WO2008026819A1 - Apparatus for generating down link signal, and method and apparatus for cell search in cellular system - Google Patents
Apparatus for generating down link signal, and method and apparatus for cell search in cellular system Download PDFInfo
- Publication number
- WO2008026819A1 WO2008026819A1 PCT/KR2007/002556 KR2007002556W WO2008026819A1 WO 2008026819 A1 WO2008026819 A1 WO 2008026819A1 KR 2007002556 W KR2007002556 W KR 2007002556W WO 2008026819 A1 WO2008026819 A1 WO 2008026819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synchronization
- frame
- codes
- pattern
- cell group
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000001413 cellular effect Effects 0.000 title claims abstract description 29
- 238000013507 mapping Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 4
- 230000001934 delay Effects 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000003111 delayed effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2656—Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0069—Cell search, i.e. determining cell identity [cell-ID]
- H04J11/0079—Acquisition of downlink reference signals, e.g. detection of cell-ID
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
- H04L27/2675—Pilot or known symbols
Definitions
- the present invention relates to a method and apparatus for generating a downlink signal in a cellular system, and more particularly, to a method of searching a downlink cell in an orthogonal frequency division multiplexing (OFDM)-based cellular system.
- OFDM orthogonal frequency division multiplexing
- a terminal for initial synchronization, a terminal should acquire timing synchronization and frequency synchronization on the basis of signals transmitted from a base station, and perform a cell search. After the initial synchronization, the terminal should track the timing and frequency, and perform the timing and frequency synchronization between adjacent cells and the cell search in order for handover.
- a synchronous cellular system In a synchronous cellular system, all base stations can perform frame synchronization using common time information from an external system.
- a cellular system that has been developed by 3GPP (3rd generation partnership project) is an asynchronous system in which the frame timings of all base stations are independent.
- the asynchronous cellular system needs to perform a cell search process, unlike the synchronous cellular system.
- the present invention has been made in an effort to provide a cell searching method and apparatus that are capable of forming a plurality of synchronization channels in one frame to effectively acquire synchronization and search a cell in an OFDM-based cellular system.
- an apparatus for generating a downlink signal in an orthogonal frequency division multiplexing (OFDM)-based cellular system includes a pattern generator and a time- frequency mapping unit.
- the pattern generator generates synchronization patterns for a plurality of synchronization blocks forming one frame of the downlink signal, and the synchronization blocks each have a continuous series of sub-frames.
- the synchronization pattern includes a cell group number and information on a start point of the frame.
- the time-frequency mapping unit maps the synchronization patterns to a time-frequency domain to generate the downlink signal.
- an apparatus for searching a cell including a terminal in an orthogonal frequency division multiplexing (OFDM)-based cellular system.
- the cell searching apparatus includes a receiver and first to third estimators.
- the receiver receives one frame of synchronization blocks.
- Each of the synchronization blocks has a plurality of adjacent sub-frames, and a plurality of OFDM symbols of the synchronization block each have a synchronization pattern that is composed of a combination of a cell group identification code for identifying a cell group and a frame synchronization identification code for indicating a frame start point.
- the combination of the cell group identification code and the frame synchronization identification code is referred to as a combination of codes.
- the first estimator estimates a start point of the synchronization block from the synchronization pattern.
- the second estimator estimates the frame start point and a cell group number of the cell group to which the cell including the terminal belongs, using the start point of the synchronization block.
- the third estimator estimates a cell number of the cell including the terminal, using a cell identification scrambling code included in a pilot symbol of the frame.
- a method of searching a cell including a terminal in an orthogonal frequency division multiplexing (OFDM)-based cellular system First, a downlink frame including a plurality of synchronization blocks, each having a synchronization pattern that is composed of a combination of a cell group identification code for identifying a cell group including the terminal and a frame synchronization identification code for indicating a start portion of the frame (a combination of codes), is received, and a start point of the synchronization block is estimated in the received downlink frame. Then, a cell group number and frame synchronization are acquired from the estimated start point of the synchronization block and the synchronization pattern, and a cell number is acquired from a cell identification scrambling code included in the downlink frame.
- OFDM orthogonal frequency division multiplexing
- FIG. 1 is a block diagram schematically illustrating an apparatus for generating a downlink signal in a cellular system according to an exemplary embodiment of the present invention.
- FIG. 2 is a diagram illustrating the configuration of a downlink frame of the cellular system according to the exemplary embodiment of the present invention.
- FIG. 3 is a diagram illustrating the detailed configuration of the downlink frame shown in FIG. 2.
- FIG. 4 is a diagram illustrating a signal waveform obtained by converting the downlink frame shown in FIG. 3 into a time domain.
- FIG. 5 is a diagram illustrating the bandwidth scalability of the downlink frame according to the exemplary embodiment of the present invention.
- FIG. 6 is a diagram illustrating the bandwidth scalability of a downlink frame accor ding to another exemplary embodiment of the present invention.
- FIG. 7 is a block diagram schematically illustrating a cell searching apparatus according to an exemplary embodiment of the present invention.
- FIG. 8 is a flowchart illustrating a cell searching method according to an exemplary embodiment of the present invention.
- FIG. 9 is a block diagram schematically illustrating the configuration of a synchronization estimator according to an exemplary embodiment of the present invention.
- FIG. 10 is a diagram illustrating a method of allocating a cell group identification code and a frame synchronization identification code according to an exemplary embodiment of the present invention.
- FIG. 11 is a diagram illustrating a method of allocating a cell group identification code and a frame synchronization identification code according to another exemplary embodiment of the present invention.
- FIG. 12 is a block diagram schematically illustrating the configuration of a cell group estimator according to an exemplary embodiment of the present invention. Mode for the Invention
- FIG. 1 is a block diagram schematically illustrating an apparatus for generating a downlink signal in a cellular system according to an exemplary embodiment of the present invention
- FIG. 2 is a diagram illustrating a downlink frame structure of a cellular system according to an exemplary embodiment of the present invention.
- a downlink signal generating apparatus 100 includes a pattern generator 110, a code generator 120, a time-frequency mapping unit 130, an OFDM transmitter 141, and a transmitting antenna 142, and is provided in a base station (not shown) of the cellular system.
- the downlink signal generated by the downlink signal generating apparatus 100 according to the exemplary embodiment of the present invention includes a plurality of synchronization blocks 210, and each of the synchronization blocks 210 includes a plurality of sub-frames 220.
- Information for identifying a cell group and information for estimating frame synchronization are allocated to first symbol durations 230a and 230b of each synchronization block 210.
- different frame synchronization identification codes are allocated to the synchronization blocks 210.
- the pattern generator 110 generates a synchronization pattern and a pilot pattern of the downlink signal using a set of orthogonal codes indicating cell number information, cell group information, and information for identifying frame synchronization.
- the pattern generator 110 allocates a series of orthogonal codes to a cell group number for identifying a cell group, and uses the series of orthogonal codes to recognize a frame start point.
- the orthogonal codes allocated to the cell group numbers are referred to as "cell group identification codes,” and the orthogonal codes used to recognize the frame start points are referred to as “frame synchronization identification codes.”
- the pattern generator 120 matches the cell group identification codes with the frame synchronization identification codes to generate a set of codes, and allocates the set of codes to a frequency domain of a synchronization channel symbol duration of the downlink signal to generate a synchronization pattern of the downlink signal.
- the pattern generator 110 allocates to a pilot channel symbol duration a unique scrambling code that is allocated to each cell in order to encode a common pilot symbol and a data symbol in the cellular system, thereby generating a pilot pattern of the downlink signal.
- the code generator 120 generates orthogonal code sets that are used as the cell group identification codes and the frame synchronization identification codes, and transmits the generated orthogonal code sets to the pattern generator 110. Then, the pattern generator 110 uses the orthogonal code sets to generate a synchronization pattern and a pilot pattern.
- the time-frequency mapping unit 130 maps data to a time-frequency domain, using the synchronization pattern information and the pilot pattern information generated by the pattern generator 110, and frame structure information and transmission traffic data that are transmitted from the outside, to form a frame of downlink signals (reference numeral 200 in FIG. 2).
- the OFDM transmitter 141 receives the downlink signal from the time- frequency mapping unit 130, and transmits the signal through the transmitting antenna 142.
- one frame 200 of downlink signals in a cellular system is composed of N sync synchronization blocks 210, and each of the synchronization blocks 210 includes N sub sub-frames 220.
- An OFDM symbol duration 230a of the downlink signal uses N subcarriers each having a frequency range of ⁇ f.
- Pilot symbol durations 240a to 24Oe, each having pilot data therein, are formed in the headers of the sub-frames 220 forming one synchronization block 210.
- a first sub-frame of the synchronization block 210 is provided with synchronization symbol durations 230a and 230b each having data including a cell group identification code and a frame synchronization identification code arranged therein.
- the synchronization symbol durations 230a and 230b may be disposed in a first OFDM symbol duration of the first sub-frame or the last OFDM symbol duration of the first sub-frame.
- Each of the synchronization symbol durations 230a and 230b is divided into two frequency bands 250 and 260 in the frequency domain, and each of the frequency bands 250 and 260 has the cell group identification code and the synchronization identification code inserted therein.
- the pattern generator 110 does not form a synchronization pattern in the entire frequency domain of each of the symbol durations 230a and 230b, but allocates codes to only a central portion of the frequency bandwidth except a DC subcarrier to form the synchronization pattern in the central portion.
- the downlink frame 200 includes 20 sub-frames 220, and one sub-frame 220 corresponds to a time of 0.5 msec.
- one sub-frame 220 includes 7 OFDM symbol durations
- one sub-frame 220 includes 6 OFDM symbol durations.
- the synchronization block 210 may include 5 sub-frames 220. In this case, one frame includes four synchronization channel symbol durations.
- FIG. 3 is a diagram illustrating the OFDM symbols in the synchronization channel symbol duration in which the synchronization pattern is formed
- FIG. 4 is a diagram illustrating a signal waveform when the synchronization channel symbol duration shown in FIG. 3 is converted into a time domain.
- the pattern generator 110 divides a predetermined bandwidth into a frequency band 250 for inserting the cell group identification code and a frequency band 260 for inserting the frame synchronization identification code on the basis of a central subcarrier in the entire frequency bandwidth of the channel symbol duration 230a, and sequentially inserts orthogonal codes into the divided frequency bands to form the synchronization pattern.
- the pattern generator 110 allocates to the frequency bands 250 and 260 the orthogonal codes in two independent orthogonal code sets transmitted from the code generator 120. Referring to FIG. 3, the pattern generator 110 allocates an orthogonal code set of and an orthogonal code set of to the frequency band 250 for identifying a cell group and the frequency band 260 for identifying frame synchronization to form the synchronization pattern, respectively.
- “k” indicates a cell group number
- "u” indicates a frame synchronization identification code number
- N indicates the length of the cell group identification
- G code and "N" indicates the length of the frame synchronization identification code.
- the pattern generator 110 may use GCL (generalized chirp-like) codes as the cell group identification code and the frame synchronization identification code, and these codes can be expressed by the following Equations 1 and 2:
- the orthogonal codes expressed by Equations 1 and Equation 2 are allocated to the positions shown in FIG. 3 to generate the synchronization pattern. That is, the pattern generator 110 does not sequentially allocate the orthogonal codes obtained by Equations 1 and 2 to adjacent subcarriers, but allocates even-numbered subcarriers or odd-numbered subcarriers in the frequency bands 250 and 260. Subcarriers between the subcarriers having the orthogonal codes allocated thereto are used as nulling subcarriers to which no sequence is allocated. Therefore, the subcarriers including the nulling carriers that are arranged in the synchronization channel symbol duration for forming the pattern occupy substantially 2* [(N + N ) + N ] (hereinafter, referred to as
- N indicates the number of subcarriers in a guard band.
- FIG. 4 shows the signal waveform of the OFDM symbol except a cyclic prefix.
- two repeated patterns are generated in the time domain due to two kinds of inserted orthogonal codes.
- the downlink signal generating apparatus 100 forms a synchronization pattern such that one nulling subcarrier exists between the subcarriers to which sequences are allocated over the frequency domain of the synchronization channel symbol duration in which the cell group identification code and the synchronization identification code are allocated, thereby generating signals. Therefore, the generated signal has the repeated pattern shown in FIG. 4, and a terminal having received the downlink frame acquires initial symbol synchronization and estimates a frequency offset, using the signal pattern shown in FIG. 4.
- G F identification code inserted into each of the synchronization channel symbol durations of the downlink frame may be different from each other, and information on the lengths of these identification codes and information on the synchronization patterns thereof are shared by a terminal and a base station.
- the terminal having received the downlink frame 200 having the synchronization pattern shown in FIG. 3 demodulates the two frequency bands 250 and 260 for each synchronization block to obtain information on the cell group number and the frame start point, which makes it possible to rapidly and effectively search the cells.
- the frequency domain of the channel symbol duration is divided into two frequency bands, and the same sequence or different types of sequences are allocated to the two divided frequency bands, which makes it possible to prevent the lowering of a correlation performance due to the selective fading of frequencies.
- the cell group identification code is inserted before the frame synchronization identification code on a frequency axis of the synchronization channel symbol duration, but the invention is not limited thereto.
- the cell group identification code may be inserted after the frame synchronization identification code to form the synchronization pattern.
- the same type of orthogonal code is used as the cell group identification code and the frame synchronization identification code, but the invention is not limited thereto.
- different types of orthogonal codes may be used as the cell group identification code and the frame synchronization identification code.
- general orthogonal codes such as a Hadamard code, a KAZAC code, a gold code, a Golay code, and a pseudo-noise (PN) code, may be used as the identification codes.
- FIG. 5 is a diagram illustrating the bandwidth scalability of a downlink frame according to an exemplary embodiment of the present invention
- FIG. 6 is a diagram illustrating the bandwidth scalability of a downlink frame according to another exemplary embodiment of the present invention.
- FIGS. 5 and 6 show the comparison between the bandwidth of the synchronization channel symbol duration shown in FIG. 3 with the entire bandwidth supported by the cellular system.
- the downlink signal generating apparatus 100 according to the exemplary embodiment of the present invention inserts orthogonal codes into the center of the frequency bandwidth to generate a synchronization pattern.
- the terminals since the terminals have different supportable bandwidths according to their levels, it is possible to support the bandwidth scalability of the terminals through the frame structure.
- FIG. 5 shows a synchronization pattern allocated to a 1.25 MHz band within the frequency bandwidth. Traffic data cannot be allocated to an OFDM symbol without a synchronization pattern in the channel symbol duration, and transmitted thereto.
- FIG. 5 shows a synchronization pattern allocated to a 1.25 MHz band within the frequency bandwidth. Traffic data cannot be allocated to an OFDM symbol without a synchronization pattern in the channel symbol duration, and transmitted thereto.
- FIG. 6 shows a synchronization pattern allocated to a 1.25 MHz band or a 5 MHz band within the frequency bandwidth.
- a terminal supporting a 5 MHz band or more can receive all synchronization patterns transmitted, but terminals supporting a 1.25 MHz band and a 2.5 MHz band can receive some synchronization patterns that are arranged in the center of the frequency bandwidth.
- FIG. 7 is a block diagram schematically illustrating a cell searching apparatus according to an exemplary embodiment of the present invention
- FIG. 8 is a flowchart illustrating a cell searching method according to an exemplary embodiment of the present invention.
- a cell searching apparatus 400 includes a receiver 410, a symbol synchronization estimator 420, a Fourier transformer 430, a cell group estimator 440, and a cell number estimator 450.
- the Fourier transformer 430 can perform fast Fourier transform (FFT).
- the receiver 410 receives signals transmitted from a base station.
- the symbol synchronization estimator 420 filters the received signal within the bandwidth allocated to a synchronization channel, removes a guard interval, performs differential correlation to acquire symbol synchronization or sub-frame synchronization, and estimates a frequency offset (Sl 10).
- the Fourier transformer 430 performs Fourier transform on the received signal on the basis of the symbol synchronization estimated by the symbol synchronization estimator 420 (S 120).
- the cell group estimator 440 estimates a frame start point from the sequence of the synchronization channel symbol duration included in the received signal that has been subjected to Fourier transform, acquires frame synchronization, and estimates the cell group number (S 130).
- the cell number estimator 440 estimates the cell number using scrambling code information included in the pilot symbol duration (S 140).
- FIG. 9 is a block diagram schematically illustrating the structure of the symbol synchronization estimator 420 according to an exemplary embodiment of the present invention.
- the symbol synchronization estimator 420 includes a filter 421, a delay unit 422, a correlator 423, a power detector 424, a comparator 425, and a frequency offset detector 426.
- the symbol synchronization estimator 420 estimates sub-frame synchronization and frequency offset from a received signal having the time domain signal waveform shown in FIG. 4 in the synchronization channel symbol duration.
- the symbol syn- chronization estimator 420 may estimate the last OFDM symbol duration of the sub- frame where the synchronization pattern is formed and a frequency offset in the last OFDM symbol duration.
- the filter 421 filters the time domain signal within a bandwidth allocated to the synchronization channel and removes a guard interval to extract signalsy(n+l)in N subcarrier bands, which are central subcarrier bands, in which the synchronization patterns are formed in the entire frequency band corresponding to the synchronization channel symbol duration.
- the filter 421 can perform bandpass filtering.
- the length of the signal y(n+l) output from thefilter 421 corresponds to N .
- the delay unit 422 delays the filtered signal y(n+l) by a time corresponding to half the effective symbol length N .
- the correlator 423 performs differential correlation on the input signal y(n+l) and an output signal y(n+l+N IX) of the delay unit 422 in a sample duration corresponding to half the effective symbol length.
- the differential correction performed by the correlator 423 can be expressed by Equation 3 given below:
- Equation 3 calculates a differential correlation value of the received signal, that is, the power of the received signal.
- the comparator 425 selects the time when the power detector 424 outputs a maximum value by Equation 4 given below, and sets the selected time as an initial symbol synchronization time.
- the frequency offset detector 426 estimates an initial frequency offset.
- differential correlation is performed on only the time domain signals corresponding to one synchronization channel symbol duration to detect the initial symbol synchronization and the frequency offset, but the invention is not limited thereto.
- the time domain signals in a different synchronization channel symbol duration in one downlink frame may be accumulated, and the differential correlation may be performed on the accumulated signals.
- data obtained from synchronization patterns of a plurality of frames may be accumulated, and the differential correlation may be performed on the accumulated data.
- the Fourier transformer 430 performs Fourier transform on the received signal on the basis of sub-frame synchronization estimated by the symbol synchronization estimator 420.
- FIGS. 10 and 11 are diagrams illustrating a method of allocating the synchronization pattern shown in FIG. 3.
- the downlink generating apparatus according to the exemplary embodiment of the present invention combines a cell group identification code C (k) with a frame synchronization identification code C (u) to generate a synchronization pattern.
- FIGS. 10 and 11 show combinations of the cell group identification codes and the frame synchronization identification codes in the form of (k, u) (A in FIG. 10 and A' in FIG. 11).
- a frame 200 of downlink signals includes 4 synchronization blocks 210.
- FIG. 10 shows a synchronization pattern generated by combining orthogonal codes using only common frame synchronization identification codes C (1) , C (2) , C (3) , and C (4) to all cell groups in the cellular system.
- cell No. 1 to cell No. 4 form cell group No. 1
- cell No. 5 to cell No. 8 form cell group No. 2
- cell No. 9 to cell No. 12 form cell group No. 3.
- the same frame synchronization identification code is transmitted from all cells. Therefore, it is possible to obtain a macro diversity gain.
- the terminal having received the downlink frame performs correlation on a synchronization channel symbol duration to detect a frame synchronization identification code, in order to acquire the frame synchronization.
- a correlation characteristic is improved, and thus a frame synchronization acquiring performance can be improved.
- the number of cell groups that can be divided may be set to be equal to the length of the code that is set to identify the cell groups, and the length of the frame synchronization identification code may be smaller than the length of the cell group identification code due to the diversity gain.
- FIG. 11 shows the formation of a frame 200 of downlink signals using a combination of codes that is formed by allocating different frame synchronization identification codes to the cell groups.
- the number of frame synchronization identification codes that are available in the cellular system is equal to the length of the codes.
- the synchronization pattern is formed as shown in FIG. 11, the number of combinations of the cell group numbers and the frame synchronization identification codes increases since various frame synchronization identification codes are used. Therefore, as compared with the synchronization pattern shown in FIG. 10, it is possible to increase the number of cell groups that can be identified.
- a base station and terminals share information on the combination of codes according to the exemplary embodiment of the present invention, and the terminals use the information to search cells.
- FIG. 12 is a block diagram schematically illustrating the cell group estimator 440 according to the exemplary embodiment of the present invention.
- the cell group estimator 440 includes a code storage unit 441, a correlator 442, an inverse Fourier transformer 443, and a comparator 444.
- the code storage unit 441 stores orthogonal codes that are used as the cell group identification codes and the frame synchronization identification codes allocated to the synchronization channel symbol duration, and also stores information on the combination of codes forming the synchronization pattern. Meanwhile, when information on the cell including a terminal therein and peripheral cells (information on the cell number and the cell group) is known beforehand (that is, when the terminal is busy or in a standby state), the code storage unit 441 can extract a candidate combination of codes, and use the extracted combination of codes to search cells.
- the correlator 442 receives the signals in the synchronization channel symbol duration that have been subjected to Fourier transform, and multiplies the signals having been subjected to Fourier transform by the conjugates of the orthogonal codes included in a combination of codes that are stored in the code storage unit 441.
- the inverse Fourier transformer 443 performs inverse Fourier transform on a cell group identifying band and a frame synchronization identifying band among the signals output from the correlator 442 to generate time domain signals.
- the inverse Fourier transformer 443 may perform inverse fast Fourier transform (IFFT).
- IFFT inverse fast Fourier transform
- the comparator 444 selects the maximum value from the time domain signals output from the inverse Fourier transformer 443, and extracts information on a combination of codes having the maximum value from the code storage unit 441, thereby identifying the cell group number and the frame synchronization.
- FIG. 10 as an example, when information on a combination of codes extracted by the comparator 444 is (1, 2), the current cell belongs to the cell group No. 1, and the terminal starts estimating the frame synchronization in the second synchronization block of the downlink frame. In this way, it is possible to estimate a frame start point.
- the terminal estimates the cell number using scrambling information included in the pilot symbol duration. Since the terminal knows the cell group information, the terminal estimates the cell number on the basis of the scramble information of the cells belonging to the corresponding cell group. In this case, a general estimating method, such as a method of using the sum of powers of a set of subcarriers of the pilot symbol, may be used to estimate the cell number.
- the cell number is estimated from the scrambling information of the pilot symbol duration, but the invention is not limited thereto.
- the cell number may be estimated by using symbols in a common channel section including system information of a base station.
- the cell group identification code is allocated to the synchronization pattern, but the invention is not limited thereto.
- a cell identification code may be allocated to one of two bands of the synchronization symbol duration to generate a downlink frame.
- the estimation of the cell number using the scramble code may be used to verify cell number information obtained from the synchronization pattern.
- the constituent elements according to the exemplary embodiment of the present invention may be implemented by at least one hardware component composed of a programmable logic element, such as a DSP (digital signal process) processor, a controller, an ASIC (application specific integrated circuit), or a FPGA (field programmable gate array), other electronic devices, or a combination thereof.
- a programmable logic element such as a DSP (digital signal process) processor, a controller, an ASIC (application specific integrated circuit), or a FPGA (field programmable gate array), other electronic devices, or a combination thereof.
- a programmable logic element such as a DSP (digital signal process) processor, a controller, an ASIC (application specific integrated circuit), or a FPGA (field programmable gate array), other electronic devices, or a combination thereof.
- the function or procedure according to the exemplary embodiment of the present invention may be executed by software, and the software may be recorded on a recording medium.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL07746704T PL2057811T3 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system |
ES07746704T ES2791294T3 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating a downlink signal and method and apparatus for searching for a cell in a cellular system |
EP07746704.1A EP2057811B1 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system |
US12/159,946 US8125976B2 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system |
EP20150672.2A EP3672181B1 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system |
EP21159859.4A EP3863251A1 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system |
CN200780006495.7A CN101390358B (en) | 2006-08-28 | 2007-05-25 | The method of generating downlink signal, equipment and small region search method and equipment in the cellular system |
BRPI0706360-1A BRPI0706360B1 (en) | 2006-08-28 | 2007-05-25 | downlink frame generation equipment and methods in wireless communication system and computer readable cell and media search |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2006-0081763 | 2006-08-28 | ||
KR1020060081763A KR100755820B1 (en) | 2006-01-04 | 2006-08-28 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular syste |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008026819A1 true WO2008026819A1 (en) | 2008-03-06 |
Family
ID=39136071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/002556 WO2008026819A1 (en) | 2006-08-28 | 2007-05-25 | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system |
Country Status (7)
Country | Link |
---|---|
US (1) | US8125976B2 (en) |
EP (3) | EP3863251A1 (en) |
CN (1) | CN101390358B (en) |
BR (1) | BRPI0706360B1 (en) |
ES (2) | ES2791294T3 (en) |
PL (1) | PL2057811T3 (en) |
WO (1) | WO2008026819A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011528515A (en) * | 2008-05-09 | 2011-11-17 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Apparatus and method for acquiring symbol synchronization resistant to frequency offset in cell search of wireless communication system |
EP3086492A4 (en) * | 2013-12-20 | 2016-12-28 | Solid Inc | Lte frame synchronization detection method and apparatus and relay apparatus applying same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097597A2 (en) * | 2006-02-24 | 2007-08-30 | Lg Electronics Inc. | Methods of searching code sequence in mobile communication system |
KR100943619B1 (en) * | 2006-10-02 | 2010-02-24 | 삼성전자주식회사 | Method and apparatus for transmitting/receiving downlink synchronization channels in cellular communication systems supporting scalable bandwidth |
US9332515B2 (en) | 2007-06-18 | 2016-05-03 | Texas Instruments Incorporated | Mapping schemes for secondary synchronization signal scrambling |
US8054823B2 (en) | 2007-06-18 | 2011-11-08 | Texas Instruments Incorporated | Mapping schemes for secondary synchronization signal scrambling |
KR100921769B1 (en) | 2007-07-12 | 2009-10-15 | 한국전자통신연구원 | Method for generating downlink frame, and method for searching cell |
KR20090009693A (en) | 2007-07-20 | 2009-01-23 | 한국전자통신연구원 | Method for generating downlink frame, and method for searching cell |
US9119132B2 (en) * | 2007-10-10 | 2015-08-25 | Qualcomm Incorporated | Efficient system identification schemes for communication systems |
ES2431337T3 (en) * | 2008-06-04 | 2013-11-26 | Sony Corporation | New frame structure for multiple carrier systems |
US8194529B2 (en) | 2008-09-08 | 2012-06-05 | Sony Corporation | Frame and data pattern structure for multi-carrier systems |
US8315332B2 (en) * | 2009-03-06 | 2012-11-20 | Sony Corporation | System and method for transmitting data using quantized channel rates |
WO2018227599A1 (en) * | 2017-06-16 | 2018-12-20 | 北京小米移动软件有限公司 | Signal transmission method and signal transmission apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050111522A1 (en) * | 2003-11-21 | 2005-05-26 | Samsung Electronics Co., Ltd. | Apparatus and method for generating preamble signal for cell identification in an orthogonal frequency division multiplexing system |
US20050265293A1 (en) * | 2004-05-29 | 2005-12-01 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving a cell identification code in a mobile communication system |
KR20060015188A (en) * | 2004-08-13 | 2006-02-16 | 재단법인서울대학교산학협력재단 | Device, method and pilot symbol forming method for cell search in orthogonal frequency division multiplexing communication system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518085B2 (en) * | 1974-08-14 | 1980-05-16 | ||
US6363060B1 (en) * | 1999-06-30 | 2002-03-26 | Qualcomm Incorporated | Method and apparatus for fast WCDMA acquisition |
KR100701766B1 (en) | 1999-12-31 | 2007-03-29 | 주식회사 케이티 | Frame synchronization method for mobile communication systems |
US6912258B2 (en) * | 2000-07-07 | 2005-06-28 | Koninklijke Philips Electtronics N.V. | Frequency-domain equalizer for terrestrial digital TV reception |
KR100358410B1 (en) | 2000-12-19 | 2002-10-25 | (주)씨앤에스 테크놀로지 | The direct current off-set control method and thereof system of A/D converter at Orthogonal Frequency Division Multiplexing system |
US7012881B2 (en) | 2000-12-29 | 2006-03-14 | Samsung Electronic Co., Ltd. | Timing and frequency offset estimation scheme for OFDM systems by using an analytic tone |
US6847630B2 (en) * | 2001-11-09 | 2005-01-25 | Qualcomm, Incorporated | Communications in an asynchronous cellular wireless network |
JP3694479B2 (en) * | 2001-12-07 | 2005-09-14 | 松下電器産業株式会社 | Multi-carrier transceiver apparatus, multi-carrier wireless communication method, and multi-carrier wireless communication program |
KR20050062636A (en) | 2002-10-30 | 2005-06-23 | 오페락스 아베 | Method and arrangement to reserve resources in an ip network |
US7738437B2 (en) * | 2003-01-21 | 2010-06-15 | Nortel Networks Limited | Physical layer structures and initial access schemes in an unsynchronized communication network |
KR100657506B1 (en) | 2003-10-30 | 2006-12-13 | 한국전자통신연구원 | Method for embodying downlink frame in wireless communication system using orthogonal frequency division multiple access method |
JP2005159973A (en) | 2003-11-28 | 2005-06-16 | Advanced Telecommunication Research Institute International | Receiver |
KR20050066562A (en) | 2003-12-26 | 2005-06-30 | 삼성전자주식회사 | Method for embodying frame preamble in wireless communication based on ofdm, and method for acquiring frame synchronization and searching cells using the preamble |
KR100643740B1 (en) | 2004-04-09 | 2006-11-10 | 삼성전자주식회사 | Apparatus for transmitting/receiving pilot code pattern for distinguish base station in communication system using orthogonal frequency division multiplexing scheme and method thereof |
US8134996B2 (en) * | 2005-07-21 | 2012-03-13 | Texas Instruments Incorporated | Downlink synchronization for a cellular OFDM communication system |
US7675846B2 (en) * | 2006-06-23 | 2010-03-09 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for using the synchronization channel to obtain measurements in a cellular communications system |
-
2007
- 2007-05-25 CN CN200780006495.7A patent/CN101390358B/en active Active
- 2007-05-25 US US12/159,946 patent/US8125976B2/en active Active
- 2007-05-25 EP EP21159859.4A patent/EP3863251A1/en active Pending
- 2007-05-25 BR BRPI0706360-1A patent/BRPI0706360B1/en active IP Right Grant
- 2007-05-25 EP EP20150672.2A patent/EP3672181B1/en active Active
- 2007-05-25 WO PCT/KR2007/002556 patent/WO2008026819A1/en active Application Filing
- 2007-05-25 PL PL07746704T patent/PL2057811T3/en unknown
- 2007-05-25 ES ES07746704T patent/ES2791294T3/en active Active
- 2007-05-25 EP EP07746704.1A patent/EP2057811B1/en not_active Revoked
- 2007-05-25 ES ES20150672T patent/ES2891124T3/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050111522A1 (en) * | 2003-11-21 | 2005-05-26 | Samsung Electronics Co., Ltd. | Apparatus and method for generating preamble signal for cell identification in an orthogonal frequency division multiplexing system |
US20050265293A1 (en) * | 2004-05-29 | 2005-12-01 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving a cell identification code in a mobile communication system |
KR20060015188A (en) * | 2004-08-13 | 2006-02-16 | 재단법인서울대학교산학협력재단 | Device, method and pilot symbol forming method for cell search in orthogonal frequency division multiplexing communication system |
Non-Patent Citations (1)
Title |
---|
See also references of EP2057811A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011528515A (en) * | 2008-05-09 | 2011-11-17 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Apparatus and method for acquiring symbol synchronization resistant to frequency offset in cell search of wireless communication system |
WO2009136753A3 (en) * | 2008-05-09 | 2012-05-10 | 한국전자통신연구원 | Apparatus and method for obtaining symbol timing synchronization robust to frequency offset in cell search of wireless communication system |
US8774122B2 (en) | 2008-05-09 | 2014-07-08 | Electronics And Telecommunications Research Institute | Symbol timing synchronization obtaining method and apparatus robust to frequency offset in cell search of wireless communication system |
EP3086492A4 (en) * | 2013-12-20 | 2016-12-28 | Solid Inc | Lte frame synchronization detection method and apparatus and relay apparatus applying same |
Also Published As
Publication number | Publication date |
---|---|
US8125976B2 (en) | 2012-02-28 |
BRPI0706360A8 (en) | 2017-04-04 |
EP2057811A4 (en) | 2017-11-22 |
US20090161652A1 (en) | 2009-06-25 |
PL2057811T3 (en) | 2020-09-21 |
BRPI0706360A2 (en) | 2011-03-22 |
CN101390358B (en) | 2016-01-20 |
EP3672181B1 (en) | 2021-07-07 |
EP3672181A1 (en) | 2020-06-24 |
ES2891124T3 (en) | 2022-01-26 |
ES2791294T3 (en) | 2020-11-03 |
CN101390358A (en) | 2009-03-18 |
EP2057811A1 (en) | 2009-05-13 |
EP2057811B1 (en) | 2020-04-22 |
BRPI0706360B1 (en) | 2019-10-29 |
EP3863251A1 (en) | 2021-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2057811B1 (en) | Apparatus for generating down link signal, and method and apparatus for cell search in cellular system | |
KR100827064B1 (en) | Method and Apparatus for transmitting synchronization signal in OFDM based cellular communication systems | |
CN101682498B (en) | Method of transmitting synchronization signal in wireless communication system | |
JP5171950B2 (en) | Downlink frame generation method and cell search method | |
JP5140727B2 (en) | Downlink frame generation method and cell search method | |
KR20090075609A (en) | Method for obtaining synchronization signal in wireless communication system | |
JP2010045545A (en) | User device and cell search method | |
US10148413B2 (en) | Method for synchronising an FBMC system using a RACH channel | |
EP2097994A1 (en) | Method for generating downlink signal, and method for searching cell | |
WO2009084931A1 (en) | Method for obtaining synchronization signal in wireless communication system | |
KR100874485B1 (en) | Method and apparatus andfor generating down link frame, method and apparatus for cell search in cellular syste | |
KR100755820B1 (en) | Apparatus for generating down link signal, and method and apparatus for cell search in cellular syste | |
WO2008082038A1 (en) | Method for generating downlink signal, and method for searching cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07746704 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3237/CHENP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007746704 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12159946 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780006495.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0706360 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080707 |