WO2008029624A1 - Brushless dc motor, brushless dc motor drive system, and hydraulic pump system - Google Patents

Brushless dc motor, brushless dc motor drive system, and hydraulic pump system Download PDF

Info

Publication number
WO2008029624A1
WO2008029624A1 PCT/JP2007/066274 JP2007066274W WO2008029624A1 WO 2008029624 A1 WO2008029624 A1 WO 2008029624A1 JP 2007066274 W JP2007066274 W JP 2007066274W WO 2008029624 A1 WO2008029624 A1 WO 2008029624A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless
motor
rotor
angle
cogging torque
Prior art date
Application number
PCT/JP2007/066274
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotaka Nishijima
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008029624A1 publication Critical patent/WO2008029624A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices

Definitions

  • the present invention relates to a brushless DC motor, for example, a brushless DC motor applied to a hydraulic pump system.
  • the load applied to the brushless DC motor may be small and drive at a low speed.
  • the torque ripple at the low speed of a brushless DC motor is dominated by the cogging torque due to the field magnetic flux generated by the magnet provided in the rotor.
  • the cogging torque has a fundamental wave component that varies with the number of times of the least common multiple LCM of the number of poles Nr of the rotor and the number of slots Ns of the stator per rotation of the rotor of the brushless DC motor. For example, if the rotor has 6 poles and the stator has 36 slots, the least common multiple of both is 36, so a cogging torque having 36 basic cycles is generated during one rotation of the rotor.
  • the cogging torque further has a higher-order frequency component.
  • Patent Document 1 describes a problem in a motor in which a magnet is embedded in a rotor magnetic body.
  • a technique for dividing a veg motor structure that reduces cogging torque to be divided into a plurality of blocks along the rotation axis direction is disclosed. These blocks are arranged in the direction of the rotation axis at an angle that cancels the cogging torque.
  • Patent Document 2 focuses on the angle of the magnetic pole determined by the shape of the magnetic flux barrier that prevents short-circuiting of the field magnetic flux, and by setting the angle to a predetermined value or making the pitch unequal, A technique for reducing cogging torque has been disclosed!
  • Patent Document 3 discloses a technique for selecting the value of a parameter that minimizes cogging torque using the angle of a magnetic pole or the like as a shape parameter.
  • Patent Document 4 discloses a technique for selecting a predetermined value of the angle of the width of the magnet to reduce the cogging torque without applying a skew to the rotation center axis.
  • Patent Document 5 torque ripple data is stored, and the torque command is corrected using the data. As a result, the current of the sine wave flowing through the armature is corrected and the torque ripple is reduced.
  • Patent Document 6 shows that torque correction data is obtained by adding a waveform that is an integral multiple of the energization frequency to the armature current to reduce torque fluctuations!
  • Patent Document 1 Japanese Patent Laid-Open No. 5-236687
  • Patent Document 2 JP-A-11 98731
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-343861
  • Patent Document 4 JP-A-11 299199
  • Patent Document 5 JP-A-11 55986
  • Patent Document 6 Japanese Patent Laid-Open No. 5 15188
  • the position information may be detected with an error of about 1 degree in the mechanical angle.
  • the fundamental period corresponds to 10 degrees of machine angle. Therefore, an error of 1 degree in the mechanical angle corresponds to 2 ⁇ / 10 of the phase of the basic period of cogging torque.
  • the stator is held on the motor frame by, for example, shrinking, press-fitting, or fastening with bolts.
  • the rotor is held by, for example, shrinking and press-fitting the rotating shaft.
  • the rotating shaft is held by a bearing incorporated in a bracket on the load side and the opposite side of the motor, and the bracket is attached to the frame of the motor.
  • a rotor position detector such as an encoder is attached to the rotating shaft protruding from the frame of the motor.
  • the controller performs control corrected using the offset amount.
  • the measurement of the zero-cross point is affected by noise generated in the waveform of the induced voltage, and thus causes an error. Measuring the waveform of the induced voltage multiple times and averaging them is also a method that is impractical from the viewpoint of force S and productivity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for easily reducing the secondary frequency component of cogging torque of a brushless DC motor.
  • the fundamental wave component of the cogging torque can be reduced by external control of the brushless DC motor by a known method as described in Patent Documents 5 and 6.
  • a first aspect of the brushless DC motor that is effective in the present invention is a plurality of field magnets arranged annularly in the circumferential direction with a peripheral edge (10), each having a pair of end portions in the circumferential direction. (6) and an air gap provided at each of the end portions and extending toward the center of the field magnet at a predetermined distance (L1) from the periphery on the periphery side of the field magnet. And a rotor (100) rotatable in the circumferential direction and a stator (200) facing the rotor while being spaced apart from each other.
  • a tip of the air gap provided at the end of the other field magnet adjacent to the one field magnet on the one field magnet side, and the one of the field magnets The angle ( ⁇ ) at which the tip of the air gap provided at the end on the other side of the field magnet expands in the circumferential direction is selected as follows.
  • the fundamental wave component of cogging torque per rotation of the rotor varies depending on the least common multiple (LCM) of the number of poles (Nr) of the rotor and the number of slots (Ns) of the stator. .
  • This group The angle that gives the minimum value of the main wave component is the original angle ( ⁇ 1).
  • An angle obtained by adding or subtracting an angle obtained by dividing 90 degrees by the least common multiple to the original angle is an angle used for the selection.
  • a second aspect of the brushless DC motor according to the present invention is the first aspect thereof, wherein the original angle is obtained as the angle giving the minimum value of the amplitude of the cogging torque.
  • a brushless DC motor drive system that is effective in the present invention includes a brushless DC motor (M) according to the present invention, a position measuring unit (501) for determining the position ( ⁇ ) of the rotor, and the brushless DC motor. From the current detector (502) for determining the current (iM) flowing through the DC motor, the fundamental wave component data (D) of the cogging torque and the position of the rotor, the fundamental wave component of the cogging torque is obtained. A cancellation signal generator (505) for outputting a cancellation signal (Z) for cancellation, and a motor driving unit for driving the brushless DC motor based on the position of the rotor, the current, and the cancellation signal V (506).
  • a hydraulic pump system that is powerful to the present invention includes a brushless DC motor drive system that powers the present invention and a hydraulic pump (36) driven by the brushless DC motor.
  • the hydraulic pump system drives the injection molding machine (34).
  • the secondary frequency component of the cogging torque can be easily reduced.
  • the force and the fundamental wave component can be reduced by control from the outside of the brushless DC motor by a known method.
  • the original angle can be easily estimated.
  • the fundamental wave component of the cogging torque can be reduced.
  • the pressure pulsation is small.
  • the pressure pulsation in the injection molding machine that reduces the pressure pulsation at low speed and keeps the piston in place can be reduced by J.
  • FIG. 2 is a plan view illustrating the structure of a brushless DC motor.
  • FIG. 8 A graph showing the dependence of the amplitude of the fundamental component of the cogging torque on the angle ⁇ .
  • FIG. 9 A graph showing the dependence of the secondary component of cogging torque on the angle ⁇ .
  • FIG. 10 is a graph showing the dependence of cogging torque on angle ⁇ .
  • FIG. 11 is a block diagram illustrating the configuration of a brushless DC motor drive system.
  • FIG. 1 is a block diagram showing a hydraulic pump system that performs injection molding using a hydraulic pump.
  • the injection molding machine 34 has a molding machine 34a and a hydraulic cylinder 34b.
  • the hydraulic cylinder 34b is hydraulically driven by a hydraulic pump 36.
  • a gear pump, a vane pump, or a piston pump is used as the hydraulic pump 36.
  • a hydraulic pressure gauge 33 is provided between the hydraulic pump 36 and the hydraulic cylinder 34b to monitor the hydraulic pressure.
  • the hydraulic pump 36 is driven by a brushless DC motor drive system 35.
  • the brushless DC motor drive system 35 includes a brushless DC motor 311, a rotational position detector 312 that detects the rotational position of the rotor, and a controller 313 that controls the rotation of the brushless DC motor 311.
  • the controller 313 supplies the appropriate armature current to the brushless DC motor 311 based on the rotational position of the rotor of the brushless DC motor 311 !.
  • the controller 313 is supplied with a DC voltage or an AC voltage from the power supply 30.
  • the speed of the piston J of the hydraulic cylinder 34b determines the flow rate of the oil used for the hydraulic drive. It is determined by the value divided by the cross-sectional area of the motor 34b.
  • the force that can be generated in the piston J is determined by the product of the hydraulic pressure and the cylinder cross-sectional area.
  • the hydraulic pump is required to have a function of maintaining a constant pressure at a predetermined fixed position.
  • a plastic resin is injected into the mold. After filling the mold with the plastic resin, a constant pressure is maintained without injecting the plastic resin. In this case, it is not necessary to displace the piston J, but oil leaks from the hydraulic pump 36, for example. Therefore, since some oil flow is generated in the hydraulic pump 36, the brushless DC motor 311 rotates at a slightly low speed / rotation speed in order to drive the hydraulic pump 36.
  • FIG. 2 is a plan view illustrating the structure of the brushless DC motor 311.
  • the brushless DC motor 311 has a rotor 100 and a stator 200 facing the rotor 100 while being spaced apart.
  • a plane perpendicular to the rotation axis of the rotor 100 is shown in FIG. 2 as a plan view.
  • teeth 201 and slots 202 are alternately arranged in the circumferential direction.
  • the armature winding wound around the teeth 201 is accommodated in the slot 202.
  • the drawing of the armature winding is omitted in order to avoid complexity of the drawing.
  • the number of slots 202 is 36!
  • FIG. 3 is a plan view showing the structure of the rotor 100 in detail.
  • the rotor 100 is rotatable about a rotation axis Z0 and has a peripheral edge 10 on the outer peripheral side thereof.
  • a plurality of field magnets 6 that are arranged in a shape and each have a pair of end portions in the circumferential direction are embedded in a direction perpendicular to the rotation axis Z0.
  • Each of the field magnets 6 is provided with a gap 31 for preventing a magnetic flux short circuit.
  • the air gap 31 extends toward the center of the field magnet 6 at a predetermined distance L1 on the peripheral edge 10 side of the field magnet 6.
  • the rotor 100 is provided with a through hole 5 through which a rotary shaft (not shown) passes, and a plurality of fastening holes 4 are provided on the outer peripheral side thereof.
  • the fastening hole 4 is used when the core of the rotor 100 in which the field magnet 6 is embedded is formed by laminating a plurality of steel plates. For example, when these steel plates are laminated and fixed with bolts and nuts, the bolts penetrate through the fastening holes 4. Other methods for laminating and fixing steel plates without using the fastening holes 4 are also well known, and of course, the fastening holes 4 are not necessary.
  • FIG. 3 illustrates the case where six field magnets 6 are provided and the number of poles is six. The force that the number of fastening holes 4 is also 6 is not necessary to match the number of field magnets.
  • the tips of the air gaps 31 provided at the ends of different field magnets adjacent to each other are directed to the opposite sides in the circumferential direction.
  • the angle at which the pair of tips expands in the circumferential direction is depicted as an angle ⁇ in FIG.
  • 4 to 7 are graphs showing the cogging torque at electrical angles of 0 to 60 degrees when the configuration shown in FIG. 3 is adopted for the rotor.
  • the horizontal axis is the electrical angle.
  • the fundamental wave component of cogging torque is equivalent to the number of the least common multiple LCM for the mechanical angle of 360 degrees, here 36 cycles, so one period corresponds to a mechanical angle of 10 degrees. Therefore, one period of the fundamental component of cogging torque corresponds to an electrical angle of 30 degrees.
  • FIG. 4, FIG. 5, FIG. 6, and FIG. 7 show cases where the angle ⁇ force is 17 degrees, 20 degrees, 22 degrees, and 25 degrees, respectively.
  • Fig. 6 it can be seen that the cogging torque has the smallest amplitude, but its higher order components remain.
  • FIG. 8 is a graph showing the dependence of the amplitude of the fundamental component of the cogging torque on the angle ⁇ . Since the fundamental wave component of the cogging torque is dominant, it can be seen that the amplitude of the cogging torque is minimized when the angle ⁇ is around 22 degrees, corresponding to Figs.
  • the angle ⁇ that gives the minimum amplitude of the fundamental component of the cogging torque is the original angle ⁇ 1.
  • Patent Document 3 suggests that an integer multiple of a value obtained by dividing 360 degrees by the least common multiple LCM is adopted as the angle ⁇ for reducing the cogging torque, which is described here.
  • one of the original angles ⁇ 1 appears in the vicinity of 22 degrees, so the other values of the original angle ⁇ 1 are estimated to be 12 degrees and 32 degrees, and the prediction is based on the shape of the graph in FIG. Inferred to be reasonable.
  • FIG. 9 is a graph showing the dependency of the amplitude of the secondary component of the cogging torque on the angle ⁇ .
  • the angle ⁇ that minimizes the amplitude of the secondary component appears at intervals of 15 degrees, 20 degrees, 25 degrees, 30 degrees, and 5 degrees.
  • the angle ⁇ that minimizes the amplitude of the secondary component of the cogging torque may exist at a plurality of original angles ⁇ 1 with a minimum interval of 360 degrees / half of LCM, 360 degrees / LCM / 2. Recognize. In other words, the angle ⁇ is selected by adding or subtracting the angle obtained by dividing 90 ° by the least common multiple LCM to the original angle ⁇ 1 that gives the minimum value of the fundamental component of the cogging torque. Thus, the amplitude of the secondary component of the cogging torque can be minimized.
  • Figure 10 shows the dependence of the cogging torque on the P-P (peak 'to-peak') value, its primary component (fundamental wave component) amplitude value, and secondary component amplitude value on the angle ⁇ . It is a graph showing.
  • the original angle ⁇ 1 is the angle ⁇ that gives the minimum value of the amplitude of the fundamental component of the cogging torque, but can be easily calculated as the angle that gives the minimum value of the amplitude of the cogging torque. This is because the fundamental wave component of the cogging torque is dominant as described above. Note that the third and higher harmonics of the cogging torque are practically small enough not to cause a problem.
  • the amplitude of the secondary component of the cogging torque is minimized by using one of the parameters of the motor shape such as the angle ⁇ . Unlike the angle ⁇ 1, the angle ⁇ does not minimize the amplitude of the fundamental component of the cogging torque. However, since the angle ⁇ does not maximize the amplitude of the fundamental component of the cogging torque, the well-known technique exemplified in Patent Documents 5 and 6 is used to correct the armature current. Therefore, it is easy to reduce the fundamental component (not the secondary component of cogging torque).
  • FIG. 11 is a block diagram illustrating the configuration of a brushless DC motor drive system.
  • Mo Data M corresponds to the brushless DC motor 311 in Fig. 1.
  • the rotational position detector 501a corresponds to the rotational position detector 312 in FIG.
  • the rotational position detector 501 detects the position of the rotor of the motor M as a position signal ⁇ 0, which is corrected with the offset value ⁇ 1 of the angular position, and the position ⁇ is measured.
  • the rotational position detector 501a and the adder / subtractor 50 lb for adjusting the offset value ⁇ 1 can be combined to be understood as the position measuring unit 501 for measuring the position ⁇ .
  • the data D of the primary component of the torque ripple is given to the torque ripple primary component cancellation signal generation unit 505 together with the position ⁇ .
  • the generation unit 505 outputs a cancellation signal Z based on the data D and the position ⁇ .
  • the cancellation signal Z is a signal for canceling the fundamental wave component of the cogging torque.
  • the data D of the primary component of the torque ripple can be obtained in advance by driving the motor M, for example, with no load. As described above, when the motor is applied to the hydraulic pump, the data D is collected at a low speed because the speed is low when the load is light. As a result, the fundamental wave component of the cogging torque can be obtained as data D.
  • the current detector 502 obtains the current value iM of the current flowing through the motor M.
  • Torque command calculation unit 506a calculates torque command ⁇ * based on position ⁇ and current iM.
  • the motor drive waveform generator 506b generates a motor drive waveform based on the position ⁇ , the current value iM, and the torque command ⁇ *, and supplies the current reflecting the waveform to the motor ⁇ . Therefore, the torque command calculation unit 506a and the motor drive waveform generation unit 506b are combined, based on the rotor position ⁇ , current value i M, and cancellation signal Z! /, And grasped as the motor drive unit 506 that drives the motor M Doing with the power S
  • the fundamental wave component of the cogging torque is reduced by the control during driving of the brushless DC motor 311, and the secondary frequency component is reduced by the structure of the brushless DC motor 311 (in particular, the structure of the rotor 100). This reduces the pressure pulsation in the hydraulic pump system with the force S.

Abstract

It is possible to reduce a basic wave component of cogging torque by controlling drive of a brushless DC motor (311). A secondary frequency component of the cogging torque is reduced by improving the structure of the brushless DC motor, especially the structure of the rotor. This reduces the pressure pulsation in a hydraulic pump system.

Description

明 細 書  Specification
ブラシレス DCモータ、ブラシレス DCモータ駆動システム、油圧ポンプシ ステム  Brushless DC motor, brushless DC motor drive system, hydraulic pump system
技術分野  Technical field
[0001] この発明はブラシレス DCモータに関し、例えば油圧ポンプシステムに適用されるブ ラシレス DCモータに関する。  [0001] The present invention relates to a brushless DC motor, for example, a brushless DC motor applied to a hydraulic pump system.
背景技術  Background art
[0002] ブラシレス DCモータにおいてトルクリプルの低減が望まれる。トルクリプルは振動や 騒音という望ましくない現象を招来するからである。特に油圧ポンプにおいては、所 定の定位置で一定圧力を維持する機能が要求されるので、圧力脈動の原因となるト ルクリプルは低減されるべきである。  Reduction of torque ripple is desired in a brushless DC motor. This is because torque ripple causes undesirable phenomena such as vibration and noise. In particular, hydraulic pumps require a function to maintain a constant pressure at a fixed position, so the torque ripple that causes pressure pulsation should be reduced.
[0003] ところで所定の定位置で一定圧力を維持する場合、ブラシレス DCモータにかかる 負荷は小さぐかつ低速での駆動となる場合がある。そして一般にブラシレス DCモー タの低速時のトルクリプルは、回転子に設けられた磁石が発生する界磁磁束に起因 したコギングトルクが支配的である。  By the way, when a constant pressure is maintained at a predetermined fixed position, the load applied to the brushless DC motor may be small and drive at a low speed. In general, the torque ripple at the low speed of a brushless DC motor is dominated by the cogging torque due to the field magnetic flux generated by the magnet provided in the rotor.
[0004] コギングトルクは、ブラシレス DCモータの回転子の一回転当たり、回転子の極数 Nr と固定子のスロット数 Nsとの最小公倍数 LCMの回数で変動する基本波成分を有す る。例えば回転子が 6極であり、固定子が 36スロットである場合、両者の最小公倍数 は 36であるので、回転子が 1回転する間に、 36個の基本周期を有するコギングトルク が発生する。当該コギングトルクは更に高次の周波数成分をも有する。  [0004] The cogging torque has a fundamental wave component that varies with the number of times of the least common multiple LCM of the number of poles Nr of the rotor and the number of slots Ns of the stator per rotation of the rotor of the brushless DC motor. For example, if the rotor has 6 poles and the stator has 36 slots, the least common multiple of both is 36, so a cogging torque having 36 basic cycles is generated during one rotation of the rotor. The cogging torque further has a higher-order frequency component.
[0005] コギングトルクを低減するためにモータの形状の工夫がなされてきた。一般にはス キューを設けたり、ロータの起磁力を正弦波に近づけたり、回転子と固定子とが挟む いわゆるエアギャップでの磁束の変化を緩和させたり、スロット数を多くしてコギングト ルクの周波数を高めてその影響を小さくしたり、磁極の形状やその間隔を工夫してパ ーミアンスを均等化したりすることが一般的に知られている。下記にコギングトルクを 低減する技術を開示する特許文献 1〜6を例示する。  In order to reduce the cogging torque, the shape of the motor has been devised. Generally, a skew is provided, the magnetomotive force of the rotor is made close to a sine wave, the change of magnetic flux in the so-called air gap between the rotor and stator is alleviated, or the frequency of the cogging torque is increased by increasing the number of slots. It is generally known that the effect is reduced by increasing the effect, and the permeance is equalized by devising the shape and interval of the magnetic poles. Examples of Patent Documents 1 to 6 that disclose techniques for reducing cogging torque are shown below.
[0006] 特許文献 1には、磁石を回転子の磁性体内部に埋め込んだモータにおいて発生 するコギングトルクを低減させるベぐモータの構造を回転軸方向に沿って複数ブロッ クに分割する技術が開示されている。そしてこれらのブロックがコギングトルクを打ち 消す角度で回転軸方向に配置されている。 [0006] Patent Document 1 describes a problem in a motor in which a magnet is embedded in a rotor magnetic body. A technique for dividing a veg motor structure that reduces cogging torque to be divided into a plurality of blocks along the rotation axis direction is disclosed. These blocks are arranged in the direction of the rotation axis at an angle that cancels the cogging torque.
[0007] 特許文献 2には、界磁磁束の短絡を防ぐ磁束バリアの形状によって決まる磁極の角 度に着目し、当該角度を所定の値に設定したり、ピッチを不等にすることで、コギング トルクを低減する技術が開示されて!/、る。 [0007] Patent Document 2 focuses on the angle of the magnetic pole determined by the shape of the magnetic flux barrier that prevents short-circuiting of the field magnetic flux, and by setting the angle to a predetermined value or making the pitch unequal, A technique for reducing cogging torque has been disclosed!
[0008] 特許文献 3には、磁極の角度などを形状のパラメータとして、コギングトルクを最小 にする当該パラメータの値を選択する技術が開示されてレ、る。 [0008] Patent Document 3 discloses a technique for selecting the value of a parameter that minimizes cogging torque using the angle of a magnetic pole or the like as a shape parameter.
[0009] 特許文献 4には、スキューを施さずにコギングトルクを低減すベぐ磁石の幅の回転 中心軸に対する角度を所定の値に選定する技術が開示されている。 [0009] Patent Document 4 discloses a technique for selecting a predetermined value of the angle of the width of the magnet to reduce the cogging torque without applying a skew to the rotation center axis.
[0010] 特許文献 5ではトルクリプルのデータを記憶しておき、当該データを用いてトルク指 令が補正される。これにより、電機子に流す正弦波の電流を補正し、トルクリプルが低 減される。 [0010] In Patent Document 5, torque ripple data is stored, and the torque command is corrected using the data. As a result, the current of the sine wave flowing through the armature is corrected and the torque ripple is reduced.
[0011] 特許文献 6では通電周波数の整数倍の波形を電機子電流に加算することによって トルクを補正するデータを得て、トルクの変動を低減することが示されて!/、る。  Patent Document 6 shows that torque correction data is obtained by adding a waveform that is an integral multiple of the energization frequency to the armature current to reduce torque fluctuations!
[0012] 特許文献 1 :特開平 5— 236687号公報 Patent Document 1: Japanese Patent Laid-Open No. 5-236687
特許文献 2:特開平 11 98731号公報  Patent Document 2: JP-A-11 98731
特許文献 3 :特開 2004— 343861号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-343861
特許文献 4 :特開平 11 299199号公報  Patent Document 4: JP-A-11 299199
特許文献 5 :特開平 11 55986号公報  Patent Document 5: JP-A-11 55986
特許文献 6:特開平 5 15188号公報  Patent Document 6: Japanese Patent Laid-Open No. 5 15188
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 特許文献 1のように複数のブロックを回転軸方向に積層することは回転子を組み立 てる工程を複雑にし、生産性を悪化させる。 [0013] Laminating a plurality of blocks in the direction of the rotational axis as in Patent Document 1 complicates the process of assembling the rotor and deteriorates productivity.
[0014] 特許文献 2に記載の技術ではコギングトルクが残留し、残留したコギングトルクの波 形が滑らかであるか否かが不明である。 [0014] With the technique described in Patent Document 2, cogging torque remains, and it is unclear whether the waveform of the remaining cogging torque is smooth.
[0015] 特許文献 3や特許文献 4に記載の技術では、コギングトルクの高次成分が残留して いると見られる。 [0015] In the techniques described in Patent Document 3 and Patent Document 4, higher-order components of cogging torque remain. It seems to be.
[0016] 特許文献 1〜4に開示された方法では、コギングトルクの振幅やピーク間の値に着 目しているものの、その周波数分布について考慮していない。よってコギングトルクの 高次の周波数成分が残留してしまう。  [0016] In the methods disclosed in Patent Documents 1 to 4, although attention is paid to the cogging torque amplitude and peak-to-peak values, the frequency distribution is not considered. Therefore, high-order frequency components of cogging torque remain.
[0017] 特許文献 5, 6に記載の技術ではロータの位置情報を精度よく検出する必要がある 。そしてコギングトルクの基本波成分を低減するための補正にお!/、て位置情報に誤 差が生じる場合、コギングトルクの高次成分を悪化させる場合すらある。  [0017] In the techniques described in Patent Documents 5 and 6, it is necessary to accurately detect the position information of the rotor. If there is an error in the position information for correction to reduce the fundamental component of the cogging torque, the higher-order component of the cogging torque may even be deteriorated.
[0018] 例えば位置情報の検出は機械角において 1度程度の誤差があり得る。そして回転 子が 1回転する中で 36個の基本周期を有するコギングトルクにおいて基本周期は機 械角の 10度に相当する。従って機械角における 1度の誤差は、コギングトルクの基本 周期の位相の 2 π /10に相当する。  [0018] For example, the position information may be detected with an error of about 1 degree in the mechanical angle. And in the cogging torque with 36 fundamental periods in one rotation of the rotor, the fundamental period corresponds to 10 degrees of machine angle. Therefore, an error of 1 degree in the mechanical angle corresponds to 2π / 10 of the phase of the basic period of cogging torque.
[0019] コギングトルクの補正は、コギングトルクの波形を πだけずらした補正トルクを出力 すべき直流トルクに加算する。よって機械角 1度の誤差に対応して当該補正トルクの 波形の位相が 2 π /10だけずれると、コギングトルクの基本波成分については sin )一 sin ( a + 2 π /ΐ0) = 0. 62cos ( α + π /10)となり、その 6割程度の振幅がキヤ ンセルされずに残留する。他方、コギングトルクの二次成分(基本波成分の二倍の周 波数成分)については機械角における 1度の誤差は、位相の 2 π /5に相当する。よ つて機械角 1度の誤差に対応して、コギングトルクの二次成分につ!/、ては sin ( a ) - si η ( α + 2 π /5) = 1. 2cos ( α + π /5)となる。つまり二次成分においては機械角 1 度の誤差が発生すると、 2割程度の振幅が加算されてしまい、トルクリプルが悪化す る。従って出力すべき直流トルクの補正によってコギングトルクの二次成分を低減す ることは容易ではない。  In the correction of the cogging torque, a correction torque obtained by shifting the waveform of the cogging torque by π is added to the DC torque to be output. Therefore, if the phase of the waveform of the correction torque is shifted by 2 π / 10 corresponding to the error of 1 degree mechanical angle, sin) one sin (a + 2 π / ΐ0) = 0 for the fundamental wave component of the cogging torque. 62cos (α + π / 10), and about 60% of the amplitude remains without being cancelled. On the other hand, for the secondary component of cogging torque (frequency component twice the fundamental wave component), an error of 1 degree in mechanical angle corresponds to 2π / 5 of the phase. Therefore, it corresponds to the secondary component of the cogging torque corresponding to the error of 1 degree of mechanical angle! /, And sin (a)-si η (α + 2 π / 5) = 1. 2cos (α + π / 5) In other words, when an error of 1 degree mechanical angle occurs in the secondary component, an amplitude of about 20% is added and the torque ripple deteriorates. Therefore, it is not easy to reduce the secondary component of cogging torque by correcting the DC torque to be output.
[0020] なお、機械角における誤差を低減することも容易ではない。モータを適用する器具 に対してモータを設置する場合、固定子がモータのフレームに対して、例えば焼き填 め、圧入、ボルトによる締結によって保持される。また回転子は回転シャフトに対して 例えば焼き填め、圧入によって保持される。そして回転シャフトはモータの負荷側及 びこれと反対側にあるブラケットに組み込まれたベアリングによって保持され、当該ブ ラケットはモータのフレームに取り付けられる。 [0021] そしてモータのフレームから突出した回転シャフトに対してエンコーダなどのロータ 位置検出器が取り付けられる。回転子の位置と、ロータ位置検出器から得られて回転 子の位置を示すロータ位置信号との関係を校正する必要がある。回転シャフトを外力 によって回転させることにより、モータに生じる誘起電圧の波形を測定してそのゼロク ロス点と、ロータ位置信号とのずれをオフセット量として求める。フレームに取り付けら れたモータは、そのオフセット量が固有であるので、当該オフセット量をモータ特性表 やフレームの銘板に記録する。モータを駆動する際にはそのコントローラが当該オフ セット量を用いて補正した制御を行う。 [0020] It is not easy to reduce the error in the mechanical angle. When a motor is installed on a device to which the motor is applied, the stator is held on the motor frame by, for example, shrinking, press-fitting, or fastening with bolts. The rotor is held by, for example, shrinking and press-fitting the rotating shaft. The rotating shaft is held by a bearing incorporated in a bracket on the load side and the opposite side of the motor, and the bracket is attached to the frame of the motor. [0021] A rotor position detector such as an encoder is attached to the rotating shaft protruding from the frame of the motor. It is necessary to calibrate the relationship between the rotor position and the rotor position signal obtained from the rotor position detector and indicating the rotor position. By rotating the rotating shaft with external force, the waveform of the induced voltage generated in the motor is measured, and the deviation between the zero cross point and the rotor position signal is obtained as an offset amount. The offset amount of the motor attached to the frame is unique, so record the offset amount on the motor characteristics table or on the nameplate of the frame. When the motor is driven, the controller performs control corrected using the offset amount.
[0022] ゼロクロス点の測定は誘起電圧の波形に発生するノイズの影響を受けるために誤 差を生じる。複数回、誘起電圧の波形を測定してこれらを平均化することも一法では ある力 S、生産性の観点から実用的ではない。  [0022] The measurement of the zero-cross point is affected by noise generated in the waveform of the induced voltage, and thus causes an error. Measuring the waveform of the induced voltage multiple times and averaging them is also a method that is impractical from the viewpoint of force S and productivity.
[0023] 本発明は上記の事情に鑑みたものであり、ブラシレス DCモータのコギングトルクの 2次の周波数成分を、容易に低減する技術を提供することを目的としている。コギン グトルクの基本波成分は、特許文献 5, 6に記載されたような公知の手法によってブラ シレス DCモータの外部からの制御によって低減できる。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for easily reducing the secondary frequency component of cogging torque of a brushless DC motor. The fundamental wave component of the cogging torque can be reduced by external control of the brushless DC motor by a known method as described in Patent Documents 5 and 6.
課題を解決するための手段  Means for solving the problem
[0024] この発明に力、かるブラシレス DCモータの第 1の態様は、周縁(10)と、周方向で環 状に配置され、それぞれが周方向に一対の端部を有する複数の界磁磁石(6)と、前 記端部にそれぞれ設けられ、前記界磁磁石よりも前記周縁側で前記周縁と所定距離 (L1)で離隔して前記界磁磁石の中央部へと向かって延びる空隙(31 , 32)とを有し 、前記周方向に回転可能な回転子(100)と、前記回転子と離隔しつつ対向する固 定子(200)とを備える。 [0024] A first aspect of the brushless DC motor that is effective in the present invention is a plurality of field magnets arranged annularly in the circumferential direction with a peripheral edge (10), each having a pair of end portions in the circumferential direction. (6) and an air gap provided at each of the end portions and extending toward the center of the field magnet at a predetermined distance (L1) from the periphery on the periphery side of the field magnet. And a rotor (100) rotatable in the circumferential direction and a stator (200) facing the rotor while being spaced apart from each other.
[0025] 一の前記界磁磁石に隣接する他の前記界磁磁石の前記一の前記界磁磁石側の 前記端部に設けられた前記空隙の先端と、前記一の前記界磁磁石の前記他の前記 界磁磁石側の前記端部に設けられた前記空隙の先端とが前記周方向に拡がる角度 ( Θ )の選定は以下のようになされる。  [0025] A tip of the air gap provided at the end of the other field magnet adjacent to the one field magnet on the one field magnet side, and the one of the field magnets The angle (Θ) at which the tip of the air gap provided at the end on the other side of the field magnet expands in the circumferential direction is selected as follows.
[0026] 前記回転子の一回転当たりコギングトルクの基本波成分は、前記回転子の極数(N r)と前記固定子のスロット数(Ns)との最小公倍数(LCM)の回数で変動する。この基 本波成分の最小値を与える前記角度を原角度( θ 1)とする。そして前記原角度に対 して、前記最小公倍数で 90度を除した角度を加算もしくは減算した角度が、上記選 定に用いられる角度となる。 [0026] The fundamental wave component of cogging torque per rotation of the rotor varies depending on the least common multiple (LCM) of the number of poles (Nr) of the rotor and the number of slots (Ns) of the stator. . This group The angle that gives the minimum value of the main wave component is the original angle (θ 1). An angle obtained by adding or subtracting an angle obtained by dividing 90 degrees by the least common multiple to the original angle is an angle used for the selection.
[0027] この発明に力、かるブラシレス DCモータの第 2の態様は、その第 1の態様であって、 前記原角度は、前記コギングトルクの振幅の最小値を与える前記角度として求められ [0027] A second aspect of the brushless DC motor according to the present invention is the first aspect thereof, wherein the original angle is obtained as the angle giving the minimum value of the amplitude of the cogging torque.
[0028] この発明に力、かるブラシレス DCモータ駆動システムは、この発明にかかるブラシレ ス DCモータ(M)と、前記回転子の位置(φ )を求める位置測定部(501)と、前記ブ ラシレス DCモータに流れる電流(iM)を求める電流検出器(502)と、前記コギングト ルクの前記基本波成分のデータ(D)と前記回転子の前記位置とから、前記コギング トルクの前記基本波成分を打ち消すための打ち消し信号 (Z)を出力する打ち消し信 号生成部(505)と、前記回転子の前記位置、前記電流、前記打ち消し信号に基づ V、て前記ブラシレス DCモータを駆動するモータ駆動部(506)とを備える。 [0028] A brushless DC motor drive system that is effective in the present invention includes a brushless DC motor (M) according to the present invention, a position measuring unit (501) for determining the position (φ) of the rotor, and the brushless DC motor. From the current detector (502) for determining the current (iM) flowing through the DC motor, the fundamental wave component data (D) of the cogging torque and the position of the rotor, the fundamental wave component of the cogging torque is obtained. A cancellation signal generator (505) for outputting a cancellation signal (Z) for cancellation, and a motor driving unit for driving the brushless DC motor based on the position of the rotor, the current, and the cancellation signal V (506).
[0029] この発明に力、かる油圧ポンプシステムは、この発明に力、かるブラシレス DCモータ駆 動システムと、前記ブラシレス DCモータによって駆動される油圧ポンプ(36)とを備え る。望ましくは、当該油圧ポンプシステムが射出成型機(34)を駆動する。  [0029] A hydraulic pump system that is powerful to the present invention includes a brushless DC motor drive system that powers the present invention and a hydraulic pump (36) driven by the brushless DC motor. Desirably, the hydraulic pump system drives the injection molding machine (34).
発明の効果  The invention's effect
[0030] この発明に力、かるブラシレス DCモータの第 1の態様によれば、コギングトルクの 2次 の周波数成分を容易に低減できる。し力、も基本波成分は公知の手法によってブラシ レス DCモータの外部からの制御によって低減できる。  [0030] According to the first aspect of the brushless DC motor, which is particularly effective in the present invention, the secondary frequency component of the cogging torque can be easily reduced. The force and the fundamental wave component can be reduced by control from the outside of the brushless DC motor by a known method.
[0031] この発明に力、かるブラシレス DCモータの第 2の態様によれば、原角度を簡易に見 積あること力でさる。  [0031] According to the second aspect of the brushless DC motor of the present invention, the original angle can be easily estimated.
[0032] この発明に力、かるブラシレス DCモータ駆動システムによれば、コギングトルクの基 本波成分を低減できる。  [0032] According to the brushless DC motor drive system which is effective in the present invention, the fundamental wave component of the cogging torque can be reduced.
[0033] この発明に力、かる油圧ポンプシステムによれば、圧力脈動が小さい。また低速時の 圧力脈動を小さくし、ピストンを所定の位置に留まらせる射出成型機における圧力脈 動を/ J、さくすること力 Sできる。 [0033] According to the hydraulic pump system of the present invention, the pressure pulsation is small. In addition, the pressure pulsation in the injection molding machine that reduces the pressure pulsation at low speed and keeps the piston in place can be reduced by J.
[0034] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。 [0034] Objects, features, aspects and advantages of the present invention will be apparent from the following detailed description and the accompanying drawings. It becomes more obvious.
図面の簡単な説明  Brief Description of Drawings
[0035]
Figure imgf000008_0001
[0035]
Figure imgf000008_0001
[図 2]ブラシレス DCモータの構造を例示する平面図である。  FIG. 2 is a plan view illustrating the structure of a brushless DC motor.
園 3]回転子の構造を詳細に示す平面図である。  3] It is a plan view showing the structure of the rotor in detail.
Figure imgf000008_0002
Figure imgf000008_0002
[図 8]コギングトルクの基本波成分の振幅の、角度 Θに対する依存性を示すグラフで ある。  [Fig. 8] A graph showing the dependence of the amplitude of the fundamental component of the cogging torque on the angle Θ.
[図 9]コギングトルクの二次成分の振幅の、角度 Θに対する依存性を示すグラフであ  [Fig. 9] A graph showing the dependence of the secondary component of cogging torque on the angle Θ.
[図 10]コギングトルクの角度 Θに対する依存性を示すグラフである。 FIG. 10 is a graph showing the dependence of cogging torque on angle Θ.
[図 11]ブラシレス DCモータ駆動システムの構成を例示するブロック図である。  FIG. 11 is a block diagram illustrating the configuration of a brushless DC motor drive system.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 図 1は油圧ポンプを採用して射出成型を行う油圧ポンプシステムを示すブロック図 である。射出成型機 34は成型器 34aと油圧シリンダ 34bとを有している。油圧シリン ダ 34bは油圧ポンプ 36によって油圧駆動される。油圧ポンプ 36には例えばギアポン プ、ベーンポンプ、ピストンポンプが採用される。油圧ポンプ 36と油圧シリンダ 34bの 間には油圧計 33が設けられ、油圧がモニタされる。  FIG. 1 is a block diagram showing a hydraulic pump system that performs injection molding using a hydraulic pump. The injection molding machine 34 has a molding machine 34a and a hydraulic cylinder 34b. The hydraulic cylinder 34b is hydraulically driven by a hydraulic pump 36. For example, a gear pump, a vane pump, or a piston pump is used as the hydraulic pump 36. A hydraulic pressure gauge 33 is provided between the hydraulic pump 36 and the hydraulic cylinder 34b to monitor the hydraulic pressure.
[0037] 油圧ポンプ 36はブラシレス DCモータ駆動システム 35によって駆動される。ブラシ レス DCモータ駆動システム 35はブラシレス DCモータ 311と、その回転子の回転位 置を検出する回転位置検出器 312と、ブラシレス DCモータ 311の回転を制御するコ ントローラ 313とを有している。コントローラ 313はブラシレス DCモータ 311の回転子 の回転位置に基づ!/、てブラシレス DCモータ 311に適切な電機子電流を供給する。 コントローラ 313には電源 30から直流電圧もしくは交流の電圧が供給される。  [0037] The hydraulic pump 36 is driven by a brushless DC motor drive system 35. The brushless DC motor drive system 35 includes a brushless DC motor 311, a rotational position detector 312 that detects the rotational position of the rotor, and a controller 313 that controls the rotation of the brushless DC motor 311. The controller 313 supplies the appropriate armature current to the brushless DC motor 311 based on the rotational position of the rotor of the brushless DC motor 311 !. The controller 313 is supplied with a DC voltage or an AC voltage from the power supply 30.
[0038] 油圧シリンダ 34bのピストン Jの速度は、油圧駆動に採用される油の流量を油圧シリ ンダ 34bの断面積で除した値で決定される。そしてピストン Jに発生させることができる 力は、油圧とシリンダ断面積との積で決定される。ピストン Jを変位させる場合には油 の流量が必要となるので、ブラシレス DCモータ 311は油圧に抗して、油を流すべく 回転する必要がある。 [0038] The speed of the piston J of the hydraulic cylinder 34b determines the flow rate of the oil used for the hydraulic drive. It is determined by the value divided by the cross-sectional area of the motor 34b. The force that can be generated in the piston J is determined by the product of the hydraulic pressure and the cylinder cross-sectional area. When piston J is displaced, the flow rate of oil is required, so brushless DC motor 311 must rotate to flow oil against the hydraulic pressure.
[0039] 他方、油圧ポンプにおレ、ては、所定の定位置で一定圧力を維持する機能が要求さ れる。例えば成型器 34aにおいては、詳細は図示しないが、可塑性樹脂が金型へと 注入される。この可塑性樹脂を金型に充填した後は可塑性樹脂を注入することなく 一定圧力が維持される。この場合、ピストン Jを変位させる必要はないが、例えば油圧 ポンプ 36から油が漏れる。よって油圧ポンプ 36では幾分かの油の流量が発生する ので、油圧ポンプ 36を駆動するためにブラシレス DCモータ 311は若干の低!/、回転 数で回転することになる。  On the other hand, the hydraulic pump is required to have a function of maintaining a constant pressure at a predetermined fixed position. For example, in the molding machine 34a, although not shown in detail, a plastic resin is injected into the mold. After filling the mold with the plastic resin, a constant pressure is maintained without injecting the plastic resin. In this case, it is not necessary to displace the piston J, but oil leaks from the hydraulic pump 36, for example. Therefore, since some oil flow is generated in the hydraulic pump 36, the brushless DC motor 311 rotates at a slightly low speed / rotation speed in order to drive the hydraulic pump 36.
[0040] 上記の油漏れは油圧が上昇するに従って増加する傾向にあり、油圧が大きいほど ブラシレス DCモータ 311の回転数も高い。つまり油圧ポンプは、トルク負荷が大きい ほど高速となる使われ方をする。よって高速時にはモータの回転子及び油圧ポンプ の慣性によりトルクリプルによる油圧変動への影響は小さいが、低速時には影響が大 きくトルクリプル補正が重要となる。そして低速時は軽負荷であるためブラシレス DC モータ 311に供給される電流も小さぐトルクリプルのうちコギングトルクが支配的とな る。従って油圧ポンプシステムにおける圧力脈動を低減するには、コギングトルクを低 減すること力 S重要となる。  [0040] The oil leakage tends to increase as the hydraulic pressure increases. The higher the hydraulic pressure, the higher the rotational speed of the brushless DC motor 311. In other words, hydraulic pumps are used at higher speeds as torque load increases. Therefore, the torque ripple has little effect on the hydraulic pressure fluctuation due to the inertia of the motor rotor and hydraulic pump at high speeds, but the effect is large at low speeds, and torque ripple correction is important. Since the load is light at low speed, the cogging torque is dominant in the torque ripple where the current supplied to the brushless DC motor 311 is also small. Therefore, to reduce the pressure pulsation in the hydraulic pump system, it is important to reduce the cogging torque.
[0041] 図 2はブラシレス DCモータ 311の構造を例示する平面図である。ブラシレス DCモ ータ 311は回転子 100と、回転子 100と離隔しつつ対向する固定子 200とを有して いる。回転子 100の回転軸に対して垂直な面が平面図として図 2に示されている。  FIG. 2 is a plan view illustrating the structure of the brushless DC motor 311. The brushless DC motor 311 has a rotor 100 and a stator 200 facing the rotor 100 while being spaced apart. A plane perpendicular to the rotation axis of the rotor 100 is shown in FIG. 2 as a plan view.
[0042] 固定子 200はティース 201と、スロット 202が周方向に交互に配置される。実際には ティース 201の周囲を巻回する電機子巻線がスロット 202に収納される力 図 2では 図面の煩雑を避けるために電機子巻線の描画を省略した。ここではスロット 202の個 数が 36個である場合が例示されて!/、る。  [0042] In the stator 200, teeth 201 and slots 202 are alternately arranged in the circumferential direction. Actually, the armature winding wound around the teeth 201 is accommodated in the slot 202. In FIG. 2, the drawing of the armature winding is omitted in order to avoid complexity of the drawing. In this example, the number of slots 202 is 36!
[0043] 図 3は回転子 100の構造を詳細に示す平面図である。回転子 100は回転軸 Z0を 中心として回転可能であり、その外周側に周縁 10を有している。そして周方向で環 状に配置され、それぞれが周方向に一対の端部を有する複数の界磁磁石 6を回転 軸 Z0と垂直な方向において埋設している。界磁磁石 6のそれぞれには磁束短絡防 止用の空隙 31が設けられている。空隙 31は、界磁磁石 6よりも周縁 10側で、周縁 10 と所定距離 L1で離隔して、界磁磁石 6の中央部へと向かって延びている。 FIG. 3 is a plan view showing the structure of the rotor 100 in detail. The rotor 100 is rotatable about a rotation axis Z0 and has a peripheral edge 10 on the outer peripheral side thereof. And in the circumferential direction A plurality of field magnets 6 that are arranged in a shape and each have a pair of end portions in the circumferential direction are embedded in a direction perpendicular to the rotation axis Z0. Each of the field magnets 6 is provided with a gap 31 for preventing a magnetic flux short circuit. The air gap 31 extends toward the center of the field magnet 6 at a predetermined distance L1 on the peripheral edge 10 side of the field magnet 6.
[0044] また回転子 100は回転シャフト(図示せず)が貫通する貫通孔 5が設けられており、 その外周側には締結孔 4が複数個設けられている。締結孔 4は、界磁磁石 6を埋設 する回転子 100のコアが複数の鋼板を積層して構成される場合に利用される。例え ばこれらの鋼板を積層して固定するためにボルトとナットとで締結する場合、締結孔 4 にはボルトが貫通する。締結孔 4を用いなくても鋼板を積層して固定する他の方法も 周知であり、その場合にはもちろん、締結孔 4は不要である。  Further, the rotor 100 is provided with a through hole 5 through which a rotary shaft (not shown) passes, and a plurality of fastening holes 4 are provided on the outer peripheral side thereof. The fastening hole 4 is used when the core of the rotor 100 in which the field magnet 6 is embedded is formed by laminating a plurality of steel plates. For example, when these steel plates are laminated and fixed with bolts and nuts, the bolts penetrate through the fastening holes 4. Other methods for laminating and fixing steel plates without using the fastening holes 4 are also well known, and of course, the fastening holes 4 are not necessary.
[0045] 図 3では界磁磁石 6は 6個設けられ、極数が 6である場合が例示されている。締結孔 4の個数も 6個である力 その個数を界磁磁石の個数と一致させる必要はなレ、。  FIG. 3 illustrates the case where six field magnets 6 are provided and the number of poles is six. The force that the number of fastening holes 4 is also 6 is not necessary to match the number of field magnets.
[0046] 相互に隣接した異なる界磁磁石の端部にそれぞれ設けられた空隙 31の先端同士 は、周方向において相互に反対側へと向いている。そしてこれら一対の先端が周方 向に拡がる角度が角度 Θとして図 3に描画されている。  [0046] The tips of the air gaps 31 provided at the ends of different field magnets adjacent to each other are directed to the opposite sides in the circumferential direction. The angle at which the pair of tips expands in the circumferential direction is depicted as an angle Θ in FIG.
[0047] 図 4乃至図 7は、回転子に図 3に示された構成を採用した場合の、電気角 0度乃至 60度におけるコギングトルクを示すグラフである。横軸には電気角を採っている。ここ では回転子の極数を 6として!/、る場合を例示して!/、るので、電気角は機械角の 3 ( = 6 /2)倍となる。コギングトルクの基本波成分は機械角 360度に対して、最小公倍数 L CMの個数分、ここでは 36周期分あるので、一周期が機械角 10度に対応する。よつ てコギングトルクの基本波成分の一周期は電気角 30度に相当する。  4 to 7 are graphs showing the cogging torque at electrical angles of 0 to 60 degrees when the configuration shown in FIG. 3 is adopted for the rotor. The horizontal axis is the electrical angle. Here, the number of poles of the rotor is assumed to be 6! /, And so the example is! /, So the electrical angle is 3 (= 6/2) times the mechanical angle. The fundamental wave component of cogging torque is equivalent to the number of the least common multiple LCM for the mechanical angle of 360 degrees, here 36 cycles, so one period corresponds to a mechanical angle of 10 degrees. Therefore, one period of the fundamental component of cogging torque corresponds to an electrical angle of 30 degrees.
[0048] 図 4、図 5、図 6、図 7は、それぞれ角度 Θ力 17度、 20度、 22度、 25度の場合を示 している。図 6ではコギングトルクの振幅が最も小さいが、その高次成分が残留してい ることが見て取れる。  [0048] FIG. 4, FIG. 5, FIG. 6, and FIG. 7 show cases where the angle Θ force is 17 degrees, 20 degrees, 22 degrees, and 25 degrees, respectively. In Fig. 6, it can be seen that the cogging torque has the smallest amplitude, but its higher order components remain.
[0049] 図 8はコギングトルクの基本波成分の振幅の、角度 Θに対する依存性を示すグラフ である。コギングトルクはその基本波成分が支配的であるので、図 4乃至図 7に対応し て角度 Θが 22度近傍でコギングトルクの振幅が最小となることがわかる。コギングトル クの基本波成分の振幅の最小値を与える角度 Θの値を原角度 Θ 1とする。 [0050] 例えば特許文献 3からは、コギングトルクを低減するための角度 Θとして、 360度を 最小公倍数 LCMで除した値の整数倍を採用することが示唆されるので、ここで説明 されている例に即して言えば、角度 θ 1は 360度 /36 = 10度毎に現れることになる 。図 8においても原角度 θ 1の一つが 22度近傍に現れているので、原角度 θ 1の他 の値は 12度及び 32度になると見積もられ、その予想は図 8のグラフの形状から妥当 であると推測される。 FIG. 8 is a graph showing the dependence of the amplitude of the fundamental component of the cogging torque on the angle Θ. Since the fundamental wave component of the cogging torque is dominant, it can be seen that the amplitude of the cogging torque is minimized when the angle Θ is around 22 degrees, corresponding to Figs. The angle Θ that gives the minimum amplitude of the fundamental component of the cogging torque is the original angle Θ1. [0050] For example, Patent Document 3 suggests that an integer multiple of a value obtained by dividing 360 degrees by the least common multiple LCM is adopted as the angle Θ for reducing the cogging torque, which is described here. For example, the angle θ 1 will appear every 360 degrees / 36 = 10 degrees. In FIG. 8, one of the original angles θ 1 appears in the vicinity of 22 degrees, so the other values of the original angle θ 1 are estimated to be 12 degrees and 32 degrees, and the prediction is based on the shape of the graph in FIG. Inferred to be reasonable.
[0051] 図 9は、コギングトルクの二次成分の振幅の、角度 Θに対する依存性を示すグラフ である。二次成分の振幅を最小にする角度 Θは 15度、 20度、 25度、 30度と 5度間 隔で現れている。  [0051] FIG. 9 is a graph showing the dependency of the amplitude of the secondary component of the cogging torque on the angle Θ. The angle Θ that minimizes the amplitude of the secondary component appears at intervals of 15 degrees, 20 degrees, 25 degrees, 30 degrees, and 5 degrees.
[0052] 即ちコギングトルクの二次成分の振幅を最小とする角度 Θは、複数の原角度 θ 1の 最小間隔 360度/ LCMの半分の間隔 360度/ LCM/2で、複数存在することがわ かる。換言すれば、コギングトルクの基本波成分の最小値を与える角度 Θである原角 度 θ 1に対して、最小公倍数 LCMで 90度を除した角度を加算もしくは減算して角度 Θを選定することにより、コギングトルクの二次成分の振幅を最小とすることができる。  That is, the angle Θ that minimizes the amplitude of the secondary component of the cogging torque may exist at a plurality of original angles θ 1 with a minimum interval of 360 degrees / half of LCM, 360 degrees / LCM / 2. Recognize. In other words, the angle Θ is selected by adding or subtracting the angle obtained by dividing 90 ° by the least common multiple LCM to the original angle θ 1 that gives the minimum value of the fundamental component of the cogging torque. Thus, the amplitude of the secondary component of the cogging torque can be minimized.
[0053] 図 10はコギングトルクの P— P (ピーク'ツー.ピーク)値、その 1次成分(基本波成分 )の振幅値、及び 2次成分の振幅値のそれぞれの、角度 Θに対する依存性を示すグ ラフである。原角度 Θ 1はコギングトルクの基本波成分の振幅の最小値を与える角度 Θではあるが、簡易にはコギングトルクの振幅の最小値を与える角度として求めること 力できる。上述のように、コギングトルクはその基本波成分が支配的であるからである 。なお、コギングトルクの三次以上の高調波は、実質的には問題とならない程度に小 さい。  [0053] Figure 10 shows the dependence of the cogging torque on the P-P (peak 'to-peak') value, its primary component (fundamental wave component) amplitude value, and secondary component amplitude value on the angle Θ. It is a graph showing. The original angle Θ 1 is the angle Θ that gives the minimum value of the amplitude of the fundamental component of the cogging torque, but can be easily calculated as the angle that gives the minimum value of the amplitude of the cogging torque. This is because the fundamental wave component of the cogging torque is dominant as described above. Note that the third and higher harmonics of the cogging torque are practically small enough not to cause a problem.
[0054] 本実施の形態では、このように角度 Θという、モータの形状のパラメータの一つをェ 夫することによりコギングトルクの二次成分の振幅を最小とする。かかる角度 Θにおい ては角度 Θ 1とは異なり、コギングトルクの基本波成分の振幅を最小にはしない。しか しな力ら、当該角度 Θはコギングトルクの基本波成分の振幅を最大とするものではな いので、特許文献 5, 6で例示された周知の技術を採用し、電機子電流の補正によつ て(コギングトルクの二次成分ではなく)基本波成分を低減することは容易である。  In this embodiment, the amplitude of the secondary component of the cogging torque is minimized by using one of the parameters of the motor shape such as the angle Θ. Unlike the angle Θ 1, the angle Θ does not minimize the amplitude of the fundamental component of the cogging torque. However, since the angle Θ does not maximize the amplitude of the fundamental component of the cogging torque, the well-known technique exemplified in Patent Documents 5 and 6 is used to correct the armature current. Therefore, it is easy to reduce the fundamental component (not the secondary component of cogging torque).
[0055] 図 11はブラシレス DCモータ駆動システムの構成を例示するブロック図である。モー タ Mは図 1のブラシレス DCモータ 311に相当する。また回転位置検出器 501aは図 1 の回転位置検出器 312に相当する。回転位置検出器 501はモータ Mの回転子の位 置を位置信号 φ 0として検出し、これは角度位置のオフセット値 φ 1で補正され、位置 Φが測定される。つまり回転位置検出器 501aと、オフセット値 φ 1とを加減する加減 算器 50 lbとは相まって、位置 φを測定する位置測定部 501として把握することがで きる。 FIG. 11 is a block diagram illustrating the configuration of a brushless DC motor drive system. Mo Data M corresponds to the brushless DC motor 311 in Fig. 1. The rotational position detector 501a corresponds to the rotational position detector 312 in FIG. The rotational position detector 501 detects the position of the rotor of the motor M as a position signal φ0, which is corrected with the offset value φ1 of the angular position, and the position Φ is measured. In other words, the rotational position detector 501a and the adder / subtractor 50 lb for adjusting the offset value φ1 can be combined to be understood as the position measuring unit 501 for measuring the position φ.
[0056] トルクリプルの 1次成分のデータ Dは、位置 φと共にトルクリプル 1次成分打消信号 生成部 505に与えられる。当該生成部 505はデータ D、位置 φに基づき、打ち消し 信号 Zを出力する。打ち消し信号 Zはコギングトルクの基本波成分を打ち消すための 信号である。  The data D of the primary component of the torque ripple is given to the torque ripple primary component cancellation signal generation unit 505 together with the position φ. The generation unit 505 outputs a cancellation signal Z based on the data D and the position φ. The cancellation signal Z is a signal for canceling the fundamental wave component of the cogging torque.
[0057] トルクリプルの 1次成分のデータ Dは予めモータ Mを、例えば無負荷で駆動すること によって求めることができる。そして上述のように、油圧ポンプへとモータを適用する 場合には、負荷が軽いときに低速であるので、低速でデータ Dを収集する。これによ り、データ Dとしては、ほぼコギングトルクの基本波成分が得られることになる。  [0057] The data D of the primary component of the torque ripple can be obtained in advance by driving the motor M, for example, with no load. As described above, when the motor is applied to the hydraulic pump, the data D is collected at a low speed because the speed is low when the load is light. As a result, the fundamental wave component of the cogging torque can be obtained as data D.
[0058] 電流検出器 502は、モータ Mに流れる電流の電流値 iMを求める。トルク指令計算 部 506aは位置 φ及び電流 iMに基づいてトルク指令 τ *を計算する。モータ駆動波 形生成部 506bは、位置 φ、電流値 iM及びトルク指令 τ *に基づいてモータ駆動波 形を生成し、当該波形を反映した電流をモータ Μへと供給する。よってトルク指令計 算部 506aとモータ駆動波形生成部 506bとは相まって、回転子の位置 φ、電流値 i M、打ち消し信号 Zに基づ!/、てモータ Mを駆動するモータ駆動部 506として把握する こと力 Sでさる。  The current detector 502 obtains the current value iM of the current flowing through the motor M. Torque command calculation unit 506a calculates torque command τ * based on position φ and current iM. The motor drive waveform generator 506b generates a motor drive waveform based on the position φ, the current value iM, and the torque command τ *, and supplies the current reflecting the waveform to the motor Μ. Therefore, the torque command calculation unit 506a and the motor drive waveform generation unit 506b are combined, based on the rotor position φ, current value i M, and cancellation signal Z! /, And grasped as the motor drive unit 506 that drives the motor M Doing with the power S
[0059] 上述のように、オフセット値 φ 1に誤差が生じ、これが位置 φの誤差を招来する可能 性はある。しかし当該ブラシレス DCモータ駆動システムでは、電流値 iMを制御する ことでコギングトルクの基本波成分の低減を図るのであり、電流値 iMの制御によって コギングトルクの二次成分の低減を図るものではない。よって上述のように、コギング トルクの二次成分の増大という事態を招来することもない。そして上述のようにコギン グトルクの二次成分はモータの形状の工夫によって低減を図って!/、るので、コギング トルクを、その周波数分布について考慮して低減することができる。 [0060] このようにコギングトルクの基本波成分をブラシレス DCモータ 311の駆動時の制御 によって、また二次の周波数成分をブラシレス DCモータ 311の構造(中でも回転子 1 00の構造)によって、それぞれ低減することで、油圧ポンプシステムでの圧力脈動を 低減すること力 Sでさる。 [0059] As described above, an error occurs in the offset value φ1, which may cause an error in the position φ. However, in the brushless DC motor drive system, the fundamental value component of the cogging torque is reduced by controlling the current value iM, and the secondary component of the cogging torque is not reduced by controlling the current value iM. Therefore, as described above, a situation in which the secondary component of the cogging torque increases is not caused. As described above, the secondary component of the cogging torque is reduced by devising the shape of the motor! Therefore, the cogging torque can be reduced in consideration of the frequency distribution. [0060] In this way, the fundamental wave component of the cogging torque is reduced by the control during driving of the brushless DC motor 311, and the secondary frequency component is reduced by the structure of the brushless DC motor 311 (in particular, the structure of the rotor 100). This reduces the pressure pulsation in the hydraulic pump system with the force S.
[0061] この発明は詳細に説明された力 上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 S、この発明の範囲から外れることなく想定され得るものと解される。  The present invention has been described in detail. The above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that the myriad variations S that are not illustrated can be assumed without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 周縁 (10)と、  [1] Perimeter (10),
周方向で環状に配置され、それぞれが周方向に一対の端部を有する複数の界磁 磁石(6)と、  A plurality of field magnets (6) that are annularly arranged in the circumferential direction, each having a pair of ends in the circumferential direction;
前記端部にそれぞれ設けられ、前記界磁磁石よりも前記周縁側で前記周縁と所定 距離 (L1)で離隔して前記界磁磁石の中央部へと向かって延びる空隙(31 , 32)と を有し、前記周方向に回転可能な回転子(100)と、  A gap (31, 32) provided at each of the end portions and spaced from the peripheral edge by a predetermined distance (L1) on the peripheral side of the field magnet and extending toward the central portion of the field magnet. A rotor (100) rotatable in the circumferential direction,
前記回転子と離隔しつつ対向する固定子(200)と  A stator (200) opposed to the rotor while being spaced apart;
を備え、  With
一の前記界磁磁石に隣接する他の前記界磁磁石の前記一の前記界磁磁石側の 前記端部に設けられた前記空隙の先端と、前記一の前記界磁磁石の前記他の前記 界磁磁石側の前記端部に設けられた前記空隙の先端とが前記周方向に拡がる角度 ( Θ )は所定の角度に選定され、  A tip of the air gap provided at the end of the other field magnet adjacent to the one field magnet on the one field magnet side, and the other of the one field magnet. The angle at which the tip of the air gap provided at the end on the field magnet side extends in the circumferential direction (Θ) is selected as a predetermined angle,
コギングトルクの基本波成分は前記回転子の一回転当たり前記回転子の極数(Nr )と前記固定子のスロット数 (Ns)との最小公倍数 (LCM)の回数で変動し、  The fundamental component of the cogging torque varies with the number of times of least common multiple (LCM) of the number of poles of the rotor (Nr) and the number of slots of the stator (Ns) per revolution of the rotor,
前記基本波成分の最小値を与える前記角度である原角度( Θ 1)に対して、前記最 小公倍数で 90度を除した角度を加算もしくは減算した角度が、前記所定の角度であ る、ブラシレス DCモータ(311 ; M)。  An angle obtained by adding or subtracting an angle obtained by dividing 90 degrees by the least common multiple to the original angle (Θ 1) that gives the minimum value of the fundamental wave component is the predetermined angle. Brushless DC motor (311; M).
[2] 前記原角度は、前記コギングトルクの振幅の最小値を与える前記角度として求めら れる、請求項 1記載のブラシレス DCモータ。 [2] The brushless DC motor according to claim 1, wherein the original angle is obtained as the angle that gives a minimum value of the amplitude of the cogging torque.
[3] 請求項 1乃至請求項 2のいずれか一つに記載のブラシレス DCモータ(M)と、 前記回転子の位置( φ )を求める位置測定部(501)と、 [3] The brushless DC motor (M) according to any one of claims 1 to 2, a position measuring unit (501) for obtaining a position (φ) of the rotor,
前記ブラシレス DCモータに流れる電流(iM)を求める電流検出器( 502)と、 前記コギングトルクの前記基本波成分のデータ(D)と前記回転子の前記位置とか ら、前記コギングトルクの前記基本波成分を打ち消すための打ち消し信号 (Z)を出力 する打ち消し信号生成部(505)と、  From the current detector (502) for obtaining the current (iM) flowing through the brushless DC motor, the fundamental wave component data (D) of the cogging torque and the position of the rotor, the fundamental wave of the cogging torque A cancellation signal generator (505) that outputs a cancellation signal (Z) for canceling the component;
前記回転子の前記位置、前記電流、前記打ち消し信号に基づいて前記ブラシレス DCモータを駆動するモータ駆動部(506)と を備える、ブラシレス DCモータ駆動システム(35)。 A motor drive unit (506) for driving the brushless DC motor based on the position of the rotor, the current, and the cancellation signal; A brushless DC motor drive system (35).
[4] 請求項 3記載のブラシレス DCモータ駆動システムと、 [4] The brushless DC motor drive system according to claim 3,
前記ブラシレス DCモータによって駆動される油圧ポンプ(36)と を備える、油圧ポンプシステム。  A hydraulic pump system comprising: a hydraulic pump (36) driven by the brushless DC motor.
[5] 射出成型機(34)を駆動する、請求項 4記載の油圧ポンプシステム。 5. The hydraulic pump system according to claim 4, which drives the injection molding machine (34).
PCT/JP2007/066274 2006-09-01 2007-08-22 Brushless dc motor, brushless dc motor drive system, and hydraulic pump system WO2008029624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006237575A JP4277889B2 (en) 2006-09-01 2006-09-01 Brushless DC motor, brushless DC motor drive system, hydraulic pump system
JP2006-237575 2006-09-01

Publications (1)

Publication Number Publication Date
WO2008029624A1 true WO2008029624A1 (en) 2008-03-13

Family

ID=39157060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066274 WO2008029624A1 (en) 2006-09-01 2007-08-22 Brushless dc motor, brushless dc motor drive system, and hydraulic pump system

Country Status (2)

Country Link
JP (1) JP4277889B2 (en)
WO (1) WO2008029624A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273357A (en) * 2008-05-09 2009-11-19 Micronas Gmbh Integrated circuit for controlling electric motor
WO2011106145A2 (en) 2010-02-25 2011-09-01 Gore Enterprise Holdings, Inc. Reinforced elastomers
USD880530S1 (en) 2017-05-16 2020-04-07 Enerpac Tool Corp. Pump
USD890815S1 (en) 2017-05-16 2020-07-21 Enerpac Tool Group Corp. Pump
US11193508B2 (en) 2018-11-13 2021-12-07 Enerpac Tool Group Corp. Hydraulic power system and method for controlling same
US11415119B2 (en) 2017-05-16 2022-08-16 Enerpac Tool Group Corp. Hydraulic pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264551B2 (en) * 2009-02-21 2013-08-14 三菱電機株式会社 Electric motor, blower and compressor
JP5511921B2 (en) * 2012-09-25 2014-06-04 三菱電機株式会社 Electric motor, blower and compressor
JP6157340B2 (en) * 2013-12-18 2017-07-05 三菱電機株式会社 Permanent magnet rotating electric machine
KR102153892B1 (en) * 2019-03-13 2020-09-10 주식회사 만도 Apparatus for reducing pressure pulsations in motor pump system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155986A (en) * 1997-08-05 1999-02-26 Hitachi Ltd Controller for permanent magnet electric rotating machine
JP2004343861A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JP2005210826A (en) * 2004-01-22 2005-08-04 Fujitsu General Ltd Electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155986A (en) * 1997-08-05 1999-02-26 Hitachi Ltd Controller for permanent magnet electric rotating machine
JP2004343861A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JP2005210826A (en) * 2004-01-22 2005-08-04 Fujitsu General Ltd Electric motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273357A (en) * 2008-05-09 2009-11-19 Micronas Gmbh Integrated circuit for controlling electric motor
US8866426B2 (en) 2008-05-09 2014-10-21 Micronas Gmbh Integrated circuit for controlling an electric motor
WO2011106145A2 (en) 2010-02-25 2011-09-01 Gore Enterprise Holdings, Inc. Reinforced elastomers
USD880530S1 (en) 2017-05-16 2020-04-07 Enerpac Tool Corp. Pump
USD890815S1 (en) 2017-05-16 2020-07-21 Enerpac Tool Group Corp. Pump
US11415119B2 (en) 2017-05-16 2022-08-16 Enerpac Tool Group Corp. Hydraulic pump
US11193508B2 (en) 2018-11-13 2021-12-07 Enerpac Tool Group Corp. Hydraulic power system and method for controlling same
US11572900B2 (en) 2018-11-13 2023-02-07 Enerpac Tool Group Corp. Hydraulic power system and method for controlling same

Also Published As

Publication number Publication date
JP4277889B2 (en) 2009-06-10
JP2008061444A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4277889B2 (en) Brushless DC motor, brushless DC motor drive system, hydraulic pump system
CN103444053B (en) Permanent-magnet rotary electric machine
JP5413424B2 (en) Motor drive device and brushless motor
US8378598B2 (en) Motor control apparatus and motor control method
JP4314816B2 (en) Brushless DC motor and brushless DC motor control device
KR20060129846A (en) A permanent magnet motor
WO2001020351A1 (en) A low cost approach to measuring high resolution rotary position of electric machines
US9793844B2 (en) Permanent magnet motor controller
JP2010011637A (en) Permanent magnet rotary electric machine and elevator winding machine using the same
JP6833077B2 (en) Control device for multi-group multi-phase rotary machine and drive device for multi-group multi-phase rotary machine
JP6186824B2 (en) Brushless motor control device, brushless motor electrical angle estimation method, and storage medium
US6351053B1 (en) Reluctance motors
KR102191647B1 (en) Brushless direct current motor
JP6080745B2 (en) Synchronous motor rotation phase detector
JP7291104B2 (en) Three-phase brushless motor and method for detecting rotational position of three-phase brushless motor
JP4674514B2 (en) DC brushless motor device and rotary vacuum pump
KR101092046B1 (en) Brushless motor with skewed rotor
JP2009261121A (en) Motor control apparatus
CN110463018B (en) Control device for rotating electric machine and control method thereof
JPH11103588A (en) Control method for torque pulsation of permanent magnet embedded-type motor, and controller
JP7415938B2 (en) Surface magnet motors and motor modules
JP2018182836A (en) Motor driving control device and control method of motor driving control device
JP2018207554A (en) Brushless motor
WO2022054232A1 (en) Rotating machine control device
JP2006325311A (en) Dc brushless motor apparatus and rotary vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792866

Country of ref document: EP

Kind code of ref document: A1