WO2008026652A1 - Micromovement device and method of producing the same - Google Patents

Micromovement device and method of producing the same Download PDF

Info

Publication number
WO2008026652A1
WO2008026652A1 PCT/JP2007/066796 JP2007066796W WO2008026652A1 WO 2008026652 A1 WO2008026652 A1 WO 2008026652A1 JP 2007066796 W JP2007066796 W JP 2007066796W WO 2008026652 A1 WO2008026652 A1 WO 2008026652A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
micro
bending member
elastic layer
photoresist
Prior art date
Application number
PCT/JP2007/066796
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Tsuji
Rai Itoh
Susumu Ryuzaki
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Publication of WO2008026652A1 publication Critical patent/WO2008026652A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0024Transducers for transforming thermal into mechanical energy or vice versa, e.g. thermal or bimorph actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/02Elasticity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced

Definitions

  • the present invention relates to a micro-movement device that operates using heat generated by light irradiation and a method for manufacturing the same.
  • the micro-movement device described in this document includes a moving body that is placed on a predetermined sliding surface, a thermal deformation element that is attached to an end face of the moving body and that expands and contracts by thermal deformation, It consists of an inertial mass attached and spaced from the sliding surface.
  • a thermal deformation element that is attached to an end face of the moving body and that expands and contracts by thermal deformation, It consists of an inertial mass attached and spaced from the sliding surface.
  • the heat-deformable element is heated, the heat-deformable element is rapidly deformed, and the impact force accompanying the deformation acts on the moving body. Since the movable body is slidable with respect to the sliding surface, it can be moved by an impact force.
  • the thermal deformation element can be heated by laser light or microwaves, there is an advantage that the driving energy of the moving body can be supplied in a non-contact manner.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-17747
  • the above-described micro movement device has the following disadvantages. That is, in order to use the impact force generated by the deformation of the thermally deformable element, it is necessary to make the shape of the moving body itself special when attempting to move the moving body efficiently. In addition, since it is necessary to rapidly deform when heat is applied, a special material must be selected as the thermal deformation element. Furthermore, it is necessary to optimize the weight balance between the moving body and the inertial body, which is limited in terms of downsizing and simplification of the structure.
  • An object of the present invention is to provide a micro-movement device that can be displaced without depending on an impact force generated by a thermal deformation element and can supply driving energy in a non-contact manner.
  • the first aspect of the present invention comprises at least a first elastic layer and a second elastic layer.
  • a micro-movement device that includes a curved member that faces and a light source that irradiates light to the curved member, and the curved member is placed with the concave surface facing the placement surface.
  • the bending member has a plurality of branch portions whose tip portions are in contact with the placement surface.
  • Each branch portion is provided on the bending member, and includes a first elastic layer and a second elastic layer. In this way, the bending member is stably placed on the placement surface.
  • the first elastic layer is preferably a photoresist
  • the second elastic layer is preferably a metal. More preferably, the metal is aluminum. Further, it is more preferable that the photoresist has a hardness of 0.02 to 5 GPa and a Young's modulus of 0.7 to 170 GPa.
  • the light source includes a laser diode.
  • the bending member can be easily irradiated with laser light.
  • the light source preferably further includes a modulator that modulates the intensity of light applied to the bending member.
  • the force S is used to easily generate vibration of the bending member.
  • a second aspect of the present invention provides the following method for manufacturing a micro-movement device in which a first layer and a second layer are laminated.
  • a photoresist layer is formed on the surface of the substrate, the photoresist layer is patterned to form a first layer, a metal layer covering the surface of the substrate and the first layer is formed, and the metal layer is patterned.
  • a second layer is formed on the first layer. According to this method, it is possible to reliably manufacture the bending member of the micro movement device.
  • the first layer is preferably heated. Then, the first layer can have a predetermined hardness and Young's modulus.
  • a third aspect of the present invention provides a micro-movement device comprising a cantilever composed of the following first elastic layer and the following second elastic layer, and a light source for irradiating the cantilever with light.
  • the first elastic layer is made of a photoresist having a hardness of 0.02 to 5 GPa and a Young's modulus of 0.7 to 170 GPa
  • the second elastic layer is made of aluminum.
  • micro-movement device that can move without depending on the impact force generated by the thermal deformation element and that can supply drive energy in a non-contact manner and a method for manufacturing the same.
  • FIG. 1 is a schematic diagram of one embodiment of a micro-movement device of the present invention.
  • 2 is a (a) perspective view, (b) a top view, and (c) a side view showing a bending member of the micro-movement device in FIG. 1.
  • FIG. 3 is a view showing a manufacturing method (first half) of the bending member of FIG. 2.
  • FIG. 4 is a diagram showing a method (second half) for manufacturing the bending member of FIG. 2.
  • FIG. 4 is a diagram showing a method (second half) for manufacturing the bending member of FIG. 2.
  • FIG. 5 is a diagram showing a stainless steel single layer cantilever before (a) light irradiation and (b) after light irradiation.
  • FIG. 6 is a diagram showing an aluminum single layer cantilever (a) before light irradiation and (b) after light irradiation.
  • FIG. 7 is a view showing a cantilever having an aluminum layer and a photoresist layer according to the present invention (a) before light irradiation and (b) after light irradiation.
  • FIG. 8 is a schematic view of a measuring apparatus used in the experiments shown in FIGS.
  • FIG. 9 is a diagram showing the relationship between the tip end portion displacement of the cantilever shown in FIG. 7 and the laser beam output.
  • FIG. 10 is a diagram showing the relationship between the tip end displacement of the cantilever shown in FIG. 7 and the laser beam irradiation frequency.
  • FIG. 11 is a diagram showing a state of movement of the bending member.
  • FIG. 12 shows (a) a perspective view, (b) a top view, and (c) a side view showing a modified example of the bending member.
  • FIG. 13 shows another modified example of the bending member, (a) a perspective view, (b) a top view, and (c) a side view.
  • FIG. 14 shows still another modified example of the bending member; (a) perspective view, (b) top view, (c) side view.
  • the moving device 1 irradiates the bending member 2 and the luminous flux L to the bending member 2.
  • the light source 3
  • the bending member 2 includes a main portion 2a that bends, and branch portions 2b and 2c that are provided on the side of the main portion 2a and bend in the same manner as the main portion 2a. And have.
  • the bending member 2 has a cross shape in plan view (FIG. 2 (b)).
  • the bending member 2 is placed with the concave surface facing the base 4. Both ends of the main part 2a and the tips of the branch parts 2b and 2c are slidably in contact with the upper surface 4a of the base 4 (FIG. 2 (c)).
  • the main part 2a and the branch parts 2b, 2c are configured by laminating a first elastic layer 20 and a second elastic layer 21.
  • the first elastic layer 20 is located on the convex surface side
  • the second elastic layer 21 is located on the concave surface side.
  • these layers 20 and 21 are made of an elastic material and have different thermal expansion coefficients.
  • the first elastic layer 20 is made of glass (SiO 2), plastic
  • the second elastic layer 21 is made of a metal such as stainless steel (steel nanotube) (A1).
  • the first conductive layer 20 is made of a photoresist.
  • the second insulating layer 21 is made of aluminum.
  • the photoresist layer has a hardness of about 3.4 GPa and a Young's modulus of about 8 lGPa.
  • the dimensions of the bending member 2 in the present embodiment are such that the length of the main part 2a is about 3 to 4 mm, and the width is about 0.8 to 1.2 mm.
  • the thickness of the first elastic layer 20 (photoresist) is about 0.1 to 2 mm, and the thickness of the second elastic layer 21 (aluminum) is about 0 ⁇ ! To 10 m.
  • the length from the tip of one branch part 2b to the tip of the other branch part 2c is substantially the same as the length of the main part 2a.
  • the widths of the branch portions 2b and 2c are substantially the same as the width of the main portion 2a.
  • the base 4 is held so that the bending member 2 placed on the upper surface 4a does not move by its own weight.
  • the upper surface 4a is a flat surface on which the bending member 2 can slide.
  • the base 4 is preferably a mirror-polished silicon wafer.
  • the light source 3 includes a laser diode that emits laser light having a wavelength of 685 nm.
  • the laser beam irradiation position on the bending member 2 is not particularly limited, and may be on the main part 2a or on the branch parts 2b and 2c. The irradiation position may be on the convex surface or the concave surface. However, if the irradiation position is biased to one of the tips rather than the top of the bending member 2, there will be a difference in the amount of deformation at both ends. Becomes more prominent.
  • the light source 3 can turn ON / OFF the voltage applied to the laser diode at a predetermined frequency (for example, 30 Hz to 140 Hz) (duty control can be performed). Thereby, the irradiation light to the bending member 2 is also turned ON / OFF at the frequency.
  • a predetermined frequency for example, 30 Hz to 140 Hz
  • the above frequency control is realized by using a function generator (not shown).
  • the applied voltage may be turned on / off with a switch, or a variable voltage device may be used.
  • a chopper may be provided in the optical path of the laser beam L (light beam L).
  • the bending member 2 is placed so that the concave surface side (aluminum layer side) faces the upper surface 4a of the base 4, and is in contact with the upper surface 4a at least at two contact portions.
  • the laser beam L from the light source 3 is irradiated onto the bending member 2
  • heat is generated by absorption of the light.
  • the bending member 2 is deformed by this heat and the difference in thermal expansion coefficient between the first elastic layer 20 and the second elastic layer 21.
  • the distance between at least two contact portions in contact with the upper surface 4a changes.
  • the bending member 2 returns to the original shape by the inertial force of the layers 20 and 21.
  • the distance between the contact portions also returns.
  • the distance between the contact portions of the bending member 2 vibrates so as to be widened / narrowed at that cycle. Since the bending member 2 is simply placed on the base 4, it can move on the base 4 by this vibration. Therefore, the bending member 2 can function as a moving body that moves in response to the supply of driving energy in a non-contact manner without using the impact force associated with the thermal deformation of the thermal deformation member.
  • the first elastic layer 20 is made of a photoresist layer and the second elastic layer 21 is made of aluminum, the difference in thermal expansion coefficient between the two is large. Therefore, since the amount of deformation caused by the irradiation with the laser beam L can be increased, the force S for improving the moving amount and moving speed of the bending member 2 can be achieved.
  • the photoresist layer has a hardness of about 3.4 GPa and a Young's modulus of about 81 GPa, and is suitable as the first elastic layer 20 of the bending member 2.
  • the bending member 2 can be easily and reliably bent by the difference in internal residual stress between the first elastic layer 20 and the second elastic layer 21. [0024] Furthermore, since not only the tip of the main part 2a but also the tips of the branch parts 2b and 2c are in contact with the upper surface 4a, the bending member 2 is stably placed on the base 4.
  • a silicon (Si) substrate 31 is prepared, and a photoresist layer 32 to be the first elastic layer 20 is formed on the surface (FIG. 3 (a)).
  • the size of the silicon substrate 31 is not limited as long as the silicon substrate 31 is larger than the curved member 2 to be produced by using a commercially available mirror-polished wafer.
  • the photoresist used can be either a positive photoresist or a negative photoresist.
  • TSMR-8900 manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used as a photoresist.
  • the thickness of the photoresist layer 32 is preferably about 0.01 to 3111.
  • the photoresist layer 32 is exposed and developed using a photomask having a pattern (cross shape) corresponding to the shape of the curved member 2 to be produced, thereby forming a patterned photoresist layer 32a (FIG. 3). (b)).
  • an aluminum film 33 to be the second elastic layer 21 is formed on the photoresist layer 32a and the silicon substrate 31 exposed by removing the photoresist layer 32 (FIG. 3 (c)).
  • Various physical 'chemical vapor deposition methods can be adopted for the film formation.
  • the sputtering method (particularly, the magnetron sputtering method) is preferable because it has good film thickness controllability and the effects of alteration of the photoresist layer 32 (described later).
  • Specific film forming conditions are exemplified by sputtering gas: argon (Ar), sputtering power: 500 W, gas pressure: 3.0 Pa, sputtering time: 7 to 10 hours.
  • the film thickness of the aluminum film is about 2 to 3 m.
  • a photoresist film 34 is applied and baked on the aluminum film 33 (FIG. 3 (d)). Thereafter, exposure and development are performed using the photomask described above to form a mask layer 34a (FIG. 4 (a)). Thereafter, this mask layer 34a is used to cover the aluminum film 33 with the mask layer 34a. Etch away the large part. As a result, an aluminum layer 33a is formed (FIG. 4 (b)).
  • the mask layer 34a is removed and the photoresist layer 32a is lifted off from the silicon substrate 31 (FIG. 4 (c)).
  • the photoresist layer 32a (20) remains on the aluminum layer 33a (21). This is because the photoresist layer 32a has deteriorated due to the influence of plasma generated during the sputter deposition of the aluminum film 33a (21).
  • the photoresist layer 32a (20) was heated (heat-treated) under the sputter deposition conditions of the aluminum film 33a (21), a nanoindentation test was performed.
  • the hardness of the photoresist layer 32a (20) changed from 1. OGPa before heat treatment to 3.4 GPa after heat treatment.
  • the Young's modulus of the photoresist layer 32a (20) changed from 33 GPa before heat treatment to 81 GPa after heat treatment.
  • the first elastic layer 20 suitable for the bending member 2 is realized by changing the quality of the photoresist layer 32a (20).
  • the bending member 2 in which the first elastic layer 20 and the second elastic layer 21 are laminated is formed.
  • the bending member 2 is bent due to a difference in residual stress between two films having different Young's moduli.
  • the bending member 2 in the present embodiment needs to be bent because it moves using the change in the amount of bending due to ON / OFF of laser light irradiation.
  • a two-layer structure of a first elastic layer 20 and a second elastic layer 21 is used.
  • the force S can be achieved by realizing the curved shape without any special process by laminating two layers.
  • micro-cantilevers composed of an aluminum single layer
  • the displacement of a micro-cantilever composed of a single layer of stainless steel (sus) was also investigated.
  • These micro-cantilevers were produced by appropriately changing the manufacturing method of the bending member 2 described above.
  • the sizes of the above three types of micro cantilevers are as follows.
  • Two-layer cantilever length 3 ⁇ 06mm X width 700 111 X thickness 1 ⁇ ⁇ ⁇ ⁇
  • 'Aluminum single layer cantilever length 5.22 mm x width 700 m x thickness 2.7 m, • Stainless steel' single layer cantilever: length 4.86 mm x width 700 m x thickness 10 ⁇ m.
  • FIGS. 5 to 7 show changes in the shape of the above-described micro cantilever before and after continuous laser beam irradiation.
  • A in each figure shows the shape before continuous laser light irradiation
  • the measurement apparatus shown in FIG. 8 was used for this observation. Specifically, the micro cantilever MC was placed under the objective lens of the stereomicroscope 10, and the laser light L was applied to the micro cantilever MC. The laser light L was applied to the back surface of the micro-cantilever MC from the laser diode 12 driven through the function generator 11. Then, an image of the micro cantilever MC is picked up by the CCD camera 13 installed in the stereomicroscope 10, and electronic data of this image is input to the personal computer 14. The image is displayed on the display 15 and printed by a predetermined printer (not shown).
  • the cantilever made of a stainless steel / single-layer force is deformed so that the upward warping is increased by laser light irradiation, but the tip displacement amount is Just 13 ⁇ m.
  • the tip displacement of the aluminum single layer cantilever before and after laser light irradiation was about 33 Hm. Compared with a stainless steel cantilever with a single layer, the amount of displacement is greatly increased.
  • the tip displacement was found to be about 640 m, as shown in FIGS. 7 (a) and (b). .
  • the relationship between the laser light intensity of a micro cantilever composed of an aluminum layer and a photoresist layer and the amount of displacement will be described.
  • the amount of tip displacement of the cantilever is approximately proportional to the laser light output in the range from about 1.5 to 13 mW. This result suggests that the deformation amount of the bending member 2 of the moving device 1 can be controlled by the intensity of the irradiated laser beam, and further the moving speed can be controlled.
  • the tip displacement amount (amplitude) of the force cantilever can be controlled by the laser beam irradiation frequency (irradiation period).
  • a displacement peak is observed near the frequency of 100 Hz. This phenomenon can be attributed to a resonance phenomenon that occurs when the cantilever has a natural frequency of about 100 Hz and coincides with the laser beam irradiation frequency and the natural frequency.
  • FIGS. L l (a) to (e) are diagrams showing changes in the position of the bending member 2 irradiated with laser light (wavelength 685 nm * output 6 ⁇ 7 mW) at an irradiation frequency of 25 Hz.
  • the white ellipse in the figure represents the laser light irradiation point.
  • Fig. 11 (a) shows the curved member 2 immediately after the start of laser beam irradiation
  • Fig. 11 (b) shows the curved member 2 10 seconds after the start of irradiation
  • Figs. 11 (c) and 11 (d) show 20 seconds after the start of irradiation. Is shown.
  • the bending member 2 moves downward in the figure by laser light irradiation! Comparing FIG. 11 (a) and FIG. 11 (c), the bending member 2 moves about 0.5 mm in about 20 seconds after the laser beam irradiation.
  • Such movement amount and movement speed that can be recognized with the naked eye have not been realized in the past. From this fact, the effect of the present invention can be understood.
  • FIG. 11 (d) is the same as FIG. 11 (c). Comparing FIG. 11 (a), FIG. 11 (c) and FIG. 11 (d), it can be seen that the bending member 2 rotates counterclockwise in the figure. This result shows that the moving direction of the bending member 2 can be controlled in a non-contact manner by adjusting the laser light irradiation point in the moving device according to the present invention. This is also a great effect achieved by the present invention.
  • the cross-shaped curved member 2 having two branch portions 2b and 2c is illustrated.
  • the bending member 2 is composed of only the portion corresponding to the main part 2a of the above embodiment, and may have a rectangular shape in plan view. ! /, ( Figure 12 (b)).
  • the bending member 2 may have an arrowhead shape in plan view as shown in FIGS. 13 (a) to (c) (FIG. 13 (b)).
  • it may have a Y shape or a star shape in plan view.
  • the bending member 2 may be placed so that only a part thereof is curved and the concave surface side of the curved portion faces the placement surface.
  • the bending member 2 may have an S-shape when viewed from the side (FIG. 14 (c)).
  • the bending member 2 may have a W shape in a side view, and the concave surface may be placed downward.
  • a projection may be provided on the convex surface as long as the curved shape is not impaired without inhibiting light irradiation.
  • the protrusion can function as an action point or an operating point on the other member.
  • the curved shape is not particularly limited as long as a portion excluding at least two contact portions with the placement surface is separated from the placement surface. Further, the bending member can take various bending states depending on the placement location.
  • the bending member has a configuration in which the first elastic layer and the second elastic layer are laminated as described above. It is not limited.
  • the bending member may be configured by laminating three or more layers. Specifically, the bending member may be composed of three layers: an aluminum layer, a photoresist layer, and a carbon layer.
  • the first elastic layer and the second elastic layer may have different shapes. For example, the first elastic layer may cover a part of the second elastic layer. Alternatively, a plurality of first elastic layers may be scattered on the second elastic layer! /!
  • the light source 3 is a laser diode that emits laser light having a wavelength of 685 nm.
  • the type of the light source is not particularly limited as long as it can irradiate the curved member with light.
  • the wavelength of the irradiation light is not limited to 685 nm, and may be any wavelength within the visible range (about 400 nm to about 700 nm). Further, the wavelength of the irradiation light may be an infrared wavelength.
  • the light source may be composed of a red light emitting diode and a condensing lens that condenses the light from the diode and irradiates the curved member. At this time, in order to modulate the intensity of the light beam applied to the bending member at a predetermined frequency, it is preferable to provide a tipper between the lens and the bending member.
  • the above-described method for manufacturing a curved member is an example of applying a semiconductor manufacturing process such as sputtering or photolithography, and various modifications can be made.
  • a heating step of intentionally heating and altering the photoresist layer of the first elastic layer may be provided separately. This is suitable when vacuum deposition is employed instead of sputtering of the aluminum film.
  • an SiO layer is formed on the substrate.
  • the mask (photoresist) layer (34a) is removed by ashing, and the SiO layer is removed using buffered hydrofluoric acid. In this way,
  • the thickness of the photoresist layer (32a, 20) of the first elastic layer can be reliably and easily controlled.
  • the present invention can be used in various fields as a core technology of a so-called photothermally driven self-propelled micromachine. Specifically, it can be applied to measuring instruments, medical equipment, and machine tools. It can be used, especially in the instrument field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

A micromovement device having a curve member (2) constructed from at least a first elastic layer and a second elastic layer, and also having a light source (3) for irradiating the curve member with laser light. The curve member (2) is placed on a placement surface with the recessed surface of the curve member upward. The micromovement device can move without relying on impact force generated by a heat deformation element, and drive energy can be supplied to the micromovement device without contact.

Description

明 細 書  Specification
微小移動デバイスおよびその製造方法  Micro-movement device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、光の照射により生じる熱を利用して動作する微小移動デバイス及びその 製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a micro-movement device that operates using heat generated by light irradiation and a method for manufacturing the same.
背景技術  Background art
[0002] 熱変形素子の熱変形に伴う衝撃力を利用した微小移動デバイスが知られて!/、る ( 特許文献 1)。この文献に記載される微小移動デバイスは、所定の摺動面に載置され る移動体と、この移動体の端面に取り付けられ熱変形により伸縮する熱変形素子と、 この熱変形素子の端面に取り付けられ上記の摺動面から離間した慣性体 (mass)とか ら構成される。熱変形素子が加熱されると、熱変形素子が急激に変形し、その変形 に伴う衝撃力が移動体に作用する。移動体は、摺動面に対して摺動可能であるため 、衝撃力により移動することができる。ここで、熱変形素子はレーザ光やマイクロ波な どにより加熱可能でありので、移動体の駆動エネルギーを非接触で供給できるとレ、う 利点がある。  [0002] There is known a micro-movement device using an impact force accompanying thermal deformation of a thermal deformation element! (Patent Document 1). The micro-movement device described in this document includes a moving body that is placed on a predetermined sliding surface, a thermal deformation element that is attached to an end face of the moving body and that expands and contracts by thermal deformation, It consists of an inertial mass attached and spaced from the sliding surface. When the heat-deformable element is heated, the heat-deformable element is rapidly deformed, and the impact force accompanying the deformation acts on the moving body. Since the movable body is slidable with respect to the sliding surface, it can be moved by an impact force. Here, since the thermal deformation element can be heated by laser light or microwaves, there is an advantage that the driving energy of the moving body can be supplied in a non-contact manner.
特許文献 1 :日本国特開平 6— 17747号公報  Patent Document 1: Japanese Patent Laid-Open No. 6-17747
発明の開示  Disclosure of the invention
[0003] しかし、上記の微小移動デバイスには、以下の不都合がある。すなわち、熱変形素 子の変形により生じる衝撃力を利用するため、効率良く移動体を移動させようとすると 、移動体自体の形状を特殊なものとする必要がある。また、熱を加えると急激に変形 する必要があるため、熱変形素子として特殊な材料を選択しなければならない。さら に、移動体と慣性体との重量バランスを最適化する必要があり、構造の小型化および 単純化の点で制約を受ける。  [0003] However, the above-described micro movement device has the following disadvantages. That is, in order to use the impact force generated by the deformation of the thermally deformable element, it is necessary to make the shape of the moving body itself special when attempting to move the moving body efficiently. In addition, since it is necessary to rapidly deform when heat is applied, a special material must be selected as the thermal deformation element. Furthermore, it is necessary to optimize the weight balance between the moving body and the inertial body, which is limited in terms of downsizing and simplification of the structure.
[0004] 本発明はの目的は、熱変形素子が発生する衝撃力に依らずに変位動作可能で、 かつ、駆動エネルギーを非接触で供給可能な微小移動デバイスを提供することにあ  [0004] An object of the present invention is to provide a micro-movement device that can be displaced without depending on an impact force generated by a thermal deformation element and can supply driving energy in a non-contact manner.
[0005] 本発明の第 1アスペクトは、少なくとも第 1弾性層と第 2弾性層とから構成され凹表 面た湾曲部材と、湾曲部材に光を照射する光源とを備え、湾曲部材が、凹表面を載 置面に向けて載置されている微小移動デバイスを提供する。 [0005] The first aspect of the present invention comprises at least a first elastic layer and a second elastic layer. Provided is a micro-movement device that includes a curved member that faces and a light source that irradiates light to the curved member, and the curved member is placed with the concave surface facing the placement surface.
[0006] ここで、湾曲部材が、先端部を載置面に接触させた複数の分枝部を有すると好まし い。各分岐部は、湾曲部材に設けられ、第 1弾性層および第 2弾性層から構成される 。このようにすれば、湾曲部材が安定して載置面上に載置される。  [0006] Here, it is preferable that the bending member has a plurality of branch portions whose tip portions are in contact with the placement surface. Each branch portion is provided on the bending member, and includes a first elastic layer and a second elastic layer. In this way, the bending member is stably placed on the placement surface.
[0007] 第 1弾性層がフォトレジストであり、第 2弾性層が金属であると好ましい。また、その 金属がアルミニウムであるとより好ましい。さらに、そのフォトレジストが、 0· 02〜5GP aの硬さと、 0. 7〜170GPaのヤング率とを有すると、一層好ましい。  [0007] The first elastic layer is preferably a photoresist, and the second elastic layer is preferably a metal. More preferably, the metal is aluminum. Further, it is more preferable that the photoresist has a hardness of 0.02 to 5 GPa and a Young's modulus of 0.7 to 170 GPa.
[0008] 光源がレーザダイオードを含んでいると好ましい。この場合、湾曲部材にレーザ光 を容易に照射することができる。また、上記光源が、湾曲部材に照射する光の強度を 変調する変調器を更に含んでいると好ましい。この場合、湾曲部材の振動を容易に 発生させること力 Sでさる。  [0008] Preferably, the light source includes a laser diode. In this case, the bending member can be easily irradiated with laser light. The light source preferably further includes a modulator that modulates the intensity of light applied to the bending member. In this case, the force S is used to easily generate vibration of the bending member.
[0009] 本発明の第二のアスペクトは、第一層と第二層とが積層されてなる以下の微小移動 デバイスの製造方法を提供する。前記方法では、基板の表面にフォトレジスト層を形 成し、フォトレジスト層をパターン化して第一層を形成し、基板の表面および第一層を 覆う金属層を形成し、金属層をパターン化して第一層上に第二層を形成する。この 方法によれば、微小移動デバイスの湾曲部材を確実に製造することができる。  [0009] A second aspect of the present invention provides the following method for manufacturing a micro-movement device in which a first layer and a second layer are laminated. In the method, a photoresist layer is formed on the surface of the substrate, the photoresist layer is patterned to form a first layer, a metal layer covering the surface of the substrate and the first layer is formed, and the metal layer is patterned. A second layer is formed on the first layer. According to this method, it is possible to reliably manufacture the bending member of the micro movement device.
[0010] ここで、第一層が、加熱されるのが好ましい。そうすれば、第一層が、所定の硬さお よびヤング率を有することができる。  [0010] Here, the first layer is preferably heated. Then, the first layer can have a predetermined hardness and Young's modulus.
[0011] 本発明の第 3のアスペクトは、下記第 1弾性層および下記第 2弾性層から構成され るカンチレバーと、カンチレバーに光を照射する光源とを備える微小移動デバイスを 提供する。ここで、第 1弾性層は、 0. 02〜5GPaの硬さと 0. 7〜; 170GPaのヤング率 とを有するフォトレジストからなり、第 2弾性層は、アルミニウムからなる。  [0011] A third aspect of the present invention provides a micro-movement device comprising a cantilever composed of the following first elastic layer and the following second elastic layer, and a light source for irradiating the cantilever with light. Here, the first elastic layer is made of a photoresist having a hardness of 0.02 to 5 GPa and a Young's modulus of 0.7 to 170 GPa, and the second elastic layer is made of aluminum.
[0012] 本発明によれば、熱変形素子が発生する衝撃力に依らず移動でき、かつ、駆動ェ ネルギーを非接触で供給可能な微小移動デバイスとその製造方法を提供することが できる。  [0012] According to the present invention, it is possible to provide a micro-movement device that can move without depending on the impact force generated by the thermal deformation element and that can supply drive energy in a non-contact manner and a method for manufacturing the same.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の微小移動デバイスの一実施形態の概略図である。 [図 2]図 1の微小移動デバイスの湾曲部材を示す (a)斜視図、(b)上面図、(c)側面 図である。 [0013] FIG. 1 is a schematic diagram of one embodiment of a micro-movement device of the present invention. 2 is a (a) perspective view, (b) a top view, and (c) a side view showing a bending member of the micro-movement device in FIG. 1.
[図 3]図 2の湾曲部材の製造方法 (前半)を示す図である。  3 is a view showing a manufacturing method (first half) of the bending member of FIG. 2.
[図 4]図 2の湾曲部材の製造方法 (後半)を示す図である。  4 is a diagram showing a method (second half) for manufacturing the bending member of FIG. 2. FIG.
[図 5] (a)光照射前、(b)光照射後のステンレス 'スチール単層のカンチレバーを示す 図である。  FIG. 5 is a diagram showing a stainless steel single layer cantilever before (a) light irradiation and (b) after light irradiation.
[図 6] (a)光照射前、 (b)光照射後のアルミニウム単層のカンチレバーを示す図である  FIG. 6 is a diagram showing an aluminum single layer cantilever (a) before light irradiation and (b) after light irradiation.
[図 7] (a)光照射前、 (b)光照射後の本発明によるアルミニウム層及びフォトレジスト層 を有するカンチレバーを示す図である。 FIG. 7 is a view showing a cantilever having an aluminum layer and a photoresist layer according to the present invention (a) before light irradiation and (b) after light irradiation.
[図 8]図 5から図 7に示す実験に用いた測定装置の概略図である。  FIG. 8 is a schematic view of a measuring apparatus used in the experiments shown in FIGS.
[図 9]図 7に示すカンチレバーの先端部変位量とレーザ光出力との関係を示す図で ある。  FIG. 9 is a diagram showing the relationship between the tip end portion displacement of the cantilever shown in FIG. 7 and the laser beam output.
[図 10]図 7に示すカンチレバーの先端部変位量とレーザ光照射周波数との関係を示 す図である。  FIG. 10 is a diagram showing the relationship between the tip end displacement of the cantilever shown in FIG. 7 and the laser beam irradiation frequency.
[図 11]湾曲部材の移動の様子を示す図である。  FIG. 11 is a diagram showing a state of movement of the bending member.
[図 12]湾曲部材の変形例を示す (a)斜視図、(b)上面図、(c)側面図である。  FIG. 12 shows (a) a perspective view, (b) a top view, and (c) a side view showing a modified example of the bending member.
[図 13]湾曲部材の別の変形例を示す (a)斜視図、(b)上面図、(c)側面図である。  FIG. 13 shows another modified example of the bending member, (a) a perspective view, (b) a top view, and (c) a side view.
[図 14]湾曲部材の更に別の変形例を示す (a)斜視図、(b)上面図、(c)側面図である 発明を実施するための最良の形態  FIG. 14 shows still another modified example of the bending member; (a) perspective view, (b) top view, (c) side view. BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、添付の図面を参照しながら、本発明の移動デバイスの一実施形態について 説明する。添付の図面は、縮尺比に従って縮小、拡大されたものではなぐ実施形態 の概略を表すに過ぎない。また、添付の図面は、実施形態の特定のパラメータまたは 構造上の細部を図示することを意図するものではない。これらについては、ここに示 す情報を通して、当業者が任意に決定することができる。また、図面中、同一の要素 には同一の符号を付し、重複する説明は省略する。  Hereinafter, an embodiment of a mobile device of the present invention will be described with reference to the accompanying drawings. The accompanying drawings merely depict an overview of embodiments that are not reduced or enlarged according to a scale ratio. In addition, the accompanying drawings are not intended to illustrate specific parameters or structural details of the embodiments. These can be arbitrarily determined by those skilled in the art through the information presented here. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0015] 図 1を参照すると、移動デバイス 1は、湾曲部材 2と、この湾曲部材 2に光束 Lを照射 する光源 3とから構成される。 [0015] Referring to FIG. 1, the moving device 1 irradiates the bending member 2 and the luminous flux L to the bending member 2. The light source 3
湾曲部材 2は、図 2 (a)〜(c)に示されるように、湾曲する要部 2aと、要部 2aの側方 に設けられ要部 2aと同様に湾曲する分枝部 2b、 2cとを有する。湾曲部材 2は、平面 視で十字形状を有している(図 2 (b) )。湾曲部材 2は、凹表面を基台 4に向けて載置 されている。要部 2aの両端と、分岐部 2b、 2cの先端とが基台 4の上面 4aに摺動可能 に接している(図 2 (c) )。  As shown in FIGS. 2 (a) to (c), the bending member 2 includes a main portion 2a that bends, and branch portions 2b and 2c that are provided on the side of the main portion 2a and bend in the same manner as the main portion 2a. And have. The bending member 2 has a cross shape in plan view (FIG. 2 (b)). The bending member 2 is placed with the concave surface facing the base 4. Both ends of the main part 2a and the tips of the branch parts 2b and 2c are slidably in contact with the upper surface 4a of the base 4 (FIG. 2 (c)).
[0016] 要部 2aおよび分枝部 2b、 2cは、第 1弾性層 20と第 2弾性層 21とが積層されて構 成されている。第 1弾性層 20は凸表面側に位置し、第 2弾性層 21は凹表面側に位 置している。また、これらの層 20、 21は、弾性を有する材料からなり、互いに異なる熱 膨張係数を有している。具体的には、第 1弾性層 20は、ガラス(SiO )、プラスチック The main part 2a and the branch parts 2b, 2c are configured by laminating a first elastic layer 20 and a second elastic layer 21. The first elastic layer 20 is located on the convex surface side, and the second elastic layer 21 is located on the concave surface side. Further, these layers 20 and 21 are made of an elastic material and have different thermal expansion coefficients. Specifically, the first elastic layer 20 is made of glass (SiO 2), plastic
2  2
、又は樹脂などで構成されると好ましい。第 2弾性層 21は、ステンレス 'スチールゃァ ノレミニゥム (A1)などの金属で構成されると好ましい。本実施形態においては、第 1弹 性層 20はフォトレジストで作製されている。また、微細加工が容易であるので、第 2弹 性層 21はアルミニウムで作製されている。特に、フォトレジスト層は、 3. 4GPa程度の 硬さと 8 lGPa程度のヤング率とを有している。  Or a resin or the like. It is preferable that the second elastic layer 21 is made of a metal such as stainless steel (steel nanotube) (A1). In the present embodiment, the first conductive layer 20 is made of a photoresist. Further, since the fine processing is easy, the second insulating layer 21 is made of aluminum. In particular, the photoresist layer has a hardness of about 3.4 GPa and a Young's modulus of about 8 lGPa.
[0017] 本実施形態における湾曲部材 2の寸法は、要部 2aの長さが 3〜4mm程度、幅が 0 . 8〜; 1. 2mm程度である。また、第 1弾性層 20 (フォトレジスト)の厚さが 0. l〜2〃m 程度であり、第 2弾性層 21 (アルミニウム)の厚さが 0· ;!〜 10 m程度である。なお、 一方の分枝部 2bの先端から他方の分枝部 2cの先端までの長さは、要部 2aの長さと ほぼ同一である。また、分枝部 2b、 2cの各幅も要部 2aの幅とほぼ同一である。  [0017] The dimensions of the bending member 2 in the present embodiment are such that the length of the main part 2a is about 3 to 4 mm, and the width is about 0.8 to 1.2 mm. The thickness of the first elastic layer 20 (photoresist) is about 0.1 to 2 mm, and the thickness of the second elastic layer 21 (aluminum) is about 0 ·! To 10 m. The length from the tip of one branch part 2b to the tip of the other branch part 2c is substantially the same as the length of the main part 2a. The widths of the branch portions 2b and 2c are substantially the same as the width of the main portion 2a.
[0018] 基台 4は、その上面 4aに載置される湾曲部材 2が自重により移動しないように保持 されている。また、上面 4aは、湾曲部材 2が摺動可能な平坦面とされている。具体的 には、基台 4としては、鏡面研磨されたシリコンウェハーが好適である。  [0018] The base 4 is held so that the bending member 2 placed on the upper surface 4a does not move by its own weight. The upper surface 4a is a flat surface on which the bending member 2 can slide. Specifically, the base 4 is preferably a mirror-polished silicon wafer.
[0019] 光源 3は、本実施形態においては、波長 685nmのレーザ光を出射するレーザダイ オードを備えている。また、湾曲部材 2上のレーザ光照射位置は、特に限定されず、 要部 2a上又は分枝部 2b、 2c上でもよい。また、照射位置は、凸表面上でも凹表面上 でも構わない。ただし、照射位置が湾曲部材 2の頂部よりも先端のいずれかに偏って いる方が両端部での変形量に差が生じるため、この差によって一定の方向への移動 がより顕著になる。 In this embodiment, the light source 3 includes a laser diode that emits laser light having a wavelength of 685 nm. Further, the laser beam irradiation position on the bending member 2 is not particularly limited, and may be on the main part 2a or on the branch parts 2b and 2c. The irradiation position may be on the convex surface or the concave surface. However, if the irradiation position is biased to one of the tips rather than the top of the bending member 2, there will be a difference in the amount of deformation at both ends. Becomes more prominent.
[0020] なお、光源 3は、レーザダイオードへの印加電圧を所定周波数(例えば 30Hz〜14 0Hz)で ON/OFFすることができる(Duty制御を行える)。これにより、湾曲部材 2 への照射光もその周波数で ON/OFFする。本実施形態では、図示しないファンク シヨン'ジェネレータを利用することで、上記周波数制御が実現されている。ただし、 印加電圧はスィッチで ON/OFFされても良いし、可変電圧器が利用されてもよい。 また、レーザ光 L (光束 L)の光路にチョッパーを設けてもよい。  Note that the light source 3 can turn ON / OFF the voltage applied to the laser diode at a predetermined frequency (for example, 30 Hz to 140 Hz) (duty control can be performed). Thereby, the irradiation light to the bending member 2 is also turned ON / OFF at the frequency. In the present embodiment, the above frequency control is realized by using a function generator (not shown). However, the applied voltage may be turned on / off with a switch, or a variable voltage device may be used. Further, a chopper may be provided in the optical path of the laser beam L (light beam L).
[0021] 以上の構成を有する移動デバイス 1の動作、および、移動デバイス 1が奏する効果' 利点について述べる。  [0021] The operation of the mobile device 1 having the above-described configuration and the effects and advantages of the mobile device 1 will be described.
移動デバイス 1では、湾曲部材 2がその凹表面側(アルミニウム層側)が基台 4の上 面 4aに面するように載置され、少なくとも 2つの接触部で上面 4aに接している。ここで 、光源 3からのレーザ光 Lを湾曲部材 2に照射すると、光の吸収により熱が発生する。 この熱と、第 1弾性層 20及び第 2弾性層 21間の熱膨張係数差とによって湾曲部材 2 が変形する。この結果、上面 4aに接する少なくとも 2つの接触部間の距離が変化する 。レーザ光 Lの照射が中断され温度が低下すると、湾曲部材 2は、各層 20、 21の弹 性力によってもとの形状に復帰する。この結果、接触部間の距離ももとに戻る。ここで 、レーザ光 Lの照射を所定周期で ON/OFFすると、その周期で湾曲部材 2の接触 部間の距離は広げ/狭められるように振動する。湾曲部材 2は、基台 4に単に置かれ ているため、この振動により基台 4上を移動することができる。従って、湾曲部材 2は、 熱変形部材の熱変形に伴う衝撃力を利用することなぐ非接触で駆動エネルギーの 供給を受けて移動する移動体として機能することができる。  In the moving device 1, the bending member 2 is placed so that the concave surface side (aluminum layer side) faces the upper surface 4a of the base 4, and is in contact with the upper surface 4a at least at two contact portions. Here, when the laser beam L from the light source 3 is irradiated onto the bending member 2, heat is generated by absorption of the light. The bending member 2 is deformed by this heat and the difference in thermal expansion coefficient between the first elastic layer 20 and the second elastic layer 21. As a result, the distance between at least two contact portions in contact with the upper surface 4a changes. When the irradiation with the laser beam L is interrupted and the temperature decreases, the bending member 2 returns to the original shape by the inertial force of the layers 20 and 21. As a result, the distance between the contact portions also returns. Here, when the irradiation of the laser beam L is turned ON / OFF at a predetermined cycle, the distance between the contact portions of the bending member 2 vibrates so as to be widened / narrowed at that cycle. Since the bending member 2 is simply placed on the base 4, it can move on the base 4 by this vibration. Therefore, the bending member 2 can function as a moving body that moves in response to the supply of driving energy in a non-contact manner without using the impact force associated with the thermal deformation of the thermal deformation member.
[0022] また、第 1弾性層 20がフォトレジスト層 ·第 2弾性層 21がアルミニウムで作製されて いるため、両者間の熱膨張係数の差が大きい。したがって、レーザ光 Lの照射により 生じる変形量を大きくすることができるので、湾曲部材 2の移動量および移動速度を 向上させること力 Sできる。特に、フォトレジスト層が 3. 4GPa程度の硬さと 81GPa程度 のヤング率とを有しており、湾曲部材 2の第 1弾性層 20として好適である。  In addition, since the first elastic layer 20 is made of a photoresist layer and the second elastic layer 21 is made of aluminum, the difference in thermal expansion coefficient between the two is large. Therefore, since the amount of deformation caused by the irradiation with the laser beam L can be increased, the force S for improving the moving amount and moving speed of the bending member 2 can be achieved. In particular, the photoresist layer has a hardness of about 3.4 GPa and a Young's modulus of about 81 GPa, and is suitable as the first elastic layer 20 of the bending member 2.
[0023] さらに、このような材料を用いると、第 1弾性層 20と第 2弾性層 21との内部残留応力 の差によって湾曲部材 2を容易かつ確実に湾曲させて形成することができる。 [0024] またさらに、要部 2aの先端だけでなく分枝部 2b、 2cの先端も上面 4aに接するため 、湾曲部材 2は安定して基台 4上に載置される。 Furthermore, when such a material is used, the bending member 2 can be easily and reliably bent by the difference in internal residual stress between the first elastic layer 20 and the second elastic layer 21. [0024] Furthermore, since not only the tip of the main part 2a but also the tips of the branch parts 2b and 2c are in contact with the upper surface 4a, the bending member 2 is stably placed on the base 4.
[0025] 次いで、図 3 (a)〜(d)および図 4 (a)〜(c)を参照しながら、湾曲部材 2の作製方法 について説明する。  Next, a method for producing the bending member 2 will be described with reference to FIGS. 3 (a) to (d) and FIGS. 4 (a) to (c).
[0026] (1)フォトレジスト層の形成工程  [0026] (1) Photoresist layer forming step
まず、シリコン(Si)基板 31を用意し、その表面に第 1弾性層 20となるフォトレジスト 層 32を形成する(図 3 (a) )。シリコン基板 31としては、鏡面研磨された市販のウェハ 一でよぐ作製する湾曲部材 2よりも大きければ、そのサイズ'形状は問わない。  First, a silicon (Si) substrate 31 is prepared, and a photoresist layer 32 to be the first elastic layer 20 is formed on the surface (FIG. 3 (a)). The size of the silicon substrate 31 is not limited as long as the silicon substrate 31 is larger than the curved member 2 to be produced by using a commercially available mirror-polished wafer.
使用するフォトレジストとしては、ポジフォトレジスト、ネガフォトレジストのいずれでも よく。具体的には、東京応化工業社製の TSMR— 8900などをフォトレジストとして使 用すること力 Sできる。特に、後述するリフトオフ工程の作業性の点から、有機溶剤で容 易に剥離できるフォトレジストを使用することが好ましい。また、フォトレジスト層 32の 厚さは、 0. 01〜3 111程度であると好適である。  The photoresist used can be either a positive photoresist or a negative photoresist. Specifically, TSMR-8900 manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used as a photoresist. In particular, from the viewpoint of workability in the lift-off process described later, it is preferable to use a photoresist that can be easily removed with an organic solvent. The thickness of the photoresist layer 32 is preferably about 0.01 to 3111.
次に、作製する湾曲部材 2の形状に対応したパターン (十字形状)を有するフォトマ スクを用いてフォトレジスト層 32を露光、現像し、パターン化されたフォトレジスト層 32 aを形成する(図 3 (b) )。  Next, the photoresist layer 32 is exposed and developed using a photomask having a pattern (cross shape) corresponding to the shape of the curved member 2 to be produced, thereby forming a patterned photoresist layer 32a (FIG. 3). (b)).
[0027] (2)アルミニウム膜の形成工程 [0027] ( 2 ) Formation process of aluminum film
次に、フォトレジスト層 32aと、フォトレジスト層 32が除去されて露出したシリコン基板 31との上に、第 2弾性層 21となるアルミユウム膜 33を成膜する(図 3 (c) )。この成膜 には、種々の物理的'化学的蒸着法を採用することができる。ただし、良好な膜厚制 御性、および、フォトレジスト層 32の変質(後述する)という効果有するので、スパッタ 法(特に、マグネトロン'スパッタ法)が好ましい。具体的な成膜条件を例示すると、ス パッタガス:アルゴン(Ar)、スパッタ電力: 500Wであり、ガス圧: 3· 0Pa、スパッタ時 間: 7〜; 10時間である。成膜されるアルミニウム膜の膜厚は 2〜3 m程度である。  Next, an aluminum film 33 to be the second elastic layer 21 is formed on the photoresist layer 32a and the silicon substrate 31 exposed by removing the photoresist layer 32 (FIG. 3 (c)). Various physical 'chemical vapor deposition methods can be adopted for the film formation. However, the sputtering method (particularly, the magnetron sputtering method) is preferable because it has good film thickness controllability and the effects of alteration of the photoresist layer 32 (described later). Specific film forming conditions are exemplified by sputtering gas: argon (Ar), sputtering power: 500 W, gas pressure: 3.0 Pa, sputtering time: 7 to 10 hours. The film thickness of the aluminum film is about 2 to 3 m.
(3)パターン化工程  (3) Patterning process
アルミニウム膜 33上にフォトレジスト膜 34を塗布 ·ベーキングする(図 3 (d) )。その 後、上述のフォトマスクを用いて露光、現像し、マスク層 34aを形成する(図 4 (a) )。そ の後、このマスク層 34aを用いて、アルミニウム膜 33のマスク層 34aに覆われていな い部分をエッチングして除去する。この結果、アルミニウム層 33aが形成される(図 4 ( b) )。 A photoresist film 34 is applied and baked on the aluminum film 33 (FIG. 3 (d)). Thereafter, exposure and development are performed using the photomask described above to form a mask layer 34a (FIG. 4 (a)). Thereafter, this mask layer 34a is used to cover the aluminum film 33 with the mask layer 34a. Etch away the large part. As a result, an aluminum layer 33a is formed (FIG. 4 (b)).
[0028] (4)リフトオフ工程  [0028] (4) Lift-off process
最後に、有機溶剤(アセトン)を用い、マスク層 34aを除去するとともに、フォトレジス ト層 32aをシリコン基板 31からリフトオフする(図 4 (c) )。このとき、アルミニウム層 33a ( 21)上には、フォトレジスト層 32a (20)が残存する。これは、フォトレジスト層 32aが、 アルミニウム膜 33a (21)のスパッタ成膜中に生成されるプラズマの影響により変質し たためである。  Finally, using an organic solvent (acetone), the mask layer 34a is removed and the photoresist layer 32a is lifted off from the silicon substrate 31 (FIG. 4 (c)). At this time, the photoresist layer 32a (20) remains on the aluminum layer 33a (21). This is because the photoresist layer 32a has deteriorated due to the influence of plasma generated during the sputter deposition of the aluminum film 33a (21).
[0029] アルミニウム膜 33a (21)のスパッタ成膜条件でフォトレジスト層 32a (20)を加熱(熱 処理)した後、ナノインデンテーション試験を行った。結果、フォトレジスト層 32a (20) の硬さは、熱処理前 1. OGPaから熱処理後 3. 4GPaまで変化した。フォトレジスト層 32a (20)のヤング率は、熱処理前 33GPaから熱処理後 81GPaへと変化した。フォト レジスト層 32a (20)が変質することで、湾曲部材 2に好適な第 1弾性層 20が実現さ れる。  [0029] After the photoresist layer 32a (20) was heated (heat-treated) under the sputter deposition conditions of the aluminum film 33a (21), a nanoindentation test was performed. As a result, the hardness of the photoresist layer 32a (20) changed from 1. OGPa before heat treatment to 3.4 GPa after heat treatment. The Young's modulus of the photoresist layer 32a (20) changed from 33 GPa before heat treatment to 81 GPa after heat treatment. The first elastic layer 20 suitable for the bending member 2 is realized by changing the quality of the photoresist layer 32a (20).
[0030] 以上の工程により、第 1弾性層 20と第 2弾性層 21とが積層された湾曲部材 2が形成 される。湾曲部材 2は、ヤング率が異なる 2つの膜の残留応力の相違により、湾曲して いる。本実施形態における湾曲部材 2は、レーザ光照射の ON/OFFによる湾曲量 変化を利用して移動するため、湾曲している必要がある。ここでは、湾曲形状を実現 するため、第 1弾性層 20と第 2弾性層 21との 2層構造を利用している。換言すると、 上記の方法によれば、 2層を積層させることで、特別な工程を経ずに湾曲形状を実 現すること力 Sでさる。  [0030] Through the above steps, the bending member 2 in which the first elastic layer 20 and the second elastic layer 21 are laminated is formed. The bending member 2 is bent due to a difference in residual stress between two films having different Young's moduli. The bending member 2 in the present embodiment needs to be bent because it moves using the change in the amount of bending due to ON / OFF of laser light irradiation. Here, in order to realize a curved shape, a two-layer structure of a first elastic layer 20 and a second elastic layer 21 is used. In other words, according to the method described above, the force S can be achieved by realizing the curved shape without any special process by laminating two layers.
[0031] 次に、上述の移動デバイス 1の効果を確認するために行った実験結果について説 明する。この実験は、湾曲量がどの程度であるかを調べるために行ったものである。 この目的のため、測定の簡便さを考慮し、湾曲部材 2に代わってアルミニウム層とフォ トレジスト層との 2層からなるマイクロ 'カンチレバーを作製し、その変位量について評 価した。このマイクロ 'カンチレバーにおけるフォトレジスト層は、上記の湾曲部材 2と 同様、およそ 3. 4GPaの硬さ ' 81GPaのヤング率を有していた。  [0031] Next, the results of experiments conducted to confirm the effect of the mobile device 1 will be described. This experiment was conducted in order to examine how much the bending amount is. For this purpose, considering the simplicity of measurement, a micro-cantilever consisting of two layers, an aluminum layer and a photoresist layer, was fabricated in place of the bending member 2, and its displacement was evaluated. The photoresist layer in this micro'cantilever had a hardness of about 3.4 GPa and a Young's modulus of 81 GPa, like the curved member 2 described above.
さらに、比較のため、アルミニウム単層から構成されるマイクロ 'カンチレバー、及び 、ステンレス 'スチール(sus)単層から構成されるマイクロ 'カンチレバーの変位量も 調べた。なお、これらのマイクロ 'カンチレバーは、上述の湾曲部材 2の製造方法を適 宜変更して作製した。また、上記 3種類のマイクロ 'カンチレバーのサイズは以下の通 りである。 In addition, for comparison, a micro 'cantilever composed of an aluminum single layer, and The displacement of a micro-cantilever composed of a single layer of stainless steel (sus) was also investigated. These micro-cantilevers were produced by appropriately changing the manufacturing method of the bending member 2 described above. The sizes of the above three types of micro cantilevers are as follows.
[0032] · 2層カンチレバー:長さ 3· 06mm X幅 700 111 X厚さ 1 · μ ηι^  [0032] · Two-layer cantilever: length 3 · 06mm X width 700 111 X thickness 1 · μ ηι ^
'アルミニウム単層カンチレバー:長さ 5· 22mm X 幅 700 m X厚さ 2· 7 m、 •ステンレス 'スチール単層カンチレバー:長さ 4. 86mm X幅 700 m X厚さ 10 μ m。  'Aluminum single layer cantilever: length 5.22 mm x width 700 m x thickness 2.7 m, • Stainless steel' single layer cantilever: length 4.86 mm x width 700 m x thickness 10 μm.
[0033] 上述したマイクロ 'カンチレバーのレーザ光連続照射前後での形状変化を、図 5〜 図 7に示す。各図の(a)は、レーザ光連続照射前の形状を示し、各図の (b)は、レー ザ光連続照射後の形状を示してレ、る。  [0033] FIGS. 5 to 7 show changes in the shape of the above-described micro cantilever before and after continuous laser beam irradiation. (A) in each figure shows the shape before continuous laser light irradiation, and (b) in each figure shows the shape after continuous laser light irradiation.
[0034] なお、この観察には、図 8に示す測定装置を使用した。具体的には、実体顕微鏡 1 0の対物レンズの下にマイクロ ·カンチレバー MCを置き、このマイクロ 'カンチレバー MCに対してレーザ光 Lを照射した。レーザ光 Lは、ファンクション 'ジェネレータ 1 1を 介して駆動されるレーザダイオード 12からマイクロ 'カンチレバー MCの裏面に照射さ れた。そして、実体顕微鏡 10に設置された CCDカメラ 13によりマイクロ 'カンチレバ 一 MCの画像が撮像され、この画像の電子データがパーソナルコンピュータ 14に入 力される。その画像は、ディスプレイ 15に表示され、また、所定のプリンタ(図示せず) で印刷される。  [0034] Note that the measurement apparatus shown in FIG. 8 was used for this observation. Specifically, the micro cantilever MC was placed under the objective lens of the stereomicroscope 10, and the laser light L was applied to the micro cantilever MC. The laser light L was applied to the back surface of the micro-cantilever MC from the laser diode 12 driven through the function generator 11. Then, an image of the micro cantilever MC is picked up by the CCD camera 13 installed in the stereomicroscope 10, and electronic data of this image is input to the personal computer 14. The image is displayed on the display 15 and printed by a predetermined printer (not shown).
[0035] 図 5 (a) , (b)に示されるように、ステンレス ·スチール単層力、らなるカンチレバーは、 レーザ光照射により上向きの反りが増加するように変形するが、先端変位量はわずか 13 μ mであつに。  [0035] As shown in FIGS. 5 (a) and 5 (b), the cantilever made of a stainless steel / single-layer force is deformed so that the upward warping is increased by laser light irradiation, but the tip displacement amount is Just 13 μm.
また、図 6 (a) , (b)に示されるように、アルミニウム単層のカンチレバーでは、レーザ 光照射前後での先端変位量は約 33 H mであった。ステンレス 'スチール単層のカン チレバーに比べると、変位量は大きく増加することが分力、つた。  In addition, as shown in Figs. 6 (a) and 6 (b), the tip displacement of the aluminum single layer cantilever before and after laser light irradiation was about 33 Hm. Compared with a stainless steel cantilever with a single layer, the amount of displacement is greatly increased.
[0036] 一方、アルミニウム層とフォトレジスト層とで構成されるマイクロ 'カンチレバーでは、 図 7 (a) , (b)に示す通り、先端変位量は、約 640 mとなることが明らかとなった。こ れは、アルミニウム層とフォトレジスト層とが積層されている効果であり、特に、フオトレ ジスト層が(アムミニゥムのスパッタ成膜中の)加熱によって変質し、上述した硬さおよ びヤング率となったためと思われる。 [0036] On the other hand, in a micro cantilever composed of an aluminum layer and a photoresist layer, the tip displacement was found to be about 640 m, as shown in FIGS. 7 (a) and (b). . This is the effect of laminating an aluminum layer and a photoresist layer. This is thought to be because the dyst layer was altered by heating (during the sputtering process of Amminium), resulting in the hardness and Young's modulus described above.
次いで、アルミニウム層とフォトレジスト層とで構成されるマイクロ 'カンチレバーのレ 一ザ光強度と変位量との関係について説明する。図 9に示されるように、レーザ光出 力約 1. 5〜; 13mWまでの範囲において、カンチレバーの先端変位量はレーザ光出 力にほぼ比例している。この結果には、移動デバイス 1の湾曲部材 2においても、照 射するレーザ光強度によって変形量を制御でき、さらには移動速度も制御できること が示唆されている。  Next, the relationship between the laser light intensity of a micro cantilever composed of an aluminum layer and a photoresist layer and the amount of displacement will be described. As shown in Fig. 9, the amount of tip displacement of the cantilever is approximately proportional to the laser light output in the range from about 1.5 to 13 mW. This result suggests that the deformation amount of the bending member 2 of the moving device 1 can be controlled by the intensity of the irradiated laser beam, and further the moving speed can be controlled.
[0037] 続けて、アルミニウム層とフォトレジスト層とで構成されるマイクロ 'カンチレバーのレ 一ザ光照射周波数と変位量との関係について説明する。図 10に示されるように、力 ンチレバーの先端変位量 (振幅)は、レーザ光照射周波数 (照射周期)によって制御 できる。特に、周波数 100Hz付近に変位量のピークが認められる。この現象は、カン チレバーの固有振動数が約 100Hzであり、レーザ光照射周波数と固有振動数との 一致により生じる共振現象に起因すると考えられる。  [0037] Next, the relationship between the laser light irradiation frequency of the micro-cantilever composed of an aluminum layer and a photoresist layer and the amount of displacement will be described. As shown in Fig. 10, the tip displacement amount (amplitude) of the force cantilever can be controlled by the laser beam irradiation frequency (irradiation period). In particular, a displacement peak is observed near the frequency of 100 Hz. This phenomenon can be attributed to a resonance phenomenon that occurs when the cantilever has a natural frequency of about 100 Hz and coincides with the laser beam irradiation frequency and the natural frequency.
[0038] なお、照射周波数が約 120Hzを超えると変位量が減少する。この現象は、非照射 時間の短縮に伴って熱の放射が十分に行われなくなり、もとの形状に戻りきれなくな るためと推測される。  [0038] When the irradiation frequency exceeds about 120 Hz, the amount of displacement decreases. This phenomenon is presumed to be because the radiation of heat is not sufficiently performed as the non-irradiation time is shortened, and the original shape cannot be restored.
[0039] 以上の実験結果を踏まえて、本実施形態による移動デバイス 1の動作具体例を説 明する。  Based on the above experimental results, a specific example of the operation of the mobile device 1 according to the present embodiment will be described.
図 l l (a)〜(e)は、レーザ光(波長 685nm*出力 6· 7mW)を照射周波数 25Hzで 照射した湾曲部材 2の位置変化を示す図である。 図中の白い楕円が、レーザ光照 射点を表わしている。  FIGS. L l (a) to (e) are diagrams showing changes in the position of the bending member 2 irradiated with laser light (wavelength 685 nm * output 6 · 7 mW) at an irradiation frequency of 25 Hz. The white ellipse in the figure represents the laser light irradiation point.
[0040] 図 11 (a)は、レーザ光の照射開始直後、図 11 (b)は、照射開始 10秒後、図 11 (c) , (d)は、照射開始 20秒後の湾曲部材 2を示している。図に示されるように、レーザ光 照射により湾曲部材 2は図中下方に移動して!/、る。図 11 (a)と図 11 (c)とを比較する と、レーザ光照射後約 20秒間で、湾曲部材 2は約 0. 5mm移動している。このような 肉眼でも認識できる移動量および移動速度は従来実現されていない。このこと力 、 本発明による効果が理解され得る。しかも、波長 685nmの可視光レーザ光で 6. 7m wの出力であるにも関らず、このような移動量および移動速度が得られることから、そ の効果が顕著であるということができる。さらに、湾曲部材 2が有する固有振動数と照 射レーザ光の照射周波数とを一致させれば、湾曲部材 2の変形量をより大きくでき、 具体的には約 20秒間で約 lmmというより速い移動速度の実現できる。 [0040] Fig. 11 (a) shows the curved member 2 immediately after the start of laser beam irradiation, Fig. 11 (b) shows the curved member 2 10 seconds after the start of irradiation, and Figs. 11 (c) and 11 (d) show 20 seconds after the start of irradiation. Is shown. As shown in the figure, the bending member 2 moves downward in the figure by laser light irradiation! Comparing FIG. 11 (a) and FIG. 11 (c), the bending member 2 moves about 0.5 mm in about 20 seconds after the laser beam irradiation. Such movement amount and movement speed that can be recognized with the naked eye have not been realized in the past. From this fact, the effect of the present invention can be understood. Moreover, it is 6.7 m with a visible light laser beam with a wavelength of 685 nm. Since such a movement amount and movement speed can be obtained in spite of the output of w, it can be said that the effect is remarkable. Furthermore, if the natural frequency of the bending member 2 and the irradiation frequency of the irradiation laser light are matched, the deformation amount of the bending member 2 can be increased. Speed can be realized.
[0041] 図 11 (d)は、図 11 (c)と同一である。図 11 (a)、図 11 (c)および図 1 1 (d)を比較す ると、湾曲部材 2は図中反時計回りに回転していることが分かる。この結果は、本発明 にかかる移動デバイスにおいて、レーザ光照射点を調整すれば、湾曲部材 2の移動 方向を非接触制御できることを示している。これも本発明が奏する大きな効果である[0041] FIG. 11 (d) is the same as FIG. 11 (c). Comparing FIG. 11 (a), FIG. 11 (c) and FIG. 11 (d), it can be seen that the bending member 2 rotates counterclockwise in the figure. This result shows that the moving direction of the bending member 2 can be controlled in a non-contact manner by adjusting the laser light irradiation point in the moving device according to the present invention. This is also a great effect achieved by the present invention.
Yes
[0042] 以上、本発明の移動デバイスの一実施形態について説明したが、本発明は上記形 態に限らず、種々の変形が可能である。  [0042] Although one embodiment of the mobile device of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made.
たとえば、上記実施形態では、 2つの分枝部 2b、 2cを有する十字形状の湾曲部材 2を例示した。しかし、図 12 (a)〜(c)に示されように、湾曲部材 2は、上記実施形態 の要部 2a相当部分のみで構成され、平面視で四角形状を有してレ、てもよ!/、(図 12 ( b) )。あるいは、湾曲部材 2は、図 13 (a)〜(c)に示されるように、平面視で矢尻状の 形状を有していてもよい(図 13 (b) )。あるいは、、平面視で Y字や星型の形状を有し ていてもよい。  For example, in the above embodiment, the cross-shaped curved member 2 having two branch portions 2b and 2c is illustrated. However, as shown in FIGS. 12 (a) to 12 (c), the bending member 2 is composed of only the portion corresponding to the main part 2a of the above embodiment, and may have a rectangular shape in plan view. ! /, (Figure 12 (b)). Alternatively, the bending member 2 may have an arrowhead shape in plan view as shown in FIGS. 13 (a) to (c) (FIG. 13 (b)). Alternatively, it may have a Y shape or a star shape in plan view.
[0043] あるいは、湾曲部材 2は、一部のみが湾曲され、その湾曲部分の凹表面側が載置 面に面するように載置されてもよい。たとえば、図 14 (a)〜(c)に示されるように、湾曲 部材 2は、側方視で S字の形状を有していてもよい(図 14 (c) )。あるいは、湾曲部材 2は、側面視で W字の形状を有し、凹表面が下向きに載置されてもよい。さらに、光 の照射を阻害せず、湾曲形状を損なわなけれが、凸表面上に突起を設けてもよい。 微小移動体 (湾曲部材)が他の部材に作用を及ぼす場合、その突起は、他の部材に 対する作用点又は動作点として機能し得る。  Alternatively, the bending member 2 may be placed so that only a part thereof is curved and the concave surface side of the curved portion faces the placement surface. For example, as shown in FIGS. 14 (a) to (c), the bending member 2 may have an S-shape when viewed from the side (FIG. 14 (c)). Alternatively, the bending member 2 may have a W shape in a side view, and the concave surface may be placed downward. Furthermore, a projection may be provided on the convex surface as long as the curved shape is not impaired without inhibiting light irradiation. When the minute moving body (curved member) acts on another member, the protrusion can function as an action point or an operating point on the other member.
[0044] また、湾曲形状は、載置面との少なくとも 2つの接触部分を除いた部分が載置面か ら離隔していれば、特に限定されるものではない。また、湾曲部材は、載置場所に応 じて種々の湾曲状態をとることができる。  [0044] The curved shape is not particularly limited as long as a portion excluding at least two contact portions with the placement surface is separated from the placement surface. Further, the bending member can take various bending states depending on the placement location.
[0045] さらに、湾曲部材は、上述したような第 1弾性層と第 2弾性層とが積層された構成に 限定されない。湾曲部材は、 3層以上の層が積層されて構成されてもよい。具体的に は、湾曲部材は、アルミニウム層、フォトレジスト層、および炭素層の 3層から構成され てもよい。また、第 1弾性層と第 2弾性層とが、異なる形状であってもよい。たとえば、 第 1弾性層は、第 2弾性層の一部を覆えばよい。あるいは、複数の第 1弾性層が、第 2弾性層上に点在して!/、てもよ!/、。 [0045] Further, the bending member has a configuration in which the first elastic layer and the second elastic layer are laminated as described above. It is not limited. The bending member may be configured by laminating three or more layers. Specifically, the bending member may be composed of three layers: an aluminum layer, a photoresist layer, and a carbon layer. Further, the first elastic layer and the second elastic layer may have different shapes. For example, the first elastic layer may cover a part of the second elastic layer. Alternatively, a plurality of first elastic layers may be scattered on the second elastic layer! /!
[0046] 上記実施形態では、光源 3は、波長 685nmのレーザ光を発するレーザダイオード が用いられた。しかし、光源は、湾曲部材に光を照射できれば、その形式は特に限 定されない。さらに、照射光の波長は、 685nmに限定されず、可視域(約 400nmか ら約 700nm)内のいずれの波長であってよい。また、照射光の波長は、赤外波長で あってもよい。 In the above embodiment, the light source 3 is a laser diode that emits laser light having a wavelength of 685 nm. However, the type of the light source is not particularly limited as long as it can irradiate the curved member with light. Further, the wavelength of the irradiation light is not limited to 685 nm, and may be any wavelength within the visible range (about 400 nm to about 700 nm). Further, the wavelength of the irradiation light may be an infrared wavelength.
[0047] また、光源は、赤色光発光ダイオードと、このダイオードからの光を集光して湾曲部 材に照射する集光用レンズとから構成されるものでもよい。このとき、湾曲部材に照射 される光束の強度を所定の周波数で変調するため、レンズと湾曲部材との間にチヨッ パーを設けると好ましい。  [0047] The light source may be composed of a red light emitting diode and a condensing lens that condenses the light from the diode and irradiates the curved member. At this time, in order to modulate the intensity of the light beam applied to the bending member at a predetermined frequency, it is preferable to provide a tipper between the lens and the bending member.
また、上述の湾曲部材の作製方法は、スパッタリングやフォトリソグラフィなどの半導 体製造プロセスを応用した一例であって、種々の変更が可能である。  The above-described method for manufacturing a curved member is an example of applying a semiconductor manufacturing process such as sputtering or photolithography, and various modifications can be made.
[0048] たとえば、第 1弾性層のフォトレジスト層を意図的に加熱して変質させる加熱工程が 別途設けられても良い。これは、アルミニウム膜のスパッタリングに代えて真空蒸着が 採用される場合などに好適である。  [0048] For example, a heating step of intentionally heating and altering the photoresist layer of the first elastic layer may be provided separately. This is suitable when vacuum deposition is employed instead of sputtering of the aluminum film.
[0049] また、シリコン基板(31)上へのフォトレジスト層(32)形成前に基板上に SiO層を  [0049] Further, before forming the photoresist layer (32) on the silicon substrate (31), an SiO layer is formed on the substrate.
2 形成し、この SiO層上にフォトレジスト層を形成してもよい。そして、アルミニウム膜(3  2 and a photoresist layer may be formed on the SiO layer. And aluminum film (3
2  2
3)のエッチングによるパターン化後、マスク(フォトレジスト)層(34a)をアツシングによ り除去し、バッファード'フッ酸を用いて上記 SiO層を除去する。このようにすれば、  After patterning by etching in 3), the mask (photoresist) layer (34a) is removed by ashing, and the SiO layer is removed using buffered hydrofluoric acid. In this way,
2  2
第 1弾性層のフォトレジスト層(32a, 20)の厚さを確実かつ容易に制御することが可 能となる。  The thickness of the photoresist layer (32a, 20) of the first elastic layer can be reliably and easily controlled.
産業上の利用可能性  Industrial applicability
[0050] 本発明は、いわゆる光熱駆動型の自走式マイクロマシンのコア技術として種々の分 野での利用が可能である。具体的には、計測器機、医療機器、工作機器への応用が 可能であり、特に計測器機分野での利用が可能である。 The present invention can be used in various fields as a core technology of a so-called photothermally driven self-propelled micromachine. Specifically, it can be applied to measuring instruments, medical equipment, and machine tools. It can be used, especially in the instrument field.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも第 1弾性層と第 2弾性層とから構成され凹表面た湾曲部材と、  [1] a curved member having at least a concave surface composed of at least a first elastic layer and a second elastic layer;
前記湾曲部材に光を照射する光源とを備え、  A light source for irradiating the bending member with light,
前記湾曲部材が、凹表面を載置面に向けて載置されている微小移動デバイス。  A micro-movement device in which the bending member is placed with the concave surface facing the placement surface.
[2] 前記湾曲部材が、先端部を前記載置面に接触させた複数の分枝部を有しており、 前記各分岐部が、前記湾曲部材に設けられ、前記第 1弾性層および前記第 2弾性 層から構成される、請求項 1に記載の微小移動デバイス。 [2] The bending member has a plurality of branch portions whose tip portions are in contact with the mounting surface, and each of the branch portions is provided in the bending member, and the first elastic layer and the 2. The micro-movement device according to claim 1, comprising a second elastic layer.
[3] 前記第 1弾性層がフォトレジストであり、前記第 2弾性層が金属である、請求項 2に 記載の微小移動デバイス。 3. The micro movement device according to claim 2, wherein the first elastic layer is a photoresist and the second elastic layer is a metal.
[4] 前記金属がアルミニウムである、請求項 3に記載の微小移動デバイス。 4. The micro movement device according to claim 3, wherein the metal is aluminum.
[5] 前記フォトレジスト力 0. 02〜5GPaの硬さと、 0. 7〜170GPaのヤング率とを有す る、請求項 4に記載の微小移動デバイス。 [5] The micro-movement device according to claim 4, wherein the photoresist force has a hardness of 0.02 to 5 GPa and a Young's modulus of 0.7 to 170 GPa.
[6] 前記光源がレーザダイオードを含む、請求項 5に記載の微小移動デバイス。 6. The micro movement device according to claim 5, wherein the light source includes a laser diode.
[7] 前記光源が、前記湾曲部材に照射する光の強度を変調する変調器を更に含む、 請求項 6に記載の微小移動デバイス。 7. The micro-movement device according to claim 6, wherein the light source further includes a modulator that modulates intensity of light applied to the bending member.
[8] 第一層と第二層とが積層されてなる微小移動デバイスの製造方法であり、 [8] A method for manufacturing a micro-movement device in which a first layer and a second layer are laminated,
基板の表面にフォトレジスト層を形成し、  Form a photoresist layer on the surface of the substrate,
前記フォトレジスト層をパターン化して前記第一層を形成し、  Patterning the photoresist layer to form the first layer;
前記基板の表面および前記第一層を覆う金属層を形成し、  Forming a metal layer covering the surface of the substrate and the first layer;
前記金属層をパターン化して前記第一層上に前記第二層を形成する。  The metal layer is patterned to form the second layer on the first layer.
[9] 前記第一層が加熱される、請求項 8に記載の微小移動体の製造方法。 [9] The method for manufacturing a micro movable body according to [8], wherein the first layer is heated.
[10] 第 1弾性層および第 2弾性層で構成されるカンチレバーと、 [10] a cantilever composed of a first elastic layer and a second elastic layer;
前記カンチレバーに光を照射する光源とを備え、  A light source for irradiating the cantilever with light,
前記第 1弾性層が、 0. 02〜5GPaの硬さと 0. 7〜; 170GPaのヤング率とを有する フォトレジストからなり、  The first elastic layer is made of a photoresist having a hardness of 0.02 to 5 GPa and a Young's modulus of 170 GPa;
前記第 2弾性層が、アルミニウムからなる微小移動デバイス。  The micro movement device in which the second elastic layer is made of aluminum.
PCT/JP2007/066796 2006-08-31 2007-08-29 Micromovement device and method of producing the same WO2008026652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-236631 2006-08-31
JP2006236631A JP4753815B2 (en) 2006-08-31 2006-08-31 Micro moving body device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2008026652A1 true WO2008026652A1 (en) 2008-03-06

Family

ID=39135934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066796 WO2008026652A1 (en) 2006-08-31 2007-08-29 Micromovement device and method of producing the same

Country Status (2)

Country Link
JP (1) JP4753815B2 (en)
WO (1) WO2008026652A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107934904B (en) 2016-10-12 2019-07-12 清华大学 A kind of actuator and actuating system based on carbon nanotube
CN107933911B (en) 2016-10-12 2019-07-12 清华大学 A kind of bionic insect
CN107932475B (en) 2016-10-12 2019-07-12 清华大学 A kind of bionic arm and the robot using the bionic arm
CN107946451B (en) 2016-10-12 2019-07-12 清华大学 A kind of temperature sensing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173360A (en) * 1988-12-26 1990-07-04 Matsushita Electric Ind Co Ltd Micromechanism
JPH04500045A (en) * 1988-12-09 1992-01-09 フラウンホファー―ゲゼルシャフト ツア フェルデルング デア アンゲバンテン フォルシュング アインゲトラゲナー フェライン micromechanical manipulator
JP2001341223A (en) * 2000-06-02 2001-12-11 Hiroshi Yui Mobile polymeric molded object, polymeric operating element, and applied product thereof
JP2005194953A (en) * 2004-01-08 2005-07-21 Hitachi Cable Ltd Heat driving type actuator, its manufacturing method and optical fiber fastening implement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500045A (en) * 1988-12-09 1992-01-09 フラウンホファー―ゲゼルシャフト ツア フェルデルング デア アンゲバンテン フォルシュング アインゲトラゲナー フェライン micromechanical manipulator
JPH02173360A (en) * 1988-12-26 1990-07-04 Matsushita Electric Ind Co Ltd Micromechanism
JP2001341223A (en) * 2000-06-02 2001-12-11 Hiroshi Yui Mobile polymeric molded object, polymeric operating element, and applied product thereof
JP2005194953A (en) * 2004-01-08 2005-07-21 Hitachi Cable Ltd Heat driving type actuator, its manufacturing method and optical fiber fastening implement

Also Published As

Publication number Publication date
JP2008057470A (en) 2008-03-13
JP4753815B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US7927089B2 (en) Mold, apparatus including mold, pattern transfer apparatus, and pattern forming method
JP4810319B2 (en) Processing apparatus and device manufacturing method
TWI609836B (en) Method for manufacturing spatial light modulation component, spatial light modulation component, spatial light modulator and exposure device
JP6465577B2 (en) Imprint apparatus and article manufacturing method
WO2008026652A1 (en) Micromovement device and method of producing the same
TWI335490B (en) Nano-imprinting process
TWI586223B (en) Radiation source fuel droplet stream generator, lithographic apparatus and method of promoting coalescence of radiation source fuel droplets
JP2002008974A (en) Projection lithography system, method of determining position of alignment mark of substrate, method of manufacturing apparatus, and device manufactured by the method
JP2021531510A (en) How to operate mirrors for microlithography projection exposure equipment and deformable mirrors
JPH06241777A (en) Cantilever for atomic force microscope, manufacture thereof, atomic force microscope and sample surface adhesion evacuation using this cantilever
JP2013095993A (en) Method for manufacturing mask
WO2007145025A1 (en) Optical element and optical device
JP2004252123A (en) Photomask for proximity field exposure
TWI781557B (en) Euv pellicle and mounting and de-mounting method thereof on photo mask
JP2005039204A (en) Exposure method and equipment, exposure mask and manufacturing method of device
US7882701B2 (en) Microfabricated mechanical frequency multiplier
JP4776490B2 (en) Device manufacturing method and exposure apparatus
JP6604793B2 (en) Imprint apparatus and article manufacturing method
JP4559928B2 (en) Cantilever
Huang et al. Elimination of stress-induced curvature in microcantilever infrared focal plane arrays
JP6178694B2 (en) Imprint apparatus and article manufacturing method
JP5379636B2 (en) Imprint apparatus and article manufacturing method
JP2005064099A (en) Near-field exposure mask and method of manufacturing the same
US7214950B2 (en) Transition radiation apparatus
JP6736365B2 (en) Manufacturing method of watch parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07806273

Country of ref document: EP

Kind code of ref document: A1