems, and provides a color conversion substrate using inorganic nanocrystals and having an improved contrast ratio in the presence of external light. With the goal.
発明の開示  Disclosure of the invention
[0010] 本発明によれば、以下の色変換基板が提供される。  [0010] According to the present invention, the following color conversion substrate is provided.
1.少なくとも無機ナノクリスタル発光微粒子を含んでなる色変換媒体と、前記色変換 媒体の片面側に、透過率が 0. 5以上となる透過帯域の幅が 70nm以上であるカラー フィルタとを有し、前記カラーフィルタの、透過率が 0. 5となる短波長側の透過帯域 端の波長における、前記色変換媒体の吸光度が 0. 1以上 2以下である色変換基板 1. a color conversion medium comprising at least inorganic nanocrystal light-emitting fine particles, and a color filter having a transmission band width of 70 nm or more with a transmittance of 0.5 or more on one side of the color conversion medium. The color conversion substrate in which the absorbance of the color conversion medium is 0.1 or more and 2 or less at the wavelength of the short wavelength side transmission band where the transmittance of the color filter is 0.5
Yes
2.前記色変換媒体が、透明媒体と、前記透明媒体に分散した無機ナノクリスタル発 光微粒子からなる、 1記載の色変換基板。  2. The color conversion substrate according to 1, wherein the color conversion medium comprises a transparent medium and inorganic nanocrystal light emitting fine particles dispersed in the transparent medium.
3.前記無機ナノクリスタル発光微粒子力 S、半導体ナノクリスタルである 1又は 2記載の 色変換基板。  3. The color conversion substrate according to 1 or 2, wherein the inorganic nanocrystal luminescent particle force S is a semiconductor nanocrystal.
4.前記カラーフィルタの透過帯域の幅が、 70nm以上 120nm以下である;!〜 3のい ずれかに記載の色変換基板。  4. The color conversion substrate according to any one of [1] to [3], wherein a transmission band width of the color filter is 70 nm or more and 120 nm or less.
5.前記カラーフィルタの透過帯域の幅が、 80nm以上 l lOnm以下である 1〜3のい ずれかに記載の色変換基板。  5. The color conversion substrate according to any one of 1 to 3, wherein a transmission band width of the color filter is 80 nm or more and lOnm or less.
6.発光ピーク波長が 470〜550nmの範囲にある緑色色変換基板である 1〜5のい ずれかに記載の色変換基板。  6. The color conversion substrate according to any one of 1 to 5, which is a green color conversion substrate having an emission peak wavelength in the range of 470 to 550 nm.
7.少なくともひとつの色画素が、;!〜 6のいずかに記載の色変換基板を含むカラー 色変換基板。 [[00001111]] 本本発発明明にによよりり、、変変換換効効率率がが高高ぐぐかかつつ外外光光存存在在下下でで高高いいココンントトララスストトをを実実現現ででききるる色色 変変換換基基板板をを提提供供ででききるる。。ここのの色色変変換換基基板板はは有有機機 EELLカカララーー発発光光装装置置にに適適ししてておおりり、、ここ れれをを用用いいたた発発光光装装置置でではは省省電電力力化化がが可可能能ととななるる。。 7. A color color conversion board, wherein the at least one color pixel includes the color conversion board according to any one of! [[00001111]] According to the present invention, the conversion efficiency efficiency is very high and the high contrast contrast is achieved in the presence of external light. The color and color conversion substrate board that can be produced in actual realization can be provided. . The color-to-color conversion substrate board here is suitable for the organic EELL Kakarara light emitting / emitting device, and it is used for the light emitting / emitting device using this. Then, it becomes possible to increase power saving and power saving. .
図図面面のの簡簡単単なな説説明明  Simple and simple explanation on the drawing
[[00001122]] [[図図 11]]本本発発明明のの実実施施形形態態 11にに係係るる色色変変換換基基板板のの概概略略断断面面図図ででああるる。。  [[00001122]] [[FIG. 11]] is a schematic, schematic cross-sectional view of a color-color conversion substrate board according to an embodiment 11 of the present invention. There is. .
[[図図 22]]計計算算でで使使用用ししたた蛍蛍光光灯灯のの発発光光ススペペククトトルル、、色色変変換換媒媒体体のの吸吸光光度度ススペペククトトルル、、及及 びび仮仮想想的的ななカカララーーフフィィルルタタのの透透過過率率ススペペククトトルルででああるる。。  [[Fig. 22]] Emission spectrum of the fluorescent lamp used in the calculation, and spectroscopic spectrophotometry of the color-change conversion medium This is the spectral transmittance of Torulu, and the hypothetical Kakararafirru Rata. .
[[図図 33]]計計算算さされれたた反反射射光光ススぺぺ外外ルルででああるる。。  [[Figure 33]] The calculated anti-reflective reflected light outer lure. .
[[図図 44]]計計算算でで使使用用ししたたカカララーーフフィィルルタタのの透透過過帯帯域域をを示示すす図図ででああるる。。  [[FIG. 44]] FIG. 44 is a diagram showing a transmission and overband region of a Kakaralar filter used in calculation. .
[[図図 55]]反反射射光光強強度度、、ココンントトララスストト指指標標及及びび変変換換効効率率とと、、カカララーーフフィィルルタタのの透透過過帯帯域域のの幅幅
Figure imgf000006_0001
[[Fig. 55]] Anti-reflection reflected light intensity, constant contrast index index and variable conversion efficiency rate, and transmission band of Kakaralar filter filter Bandwidth width
Figure imgf000006_0001
[[図図 66]]反反射射光光強強度度、、ココンントトララスストト指指標標及及びび変変換換効効率率とと、、色色変変換換媒媒体体のの吸吸光光度度のの関関係係をを 園 7]本発明の実施形態 2に係るカラー色変換基板の概略断面図である。  [[Fig.66]] Intensity of anti-reflective reflected light, index of contrast finger index and conversion conversion efficiency, and absorption / absorption absorbance of color-change conversion medium FIG. 7] is a schematic cross-sectional view of a color color conversion substrate according to Embodiment 2 of the present invention.
園 8]カラー色変換基板と有機 EL素子とを組み合わせた有機 ELカラー発光装置の 概略断面図である。  8] It is a schematic cross-sectional view of an organic EL color light emitting device combining a color color conversion substrate and an organic EL element.
[図 9]カラーフィルタ CF;!〜 CF4の透過率スペクトルである。  [Fig. 9] Transmittance spectrum of color filter CF;! To CF4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
実施形態 1  Embodiment 1
図 1は、本発明の実施形態 1に係る色変換基板の概略断面図である。  FIG. 1 is a schematic cross-sectional view of a color conversion substrate according to Embodiment 1 of the present invention.
色変換基板 1は、基材 11にカラーフィルタ 12及び色変換媒体 13をこの順に積層し た構造を有する。  The color conversion substrate 1 has a structure in which a color filter 12 and a color conversion medium 13 are laminated on a base material 11 in this order.
基材 11はカラーフィルタ 12等を支持するものであり、透明であるガラス基板や樹脂 基板等、この分野で使用されるものが問題なく使用できる。  The base material 11 supports the color filter 12 and the like, and those used in this field such as a transparent glass substrate and resin substrate can be used without any problem.
カラーフィルタ 12は、発光の色を所望の色に調整する機能を持つ。加えて、太陽光 や室内照明光等、発光装置の外部から入射する光によって色変換媒体が蛍光を発 したり、入射光が反射電極で反射して、再出射することで、コントラスト比、即ち発光 装置が発光状態にあるときと非発光状態にあるときの明るさの比が低下することを防 止する。 The color filter 12 has a function of adjusting the emission color to a desired color. In addition, the color conversion medium emits fluorescence by light incident from the outside of the light emitting device, such as sunlight or indoor illumination light, or the incident light is reflected by the reflective electrode and re-emitted, so that the contrast ratio, The ratio of the brightness when the light-emitting device is in the light-emitting state and in the non-light-emitting state is prevented from decreasing. Stop.
色変換媒体 13は、透明媒体 13a中に発光微粒子 13bが分散している膜であり、光 源(図示せず)から発せられる励起光を吸収し、光源部とは異なるスペクトルの発光( 蛍光)を発する。  The color conversion medium 13 is a film in which luminous particles 13b are dispersed in a transparent medium 13a, which absorbs excitation light emitted from a light source (not shown) and emits light having a spectrum different from that of the light source (fluorescence). To emit.
[0014] 本発明において、色変換媒体はナノクリスタル発光微粒子を含んでおり、かつ、力 ラーフィルタの透過率が 0. 5以上となる透過帯域の幅が 70nm以上である。このよう な構成とすることにより、効率が高ぐ省電力であり、かつ外光存在下で高いコントラス トを実現できる色変換基板となる。  [0014] In the present invention, the color conversion medium contains nanocrystal luminescent fine particles, and the width of the transmission band where the transmittance of the power filter is 0.5 or more is 70 nm or more. By adopting such a configuration, the color conversion substrate can achieve high power consumption with high efficiency and high contrast in the presence of external light.
尚、本明細書において透過帯域とは、カラーフィルタの光線透過率が 0. 5 (50%) 以上となる波長範囲を意味し、透過帯域の幅とはカラーフィルタの透過率が 0. 5とな る 2つの波長(短波長端と長波長端)間の幅を意味する。カラーフィルタの透過帯域 は、紫外 可視分光光度計を用い、カラーフィルタの透過率を測定し、透過率が 0. 5以上となる波長域を測定することで求められる。  In this specification, the transmission band means a wavelength range where the light transmittance of the color filter is 0.5 (50%) or more, and the width of the transmission band means that the transmittance of the color filter is 0.5. It means the width between two wavelengths (short wavelength end and long wavelength end). The transmission band of the color filter can be obtained by measuring the transmittance of the color filter using an ultraviolet-visible spectrophotometer and measuring the wavelength region where the transmittance is 0.5 or more.
[0015] 一般に、外光をカットし、コントラスト比を改善するには、透過帯域の幅の狭いカラー フィルタを用いる。具体的には、透過帯域の幅が 60〜70nm程度のものが使用され ている。しかし、本発明者は、透過帯域の幅の広いカラーフィルタを、無機ナノクリス タルを使用した色変換媒体と組合せることで、特異な性能を発揮することができること を見出した。  [0015] In general, a color filter having a narrow transmission band is used to cut outside light and improve the contrast ratio. Specifically, a transmission band having a width of about 60 to 70 nm is used. However, the present inventor has found that a unique performance can be exhibited by combining a color filter having a wide transmission band with a color conversion medium using inorganic nanocrystals.
[0016] 図 2は、外光である蛍光灯の発光スペクトル、色変換媒体の吸光度スペクトル(緑系 、 CdSe/ZnSコアシェル型半導体ナノクリスタルの場合、発光ピーク波長 525nm、 発光半値幅 30nm)、及び仮想的なカラーフィルタの透過率スペクトル (透過特性は 放物線型とし、透過率 0. 5以上の透過帯域の幅は 70nm)である。  [0016] Fig. 2 shows the emission spectrum of a fluorescent lamp that is external light, the absorbance spectrum of a color conversion medium (green, CdSe / ZnS core-shell semiconductor nanocrystal, emission peak wavelength 525 nm, emission half-value width 30 nm), and The transmission spectrum of a virtual color filter (transmission characteristics are parabolic, and the transmission band width of transmittance 0.5 or more is 70 nm).
また、図 3は、これらから計算される反射光スペクトルである。  FIG. 3 shows a reflected light spectrum calculated from these.
尚、反射を考えるために、当該色変換基板と組み合わせる有機 EL素子(光源)の 反射率を 0. 8とした。反射光のスペクトルの計算は、以下のようにした。  In order to consider reflection, the reflectance of the organic EL element (light source) combined with the color conversion substrate was set to 0.8. The spectrum of the reflected light was calculated as follows.
[0017] 外光は、設定されたカラーフィルタで、フィルタリングされたあと、色変換媒体に入射 する。この光は、色変換媒体で吸収を受けながら、色変換媒体を光源部に向かって 伝播し、光源部で反射されたあと、再び吸収を受けながら色変換媒体を通過、再度 カラーフィルタを透過して、出射する。一方、色変換媒体で吸収された光は、ある蛍 光量子収率 (0. 8と仮定した)で、より長波長側に再発光する。再発光の光は、色変 換媒体で再吸収を受けながら、カラーフィルタ及び光源部に向かって伝播する。カラ 一フィルタに向かった光は、カラーフィルタを通過して出射する。光源部に向かった 光は、色変換媒体で吸収を受けながら、光源部に到達、反射されて、再び色変換媒 体を通過、カラーフィルタを通過して出射する。以上の過程を考慮して、反射光のス ベクトルを計算した。 [0017] The external light is filtered by the set color filter and then enters the color conversion medium. This light is propagated toward the light source while being absorbed by the color conversion medium, reflected by the light source, and then passes through the color conversion medium while being absorbed again. The light is transmitted through the color filter. On the other hand, the light absorbed by the color conversion medium re-emits longer wavelengths with a certain fluorescence quantum yield (assuming 0.8). The re-emitted light propagates toward the color filter and the light source unit while being reabsorbed by the color conversion medium. The light directed to the color filter passes through the color filter and is emitted. The light directed to the light source unit reaches the light source unit while being absorbed by the color conversion medium, is reflected, passes through the color conversion medium again, passes through the color filter, and exits. Considering the above process, the reflected light vector was calculated.
[0018] 反射光の中には、カラーフィルタを通過する外光の反射成分に加え、半導体ナノク リスタルの再発光成分を含んでいる。無機ナノクリスタルを用いたことによる特異な特 性は、カラーフィルタの透過帯域の短波長側で、反射光が強く抑圧されていることで ある。これは、無機ナノクリスタルの吸収端(500nm付近の吸収極大)による吸収で、 外光がほとんど吸収されていることによる。  [0018] The reflected light includes a re-emission component of the semiconductor nanocrystal in addition to the reflection component of the external light passing through the color filter. A unique characteristic of using inorganic nanocrystals is that reflected light is strongly suppressed on the short wavelength side of the transmission band of the color filter. This is due to the absorption by the absorption edge of inorganic nanocrystals (absorption maximum near 500 nm), and almost all external light is absorbed.
[0019] 図 4は、計算で使用したカラーフィルタの透過帯域を示すものである。このように透 過帯域の幅を 40〜; !OOnmまで変えて、色変換基板としての性能を計算した。  FIG. 4 shows the transmission band of the color filter used in the calculation. In this manner, the performance as a color conversion substrate was calculated by changing the width of the transmission band from 40 to OOnm.
[0020] 反射光輝度は、外光により出射してくる光の輝度 (反射光と再発光成分の和:任意 単位)である。変換効率は、光源としてピーク発光波長が 470nmのボトムェミッション 型の有機 EL素子を使用した場合を仮定し、色変換基板の性能を見積もつたもので ある。変換効率は、入射する有機 EL素子の光の輝度に対する出射する変換光の輝 度の比であり、単位は%である。即ち、この変換効率は、一定電力投入時の発光輝 度を表すと考えてよい。従って、変換効率を反射光輝度で割った値は、コントラスト比 を表しているので、この値を適当にスケーリングして、コントラスト指標 [任意単位]とし た。  [0020] The reflected light luminance is the luminance of light emitted by external light (the sum of the reflected light and the re-emission component: arbitrary unit). The conversion efficiency is estimated based on the performance of the color conversion substrate assuming that a bottom emission type organic EL device with a peak emission wavelength of 470 nm is used as the light source. The conversion efficiency is the ratio of the brightness of the outgoing converted light to the brightness of the incident organic EL element light, and its unit is%. That is, this conversion efficiency may be considered to represent the light emission luminance when a constant power is applied. Therefore, the value obtained by dividing the conversion efficiency by the reflected light luminance represents the contrast ratio, so this value was scaled appropriately to obtain the contrast index [arbitrary unit].
[0021] 図 5は、反射光強度、コントラスト指標及び変換効率と、カラーフィルタの透過帯域 の幅の関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the reflected light intensity, the contrast index and the conversion efficiency, and the width of the transmission band of the color filter.
図 5の結果は予想に反するもので、カラーフィルタの透過帯域の幅を大きくすると、 コントラスト比が向上することを示している。これは、透過帯域の幅を増やすと、色変 換媒体からの発光を十分取り出せるようになるからである。この際、外光により励起さ れた色変換媒体からの蛍光成分も増える力 透過帯域の短波長側の外光反射は、 無機ナノクリスタルの特異な吸収に抑制されて、トータルとして出射光の増大より、素 子の発光の増大が上回るため、コントラストが改善される。 The results in Figure 5 are contrary to expectations, indicating that increasing the width of the color filter transmission band improves the contrast ratio. This is because if the width of the transmission band is increased, light emitted from the color conversion medium can be extracted sufficiently. At this time, the reflection of external light on the short wavelength side of the transmission band is also increased as the fluorescent component from the color conversion medium excited by external light increases. Constrained by the unique absorption of the inorganic nanocrystals, the increase in the emission of the element exceeds the increase in the output light as a whole, so the contrast is improved.
[0022] 以上の結果から、色変換基板の変換効率とコントラスト比が両立する領域として、 7 Onm以上の透過帯域の幅が好適であり、特に 70nm以上 120nm以下が好ましい。 特に 80nm以上 1 lOnm以下が好まし!/、。  [0022] From the above results, as a region in which the conversion efficiency and contrast ratio of the color conversion substrate are compatible, a transmission band width of 7 Onm or more is preferable, and 70 nm to 120 nm is particularly preferable. Especially 80nm or more and 1 lOnm or less is preferred!
[0023] 本発明の色変換基板は、特に、発光ピーク波長が 470〜550nmの範囲にある緑 色色変換基板として好ましく使用できる。  [0023] In particular, the color conversion substrate of the present invention can be preferably used as a green color conversion substrate having an emission peak wavelength in the range of 470 to 550 nm.
[0024] また、本発明においては、カラーフィルタの透過率が 0. 5となる短波長側の透過帯 域端の波長における、色変換媒体の吸光度が 0. 1以上 2以下である。 In the present invention, the absorbance of the color conversion medium is 0.1 or more and 2 or less at the wavelength at the end of the transmission band on the short wavelength side where the transmittance of the color filter is 0.5.
色変換媒体の吸光度は、一般的な紫外'可視分光高度計を用い、以下のようにし て求めることができる。  The absorbance of the color conversion medium can be obtained as follows using a general ultraviolet-visible spectrophotometer.
まず、色変換媒体が製膜されていない素の基板の、当該波長での透過光強度 Iを  First, the transmitted light intensity I at the wavelength of an uncoated substrate on which no color conversion medium is formed is calculated.
0 測定する。  0 Measure.
次に、色変換媒体が製膜された基板を置き、透過光強度 Iを測定する。 このとき、当該波長での吸光度 Aは、 A=log (I /1)で求められる。  Next, the substrate on which the color conversion medium is formed is placed, and the transmitted light intensity I is measured. At this time, the absorbance A at the wavelength is obtained by A = log (I / 1).
10 0  10 0
[0025] 上述のとおり、本発明では無機ナノクリスタルの吸収が重要である。そこで、無機ナ ノクリスタルの濃度を変えて、カラーフィルタの透過帯域端 (短波長側、透過帯域 70η mのカラーフィルタで、 510nm)での吸光度に対し、反射光輝度、変換効率、コントラ スト指標を計算した。  [0025] As described above, absorption of inorganic nanocrystals is important in the present invention. Therefore, by changing the concentration of inorganic nanocrystals, the reflected light brightness, conversion efficiency, and contrast index for the absorbance at the transmission band edge of the color filter (510 nm for the short wavelength side, transmission band 70ηm color filter). Was calculated.
図 6は、反射光強度、コントラスト指標及び変換効率と、色変換媒体の吸光度の関 これより、色変換媒体の吸光度は 0. ;!〜 2であり、特に、 0. 2〜2が好適であること がわかる。 0. 1より小さいと、発光輝度、コントラスト比とも十分ではない場合がある。 2 より大きいと、無機ナノクリスタル濃度が非常に高いことを表し、透明媒体への分散性 が損なわれるおそれがある。  Fig. 6 shows the relationship between reflected light intensity, contrast index, and conversion efficiency, and the absorbance of the color conversion medium. From this, the absorbance of the color conversion medium is 0.;! ~ 2, and 0.2 ~ 2 is particularly preferable. I know that there is. If it is smaller than 0.1, neither the light emission brightness nor the contrast ratio may be sufficient. If it is greater than 2, it indicates that the concentration of inorganic nanocrystals is very high, and the dispersibility in a transparent medium may be impaired.
[0026] 実施形態 2  Embodiment 2
図 7は、本発明の実施形態 2に係るカラー色変換基板の概略断面図である。  FIG. 7 is a schematic cross-sectional view of a color color conversion substrate according to Embodiment 2 of the present invention.
カラー色変換基板 2は、実施形態 1の色変換基板を用いたものである。カラー色変 換基板 2は、青色カラーフィルタ 21B、緑色カラーフィルタ 21Gと緑色変換媒体 22G の積層体及び赤色カラーフィルタ 21Rと赤色変換媒体 22Rの積層体を有する。 The color color conversion substrate 2 uses the color conversion substrate of the first embodiment. Color change The replacement substrate 2 includes a blue color filter 21B, a green color filter 21G and a green color conversion medium 22G stack, and a red color filter 21R and a red color conversion medium 22R stack.
[0027] カラー色変換基板 2では、光源(図示せず)と青色カラーフィルタ 21Bで青色画素 B を形成する。同様に、光源と、緑色カラーフィルタ 21G及び緑色変換媒体 22Gの積 層体が緑色画素 Gを、光源と、赤色カラーフィルタ 21R及び赤色変換媒体 22Rの積 層体が赤色画素 Rを形成する。図 7に示すように、各画素間にブラックマトリックス 23 を形成してもよい。 In the color color conversion substrate 2, a blue pixel B is formed by a light source (not shown) and a blue color filter 21B. Similarly, the stacked body of the light source, the green color filter 21G and the green conversion medium 22G forms a green pixel G, and the stacked body of the light source, the red color filter 21R and the red conversion medium 22R forms a red pixel R. As shown in FIG. 7, a black matrix 23 may be formed between the pixels.
各画素に対応する光源を公知の方法によって独立駆動することにより、フルカラー 表示が可能となる。  Full-color display is possible by independently driving the light source corresponding to each pixel by a known method.
[0028] 本実施形態では、特に、緑画素において、実施形態 1の色変換基板を好適に用い ること力 Sできる。青画素、赤画素においては、例えば、上述した特許文献 7の構成を、 好適に用いることができる。  In the present embodiment, it is possible to suitably use the color conversion substrate of Embodiment 1 particularly in a green pixel. For the blue pixel and the red pixel, for example, the configuration of Patent Document 7 described above can be suitably used.
[0029] 図 8は、カラー色変換基板と有機 EL素子とを組み合わせた有機 ELカラー発光装 置の概略断面図である。 FIG. 8 is a schematic cross-sectional view of an organic EL color light emitting device in which a color color conversion substrate and an organic EL element are combined.
有機 ELカラー発光装置 3は、光源となる有機 EL素子 30とカラー色変換基板 2を、 透明媒質 40を挟んで積層した構成を有する。  The organic EL color light emitting device 3 has a configuration in which an organic EL element 30 serving as a light source and a color color conversion substrate 2 are stacked with a transparent medium 40 interposed therebetween.
有機 EL素子に関しては、例えば、特許文献 7に例示されているものを用いることが できる。  As the organic EL element, for example, those exemplified in Patent Document 7 can be used.
[0030] 透明媒質としては、可視光に対する透過率が 50%以上の透明な材料であれば、無 機材料、有機材料、及びこれらの積層体等を適宜使用することができる。  [0030] As the transparent medium, an organic material, an organic material, a laminate thereof, and the like can be appropriately used as long as the transparent medium has a transmittance of visible light of 50% or more.
無機材料では、無機酸化物層や無機窒化物層,無機酸窒化物層であることが好ま しい。例えば、シリカ,アルミナ, AION, SiAlON, SiNx (l≤x≤2) , SiOxNy (好ま しくは、 0. l≤x≤l , 0. l≤y≤l)等が挙げられる。  Among inorganic materials, inorganic oxide layers, inorganic nitride layers, and inorganic oxynitride layers are preferable. Examples include silica, alumina, AION, SiAlON, SiNx (l≤x≤2), SiOxNy (preferably 0.l≤x≤l, 0.l≤y≤l).
有機材料では、シリコーンゲル,フッ化炭化水素液体,アクリル樹脂,エポキシ樹脂 ,シリコーン樹脂等を用いることができる。  As the organic material, silicone gel, fluorinated hydrocarbon liquid, acrylic resin, epoxy resin, silicone resin, or the like can be used.
透明媒質の形成は、無機材料の場合には、スパッタ法、 CVD法、ゾルーゲル法等 により行うこと力 Sできる。また有機材料の場合には、スピンコート法、印刷法、滴下注 人法等によりすることカでさる。 透明媒質の層厚は、好ましくは 0· Ol ^ m—lOmm,より好ましくは 0. l ^u m lm mとする。 In the case of an inorganic material, the transparent medium can be formed by a sputtering method, a CVD method, a sol-gel method, or the like. In the case of organic materials, the spin coating method, printing method, dripping method, etc. can be used. The layer thickness of the transparent medium is preferably 0 · Ol ^ m-lOmm, more preferably 0.l ^ umlmm.
[0031] 以下、本発明の色変換部材を形成する各構成部材について説明する。  [0031] Each component forming the color conversion member of the present invention will be described below.
[色変換媒体]  [Color conversion media]
(1)発光微粒子  (1) Luminescent fine particles
本発明で用いる発光微粒子は、無機結晶をナノメートルオーダーまで超微粒子化 した無機ナノクリスタルから構成される。無機ナノクリスタルとしては、可視及び/又は 近紫外光を吸収して可視蛍光を発するものを用いる。透明性が高ぐ散乱損失が小 さいことから、好ましくは粒径が 20nm以下、より好ましくは 10nm以下まで超微粒子 化した無機ナノクリスタルを用いる。  The luminescent fine particles used in the present invention are composed of inorganic nanocrystals in which inorganic crystals are made ultrafine to the nanometer order. As the inorganic nanocrystal, a material that absorbs visible and / or near-ultraviolet light and emits visible fluorescence is used. Since the transparency is high and the scattering loss is small, it is preferable to use inorganic nanocrystals with ultrafine particles having a particle size of 20 nm or less, more preferably 10 nm or less.
無機ナノクリスタルの表面は、後述する透明媒体が樹脂の場合、樹脂への分散性 向上のため、好ましくは相溶化処理される。相溶化処理としては、例えば、長鎖アル キル基、燐酸、樹脂等で表面を修飾又はコーティングする等の処理が挙げられる。  When the transparent medium described later is a resin, the surface of the inorganic nanocrystal is preferably subjected to a compatibilizing treatment in order to improve dispersibility in the resin. Examples of the compatibilizing treatment include a treatment such as modifying or coating the surface with a long-chain alkyl group, phosphoric acid, resin or the like.
[0032] 本発明に用いる無機ナノクリスタルとして、具体的には以下のものが挙げられる。 [0032] Specific examples of the inorganic nanocrystal used in the present invention include the following.
(1 a)金属酸化物に遷移金属イオンをドープしたナノクリスタル蛍光体  (1 a) Nanocrystal phosphor with metal oxide doped with transition metal ions
金属酸化物に遷移金属イオンをドープしたナノクリスタル蛍光体としては、 Y O、 G  Nano crystal phosphors doped with transition metal ions in metal oxides include Y O, G
2 3 d O、 Zn〇、 Y Al O 、 Zn Si〇等の金属酸化物に、 Eu2+、 Eu3+、 Ce3+、 Tb3+2 3 d O, ZnO, Y Al O, ZnSiO, etc., Eu 2+ , Eu 3+ , Ce 3+ , Tb 3+ etc.
2 3 3 5 12 2 4 2 3 3 5 12 2 4
の、可視光を吸収する遷移金属イオンをドープしたものが挙げられる。  And those doped with transition metal ions that absorb visible light.
[0033] (1 b)金属カルコゲナイド物に遷移金属イオンをドープしたナノクリスタル蛍光体 金属カルコゲナイド物に遷移金属イオンをドープしたナノクリスタル蛍光体としては(1 b) Nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions As nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions,
、 ZnS、 CdS、 CdSe等の金属カルコゲナイド化物に、 Eu2+、 Eu3+、 Ce3+、 Tb3+等 の可視光を吸収する遷移金属イオンをドープしたものが挙げられる。 Sや Se等が、後 述するマトリクス樹脂の反応成分により引き抜かれることを防止するため、シリカ等の 金属酸化物や有機物等で表面修飾してもよレ、。 Metal chalcogenides such as ZnS, CdS, and CdSe doped with transition metal ions that absorb visible light, such as Eu 2+ , Eu 3+ , Ce 3+ , and Tb 3+ . In order to prevent S and Se from being pulled out by the reaction components of the matrix resin described later, the surface may be modified with a metal oxide such as silica or an organic substance.
[0034] (1 c)半導体のバンドギャップを利用し、可視光を吸収、発光するナノクリスタル蛍 光体(半導体ナノクリスタル) [0034] (1 c) Nanocrystal phosphor (semiconductor nanocrystal) that absorbs and emits visible light using the semiconductor band gap
半導体ナノクスタルの材料としては、長周期型周期表の IV族元素、 Ila族元素 VI b族元素の化合物、 Ilia族元素 Vb族元素の化合物、 Illb族元素 Vb族元素の化 合物、カルコパライト型化合物からなる結晶を挙げることができる。 The semiconductor nano-kustal materials include group IV elements, group Ila elements VI group elements, group Ilia elements, group Vb elements, and group Illb elements, group Vb elements in the long-period periodic table. The compound and the crystal | crystallization which consists of a chalcopyrite type compound can be mentioned.
[0035] 具体白勺 ίこ (ま、 Si、 Ge、 MgS、 MgSe、 ZnS, ZnSe、 ZnTe、 A1P、 AlAs、 AlSb、 G aP、 GaAs、 GaSb、 CdS、 CdSe、 CdTe、 InP、 InAs、 InSb、 AgAlAs 、 AgAlSe [0035] Concrete Hakuho (Ma, Si, Ge, MgS, MgSe, ZnS, ZnSe, ZnTe, A1P, AlAs, AlSb, GaP, GaAs, GaSb, CdS, CdSe, CdTe, InP, InAs, InSb, AgAlAs, AgAlSe
2 2 twenty two
、 AgAlTe 、 AgGaS 、 AgGaSe 、 AgGaTe 、 AglnS 、 AglnSe 、 AglnTe 、 ZnS , AgAlTe, AgGaS, AgGaSe, AgGaTe, AglnS, AglnSe, AglnTe, ZnS
2 2 2 2 2 2 2 iP 、 ZnSiAs 、 ZnGeP 、 ZnGeAs 、 ZnSnP 、 ZnSnAs 、 ZnSnSb 、 CdSiP 、 C 2 2 2 2 2 2 2 iP, ZnSiAs, ZnGeP, ZnGeAs, ZnSnP, ZnSnAs, ZnSnSb, CdSiP, C
2 2 2 2 2 2 2 2 dSiAs 、 CdGeP 、 CdGeAs 、 CdSnP 、 CdSnAs等の結晶、及びこれらの元素又2 2 2 2 2 2 2 2 Crystals of dSiAs, CdGeP, CdGeAs, CdSnP, CdSnAs, etc.
2 2 2 2 2 2 2 2 2 2
は化合物からなる混晶結晶を挙げることができる。  Can include mixed crystal crystals of the compound.
[0036] 好ましくは、 Si、 A1P、 AlAs、 AlSb、 GaP、 GaAs、 InP、 ZnSe、 ZnTe、 CdS、 Cd Se、 CdTe、 CuGaSe 、 CuGaTe 、 CuInS 、 CuInSe 、 CuInTeであり、直接遷移  [0036] Preferably, Si, A1P, AlAs, AlSb, GaP, GaAs, InP, ZnSe, ZnTe, CdS, Cd Se, CdTe, CuGaSe, CuGaTe, CuInS, CuInSe, CuInTe, direct transition
2 2 2 2 2  2 2 2 2 2
型半導体である ZnSe、 ZnTe、 GaAs、 CdS、 CdTe、 InP、 CuInS 、 CuInSe力  Type semiconductors such as ZnSe, ZnTe, GaAs, CdS, CdTe, InP, CuInS, CuInSe
2 2 発光効率が高レ、とレ、う点でより好ましレ、。  2 2 The luminous efficiency is high, and it is more preferable in terms of points.
[0037] 上記無機ナノクリスタルの中でも、粒径によって発光波長を容易に制御でき、青色 波長域及び近紫外波長域において大きな吸収を持ち、かつ発光域における吸収と 発光の重なり度が大きいことから、好ましくは半導体ナノクリスタルを用いる。  [0037] Among the inorganic nanocrystals, the emission wavelength can be easily controlled by the particle size, and has a large absorption in the blue wavelength range and the near-ultraviolet wavelength range, and the degree of overlap between absorption and emission in the emission range is large. Preferably, a semiconductor nanocrystal is used.
[0038] 以下、半導体ナノクリスタルの機能について説明する。  [0038] The function of the semiconductor nanocrystal will be described below.
特表 2002— 510866号公報等の文献で知られているように、これらの半導体材料 は、バルタ材料(微粒子化していない材料を意味する)では室温で 0. 5〜4. OeV程 度のバンドギャップを有する。これらの材料で微粒子を形成し、その粒径をナノサイズ 化することにより、半導体中の電子がナノクリスタル中に閉じ込められる。その結果、 ナノクリスタルでのバンドギャップが大きくなる。  As known in documents such as JP 2002-510866, these semiconductor materials are bandages of 0.5 to 4. OeV at room temperature for Balta materials (meaning non-particulate materials). Has a gap. By forming fine particles with these materials and making the particle size nanosized, electrons in the semiconductor are confined in the nanocrystal. As a result, the band gap in the nanocrystal increases.
[0039] バンドギャップの大きくなる幅は、理論的には、半導体微粒子の粒径の二乗に反比 例することが知られている。そこで、半導体微粒子の粒径を制御することにより、バン ドギャップを制御すること力 Sできる。これらの半導体は、バンドギャップに相当する波 長より小さな波長の光を吸収し、バンドギャップに相当する波長の蛍光を発する。  [0039] It is known that the width in which the band gap increases is theoretically inversely proportional to the square of the particle diameter of the semiconductor fine particles. Therefore, it is possible to control the band gap by controlling the particle size of the semiconductor particles. These semiconductors absorb light having a wavelength shorter than the wavelength corresponding to the band gap, and emit fluorescence having a wavelength corresponding to the band gap.
[0040] バルタ半導体のバンドギャップとしては、好ましくは 20°Cで 1. 0eV〜3. OeVである 。 1. OeVを下回ると、ナノクリスタル化したときに、粒径の変化に対して蛍光波長が敏 感にシフトしすぎるため、製造管理が難しいという点で好ましくない。また、 3. OeVを 上回ると、近紫外領域より短い波長の蛍光しか発せず、カラー発光装置として応用し にくいとレ、う点で好ましくなレ、。 [0040] The band gap of the Balta semiconductor is preferably 1.0 eV to 3. OeV at 20 ° C. 1. Below OeV, when nanocrystallized, the fluorescence wavelength shifts too sensitively to changes in particle size, which is not preferable in terms of difficulty in production control. Also, when it exceeds 3. OeV, it emits only fluorescence with a wavelength shorter than the near ultraviolet region, and it can be applied as a color light emitting device. If it ’s difficult, it ’s a good point.
[0041] 半導体ナノクリスタルは、公知の方法、例えば、米国特許 6, 501 , 091号公報記載 の方法により製造できる。この公報に記載されている製造例として、トリオクチルフォス フィン (TOP)にセレン化トリオクチルフォスフィンとジメチルカドニゥムを混合した前駆 体溶液を 350°Cに加熱したトリオクチルフォスフィンオキサイド (TOPO)に投入する 方法がある。 [0041] The semiconductor nanocrystal can be produced by a known method, for example, a method described in US Pat. No. 6,501,091. As a production example described in this publication, trioctylphosphine oxide (TOPO) obtained by heating a precursor solution in which trioctylphosphine (TOP) is mixed with trioctylphosphine selenide and dimethylcadmium to 350 ° C is used. ).
[0042] 上記半導体ナノクリスタルは、好ましくは半導体ナノクリスタルからなるコア粒子と、 コア粒子に用いる半導体材料よりもバンドギャップの大きな半導体材料からなる少な くとも 1層以上のシェル層とからなる、コア'シェル型半導体ナノクリスタルである。これ は、例えば CdSe (バンドギャップ: 1. 74eV)からなるコア微粒子の表面を、 ZnS (ノ ンドギャップ: 3. 8eV)のような、バンドギャップの大きな半導体材料のシェルで被覆 した構造を有する。これにより、コア微粒子内に発生する励起子の閉じ込め効果を発 現しやすくなる。上記の半導体ナノクリスタルの具体例では、 Sや Se等が、後述する 透明媒体中の活性成分 (未反応のモノマーや水分等)により引き抜かれ、ナノクリスタ ルの結晶構造が壊れ、蛍光性が消滅するという現象がおきやすい。そこで、これを防 止するため、シリカ等の金属酸化物や有機物等で表面修飾してもよい。  [0042] The semiconductor nanocrystal preferably includes a core particle made of a semiconductor nanocrystal, and a core layer made of a semiconductor material having a band gap larger than that of the semiconductor material used for the core particle. 'Shell-type semiconductor nanocrystal. This has a structure in which, for example, the surface of a core fine particle made of CdSe (band gap: 1.74 eV) is coated with a shell of a semiconductor material having a large band gap, such as ZnS (node gap: 3.8 eV). This facilitates the confinement effect of excitons generated in the core fine particles. In the specific examples of semiconductor nanocrystals described above, S, Se, etc. are pulled out by the active components (unreacted monomers, moisture, etc.) in the transparent medium described later, the crystal structure of the nanocrystals is broken, and the fluorescence disappears It is easy to happen. In order to prevent this, the surface may be modified with a metal oxide such as silica or an organic substance.
[0043] コア ·シェル型半導体のナノクリスタルは、公知の方法、例えば、米国特許 6, 501 , 091号公報に記載の方法により製造できる。例えば、 CdSeコア/ ZnSシェル構造の 場合、 TOPにジェチル亜鉛とトリメチルシリルサルファイドを混合した前駆体溶液を、 CdSeコア粒子を分散した TOPO液を 140°Cに加熱したものに投入することで製造 できる。  [0043] The core-shell type semiconductor nanocrystal can be produced by a known method, for example, the method described in US Pat. No. 6,501,091. For example, in the case of a CdSe core / ZnS shell structure, it can be produced by introducing a precursor solution in which jethyl zinc and trimethylsilyl sulfide are mixed with TOP into a TOPO liquid in which CdSe core particles are dispersed and heated to 140 ° C.
[0044] また、励起子を形成するキャリアが、コアとシェルの間で分離される、いわゆる Type [0044] Also, the carrier forming excitons is separated between the core and the shell, so-called Type
II型ナノクリスタノレ (J. Am. Chem. Soc. , Vol. 125, No. 38, 2003, pl l466 - lType II nanocrystallinole (J. Am. Chem. Soc., Vol. 125, No. 38, 2003, pl l466-l
1467)を用いることもできる。 1467) can also be used.
さらに、コア上に 2層以上の層構造を積層し、マルチシェル構造とし、安定性や発 光効率、発光波長の調整を改良したナノクリスタル (Angewandte Chemie, Vol. In addition, a nanocrystal (Angewandte Chemie, Vol. 2) with a multi-shell structure by laminating two or more layers on the core to improve stability, light emission efficiency, and emission wavelength adjustment.
115, 2003, p5189— 5193) を ffllヽても J:レヽ 0 115, 2003, p5189- 5193) even when the ffllヽJ: Rere 0
[0045] 尚、上記の発光微粒子は、一種単独で使用してもよぐまた、二種以上を組み合わ せて使用してもよい。 [0045] The above light-emitting fine particles may be used alone or in combination of two or more. May be used.
本発明において、特に適しているのは、蛍光の発光ピーク波長が、 470〜550nm の無機発光微粒子であって、後述するカラーフィルタとの組合せで、良好な結果を得 ること力 Sでさる。  Particularly suitable in the present invention are inorganic light-emitting fine particles having an emission peak wavelength of fluorescence of 470 to 550 nm, and the ability S to obtain good results in combination with a color filter described later.
[0046] (2)透明媒体 [0046] (2) Transparent medium
透明媒体は、無機ナノクリスタルを分散 ·保持する媒体であり、ガラスや透明樹脂等 の透明材料を選ぶことができる。特に、色変換媒体の加工性の観点から、非硬化型 樹脂、熱硬化型樹脂又は光硬化型樹脂等の樹脂が好適に用いられる。  The transparent medium is a medium for dispersing and holding inorganic nanocrystals, and a transparent material such as glass or transparent resin can be selected. In particular, from the viewpoint of workability of the color conversion medium, a resin such as a non-curable resin, a thermosetting resin, or a photocurable resin is preferably used.
具体的には、オリゴマー又はポリマー形態のメラミン樹脂,フエノール樹脂,アルキ ド樹脂,エポキシ樹脂,ポリウレタン樹脂,マレイン酸樹脂,ポリアミド系樹脂,ポリメチ ノレメタタリレート,ポリアタリレート,ポリカーボネート,ポリビュルアルコール,ポリビニ ノレピロリドン,ヒドロキシェチルセルロース,カルボキシメチルセルロール等及びこれら を形成するモノマーを構成成分とする共重合体が挙げられる。  Specifically, oligomeric or polymeric melamine resin, phenolic resin, alkyd resin, epoxy resin, polyurethane resin, maleic acid resin, polyamide resin, polymethylol methacrylate, polyacrylate, polycarbonate, polybulualcohol, Examples thereof include polyvinyl pyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose, and the like, and copolymers having monomers forming them as constituent components.
[0047] 色変換媒体をパターユングする目的で、光硬化型樹脂を使用することができる。光 硬化型樹脂としては、通常、感光剤を含む、反応性ビュル基を有するアクリル酸、メタ クリル酸系の光重合型や、ポリケィ皮酸ビュル等の光架橋型等が用いられる。尚、感 光剤を含まなレ、場合は、熱硬化型のものを用いてもよ!/、。 [0047] For the purpose of patterning the color conversion medium, a photocurable resin can be used. As the photocurable resin, a photopolymerization type such as acrylic acid having a reactive bur group or a methacrylic acid-based photopolymerization type or a polycacinic acid bur is generally used. In addition, if it contains no photosensitizer, a thermosetting type may be used!
[0048] 尚、フルカラーディスプレイにおいては、互いに分離した蛍光体層をマトリクス状に 配置した色変換媒体を形成する。このため、マトリクス樹脂 (透明媒体)としては、フォ トリソグラフィ一法を適用できる光硬化型樹脂を使用することが好ましい。 [0048] In a full color display, a color conversion medium is formed in which phosphor layers separated from each other are arranged in a matrix. For this reason, as the matrix resin (transparent medium), it is preferable to use a photocurable resin to which a photolithography method can be applied.
また、これらのマトリクス樹脂は、一種類の樹脂を単独で用いてもよいし、複数種類 を混合して用いてもよい。  In addition, as these matrix resins, one kind of resin may be used alone, or a plurality of kinds may be mixed and used.
また、感光剤を含まない場合は、スクリーン印刷等の印刷により、発光パターンを形 成することあでさる。  If no photosensitizer is included, a light-emitting pattern can be formed by printing such as screen printing.
[0049] (3)色変換媒体の作製 [0049] (3) Production of color conversion medium
色変換媒体の作製は、発光微粒子とマトリクス樹脂 (透明媒体)を、ミル法や超音波 分散法等の公知の方法を用いて、混合 ·分散した分散液を使用することによって行う 。この際、マトリクス樹脂の良溶媒を用いることができる。この発光微粒子分散液を、 公知の成膜方法、例えば、スピンコート法、スクリーン印刷法等によって、支持基板上 に成膜し、色変換媒体を作製する。 The color conversion medium is produced by using a dispersion obtained by mixing and dispersing luminous particles and matrix resin (transparent medium) using a known method such as a mill method or an ultrasonic dispersion method. At this time, a good solvent for the matrix resin can be used. This luminous fine particle dispersion is A color conversion medium is produced by forming a film on a support substrate by a known film formation method, for example, a spin coating method, a screen printing method, or the like.
尚、本発明の目的を害さない範囲において、色変換媒体には、発光微粒子と透明 媒体の他に、紫外線吸収剤、分散剤、レべリング剤等を添加してもよい。  In addition, in the range which does not impair the object of the present invention, an ultraviolet absorber, a dispersant, a leveling agent and the like may be added to the color conversion medium in addition to the luminescent fine particles and the transparent medium.
[0050] [カラーフィルタ] [0050] [Color filter]
カラーフィルタは、発光の色を所望の色に調整する他、太陽光や室内照明光等、 発光装置の外部から入射する光によって色変換媒体が蛍光を発したり、入射光が反 射電極で反射して、再出射することで、コントラスト比、即ち発光装置が発光状態にあ るときと非発光状態にあるときの明るさの比力 氐下することを防止すること力できる。  The color filter adjusts the color of emitted light to a desired color, and the color conversion medium emits fluorescence by light incident from the outside of the light emitting device, such as sunlight or indoor illumination light, or incident light is reflected by the reflective electrode. Thus, by re-emission, it is possible to prevent a reduction in contrast ratio, that is, the specific power of brightness when the light emitting device is in a light emitting state and in a non-light emitting state.
[0051] 本発明に用いられるカラーフィルタとしては、例えば、下記の色素のみ又は、色素 をバインダー樹脂中に溶解又は分散させた固体状態のものを挙げることができる。 赤色 (R)色素:ペリレン系顔料、レーキ顔料、ァゾ系顔料等  [0051] Examples of the color filter used in the present invention include the following dyes alone or those in a solid state in which a dye is dissolved or dispersed in a binder resin. Red (R) dye: Perylene pigment, lake pigment, azo pigment, etc.
緑色(G)色素:ハロゲン多置換フタロシアニン系顔料、ハロゲン多置換銅フタロシア ニン系顔料、トリフェルメタン系塩基性染料等  Green (G) dyes: Halogen polysubstituted phthalocyanine pigments, halogen polysubstituted copper phthalocyanine pigments, trifelmethane basic dyes, etc.
青色(B)色素:銅フタロシアニン系顔料、インダンスロン系顔料、インドフエノール系 顔料、シァニン系顔料等  Blue (B) dye: Copper phthalocyanine pigment, indanthrone pigment, indophenol pigment, cyanine pigment, etc.
[0052] 一方、バインダー樹脂は、透明な(可視光透過率 50%以上)材料が好ましい。例え ば、ポリメチルメタタリレート、ポリアタリレート、ポリカーボネート、ポリビュルアルコー ノレ、ポリビニルピロリドン、ヒドロキシェチノレセノレロース、カノレポキシメチノレセノレロース 等の透明樹脂(高分子)や、フォトリソグラフィ一法が適用できる感光性樹脂として、ァ クリル酸系、メタクリル酸系等の反応性ビュル基を有する光硬化型レジスト材料が挙 げられる。また、印刷法を用いる場合には、ポリ塩化ビュル樹脂、メラミン樹脂、フエノ ール樹脂等の透明な樹脂を用いた印刷インキ (メジゥム)が選ばれる。  [0052] On the other hand, the binder resin is preferably a transparent material (visible light transmittance of 50% or more). For example, transparent resins (polymers) such as polymethylmethacrylate, polyacrylate, polycarbonate, polybutyl alcohol, polyvinylpyrrolidone, hydroxyethinoresenorelose, canolepoxymethinoresolerose, etc. Examples of the photosensitive resin to which the method can be applied include photocurable resist materials having a reactive bur group such as acrylic acid or methacrylic acid. When the printing method is used, a printing ink (medium) using a transparent resin such as polychlorinated bur resin, melamine resin, or phenol resin is selected.
[0053] カラーフィルタが主に色素からなる場合は、所望のカラーフィルタパターンのマスク を介して真空蒸着又はスパッタリング法で成膜され、一方、色素とバインダー樹脂か らなる場合は、蛍光色素と上記樹脂及びレジストを混合、分散又は可溶化させ、スピ ンコート、ロールコート、キャスト法等の方法で製膜し、フォトリソグラフィ一法で所望の カラーフィルタパターンでパターユングしたり、印刷等の方法で所望のカラーフィルタ のパターンでパターユングするのが一般的である。 [0053] When the color filter is mainly composed of a dye, the film is formed by vacuum deposition or sputtering through a mask of a desired color filter pattern. On the other hand, when the color filter is composed of a dye and a binder resin, the fluorescent dye and the above-described dye are formed. Resin and resist are mixed, dispersed, or solubilized, formed into a film by a method such as spin coating, roll coating, or casting, and patterned with a desired color filter pattern by a photolithography method or desired by a method such as printing. Color filter It is common to pattern with this pattern.
[0054] 本発明のカラーフィルタは、上述したように、透過帯域の幅が 70nm以上である。力 ラーフィルタの透過帯域の調整は、例えば、短波長側に吸収を持ち、長波長側の光 を透過させるような黄色顔料 (例えば、 PY138、 BASF社製)と、短波長側と長波長 側の両方に吸収を持つような緑色顔料 (例えば、 PG7、 BASF社製)とを、適宜組み 合わせることで実施できる。 [0054] As described above, the color filter of the present invention has a transmission band width of 70 nm or more. The adjustment of the transmission band of the power filter is, for example, a yellow pigment that absorbs light on the short wavelength side and transmits light on the long wavelength side (for example, PY138, manufactured by BASF), short wavelength side, and long wavelength side It can be carried out by appropriately combining with a green pigment having absorption in both (for example, PG7, manufactured by BASF).
[実施例]  [Example]
[0055] 以下、実施例をもとに本発明を詳細に説明するが、本発明はその要旨を越えない 限り、以下の実施例に限定されない。  [0055] Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the following examples unless it exceeds the gist.
[0056] 製造例 1 [光源 (有機 EL素子)の作製] [0056] Production Example 1 [Production of light source (organic EL element)]
下記の構成を有する有機 EL素子を作製した。尚、カツコ内の数値は膜厚である。ま た、使用した化合物の構造を以下に示す。  An organic EL device having the following configuration was fabricated. In addition, the numerical value in Katsuko is a film thickness. The structure of the compound used is shown below.
素子構成:ガラス基板(0· 7mm) /ITO (インジウム錫酸化物)(130nm) /HT1 (6 Onm) /HT2 (20nm) /BH: BD ( (40: 2) 42nm) /Alq (20nm) /LiF (lnm) / Al (150nm)  Device configuration: Glass substrate (0 · 7mm) / ITO (indium tin oxide) (130nm) / HT1 (6 Onm) / HT2 (20nm) / BH: BD ((40: 2) 42nm) / Alq (20nm) / LiF (lnm) / Al (150nm)
[0057] [化 1] [0057] [Chemical 1]
Figure imgf000016_0001
Figure imgf000016_0001
HT 2 HT HT 2 HT
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0002
A 1 q A 1 q
[0058] 厚み 0· 7mmのガラス基板上に、 ITOをスパッタリングにより 130nmの厚みになるよ うに製膜した。この基板をイソプロピルアルコール中で超音波洗浄を 5分間行ったの ち、 UVオゾン洗浄を 30分行い、その後この ITO電極付き基板を真空蒸着装置の基 板ホルダーに装着した。 [0058] On a glass substrate having a thickness of 0.7 mm, ITO was deposited to a thickness of 130 nm by sputtering. This substrate was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes, and then the substrate with the ITO electrode was mounted on the substrate holder of the vacuum deposition apparatus.
[0059] 予め、それぞれのモリブデン製の加熱ボートに、上記材料をそれぞれ装着した。  [0059] Each of the above materials was mounted on each molybdenum heating boat in advance.
まず、正孔注入層として機能する HT1膜を膜厚 60nmで成膜し、次いで正孔輸送 層として機能する HT2膜を膜厚 20nmで成膜し、次!/、で有機発光層の有機発光媒 体層として、化合物 BHと化合物 BDを 40 : 2の膜厚比となるように膜厚 42nmで共蒸 着した。この膜上に電子輸送材料層として Alq膜を膜厚 20nmで成膜し、さらに電子 注入層として LiF膜を lnm製膜し、その後、陰極として A1を 150nm蒸着し、有機 EL 素子を作製した。  First, an HT1 film that functions as a hole injection layer is formed at a thickness of 60 nm, and then an HT2 film that functions as a hole transport layer is formed at a thickness of 20 nm. As a medium layer, Compound BH and Compound BD were co-deposited at a film thickness of 42 nm so as to have a film thickness ratio of 40: 2. On this film, an Alq film was formed as an electron transport material layer with a thickness of 20 nm, a LiF film was formed as an electron injection layer with a thickness of 1 nm, and then A1 was deposited as a cathode with a thickness of 150 nm to produce an organic EL device.
[0060] この素子に電圧を印加し、分光放射輝度計にて、青色有機 EL素子の lOmA/cm — 2における電流効率と、発光色を測定した。その結果、電流効率 7. 9cd/A、 CIE 色座標(0. 135, 0. 198)の青色発光を得た。 [0060] A voltage was applied to the device, and the current efficiency and emission color of lOmA / cm- 2 of the blue organic EL device were measured with a spectral radiance meter. As a result, current efficiency 7.9cd / A, CIE Blue emission with color coordinates (0.135, 0.198) was obtained.
[0061] 製造例 2 [カラーフィルタの作製] [0061] Production Example 2 [Preparation of color filter]
緑色カラーフィルタの有機顔料として、表 1の 4種を使用した。これら顔料をアタリノレ 系ネガ型フォトレジスト (V259PA、固形分濃度 50%:新日鉄化学社製)に溶解させ たインキを調製した。このインキを、ガラス基板上にスピンコートし、紫外線露光し、 2 %炭酸ナトリウム水溶液で現像後、 200°Cでべークして、緑色変換膜のパターン(膜 厚 1. 5 111)を形成した。インキの有機顔料の配合を調製して、表 1に示す 4種のカラ ーフイノレタ(CF;!〜 CF4)を作製した。  As organic pigments for the green color filter, the four types shown in Table 1 were used. An ink was prepared by dissolving these pigments in an Atalinole negative photoresist (V259PA, solid content concentration 50%: manufactured by Nippon Steel Chemical Co., Ltd.). This ink is spin-coated on a glass substrate, exposed to ultraviolet light, developed with a 2% aqueous sodium carbonate solution, and baked at 200 ° C to form a green conversion film pattern (film thickness 1.5 111). did. The formulation of the organic pigment of the ink was prepared, and four kinds of colorinoleta (CF;! To CF4) shown in Table 1 were prepared.
表 1にカラーフィルタの顔料組成、膜厚、透過率が 50%以上となる透過帯域の幅、 及び透過率が 50%となる短波長端の波長を示す。  Table 1 shows the pigment composition of the color filter, the film thickness, the width of the transmission band where the transmittance is 50% or more, and the wavelength at the short wavelength end where the transmittance is 50%.
尚、透過帯域及びその幅は、紫外 可視分光光度計にてカラーフィルタの透過率 スペクトルを測定し、決定した。図 9に各カラーフィルタの透過率スペクトルを示す。  The transmission band and its width were determined by measuring the transmittance spectrum of the color filter with an ultraviolet-visible spectrophotometer. Figure 9 shows the transmittance spectrum of each color filter.
[0062] [表 1] [0062] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
PG7 :^ ¾, BASFTO  PG7: ^ ¾, BASFTO
PY138 : ¾ ^料、 B AS F  PY138: ¾ ^ fee, B AS F
PY150 :¾®料、 LANXESS棚  PY150: ¾® fee, LANXESS shelf
PY 139 :有賺枓、 CLAR I ANTftM 実施例 1  PY 139: Arisa, CLAR I ANTftM Example 1
色変換媒体の材料として以下のものを使用した。  The following materials were used as materials for the color conversion medium.
(a)発光微粒子  (a) Luminescent fine particles
発光微粒子としては、 CdSeのコア(径 3. 9nm)に、 ZnSのシェルを付けたコアシェ ル型半導体ナノクリスタルを用いた。蛍光ピーク波長は 525nm、発光半値幅は 30η mであった。 As the light-emitting fine particles, a core-shell type semiconductor nanocrystal with a ZnS shell attached to a CdSe core (diameter 3.9 nm) was used. Fluorescence peak wavelength is 525nm, emission half width is 30η m.
(b)発光微粒子を分散保持するための透明媒体溶液  (b) Transparent medium solution for dispersing and holding luminescent particles
透明媒体としては、メタクリル酸ーメタクリル酸メチル共重合体 (メタクリル酸共重合 匕 = 15〜200/0, Mw= 20, 000—25, 000、屈折串 1. 60)を用レヽ、これを 1ーメ卜 キシ 2—ァセトキシプロパンに溶解して、透明媒体溶液とした。 As the transparent medium, methacrylic acid-methyl methacrylate copolymer (methacrylic acid copolymer spoon = 15~20 0/0, Mw = 20, 000-25, 000, refractive skewer 1.60) use the Rere, which 1 Dissolved in methoxy-2-acetoxypropane to give a clear medium solution.
[0064] (1)色変換基板の作製 [0064] (1) Fabrication of color conversion substrate
上記の発光微粒子を、膜中固形分濃度が 5. 0 X 10— 3mol/Lになるよう透明媒体 溶液に投入し、分散処理を行った。 The above light-emitting particles, the solids concentration in the film 5. put into 0 X 10- 3 mol / transparent medium solution so that L, and was subjected to dispersion treatment.
この分散液を製造例 2で作製した緑色カラーフィルタ基板(CF1)のカラーフィルタ 膜上に、スピンコート法により製膜し、 200°C30分の乾燥処理を行い、厚さが 20 111 の色変換媒体を製膜し、色変換基板 (CCM1)を得た。  This dispersion is formed on the color filter film of the green color filter substrate (CF1) prepared in Production Example 2 by spin coating, dried at 200 ° C for 30 minutes, and converted to a color with a thickness of 20 111 The medium was formed into a film to obtain a color conversion substrate (CCM1).
尚、評価用に、色変換基板での成膜と同様にしてガラス基板上に色変換媒体を成 膜した。この色変換媒体の吸収スペクトルを、紫外-可視分光光度計にて測定した。  For evaluation, a color conversion medium was formed on a glass substrate in the same manner as the film formation on the color conversion substrate. The absorption spectrum of this color conversion medium was measured with an ultraviolet-visible spectrophotometer.
[0065] (2)評価 [0065] (2) Evaluation
製造例 1で作製した有機 EL素子のガラス基板側(光取り出し側)と、上記(1)で作 製した色変換基板の色変換媒体層が対向するように、屈折率 1. 53のシリコーンオイ ルを介して貼り合せ、発光装置とした。  Silicone oil with a refractive index of 1.53 so that the glass substrate side (light extraction side) of the organic EL device produced in Production Example 1 and the color conversion medium layer of the color conversion substrate produced in (1) above face each other. A light-emitting device was obtained by pasting them together.
有機 EL素子が 150 [nit]で発光する条件で、色変換基板からの発光輝度 (輝度: A[nit])を測定した。  The light emission luminance (luminance: A [nit]) from the color conversion substrate was measured under the condition that the organic EL device emits light at 150 [nit].
また、有機 EL素子が消灯状態で蛍光灯照明下(5001x)での、色変換基板からの 反射光輝度 (輝度 B[nit])を測定し、その比 (A/B)からコントラスト比を求めた。 その結果、有機 EL素子点灯時の発光輝度は 218nit、有機 EL素子消灯時 (蛍光 灯照明下)の発光輝度は 0. 59nitであり、コントラスト比は 370と良好であった。尚、 カラーフィルタ(CF1)の透過率が 50%となる短波長端の波長(480nm)における、 色変換媒体の吸光度は 0. 571であった。  Also, the brightness of reflected light (brightness B [nit]) from the color conversion board under fluorescent lighting (5001x) with the organic EL element turned off is measured, and the contrast ratio is obtained from the ratio (A / B). It was. As a result, the emission luminance when the organic EL element was turned on was 218 nits, the emission luminance when the organic EL element was turned off (under fluorescent lighting) was 0.59 nits, and the contrast ratio was 370. The absorbance of the color conversion medium at the short wavelength end wavelength (480 nm) at which the transmittance of the color filter (CF1) is 50% was 0.571.
実施例 1及び後述する各例で作製した色変換基板の構成及び評価結果を表 2に 示す。  Table 2 shows the configuration and evaluation results of the color conversion substrate prepared in Example 1 and each example described later.
[0066] [表 2]
Figure imgf000020_0001
実施例 2
[0066] [Table 2]
Figure imgf000020_0001
Example 2
カラーフィルタ(CF1)に代えてカラーフィルタ(CF2)を使用した他は、実施例 1と同 様にして色変換基板を作製し、評価した。  A color conversion substrate was prepared and evaluated in the same manner as in Example 1 except that the color filter (CF2) was used instead of the color filter (CF1).
その結果、有機 EL素子点灯時の発光輝度は 210nit、有機 EL素子消灯時の発光 輝度は 0. 57nitであり、コントラスト比は 370と、良好であった。尚、カラーフィルタ(C F2)の透過率が 50%となる短波長端の波長(486nm)における、色変換媒体の吸光 度は 0. 670であった。 As a result, the light emission brightness when the organic EL element is on is 210 nits, and the light emission when the organic EL element is off The brightness was 0.57 nit and the contrast ratio was 370, which was good. The absorbance of the color conversion medium at the short wavelength end wavelength (486 nm) at which the transmittance of the color filter (C F2) is 50% was 0.670.
[0068] 実施例 3 [0068] Example 3
カラーフィルタ(CF1)に代えてカラーフィルタ(CF3)を使用した他は、実施例 1と同 様にして色変換基板を作製し、評価した。  A color conversion substrate was prepared and evaluated in the same manner as in Example 1 except that the color filter (CF3) was used instead of the color filter (CF1).
その結果、有機 EL素子点灯時の発光輝度は 198nit、有機 EL素子消灯時の発光 輝度は 0. 57nitであり、コントラスト比は 350と、実施例 1 , 2に比べるとやや低下した ものの、良好であった。尚、カラーフィルタ(CF3)の透過率が 50%となる短波長端の 波長(503nm)における色変換媒体の吸光度は、 1. 07であった。  As a result, the emission brightness when the organic EL element was turned on was 198 nits, the emission brightness when the organic EL element was turned off was 0.57 nits, and the contrast ratio was 350, which was slightly lower than in Examples 1 and 2, but was good. there were. The absorbance of the color conversion medium at the wavelength (503 nm) at the short wavelength end where the transmittance of the color filter (CF3) is 50% was 1.07.
[0069] 比較例 1 [0069] Comparative Example 1
カラーフィルタ(CF1)に代えてカラーフィルタ(CF4)を使用した他は、実施例 1と同 様にして色変換基板を作製し、評価した。  A color conversion substrate was prepared and evaluated in the same manner as in Example 1 except that the color filter (CF4) was used instead of the color filter (CF1).
その結果、有機 EL素子点灯時の発光輝度は 172nitに低下し、有機 EL素子消灯 時の発光輝度は 0. 57nitであり、コントラスト比も 300に低下した。尚、カラーフィルタ (CF4)の透過率が 50%となる短波長端の波長(522nm)における、色変換媒体の 吸光度は 0. 728であった。  As a result, the emission luminance when the organic EL element was turned on decreased to 172 nits, the emission luminance when the organic EL element was turned off was 0.57 nits, and the contrast ratio also decreased to 300. The absorbance of the color conversion medium at the short wavelength end wavelength (522 nm) at which the transmittance of the color filter (CF4) was 50% was 0.728.
[0070] 比較例 2 [0070] Comparative Example 2
(1)色変換基板の作製  (1) Fabrication of color conversion board
発光微粒子を、膜中固形分濃度が 1. 0 X 10— 2mol/Lになるよう透明媒体溶液に 投入し、分散処理を行った。 The luminescent particles, solid content concentration in the film 1. put into 0 X 10- 2 mol / transparent medium solution so that L, and was subjected to dispersion treatment.
この分散液を製造例 2で作製した緑色カラーフィルタ基板(CF2)のカラーフィルタ 膜上に、スピンコート法により製膜し、 200°Cで 30分の乾燥処理を行い、厚さが 20 mの色変換媒体を製膜し、色変換基板 (CCM2)を得た。  This dispersion was formed on the color filter film of the green color filter substrate (CF2) prepared in Production Example 2 by spin coating, and dried at 200 ° C for 30 minutes. A color conversion medium was formed into a film to obtain a color conversion substrate (CCM2).
尚、評価用に、色変換基板での成膜と同様にしてガラス基板上に色変換媒体を成 膜した。この色変換媒体の吸収スペクトルを、紫外-可視分光光度計にて測定した。  For evaluation, a color conversion medium was formed on a glass substrate in the same manner as the film formation on the color conversion substrate. The absorption spectrum of this color conversion medium was measured with an ultraviolet-visible spectrophotometer.
[0071] (2)評価 [0071] (2) Evaluation
実施例 1と同様にして発光装置を形成し、評価した。 その結果、有機 EL素子点灯時の発光輝度は lOOnitに低下し、有機 EL素子消灯 時の発光輝度は 0. 48nitであり、コントラスト比も 210に低下した。尚、カラーフィルタ (CF2)の透過率が 50%となる短波長端の波長(486nm)における、色変換媒体の 吸光度は 2. 68であった。 A light emitting device was formed and evaluated in the same manner as in Example 1. As a result, the light emission luminance when the organic EL element was turned on decreased to lOOnit, the light emission luminance when the organic EL element was turned off was 0.48 nit, and the contrast ratio also decreased to 210. The absorbance of the color conversion medium at the short wavelength (486 nm) at which the transmittance of the color filter (CF2) was 50% was 2.68.
[0072] 比較例 3 [0072] Comparative Example 3
色変換基板の作製において、発光微粒子を、膜中固形分濃度が 5. 0 X 10— 4mol /Lになるよう透明媒体溶液に投入し、分散処理を行った他は、比較例 2と同様にし て色変換基板(CCM3)を作製し、評価した。 In the preparation of the color conversion substrate, a light-emitting particles, the solids concentration in the film was put in a transparent medium solution so that a 5. 0 X 10- 4 mol / L , except that was distributed processing, similarly to Comparative Example 2 A color conversion substrate (CCM3) was prepared and evaluated.
その結果、有機 EL素子点灯時の発光輝度は 122nitに低下し、有機 EL素子消灯 時の発光輝度は 0. 64nitであり、コントラスト比も 190に低下した。尚、カラーフィルタ (CF2)の透過率が 50%となる短波長端の波長(486nm)における、色変換媒体の 吸光度は 0. 04であった。  As a result, the emission luminance when the organic EL element was turned on decreased to 122 nits, the emission luminance when the organic EL element was turned off was 0.64 nits, and the contrast ratio also decreased to 190. The absorbance of the color conversion medium was 0.04 at the short wavelength (486 nm) at which the transmittance of the color filter (CF2) was 50%.
産業上の利用可能性  Industrial applicability
[0073] 本発明の色変換基板は、有機 EL素子、発光ダイオード等の各種光源と組み合わ せて発光装置を形成する部材として好適に使用できる。特に、有機 EL素子用の色 変換基板として好適である。 [0073] The color conversion substrate of the present invention can be suitably used as a member for forming a light-emitting device in combination with various light sources such as an organic EL element and a light-emitting diode. In particular, it is suitable as a color conversion substrate for organic EL elements.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも無機ナノクリスタル発光微粒子を含んでなる色変換媒体と、  [1] a color conversion medium comprising at least inorganic nanocrystal luminescent particles;
前記色変換媒体の片面側に、透過率が 0. 5以上となる透過帯域の幅が 70nm以 上であるカラーフィルタとを有し、  A color filter having a transmission band width of 70 nm or more on one side of the color conversion medium having a transmittance of 0.5 or more;
前記カラーフィルタの、透過率が 0. 5となる短波長側の透過帯域端の波長におけ る、前記色変換媒体の吸光度が 0. 1以上 2以下である色変換基板。  A color conversion substrate, wherein the color conversion medium has an absorbance of 0.1 or more and 2 or less at a wavelength at a transmission band edge on a short wavelength side where the transmittance of the color filter is 0.5.
[2] 前記色変換媒体が、透明媒体と、前記透明媒体に分散した無機ナノクリスタル発光 微粒子からなる、請求項 1記載の色変換基板。 2. The color conversion substrate according to claim 1, wherein the color conversion medium is composed of a transparent medium and inorganic nanocrystal luminescent fine particles dispersed in the transparent medium.
[3] 前記無機ナノクリスタル発光微粒子力 半導体ナノクリスタルである請求項 1又は 2 記載の色変換基板。 [3] The color conversion substrate according to [1] or [2], wherein the inorganic nanocrystal luminescent fine particle force is a semiconductor nanocrystal.
[4] 前記カラーフィルタの透過帯域の幅カ 、 70nm以上 120nm以下である請求項 1〜  [4] The transmission band width of the color filter is not less than 70 nm and not more than 120 nm.
3の!/、ずれかに記載の色変換基板。  3! /, The color conversion board described in the gap.
[5] 前記カラーフィルタの透過帯域の幅カ、 80nm以上 l lOnm以下である請求項 1〜 [5] The transmission band width of the color filter is not less than 80 nm and not more than lOnm.
3の!/、ずれかに記載の色変換基板。  3! /, The color conversion board described in the gap.
[6] 発光ピーク波長が 470〜550nmの範囲にある緑色色変換基板である請求項 1〜5 の!/、ずれかに記載の色変換基板。 6. The color conversion substrate according to any one of claims 1 to 5, which is a green color conversion substrate having an emission peak wavelength in the range of 470 to 550 nm.
[7] 少なくともひとつの色画素が、請求項;!〜 6のいずれかに記載の色変換基板を含む カラー色変換基板。 [7] A color color conversion substrate, wherein the at least one color pixel includes the color conversion substrate according to any one of claims;! To 6.
PCT/JP2007/067158 2006-09-05 2007-09-04 Color conversion substrate WO2008029775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533151A JPWO2008029775A1 (en) 2006-09-05 2007-09-04 Color conversion board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-239894 2006-09-05
JP2006239894 2006-09-05
US11/557,282 US20080057342A1 (en) 2006-09-05 2006-11-07 Color conversion substrate
US11/557,282 2006-11-07

Publications (1)

Publication Number Publication Date
WO2008029775A1 true WO2008029775A1 (en) 2008-03-13

Family

ID=39157201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067158 WO2008029775A1 (en) 2006-09-05 2007-09-04 Color conversion substrate

Country Status (1)

Country Link
WO (1) WO2008029775A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067601A (en) * 2008-08-15 2010-03-25 Fujifilm Corp Organic el display
WO2023157560A1 (en) * 2022-02-17 2023-08-24 住友化学株式会社 Composition, light-absorbing layer, laminate, and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259687A (en) * 2004-02-13 2005-09-22 Kochi Univ Color conversion filter and organic el display using it
JP2006503418A (en) * 2002-10-18 2006-01-26 アイファイア テクノロジー コーポレーション Color electroluminescence display device
WO2006009039A1 (en) * 2004-07-22 2006-01-26 Idemitsu Kosan Co., Ltd. Color light-emitting device
WO2006022123A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Organic el display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503418A (en) * 2002-10-18 2006-01-26 アイファイア テクノロジー コーポレーション Color electroluminescence display device
JP2005259687A (en) * 2004-02-13 2005-09-22 Kochi Univ Color conversion filter and organic el display using it
WO2006009039A1 (en) * 2004-07-22 2006-01-26 Idemitsu Kosan Co., Ltd. Color light-emitting device
WO2006022123A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Organic el display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067601A (en) * 2008-08-15 2010-03-25 Fujifilm Corp Organic el display
WO2023157560A1 (en) * 2022-02-17 2023-08-24 住友化学株式会社 Composition, light-absorbing layer, laminate, and display device

Similar Documents

Publication Publication Date Title
JPWO2008029775A1 (en) Color conversion board
US7986088B2 (en) Fluorescence conversion medium and color light-emitting device including the same
CN109524525B (en) Inorganic composite light-emitting material, light-emitting film comprising the same, light-emitting diode package, light-emitting diode, and light-emitting device
JPWO2005097939A1 (en) Fluorescence conversion medium and color light emitting device
WO2006100957A1 (en) Color conversion substrate, method for manufacturing same and light-emitting device
WO2017140047A1 (en) Light-emitting device, preparation method therefor and display apparatus
TW200803600A (en) Light emitting device
CN109545832A (en) Organic light-emitting diode display substrate and preparation method thereof, display device
US20070164661A1 (en) Fluorescent conversion medium and color light emitting device
JP2020184544A (en) Semiconductor particles in electronic element
WO2006009039A1 (en) Color light-emitting device
CN110115106A (en) Light-emitting component and the image-displaying member for using it
KR20100035134A (en) Highly efficient organic light emitting device and method for manufacturing the same
KR20100081978A (en) White color light emitting device
WO2009014707A2 (en) Quantum dot light enhancement substrate and lighting device including same
JP7144886B2 (en) Quantum dot color filter ink composition and device using quantum dot color filter ink composition
WO2005109964A1 (en) Organic electroluminescence display device
WO2006008987A1 (en) Organic el display
Um et al. Enhancing efficiency of quantum dot/photoresist nanocomposite using wrinkled silica-quantum dot hybrid particles
WO2009104406A1 (en) Light emitting element and display device using the same
KR20060024545A (en) High-luminance organic light-emitting device displays
JP4406213B2 (en) Organic electroluminescence element, surface light source and display device
WO2008029775A1 (en) Color conversion substrate
KR101549357B1 (en) Highly efficient electroluminescent devices utilizing anisotropic metal nanoparticles
JP5118504B2 (en) Light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533151

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806626

Country of ref document: EP

Kind code of ref document: A1