WO2008029705A1 - Compression force measuring device of flexible linear body - Google Patents

Compression force measuring device of flexible linear body Download PDF

Info

Publication number
WO2008029705A1
WO2008029705A1 PCT/JP2007/066893 JP2007066893W WO2008029705A1 WO 2008029705 A1 WO2008029705 A1 WO 2008029705A1 JP 2007066893 W JP2007066893 W JP 2007066893W WO 2008029705 A1 WO2008029705 A1 WO 2008029705A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear body
hole
measuring device
linear
wall
Prior art date
Application number
PCT/JP2007/066893
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Fujimoto
Akihito Sano
Yoshitaka Nagano
Original Assignee
National University Corporation Nagoya Institute Of Technology
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya Institute Of Technology, Ntn Corporation filed Critical National University Corporation Nagoya Institute Of Technology
Priority to CN2007800325406A priority Critical patent/CN101512312B/en
Priority to EP07806370.8A priority patent/EP2060892B1/en
Priority to US12/439,793 priority patent/US8631713B2/en
Publication of WO2008029705A1 publication Critical patent/WO2008029705A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/226Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0033Force sensors associated with force applying means applying a pulling force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/101Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors inserted into the flexible member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles

Definitions

  • the present invention relates to a force measuring device, and more particularly, to a measuring device for compressive force acting on a flexible linear body.
  • a guide wire or catheter inserted into a body tube such as a blood vessel, ureter, bronchus, gastrointestinal tract, or lymphatic vessel, or a wire with an embolic coil at the tip for embolizing an aneurysm
  • a guide wire or catheter inserted into a body tube such as a blood vessel, ureter, bronchus, gastrointestinal tract, or lymphatic vessel, or a wire with an embolic coil at the tip for embolizing an aneurysm
  • These linear bodies are inserted into a tube inside the body and guided to the target site by operation from outside the body.
  • a tube into which a linear body is inserted is not necessarily straight, but is partially bent or branched.
  • the diameter of the tube is not necessarily constant, and the tube itself may be narrowed, or the diameter of the tube may be narrowed due to an obstruction inside the tube such as a thrombus generated in the blood vessel.
  • it is necessary to rely on the operator's intuition to operate the linear body which is provided by means for detecting the situation ahead of the linear body in the traveling direction, and skilled in guidance operation from outside the body. It was necessary.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-263089
  • Patent Document 1 JP-A-10-263089
  • a device provided with a pressure sensor at the tip of a linear body is difficult to realize, particularly for an extremely thin linear body.
  • the diameter is about 0.35 mm, and it is difficult to provide a small pressure sensor at the tip of such an ultrathin linear body. Further, it is more difficult to pass the wiring through the linear body in order to extract the pressure sensor signal to the outside.
  • the tube into which the linear body is inserted is bent or the diameter of the tube is narrow, the insertion resistance of the linear body is affected by friction with the tube. . Therefore, the output of the pressure sensor provided at the tip of the linear body may not always match the sensation when the operator inserts it.
  • a main object of the present invention is to provide a wire having various materials that can detect the presence of an obstacle inside the tube outside the tube when operating the linear body inserted into the tube. It is to provide a measuring device that can be applied to a shape.
  • a measuring device is a measuring device that measures a compressive force in a longitudinal axis direction acting on a flexible linear body, and has a through-hole through which the linear body passes.
  • the main body is provided, and when the compressive force in the longitudinal axis direction acts on the linear body, the linear body is curved in a predetermined direction inside the through hole.
  • a sensor for detecting the degree of bending of the linear body is provided.
  • a conversion circuit is provided that converts the degree of curvature of the linear body detected by the sensor into a compressive force in the longitudinal axis direction that acts on the linear body.
  • a groove is formed on the inner wall of the through hole so as to penetrate the main body along the through hole.
  • a groove having a width and depth larger than the diameter of the through hole is formed on the inner wall of the through hole.
  • the coil at the tip is stored in the sheath because it is soft, and the sheath is thicker than the wire. Therefore, when inserting a wire with a coil for embolizing an arterial aneurysm into the blood vessel, use a measuring device that forms a groove through which only the sheath containing the coil can pass. Thus, the compressive force in the longitudinal direction acting on the wire can be measured. Because the wire is restricted from moving in the direction other than the longitudinal axis inside the measuring device, it can maintain measurement accuracy. In addition, it is possible to provide a measuring device that can be used without any need to insert the wire into the through hole of the measuring device.
  • the groove is formed along the inner wall of the through hole on the inner side of the linear body in the through hole in which the linear body is curved.
  • the through-hole is formed so that the inner wall of the through-hole on the outside of the curve of the linear body has a width of the groove from the inner wall of the through-hole on the inside of the curve of the linear body. And a distance exceeding the sum of the diameters of the linear bodies and a space.
  • the through hole is formed so as to have a restraining portion that restricts movement of the linear body in a direction other than the longitudinal axis direction at both ends thereof, and the linear body is passed through the through hole to form a linear shape.
  • the linear body and the restraining portion are formed parallel to each other outside the entrance through which the linear body of the main body passes.
  • the length of the constraining part necessary to prevent the measurement accuracy from being degraded is defined by the parallelism between the linear body and the constraining part. Therefore, the length of the restraining portion can be minimized and the measurement apparatus can be miniaturized.
  • the cross-sectional dimension perpendicular to the extending direction of the restraint portion is the same as the cross-sectional dimension of the groove. Become. At this time, if the length of the restraint portion is insufficient, the linear body moves in the restraint portion other than in the longitudinal axis direction, causing a reduction in measurement accuracy. Therefore, even when a groove is formed, the force S can be used to prevent a reduction in measurement accuracy by defining the length of the restraint portion by the parallelism of the linear body and the restraint portion.
  • the through-hole is an inside of the through-hole in which the linear body is curved, and an inner wall of the through-hole on the outer side of the linear body is curved. It is formed so as to form a space away from the inner wall.
  • the through-hole is formed so that the inner wall of the through-hole outside the curve of the linear body has a curved surface shape convex toward the inside of the through-hole. This place
  • the penetrating holes outside the linear body are curved. Since the linear body is curved along the inner wall of the hole, it is possible to prevent the linear body from buckling inside the space. Therefore, the longitudinal compressive force acting on the linear body can be accurately measured over a wide range.
  • the linear body bends due to the compressive force in the longitudinal axis direction acting on the linear body
  • the inner wall force of the through hole on the outside of the linear body curve part of the linear body separates.
  • a through hole is formed.
  • the through hole is formed so that the distance between the contact points, which are the points where the linear body is separated from the inner wall, decreases. In this case, even a linear body with a small buckling load can accurately measure the compressive force in the longitudinal direction acting on the linear body without buckling.
  • the through hole is formed so as to have a restraining portion that restricts movement of the linear body in a direction other than the longitudinal axis direction at both ends, and an angle formed by an extension line of the restraining portion is 30 °. It is formed so that it is at least 50 °. In this case, by defining the angle formed by the extension line of the restraining portion, the linear body can be easily penetrated when inserting into the measuring device.
  • the angular force S formed by the extension line of the restraint portion and the tangent to the inner wall of the through hole on the outside of the curve of the linear body on the extension line is 100 ° or more and 130 ° or less.
  • a hole is formed.
  • the linear body is inserted into the measuring device by defining the angle formed by the extension line of the restraining portion and the tangent line of the inner wall of the through hole outside the curve of the linear body on the extension line. Sometimes it can be penetrated easily.
  • the measuring device is used by being incorporated in a medical device.
  • a linear body when used in a Y connector, a linear body can be manipulated from the input port of the Y connector, and drugs can be injected from other input ports.
  • the measuring device is used by being attached to a training simulator for simulating a human body.
  • a training simulator for simulating a human body.
  • the skill of the skilled operator is quantified and the less experienced operator Quantitative techniques can be taught. Therefore, it is possible to improve the skills of operators with little experience at an early stage.
  • a longitudinal axis acting on a linear body having a sheath thicker than the linear body such as a wire with a coil for embolizing an aneurysm attached to the tip thereof.
  • a longitudinal axis acting on a linear body having a sheath thicker than the linear body such as a wire with a coil for embolizing an aneurysm attached to the tip thereof.
  • the length of the restraining portion can be minimized and the measurement apparatus can be miniaturized.
  • it is possible to provide a measuring device capable of measuring the compressive force in the longitudinal axis acting on the linear body regardless of the buckling load of the linear body and the same measuring device can be provided with wires having various materials. Since it can be applied to a body, it is economical.
  • FIG. 1 is a schematic diagram showing an external appearance of a main body of a measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the internal structure of the main body of the measuring apparatus shown in FIG.
  • FIG. 3 is a schematic diagram showing the structure of a wire with a coil for embolizing an aneurysm attached to the tip.
  • FIG. 4 is a schematic cross-sectional view showing a state where a sheath is passed through a measuring device.
  • FIG. 5 is a schematic cross-sectional view showing a state where a linear body is passed through a measuring device.
  • FIG. 6 is a schematic cross-sectional view showing a state in which a compressive force is applied to a linear body.
  • FIG. 7 is a schematic cross-sectional view showing an optical system for detecting the degree of curvature of the linear body when the linear body is passed through the measuring device.
  • FIG. 8 is a schematic cross-sectional view showing a state in which a force in the R direction or the L direction is applied to the linear body along with the compressive force.
  • FIG. 9 is a schematic cross-sectional view showing a measuring device with a short restraint portion.
  • FIG. 10 is a schematic cross-sectional view showing a measurement error factor of compressive force in a measuring device with a short restraint.
  • FIG. 11 is a schematic cross-sectional view showing a state in which compressive force is applied to different types of linear bodies.
  • FIG. 12 is a graph showing the relationship between the compressive force acting on the linear body and the distance between the contacts.
  • FIG. 13 is a schematic cross-sectional view showing an appropriate angle formed by a restricting portion of a through hole.
  • FIG. 14 is a schematic cross-sectional view showing an appropriate angle formed by the constraining portion of the through hole and the inner wall.
  • FIG. 15 is a schematic diagram showing an example of being used in a Y connector.
  • FIG. 16 is a schematic diagram showing an example of use by attaching to a training simulator for simulating a human body.
  • FIG. 1 is a schematic diagram showing an external appearance of a main body of a measuring apparatus according to an embodiment of the present invention.
  • this measuring device includes a measuring device main body 2, and a through hole 3 through which a linear body 1 having flexibility is formed is formed in the measuring device main body 2.
  • FIG. 2 is a schematic cross-sectional view showing the internal structure of the main body of the measuring device, taken along the line II-II shown in FIG.
  • the through-hole 3 forms a tapered input / output port 4 at the entrance / exit in order to increase the entrance / exit through which the linear body 1 penetrates and improve the insertability.
  • the through hole 3 is formed so as to have restraining portions 5 and 6 that restrict movement of the linear body 1 in directions other than the longitudinal axis direction at both ends thereof.
  • the measuring device main body 2 defines the bending direction of the linear body 1 inside the through hole 3 when a compressive force in the longitudinal axis direction acts on the linear body 1. That is, the through hole 3 is bent between the restraining portions 5 and 6, and when the linear body 1 penetrates the through hole 3, the through hole 3 has a curved shape.
  • the through hole 3 is formed so that the inner walls 8 and 9 are separated from the inner wall 7 by a distance that exceeds the sum of the width of the groove 12 and the diameter of the linear body 1 described later to form a space 11. . In the space 11, the linear body 1 does not restrain the movement in the direction parallel to the paper surface.
  • the height of the through hole 3 in the direction perpendicular to the paper surface is slightly larger than the diameter of the linear body 1 (for example, the linear body 1 ).
  • the movement of the linear body 1 in the direction perpendicular to the paper surface is constrained. That is, in the space 11, the cross-sectional shape of the through hole 3 in the cross section perpendicular to the longitudinal axis direction of the linear body 1 is a rectangular shape.
  • the bending direction of the linear body 1 inside the through-hole 3 is defined, and the height of the peak of the linear body 1 when the longitudinal compressive force acts on the linear body 1, that is, the inner wall
  • the linear body 1 is positioned so that the distance from 7 to the linear body 1 is determined.
  • a groove 12 is formed so as to penetrate the measurement apparatus main body 2 along the inner wall 7 of the through hole 3.
  • the groove 12 is formed to have a diameter larger than the diameter of the linear body 1, that is, to have a width and depth larger than the diameter of the linear body 1.
  • FIG. 3 is a schematic diagram showing the structure of a wire with a coil for embolizing an aneurysm attached to the tip.
  • the wire for embolization of the aneurysm includes a coil 13 for embolizing the aneurysm and a delivery wire 14 that is grasped by hand when inserting the wire into the blood vessel (in this case, the delivery wire 14 is (Corresponding to the linear body 1)!
  • the leading coil 13 is for embolizing the aneurysm, it is manufactured so as to be wound with a predetermined diameter when there is nothing that is very soft and restrained. For this reason, it is constrained so that it cannot be wound in the sheath 15 before use.
  • the sheath 15 has a larger diameter than the delivery wire 14.
  • FIG. 4 is a schematic cross-sectional view showing a state where the sheath is passed through the measuring device.
  • FIG. 5 is a schematic cross-sectional view showing a state in which a linear body is passed through the measuring device.
  • the dimension of the cross section perpendicular to the extending direction of the restraining portions 5 and 6 is formed to be the same as the cross sectional dimension of the groove 12. Therefore, as shown in FIG. 4, a sheath 15 having a diameter larger than that of the delivery wire 14 is passed through the measuring device main body 2 through the restricting portion 6, the groove 12 and the restricting portion 5 as a path inside the measuring device main body 2. Can be made. Then, after confirming that the coil 13 has completely moved into the catheter, and removing the sheath 15 from the measuring device body 2, As shown in FIG. 5, only the delivery wire 14 remains in the measuring device body 2. The delivery wire 14 can move in the space 11 of the through hole 3 whose diameter is smaller than that of the sheath 15. Therefore, in FIG. 5, the delivery wire 14 is not stored in the groove 12 and is curved in the space 11.
  • the groove 12 is formed along the inner wall 7 of the through hole 3. That is, in the space 11, when the linear body 1 is bent by the compressive force in the longitudinal axis direction on the linear body 1, the linear body 1 moves to the outside of the curve, and thus has a relationship with the movement of the linear body 1 accompanying the bending. A groove 12 is formed at the position! Therefore, the force S prevents the groove 12 from interfering with the curvature of the linear body 1 and reducing the measurement accuracy of the compression force.
  • the wire for embolization of the aneurysm coil removed from the measuring device body 2, the ends of the sheath 15 and the catheter are joined together, the coil 13 is moved into the catheter, and then the catheter and the measuring device body 2. It was necessary to use a method of connecting the two to each other.
  • the wire can be inserted into the through-hole 3 of the measuring device with the sheath 15 attached. Deliver with the power S to provide.
  • FIG. 6 is a schematic cross-sectional view showing a state in which a compressive force is applied to the linear body.
  • a compressive force is applied to the delivery wire 14 (linear body 1)
  • the delivery wire 14 bends in the space 11 of the through hole 3, and as the compressive force increases, the height of the crest increases. That is, the distance from the inner wall 7 to the linear body 1 increases.
  • the compressive force pi is applied, it bends like the delivery wire 14a, and the height of the peak of the bend increases from the state where the compressive force is not acting on the delivery wire 14.
  • FIG. 7 is a schematic cross-sectional view showing an optical system for detecting the degree of curvature of the linear body when the linear body passes through the measuring device in the cross section taken along the line VII-VII shown in FIG. .
  • a sensor for detecting the degree of bending for example, a line sensor 16 (a one-dimensional optical array sensor having a plurality of light receiving elements that receive light and arranged in a row) S it can.
  • the line sensor 16 receives light emitted from a light source (not shown) placed at a position facing the line sensor 16 across the space 11, the light emitted from the light source is located on a certain light receiving element.
  • the delivery wire 14 blocks the light quantity received by the light receiving element becomes small.
  • the position of the delivery wire 14 can be specified, and the height of the crest of the delivery wire 14, that is, the degree of bending can be detected.
  • an optical element such as a lens, a slit, or a filter that blocks outside light may be installed in the optical system.
  • a lens 17 such as a self-occlusion (R) lens is arranged between the space 11 and the line sensor 16.
  • the groove 12 serves as a path.
  • the width of the groove 12 is shown in the vertical direction of the page.
  • the depth of the groove 12 is shown in the left-right direction. That is, in the groove 12, the dimension in the direction in which the linear body 1 bends inside the through hole 3 is the width of the groove 12, and is substantially the same as the direction in which the linear body 1 bends in the through hole 3.
  • the dimension in the orthogonal direction indicates the height of the groove 12.
  • the space 11 is formed such that the inner wall 8 9 is separated from the inner wall 7 by a distance exceeding the sum of the width of the groove 12 and the diameter of the delivery wire 14 (linear body 1).
  • the delivery wire 14 When the compressive force in the longitudinal direction is applied, the delivery wire 14 can move to the outside of the curve, that is, upward in FIG. Since the delivery wire 14 is restrained from moving in the left-right direction in FIG. 7 in the space 11, the position of the delivery wire 14 in the space 11 when the longitudinal compressive force acts on the delivery wire 14 is determined. Can do. Further, FIG. 7 shows that the sheath 15 cannot move in the space 11 because the movement of the sheath 12 in other than the longitudinal axis direction is restricted in the groove 12.
  • FIG. 8 is a schematic cross-sectional view showing a state in which a force in the R direction or the L direction is applied to the linear body together with the compressive force.
  • the operator 25 when the operator 25 operates the linear body 1, it can be considered that a force is applied while bending the linear body 1 in the R direction or the L direction, for example.
  • the dimension of the cross section perpendicular to the extending direction of the restraining portion 56 is formed to be the same as the cross sectional dimension of the groove 12. .
  • FIG. 9 is a schematic cross-sectional view showing a measuring device with a short restraint.
  • Figure 10 shows the measurement error of compressive force in a measuring device with a short restraint.
  • It is a cross-sectional schematic diagram which shows a difference factor.
  • the length of the restraining portions 5 and 6 in the extending direction is an unsatisfactory length Lo, and the linear body 1 is located at four locations (Sla, S2a, Sib, S2b) inside the through hole 3. There is point contact.
  • the restraining portions 5 and 6 and the linear body 1 form an angle ⁇ that is not parallel.
  • the movement of the linear body 1 in the L direction outside the measuring device main body 2 causes the space 1 1 to move. O! /,
  • the linear body 1 is curved, and the position of the linear body 1 is shifted at the center of the space 11 by ⁇ h. Therefore, an error with respect to the height of the bending peak of the linear body 1 increases, and the measurement accuracy of the compressive force decreases.
  • the linear body 1 when the linear body 1 is passed through the through hole 3 and no external force other than gravity is applied to the linear body, the linear body 1 outside the entrance through which the linear body 1 of the measuring device body 2 passes is linear.
  • the through hole 3 is formed so that the length 1 of the restraining portion is such that the body 1 and the restraining portions 5 and 6 are parallel to each other.
  • a ruler is applied along the center line of the through hole 3 in the restraining parts 5 and 6, and an appropriate part outside the entrance of the measuring device body 2 is used. Measure the amount of deviation between the linear object 1 and the ruler at the correct position.
  • This deviation is the distance to the linear body 1 in the direction perpendicular to the ruler.
  • the angle ⁇ is obtained by an arctangent function. That is, ⁇
  • the constraining portion 5 is parallel to the linear body 1 and the constraining portions 5 and 6.
  • the force S can be used to prevent the measurement accuracy of the compressive force in the longitudinal axis direction acting on the linear body 1 from being lowered.
  • the use of a wire with a coil at the tip to embolize the aneurysm should be considered.
  • the diameter of the through hole 3 in the restraint portions 5 and 6 is slightly larger than the diameter of the linear body 1 (for example, 105% to 120% of the diameter of the linear body 1), and the restraint portions 5 and 6
  • the length L of the wire body is slightly larger than the diameter of the linear body 1 (for example, 105% to 120% of the diameter of the linear body 1), and the restraint portions 5 and 6
  • the angle ⁇ can be 1 ° or less.
  • the minimum value of the length L of the restraining portions 5 and 6 is determined, and the through-hole 3 is formed so as to have the determined length L. A device. As a result, it is possible to reduce the size of the measuring device without reducing the measurement accuracy of the compressive force.
  • FIG. 11 is a schematic cross-sectional view showing a state in which a compressive force is applied to different types of linear bodies.
  • FIG. 12 is a graph showing the relationship between the compressive force acting on the linear body and the distance between the contacts.
  • the contact point is a point where the linear body 1 is separated from the inner wall 8 and the inner wall 9 of the through-hole 3 when the linear body 1 is bent by applying a compressive force in the longitudinal axis direction to the linear body 1. That is, the distance W between the contacts indicates the distance between the point where the linear body 1 contacts the inner wall 8 and the point where the linear body 1 contacts the inner wall 9.
  • different types of linear bodies 1 may have different Young's moduli.
  • Young's moduli When different Young's moduli are used in different types of linear bodies, the sag for the same compressive force is different.
  • the linear body 1 having a small Young's modulus and a large sag is easy to buckle, so it is necessary to reduce the distance W between the contacts so as not to buckle.
  • the linear body 1 having a large Young's modulus and small sag it is necessary to increase the distance W between the contacts in order to measure the compressive force with sufficient accuracy.
  • the through-hole 3 is formed so that the inner wall 8 and the inner wall 9 of the space 11 have a curved surface shape that is convex toward the inside of the through-hole 3.
  • a curved surface portion of the inner wall 8 is formed so that the radius of curvature is rl and the center of the radius of curvature is cl so as to be in contact with the inner wall of the through hole 3 in the restraint portion 5.
  • a curved surface shape having a curvature radius of r2 and a center of curvature radius of c2 is formed in contact with the curved surface portion of the curvature radius rl.
  • the shapes of the inner wall 8 and the inner wall 9 are not limited to the above, and are convex toward the inside of the through-hole 3, and Any curved surface shape that contacts the inner wall of the through-hole 3 is acceptable.
  • the linear body is curved along the inner wall 8 and the inner wall 9 of the through-hole 3 outside the curve of the linear body 1, so that the linear body 1 force S buckles inside the space 11. Can be prevented. That is, when a compressive force in the longitudinal axis direction acts on a linear body having a small Young's modulus, the linear body is curved without buckling in the space 11, and therefore the degree of curvature of the linear body can be detected. By converting the detected degree of bending into a compressive force in the longitudinal direction acting on the linear body, a force S for measuring the compressive force acting on the linear body can be obtained. This makes it possible to accurately measure the compressive force in the longitudinal direction acting on the fountain with the same measuring device regardless of the Young's modulus.
  • a recess 10 is formed between the inner wall 8 and the inner wall 9 of the space 11. This makes it possible to accurately measure a wider range of compressive forces. That is, since the compressive force acting on the linear body 1 can be measured by detecting the height of the peak of the linear body 1 in the space 11, the linear body 1 in the space 11 can be measured. The apex of the curved mountain, that is, the linear body 1 in the space 11! / The point force farthest away from the inner wall 7 If it is not in contact with the inner wall of the space 11, the compression acting on the linear body 1 Force can be measured.
  • the space 11 is formed into a shape in which the inner walls 8 and 9, which are curved in a convex shape toward the inside of the through hole 3, and the concave portion 10 are combined. Due to the shape of the space 11, when the compression force acts on the linear body 1 and the linear body 1 is bent into the space 11! /, The inner wall of the through-hole 3 outside the curve of the linear body 1 ( A part of the linear body 1 (part corresponding to the distance wl or w2 between the contacts in Fig. 11) is separated from the inner wall 8 and the inner wall 9). And as the compression force increases Accordingly, the distance between the contacts, which is the point where the linear body 1 is separated from the inner wall, is decreasing.
  • the relationship between the compression force P and the distance W between the contacts is shown in the graph of FIG.
  • a linear body having a relationship between the compression force P indicated by the solid line in FIG. 12 and the distance W between the contacts is bent like a linear body la when the compression force pi is applied, and between the contacts at that time The distance is wl.
  • a compressive force p2 greater than pi is applied to the linear body, it bends like a linear body lb, and the distance between the contacts at that time is w2, which is smaller than wl.
  • the linear body 1 Due to the structure of the space 11, the linear body 1 is bent by the compressive force in the longitudinal axis direction acting on the linear body 1 in the space 11 inside the through hole 3 in which the linear body 1 bends. When doing so, the linear body 1 can bend along the inner wall (inner wall 8 and inner wall 9) of the through hole 3 outside the curve of the linear body 1. A part of the linear body 1 can be bent away from the inner wall 8 and the inner wall 9. As the compressive force increases, the distance between the contacts, which is the point at which the linear body 1 separates from the inner wall force, decreases.
  • the linear body 1 can be prevented from buckling inside the space 11, even the linear body with a small buckling load can accurately detect the degree of bending of the linear body without buckling.
  • the compressive force acting on the linear body can be measured.
  • the correlation between the compression force and the degree of bending is measured in advance for various linear bodies with different Young's moduli, and these correlations are stored in the conversion circuit, and are matched to the linear bodies used. Select which correlation to use.
  • FIG. 13 is a schematic cross-sectional view showing an appropriate angle formed by the constraining portion of the through hole.
  • FIG. 14 is a schematic cross-sectional view showing an appropriate angle formed by the constraining portion of the through hole and the inner wall.
  • the through-hole 3 is formed so as to have restraining portions 5 and 6 that restrict movement of the linear body 1 in directions other than the longitudinal axis at both ends, and is indicated by a broken line in FIG.
  • the angle formed by the extension line of the restraint part 5 (ie, the extension line of the center line of the restraint part 5) and the extension line of the restraint part 6 (ie, the extension line of the center line of the restraint part 6) is ⁇ .
  • the extension line of the restraint portion 6 indicated by a broken line in FIG. 14 and the tangent line of the point on the extension line of the restraint portion 6 in the inner wall of the through-hole 3 outside the curve of the linear body 1, that is, the inner wall 8, are shown.
  • the angle formed is / 3.
  • the range of the angle ⁇ , / 3 and the reason will be described below.
  • / 3 90 ° means that the linear body 1 is in contact with the inner wall of the through hole 3 outside the curve of the linear body 1 at a right angle, and 3 is 90. In the following, the linear body 1 cannot be guided to the through hole 3. Therefore, considering the friction between the linear body and the inner wall, ⁇ 100 °. Preferably, if it is / 3 ⁇ 1 10 °, the force S can be more easily penetrated through the linear body 1 into the through hole 3.
  • the range of ⁇ was experimentally determined using a linear body having a Young's modulus of 130 GPa and a diameter of 0 ⁇ 014 inches (0.356 mm) and a Young's modulus of 90 GPa and a diameter of 0.012 inches (0.305 mm).
  • When ⁇ is increased, the frictional force at the point of contact of the linear body 1 with the inner wall of the through hole 3 outside the curvature of the linear body 1 cannot be ignored, and the measurement accuracy of the compressive force decreases.
  • when ⁇ is reduced, the degree of bending when the compressive force is applied to the linear body 1 is reduced, and the sensitivity of the measuring apparatus with respect to the compressive force is reduced. Therefore, 30 ° ⁇ a ⁇ 50 °.
  • When ⁇ is 35 ° or less, the reduction of friction force is small, and when ⁇ force is 5 ° or more, the increase of friction force becomes significant. Therefore, 35 ° ⁇ a ⁇ 45 ° is preferable.
  • the angle ⁇ formed by the extension line of the restraint portion 5 and the extension line of the restraint portion 6 is defined, and the extension wall of the restraint portion 6 and the inner wall of the through hole 3 outside the curve of the linear body 1 are defined.
  • the linear body can be easily penetrated when it is inserted into the measuring device.
  • FIG. 15 is a schematic diagram showing an example in which the measuring device main body is used by being incorporated in a cocoon connector.
  • the heel connector 18 includes an input port 19, another input port 20, and an output port 21.
  • the measuring device body 2 is incorporated in a passage that connects the input port 19 and the output port 21 inside the ⁇ connector 18.
  • the linear body 1 is a linear medical device such as a guide wire or catheter inserted into a body tube such as a blood vessel or a ureter, or a wire with a coil at the tip for embolizing an aneurysm. It is guided to the target site in the body by the operation from the input port 19 side.
  • a linear medical device such as a guide wire or catheter inserted into a body tube such as a blood vessel or a ureter, or a wire with a coil at the tip for embolizing an aneurysm. It is guided to the target site in the body by the operation from the input port 19 side.
  • the medical device is used as the reaction force of the compressive force. It is possible to measure the load acting on the. That is, it is possible to detect that the tip of the medical device is in contact with the inner wall of the tube. Therefore, it is possible to prevent the excessive load from acting on the internal tube. Further, since the measuring device of the present invention is incorporated in the ⁇ connector 18, a linear medical instrument can be operated from the input port 19 of the ⁇ connector 18 and a drug can be injected from the other input port 20. . For example, physiological saline for reducing friction between the catheter and the guide wire can be injected from the other input port 20.
  • an angiographic contrast agent is injected from the other input port 20, and the angiographic contrast agent is injected into the target site in the body. it can.
  • FIG. 16 is a schematic diagram showing an example in which a measurement device is attached to a training simulator that simulates a human body.
  • simulator 26 is inserted with a linear medical device.
  • a simulated fluoroscopic image 27 equivalent to a fluoroscopic image of a human body tube is displayed.
  • a catheter 24 is connected to the measurement apparatus main body 2, and a guide wire 23 that passes through the through hole 3 of the measurement apparatus main body 2 is provided in the catheter 24.
  • the operator 25 who is training operates the guide wire 23 while viewing the simulated perspective image 27.
  • the simulator 26 changes the insertion resistance with respect to the inserted guide wire 23.
  • the measuring device main body 2 and the simulator 26 are separated, but the measuring device main body 2 may be integrated with the simulator 26. Further, instead of providing the visualizing device 22, the compression force acting on the guide wire 23 may be displayed on the simulated fluoroscopic image 27 of the simulator 26.
  • a flat surface is used instead of a one-dimensional array sensor such as a force S or a line sensor, which is exemplified by a line sensor as a sensor for detecting the degree of bending of the linear body. Even if a two-dimensional array sensor in which a plurality of light receiving elements are arranged in a matrix, for example, the degree of curvature of the linear body can be detected. Furthermore, since it is only necessary to detect the degree of bending of the linear body, for example, a non-contact distance sensor that detects the height of the peak of the bending, or a position sensor that detects the position of the linear body may be used. it can.
  • the measuring device of the present invention can be applied particularly advantageously to a measuring device for compressive force acting on a flexible linear body such as a linear medical instrument inserted into a body tube.

Abstract

A measuring device (2) which can detect existence of an obstacle in a pipe from the outside of the pipe when a linear body inserted into the pipe is operated. The user-friendly measuring device (2) can measure the compression force in the direction of longitudinal axis acting on a linear body having a sheath thicker than the linear body, e.g. a wire provided with a coil for embolization of aneurysm at the tip, without lowering measurement precision. Miniaturization of the measuring device (2) can be achieved by minimizing the length of restricting portions (5, 6). Furthermore, a measuring device (2) which can measure the compression force in the direction of longitudinal axis acting on a linear body regardless of the magnitude of buckling load of the linear body can be provided, and it is economical because the same measuring device (2) is applicable to linear bodies of various materials.

Description

明 細 書  Specification
可撓性線状体の圧縮力計測装置  Apparatus for measuring compressive force of flexible linear body
技術分野  Technical field
[0001] この発明は、力の計測装置に関し、特に、可撓性を有する線状体に作用する圧縮 力の計測装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a force measuring device, and more particularly, to a measuring device for compressive force acting on a flexible linear body.
背景技術  Background art
[0002] 可撓性を有する線状体は、体内の管の中へ挿入される線状の医療器具として実用 化されている。たとえば、血管、尿管、気管支、消化管もしくはリンパ管などの体内に ある管に挿入されるガイドワイヤやカテーテル、または、動脈瘤を塞栓するための塞 栓用コイルが先端に付いたワイヤなどが知られている。これらの線状体を体内の管の 中へ挿入し、体外からの操作によって目的部位まで誘導する。  [0002] Flexible linear bodies have been put to practical use as linear medical instruments that are inserted into a body tube. For example, a guide wire or catheter inserted into a body tube such as a blood vessel, ureter, bronchus, gastrointestinal tract, or lymphatic vessel, or a wire with an embolic coil at the tip for embolizing an aneurysm Are known. These linear bodies are inserted into a tube inside the body and guided to the target site by operation from outside the body.
[0003] 線状体が挿入される管は必ずしも直線状ではなぐ部分的に屈曲や分岐をしてい る場合が多い。また、管の径は必ずしも一定ではなぐ管自体が細くなつていたり、血 管内に生じる血栓などの管内部にある障害物によって管の径が細くなつていたりする 場合がある。しかし、従来の線状体では、線状体の進行方向前方の状況を検知する 手段がなぐ線状体の操作を操作者の勘に頼らざるを得ず、体外からの誘導操作に は熟練が必要であった。そこで、線状体の進行方向前方における障害物の存在を検 知する装置として、線状体の先端に圧力センサを設ける装置が、特開平 10— 2630 89号公報(特許文献 1)に開示されている。  [0003] In many cases, a tube into which a linear body is inserted is not necessarily straight, but is partially bent or branched. In addition, the diameter of the tube is not necessarily constant, and the tube itself may be narrowed, or the diameter of the tube may be narrowed due to an obstruction inside the tube such as a thrombus generated in the blood vessel. However, in the conventional linear body, it is necessary to rely on the operator's intuition to operate the linear body, which is provided by means for detecting the situation ahead of the linear body in the traveling direction, and skilled in guidance operation from outside the body. It was necessary. Therefore, as a device for detecting the presence of an obstacle in the forward direction of the linear body, a device provided with a pressure sensor at the tip of the linear body is disclosed in Japanese Patent Laid-Open No. 10-263089 (Patent Document 1). ing.
特許文献 1 :特開平 10— 263089号公報  Patent Document 1: JP-A-10-263089
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、線状体の先端に圧力センサを設ける装置は、特に極細の線状体に ついては実現性に困難を伴う。たとえば脳血管に揷入するガイドワイヤの場合、その 直径は 0. 35mm程度であり、このような極細の線状体の先端に小型の圧力センサを 設けることは困難である。また、圧力センサの信号を外部に取り出すために、線状体 の中に配線を揷通するのは、さらなる困難を要する。 [0005] また、線状体が挿入される管が屈曲している場合や、管の径が細くなつている場合 には、線状体の揷入抵抗は、管との摩擦の影響を受ける。よって、線状体の先端に 設ける圧力センサの出力と、操作者の揷入時のカ覚とが必ずしも一致しない場合が ある。したがって、線状体の先端に圧力センサを設ける装置を用いる場合においても 、操作者が外部にぉレ、て指先で把持した線状体の揷入抵抗のカ覚情報に基づレ、て 、すなわち操作者の勘に頼って、線状体の操作を実施することになる。その上、操作 者のカ覚は操作者しか知ることができないため、熟練操作者の手技を定量化し経験 の少ない操作者へ伝授するのは困難である。 [0004] However, a device provided with a pressure sensor at the tip of a linear body is difficult to realize, particularly for an extremely thin linear body. For example, in the case of a guide wire inserted into a cerebral blood vessel, the diameter is about 0.35 mm, and it is difficult to provide a small pressure sensor at the tip of such an ultrathin linear body. Further, it is more difficult to pass the wiring through the linear body in order to extract the pressure sensor signal to the outside. [0005] Also, when the tube into which the linear body is inserted is bent or the diameter of the tube is narrow, the insertion resistance of the linear body is affected by friction with the tube. . Therefore, the output of the pressure sensor provided at the tip of the linear body may not always match the sensation when the operator inserts it. Therefore, even when using a device that provides a pressure sensor at the tip of the linear body, the operator is crushed to the outside, and based on the kinematic information of the insertion resistance of the linear body gripped by the fingertip, That is, the operation of the linear body is performed depending on the intuition of the operator. In addition, since the operator's sensation is known only by the operator, it is difficult to quantify the skills of the skilled operator and to convey it to the less experienced operator.
[0006] さらに、異なる用途に適応するための種々の材質を有する線状体を用意し、それぞ れに圧力センサを設けることは、不経済であり、製造コストの増大を招く。  [0006] Furthermore, it is uneconomical to prepare linear bodies having various materials for adapting to different applications, and to provide a pressure sensor for each.
[0007] それゆえに、この発明の主たる目的は、管の中へ挿入される線状体を操作するとき に、管内部における障害物の存在を管外部において検知できる、かつ種々の材質を 有する線状体に適用できる、計測装置を提供することである。  [0007] Therefore, a main object of the present invention is to provide a wire having various materials that can detect the presence of an obstacle inside the tube outside the tube when operating the linear body inserted into the tube. It is to provide a measuring device that can be applied to a shape.
課題を解決するための手段  Means for solving the problem
[0008] この発明に係る計測装置は、可撓性を有する線状体に作用する長手軸方向の圧 縮力を計測する計測装置であって、線状体が貫通する貫通孔が形成される本体を 備え、線状体に長手軸方向の圧縮力が作用するとき、貫通孔の内部において線状 体が所定の方向へ湾曲する。また、線状体の湾曲の度合いを検出するセンサを備え る。また、センサによって検出される線状体の湾曲の度合いを、線状体に作用する長 手軸方向の圧縮力へ変換する、変換回路を備える。そして、貫通孔の内壁には、貫 通孔に沿って本体を貫通するように、溝が形成される。  [0008] A measuring device according to the present invention is a measuring device that measures a compressive force in a longitudinal axis direction acting on a flexible linear body, and has a through-hole through which the linear body passes. The main body is provided, and when the compressive force in the longitudinal axis direction acts on the linear body, the linear body is curved in a predetermined direction inside the through hole. In addition, a sensor for detecting the degree of bending of the linear body is provided. In addition, a conversion circuit is provided that converts the degree of curvature of the linear body detected by the sensor into a compressive force in the longitudinal axis direction that acts on the linear body. A groove is formed on the inner wall of the through hole so as to penetrate the main body along the through hole.
[0009] この場合は、貫通孔の内壁に、貫通孔の直径よりも大きい幅および深さを有する溝 が形成される。動脈瘤を塞栓するためのコイルが先端に付いたワイヤにおいては、先 端のコイルは柔らかいために鞘に収められており、鞘はワイヤよりも太い。よって、動 脈瘤を塞栓するためのコイルが先端に付いたワイヤを血管内へ揷入する場合に、コ ィルが収められている鞘のみが通過できる溝が形成される計測装置を使用すること で、ワイヤに作用する長手軸方向の圧縮力を計測できる。計測装置の内部において ワイヤは長手軸方向以外の移動を規制されるため計測精度を保持することができ、ま た、鞘を外した状態でワイヤを計測装置の貫通孔に揷入する必要のな!/、使!/、勝手の ょレヽ計測装置を提供することができる。 In this case, a groove having a width and depth larger than the diameter of the through hole is formed on the inner wall of the through hole. In the wire with the coil for embolizing the aneurysm at the tip, the coil at the tip is stored in the sheath because it is soft, and the sheath is thicker than the wire. Therefore, when inserting a wire with a coil for embolizing an arterial aneurysm into the blood vessel, use a measuring device that forms a groove through which only the sheath containing the coil can pass. Thus, the compressive force in the longitudinal direction acting on the wire can be measured. Because the wire is restricted from moving in the direction other than the longitudinal axis inside the measuring device, it can maintain measurement accuracy. In addition, it is possible to provide a measuring device that can be used without any need to insert the wire into the through hole of the measuring device.
[0010] 好ましくは、溝は、線状体が湾曲する貫通孔の内部において、線状体の湾曲の内 側にある貫通孔の内壁に沿って形成される。また貫通孔は、線状体が湾曲する貫通 孔の内部において、線状体の湾曲の外側にある貫通孔の内壁が、線状体の湾曲の 内側にある貫通孔の内壁から、溝の幅と線状体の直径との合計を超える距離分離れ 、空間を成すように形成される。  [0010] Preferably, the groove is formed along the inner wall of the through hole on the inner side of the linear body in the through hole in which the linear body is curved. In addition, the through-hole is formed so that the inner wall of the through-hole on the outside of the curve of the linear body has a width of the groove from the inner wall of the through-hole on the inside of the curve of the linear body. And a distance exceeding the sum of the diameters of the linear bodies and a space.
[0011] この場合は、線状体が湾曲する貫通孔の内部の空間において、線状体に長手軸 方向の圧縮力が作用して線状体が湾曲するとき、湾曲に伴う線状体の移動と関係し ない位置である、線状体の湾曲の内側にある貫通孔の内壁に沿って、溝が形成され る。よって、溝が線状体の湾曲と干渉して圧縮力の計測精度を低下させることを防止 すること力 Sでさる。  [0011] In this case, in the space inside the through hole in which the linear body bends, when the linear body is bent by a compression force acting on the linear body in the longitudinal axis direction, A groove is formed along the inner wall of the through hole inside the curve of the linear body, which is a position not related to the movement. Therefore, the force S prevents the groove from interfering with the curvature of the linear body and reducing the measurement accuracy of the compression force.
[0012] また好ましくは、貫通孔は、その両端部において線状体の長手軸方向以外への移 動を規制する拘束部を有するように形成され、貫通孔に線状体を貫通させ線状体に 重力以外の外力が加えられないとき、本体の線状体が貫通する出入口の外部にお いて、線状体と拘束部とが平行になるように、形成される。この場合は、計測精度を低 下させないために必要な拘束部の長さを、線状体と拘束部との平行によって規定す る。よって、拘束部の長さを最小限とし、計測装置の小型化を実現することができる。  [0012] Preferably, the through hole is formed so as to have a restraining portion that restricts movement of the linear body in a direction other than the longitudinal axis direction at both ends thereof, and the linear body is passed through the through hole to form a linear shape. When an external force other than gravity is not applied to the body, the linear body and the restraining portion are formed parallel to each other outside the entrance through which the linear body of the main body passes. In this case, the length of the constraining part necessary to prevent the measurement accuracy from being degraded is defined by the parallelism between the linear body and the constraining part. Therefore, the length of the restraining portion can be minimized and the measurement apparatus can be miniaturized.
[0013] また、貫通孔の内壁に、貫通孔に沿って本体を貫通するように溝が形成される場合 は、拘束部の延在方向に垂直な断面の寸法は溝の断面寸法と同じとなる。このとき 拘束部の長さが不十分であると、線状体が拘束部において長手軸方向以外へも移 動し、計測精度低下の原因となる。よって、溝が形成される場合においても、線状体 と拘束部との平行によって拘束部の長さを規定することで、計測精度の低下を防止 すること力 Sでさる。  [0013] When a groove is formed on the inner wall of the through hole so as to penetrate the main body along the through hole, the cross-sectional dimension perpendicular to the extending direction of the restraint portion is the same as the cross-sectional dimension of the groove. Become. At this time, if the length of the restraint portion is insufficient, the linear body moves in the restraint portion other than in the longitudinal axis direction, causing a reduction in measurement accuracy. Therefore, even when a groove is formed, the force S can be used to prevent a reduction in measurement accuracy by defining the length of the restraint portion by the parallelism of the linear body and the restraint portion.
[0014] また好ましくは、貫通孔は、線状体が湾曲する貫通孔の内部において、線状体の 湾曲の外側にある貫通孔の内壁が、線状体の湾曲の内側にある貫通孔の内壁から 離れ、空間を成すように形成される。また、線状体の湾曲の外側にある貫通孔の内壁 は、貫通孔の内側に向かって凸の曲面形状となるよう、貫通孔が形成される。この場 合は、線状体が湾曲する貫通孔の内部の空間において、線状体に長手軸方向の圧 縮力が作用して線状体が湾曲するとき、線状体の湾曲の外側にある貫通孔の内壁に 沿って線状体が湾曲するので、空間内部で線状体が座屈することを防止できる。よつ て、線状体に作用する長手軸方向の圧縮力を広範囲に精度よく計測することができ [0014] Preferably, the through-hole is an inside of the through-hole in which the linear body is curved, and an inner wall of the through-hole on the outer side of the linear body is curved. It is formed so as to form a space away from the inner wall. In addition, the through-hole is formed so that the inner wall of the through-hole outside the curve of the linear body has a curved surface shape convex toward the inside of the through-hole. This place In this case, in the space inside the through-hole in which the linear body bends, when the linear body is bent by a compression force acting in the longitudinal axis direction on the linear body, the penetrating holes outside the linear body are curved. Since the linear body is curved along the inner wall of the hole, it is possible to prevent the linear body from buckling inside the space. Therefore, the longitudinal compressive force acting on the linear body can be accurately measured over a wide range.
[0015] また好ましくは、線状体に長手軸方向の圧縮力が作用し線状体が湾曲するとき、線 状体の湾曲の外側にある貫通孔の内壁力 線状体の一部が離れるように、貫通孔が 形成される。また、圧縮力が増大するにつれて、線状体が内壁から離れる点である接 点間の距離は減少するように、貫通孔が形成される。この場合は、座屈荷重の小さな 線状体でも座屈することなく線状体に作用する長手軸方向の圧縮力を精度よく計測 できる。よって、線状体の座屈荷重の大小によらず線状体に作用する長手軸方向の 圧縮力を計測可能な計測装置を提供することができ、同一の計測装置を種々の材質 を有する線状体に適用できるので、経済的である。 [0015] Preferably, when the linear body bends due to the compressive force in the longitudinal axis direction acting on the linear body, the inner wall force of the through hole on the outside of the linear body curve part of the linear body separates. Thus, a through hole is formed. Further, as the compressive force increases, the through hole is formed so that the distance between the contact points, which are the points where the linear body is separated from the inner wall, decreases. In this case, even a linear body with a small buckling load can accurately measure the compressive force in the longitudinal direction acting on the linear body without buckling. Therefore, it is possible to provide a measuring device that can measure the compressive force in the longitudinal axis acting on the linear body regardless of the buckling load of the linear body, and the same measuring device can be provided with wires having various materials. Since it can be applied to a body, it is economical.
[0016] また好ましくは、貫通孔は、その両端部において線状体の長手軸方向以外への移 動を規制する拘束部を有するように形成され、拘束部の延長線が成す角度が 30° 以上 50° 以下となるように形成される。この場合は、拘束部の延長線が成す角度を 規定することにより、線状体を計測装置へ揷入するとき容易に貫通させることができる[0016] Preferably, the through hole is formed so as to have a restraining portion that restricts movement of the linear body in a direction other than the longitudinal axis direction at both ends, and an angle formed by an extension line of the restraining portion is 30 °. It is formed so that it is at least 50 °. In this case, by defining the angle formed by the extension line of the restraining portion, the linear body can be easily penetrated when inserting into the measuring device.
Yes
[0017] また好ましくは、拘束部の延長線と、上記延長線上における線状体の湾曲の外側 にある貫通孔の内壁の接線とが成す角度力 S、 100° 以上 130° 以下となるよう貫通 孔が形成される。この場合は、拘束部の延長線と、上記延長線上における線状体の 湾曲の外側にある貫通孔の内壁の接線とが成す角度を規定することにより、線状体 を計測装置へ揷入するとき容易に貫通させることができる。  [0017] Also preferably, the angular force S formed by the extension line of the restraint portion and the tangent to the inner wall of the through hole on the outside of the curve of the linear body on the extension line is 100 ° or more and 130 ° or less. A hole is formed. In this case, the linear body is inserted into the measuring device by defining the angle formed by the extension line of the restraining portion and the tangent line of the inner wall of the through hole outside the curve of the linear body on the extension line. Sometimes it can be penetrated easily.
[0018] また好ましくは、上記計測装置は、医療機器に組み込まれて使用される。たとえば Yコネクタに組み込まれて使用される場合は、 Yコネクタの入力ポートから線状体を操 作し、また他の入力ポートから薬剤を注入することができる。  [0018] Preferably, the measuring device is used by being incorporated in a medical device. For example, when used in a Y connector, a linear body can be manipulated from the input port of the Y connector, and drugs can be injected from other input ports.
[0019] また好ましくは、上記計測装置は、人体を模擬する訓練用シミュレータに取付けら れて使用される。この場合は、熟練操作者の手技を定量化し、経験の少ない操作者 へ定量的な手技の伝授をすることができる。したがって、経験の少ない操作者の手技 を早期に向上させることができる。 発明の効果 [0019] Preferably, the measuring device is used by being attached to a training simulator for simulating a human body. In this case, the skill of the skilled operator is quantified and the less experienced operator Quantitative techniques can be taught. Therefore, it is possible to improve the skills of operators with little experience at an early stage. The invention's effect
[0020] 以上のように、この計測装置では、動脈瘤を塞栓するためのコイルが先端に付いた ワイヤのように、線状体よりも太い鞘を有する線状体に作用する長手軸方向の圧縮力 を、計測精度を低下させることなく計測できる、使い勝手のよい計測装置を提供する こと力 Sでさる。また、拘束部の長さを最小限とし、計測装置の小型化を実現することが できる。さらに、線状体の座屈荷重の大小によらず線状体に作用する長手軸方向の 圧縮力を計測可能な計測装置を提供することができ、同一の計測装置を種々の材質 を有する線状体に適用できるので、経済的である。  [0020] As described above, in this measuring device, a longitudinal axis acting on a linear body having a sheath thicker than the linear body, such as a wire with a coil for embolizing an aneurysm attached to the tip thereof, is used. Providing an easy-to-use measuring device that can measure the compression force without reducing the measurement accuracy. In addition, the length of the restraining portion can be minimized and the measurement apparatus can be miniaturized. Furthermore, it is possible to provide a measuring device capable of measuring the compressive force in the longitudinal axis acting on the linear body regardless of the buckling load of the linear body, and the same measuring device can be provided with wires having various materials. Since it can be applied to a body, it is economical.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]この発明の一実施の形態の計測装置の本体の外観を示す模式図である。  FIG. 1 is a schematic diagram showing an external appearance of a main body of a measuring apparatus according to an embodiment of the present invention.
[図 2]図 1に示す計測装置の本体の内部の構造を示す断面模式図である。  2 is a schematic cross-sectional view showing the internal structure of the main body of the measuring apparatus shown in FIG.
[図 3]動脈瘤を塞栓するためのコイルが先端に付いたワイヤの構造を示す模式図で ある。  FIG. 3 is a schematic diagram showing the structure of a wire with a coil for embolizing an aneurysm attached to the tip.
[図 4]計測装置に鞘を貫通させた状態を示す断面模式図である。  FIG. 4 is a schematic cross-sectional view showing a state where a sheath is passed through a measuring device.
[図 5]計測装置に線状体を貫通させた状態を示す断面模式図である。  FIG. 5 is a schematic cross-sectional view showing a state where a linear body is passed through a measuring device.
[図 6]線状体に圧縮力を作用させる状態を示す断面模式図である。  FIG. 6 is a schematic cross-sectional view showing a state in which a compressive force is applied to a linear body.
[図 7]計測装置に線状体を貫通させるときの線状体の湾曲の度合いを検出する光学 系を示す断面模式図である。  FIG. 7 is a schematic cross-sectional view showing an optical system for detecting the degree of curvature of the linear body when the linear body is passed through the measuring device.
[図 8]線状体に圧縮力とともに R方向または L方向の力を作用させる状態を示す断面 模式図である。  FIG. 8 is a schematic cross-sectional view showing a state in which a force in the R direction or the L direction is applied to the linear body along with the compressive force.
[図 9]拘束部が短い計測装置を示す断面模式図である。  FIG. 9 is a schematic cross-sectional view showing a measuring device with a short restraint portion.
[図 10]拘束部が短い計測装置における圧縮力の計測誤差要因を示す断面模式図 である。  FIG. 10 is a schematic cross-sectional view showing a measurement error factor of compressive force in a measuring device with a short restraint.
[図 11]種類の異なる線状体に圧縮力を作用させる状態を示す断面模式図である。  FIG. 11 is a schematic cross-sectional view showing a state in which compressive force is applied to different types of linear bodies.
[図 12]線状体に作用する圧縮力と、接点間の距離との関係を示すグラフである。  FIG. 12 is a graph showing the relationship between the compressive force acting on the linear body and the distance between the contacts.
[図 13]貫通孔の拘束部の成す適切な角度を示す断面模式図である。 [図 14]貫通孔の拘束部と内壁との成す適切な角度を示す断面模式図である。 FIG. 13 is a schematic cross-sectional view showing an appropriate angle formed by a restricting portion of a through hole. FIG. 14 is a schematic cross-sectional view showing an appropriate angle formed by the constraining portion of the through hole and the inner wall.
[図 15]Yコネクタに組み込まれて使用される例を示す模式図である。  FIG. 15 is a schematic diagram showing an example of being used in a Y connector.
[図 16]人体を模擬する訓練用シミュレータに取付けて使用する例を示す模式図であ 符号の説明  FIG. 16 is a schematic diagram showing an example of use by attaching to a training simulator for simulating a human body.
[0022] 1 , la, lb 線状体、 2 計測装置本体、 3 貫通孔、 4 入出力ポート、 5, 6 拘束 部、 7, 8, 9 内壁、 10 凹部、 11 空間、 12 溝、 13 コイル、 14, 14a, 14b デリ ノ リーワイヤ、 15 鞘、 16 ラインセンサ、 17 レンズ、 18 Yコネクタ、 19 入力ポー ト、 20 他の入力ポート、 21 出力ポート、 22 視覚化器具、 23 ガイドワイヤ、 24 カテーテル、 25 操作者、 26 シミュレータ、 27 模擬透視画像、 28 ケーブル。 発明を実施するための最良の形態  [0022] 1, la, lb linear body, 2 measuring device body, 3 through hole, 4 I / O port, 5, 6 restraint, 7, 8, 9 inner wall, 10 recess, 11 space, 12 groove, 13 coil , 14, 14a, 14b Deli wire, 15 sheath, 16 line sensor, 17 lens, 18 Y connector, 19 input port, 20 other input port, 21 output port, 22 visualization device, 23 guide wire, 24 catheter , 25 operators, 26 simulators, 27 simulated perspective images, 28 cables. BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面におい て同一または相当する部分には同一の参照番号を付しその説明は繰返さない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
[0024] 図 1は、この発明の一実施の形態の計測装置の本体の外観を示す模式図である。  FIG. 1 is a schematic diagram showing an external appearance of a main body of a measuring apparatus according to an embodiment of the present invention.
図 1において、この計測装置は、計測装置本体 2を備え、計測装置本体 2には可撓 性を有する線状体 1が貫通する貫通孔 3が形成される。  In FIG. 1, this measuring device includes a measuring device main body 2, and a through hole 3 through which a linear body 1 having flexibility is formed is formed in the measuring device main body 2.
[0025] 図 2は、図 1に示す II II線による断面における、計測装置の本体の内部の構造を 示す断面模式図である。図 2において、貫通孔 3は、線状体 1が貫通する出入口を大 きくして揷入性を向上させるために、出入口にテーパ状の入出力ポート 4を形成する 。貫通孔 3は、その両端部において線状体 1の長手軸方向以外への移動を規制する 拘束部 5、 6を有するように形成される。  FIG. 2 is a schematic cross-sectional view showing the internal structure of the main body of the measuring device, taken along the line II-II shown in FIG. In FIG. 2, the through-hole 3 forms a tapered input / output port 4 at the entrance / exit in order to increase the entrance / exit through which the linear body 1 penetrates and improve the insertability. The through hole 3 is formed so as to have restraining portions 5 and 6 that restrict movement of the linear body 1 in directions other than the longitudinal axis direction at both ends thereof.
[0026] 計測装置本体 2は、線状体 1に長手軸方向の圧縮力が作用するときに、貫通孔 3の 内部における線状体 1の湾曲方向を規定する。すなわち、貫通孔 3は拘束部 5、 6の 間で曲がっており、線状体 1が貫通孔 3を貫通すると湾曲形状となる。また貫通孔 3は 、その内部において、内壁 8、 9が内壁 7から、後述する溝 12の幅と線状体 1の直径と の合計を越える距離分離れ、空間 11を成すように形成される。空間 11では、線状体 1が紙面と平行方向の動作を拘束しないようになっている。空間 11において、貫通孔 3の紙面と垂直方向の高さは線状体 1の直径よりもわずかに大きく(たとえば線状体 1 の直径の 105%〜120%)、線状体 1に対して紙面と垂直方向の動作を拘束してい る。すなわち、空間 11において、線状体 1の長手軸方向に垂直な断面における貫通 孔 3の断面形状は、長方形状である。これらによって、貫通孔 3の内部における線状 体 1の湾曲方向を規定し、線状体 1に長手軸方向の圧縮力が作用するときの線状体 1の湾曲の山の高さ、すなわち内壁 7から線状体 1までの距離が定まるように、線状体 1を位置決めしている。 The measuring device main body 2 defines the bending direction of the linear body 1 inside the through hole 3 when a compressive force in the longitudinal axis direction acts on the linear body 1. That is, the through hole 3 is bent between the restraining portions 5 and 6, and when the linear body 1 penetrates the through hole 3, the through hole 3 has a curved shape. In addition, the through hole 3 is formed so that the inner walls 8 and 9 are separated from the inner wall 7 by a distance that exceeds the sum of the width of the groove 12 and the diameter of the linear body 1 described later to form a space 11. . In the space 11, the linear body 1 does not restrain the movement in the direction parallel to the paper surface. In the space 11, the height of the through hole 3 in the direction perpendicular to the paper surface is slightly larger than the diameter of the linear body 1 (for example, the linear body 1 The movement of the linear body 1 in the direction perpendicular to the paper surface is constrained. That is, in the space 11, the cross-sectional shape of the through hole 3 in the cross section perpendicular to the longitudinal axis direction of the linear body 1 is a rectangular shape. By these, the bending direction of the linear body 1 inside the through-hole 3 is defined, and the height of the peak of the linear body 1 when the longitudinal compressive force acts on the linear body 1, that is, the inner wall The linear body 1 is positioned so that the distance from 7 to the linear body 1 is determined.
[0027] そして、貫通孔 3の内壁 7に沿って計測装置本体 2を貫通するように、溝 12が形成 される。溝 12は、線状体 1の直径よりも大きな径を持つ、すなわち線状体 1の直径より も大きな幅および深さを有するように、形成される。  Then, a groove 12 is formed so as to penetrate the measurement apparatus main body 2 along the inner wall 7 of the through hole 3. The groove 12 is formed to have a diameter larger than the diameter of the linear body 1, that is, to have a width and depth larger than the diameter of the linear body 1.
[0028] 次に、図 1および図 2に示す計測装置によって長手軸方向の圧縮力を計測できる 線状体の例として、動脈瘤塞栓用のワイヤの構造について説明する。図 3は、動脈瘤 を塞栓するためのコイルが先端に付いたワイヤの構造を示す模式図である。図 3にお いて、動脈瘤のコイル塞栓用のワイヤは、動脈瘤を塞栓するコイル 13と、ワイヤを血 管へ揷入するときに手で把持するデリバリーワイヤ 14 (この場合、デリバリーワイヤ 14 が線状体 1に相当する)とに分かれて!/、る。先頭のコイル 13は動脈瘤を塞栓するため のものであるから、非常に柔らかぐ拘束するものがないときは所定の直径で巻かれ るように製造されている。そのため、使用する前は鞘 15に収められて巻かれないよう に拘束されている。鞘 15は、デリバリーワイヤ 14よりも大きな径を有する。  Next, as an example of a linear body that can measure the compressive force in the longitudinal axis direction using the measuring device shown in FIGS. 1 and 2, the structure of an aneurysm embolization wire will be described. FIG. 3 is a schematic diagram showing the structure of a wire with a coil for embolizing an aneurysm attached to the tip. In FIG. 3, the wire for embolization of the aneurysm includes a coil 13 for embolizing the aneurysm and a delivery wire 14 that is grasped by hand when inserting the wire into the blood vessel (in this case, the delivery wire 14 is (Corresponding to the linear body 1)! Since the leading coil 13 is for embolizing the aneurysm, it is manufactured so as to be wound with a predetermined diameter when there is nothing that is very soft and restrained. For this reason, it is constrained so that it cannot be wound in the sheath 15 before use. The sheath 15 has a larger diameter than the delivery wire 14.
[0029] 次に、この発明の計測装置を動脈瘤塞栓用のワイヤに適用する例を説明する。図 4 は、計測装置に鞘を貫通させた状態を示す断面模式図である。図 5は、計測装置に 線状体を貫通させた状態を示す断面模式図である。動脈瘤塞栓用のワイヤが、カテ 一テルを経由して人体に揷入される場合、鞘 15とカテーテルとの端部同士を接合し た上でデリバリーワイヤ 14を操作して、カテーテル内にコイル 13を移動させる。ここで 図 2に示すように、拘束部 5、 6の延在方向に垂直な断面の寸法は、溝 12の断面寸 法と同じとして、形成される。よって、図 4に示すように、デリバリーワイヤ 14よりも大き な径を有する鞘 15を、計測装置本体 2の内部において拘束部 6、溝 12および拘束 部 5を経路として、計測装置本体 2を貫通させることができる。そして、コイル 13がカテ 一テル内に完全に移動したことを確認し、鞘 15を計測装置本体 2から抜出すと、計 測装置本体 2の内部には、図 5に示すように、デリバリーワイヤ 14だけが残ることにな る。デリバリーワイヤ 14は鞘 15よりも径が小さぐ貫通孔 3の空間 1 1内を移動すること 力できる。よって、図 5において、デリバリーワイヤ 14は溝 12に収まっておらず、空間 1 1において湾曲している。 Next, an example in which the measuring device of the present invention is applied to an aneurysm embolization wire will be described. Fig. 4 is a schematic cross-sectional view showing a state where the sheath is passed through the measuring device. FIG. 5 is a schematic cross-sectional view showing a state in which a linear body is passed through the measuring device. When the aneurysm embolization wire is inserted into the human body via a catheter, the end portions of the sheath 15 and the catheter are joined to each other, and then the delivery wire 14 is operated so that a coil is formed in the catheter. Move 13 Here, as shown in FIG. 2, the dimension of the cross section perpendicular to the extending direction of the restraining portions 5 and 6 is formed to be the same as the cross sectional dimension of the groove 12. Therefore, as shown in FIG. 4, a sheath 15 having a diameter larger than that of the delivery wire 14 is passed through the measuring device main body 2 through the restricting portion 6, the groove 12 and the restricting portion 5 as a path inside the measuring device main body 2. Can be made. Then, after confirming that the coil 13 has completely moved into the catheter, and removing the sheath 15 from the measuring device body 2, As shown in FIG. 5, only the delivery wire 14 remains in the measuring device body 2. The delivery wire 14 can move in the space 11 of the through hole 3 whose diameter is smaller than that of the sheath 15. Therefore, in FIG. 5, the delivery wire 14 is not stored in the groove 12 and is curved in the space 11.
[0030] このようにすれば、空間 1 1において溝 12以外は、紙面と垂直方向の高さが線状体 1 (すなわちデリバリーワイヤ 14)の直径よりもわずかに大きぐ線状体 1に対して紙面 と垂直方向の動作を拘束している。よって、線状体 1に長手軸方向の圧縮力が作用 するときの、線状体 1の湾曲の山の高さを定めることができる。したがって、線状体 1に 作用する圧縮力の計測精度を低下させることなぐ鞘 15を計測装置本体 2を通過さ せることあ可倉 となる。 [0030] In this way, with respect to the linear body 1 whose height in the direction perpendicular to the paper surface is slightly larger than the diameter of the linear body 1 (that is, the delivery wire 14) except for the groove 12 in the space 11. The movement in the direction perpendicular to the paper surface is restricted. Therefore, the height of the crest of the linear body 1 when the compressive force in the longitudinal axis direction acts on the linear body 1 can be determined. Therefore, it is possible to pass the sheath 15 through the measuring device body 2 without reducing the measurement accuracy of the compressive force acting on the linear body 1.
[0031] また、図 2において、溝 12は、貫通孔 3の内壁 7に沿って形成されている。すなわち 、空間 1 1において、線状体 1に長手軸方向の圧縮力が作用して湾曲するとき、線状 体 1は湾曲の外側へ移動するため、湾曲に伴う線状体 1の移動と関係しな!/、位置に、 溝 12が形成される。よって、溝 12が線状体 1の湾曲と干渉して圧縮力の計測精度を 低下させることを防止すること力 Sでさる。  In FIG. 2, the groove 12 is formed along the inner wall 7 of the through hole 3. That is, in the space 11, when the linear body 1 is bent by the compressive force in the longitudinal axis direction on the linear body 1, the linear body 1 moves to the outside of the curve, and thus has a relationship with the movement of the linear body 1 accompanying the bending. A groove 12 is formed at the position! Therefore, the force S prevents the groove 12 from interfering with the curvature of the linear body 1 and reducing the measurement accuracy of the compression force.
[0032] 貫通孔 3に溝 12が形成されていない計測装置において貫通孔 3に鞘 15が通過で きるようにすると、鞘 15はデリバリーワイヤ 14よりも直径が大きいため、空間 1 1におい てデリバリーワイヤ 14 (線状体 1 )に対して紙面と垂直方向の動作を十分拘束できな い。よって、線状体 1に長手軸方向の圧縮力が作用するときに、線状体 1の湾曲の山 の高さが定まらず、圧縮力の計測精度は低下する。この計測精度低下を防ぐために は、貫通孔 3に鞘 15を通過させない必要があった。すなわち、動脈瘤のコイル塞栓 用のワイヤを計測装置本体 2から外した状態で、鞘 15とカテーテルとの端部同士を 接合しカテーテル内にコイル 13を移動させてから、カテーテルと計測装置本体 2とを 接続するという方法をとる必要があり、使い勝手が悪力 た。それに対して、溝 12が 貫通孔 3に形成される計測装置本体 2を用いることによって、鞘 15を取付けた状態で ワイヤを計測装置の貫通孔 3に揷入できるので、使い勝手のよい計測装置を提供す ること力 Sでさる。  [0032] In a measuring device in which the groove 12 is not formed in the through hole 3, if the sheath 15 is allowed to pass through the through hole 3, the sheath 15 has a diameter larger than that of the delivery wire 14, so that the delivery is performed in the space 11. The movement of the wire 14 (linear body 1) in the direction perpendicular to the paper surface cannot be sufficiently restricted. Therefore, when a compressive force in the longitudinal axis direction acts on the linear body 1, the height of the bending peak of the linear body 1 is not determined, and the measurement accuracy of the compressive force is lowered. In order to prevent this measurement accuracy from being lowered, it was necessary to prevent the sheath 15 from passing through the through hole 3. That is, with the wire for embolization of the aneurysm coil removed from the measuring device body 2, the ends of the sheath 15 and the catheter are joined together, the coil 13 is moved into the catheter, and then the catheter and the measuring device body 2. It was necessary to use a method of connecting the two to each other. On the other hand, by using the measuring device main body 2 in which the groove 12 is formed in the through-hole 3, the wire can be inserted into the through-hole 3 of the measuring device with the sheath 15 attached. Deliver with the power S to provide.
[0033] 次に、線状体に長手軸方向の圧縮力が作用するときの計測装置の具体的な動作 について説明する。図 6は、線状体に圧縮力を作用させる状態を示す断面模式図で ある。図 6において、デリバリーワイヤ 14 (線状体 1)に圧縮力を作用するとき、デリバリ 一ワイヤ 14は貫通孔 3の空間 11において湾曲し、圧縮力の増加に伴って湾曲の山 の高さ、すなわち内壁 7から線状体 1までの距離が増加する。たとえば、圧縮力 piを 作用させるときデリバリーワイヤ 14aのように湾曲し、デリバリーワイヤ 14に圧縮力が 作用していない状態から湾曲の山の高さが hi増加する。同様に、 piよりも大なる圧 縮力 p2を作用させるとき、デリバリーワイヤ 14bのように湾曲し、デリバリーワイヤ 14に 圧縮力が作用していない状態から湾曲の山の高さが h2増加する。このようにして、湾 曲の山の高さ、すなわち湾曲の度合いをセンサによって検出する。そして予め決定さ れた湾曲の山の高さとデリバリーワイヤ 14 (線状体 1 )に作用する圧縮力との相関関 係に基づき、湾曲の度合いを図示しない変換回路によってデリバリーワイヤ 14 (線状 体 1)に作用する圧縮力へ変換することによって、圧縮力を計測することが可能となる[0033] Next, a specific operation of the measuring apparatus when a compressive force in the longitudinal axis direction acts on the linear body Will be described. FIG. 6 is a schematic cross-sectional view showing a state in which a compressive force is applied to the linear body. In FIG. 6, when a compressive force is applied to the delivery wire 14 (linear body 1), the delivery wire 14 bends in the space 11 of the through hole 3, and as the compressive force increases, the height of the crest increases. That is, the distance from the inner wall 7 to the linear body 1 increases. For example, when the compressive force pi is applied, it bends like the delivery wire 14a, and the height of the peak of the bend increases from the state where the compressive force is not acting on the delivery wire 14. Similarly, when a compressive force p2 greater than pi is applied, it bends like the delivery wire 14b, and the height of the peak of the curve increases by h2 from the state where the compressive force is not applied to the delivery wire 14. In this way, the height of the hill, that is, the degree of curvature, is detected by the sensor. Then, based on the correlation between the predetermined height of the peak of the curve and the compressive force acting on the delivery wire 14 (linear body 1), the degree of curvature is determined by a conversion circuit (not shown) by the delivery wire 14 (linear body). It becomes possible to measure the compressive force by converting into the compressive force acting on 1)
Yes
[0034] 図 7は、図 2に示す VII— VII線による断面における、計測装置に線状体を貫通させ るときの線状体の湾曲の度合いを検出する光学系を示す断面模式図である。湾曲の 度合いを検出するセンサとしては、たとえばラインセンサ 16 (光を受ける受光素子を 複数有し、複数の受光素子が一列に配置される、 1次元の光学式のアレイセンサ)を 用いること力 Sできる。空間 11を挟んでラインセンサ 16と対向する位置に配置される図 示しない光源器が発する光をラインセンサ 16が受けるとき、ある受光素子の上にデリ ノ リーワイヤ 14があり、光源器が発する光をデリバリーワイヤ 14が遮ることによりその 受光素子の受ける光量が小さくなる。その受光素子の位置を検出することにより、デリ ノ リーワイヤ 14の位置を特定し、デリバリーワイヤ 14の湾曲の山の高さ、すなわち湾 曲の度合いを検出することができる。デリバリーワイヤ 14の像をラインセンサ 16へ適 切に結像させるために、レンズやスリットまたは外光を遮断するフィルタなどの光学的 要素を、本光学系に設置してもよい。たとえば図 7においては、たとえばセルフオック( R)レンズのようなレンズ 17が、空間 11とラインセンサ 16との間に配されている。  FIG. 7 is a schematic cross-sectional view showing an optical system for detecting the degree of curvature of the linear body when the linear body passes through the measuring device in the cross section taken along the line VII-VII shown in FIG. . As a sensor for detecting the degree of bending, for example, a line sensor 16 (a one-dimensional optical array sensor having a plurality of light receiving elements that receive light and arranged in a row) S it can. When the line sensor 16 receives light emitted from a light source (not shown) placed at a position facing the line sensor 16 across the space 11, the light emitted from the light source is located on a certain light receiving element. When the delivery wire 14 blocks the light quantity received by the light receiving element becomes small. By detecting the position of the light receiving element, the position of the delivery wire 14 can be specified, and the height of the crest of the delivery wire 14, that is, the degree of bending can be detected. In order to appropriately form the image of the delivery wire 14 on the line sensor 16, an optical element such as a lens, a slit, or a filter that blocks outside light may be installed in the optical system. For example, in FIG. 7, a lens 17 such as a self-occlusion (R) lens is arranged between the space 11 and the line sensor 16.
[0035] なお上述の通り、コイル 13が収められた鞘 15を、計測装置本体 2を貫通させるとき には溝 12が経路となる。図 7において、紙面の上下方向に溝 12の幅が示され、紙面 の左右方向に溝 12の深さが示される。すなわち、溝 12において、貫通孔 3の内部に おいて線状体 1が湾曲する方向における寸法が溝 12の幅であり、貫通孔 3の内部に おいて線状体 1が湾曲する方向と略直交する方向における寸法が溝 12の高さを示 す。空間 11は、溝 12の幅とデリバリーワイヤ 14 (線状体 1)の直径との合計を越える 距離分、内壁 8 9が内壁 7から離れるように形成される。デリバリーワイヤ 14は、長手 軸方向の圧縮力が作用するとき、その湾曲の外側、すなわち図 7の上方向へ向かつ て、移動すること力 Sできる。空間 11においてデリバリーワイヤ 14は、図 7の左右方向 への動作を拘束されるため、デリバリーワイヤ 14に長手軸方向の圧縮力が作用する ときの、空間 11におけるデリバリーワイヤ 14の位置を位置決めすることができる。また 図 7において、鞘 15は、溝 12において長手軸方向以外への移動を規制されるため、 空間 11 移動することができない様子が示される。 [0035] As described above, when the sheath 15 in which the coil 13 is housed is passed through the measuring apparatus main body 2, the groove 12 serves as a path. In FIG. 7, the width of the groove 12 is shown in the vertical direction of the page. The depth of the groove 12 is shown in the left-right direction. That is, in the groove 12, the dimension in the direction in which the linear body 1 bends inside the through hole 3 is the width of the groove 12, and is substantially the same as the direction in which the linear body 1 bends in the through hole 3. The dimension in the orthogonal direction indicates the height of the groove 12. The space 11 is formed such that the inner wall 8 9 is separated from the inner wall 7 by a distance exceeding the sum of the width of the groove 12 and the diameter of the delivery wire 14 (linear body 1). When the compressive force in the longitudinal direction is applied, the delivery wire 14 can move to the outside of the curve, that is, upward in FIG. Since the delivery wire 14 is restrained from moving in the left-right direction in FIG. 7 in the space 11, the position of the delivery wire 14 in the space 11 when the longitudinal compressive force acts on the delivery wire 14 is determined. Can do. Further, FIG. 7 shows that the sheath 15 cannot move in the space 11 because the movement of the sheath 12 in other than the longitudinal axis direction is restricted in the groove 12.
[0036] ただし、線状体 1を操作するときに、線状体 1の長手軸方向に沿って力が加えられ るとは限らない。図 8は、線状体に圧縮力とともに R方向または L方向の力を作用させ る状態を示す断面模式図である。図 8において、操作者 25が線状体 1を操作すると きに、たとえば R方向や L方向に線状体 1を曲げながら力を加えていることが考えられ る。図 2に示すように貫通孔 3に沿って溝 12が形成される計測装置においては、拘束 部 5 6の延在方向に垂直な断面の寸法が、溝 12の断面寸法と同じとして形成される 。この場合、線状体 1を貫通孔 3に貫通するとき、紙面に対して垂直方向に曲げなが ら操作しても、線状体 1は空間 11において拘束されるため影響は少ない。しかし、図 8に示す R方向や L方向のように、紙面に対して水平方向に曲げながら線状体 1を操 作するとき、線状体 1は貫通孔 3内部の拘束部 5 6の延在方向の端部の 4箇所(Sla S2a Slb S2b)において点接触となることがある。その場合、線状体 1に圧縮力 を作用させるときの線状体 1の湾曲の度合いが一意に定まらなくなり、計測精度の低 下をもたらす。そこで、 R方向や L方向への曲げがもたらす圧縮力の計測精度への影 響をできる限り小さくできるような構造とする必要がある。  However, when the linear body 1 is operated, a force is not always applied along the longitudinal axis direction of the linear body 1. FIG. 8 is a schematic cross-sectional view showing a state in which a force in the R direction or the L direction is applied to the linear body together with the compressive force. In FIG. 8, when the operator 25 operates the linear body 1, it can be considered that a force is applied while bending the linear body 1 in the R direction or the L direction, for example. In the measuring device in which the groove 12 is formed along the through hole 3 as shown in FIG. 2, the dimension of the cross section perpendicular to the extending direction of the restraining portion 56 is formed to be the same as the cross sectional dimension of the groove 12. . In this case, when penetrating the linear body 1 through the through-hole 3, even if it is operated while being bent in a direction perpendicular to the paper surface, the linear body 1 is constrained in the space 11 and thus has little influence. However, when the linear body 1 is operated while being bent in the horizontal direction with respect to the paper surface as in the R direction or the L direction shown in FIG. 8, the linear body 1 is not extended from the constraining portion 56 inside the through hole 3. Point contact may occur at four locations (Sla S2a Slb S2b) at the end in the current direction. In that case, the degree of bending of the linear body 1 when a compressive force is applied to the linear body 1 cannot be uniquely determined, resulting in a decrease in measurement accuracy. Therefore, it is necessary to have a structure that can minimize the impact on the measurement accuracy of the compressive force caused by bending in the R and L directions.
[0037] すなわち、拘束部 5 6において、拘束部 5 6と線状体 1とが平行となるように拘束 部 5 6の延在方向長さ Lを決定する必要がある。図 9は、拘束部が短い計測装置を 示す断面模式図である。図 10は、拘束部が短い計測装置における圧縮力の計測誤 差要因を示す断面模式図である。図 9において、拘束部 5、 6の延在方向長さは不十 分な長さ Loであり、線状体 1は貫通孔 3内部の 4箇所(S l a、 S2a、 S ib, S2b)にお いて点接触となっている。そのため、拘束部 5、 6と線状体 1とが平行ではなぐ角度 εを成している。このとき、図 10に示すように、 L方向に線状体 1を曲げるように力を 作用させると、計測装置本体 2の外部における線状体 1の L方向への移動によって、 空間 1 1にお!/、て線状体 1が湾曲し、線状体 1の位置は空間 1 1の中央部にお!/、て Δ hずれることとなる。したがって、線状体 1の湾曲の山の高さに対する誤差が大きくなり 、圧縮力の計測精度が低下する。 That is, in the restraint portion 56, it is necessary to determine the length L in the extending direction of the restraint portion 56 so that the restraint portion 56 and the linear body 1 are parallel to each other. FIG. 9 is a schematic cross-sectional view showing a measuring device with a short restraint. Figure 10 shows the measurement error of compressive force in a measuring device with a short restraint. It is a cross-sectional schematic diagram which shows a difference factor. In FIG. 9, the length of the restraining portions 5 and 6 in the extending direction is an unsatisfactory length Lo, and the linear body 1 is located at four locations (Sla, S2a, Sib, S2b) inside the through hole 3. There is point contact. For this reason, the restraining portions 5 and 6 and the linear body 1 form an angle ε that is not parallel. At this time, as shown in FIG. 10, when a force is applied to bend the linear body 1 in the L direction, the movement of the linear body 1 in the L direction outside the measuring device main body 2 causes the space 1 1 to move. O! /, The linear body 1 is curved, and the position of the linear body 1 is shifted at the center of the space 11 by Δh. Therefore, an error with respect to the height of the bending peak of the linear body 1 increases, and the measurement accuracy of the compressive force decreases.
[0038] そこで、貫通孔 3に線状体 1を貫通させ線状体に重力以外の外力が加えられないと き、計測装置本体 2の線状体 1が貫通する出入口の外部において、線状体 1と拘束 部 5、 6とが平行になるような拘束部の長さ Lとなるように、貫通孔 3を形成する。線状 体 1と拘束部 5、 6との平行を測定するためには、拘束部 5、 6における貫通孔 3の中 心線に沿って定規を当て、計測装置本体 2の出入口の外部の適当な位置において 線状体 1と定規とのずれ量を計測する。このずれ量は、定規に対して直角方向の線 状体 1までの距離である。そのずれ と、計測装置本体 2の出入口と計測点との距 離 Kとを用いて、角度 εを逆正接関数により求める。すなわち、 ε
Figure imgf000013_0001
[0038] Therefore, when the linear body 1 is passed through the through hole 3 and no external force other than gravity is applied to the linear body, the linear body 1 outside the entrance through which the linear body 1 of the measuring device body 2 passes is linear. The through hole 3 is formed so that the length 1 of the restraining portion is such that the body 1 and the restraining portions 5 and 6 are parallel to each other. In order to measure the parallelism between the linear body 1 and the restraining parts 5 and 6, a ruler is applied along the center line of the through hole 3 in the restraining parts 5 and 6, and an appropriate part outside the entrance of the measuring device body 2 is used. Measure the amount of deviation between the linear object 1 and the ruler at the correct position. This deviation is the distance to the linear body 1 in the direction perpendicular to the ruler. Using the deviation and the distance K between the entrance / exit of the measuring device body 2 and the measurement point, the angle ε is obtained by an arctangent function. That is, ε
Figure imgf000013_0001
によって角度 εを求める。求められた角度 εによって、線状体 1と拘束部 5、 6とが平 行かどうかを判定する。  Obtain the angle ε. Based on the obtained angle ε, it is determined whether the linear body 1 and the restraining portions 5 and 6 are parallel.
[0039] より具体的には、たとえば、ヤング率 130GPa、直径 0· 014inch (0. 356mm)、長 さ 180cmの線状体を用いる。そして、計測装置本体 2の出入口と計測点との距離 K = 10cmにおいて、ずれ を計測し、角度 εを求める。角度 εが 1° 以下であれば 線状体 1と拘束部 5、 6とが平行であると判定する。このようにして、線状体 1と拘束部 5、 6とが平行になるように貫通孔 3が形成される計測装置とすることができる。そして 、貫通孔 3の内壁に貫通孔 3に沿って計測装置本体 2を貫通するように溝 12が形成 される場合においても、線状体 1と拘束部 5、 6との平行によって拘束部 5、 6の長さを 規定することで、線状体 1に作用する長手軸方向の圧縮力の計測精度の低下を防止 すること力 Sでさる。  More specifically, for example, a linear body having a Young's modulus of 130 GPa, a diameter of 0 · 014 inch (0.356 mm), and a length of 180 cm is used. Then, at a distance K = 10 cm between the entrance / exit of the measuring device main body 2 and the measurement point, the deviation is measured to obtain the angle ε. If the angle ε is 1 ° or less, it is determined that the linear body 1 and the restraining portions 5 and 6 are parallel. In this way, a measuring device in which the through hole 3 is formed so that the linear body 1 and the restraining portions 5 and 6 are parallel to each other can be obtained. Even when the groove 12 is formed on the inner wall of the through-hole 3 so as to penetrate the measuring device main body 2 along the through-hole 3, the constraining portion 5 is parallel to the linear body 1 and the constraining portions 5 and 6. By defining the length of 6, the force S can be used to prevent the measurement accuracy of the compressive force in the longitudinal axis direction acting on the linear body 1 from being lowered.
[0040] または、動脈瘤を塞栓するためのコイルが先端に付いたワイヤの使用を考慮する必 要のない場合は、貫通孔 3の内壁に溝を形成する必要がない。その場合は、拘束部 5、 6における貫通孔 3の直径を線状体 1の直径よりもわずかに大きく(たとえば線状 体 1の直径の 105%以上 120%以下)、かつ拘束部 5、 6の長さ Lを線状体 1の直径 の数倍以上とすることで、拘束部 5、 6において線状体 1の長手軸方向以外への動作 を拘束すること力できる。そのとき、上記の方法によって、角度 εを 1° 以下とできる 拘束部 5、 6の長さ Lの最小値を決定し、決定された長さ Lを有するよう貫通孔 3が形 成される計測装置とする。これにより、圧縮力の計測精度を低下させることなぐ計測 装置の小型化を達成することができる。 [0040] Alternatively, the use of a wire with a coil at the tip to embolize the aneurysm should be considered. When not necessary, it is not necessary to form a groove in the inner wall of the through hole 3. In that case, the diameter of the through hole 3 in the restraint portions 5 and 6 is slightly larger than the diameter of the linear body 1 (for example, 105% to 120% of the diameter of the linear body 1), and the restraint portions 5 and 6 By making the length L of the wire body several times the diameter of the linear body 1, it is possible to restrain the movement of the linear body 1 in directions other than the longitudinal axis direction in the restraining portions 5 and 6. At that time, by the above method, the angle ε can be 1 ° or less. The minimum value of the length L of the restraining portions 5 and 6 is determined, and the through-hole 3 is formed so as to have the determined length L. A device. As a result, it is possible to reduce the size of the measuring device without reducing the measurement accuracy of the compressive force.
[0041] 次に、種々の材質を有する線状体に同一の計測装置を適用するときの、最適な貫 通孔の形状について説明する。図 11は、種類の異なる線状体に圧縮力を作用させ る状態を示す断面模式図である。図 12は、線状体に作用する圧縮力と、接点間の距 離との関係を示すグラフである。ここで接点とは、線状体 1に長手軸方向の圧縮力を 作用させ線状体 1が湾曲するとき、線状体 1が貫通孔 3の内壁 8および内壁 9から離 れる点である。すなわち接点間の距離 Wは、線状体 1が内壁 8と接する点と、線状体 1が内壁 9と接する点との距離を示す。  [0041] Next, an optimum shape of the through hole when the same measuring device is applied to a linear body having various materials will be described. FIG. 11 is a schematic cross-sectional view showing a state in which a compressive force is applied to different types of linear bodies. FIG. 12 is a graph showing the relationship between the compressive force acting on the linear body and the distance between the contacts. Here, the contact point is a point where the linear body 1 is separated from the inner wall 8 and the inner wall 9 of the through-hole 3 when the linear body 1 is bent by applying a compressive force in the longitudinal axis direction to the linear body 1. That is, the distance W between the contacts indicates the distance between the point where the linear body 1 contacts the inner wall 8 and the point where the linear body 1 contacts the inner wall 9.
[0042] 直径が略同一である異種の線状体 1は、同一の計測装置に揷入することができる。  [0042] Different types of linear bodies 1 having substantially the same diameter can be inserted into the same measuring device.
このとき、異種の線状体 1は、そのヤング率が異なる可能性がある。異種の線状体に おいて、ヤング率が異なると、同一の圧縮力に対する橈みが異なることになる。すな わち、ヤング率が小さく橈みが大きな線状体 1は、座屈しやすいため、接点間の距離 Wを小さくして座屈しないようにする必要がある。一方、ヤング率が大きく橈みが小さ な線状体 1におレ、ては、十分な精度で圧縮力を計測するためには接点間の距離 W を大きくする必要がある。  At this time, different types of linear bodies 1 may have different Young's moduli. When different Young's moduli are used in different types of linear bodies, the sag for the same compressive force is different. In other words, the linear body 1 having a small Young's modulus and a large sag is easy to buckle, so it is necessary to reduce the distance W between the contacts so as not to buckle. On the other hand, for the linear body 1 having a large Young's modulus and small sag, it is necessary to increase the distance W between the contacts in order to measure the compressive force with sufficient accuracy.
[0043] そこで、空間 11の内壁 8および内壁 9は、貫通孔 3の内側に向かって凸の曲面形 状となるよう、貫通孔 3が形成される。図 11において、拘束部 5における貫通孔 3の内 壁に接するように、曲率半径は rl、曲率半径の中心は clである内壁 8の曲面部分が 形成されている。また、上記の曲率半径 rlの曲面部分に接して、曲率半径は r2、曲 率半径の中心は c2である曲面形状が形成されている。内壁 8および内壁 9の形状は 上記に限られるものではなぐ貫通孔 3の内側に向かって凸であって、拘束部 5にお ける貫通孔 3の内壁と接するような曲面形状であればよい。 Therefore, the through-hole 3 is formed so that the inner wall 8 and the inner wall 9 of the space 11 have a curved surface shape that is convex toward the inside of the through-hole 3. In FIG. 11, a curved surface portion of the inner wall 8 is formed so that the radius of curvature is rl and the center of the radius of curvature is cl so as to be in contact with the inner wall of the through hole 3 in the restraint portion 5. Further, a curved surface shape having a curvature radius of r2 and a center of curvature radius of c2 is formed in contact with the curved surface portion of the curvature radius rl. The shapes of the inner wall 8 and the inner wall 9 are not limited to the above, and are convex toward the inside of the through-hole 3, and Any curved surface shape that contacts the inner wall of the through-hole 3 is acceptable.
[0044] ここで、ヤング率の異なる 2種類の線状体に等しい圧縮力を作用させる場合を考え る。図 12において、ヤング率が大きければ図 12の実線で示すような圧縮力 Pと接点 間の距離 Wの関係が得られ、たとえば圧縮力 piを作用させるときの接点間の距離 W は wlとなる。またヤング率が小さければ、図 12の破線で示すような関係が得られ、同 じ圧縮力 piを作用させるときの接点間の距離 Wはより小さくなり、より線状体の湾曲 の度合いが大きくなる。このとき、空間 11において、線状体 1の湾曲の外側にある貫 通孔 3の内壁 8および内壁 9に沿って線状体が湾曲するので、空間 11内部で線状体 1力 S座屈することを防止できる。すなわち、ヤング率の小さな線状体に長手軸方向の 圧縮力が作用するとき、線状体が空間 11において座屈することなく湾曲するため、 線状体の湾曲の度合いを検出することができる。検出される湾曲の度合いを線状体 に作用する長手軸方向の圧縮力に変換することにより、線状体に作用する圧縮力を 計測すること力 Sできる。これにより、同一の計測装置でヤング率の大小に関わらず泉 状体に作用する長手軸方向の圧縮力を広範囲に精度よく計測することができる。  [0044] Here, consider a case where an equal compressive force is applied to two types of linear bodies having different Young's moduli. In Fig. 12, if the Young's modulus is large, the relationship between the compression force P and the distance W between the contacts as shown by the solid line in Fig. 12 is obtained. For example, the distance W between the contacts when the compression force pi is applied is wl. . If the Young's modulus is small, the relationship shown by the broken line in FIG. 12 is obtained, and the distance W between the contacts when the same compression force pi is applied becomes smaller, and the degree of bending of the linear body becomes larger. Become. At this time, in the space 11, the linear body is curved along the inner wall 8 and the inner wall 9 of the through-hole 3 outside the curve of the linear body 1, so that the linear body 1 force S buckles inside the space 11. Can be prevented. That is, when a compressive force in the longitudinal axis direction acts on a linear body having a small Young's modulus, the linear body is curved without buckling in the space 11, and therefore the degree of curvature of the linear body can be detected. By converting the detected degree of bending into a compressive force in the longitudinal direction acting on the linear body, a force S for measuring the compressive force acting on the linear body can be obtained. This makes it possible to accurately measure the compressive force in the longitudinal direction acting on the fountain with the same measuring device regardless of the Young's modulus.
[0045] また図 11において、空間 11の内壁 8と内壁 9との間には凹部 10が形成される。これ によって、さらに広範囲の圧縮力を精度よく計測することが可能となる。すなわち、空 間 11における線状体 1の湾曲の山の高さを検出することによって線状体 1に作用す る圧縮力を計測することができるので、空間 11内にある線状体 1の湾曲の山の頂点、 すなわち空間 11内にある線状体 1にお!/ヽて内壁 7から最も離れた点力 空間 11の内 壁に接触していなければ、線状体 1に作用する圧縮力を計測することができる。そこ で、凹部 10が形成されることによって、線状体 1の湾曲の山の頂点を空間 11の内壁 へ接触させるためにはより大きな長手軸方向の圧縮力が作用することが必要となる。 したがって、圧縮力の計測範囲を広げることができる。  In FIG. 11, a recess 10 is formed between the inner wall 8 and the inner wall 9 of the space 11. This makes it possible to accurately measure a wider range of compressive forces. That is, since the compressive force acting on the linear body 1 can be measured by detecting the height of the peak of the linear body 1 in the space 11, the linear body 1 in the space 11 can be measured. The apex of the curved mountain, that is, the linear body 1 in the space 11! / The point force farthest away from the inner wall 7 If it is not in contact with the inner wall of the space 11, the compression acting on the linear body 1 Force can be measured. Therefore, by forming the recess 10, it is necessary to apply a greater compressive force in the longitudinal axis direction in order to bring the apex of the crest of the linear body 1 into contact with the inner wall of the space 11. Therefore, the measurement range of compressive force can be expanded.
[0046] また、空間 11が、貫通孔 3の内側に向かって凸の曲面形状である内壁 8、 9と、凹 部 10とを組み合わせた形状に成形される。この空間 11の形状によって、線状体 1に 圧縮力が作用し線状体 1が空間 11にお!/、て湾曲するとき、線状体 1の湾曲の外側に ある貫通孔 3の内壁(内壁 8および内壁 9)から、線状体 1の一部(図 11における接点 間の距離 wlまたは w2に相当する一部)が離れている。そして、圧縮力が増大するに つれて、線状体 1が内壁から離れる点である接点間の距離は減少している。すなわ ち、圧縮力 Pと接点間の距離 Wとの関係は、図 12のグラフのように示される。たとえば 図 12において実線で示される圧縮力 Pと接点間の距離 Wとの関係を有する線状体 に、圧縮力 piを作用させるとき線状体 laのように湾曲し、そのときの接点間の距離は wlとなる。また、線状体に piよりも大なる圧縮力 p2を作用させるとき線状体 lbのよう に湾曲し、そのときの接点間の距離は、 wlよりも小なる w2となっている。 In addition, the space 11 is formed into a shape in which the inner walls 8 and 9, which are curved in a convex shape toward the inside of the through hole 3, and the concave portion 10 are combined. Due to the shape of the space 11, when the compression force acts on the linear body 1 and the linear body 1 is bent into the space 11! /, The inner wall of the through-hole 3 outside the curve of the linear body 1 ( A part of the linear body 1 (part corresponding to the distance wl or w2 between the contacts in Fig. 11) is separated from the inner wall 8 and the inner wall 9). And as the compression force increases Accordingly, the distance between the contacts, which is the point where the linear body 1 is separated from the inner wall, is decreasing. In other words, the relationship between the compression force P and the distance W between the contacts is shown in the graph of FIG. For example, a linear body having a relationship between the compression force P indicated by the solid line in FIG. 12 and the distance W between the contacts is bent like a linear body la when the compression force pi is applied, and between the contacts at that time The distance is wl. In addition, when a compressive force p2 greater than pi is applied to the linear body, it bends like a linear body lb, and the distance between the contacts at that time is w2, which is smaller than wl.
[0047] このような空間 11の構造によって、線状体 1が湾曲する貫通孔 3の内部の空間 11 において、線状体 1に長手軸方向の圧縮力が作用して線状体 1が湾曲するとき、線 状体 1の湾曲の外側にある貫通孔 3の内壁(内壁 8および内壁 9)に沿って線状体 1 が湾曲できる。また線状体 1の一部は内壁 8および内壁 9から離れるように湾曲できる 。また圧縮力が増大するにつれて、線状体 1が内壁力 離れる点である接点間の距 離は減少する。よって、空間 11内部で線状体 1が座屈することを防止できるので、座 屈荷重の小さな線状体でも座屈することなく線状体の湾曲の度合いを精度よく検出 することができる。検出される湾曲の度合いを線状体に作用する長手軸方向の圧縮 力に変換することにより、線状体に作用する圧縮力を計測することができる。そして、 ヤング率の異なる種々の線状体について、圧縮力と湾曲の度合いとの相関関係を予 め計測し、これらの相関関係を変換回路に記憶しておき、使用する線状体に合わせ てどの相関関係を用いるのか選択する。これにより、線状体 1の座屈荷重の大小によ らず線状体 1に作用する長手軸方向の圧縮力を計測可能な計測装置を提供すること ができ、同一の計測装置を種々の材質を有する線状体 1に適用できるので、経済的 である。 [0047] Due to the structure of the space 11, the linear body 1 is bent by the compressive force in the longitudinal axis direction acting on the linear body 1 in the space 11 inside the through hole 3 in which the linear body 1 bends. When doing so, the linear body 1 can bend along the inner wall (inner wall 8 and inner wall 9) of the through hole 3 outside the curve of the linear body 1. A part of the linear body 1 can be bent away from the inner wall 8 and the inner wall 9. As the compressive force increases, the distance between the contacts, which is the point at which the linear body 1 separates from the inner wall force, decreases. Therefore, since the linear body 1 can be prevented from buckling inside the space 11, even the linear body with a small buckling load can accurately detect the degree of bending of the linear body without buckling. By converting the detected degree of bending into a compressive force in the longitudinal direction acting on the linear body, the compressive force acting on the linear body can be measured. Then, the correlation between the compression force and the degree of bending is measured in advance for various linear bodies with different Young's moduli, and these correlations are stored in the conversion circuit, and are matched to the linear bodies used. Select which correlation to use. As a result, it is possible to provide a measuring device capable of measuring the compressive force in the longitudinal direction acting on the linear body 1 regardless of the buckling load of the linear body 1, and the same measuring device can be provided in various ways. Since it can be applied to the linear body 1 having a material, it is economical.
[0048] さらに、線状体 1を計測装置本体 2へ揷入するとき容易に貫通させることができるよ うに、貫通孔 3の形状を規定する。図 13は、貫通孔の拘束部の成す適切な角度を示 す断面模式図である。図 14は、貫通孔の拘束部と内壁との成す適切な角度を示す 断面模式図である。図 13において、貫通孔 3は、その両端部において線状体 1の長 手軸方向以外への移動を規制する拘束部 5、 6を有するように形成され、図 13中に 破線で示される、拘束部 5の延長線 (すなわち拘束部 5の中心線の延長線)と、拘束 部 6の延長線 (すなわち拘束部 6の中心線の延長線)との成す角度を αとする。また、 図 14において破線で示される、拘束部 6の延長線と、線状体 1の湾曲の外側にある 貫通孔 3の内壁、すなわち内壁 8における、拘束部 6の延長線上にある点の接線とが 成す角度を /3とする。角度《、 /3の範囲とその理由について以下説明する。 Furthermore, the shape of the through hole 3 is defined so that the linear body 1 can be easily penetrated when it is inserted into the measuring apparatus main body 2. FIG. 13 is a schematic cross-sectional view showing an appropriate angle formed by the constraining portion of the through hole. FIG. 14 is a schematic cross-sectional view showing an appropriate angle formed by the constraining portion of the through hole and the inner wall. In FIG. 13, the through-hole 3 is formed so as to have restraining portions 5 and 6 that restrict movement of the linear body 1 in directions other than the longitudinal axis at both ends, and is indicated by a broken line in FIG. The angle formed by the extension line of the restraint part 5 (ie, the extension line of the center line of the restraint part 5) and the extension line of the restraint part 6 (ie, the extension line of the center line of the restraint part 6) is α. Also, The extension line of the restraint portion 6 indicated by a broken line in FIG. 14 and the tangent line of the point on the extension line of the restraint portion 6 in the inner wall of the through-hole 3 outside the curve of the linear body 1, that is, the inner wall 8, are shown. The angle formed is / 3. The range of the angle <<, / 3 and the reason will be described below.
[0049] α + β≤160° …(A)  [0049] α + β≤160 °… (A)
a + [i = 180° とは、線状体 1の湾曲の外側にある貫通孔 3の内壁、たとえば内壁 8が、拘束部 5の延長線上にある状態である。このとき、線状体 1の湾曲の外側に空 間がなくなってしまうため、線状体 1に長手軸方向の圧縮力が作用するときの線状体 1の変位がほぼ零となる。よって、圧縮力に対応する線状体 1の湾曲の度合いを検出 することができないため、計測装置として成立しない。そこで、 20° の余裕を見て、 a + β≤160° とする。  “a + [i = 180 °” is a state in which the inner wall of the through hole 3 outside the curve of the linear body 1, for example, the inner wall 8, is on the extension line of the restraint portion 5. At this time, since there is no space outside the curve of the linear body 1, the displacement of the linear body 1 when the compressive force in the longitudinal axis direction acts on the linear body 1 becomes almost zero. Therefore, since the degree of bending of the linear body 1 corresponding to the compressive force cannot be detected, the measuring device is not established. Therefore, a + β≤160 °, with a 20 ° margin.
[0050] β≥100 · · · (Β)  [0050] β≥100 · · · (Β)
ヤング率 130GPa、直径 0· 014inch (0. 356mm)の泉状体を用い、実験的に /3 の範囲を決定した。 /3 = 90° とは、線状体 1が、線状体 1の湾曲の外側にある貫通 孔 3の内壁に直角に接触する状態であり、 3が 90。 以下では線状体 1を貫通孔 3へ 案内することができない。そこで、線状体と内壁とによる摩擦を考慮して、 β≥100° とする。好ましくは /3≥1 10° とすれば、より容易に線状体 1を貫通孔 3へ貫通するこ と力 Sできる。  Using a spring-like body with a Young's modulus of 130 GPa and a diameter of 0 · 014 inch (0.356 mm), the range of / 3 was experimentally determined. / 3 = 90 ° means that the linear body 1 is in contact with the inner wall of the through hole 3 outside the curve of the linear body 1 at a right angle, and 3 is 90. In the following, the linear body 1 cannot be guided to the through hole 3. Therefore, considering the friction between the linear body and the inner wall, β≥100 °. Preferably, if it is / 3≥1 10 °, the force S can be more easily penetrated through the linear body 1 into the through hole 3.
[0051] 30° ≤ α≤50° · · · (C)  [0051] 30 ° ≤ α≤50 ° · · · · (C)
ヤング率 130GPa、直径 0· 014inch (0. 356mm)の線状体およびヤング率 90G Pa、直径 0. 012inch (0. 305mm)の線状体を用い、実験的に αの範囲を決定した 。 αを大きくすると、線状体 1の、線状体 1の湾曲の外側にある貫通孔 3の内壁に接 触する点での摩擦力が無視できなくなり、圧縮力の計測精度が低下する。一方、 α を小さくすると、線状体 1に圧縮力を作用させるときの湾曲の度合いが小さくなり、圧 縮力に対する計測装置の感度が低下する。そこで、 30° ≤ a≤50° とする。 αが 3 5° 以下では摩擦力の低減は小さぐまた α力 5° 以上で摩擦力の増大が顕著に なるため、好ましくは 35° ≤ a≤45° とする。  The range of α was experimentally determined using a linear body having a Young's modulus of 130 GPa and a diameter of 0 · 014 inches (0.356 mm) and a Young's modulus of 90 GPa and a diameter of 0.012 inches (0.305 mm). When α is increased, the frictional force at the point of contact of the linear body 1 with the inner wall of the through hole 3 outside the curvature of the linear body 1 cannot be ignored, and the measurement accuracy of the compressive force decreases. On the other hand, when α is reduced, the degree of bending when the compressive force is applied to the linear body 1 is reduced, and the sensitivity of the measuring apparatus with respect to the compressive force is reduced. Therefore, 30 ° ≤ a≤50 °. When α is 35 ° or less, the reduction of friction force is small, and when α force is 5 ° or more, the increase of friction force becomes significant. Therefore, 35 ° ≤ a ≤ 45 ° is preferable.
[0052] 上記の (A)、(B)、(C)式より、以下の関係が導かれる。  [0052] The following relationships are derived from the above equations (A), (B), and (C).
30° ≤ α≤50° 100° ≤ β≤130° 30 ° ≤ α≤50 ° 100 ° ≤ β≤130 °
したがって、拘束部 5の延長線と、拘束部 6の延長線との成す角度 αを規定し、また 、拘束部 6の延長線と、線状体 1の湾曲の外側にある貫通孔 3の内壁、すなわち内壁 8における、拘束部 6の延長線上にある点の接線とが成す角度 βを規定することによ り、線状体を計測装置へ揷入するとき容易に貫通させることができる。  Therefore, the angle α formed by the extension line of the restraint portion 5 and the extension line of the restraint portion 6 is defined, and the extension wall of the restraint portion 6 and the inner wall of the through hole 3 outside the curve of the linear body 1 are defined. In other words, by defining the angle β formed between the inner wall 8 and the tangent of the point on the extension line of the restraining portion 6, the linear body can be easily penetrated when it is inserted into the measuring device.
[0053] 次に、本発明の計測装置を実用化する例として、体内の管の中へ挿入される線状 の医療器具である線状体に作用する長手軸方向の圧縮力を計測する計測装置が、 他の医療機器に組み込まれて使用される例を示す。図 15は、計測装置本体が Υコ ネクタに組み込まれて使用される例を示す模式図である。図 15において、 Υコネクタ 18は、入力ポート 19と他の入力ポート 20と出力ポート 21とを備える。計測装置本体 2は、 Υコネクタ 18の内部の、入力ポート 19と出力ポート 21とを連通する通路に組み 込まれている。線状体 1は、たとえば、血管や尿管などの体内の管に挿入されるガイ ドワイヤやカテーテル、動脈瘤を塞栓するためのコイルが先端に付いたワイヤなどの 、線状の医療器具であり、入力ポート 19側からの操作によって体内の目的部位まで 誘導される。 [0053] Next, as an example of putting the measuring device of the present invention into practical use, measurement for measuring the longitudinal compressive force acting on a linear body that is a linear medical instrument inserted into a body tube. An example is shown in which the device is incorporated into another medical device. FIG. 15 is a schematic diagram showing an example in which the measuring device main body is used by being incorporated in a cocoon connector. In FIG. 15, the heel connector 18 includes an input port 19, another input port 20, and an output port 21. The measuring device body 2 is incorporated in a passage that connects the input port 19 and the output port 21 inside the Υ connector 18. The linear body 1 is a linear medical device such as a guide wire or catheter inserted into a body tube such as a blood vessel or a ureter, or a wire with a coil at the tip for embolizing an aneurysm. It is guided to the target site in the body by the operation from the input port 19 side.
[0054] これにより、体内の管の中へ挿入される線状の医療器具に作用する長手軸方向の 圧縮力の増加を計測することによって、圧縮力の反力として、医療器具が体内の管 に作用する荷重を計測することができる。すなわち、医療器具の先端が管の内壁に 接触することを検知すること力できる。したがって、体内の管に過大な荷重が作用す ることを防止すること力 Sできる。また、本発明の計測装置が Υコネクタ 18に組み込まれ ているので、 Υコネクタ 18の入力ポート 19から線状の医療器具を操作し、また他の入 力ポート 20から薬剤を注入することができる。たとえば、カテーテルとガイドワイヤとの 摩擦を低減するための生理食塩水を他の入力ポート 20から注入することができる。ま たたとえば、血管の中に挿入したカテーテルを人体外部から目的部位まで誘導した 後に、他の入力ポート 20から血管造影剤を注入して、血管造影剤を体内の目的部 位に注入することができる。  [0054] Thus, by measuring the increase in the compressive force in the longitudinal direction acting on the linear medical instrument inserted into the tube in the body, the medical device is used as the reaction force of the compressive force. It is possible to measure the load acting on the. That is, it is possible to detect that the tip of the medical device is in contact with the inner wall of the tube. Therefore, it is possible to prevent the excessive load from acting on the internal tube. Further, since the measuring device of the present invention is incorporated in the Υ connector 18, a linear medical instrument can be operated from the input port 19 of the Υ connector 18 and a drug can be injected from the other input port 20. . For example, physiological saline for reducing friction between the catheter and the guide wire can be injected from the other input port 20. For example, after guiding the catheter inserted into the blood vessel from the outside of the human body to the target site, an angiographic contrast agent is injected from the other input port 20, and the angiographic contrast agent is injected into the target site in the body. it can.
[0055] 図 16は、人体を模擬する訓練用シミュレータに計測装置を取付けて使用する例を 示す模式図である。図 16において、シミュレータ 26は、線状の医療器具が揷入され る人体の管の透視画像と同等の、模擬透視画像 27を表示する。計測装置本体 2に カテーテル 24が接続され、カテーテル 24の中には、計測装置本体 2の貫通孔 3を貫 通するガイドワイヤ 23がある。訓練している操作者 25は、模擬透視画像 27を見なが らガイドワイヤ 23を操作する。シミュレータ 26は、揷入されたガイドワイヤ 23に対して 、揷入抵抗を変化させる。ガイドワイヤ 23を把持する操作者 25が、ガイドワイヤ 23に 長手軸方向に力を加えるとき、揷入抵抗があると、ガイドワイヤ 23には長手軸方向に 圧縮力が作用する。操作時の抵抗力、すなわち計測装置によって計測されるガイド ワイヤ 23に作用する圧縮力は、視覚化器具 22に表示されるとともに、ケーブル 28を 通してシミュレータ 26にも伝えられ、シミュレータ 26内部でのガイドワイヤ 23の揷入 抵抗変更に寄与している。図 16において、計測装置本体 2とシミュレータ 26は分離さ れているが、計測装置本体 2がシミュレータ 26と一体に組み込まれてもよい。また、視 覚化器具 22を備える代わりに、シミュレータ 26の模擬透視画像 27に、ガイドワイヤ 2 3に作用する圧縮力を表示しても良い。 FIG. 16 is a schematic diagram showing an example in which a measurement device is attached to a training simulator that simulates a human body. In FIG. 16, simulator 26 is inserted with a linear medical device. A simulated fluoroscopic image 27 equivalent to a fluoroscopic image of a human body tube is displayed. A catheter 24 is connected to the measurement apparatus main body 2, and a guide wire 23 that passes through the through hole 3 of the measurement apparatus main body 2 is provided in the catheter 24. The operator 25 who is training operates the guide wire 23 while viewing the simulated perspective image 27. The simulator 26 changes the insertion resistance with respect to the inserted guide wire 23. When the operator 25 holding the guide wire 23 applies force to the guide wire 23 in the longitudinal axis direction, if there is a penetration resistance, a compressive force acts on the guide wire 23 in the longitudinal axis direction. The resistance force at the time of operation, that is, the compressive force acting on the guide wire 23 measured by the measuring device is displayed on the visualization device 22 and also transmitted to the simulator 26 through the cable 28. This contributes to changing the insertion resistance of the guide wire 23. In FIG. 16, the measuring device main body 2 and the simulator 26 are separated, but the measuring device main body 2 may be integrated with the simulator 26. Further, instead of providing the visualizing device 22, the compression force acting on the guide wire 23 may be displayed on the simulated fluoroscopic image 27 of the simulator 26.
[0056] これにより、熟練操作者の手技を定量化し、経験の少ない操作者へ定量的な手技 の伝授をすること力できる。したがって、経験の少ない操作者の手技を早期に向上さ せること力 Sでさる。 [0056] Thereby, it is possible to quantify the skill of the skilled operator and to convey the quantitative technique to the less experienced operator. Therefore, power S can be used to improve the skills of less experienced operators at an early stage.
[0057] なお、以上の説明においては、線状体の湾曲の度合いを検出するセンサとしてライ ンセンサを例に挙げた力 S、ラインセンサのような 1次元のアレイセンサの代わりに、平 面上に複数の受光素子をたとえばマトリクス状に並べて配置してなる 2次元のアレイ センサを用いても、線状体の湾曲の度合いの検出が可能である。さらに、線状体の 湾曲の度合いを検出できればよいのであるから、たとえば湾曲の山の高さを検出する 非接触の距離センサ、または線状体の位置を検出する位置センサなどを使用するこ ともできる。  [0057] In the above description, instead of a one-dimensional array sensor such as a force S or a line sensor, which is exemplified by a line sensor as a sensor for detecting the degree of bending of the linear body, a flat surface is used. Even if a two-dimensional array sensor in which a plurality of light receiving elements are arranged in a matrix, for example, the degree of curvature of the linear body can be detected. Furthermore, since it is only necessary to detect the degree of bending of the linear body, for example, a non-contact distance sensor that detects the height of the peak of the bending, or a position sensor that detects the position of the linear body may be used. it can.
[0058] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。  [0058] The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
産業上の利用可能性 この発明の計測装置は、体内の管の中へ挿入される線状の医療器具などの、可撓 性を有する線状体に作用する圧縮力の計測装置に、特に有利に適用され得る。 Industrial applicability The measuring device of the present invention can be applied particularly advantageously to a measuring device for compressive force acting on a flexible linear body such as a linear medical instrument inserted into a body tube.

Claims

請求の範囲 The scope of the claims
[1] 可撓性を有する線状体(1)に作用する長手軸方向の圧縮力を計測する計測装置 でめって、  [1] With a measuring device that measures the compressive force in the longitudinal direction acting on the flexible linear body (1),
前記線状体(1)が貫通する貫通孔(3)が形成される本体(2)を備え、  A main body (2) in which a through hole (3) through which the linear body (1) passes is formed,
前記線状体(1)に前記圧縮力が作用するとき、前記貫通孔(3)の内部において前 記線状体(1)が所定の方向へ湾曲し、さらに、  When the compressive force acts on the linear body (1), the linear body (1) is curved in a predetermined direction inside the through hole (3), and
前記湾曲の度合いを検出するセンサ(16)と、  A sensor (16) for detecting the degree of bending;
検出される前記湾曲の度合いを、前記線状体(1)に作用する前記圧縮力へ変換 する、変換回路とを備え、  A conversion circuit that converts the degree of curvature detected to the compression force acting on the linear body (1),
前記貫通孔(3)の内壁(7)には、前記貫通孔(3)に沿って前記本体(2)を貫通す るように、溝(12)が形成される、計測装置。  A measuring device in which a groove (12) is formed in the inner wall (7) of the through hole (3) so as to penetrate the main body (2) along the through hole (3).
[2] 前記溝(12)は、前記線状体(1)が湾曲する前記貫通孔(3)の内部において、前記 線状体(1)の湾曲の内側にある前記貫通孔(3)の前記内壁(7)に沿って形成され、 前記貫通孔(3)は、前記線状体(1)が湾曲する前記貫通孔(3)の内部におレ、て、 前記線状体(1)の湾曲の外側にある前記貫通孔(3)の前記内壁(8、 9)が、前記線 状体(1)の湾曲の内側にある前記貫通孔(3)の前記内壁(7)から、前記溝(12)の幅 と前記線状体(1)の直径との合計を超える距離分離れ、空間(11)を成すように形成 される、請求の範囲第 1項に記載の計測装置。 [2] The groove (12) is formed in the through hole (3) inside the through hole (3) in which the linear body (1) is curved, and inside the curved body of the linear body (1). The through hole (3) is formed along the inner wall (7), and the through hole (3) is disposed inside the through hole (3) in which the linear body (1) is curved. The inner walls (8, 9) of the through hole (3) on the outside of the curve of the linear body (1) from the inner wall (7) of the through hole (3) on the inside of the curve of the linear body (1) The measuring device according to claim 1, wherein the measuring device is formed so as to form a space (11) that is separated by a distance exceeding a sum of a width of the groove (12) and a diameter of the linear body (1).
[3] 医療機器(18)に組み込まれて使用されることを特徴とする、請求の範囲第 1項に 記載の計測装置。 [3] The measuring device according to claim 1, wherein the measuring device is used by being incorporated in a medical device (18).
[4] 人体を模擬する訓練用シミュレータ(26)に取付けられて使用されることを特徴とす る、請求の範囲第 1項に記載の計測装置。  [4] The measuring device according to claim 1, wherein the measuring device is used by being attached to a training simulator (26) for simulating a human body.
[5] 可撓性を有する線状体( 1 )に作用する長手軸方向の圧縮力を計測する計測装置 でめって、 [5] With a measuring device that measures the compressive force in the longitudinal direction acting on the flexible linear body (1),
前記線状体(1)が貫通する貫通孔(3)が形成される本体(2)を備え、  A main body (2) in which a through hole (3) through which the linear body (1) passes is formed,
前記線状体(1)に前記圧縮力が作用するとき、前記貫通孔(3)の内部において前 記線状体(1)が所定の方向へ湾曲し、さらに、  When the compressive force acts on the linear body (1), the linear body (1) is curved in a predetermined direction inside the through hole (3), and
前記湾曲の度合いを検出するセンサ(16)と、 検出される前記湾曲の度合いを、前記線状体(1)に作用する前記圧縮力へ変換 する、変換回路とを備え、 A sensor (16) for detecting the degree of bending; A conversion circuit that converts the degree of curvature detected to the compression force acting on the linear body (1),
前記貫通孔(3)は、前記貫通孔(3)の両端部において、前記線状体(1)の前記長 手軸方向以外への移動を規制する拘束部(5、 6)を有するように形成され、  The through hole (3) has a restraining portion (5, 6) that restricts movement of the linear body (1) in a direction other than the longitudinal axis direction at both ends of the through hole (3). Formed,
前記貫通孔(3)に前記線状体(1)を貫通させ前記線状体(1)に重力以外の外力が 加えられないとき、前記本体(2)の前記線状体(1)が貫通する出入口(4)の外部に おいて、前記線状体(1)と前記拘束部(5、 6)とが平行になるように、前記貫通孔(3) が形成される、計測装置。  When the linear body (1) passes through the through hole (3) and no external force other than gravity is applied to the linear body (1), the linear body (1) of the main body (2) penetrates. The measuring device, wherein the through hole (3) is formed outside the entrance / exit (4) so that the linear body (1) and the restraining portions (5, 6) are parallel to each other.
前記貫通孔(3)の内壁(7)には、前記貫通孔(3)に沿って前記本体(2)を貫通す るように、溝(12)が形成される、請求の範囲第 5項に記載の計測装置。  The groove (12) is formed in the inner wall (7) of the through hole (3) so as to penetrate the main body (2) along the through hole (3). The measuring device described in 1.
可撓性を有する線状体( 1 )に作用する長手軸方向の圧縮力を計測する計測装置 であって、  A measuring device for measuring a compressive force in a longitudinal direction acting on a linear body (1) having flexibility,
前記線状体(1)が貫通する貫通孔(3)が形成される本体(2)を備え、  A main body (2) in which a through hole (3) through which the linear body (1) passes is formed,
前記線状体(1)に前記圧縮力が作用するとき、前記貫通孔(3)の内部において前 記線状体(1)が所定の方向へ湾曲し、さらに、  When the compressive force acts on the linear body (1), the linear body (1) is curved in a predetermined direction inside the through hole (3), and
前記湾曲の度合いを検出するセンサ(16)と、  A sensor (16) for detecting the degree of bending;
検出される前記湾曲の度合いを、前記線状体(1)に作用する前記圧縮力へ変換 する、変換回路とを備え、  A conversion circuit that converts the degree of curvature detected to the compression force acting on the linear body (1),
前記貫通孔(3)は、前記線状体(1)が湾曲する前記貫通孔(3)の内部におレ、て、 前記線状体(1)の湾曲の外側にある前記貫通孔(3)の内壁(8、 9)が、前記線状体( 1)の湾曲の内側にある前記貫通孔(3)の前記内壁(7)から離れ、空間(11)を成す ように形成され、  The through-hole (3) is disposed inside the through-hole (3) where the linear body (1) is curved, and the through-hole (3 is located outside the curvature of the linear body (1). ) Are formed so as to form a space (11) apart from the inner wall (7) of the through hole (3) inside the curve of the linear body (1),
前記線状体(1)の湾曲の外側にある前記貫通孔(3)の前記内壁(8、 9)は、前記貫 通孔(3)の内側に向かって凸の曲面形状となるよう、前記貫通孔(3)が形成される、 計測装置。  The inner walls (8, 9) of the through hole (3) on the outside of the curve of the linear body (1) have a curved shape that is convex toward the inside of the through hole (3). A measuring device in which a through hole (3) is formed.
前記線状体(1)に前記圧縮力が作用し前記線状体(1)が湾曲するとき、前記線状 体( 1 )の湾曲の外側にある前記貫通孔(3)の前記内壁(8、 9)から前記線状体( 1 )の 一部が離れるように、前記貫通孔(3)が形成され、 前記圧縮力が増大するにつれて、前記線状体(1)が前記内壁(8、 9)から離れる点 である接点間の距離 (W)は減少するように、前記貫通孔(3)が形成される、請求の 範囲第 7項に記載の計測装置。 When the compression force acts on the linear body (1) and the linear body (1) bends, the inner wall (8) of the through hole (3) outside the curve of the linear body (1). 9), the through hole (3) is formed so that a part of the linear body (1) is separated from As the compressive force increases, the through hole (3) is formed so that the distance (W) between the contacts, which is the point where the linear body (1) moves away from the inner wall (8, 9), decreases. The measuring device according to claim 7.
前記貫通孔(3)は、前記貫通孔(3)の両端部において、前記線状体(1)の前記長 手軸方向以外への移動を規制する拘束部(5、 6)を有するように形成され、  The through hole (3) has a restraining portion (5, 6) that restricts movement of the linear body (1) in a direction other than the longitudinal axis direction at both ends of the through hole (3). Formed,
前記拘束部(5、 6)の延長線が成す角度(《)が、 30° 以上 50° 以下となるよう前 記貫通孔(3)が形成される、請求の範囲第 7項に記載の計測装置。  The measurement according to claim 7, wherein the through hole (3) is formed such that an angle (<<) formed by an extension line of the restraining portion (5, 6) is 30 ° or more and 50 ° or less. apparatus.
前記貫通孔(3)は、前記貫通孔(3)の両端部において、前記線状体(1)の前記長 手軸方向以外への移動を規制する拘束部(5、 6)を有するように形成され、  The through hole (3) has a restraining portion (5, 6) for restricting the movement of the linear body (1) in a direction other than the longitudinal axis at both ends of the through hole (3). Formed,
前記拘束部(5、 6)の延長線と、前記延長線上における前記線状体(1)の湾曲の 外側にある前記貫通孔(3)の前記内壁(8、 9)の接線とが成す角度(/3 )が、 100° 以上 130° 以下となるよう前記貫通孔(3)が形成される、請求の範囲第 7項に記載の 計測装置。  An angle formed by an extension line of the restraining portion (5, 6) and a tangent line of the inner wall (8, 9) of the through hole (3) outside the curve of the linear body (1) on the extension line The measuring device according to claim 7, wherein the through hole (3) is formed so that (/ 3) is not less than 100 ° and not more than 130 °.
PCT/JP2007/066893 2006-09-05 2007-08-30 Compression force measuring device of flexible linear body WO2008029705A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800325406A CN101512312B (en) 2006-09-05 2007-08-30 Compression force measuring device of flexible linear body
EP07806370.8A EP2060892B1 (en) 2006-09-05 2007-08-30 Compression force measuring device of flexible linear body
US12/439,793 US8631713B2 (en) 2006-09-05 2007-08-30 Device for measuring compressive force of flexible linear body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-240607 2006-09-05
JP2006240607A JP4878526B2 (en) 2006-09-05 2006-09-05 Apparatus for measuring compressive force of flexible linear body

Publications (1)

Publication Number Publication Date
WO2008029705A1 true WO2008029705A1 (en) 2008-03-13

Family

ID=39157136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066893 WO2008029705A1 (en) 2006-09-05 2007-08-30 Compression force measuring device of flexible linear body

Country Status (5)

Country Link
US (1) US8631713B2 (en)
EP (1) EP2060892B1 (en)
JP (1) JP4878526B2 (en)
CN (1) CN101512312B (en)
WO (1) WO2008029705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147551A (en) * 2010-01-20 2011-08-04 Olympus Corp Catheter and catheter insertion instrument

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334035B2 (en) * 2008-05-29 2013-11-06 Ntn株式会社 Coil insertion device
WO2011033985A1 (en) * 2009-09-15 2011-03-24 国立大学法人 名古屋工業大学 Measurement device, medical device, training device, and measurement method
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
JP2014077691A (en) * 2012-10-10 2014-05-01 Ntn Corp Calibration device of measuring device and calibration method
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
EP2923669B1 (en) 2014-03-24 2017-06-28 Hansen Medical, Inc. Systems and devices for catheter driving instinctiveness
JP2016035389A (en) * 2014-08-01 2016-03-17 国立大学法人名古屋大学 Measuring device, medical equipment, and equipment for training use
US9737371B2 (en) 2014-09-30 2017-08-22 Auris Surgical Robotics, Inc. Configurable robotic surgical system with virtual rail and flexible endoscope
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
JP2017026348A (en) * 2015-07-16 2017-02-02 国立大学法人名古屋大学 Measurement device and medical appliance, medical operation training device
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
CN109069840B (en) 2016-02-04 2022-03-15 心脏起搏器股份公司 Delivery system with force sensor for leadless cardiac devices
CN106289591B (en) * 2016-08-09 2022-03-11 浙江大学昆山创新中心 Involute type flexible capacitive pressure sensor and preparation method thereof
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US11248973B2 (en) * 2017-02-16 2022-02-15 C. R. Bard, Inc. Insertion and withdrawal force measurement system
EP3379222B1 (en) 2017-03-22 2020-12-30 Methode Electronics Malta Ltd. Magnetoelastic based sensor assembly
KR102643758B1 (en) 2017-05-12 2024-03-08 아우리스 헬스, 인코포레이티드 Biopsy devices and systems
JP7130682B2 (en) 2017-06-28 2022-09-05 オーリス ヘルス インコーポレイテッド instrument insertion compensation
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
WO2019113249A1 (en) 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
EP3684562A4 (en) 2017-12-14 2021-06-30 Auris Health, Inc. System and method for estimating instrument location
CN116370084A (en) 2018-02-13 2023-07-04 奥瑞斯健康公司 System and method for driving a medical instrument
US11084342B2 (en) 2018-02-27 2021-08-10 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11014417B2 (en) 2018-02-27 2021-05-25 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
EP3758959A4 (en) 2018-02-27 2022-03-09 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11135882B2 (en) 2018-02-27 2021-10-05 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11491832B2 (en) 2018-02-27 2022-11-08 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11221262B2 (en) 2018-02-27 2022-01-11 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US10765487B2 (en) 2018-09-28 2020-09-08 Auris Health, Inc. Systems and methods for docking medical instruments
CN116212196A (en) 2019-07-19 2023-06-06 科林达斯公司 Load sensing of elongate medical devices in robotic actuation
CN114929148A (en) 2019-12-31 2022-08-19 奥瑞斯健康公司 Alignment interface for percutaneous access
WO2021137109A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Alignment techniques for percutaneous access
US11298195B2 (en) 2019-12-31 2022-04-12 Auris Health, Inc. Anatomical feature identification and targeting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947241B2 (en) * 1974-11-29 1984-11-17 古河電気工業株式会社 Predetermined slack amount detection device for long objects
JPH10263089A (en) 1997-03-27 1998-10-06 Tokai Rika Co Ltd Catheter with obstacle detecting mechanism
JP2001215158A (en) * 2000-02-01 2001-08-10 Mitsubishi Cable Ind Ltd Touch sensor
JP2002029381A (en) * 2000-05-31 2002-01-29 Takata Corp Seat belt tension detector
JP2006064465A (en) * 2004-08-25 2006-03-09 National Institute Of Advanced Industrial & Technology 3-d drag sensor
WO2007111182A1 (en) * 2006-03-27 2007-10-04 National University Corporation Nagoya Institute Of Technology Apparatus and method for measuring compression force of flexible linear body

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410650A (en) 1982-08-09 1983-10-18 Borg-Warner Chemicals, Inc. Light-stable polyolefins
US4773865A (en) * 1987-06-26 1988-09-27 Baldwin Jere F Training mannequin
US5064121A (en) * 1988-10-03 1991-11-12 Bolduc Lee R Dispenser
US5386720A (en) * 1992-01-09 1995-02-07 Olympus Optical Co., Ltd. Integrated AFM sensor
US6142994A (en) * 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US5791350A (en) * 1995-06-07 1998-08-11 Morton; John Y. Device and method for measuring force systems
CN2272574Y (en) * 1995-09-16 1998-01-14 中国矿业大学 Flexible clamping-rope type force measurer
US5810717A (en) * 1995-09-22 1998-09-22 Mitsubishi Cable Industries, Ltd. Bending mechanism and stereoscope using same
SI0901341T1 (en) * 1997-01-03 2005-04-30 Biosense Webster, Inc. Bend-responsive catheter
SE9704312D0 (en) * 1997-11-24 1997-11-24 Pacesetter Ab Sensing of heart contraction
JP2973994B2 (en) * 1998-01-19 1999-11-08 住友電気工業株式会社 Extrusion coating equipment for linear bodies
US6348039B1 (en) * 1999-04-09 2002-02-19 Urologix, Inc. Rectal temperature sensing probe
US6361606B1 (en) * 1999-07-22 2002-03-26 Visteon Global Tech., Inc. Method and apparatus for dispensing viscous material
JP3896734B2 (en) * 1999-10-04 2007-03-22 松下電器産業株式会社 Multidirectional operation switch and electronic device using the same
US6565947B2 (en) * 2000-01-11 2003-05-20 Nsk Ltd. Retaining piece structure
US6632184B1 (en) * 2000-02-11 2003-10-14 Regents Of The University Of Minnesota Method and device for deflecting a probe
JP4547652B2 (en) * 2000-04-03 2010-09-22 Smc株式会社 Automatic alignment pressing device
US6524259B2 (en) * 2001-06-08 2003-02-25 Cervilenz, Inc. Devices and methods for cervix measurement
ATE461657T1 (en) * 2001-06-22 2010-04-15 Abbeymoor Medical Inc URETHRAL PROFILING DEVICE
US7156832B2 (en) * 2001-12-06 2007-01-02 Sca Hygiene Products Ab Absorbent Article having a stiffening element and elongate through-hole
SE0400817D0 (en) * 2004-03-30 2004-03-30 Benf Ab Arrangement and method for determining muscular contractions in an anatomical organ
DE102004017834B4 (en) * 2004-04-13 2011-01-27 Siemens Ag catheter device
US6981945B1 (en) * 2004-11-12 2006-01-03 Artann Laboratories, Inc. Colonoscope handgrip with force and torque monitor
US7478009B2 (en) * 2005-07-29 2009-01-13 Wake Forest University Health Sciences Apparatus and method for evaluating a hypertonic condition
US8057472B2 (en) * 2007-10-30 2011-11-15 Ellipse Technologies, Inc. Skeletal manipulation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947241B2 (en) * 1974-11-29 1984-11-17 古河電気工業株式会社 Predetermined slack amount detection device for long objects
JPH10263089A (en) 1997-03-27 1998-10-06 Tokai Rika Co Ltd Catheter with obstacle detecting mechanism
JP2001215158A (en) * 2000-02-01 2001-08-10 Mitsubishi Cable Ind Ltd Touch sensor
JP2002029381A (en) * 2000-05-31 2002-01-29 Takata Corp Seat belt tension detector
JP2006064465A (en) * 2004-08-25 2006-03-09 National Institute Of Advanced Industrial & Technology 3-d drag sensor
WO2007111182A1 (en) * 2006-03-27 2007-10-04 National University Corporation Nagoya Institute Of Technology Apparatus and method for measuring compression force of flexible linear body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147551A (en) * 2010-01-20 2011-08-04 Olympus Corp Catheter and catheter insertion instrument

Also Published As

Publication number Publication date
EP2060892A1 (en) 2009-05-20
JP4878526B2 (en) 2012-02-15
US20100030115A1 (en) 2010-02-04
US8631713B2 (en) 2014-01-21
CN101512312A (en) 2009-08-19
CN101512312B (en) 2011-06-15
EP2060892A4 (en) 2011-03-02
EP2060892B1 (en) 2013-07-24
JP2008064508A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4878526B2 (en) Apparatus for measuring compressive force of flexible linear body
US11206999B2 (en) Flexible instrument channel insert for scope with real-time position tracking
EP2135635B1 (en) Linear object driving device
JP4878513B2 (en) Apparatus and method for measuring compressive force of flexible linear body
US20020183592A1 (en) Endoscope system
US20080139916A1 (en) Determining the length of a long, flexible instrument
CN107205616B (en) Flexible pipe insertion apparatus
WO2011033985A1 (en) Measurement device, medical device, training device, and measurement method
EP3037056B1 (en) System for reconstructing a trajectory of an optical fiber
WO2017010232A1 (en) Measurement apparatus, medical device, and medical operation training apparatus
JP2008064507A (en) Apparatus and method for measuring force acting on flexible linear element
JP4963067B2 (en) Compressive force measuring device
JP4905691B2 (en) Apparatus for measuring compressive force of flexible linear body
CN109310269B (en) Flexible pipe insertion device
JP6150579B2 (en) Insertion device
EP2908112A1 (en) Measurement instrument calibration device and calibration method
JP4895105B2 (en) Measuring device and medical device and training device provided with the same
JP2014073318A (en) Conversion adaptor, measurement unit, medical device, and training device
JP2007202675A (en) Sensor and medical instrument and training equipment which are equipped with the same
JPS5873330A (en) Curve display apparatus of endoscope
JP5190869B2 (en) Measuring device
WO2016017764A1 (en) Measurement apparatus, medical device, and practice device
JP5190867B2 (en) Measuring device
WO2015137297A1 (en) Measurement device, medical device, and exercise device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032540.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12439793

Country of ref document: US

Ref document number: 2007806370

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE