WO2008027317A2 - Handling masquerading elements - Google Patents
Handling masquerading elements Download PDFInfo
- Publication number
- WO2008027317A2 WO2008027317A2 PCT/US2007/018753 US2007018753W WO2008027317A2 WO 2008027317 A2 WO2008027317 A2 WO 2008027317A2 US 2007018753 W US2007018753 W US 2007018753W WO 2008027317 A2 WO2008027317 A2 WO 2008027317A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- human
- digital identifier
- individualized digital
- designation
- receiving
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 182
- 238000004590 computer program Methods 0.000 claims abstract description 63
- 230000000007 visual effect Effects 0.000 claims description 182
- 230000008569 process Effects 0.000 claims description 103
- 230000004044 response Effects 0.000 claims description 63
- 238000003860 storage Methods 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 18
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 230000009471 action Effects 0.000 description 22
- 230000010354 integration Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000000977 initiatory effect Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 230000005055 memory storage Effects 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- CDFKCKUONRRKJD-UHFFFAOYSA-N 1-(3-chlorophenoxy)-3-[2-[[3-(3-chlorophenoxy)-2-hydroxypropyl]amino]ethylamino]propan-2-ol;methanesulfonic acid Chemical compound CS(O)(=O)=O.CS(O)(=O)=O.C=1C=CC(Cl)=CC=1OCC(O)CNCCNCC(O)COC1=CC=CC(Cl)=C1 CDFKCKUONRRKJD-UHFFFAOYSA-N 0.000 description 2
- 244000122871 Caryocar villosum Species 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/57—Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0021—Image watermarking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
Definitions
- An embodiment provides a method implemented in a computing environment.
- the method includes receiving an indication of a selected watermark.
- the method also includes incorporating a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of an authorized program running in the computing environment.
- Another embodiment provides a method implemented in a computing environment.
- the method includes receiving an indication of a selected watermark, and restricting access to the selected watermark to an authorized program running, in.the computing environment.
- the method also includes incorporating a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of an authorized program running in the computing environment.
- the method may include suppressing a visual area displaying an output that does not include the selected watermark in response to a received a human-initiated input.
- the method may further include automatically suppressing a visual area displaying an output that does not include the selected watermark.
- a further embodiment provides a computing device.
- the computing device includes an information store configured by computer program that includes computer program instructions.
- the computer program instructions are operable to perform a process in a computer processor.
- the process including receiving an indication of a selected watermark, and allowing a control program privileges in the selected watermark.
- the process further including associating human-perceivable manifestation of the selected watermark with each visual area of at least two visual areas generated for a human viewable display of an output of the operating system.
- the computing device may further include a display surface operable to display each visual area of at least two visual areas generated for a human viewing of an output of the operating system.
- the computing device may also include a user interface operable to receive an indication of the selected watermark in response to a user action.
- An embodiment provides a computer program product.
- the computer program product includes a computer-readable signal-bearing medium bearing program instructions.
- the program instructions are operable to perform a process in a computing device of a computing environment.
- the process includes receiving an indication of a selected watermark, and allowing an operating system privileges in the selected watermark.
- the process also includes associating a visible manifestation of the selected watermark with each visual area of at least two human-visual areas generated for displaying an output of the operating system.
- Another embodiment provides a method implemented in a computing environment.
- the method includes receiving a designation of an individualized digital identifier.
- the method also includes associating a human-perceptible form of the designated individualized digital identifier with each element of a group of human-perceivable elements displayed by the computing environment.
- a further embodiment provides a method implemented in a computing environment.
- the method includes receiving a designation of an individualized digital identifier, and restricting access to the designated individualized digital identifier to a trusted program.
- the method also includes associating a human-perceptible form of the designated individualized digital identifier with each element of a group of human-perceivable elements displayed in response to the trusted program by the computing environment.
- the method may include scanning an element displayed by the computing environment for a presence of the designated individualized digital identifier, and broadcasting a human recognizable notification if the individualized digital identifier is not associated with the element.
- An embodiment provides a computing device.
- the computing device includes a display operable to visually present each element of the group of elements to a human user and an information store configurable by a computer program.
- the computer program includes instructions operable to perform a process in a processor.
- the process includes receiving a designation of an individualized digital identifier, and limiting access to the designated individualized digital identifier to an application programming interface callable by a privileged code.
- the process also includes associating a human-perceptible form of the designated individualized digital identifier with each element of a group of elements displayed in response to a program running in the computing device.
- the computer program product includes a computer-readable signal -bearing medium bearing program instructions.
- the program instructions are operable to perform a process in a computing device.
- the process includes receiving a designation of an individualized digital identifier, and restricting access to the designated individualized digital identifier to an operating system program.
- the process also includes associating a human-perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the operating system program of the computing device.
- a further embodiment provides a method.
- the method includes receiving an instruction operable to create a visual presentation corresponding to a bitmap content.
- the method also includes determining if the instruction operable to create a visual presentation corresponding to a bitmap content includes an instruction operable to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the method further includes initiating an action with respect to the instruction operable to create a visual presentation corresponding to a bitmap content, the action being responsive to the determining.
- An embodiment provides a computing device.
- the computing device includes an information store configured by a computer program that includes computer program instructions.
- the computer program instructions are operable to perform a process in a computer processor.
- the process includes receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the process also includes determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the process further includes initiating an action with respect to the instruction to create a visual presentation corresponding to a bitmap content, the action being responsive to the determining.
- Another embodiment provides a computer program product.
- he computer program product includes a computer-readable signal-bearing medium bearing program instructions.
- the program instructions are operable to perform a process in a computing device of a computing environment.
- the process includes receiving an instruction operable to create a visual presentation corresponding to a bitmap content.
- the process also includes determining if the instruction operable to create a visual presentation corresponding to a bitmap content includes an instruction operable to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the process further includes initiating an action with respect to the instruction operable to create a visual presentation corresponding to a bitmap content in response to the determining.
- the computer-readable signal-bearing medium may include a computer storage medium.
- the computer-readable signal-bearing medium may include a communication medium.
- a further embodiment provides a method implemented in a computing environment.
- the method includes receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the method also includes determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark. If the instruction to create a visual presentation corresponding to a bitmap content does not include an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark, the method includes displaying a human-understandable notification reflecting an absence of a digital watermark.
- An embodiment provides a computing device.
- the computing device includes means for receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the computing device also includes means for determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the computing device further includes means for displaying a human-understandable notification reflecting an absence of a digital watermark if the instruction to create a visual presentation corresponding to a bitmap content does not include an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the computer program product includes a computer-readable signal-bearing medium bearing program instructions.
- the program instructions are operable to perform a process in a computing device of a computing environment.
- the process includes receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the process also includes determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the process further includes displaying a human-understandable notification reflecting an absence of a digital watermark.
- a further embodiment provides a method implemented in a computing environment that includes a system digital watermark.
- a human-perceptible manifestation of the system digital watermark being incorporatable in a displayable content provided by a program running in the computing environment.
- the method includes receiving digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- the method also includes determining if the instruction to create a visual presentation corresponding to a bitmap includes an instruction to create a visual presentation corresponding to a bitmap having an indicium of a digital watermark.
- the method includes establishing a correlation between the indicium of a digital watermark and the system digital watermark, and displaying a human-understandable information responsive to the determined correlation between the indicium of the digital watermark and the system digital watermark. If the determined measure of a correlation is below a preselected level, the method may include exposing to the program running in the computing environment the digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- the method may include isolating from the program running in the computing environment the digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- An embodiment provides a computer program product.
- the computer program product includes a computer-readable signal -bearing medium bearing program instructions.
- the program instructions being operable to perform a process in a computing device.
- the process includes receiving digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- the process also includes determining if the instruction to create a visual presentation corresponding to a bitmap includes an instruction to create a visual presentation corresponding to a bitmap having an indicium of a digital watermark.
- the process includes establishing a correlation between the indicium of a digital watermark and a system digital watermark of a computing environment that includes the computing device, and displaying a human-understandable information responsive to the determined correlation between the indicium of the digital watermark and the system digital watermark.
- the computing device includes means for receiving digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- the computing device also includes means for determining if the instruction to create a visual presentation corresponding to a bitmap includes an instruction to create a visual presentation corresponding to a bitmap having an indicium of a digital watermark.
- the computing device further includes means for establishing a correlation between the indicium of a digital watermark and a system digital watermark of a computing environment that includes the computing device.
- the computing device also includes means for displaying a human- understandable information responsive to the determined correlation between the indicium of the digital watermark and the system digital watermark.
- FIG. 1 illustrates an exemplary general-purpose computing system in which embodiments may be implemented
- FIG. 2 illustrates an exemplary operational flow implemented in a computing environment
- FIG. 3 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 2
- FIG. 4 illustrates another alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 5 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 6 illustrates an alternative embodiment of the exemplary operational flow 200 of FIG. 2;
- FIG. 7 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 8 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 9 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 2
- FIG. 10 illustrates another alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 11 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 12 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 2
- FIG. 13 illustrates another alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 14 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 15 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 2
- FIG. 16 illustrates another alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 17 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 2;
- FIG. 18 illustrates an exemplary environment in which an embodiment of the operational flow may be implemented
- FIG. 19 illustrates an exemplary computer program product
- FIG. 20 illustrates an exemplary operational flow implemented in a computing environment
- FIG. 21 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 20
- FIG. 22 illustrates another alternative embodiment of the exemplary operational flow of FIG. 20;
- FIG. 23 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 20;
- FIG. 24 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 20
- FIG. 25 illustrates another alternative embodiment of the exemplary operational flow of FIG. 20;
- FIG. 26 illustrates a further alternative embodiment of the exemplary operational flow of FIG. 20;
- FIG. 27 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 20
- FIG. 28 illustrates another embodiment of the exemplary operational flow of FIG.
- FIG. 29 illustrates a further embodiment of the exemplary operational flow of FIG.
- FIG. 30 illustrates an embodiment of the exemplary operational flow of FIG. 20
- FIG. 31 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 20
- FIG. 32 illustrates an exemplary computing environment in which embodiments of the operational flow may be implemented
- FIG. 33 illustrates an exemplary display environment that may be provided by the computing environment of FIG. 32;
- FIG. 34 illustrates an exemplary computing environment in which embodiments may be implemented
- FIG. 35 illustrates an exemplary computer program product in which embodiments may be implemented
- FIG. 36 illustrates an exemplary operational flow implemented in a computing environment and operable to practice embodiments
- FIG. 37 illustrates an alternative embodiment of the exemplary operational flow of
- FIG. 36
- FIG. 38 illustrates another alternative embodiment of the exemplary operational flow of FIG. 36
- FIG. 39 illustrates an exemplary computing environment in which embodiments of the operational flow of FIG. 36 may be implemented
- FIG. 40 illustrates an exemplary computer program product in which embodiments may be implemented
- FIG. 41 illustrates an exemplary operational flow in which embodiments may be implemented
- FIG. 42 illustrates an exemplary computing environment that may implement embodiments
- FIG. 43 illustrates a computer program product in which embodiments may be implemented
- FIG. 44 illustrates an exemplary operational flow implemented in a computing environment that includes a system digital watermark
- FIG. 45 illustrates an alternative embodiment of the operational flow described in conjunction with FIG. 44;
- FIG. 46 illustrates a further embodiment of the operational flow described in conjunction with FIG. 44;
- FIG. 47 illustrates another embodiment of the operational flow described in conjunction with FIG. 44;
- FIG. 48 illustrates an exemplary computer program product in which embodiments may be implemented.
- FIG. 49 illustrates an exemplary computing device that may implement embodiments.
- FIG. 1 illustrates an exemplary general-purpose computing system in which embodiments may be implemented, shown as a computing system environment 100.
- Components of the computing system environment 100 may include, but are not limited to, a computing device 110 having a processing unit 120, a system memory 130, and a system bus 121 that couples various system components including the system memory to the processing unit 120.
- the system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
- such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, also known as Mezzanine bus.
- ISA Industry Standard Architecture
- MCA Micro Channel Architecture
- EISA Enhanced ISA
- VESA Video Electronics Standards Association
- PCI Peripheral Component Interconnect
- Computer-readable media may include any media that can be accessed by the computing device 110 and include both volatile and nonvolatile media, removable and nonremovable media.
- Computer-readable media may include computer storage media and communications media.
- Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data.
- Computer storage media include, but are not limited to, random-access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, or other memory technology, CD-ROM, digital versatile disks (DVD), or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage, or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computing device 110.
- Communications media typically embody computer- readabie instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media.
- modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- communications media include wired media such as a wired network and a direct-wired connection and wireless media such as acoustic, RF, optical, and infrared media. Combinations of any of the above should also be included within the scope of computer-readable media.
- the system memory 130 includes computer storage media in the form of volatile and nonvolatile memory such as ROM 131 and RAM 132.
- a basic input/output system (BIOS) 133 containing the basic routines that help to transfer information between elements within the computing device 1 10, such as during start-up, is typically stored in ROM 131.
- RAM 132 typically contains data and program modules that are immediately accessible to or presently being operated on by processing unit 120.
- FIG. 1 illustrates an operating system 134, application programs 135, other program modules 136, and program data 137.
- the operating system 134 offers services to applications programs 135 by way of one or more application programming interfaces (APIs) (not shown).
- APIs application programming interfaces
- an information store may include a computer storage media.
- an information store may include a group of digital information storage devices.
- an information store may include a quantum memory device.
- the computing device 1 10 may also include other removable/non-removable, volatile/nonvolatile computer storage media products.
- FIG. 1 illustrates a non-removable non-volatile memory interface (hard disk interface) 140 that reads from and writes to non-removable, non-volatile magnetic media, a magnetic disk drive 151 that reads from and writes to a removable, non-volatile magnetic disk 152, and an optical disk drive 155 that reads from and writes to a removable, non-volatile optical disk 156 such as a CD ROM.
- hard disk interface hard disk interface
- removable/nonremovable, volatile/non-volatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, DVDs, digital video tape, solid state RAM, and solid state ROM.
- the hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface, such as the interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable non-volatile memory interface, such as interface 150.
- the drives and their associated computer storage media discussed above and illustrated in FIG. 1 provide storage of computer-readable instructions, data structures, program modules, and other data for the computing device 110.
- hard disk drive 141 is illustrated as storing an operating system 144, application programs 145, other program modules 146, and program data 147. Note that these components can either be the same as or different from the operating system 134, application programs 135, other program modules 136, and program data 137.
- the operating system 144, application programs 145, other program modules 146, and program data 147 are given different numbers here to illustrate that, at a minimum, they are different copies.
- a user may enter commands and information into the computing device 110 through input devices such as a microphone 163, keyboard 162, and pointing device 161, commonly referred to as a mouse, trackball, or touch pad.
- Other input devices may include a joystick, game pad, satellite dish, and scanner.
- These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
- a monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190.
- computers may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 195.
- the computing system environment 100 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180.
- the remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device, or other common network node, and typically includes many or all of the elements described above relative to the computing device 110, although only a memory storage device 181 has been illustrated in FIG. 1.
- the logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also include other networks such as a personal area network (PAN) (not shown).
- LAN local area network
- WAN wide area network
- PAN personal area network
- Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
- the computing device 110 When used in a WAN networking environment, the computing device 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet.
- the modem 172 which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or via another appropriate mechanism.
- program modules depicted relative to the computing device 1 10, or portions thereof may be stored in a remote memory storage device.
- FIG. 1 illustrates remote application programs 185 as residing on computer storage medium 181. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
- FIG. 1 is intended to provide a brief, general description of an illustrative and/or suitable exemplary environment in which embodiments may be implemented.
- An exemplary system may include the computing system environment 100 of FIG. 1.
- FIG. 1 is an example of a suitable environment and is not intended to suggest any limitation as to the structure, scope of use, or functionality of an embodiment.
- a particular environment should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in an exemplary operating environment. For example, in certain instances, one or more elements of an environment may be deemed not necessary and omitted. In other instances, one or more other elements may be deemed necessary and added.
- Embodiments may be implemented with numerous other general-purpose or special- purpose computing devices and computing system environments or configurations. Examples of well-known computing systems, environments, and configurations that may be suitable for use with an embodiment include, but are not limited to, personal computers, handheld or laptop devices, personal digital assistants, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network, minicomputers, server computers, game server computers, web server computers, mainframe computers, and distributed computing environments that include any of the above systems or devices. [0084] Embodiments may be described in a general context of computer-executable instructions, such as program modules, being executed by a computer.
- program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
- An embodiment may also be practiced in a distributed computing environment where tasks are performed by remote processing devices that are linked through a communications network.
- program modules may be located in both local and remote computer storage media including memory storage devices.
- FIG. 2 illustrates an exemplary operational flow 200 implemented in a computing environment.
- the operational flow may be implemented using the computing system environment 100 of FIG 1.
- the determination operation receives an indication of a selected watermark.
- a rights operation 250 restricts access to the selected watermark to an authorized program running in a computing environment.
- an authorized program may include at least two authorized programs.
- An integration operation 270 incorporates a human- perceivable manifestation of the selected watermark in each visual area of at least two human- visual areas displaying an output of the authorized program.
- the operational flow men moves to an end operation.
- a watermark may include a digital watermark.
- a watermark may include a visually and/or audibly reproducible pattern of bits useful to a human user in authentication of a content and/or differentiation of one content from another content.
- the at least two human-visual areas may be displayed simultaneously and/or sequentially.
- each visual area of the at least two human- visual areas may be displayed on and/or from a single physical surface.
- a sequential display of the at least two human-visual areas may including sequential displays temporally separated, for example, by seconds, minutes, hours, days, and/or weeks.
- the visual areas may include at least two windows that are sequentially displayed from at least a substantially portion of a physical area of a flat screen panel display.
- the human-perceivable manifestation of the selected watermark is human- visually discernable in each human visual area displayed by an output of the authorized program.
- FIG. 3 illustrates an alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the determination operation 210 may include at least one additional operation.
- the at least one additional operation may include an operation 212, an operation 214, an operation 216, and/or an operation 218.
- the operation 212 receives a user-originated watermark.
- the operation 214 receives an indication of a user-selected watermark.
- the operation 216 receives an indication of a watermark selected by a user from at least two watermarks.
- the operation 218 receives an indication of a watermark selected by a user from at least two human-differentiable watermarks.
- FIG. 4 illustrates another alternative embodiment of the exemplary operational flow
- the determination operation 210 may include at least one additional operation.
- the at least one additional operation may include an operation 222, an operation 224, an operation 226, and/or an operation 228.
- the operation 222 receives an indication of a watermark selected by a user from a library of watermarks that includes at least two human-differentiable watermarks.
- the operation 224 receives an indication of a watermark selected from at least two human-differentiable polymorphic watermarks, the at least two human-differentiable polymorphic watermarks respectively including a variation of a genus watermark.
- the operation 226 receives an indication of a selection of a watermark generated in response to an algorithm.
- an algorithm may generate a watermark in response to a random number or a pseudo random number.
- an algorithm may generate a watermark in response to a combination of unique identifiers, such as by a hash of a current date, a MAC address of a computing device, a birthday of a user, a serial number associated with an operating system of the computing device or other program, and/or a current date.
- the operation 228 selects a watermark from at least two human-differentiable watermarks in response to an algorithm.
- FIG. 5 illustrates a further alternative embodiment of the exemplary operational flow
- the determination operation 210 may include at least one additional operation.
- the at least one additional operation may include an operation 232, an operation 234, an operation 236, and/or an operation 238.
- the operation 232 receives an indication of a selected watermark, the selected watermark including at least one of a human-differentiable visible watermark and/or human-differentiable audible watermark.
- the operation 234 receives an indication of a selected watermark, the selected watermark including an icon.
- an icon may include a small pictorial representation of an object.
- an icon may include a commonly known icon, such as an icon representative of a Mario Brother from Super Mario Brothers ⁇ Nintendo.
- an icon may include a picture or other representation of a user.
- the operation 236 receives an indication of a selected watermark, the selected watermark including at least one of a visual aspect, an acoustical aspect, a user name, a biometric identifier, a fingerprint, a word, a symbol, a graphic, a picture, and/or an avatar.
- the selected watermark may include a user's name.
- the operation 238 receives an indication of a selected watermark, the selected watermark including an image having a variation.
- FIG. 6 illustrates an alternative embodiment of the exemplary operational flow.200 of FIG. 2.
- the determination operation 210 may include at least one additional operation.
- the at least one additional operation may include an operation 242.
- the operation 242 receives an indication of a selected watermark, the selected watermark including a variation.
- the variation may include at least one of a temporal variation, a random variation, a pseudo random variation, a movement variation, a rotation, a rotation variation, a shape variation, a color variation, a perspective variation, a size variation, and/or a feature variation.
- a temporal variation may include an image of a planet, a face, a wheel, and/or an object that rotates.
- a temporal variation may occur over a relatively short time, such as one second, and/or over a relatively longer time, such as monthly.
- a feature variation may include a star that sparkles, or a varying width of a component of a watermark.
- Another variation may include a representation of a United States President that changes daily in order of their election.
- a variation may include a dynamic variation that includes a synchronization or other temporal or visual relationship to another watermark or other element active on the same system/environment.
- Another variation may include a responsive watermark that does something in response to a user action, such as appearing in response to a user action.
- a further variation is an invariant quality, including a static relationship of a watermark with respect to another watermark and/or other elements within the same computing system and/or environment.
- a watermark may share a system and/or environment aspect, such as a background color, a style, and/or a font, etc., including incorporation through duplication or transparency.
- a watermark may include a polymorphic variation within a system and/or environment and/or other domain, such as a workgroup or, network.
- a watermark may include a shared and/or a variable aspect in combination with others.
- a watermark may be selected and/or generated in a manner to make it at least substantially unique by using one or more unique aspects and/or identifiers associated with a machine, system, account, or user, etc.
- a watermark may be user invisible, and may be user queryable/displayable on user request.
- a watermark may be recognizable by code, including modules that take action - e.g., warn or do not present items with watermark imitations especially those that a user might mistake for legitimate.
- FIG. 7 illustrates a further alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the rights operation 250 may include at least one additional operation.
- the at least one additional operation may include an operation 252, an operation 254, and/or an operation 256.
- the operation 252 restricts the authorized program to a read access, a write access, and/or an update access to the selected watermark.
- the operation 254 limits access to the selected watermark to an operating system.
- the operation 256 allows an application program authorized by a human- user to access the selected watermark.
- FIG. 8 illustrates a further alternative embodiment of the exemplary operational flow
- the rights operation 250 may include at least one additional operation.
- the at least one additional operation may include an operation 258, and/or an operation 262.
- the operation 258 allows access to the selected watermark by an application program, the application program including at least one of a browser, a web browser, a word processing program, and/or a database management program.
- the operation 262 allows an operating system and at least one selected application program access to the selected watermark.
- FIG. 9 illustrates an alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 272, and/or an operation 274.
- the operation 272 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of the authorized program running in the computing environment and/or another program running in the computing environment.
- the operation 274 uses an application program interface to incorporate a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of the authorized program running in the computing environment.
- FIG. 10 illustrates another alternative embodiment of the exemplary operational flow
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 276, and/or an operation 278.
- the operation 276 synchronizes a human-visually-differentiable dynamic aspect of the selected watermark when the selected watermark is simultaneously displayed in at least two human-visual areas outputted by the authorized program running in the computing environment. For example, if the selected watermark includes a bouncing icon, the bouncing movement of is synchronized when the selected water mark is displayed in two simultaneously displayed windows.
- the operation 278 incorporates a human-perceivable manifestation of the selected watermark in one visual area of at least two human-visual areas displaying an output of the authorized program running in the computing environment in response to a mouse-over of a portion of the one visual area.
- FIG. 11 illustrates a further alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 282, and/or an operation 284.
- the operation 282 incorporates a human-perceivable manifestation of the selected watermark in one visual area of at least two human-visual areas displaying an output of the authorized program running in the computing environment in response to a mouse-over of a portion of another visual area.
- the operation 284 incorporates a human-perceivable manifestation of the selected watermark in all visual areas displaying an output of the authorized program running in the computing environment.
- FIG. 12 illustrates an alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 286, and/or an operation 288.
- the operation 286 incorporates a human-perceivable manifestation of the selected watermark in each visual area of a default subgroup of visual areas displaying an output of the authorized program running in the computing environment.
- the operation 288 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two popup visual areas displaying an output of the authorized program running in the computing environment. i
- FIG. 13 illustrates another alternative embodiment of the exemplary operational flow
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 292, and/or an operation 294.
- the operation 292 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of an operating system running in the computing environment.
- the operation 294 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human- visual areas displaying for human viewing an output of the authorized program running in the computing environment.
- FIG. 14 illustrates a further alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 296, and/or an operation 298.
- the operation 296 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of an application program running in the computing environment.
- the operation 298 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human- visual areas displaying an output for human viewing of the authorized program running in the computing environment.
- FIG. 15 illustrates an alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the integration operation 270 may include at least one additional operation.
- the at least one additional operation may include an operation 302, and/or an. operation 304.
- the operation 302 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of the authorized program running in the computing environment unless otherwise directed by an operating system of the computing environment.
- the operation 304 incorporates a human-perceivable manifestation of the selected watermark in each graphical display area of at least two display areas displaying an output of the authorized program running in the computing environment.
- FIG. 16 illustrates another alternative embodiment of the exemplary operational flow
- the integration operation 270 may include at least one additional operation.
- the at ⁇ least one additional operation may include an operation 306, and/or an operation 308.
- the ' operation 306 incorporates a human-perceivable manifestation of the selected watermark in each visual surface of at least two visual surfaces displaying an output of the authorized program running in the computing environment.
- the operation 308 incorporates a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output and allowing a user input with respect to the authorized program running in the computing environment.
- the selected watermark may be incorporated in a window by an operating system and/or the authorized program.
- the selected watermark may be visually prominent and located proximate to a feature of a window, such as next to a "yes" and/or a "no" button of a dialog box.
- the watermark may include a watermark displayed proximate to or within a dialog box during a mouseover of a genuine dialog box.
- a dialog box changes color and/or causes a script display, such as a "genuine button" during a mouseover. A color change may be responsive to a trust level of the program that caused display of the dialog box.
- the operating system causes a user visually-differentiable display during a mouseover of an image, such as a jpeg, gif, tiff, and/or a bitmap based image when compared to that displayed during a mouseover of an operating system generated dialog box and/or a dialog box button.
- an image such as a jpeg, gif, tiff, and/or a bitmap based image when compared to that displayed during a mouseover of an operating system generated dialog box and/or a dialog box button.
- the selected watermark may be positioned at any suitable location with respect to a visual area and/or may have any suitable degree of conspicuousness.
- the selected watermark may be position with respect to a button, a form, a frame, a window title bar, and/or an object title bar.
- a level of conspicuousness may be under a user or a configuration control. For example, a novice user might want a "super secure" setting that placed a visually conspicuous watermark in all the buttons while an experience user might opt for an embodiment in which a subtle watermark is placed in the corner of the window.
- the selected watermark may include a visual watermark, an audio watermark, a tactile, and/or hepatic watermark.
- a watermark may include a window, such as a popup window, displayed at least partially contemporaneously with another window, and/or on top of the window.
- a watermark may include at least a portion of a window, another , ⁇ window displayed in a visual combination with the window, and/or on top of the window.
- FIG. 17 illustrates a further alternative embodiment of the exemplary operational flow 200 of FIG. 2.
- the operational flow may include at least one additional operation 310.
- the at least one additional operation may include an operation 312, and/or an operation 314.
- the operation 312 suppresses a visual area displaying an output that does not include the selected watermark in response to a received a human-initiated input.
- the operation 314 automatically suppresses a visual area displaying an output that does not include the selected watermark.
- an alternative embodiment of the operational flow 200 is includes an operational flow 200A. After a start operation, the operational flow 200A moves to the determination operation 210. The determination operation receives an indication of a selected watermark. The integration operation 270 incorporates incorporating a human-perceivable manifestation of the selected watermark in each visual area of at least two human-visual areas displaying an output of an authorized program running in the computing environment. The operational flow then proceeds to an end operation.
- FIG. 18 illustrates an exemplary environment 400 in which an embodiment of the operational flow 200 may be implemented.
- the exemplary environment includes a computing device 410, a human user interface 436, and a visual display 440.
- the visual display illustrates a display surface 441 that is operable to display an output of an authorized program running in the computing environment.
- the display surface is also operable to display at least two human-visual display areas 442 and 444.
- the display areas are illustrated as windows, such as may be generated by a Microsoft Windows XP operating system or by an Apple Mac OS X operating system.
- a receiver module 435 of the computing device may receive an indication of a selected watermark 450.
- the indication may be responsive to an action by a human user communicated by the human user interface and/or responsive to a selection from a watermark ' library by a program, such as an operating system 412 and/or an application program 420.
- a human-perceivable manifestation 450A of the selected watermark 450 is illustrated as two concentric circles with the name of a user "Bob" followed by "Watermark" disposed between the concentric circles.
- the selected watermark may be a watermark generated by a watermark generation program that is a part of an ancillary module 434.
- An access restrictor module 422 may restrict access to the selected watermark to an authorized program running in the computing environment, such as the operating system 412 and/or an application program 420.
- the operating system 412 may incorporate a human-perceivable manifestation of the selected watermark 450 in each visual area of at least two human-visual areas 442 and 444 displaying an output of an authorized program running in the computing environment.
- the user "Bob" will know that a window displayed by the display 440 is authentic or genuine when the window includes the selected watermark "Bob's Watermark.” Conversely, the user Bob will likewise know that a window not bearing the selected watermark "Bob's Watermark" was not outputted by an authorized program.
- a non-watermarked window or a wrongly watermarked window may be bitmap spoofing a legitimate window, or may be a window outputted by an authorized program such a malware program.
- the absence of the selected watermark is expected to aid the user Bob in deciding not to interact with a non- watermarked window, and thus not clicking on the non-watermarked window or not entering personal information in boxes displayed in a the non-watermarked window that may be linked to malware.
- the computing device 410 of FIG. 18 includes an information store 426 configured by computer program that includes computer program instructions.
- the computer program may be included in the operating system 412 and/or an application program 420.
- the computer program instructions are operable to perform a process in a computer processor.
- the process includes receiving an indication of a selected watermark, illustrated as the human- perceivable manifestation 450A of the selected watermark 450.
- the process also includes allowing a control program privileges in the selected watermark.
- the allowing a control program privileges may be implemented using the access restrictor module 422.
- the process further includes associating a human-perceivable manifestation of the selected watermark with each visual area of at least two visual areas 442 and 444 generated for a human viewable display of an output of the operating system.
- the process including receiving an indication of a selected watermark 450 further includes a process including receiving an indication of a selected watermark.
- the selected watermark including at least one of a user-originated watermark, a user selected watermark, a watermark selected by a user from at least two watermarks, a watermark selected by a user from a library of watermarks thatiincludes at least two human-differentiable watermarks, a watermark selected from at least two human-differentiable polymorphic watermarks, a watermark generated in response to an algorithm, and/or a watermark selected from at least two human- differentiable watermarks in response to an algorithm.
- the process including allowing a control program privileges in the selected watermark further includes a process including allowing a control program full privileges in the selected watermark and limited privileges in the selected watermark for all other programs.
- the process including allowing a control program privileges in the selected watermark further includes a process including allowing at least one of an operating system, a database management system, and/or a communications protocol privileges in the selected watermark.
- the process including allowing a control program privileges in the selected watermark 450 further includes a process including allowing at least one of an operating system, a database management system, and/or a communications protocol privileges in the selected watermark.
- the process including allowing a control program privileges in the selected watermark further includes a process including allowing a control program full privileges in the selected watermark and another program a limited privilege in the selected watermark.
- the process including allowing a control program privileges in the selected watermark further includes a process including allowing a control program full privileges in the selected watermark and another program a read-only privilege in the selected watermark.
- the process including allowing a control program privileges in the selected watermark further includes a process including allowing a control program full privileges in the selected watermark and denying another program privileges in the selected watermark.
- the computing device 410 further includes a display surface 441 operable to display each visual area of at least two visual areas 442 and 444 generated for a human viewing of an output of the operating system 412.
- the computing device further includes a human user interface 436 operable to receive an indication of the selected watermark 450 in response to a user action.
- FIG. 19 illustrates an exemplary computer program product 500.
- the computer program product includes a computer-readable signal-bearing medium 505 bearing computer program instructions 510.
- the program instructions are operable to perform a process in a computing device of a computing environment.
- the process includes receiving an indication of a selected watermark, and allowing an operating system privileges in the selected watermark.
- the process also includes associating a visible manifestation of the selected watermark with each visual area of at least two human-visual areas generated for displaying an output of the operating system.
- the computer program instructions 510 allowing an operating system privileges in the selected watermark further includes allowing an operating system full privileges in the selected watermark.
- the computer program instructions allowing an operating system privileges in the selected watermark further includes allowing an operating system full privileges in the selected watermark and allowing another program limited privileges in the selected watermark 512.
- the computer program instructions the allowing an operating system privileges in the selected watermark further includes allowing an operating system full privileges in the selected watermark and allowing another program read-only privileges in the selected watermark 514.
- the computer-readable signal-bearing medium 505 includes a computer storage medium 522.
- the computer-readable signal-bearing medium includes a communication medium 524.
- FIG. 20 illustrates an exemplary operational flow 600 implemented in a computing environment.
- the operational flow may be implemented using the computing system environment 100 of FIG 1, and/or the exemplary environment 400 of FIG 18.
- the operational flow 600 moves to an acquiring operation 610.
- the acquiring operation receives a designation of an individualized digital identifier.
- a rights management operation 660 restricts access to the designated individualized digital identifier to a trusted program.
- a relationship operation 680 associates a human-perceptible form of the designated individualized digital identifier with each element of a group of human-perceivable elements displayed in response to the trusted program by the computing environment.
- the operational flow then moves to an end operation.
- the individualized digital identifier may include any individualized digital identifier useful to an individual human user in recognizing an authentic nature of a content, and/or in differentiating between an authentic content and a false, misleading, and/or a spoofed content.
- the individualized digital identifier may include a watermark.
- individualized digital identifier may include an individualized distinguishing tool.
- the individualized digital identifier may include a relatively unique individualized digital identifier.
- the unique individualized digital identifier may include, a semi-unique individualized digital identifier may include, and/or an individualized digital identifier not likely to be at least substantial duplicated by a predetermined percentage of human users.
- an individualized digital identifier may include an individualized digital identifier not likely to be at least substantially duplicated by no more than 10% of other digital identifiers.
- the individualized digital identifier may include an individualized digital identifier having at least one of a visual, sound, tactile, and/or haptic aspect.
- FIG. 21 illustrates an alternative embodiment of the exemplary operational flow 600 of FIG. 20.
- the acquiring operation 610 may include at least one additional operation.
- the at least one additional operation may include an operation 612, an operation 614, an operation 616, and/or an operation 618.
- the operation 612 receives a designation of an individualized digital identifier from a human user.
- the operation 614 receives a designation of an individualized digital identifier from a digital identifier generator.
- the operation 616 receives a designation of an individualized digital identifier from a digital identifier selection algorithm.
- the operation 618 receives a designation of an individualized digital identifier from an operating system.
- FIG. 22 illustrates another alternative embodiment of the exemplary operational flow
- the acquiring operation 610 may include at least one additional operation.
- the at least one additional operation may include an operation 622, an operation 624, an operation 626, and/or an operation 628.
- the operation 622 receives a designation of an individualized digital identifier from the trusted program.
- the operation 624 receives a designation of an individualized digital identifier from another program.
- the operation 626 receives a designation of at least one of individualized digital identifier useable in a visual display by the computing environment.
- the operation 628 receives a designation of at least one of individualized digital identifier useable in an audio display by the computing environment. i .
- FIG. 23 illustrates a further alternative embodiment of the exemplary operational flow 600 of FIG. 20.
- the acquiring operation 610 may include at least one additional operation.
- the at least one additional operation may include an operation 632, an operation 634, an operation 636, and/or an operation 638.
- the operation 632 receives a designation of an at least relatively unique digital identifier.
- the operation 634 receives a designation of a unique digital identifier.
- the operation 636 receives a designation of an individualized digital identifier selected from a library of digital identifiers.
- the operation 638 receives a designation of an individualized digital identifier received from a source.
- FIG. 24 illustrates an alternative embodiment of the exemplary operational flow 600 of FIG. 20.
- the acquiring operation 610 may include at least one additional operation.
- the at least one additional operation may include an operation 642, an operation 644, an operation 646, and/or an operation 648.
- the operation 642 receives a designation of an individualized digital identifier selected by a human user.
- the operation 644 receives a designation of an individualized digital identifier generated by a digital identifier generator module.
- the operation 646 receives a designation of a machine-distinguishable individualized digital identifier.
- the operation 648 receives a designation of a human-distinguishable individualized digital identifier.
- FIG. 25 illustrates another alternative embodiment of the exemplary operational flow
- the rights management operation 660 may include at least one additional operation.
- the at least one additional operation may include an operation 662, an operation 664, and/or an operation 666.
- the operation 662 restricts the trusted program to at least one of a read, a write, and/or an update access to the designated individualized digital identifier.
- the operation 664 restricts access to the designated individualized digital identifier to an operating system of the computing environment.
- the operation 666 restricts access to the designated individualized digital identifier to a program trusted by an operating system running in the computing environment.
- FIG. 26 illustrates a further alternative embodiment of the exemplary operational flow 600 of FIG. 20.
- the rights management operation 660 may include at least one additional operation.
- the at least one additional operation may include an operation 668, and/or an operation 672.
- the operation 668 restricts access to the designated individualized digital identifier to an application program having a trusted status.
- the operation 672 restricts access to the designated individualized digital identifier to an application granted an access right by at least one of a human user and/or an operating system running in the computing environment. ,
- FIG. 27 illustrates an alternative embodiment of the exemplary operational flow 600 of FIG. 20.
- the relationship operation 680 may include at least one additional operation.
- the at least one additional operation may include an operation 682, and/or an operation 684.
- the operation 682 embeds a human-perceivable manifestation of the designated individualized digital identifier in each human-perceivable element of a group of elements displayed in response to the trusted program by the computing environment.
- the operation 684 at least one of visually and proximately associates, and/or aurally and temporally associates a human-perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the trusted program by the computing environment.
- FIG. 28 illustrates another embodiment of the exemplary operational flow 600 of
- the relationship operation 680 may include at least one additional operation.
- the at least one additional operation may include an operation 684, and/or an operation 686.
- the operation 686 incorporates an audio manifestation of the designated individualized digital identifier within each human-perceivable element of a group of elements displayed in response to the trusted program by the computing environment.
- the operation 688 audibly and temporally associates a human- perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the trusted program by the computing environment.
- FIG. 29 illustrates a further embodiment of the exemplary operational flow 600 of
- the relationship operation 680 may include at least one additional operation.
- the at least one additional operation may include an operation 692, and/or an operation 694.
- the operation 692 associates a human-perceptible form of the designated individualized digital identifier in each human-visually perceivable element of a group of elements displayed in response to the trusted program by the computing environment.
- the operation 694 associates a human-perceptible form of the designated individualized digital identifier in each human-audibly perceivable element of a group of elements displayed in response to the trusted program by the computing environment.
- FIG. 30 illustrates an embodiment of the exemplary operational flow 600 of FIG. 20.
- the relationship operation 680 may include at least one additional operation.
- the at least one additional operation may include an operation 696, and/or an operation 698.
- the operation 696 associates a human-perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the trusted program by the computing environment, the group of elements includes at least one of a group of windows, a group a content type, a group of a streaming content type, a group of a presentation type, a group of facsimiles, a group of avatars, a group of gifs, a group of buttons, and/or a group of bitmaps.
- the operation 698 associates a human-perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the trusted program.
- FIG. 31 illustrates an alternative embodiment of the exemplary operational flow 600 of FIG. 20.
- the exemplary operational flow 600 may include at least one additional operation.
- the at least one additional operation may include an operation 710.
- the operation 710 scans an element displayed by the computing environment for a presence of the designated individualized digital identifier; and broadcasts a human recognizable notification if the individualized digital identifier is not associated with the element.
- an alternative embodiment of the operational flow 600 is includes an operational flow 600A. After a start operation, the operational flow 600 moves to an acquiring operation 610.
- the acquiring operation receives a designation of an individualized digital identifier.
- a relationship operation 680 associates a human-perceptible form of the designated individualized digital identifier with each element of a group of human-perceivable elements displayed by the computing environment.
- the relation operation respectfully associates a human-perceptible form of the designated individualized digital identifier with each element of a group of human-perceivable elements when both the designated individualized digital identifier and each element of a group of human-perceivable elements are displayed.
- the computing environment includes a computing device 810, a human user interface 836, and a visual display 840.
- the visual display may include visual display of a CRT, a LCD, a laptop display, a desktop monitor, and/or a screen of a portable electronic device, such as a cell phone, a personal digital assistant, or a Blackberry ⁇ RIM.
- the visual display illustrates a display surface 841 operable to display an output of a trusted program running in the computing environment.
- the display surface is also operable to display at least one human-perceivable element, illustrated as a human-visual display area 846.
- the display area is illustrated as a window, such as may be generated by a Microsoft Windows XP operating system or by an Apple Mac OS X operating system.
- the computing environment illustrates an example where a Mario Brother icon ⁇ Nintendo constitutes a human-perceptible form 850A of the selected digital component 850 by the operation 610 of operational flow 600.
- the digital component may have been received from or selected by a hypothetical human user named "Roy" for illustration purposes.
- the digital component may have been selected from a digital component library 829 by a digital identifier generator 832.
- the digital identifier generator may have generated the particular colors and/or style of the selected digital component.
- An enlarged version of the Mario Brother received digital component (icon ) 850E is provided for additional clarity.
- the human-perceptible Mario Brother icon is associated with each human-visual display area of a group of human-visual display areas, for example by placement in a right hand corner of a title bar of the display area 846.
- "Roy" will have information on which he may base a decision whether each element is displayed in response to the trusted program by the computing environment.
- FIG. 33 illustrates an exemplary display environment 900 that may be provided by the computing environment 800 of FIG. 32.
- the visual display 840 is illustrated as including a visual display surface 941 operable to display a window 946 operable to display a group of elements in response to a trusted program of the computing environment 800.
- the group of elements is illustrated as a tree 962, an airplane 964, and a truck 966.
- at least one of the elements may be dynamic, such as moving relative to a plane of the visual display surface, or rotating about an axis.
- the tree may be swaying as if blown by a wind
- the airplane may move across the window 946 as if flying
- the truck may move across the window as if being driven.
- the airplane may also drop bombs (not illustrated).
- the selected digital component 850 Mario Brother is associated with each element displayed in response to a trusted program running in the computing environment.
- the window 946 displays a Mario Brother icon 850A associated in an upper right corner, the tree has a Mario Brother icon 850B proximately associated, and the airplane has a Mario Brother icon 850C also proximately associated.
- These associations indicate that the elements are displayed in response to a trusted program.
- the truck does not have a Mario Brother icon associated with it. Instead, a villain icon 972 from Super Mario Bros.
- ⁇ Nintendo is proximately displayed, indicating to the user "Roy” that the truck is a spoofed or a masquerading element displayed in response to a non-trusted program.
- a non-trusted program may be was restricted from accessing the designated digital component by the rights management operation 660 of the operational flow 600 described in conjunction with FIG. 20.
- the truck may not have any digital component associated with it. Such absence of an associated digital component also indicates to the user "Roy” that the truck is a spoofed or a masquerading element displayed in response to a non-trusted program.
- FIG. 34 illustrates an exemplary computing environment 1000 in which embodiments may be implemented.
- the computing environment includes a computing device 1010 coupled with a network, a human user interface 1036, an audio display 1038, and a visual display 1040.
- the computing device 1010 also includes an information store 1026 configurable by a computer program.
- the computer program may be included in an operating system 1012, an application program 1020, and/or another program.
- the computer program may be a stand-alone program.
- the computer program includes instructions operable to perform a process in a processor 1016.
- the process includes receiving a designation of an individualized digital identifier.
- the designation may be received by a receiver module 1035 from any source, including from a user via the human user interface 1036, a generator module 1032, and/or a selector module.
- the process including receiving a designation of an individualized digital identifier further includes a process including receiving a designation of at least one of an individualized digital visual identifier and/or an individualized digital audio identifier.
- the process also includes limiting access to the designated individualized digital identifier to an application programming interface (API's 1014) callable by a privileged code.
- the limiting access may include limiting at least one of a read, a write, and/or an update access.
- the privileged code may include at least one of an operating system, an application program, and/or an application program granted an access right by at least one of a user and/or the operating system.
- the process further includes associating a human-perceptible form of the designated individualized digital identifier with each element of a group of elements displayed in response to a program running in the computing device.
- the visual display includes a display operable to present visually each element of the group of elements to a human user.
- the visual display 1040 may include visual display surface 1041 operable to display an output of a program running in the computing device.
- the display surface is also operable to visually present a group of elements to a human user by at least one human-perceivable area, illustrated as a human-visual display area 1046.
- the computing environment illustrates an example where the Mario Brother icon constitutes a human-perceptible form of the designated digital component 850 received by the acquiring operation 610 of operational flow 600 of FIG 20.
- the display area 1046 is illustrated as including a Mario Brother 1050A associated with the display area 1046, and a Mario Brother 1050B associated with a tree 1062.
- the display area is also illustrated as including a truck 1066 without the designated digital component associated with it.
- FIG. 35 illustrates an exemplary computer program product 1 110 in which embodiments may be implemented.
- the computer program producing includes a computer- readable signal-bearing medium 1105 bearing program instructions 1110.
- the program instructions are operable to perform a process in a computing device.
- the process includes receiving a designation of an individualized digital identifier, and restricting access to the designated individualized digital identifier to an operating system program.
- the process also includes associating a human-perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the operating system program of the computing device.
- the process including associating a human- perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the operating system program of the computing device further includes a process 1112 including associating a human-perceptible form of the designated individualized digital identifier with each human-perceivable element of a group of elements displayed in response to the operating system program of the computing device, wherein the group of human-perceivable elements displayed includes at least one of a window, a content, a streaming content, a presentation, a facsimile, an avatar, a gif, a button, and/or a bitmap.
- the computer-readable signal-bearing medium 1105 includes a computer storage medium 1 122.
- the computer-readable signal-bearing medium includes a communication medium 1124.
- FIG. 36 illustrates an exemplary operational flow 1200 implemented in a computing environment and operable to practice embodiments.
- the operational flow includes an acquisition operation 1210.
- the acquisition operation receives an instruction operable to create a visual presentation corresponding to a bitmap content.
- the acquisition operation may receive the instruction from a remote source, a local source, a computing device, a program, an application program, and/or a program running in the computing environment.
- the acquisition operation may receive the instruction via a network, such as a LAN, a WAN, and/or the Internet.
- the acquisition operation may receive one or more instructions which in combination are operable to create a visual presentation corresponding to a bitmap content.
- the bitmap content may include digital data that includes an indicium of a digital watermark.
- the bitmap content may include a representation of a window.
- the bitmap content may include a content, a streaming content, a presentation, a facsimile, an avatar, a gif, a button, and/or a bitmap.
- the bitmap content may include a content having a TIFF, a GIF, a JPEG, and/or a BMP format.
- the operational flow 1200 also includes an inspection operation 1220.
- the inspection operation determines if the instruction operable to create a visual presentation corresponding to a bitmap content includes an instruction operable to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the operational flow further includes an effectuation operation 1230.
- the effectuation operation initiates an action with respect to the instruction operable to create a visual presentation corresponding to a bitmap content.
- the operational flow moves to an end operation.
- the operational flow 1200 may be performed proximate in time to the computing environment receiving the instruction operable to create a visual presentation corresponding to a bitmap content, proximate in time to the computing environment displaying a content responsive to the instruction operable to create a visual presentation corresponding to a bitmap content, or at a time intermediate to the receiving the instruction and the displaying a content.
- FIG. 37 illustrates an alternative embodiment of the exemplary operational flow
- the effectuation operation 1230 may include at least one additional operation.
- the at least one additional operation may include an operation 1232, an operation 1234, and/or an operation 1236.
- the operation 1232 initiates a quarantine of the instruction operable to create a visual presentation corresponding to a bitmap content in response to the determining.
- the operation 1234 initiates an exposure of the instruction operable to create a visual presentation corresponding to a bitmap content to a program associated with the computing environment.
- the operation 1236 initiates a human-perceptible indication that a visual presentation of the bitmap content is at least unlikely to include a visual presentation of a digital watermark.
- FIG. 38 illustrates another alternative embodiment of the exemplary operational flow
- the effectuation operation 1230 may include at least one additional operation.
- the at least one additional operation may include an operation 1238, and/or an operation 1242.
- the operation 1238 initiates a human-perceptible indication that a visual presentation of the bitmap content is at least likely to include a digital watermark not significantly corresponding with a preselected digital watermark associated with the computing environment.
- the operation 1242 initiates a human-perceptible indication that a visual presentation of the bitmap content will include a digital watermark at least significantly corresponding with an individualized digital watermark associated with the computing environment.
- FIG. 39 illustrates an exemplary computing environment 1300 in which embodiments of the operational flow 1200 of FIG. 36 may be implemented.
- the exemplary computing environment illustrates an environment in which other embodiments may be implemented.
- the computing environment includes a computing device 1310, a human activated interface 1336, an audio display device 1338 illustrated as a speaker, and a visual display device 1370.
- the computing device includes an information store configured by computer program that includes computer program instructions.
- the computer program includes instructions operable to perform a process in a computer processor 1316.
- the process includes receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the process also includes determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the process further includes initiating an action with respect to the instruction to create a visual presentation corresponding to a bitmap content, the action being responsive to the determining.
- the determining process further includes a process that determines if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to an individualized digital watermark associated with the computing device. In a further embodiment, the determining process further includes a process that determines if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to an individualized digital watermark associated with the computing device.
- the digital watermark may include at least one of a user-originated digital watermark, a user selected digital watermark, a digital watermark selected by a user from at least two digital watermarks, a digital watermark selected by a user from a library of digital watermarks that includes at least two human-differentiable digital watermarks, a digital watermark selected from at least two human- differentiable polymorphic digital watermarks, a digital watermark generated in response to an algorithm, and/or a digital watermark selected from at least two human-differentiable digital watermarks in response to an algorithm.
- the process that receives an instruction further includes a process including receive an instruction to create a visual presentation corresponding to a bitmap content, the instruction to create a visual presentation corresponding to a bitmap content includes at least two instruction that in a combination create a visual presentation corresponding to a bitmap content.
- the process that includes initiating an action further includes a process including quarantining the instruction to create a visual presentation corresponding to a bitmap content from a program associated with the computing environment.
- the process that includes initiating an action further includes a process including allowing at least one of an operating system, a database management system, and/or a communications protocol privileges to the instruction to create a visual presentation corresponding to a bitmap content.
- the process that initiates an action further includes a process including allowing at least one program full (privileges to the instruction to create a visual presentation corresponding to a bitmap content and limiting another program's privileges to the instruction to create a visual presentation corresponding to a bitmap content.
- the process that initiates an action further includes a process including exposing the instruction to create a visual presentation corresponding to a bitmap content to a program associated with the computing environment.
- a user named "Bill" looking at a visual display surface 1341 of a display device 1340 may see three elements that include a photograph of a woman sleeping 1371, a window of his bank's home page with a watermark 1373, and a window of his bank's home page 1375 without a watermark.
- the three elements might be displayed at least simultaneously, in a more likely example, the elements may be displayed sequentially as Bill uses his computer over time.
- the photograph of a woman like most personal photographs, would not expected to include a digital watermark.
- an action is initiated that displays a popup box 1372 indicating that the photograph does not contain a digital watermark.
- This indication reflects Bill's expected property of the personal photograph.
- Bill views the window of his bank's home page with a watermark 1373, he may expect to see a watermark.
- an action is initiated that displays a popup box 1374 warning Bill that visual presentation of his bank's home page includes a spoofed watermark.
- Bill may use the information provided by the popup box 1374 to avoid any interaction with the visual presentation of his bank's home page.
- Bill views the window of his bank's home page without a watermark 1375 he may not notice that his expected digital watermark is absent.
- An action is initiated that displays a popup box 1376 warning Bill that visual presentation of his bank's home page does not include a watermark. Bill may use the information provided by the popup box 1376 to avoid any interaction with the visual presentation of his bank's home page.
- FIG. 40 illustrates an exemplary computer program product 1400 in which embodiments may be implemented.
- the computer program product includes a computer-readable signal-bearing medium 1405 bearing program instructions 1410.
- the program instructions are operable to perform a process in a computing device of a computing environment.
- the process includes receiving an instruction operable to create a visual presentation corresponding to a bitmap content.
- the process also includes determining if the instruction operable to create a visual presentation corresponding to a bitmap content includes an instruction operable to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the process further includes initiating an action with respect to the instruction operable to create a visual presentation corresponding to a bitmap content in response to the determining.
- the computer-readable signal-bearing medium 1405 includes a computer storage medium 1422. In another embodiment, the computer-readable signal-bearing medium includes a communication medium 1424.
- FIG. 41 illustrates an exemplary operational flow 1500 in which embodiments may be implemented.
- the acquisition operation receives an instruction to create a visual presentation corresponding to a bitmap content.
- An inspection operation 1520 determines if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark. If the instruction to create a visual presentation corresponding to a bitmap content does not include an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark, an effectuation operation 1530 displays a human-understandable notification reflecting an absence of a digital watermark.
- the inspection operation determines if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark of a group of digital watermarks.
- FIG. 42 illustrates an exemplary computing environment 1600 that may implement embodiments.
- the computing environment includes means 1610 for receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the computing environment also includes means 1620 for determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the computing environment further includes means 1630 for displaying a human-understandable notification reflecting an absence of a digital watermark if the instruction to create a visual presentation corresponding to a bitmap content does not include an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a dig Oi 1 tal watermark.
- FIG. 43 illustrates a computer program product 1700 in which embodiments may be implemented.
- the computer program product includes a computer-readable signal-bearing medium 1705 bearing program instructions 1710.
- the program instructions are operable to perform a process in a computing device of a computing environment.
- the process includes receiving an instruction to create a visual presentation corresponding to a bitmap content.
- the processes also includes determining if the instruction to create a visual presentation corresponding to a bitmap content includes an instruction to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the process further includes displaying a human- understandable notification reflecting an absence of a digital watermark if the instruction to create a visual presentation corresponding to a bitmap content does not include an instruction ' to create a visual presentation corresponding to a bitmap content having an indicium of a digital watermark.
- the computer-readable signal-bearing medium 1705 includes a computer storage medium 1722.
- the computer-readable signal-bearing medium includes a communication medium 1724.
- FIG. 44 illustrates an exemplary operational flow 1800 implemented in a computing environment that includes a system digital watermark.
- a human-perceptible manifestation of the system digital watermark is incorporatable in a displayable content provided by a program running in the computing environment.
- the operational flow includes an acquisition operation 1810.
- the acquisition operation receives digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- a decision operation 1820 determines if the instruction to create a visual presentation corresponding to a bitmap includes an instruction to create a visual presentation corresponding to a bitmap having an indicium of a digital watermark.
- a correlat on is esta lishe etween tne indicium o a digital watermark and the system digital watermark.
- the correlation may be established to any desired degree or measure. For example, a correlation may be established when there is an at least substantial correlation, i.e., such as a correspondence level of at least 50% between the indicium of a digital watermark and the system digital watermark.
- a correlation may be established when there is a confidence level of at least 30%. In another example, a correlation may be established when there is a correspondence level of at least 80% between the indicium of a digital watermark and the system digital watermark.
- a broadcast operation 1850 displays a human- understandable information responsive to the determined correlation between the indicium of the digital watermark and the system digital watermark. For example, the broadcast operation may display a dialog box indicating the digital data includes a visual presentation spoofing the system digital watermark. The operational flow the moves to the end operation.
- FIG. 45 illustrates an alternative embodiment of the operational flow 1800 described in conjunction with FIG. 44.
- the analysis operation 1830 may include at least one additional operation.
- the at least one additional operation may include an operation 1832 and/or an operation 1834.
- the operation 1832 establishes a correlation between the indicium of a digital watermark and a system digital watermark personalized to a human user of the computing environment.
- the operation 1834 establishes a correlation between the indicium of a digital watermark and a human- perceptible system digital watermark.
- FIG. 46 illustrates a further embodiment of the operational flow 1800 described in conjunction with FIG. 44.
- the analysis operation 1830 may include at least one additional operation.
- the at least one additional operation may include an operation 1836, an operation 1838, and/or an operation 1842.
- the operation 1836 establishes a correlation between the indicium of a digital watermark and a human- imperceptible system digital watermark.
- the operation 1838 establishes a correlation between the indicium of a digital watermark and at least one of a selected, a received, and/or a generated system digital watermark.
- the operation 1842 establishes a correlation between the indicium of a digital watermark and a digital watermark associated with a program running in the computing environment.
- the analysis operation 1830 may include at least one additional operation.
- the at least one additional operation may include an operation 1844.
- the operation 1844 establishes a measure of a correlation between the indicium of a digital watermark and the system digital watermark.
- the operation 1844 may include at least one additional operation.
- the at least one additional operation may include an operation 1846, and/or an operation 1848.
- the operation 1848 exposes to the program running in the computing environment the digital data that includes an instruction to create a visual presentation corresponding to a bitmap if the determined measure of a correlation is below a preselected level.
- the program may include an operating system and/or a production environment running in the computing environment.
- the operation 1846 isolating from the program running in the computing environment the digital data that includes an instruction to create a visual presentation corresponding to a bitmap if the determined measure of a correlation is above a preselected level.
- FIG. 48 illustrates an exemplary computer program product 1900 in which embodiments may be implemented.
- the computer program product includes a computer-readable signal-bearing medium 1905 bearing program instructions 1910.
- the program instructions are operable to perform a process in a computing device.
- the process includes receiving digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- the process also includes determining if the instruction to create a visual presentation corresponding to a bitmap includes an instruction to create a visual presentation corresponding to a bitmap having an indicium of a digital watermark.
- the process establishes a correlation between the indicium of a digital watermark and a system digital watermark of a computing environment that includes the computing device.
- the process also displays a human-understandable information responsive to the determined correlation between the indicium of the digital watermark and the system digital watermark.
- the computer-readable signal-bearing medium 1905 includes a computer storage medium 1922. In another embodiment, the computer-readable signal-bearing medium includes a communications medium 1924.
- FIG. 49 illustrates an exemplary computing device 2000 that may implement embodiments.
- the computing device includes means 2010 for receiving digital data that includes an instruction to create a visual presentation corresponding to a bitmap.
- the computing device also includes means 2020 for determining if the instruction to create a visual presentation corresponding to a bitmap includes an instruction to create a visual presentation corresponding to a bitmap having an indicium of a digital watermark.
- the computing device further includes means 2030 for establishing a correlation between the indicium of a digital watermark and a system digital watermark of a computing environment that includes the computing device.
- the computing device also includes means 2040 for displaying a human-understandable information responsive to the determined correlation between the indicium of the digital watermark and the system digital watermark.
- a , particular block diagram, operation diagram, flowchart, illustration, environment, and/or example should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated therein. For example, in certain instances, one or more elements of an environment may be deemed not necessary and omitted. In other instances, one or more other elements may be deemed necessary and added.
- an implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
- any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
- Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.
- signal-bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., packet links).
- any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved.
- any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components.
- any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.
- Any two components capable of being so associated can also be viewed as being “operably couplable” to each other to achieve the desired functionality.
- operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Editing Of Facsimile Originals (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Storage Device Security (AREA)
- Image Processing (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0904764A GB2455028A (en) | 2006-08-31 | 2007-08-24 | Handling masquerading elements |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/515,221 | 2006-08-31 | ||
US11/515,375 US8327155B2 (en) | 2006-08-31 | 2006-08-31 | Screening for masquerading content |
US11/515,495 | 2006-08-31 | ||
US11/515,375 | 2006-08-31 | ||
US11/515,221 US8555396B2 (en) | 2006-08-31 | 2006-08-31 | Authenticatable displayed content |
US11/515,495 US8640248B2 (en) | 2006-08-31 | 2006-08-31 | Handling masquerading elements |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008027317A2 true WO2008027317A2 (en) | 2008-03-06 |
WO2008027317A3 WO2008027317A3 (en) | 2008-09-04 |
Family
ID=39136507
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/018753 WO2008027317A2 (en) | 2006-08-31 | 2007-08-24 | Handling masquerading elements |
PCT/US2007/018886 WO2008027361A2 (en) | 2006-08-31 | 2007-08-27 | Authenticatable displayed content |
PCT/US2007/019243 WO2008027577A2 (en) | 2006-08-31 | 2007-08-31 | Screening for masquerading content |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/018886 WO2008027361A2 (en) | 2006-08-31 | 2007-08-27 | Authenticatable displayed content |
PCT/US2007/019243 WO2008027577A2 (en) | 2006-08-31 | 2007-08-31 | Screening for masquerading content |
Country Status (2)
Country | Link |
---|---|
GB (3) | GB2455028A (en) |
WO (3) | WO2008027317A2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5943422A (en) * | 1996-08-12 | 1999-08-24 | Intertrust Technologies Corp. | Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels |
US6345256B1 (en) * | 1998-08-13 | 2002-02-05 | International Business Machines Corporation | Automated method and apparatus to package digital content for electronic distribution using the identity of the source content |
US20020104006A1 (en) * | 2001-02-01 | 2002-08-01 | Alan Boate | Method and system for securing a computer network and personal identification device used therein for controlling access to network components |
US20030044006A1 (en) * | 2001-09-06 | 2003-03-06 | Clwt, Llc | Media protection system and method |
US6614914B1 (en) * | 1995-05-08 | 2003-09-02 | Digimarc Corporation | Watermark embedder and reader |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000106625A (en) * | 1998-07-27 | 2000-04-11 | Fuji Photo Film Co Ltd | Method and system for printing image and its storage medium |
JP2001328325A (en) * | 2000-03-03 | 2001-11-27 | Brother Ind Ltd | Imaging controller, imaging apparatus, method for controlling imaging apparatus, and storage medium |
-
2007
- 2007-08-24 GB GB0904764A patent/GB2455028A/en not_active Withdrawn
- 2007-08-24 WO PCT/US2007/018753 patent/WO2008027317A2/en active Application Filing
- 2007-08-27 WO PCT/US2007/018886 patent/WO2008027361A2/en active Application Filing
- 2007-08-27 GB GB0904765A patent/GB2455029A/en not_active Withdrawn
- 2007-08-31 GB GB0904767A patent/GB2455250A/en not_active Withdrawn
- 2007-08-31 WO PCT/US2007/019243 patent/WO2008027577A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6614914B1 (en) * | 1995-05-08 | 2003-09-02 | Digimarc Corporation | Watermark embedder and reader |
US5943422A (en) * | 1996-08-12 | 1999-08-24 | Intertrust Technologies Corp. | Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels |
US6345256B1 (en) * | 1998-08-13 | 2002-02-05 | International Business Machines Corporation | Automated method and apparatus to package digital content for electronic distribution using the identity of the source content |
US20020104006A1 (en) * | 2001-02-01 | 2002-08-01 | Alan Boate | Method and system for securing a computer network and personal identification device used therein for controlling access to network components |
US20030044006A1 (en) * | 2001-09-06 | 2003-03-06 | Clwt, Llc | Media protection system and method |
Also Published As
Publication number | Publication date |
---|---|
WO2008027317A3 (en) | 2008-09-04 |
WO2008027577A2 (en) | 2008-03-06 |
GB2455029A (en) | 2009-06-03 |
GB0904767D0 (en) | 2009-05-06 |
GB0904765D0 (en) | 2009-05-06 |
GB0904764D0 (en) | 2009-05-06 |
WO2008027361A2 (en) | 2008-03-06 |
WO2008027577A3 (en) | 2008-11-20 |
GB2455250A (en) | 2009-06-10 |
WO2008027361A3 (en) | 2008-06-26 |
GB2455028A (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Steganography using reversible texture synthesis | |
US6950949B1 (en) | Method and apparatus for password entry using dynamic interface legitimacy information | |
US8141146B2 (en) | Authentication server, authentication method and authentication program | |
CN101529366B (en) | Identification and visualization of trusted user interface objects | |
Tzeng et al. | Adaptive data hiding in palette images by color ordering and mapping with security protection | |
EP2410450A1 (en) | Method for providing a challenge based on a content | |
EP3114601B1 (en) | Access control for a resource | |
CN101895542B (en) | Verification code acquiring method and device | |
CN108563930A (en) | A kind of method, apparatus, medium and the system of confidential document addition watermark | |
US20120297469A1 (en) | Security Indicator Using Timing to Establish Authenticity | |
CN113498514B (en) | Verifying display of third-party content on a client device | |
US8327155B2 (en) | Screening for masquerading content | |
US8640248B2 (en) | Handling masquerading elements | |
US8555396B2 (en) | Authenticatable displayed content | |
US9747426B2 (en) | Handling masquerading elements | |
US7360092B1 (en) | Marking and identifying web-based authentication forms | |
US20230388109A1 (en) | Generating a secure random number by determining a change in parameters of digital content in subsequent frames via graphics processing circuitry | |
US20230297661A1 (en) | Computer challenge systems based on shape combinations | |
CN103650459A (en) | Information presentation method and equipment | |
WO2008027317A2 (en) | Handling masquerading elements | |
FR2893732A1 (en) | Secured operating mode authentication method for e.g. work station, involves emitting stored confidential event corresponding to secret that is input by user, and authenticating mode by user upon identifying emitted event | |
CN111259387B (en) | Method and device for detecting tampered application | |
CN112926080A (en) | Control method and device of privacy object, storage medium and electronic equipment | |
US11010856B2 (en) | Method and apparatus for deterrence and detection of leakage during remote interactive sessions | |
EP3557839A1 (en) | Method for securing a computer system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07837322 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 0904764 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20070824 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0904764.8 Country of ref document: GB |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07837322 Country of ref document: EP Kind code of ref document: A2 |