WO2008026537A1 - Power generator for faucet - Google Patents

Power generator for faucet Download PDF

Info

Publication number
WO2008026537A1
WO2008026537A1 PCT/JP2007/066540 JP2007066540W WO2008026537A1 WO 2008026537 A1 WO2008026537 A1 WO 2008026537A1 JP 2007066540 W JP2007066540 W JP 2007066540W WO 2008026537 A1 WO2008026537 A1 WO 2008026537A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
faucet
magnet
flow path
rotor blade
Prior art date
Application number
PCT/JP2007/066540
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Onodera
Tomoko Sato
Masahiro Kuroishi
Makoto Hatakeyama
Takeshi Shimizu
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007202697A external-priority patent/JP4882904B2/en
Application filed by Toto Ltd. filed Critical Toto Ltd.
Publication of WO2008026537A1 publication Critical patent/WO2008026537A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/08Jet regulators or jet guides, e.g. anti-splash devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to a faucet generator that generates electric power using a flow of water supply.
  • Patent Document 1 discloses a power generation device in which an axial flow type water turbine having blade portions is provided in a flow path through which a fluid flows.
  • a substantially cylindrical magnet is fixed on the outer peripheral side of the blade portion of the water turbine, and a coil for generating an electromotive force by rotating the magnet is disposed on the downstream side of the magnet.
  • a jet port is formed to increase the flow velocity of the water flow applied to the water turbine and to make the water flow swirl with respect to the axial direction of the water turbine. It flows through the space between the blade of the turbine and the inner peripheral surface of the magnet, and gives the turbine a rotational force.
  • Patent Document 1 a swirling flow having a large amount of components in the distal direction (outer diameter direction) in which the outlet width of the jet nozzle and the inlet width to the turbine are substantially equal flows into the turbine.
  • conversion from hydraulic energy to rotational energy is achieved by reducing pressure flow due to collision with the inner peripheral surface of the magnet and reducing the flow rate flowing through the water turbine by increasing the proportion of the water flow flowing on the outer periphery of the magnet.
  • Patent Document 1 JP 2004-336982 A
  • the present invention provides a faucet generator that suppresses a wasteful flow that does not give rotational force to a moving blade and improves power generation efficiency.
  • the feed water flow has a central axis that is substantially parallel to the feed water flow path, and a plurality of blade blade portions on the circumferential surface, and is rotatable about the central axis.
  • a pre-rotating static blade having a peripheral surface with a moving blade provided on a road and a plurality of stationary blade blade portions provided on the upstream side of the moving blade with a gap with respect to the moving blade and providing a rotating flow to the moving blade.
  • a faucet generator is provided, characterized in that the center of the blade flow path formed between them is located in the radially outward direction.
  • FIG. 1 is a schematic cross-sectional view showing the inside of a faucet generator according to a first specific example of the present invention.
  • FIG. 2 is a schematic diagram showing an example of attachment of the automatic faucet device with a generator according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the internal configuration of the automatic water faucet device.
  • FIG. 4 is a perspective view of a pre-turning stationary blade, a moving blade, and a bearing in a faucet generator according to a first specific example of the present invention.
  • FIG. 5 is a schematic perspective view showing an arrangement relationship between magnets and yoke pole teeth in the faucet generator according to the first specific example.
  • Fig. 6 is a graph showing the relationship between the ratio of the inlet width of the rotor blade flow passage and the ratio of pressure loss.
  • Fig. 7 is a graph showing the relationship between the inlet width ratio of the rotor blade flow path and the ratio of loss outflow.
  • Fig. 8 is a graph showing the relationship between the ratio of the inlet width of the rotor blade passage and the ratio of the impeller efficiency.
  • FIG. 9 is a schematic cross-sectional view showing the inside of a faucet generator according to a second specific example of the present invention.
  • FIG. 10 is a schematic perspective view showing a coil in a faucet generator according to the second specific example.
  • FIG. 11 is an exploded perspective view of the coil shown in FIG.
  • FIG. 12 shows a magnet and yoke pole teeth in the faucet generator according to the second specific example.
  • FIG. 13 is a schematic cross-sectional view showing the inside of a faucet generator according to a third specific example of the present invention.
  • FIG. 14 is a schematic diagram showing a specific example of the installation position of the generator in the faucet device according to the embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a specific example of the installation position of the generator and a usage example of the generated power in the faucet device according to the embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing a specific example of the installation position of the generator and the usage example of the generated power in the faucet device according to the embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an example of attachment of the automatic faucet device with a generator (hereinafter also simply referred to as an automatic faucet device) according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the internal configuration of the automatic faucet device.
  • the automatic faucet device 3 is attached to a wash basin 2, for example.
  • the automatic faucet device 3 is connected to an inlet 5 for tap water or the like via a pipe 4.
  • the automatic water faucet device 3 includes a cylindrical main body 3a and a water discharge portion 3b that extends in a radially outward direction of the main body 3a and is provided on the upper portion of the main body 3a.
  • the main body 3a and the water discharger 3b constitute a faucet fitting.
  • a water discharge port 6 is formed at the tip of the water discharge part 3 b, and a sensor 7 is built in the vicinity of the water discharge port 6.
  • a water supply passage 10 is formed that guides water supplied from the inlet 5 and flowing through the pipe 4 to the water outlet 6.
  • a solenoid valve 8 that opens and closes the water supply flow path 10, and a constant flow valve 55 that restricts the amount of water discharge to a constant downstream of the solenoid valve 8.
  • a pressure reducing valve or a pressure regulating valve (not shown) for reducing pressure when the water supply source pressure is too higher than the working pressure is built in upstream of the solenoid valve 8.
  • a constant flow valve 55, a pressure reducing valve, and a pressure regulating valve are provided as needed.
  • a faucet generator 11 is built in the water discharger 3b downstream of the constant flow valve 55. Inside the main body 3a, a charger 56 for charging the electric power generated by the faucet generator 11 and a controller 57 for controlling the driving of the sensor 7 and the opening / closing of the electromagnetic valve 8 are provided. Since the faucet generator 11 is disposed downstream of the solenoid valve 8 and the constant flow valve 55, the water supply pressure (primary pressure) does not act directly on the faucet generator 11. Therefore, the faucet generator 11 is not required to have such a high pressure resistance, and is advantageous in terms of reliability and cost.
  • FIG. 1 is a schematic cross-sectional view showing the inside of a faucet generator according to a first specific example of the present invention.
  • Fig. 4 is a perspective view of the pre-swivel stationary blade 14, rotor blade 15 and bearing 17 in the faucet generator.
  • Fig. 5 shows the magnet Ml and yoke pole teeth 33c and 34a in the faucet generator.
  • FIG. 6 is a schematic perspective view showing an arrangement relationship.
  • the faucet generator according to this specific example mainly includes a cylindrical body 13, a pre-turning stationary blade 14, a moving blade 15, a magnet Ml, and a coil 9, which are shown in FIG. Housed in twelve
  • the cylindrical body 13 has a stepped shape including a small-diameter portion 13a and a large-diameter portion 13b, and is incorporated in the water discharge portion 3b illustrated in FIGS. 2 and 3 in a state where the inside communicates with the water supply channel.
  • the central axis direction of the cylinder 13 is installed so as to be substantially parallel to the flowing water direction.
  • the cylindrical body 13 is arranged with the small diameter portion 13a facing the upstream side and the large diameter portion 13b facing the downstream side.
  • a pre-turning stationary blade 14 Inside the cylinder 13, a pre-turning stationary blade 14, a moving blade 15, and a bearing 17 are provided in this order from the upstream side.
  • the pre-turning stationary blade 14 is provided inside the small diameter portion 13a, and the moving blade 15 and the bearing 17 are provided inside the large diameter portion 13b.
  • the pre-turning stationary blade 14 has a shape in which a conical body is integrally provided on one end surface (a surface located on the upstream side) of the cylindrical body.
  • a plurality of protruding stationary vane blade portions 18 projecting outward in the radial direction are provided on the circumferential surface of the pre-turning stationary vane 14. As shown in FIG. 4, the stationary blade vane 18 is inclined from the upstream side to the downstream side while twisting rightward with respect to the axial center of the pre-rotating stationary blade 14.
  • the pre-turning stationary blade 14 is fixed to the cylindrical body 13.
  • a moving blade 15 is provided on the downstream side of the pre-turning stator blade 14 with a gap (for example, 0.55 mm) from the pre-turning stator blade 14.
  • the rotor blade 15 has a cylindrical shape, and a plurality of protrusion-like rotor blade blade portions 19 projecting radially outward are provided on the peripheral surface thereof. As shown in FIG. 4, the rotor blade portion 19 is inclined to the downstream side from the upstream side while twisting leftward with respect to the axial center, contrary to the stationary blade portion 18.
  • the rotor blade 15 is supported on a bearing 17 fixed to the cylindrical body 13 via a central shaft 24 substantially parallel to the water supply flow path.
  • the rotor blade 15 is rotatable around the central axis 24.
  • the bearing 17 is provided on the downstream side of the moving blade 15 with a gap from the moving blade 15.
  • the opening at the downstream end of the cylindrical large-diameter portion 13b is liquidated by the sealing member 51 via the O-ring 52. Closely closed.
  • a stepped hole is formed inside the sealing member 51, the stepped portion 51a is formed in an annular shape, and the bearing 17 is supported on the stepped portion 51a.
  • a ring member 21 supported on a step portion 51a inside the sealing member 51 and a shaft support portion 22 provided in the center of the ring member 21 are provided radially. It is connected by a connecting member 23 (FIG. 4).
  • the connecting member 23 penetrates without blocking, so the flow of the water supply inside the cylinder 13 is not hindered! /.
  • a center shaft 24 fixed to the shaft center of the rotor blade 15 is rotatably supported.
  • the tip of the central shaft 24 protrudes from the moving blade 15 and is fitted into the pre-turning stationary blade 14.
  • the tip end portion of the central shaft 24 and the pre-turning stationary blade 14 are not fixed to each other, and the central shaft 24 is rotatable with respect to the pre-turning stationary blade 14 fixed to the cylindrical body 13.
  • both end portions of the central shaft 24 may be fixed to the shaft support portion 22 and the pre-turning stationary blade 14 and the moving blade 15 may be fitted to the central shaft 24 so as to be rotatable.
  • the pre-swirling static dimension in which the radial dimension between the central shaft 24 and the peripheral surface of the pre-rotating stationary blade 14 and the radial dimension between the central shaft 24 and the peripheral surface of the moving blade 15 are substantially equal.
  • the peripheral surface of the blade 14 and the peripheral surface of the rotor blade 15 are substantially flush when viewed in the axial direction.
  • the protruding width of the stationary blade blade 18 in the radially outward direction is substantially the same from the upstream side to the downstream side.
  • the protruding width of the rotor blade blade portion 19 in the radially outward direction is substantially the same from the upstream side to the downstream side.
  • the moving blade blade portion 19 has a larger protruding width than the stationary blade blade portion 18, and the moving blade blade portion 19 protrudes outward in the radial direction from the stationary blade blade portion 18.
  • the outer peripheral portion 18 a of the stationary blade blade portion 18 protrudes in the radially outward direction from the inner peripheral portion 19 a of the moving blade blade portion 19.
  • a space between the adjacent stationary blade blade portions 18 as viewed in the circumferential direction functions as a stationary blade channel 71.
  • the space between adjacent blade blades 19 as viewed in the circumferential direction functions as a blade flow path 72.
  • the center C2 in the width direction (radial direction) in the rotor blade flow path 72 is positioned more radially outward than the center C 1 in the width direction (radial direction) in the stationary blade flow path 71. is doing.
  • the outlet of the stationary blade channel 71 faces the inlet of the moving blade channel 72 with a gap (for example, 0.55 mm).
  • the inlet width b of the rotor blade channel 72 is larger than the outlet width a of the stator blade channel 71! /.
  • a cylindrical magnet Ml fixed to the rotor blade blade portion 19 so as to surround the rotor blade flow path 72 is accommodated inside the large-diameter portion 13b of the cylindrical body 13.
  • the inner peripheral surface of the blade Ml is fixed to the side end portion of the rotor blade blade portion 19.
  • a coil 9 is disposed outside the large-diameter portion 13b so as to face the upstream end surface of the magnet Ml.
  • the coil 9 may be disposed so as to face the downstream end surface of the magnet Ml, or a pair of coils 9 may be disposed facing both the upstream and downstream end surfaces of the magnet Ml. Moyore.
  • the coil 9 includes a cylindrical yoke 31 shown in FIG. 5, and a coil wiring portion (not shown) disposed inside the yoke 31.
  • the yoke 31 has three yokes 3 made of magnetic material.
  • the yoke 33 has a peripheral surface portion 33b facing the peripheral surface portion of the coil wiring portion accommodated therein, and a plurality of pole teeth 33a facing the magnet Ml.
  • the plurality of pole teeth 33a project inward in the diameter and are provided integrally with the peripheral surface portion 33b, and are provided at equal intervals along the circumferential direction.
  • the yoke 34 has a plurality of pole teeth 34 a that protrude in the radially outward direction and are disposed between the pole teeth 33 a of the yoke 33.
  • the pole teeth 33a and 34a are opposed to the yoke 32 with the coil wiring portion housed inside interposed therebetween.
  • N poles and S poles are alternately magnetized along the circumferential direction.
  • solenoid valve 8 opens solenoid valve 8.
  • running water is supplied to the inside of the cylinder 13 of the faucet generator 11, and the water flowing inside the cylinder 13 is discharged from the water outlet 6.
  • the solenoid valve 8 is closed and the water stops automatically.
  • the flowing water flowing into the cylindrical body 13 flows on the surface of the conical body of the pre-swirl stationary blade 14 and is diffused in the radially outward direction.
  • the swirl flow is swirling in the right direction and flows through the vane channel 71 between the vane blades 18.
  • the swirl flow that has flowed through the stationary blade flow path 71 flows into the moving blade flow path 72 and collides with the upper inclined surface of the moving blade blade portion 19.
  • the swirl flow that flows into the blade flow path 72 is a flow swirled in the right direction with respect to the axial center.
  • Wing 15 rotates clockwise.
  • the flowing water flowing through the rotor blade flow path 72 passes through the inside of the bearing 17, passes through the inside of the cylindrical body 13, and reaches the water discharge port 6.
  • the space surrounded by the stationary blade blade 18 and the inner peripheral surface of the cylinder 13 functions as the stationary blade channel 71, and the flowing water flows through the stationary blade channel 71 as described above. As a result, a rotating flow is formed.
  • This swirling flow flows into the rotor blade flow path 72, which is a space surrounded by the rotor blade blade portion 19 and the inner peripheral surface of the magnet Ml, and gives rotational force to the rotor blade 15.
  • the flowing water flowing into the moving blade flow path 72 is a swirling flow
  • the flowing water flowing into the moving blade flow path 72 has a component that collides with the magnet Ml provided on the outer diameter side of the moving blade flow path 72.
  • the blade blade 19 project radially outward from the stationary blade blade 18 and ensure that the outlet width a of the stationary blade channel 71 is wider! /, And the inlet width b of the blade channel 72 is secured.
  • the ratio of the moving blade channel inlet width to the stationary blade channel outlet width is 1.0, 1.5, 2.0, 2.
  • the vane channel has the same radial width from the upstream inlet to the downstream outlet.
  • the moving blade channel has a radial width from the upstream inlet to the downstream outlet. The width was the same.
  • the loss flow rate means that the flowing water that has passed through the stationary blade channel 71 passes through the gap between the magnet Ml and the inner wall surface of the cylindrical body 13 without passing through the moving blade channel 72. This represents the flow rate.
  • the impeller efficiency is the ratio of the energy of the given water stream that has been converted to rotational energy.
  • the horizontal axis represents the ratio of the moving blade channel inlet width to the stationary blade channel outlet width
  • the vertical axis represents the pressure loss when the moving blade channel inlet width ratio is 1.0.
  • the ratio is 100 (%)
  • the ratio of pressure loss when the blade flow path inlet width ratio is 1.5, 2.0, 2.5 is shown.
  • the horizontal axis represents the ratio of the rotor blade channel inlet width to the stationary blade channel outlet width
  • the vertical axis represents the ratio of the loss flow rate when the rotor blade channel inlet width ratio is 1.0.
  • (%) represents the ratio (%) of the loss flow rate when the blade flow path inlet width ratio is 1.5, 2.0, or 2.5.
  • the horizontal axis represents the ratio of the rotor blade channel inlet width to the stationary blade channel outlet width
  • the vertical axis represents the ratio of the impeller efficiency when the rotor blade channel inlet width ratio is 1.0.
  • 100 (%) represents the ratio (%) of the impeller efficiency when the blade passage inlet width ratio is 1.5, 2.0, or 2.5.
  • the pressure loss is the smallest when the blade flow path inlet width ratio is 2.0.
  • the force from the graph in Fig. 7 is that the width of the inlet of the rotor blade channel is increased, so that it passes through the gap between the magnet and the cylinder wall surface without passing through the rotor blade channel.
  • the impeller efficiency is the best when the blade flow path inlet width ratio is 2.0.
  • the blade passage width is preferably 1.5 times or more and 2.5 times or less than the width of the stationary blade passage.
  • the inlet width dimension of the rotor blade flow path can be as follows: 1. Omm.
  • FIG. 9 is a schematic sectional view showing the inside of the faucet generator according to the second specific example of the present invention.
  • FIG. 10 is a schematic perspective view showing the coil 16 in the faucet generator.
  • FIG. 11 is an exploded perspective view of the coil 16 shown in FIG.
  • FIG. 12 is a schematic plan view showing an arrangement relationship between the magnet M2 and the yoke pole teeth 25c and 26b in the faucet generator.
  • the positional relationship between the magnet M2 and the coil 16 is different from that of the first specific example.
  • a cylindrical magnet M2 fixed to the rotor blade blade portion 19 so as to surround the rotor blade flow path 72 is accommodated inside the large-diameter portion 13b of the cylindrical body 13.
  • a coil 16 is disposed outside the large-diameter portion 13b in the radially outward direction so as to face the outer peripheral surface of the magnet M2.
  • Coinole 16 includes a pair of yokes 25 and 26 shown in FIGS. And a coil wiring portion 16a disposed in an annular space formed by mating.
  • the yokes 25 and 26 are both made of a magnetic material.
  • the yoke 25 has an annular portion 25a facing one end surface portion of the coil wiring portion 16a, and a peripheral surface portion 25b facing the peripheral surface portion of the coil wiring portion 16a, and further, an inner peripheral edge portion of the annular portion 25a Is provided with a plurality of pole teeth 25c projecting in the axial direction.
  • the yoke 26 has an annular portion 26a facing the other end surface portion of the coil wiring portion 16a, and a plurality of pole teeth 26b provided on the inner peripheral edge portion of the annular portion 26a so as to protrude in the axial direction.
  • the pole teeth 25c of the yoke 25 are provided at equal intervals along the circumferential direction, and the pole teeth 26b of the yoke 26 are also provided at equal intervals along the circumferential direction. As shown in FIG. The pole teeth of the other yoke are positioned between the pole teeth of the yoke, and the pole teeth 25c and 26b of both yokes 25 and 26 face the inner peripheral surface of the coinore spring part 16a.
  • the magnet M2 has N poles and S poles alternately magnetized in the circumferential direction, and the pole teeth 25c and 26b of the yokes 25 and 26 are cylindrical bodies. Opposite the N or S pole of the magnet M2 with 13 tube walls in between.
  • the coil spring portion 16a faces the magnet M2 with the pole teeth 25c and 26b and the tube wall of the cylindrical body 13 interposed therebetween.
  • the magnet M2 fixed to the rotating blade 15 also rotates.
  • the magnet M2 is magnetized with alternating N and S poles along the circumferential direction, so the pole teeth of the yokes 25 and 26 facing the magnet M2
  • the polarity of 25c and 26b changes. That is, when the yoke 25 is the N pole, the yoke 26 is the S pole, and when the yoke 25 is the S pole, the yoke 26 is the N pole.
  • An electromotive force is generated in part 16a to generate electricity.
  • FIG. 13 is a schematic cross-sectional view showing the inside of a faucet generator according to a third specific example of the present invention.
  • the pre-turning stationary blade 14, the moving blade 15, the magnet M3, and the bearing 17 are arranged in the cylindrical body 13 in this order from the upstream side in the direction in which the feed water flows. It is installed.
  • the magnet M3 has a cylindrical shape and is provided on the downstream side of the moving blade 15 so as to be separated from the moving blade 15.
  • the central shaft 24 fixed to the shaft center of the moving blade 15 and rotatably supported on the bearing 17 passes through the hollow portion of the magnet M3, and extends radially to the central shaft 24.
  • the magnet mounting member 36 is fixed via a plurality of connecting members 35.
  • the magnet mounting member 36 includes a ring-shaped plate portion 37 and a cylindrical portion 38 that is provided integrally with the edge of the central hole of the plate portion 37 and extends toward the upstream side.
  • the magnet M3 is fixed on the plate portion 37 by fitting the hollow portion thereof to the outer peripheral surface of the cylindrical portion 38 of the magnet mounting member 36. Therefore, the magnet M3 is fixed to the moving blade 15 via the magnet mounting member 36 and the central shaft 24, and when the moving blade 15 rotates, the magnet M3 rotates together with the moving blade 15. To do.
  • both end portions of the central shaft 24 may be fixed to the shaft support portion 22 and the pre-turning stationary blade 14, respectively, and the moving blade 15 may be fitted so as to be rotatable with respect to the central shaft 24.
  • the connecting member 35 of the magnet mounting member 36 is engaged with the central shaft 24 so as to be rotatable around the central shaft 24, and the upper end of the cylindrical portion 38 is fixed to the rotor blade 15. Therefore, when the rotor blade 15 rotates, the magnet M3 rotates around the central axis 24 together with the magnet mounting member 36.
  • two coils 16 are provided on the outer peripheral surface of the cylindrical body 13 so as to face the magnet M3 in accordance with the axial length of the magnet M3.
  • the coil 16 has the same configuration as the second specific example described above, and the magnet M3 is the same as the magnet M2 of the second specific example.
  • the north and south poles are alternately magnetized along the circumferential direction, and the principle of power generation by rotating the magnet M3 is the same as in the second example.
  • the space surrounded by the stationary blade blade 18 and the inner peripheral surface of the cylinder 13 functions as the stationary blade channel 71, and the moving blade blade 19 and the inner peripheral surface of the cylindrical body 13
  • the enclosed space functions as the blade flow path 72.
  • a swirling flow is formed by flowing water through the stationary blade channel 71, and this swirling flow flows into the moving blade channel 72 and gives a rotating force to the moving blade 15.
  • the flowing water flowing through the rotor blade flow path 72 passes through the hollow portion of the magnet M3 and the inside of the bearing 17, passes through the inside of the cylindrical body 13, and reaches the water discharge port 6.
  • the flowing water flowing into the blade flow path 72 is a swirling flow
  • the flowing water flowing into the moving blade flow path 72 collides with the inner peripheral surface of the cylindrical body 13 located outside the moving blade flow path 72.
  • the center C2 of the rotor blade flow path 72 in the radially outward direction from the center C1 of the stationary blade flow path 71, the flow that flows out of the stationary blade flow path 71 and spreads in the radially outward direction.
  • the force S can be received efficiently by the rotor blade 15.
  • the blade blade 19 project radially outward from the stationary blade blade 18 and ensure that the outlet width a of the stationary blade channel 71 is wider! /, And the inlet width b of the blade channel 72 is secured.
  • a moving blade ring may be provided on the moving blade 15 so as to surround the peripheral surface of the moving blade 15.
  • the faucet generator 11 is not limited to being provided inside the faucet fitting of the faucet device 3.
  • a pipe connecting the faucet fitting (the main body 3a and the water discharge part 3b) of the faucet device 3 and a stop cock (main plug) 105 provided on the upstream side of this. (Channel) 4 may be provided.
  • the generator 11 is disposed under the counter 2 such as a washstand.
  • the solenoid valve 8 that opens and closes the water supply channel connected to the water outlet 6 of the faucet device 3 is not limited to being provided inside the faucet fitting.
  • the stop cock 105 and the generator 11 It may be provided in a pipe (flow path) 4 between the two.
  • the faucet generator of the present invention is provided in the flow path between the stop cock (main plug) 105 and the spout 6 of the faucet device 3, and the spout 105 of the faucet device 3 is discharged from the faucet 105.
  • Power is generated by the hydropower of the flowing water that flows toward the water inlet 6.
  • the faucet device include kitchen faucets, living / dining faucets, shower faucets, toilet faucets, toilet faucets, and the like.
  • the discharge flow rate is set to 100 liters per minute or less, preferably 30 liters or less, for example. In particular, it is desirable for toilet faucets to be set at 5 liters per minute or less.
  • the water flow flowing from the water supply pipe to the generator 11 can be branched to adjust the flow rate flowing through the generator 11 to 30 liters per minute or less. desirable. This is because there is a concern that if all the water flow from the water supply pipe flows to the generator 11, the rotational speed of the rotor blade 15 increases, noise and shaft wear may increase, and even if the rotational speed increases. This is because, if the rotational speed is not less than the proper value, energy loss will occur due to eddy current and coil heat, and the power generation will not increase.
  • the water supply pressure of the water pipe to which the faucet fitting is attached may be as low as 0.05 (MPa) in Japan, for example.
  • the present invention is not limited to an automatic faucet using a human body detection sensor.
  • a one-touch faucet by turning on / off a manual operation unit or a manual switch 3c, and a flow rate can be used. It can also be applied to fixed water faucets that stop and stop and timer faucets that stop when a set time has elapsed.
  • the generated electric power is converted into the lighting 101 for lighting up provided in the faucet device 3 as shown in FIG. 15 or other electrolytic function water such as alkali ion water or silver ion-containing water.
  • Generation flow rate display (metering), temperature display, voice guide, etc.
  • the electric power generated by the generator 11 may be supplied to the human body detection sensor 102 provided on the ceiling of the washroom.
  • the electric power generated by the generator 11 may be used for the operation of a gas sensor, a microwave sensor, a door opening / closing mechanical sensor, and the like.
  • a faucet generator that suppresses a wasteful flow that does not give a rotating force to a moving blade and improves power generation efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Domestic Plumbing Installations (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A power generator for a faucet comprising a central shaft substantially parallel with the water supply channel, a rotor blade having a plurality of rotor blade portions on the circumferential surface and provided in the water supply channel rotatably about the central shaft, a prewhirl stator blade provided on the upstream side of the rotor blade through a gap between them and having a plurality of stator blade portions for imparting a swirling flow to the rotor blade on the circumferential surface, a magnet rotatable integrally with the rotor blade, and a coil opposing the magnet, characterized in that the center of a rotor blade channel formed between the rotor blade portions is located radially outside of the center of a stator blade channel formed between the stator blade portions. Useless flow not imparting a torque to the rotor blade is suppressed and power generation efficiency can be enhanced.

Description

明 細 書  Specification
水栓用発電機  Faucet generator
技術分野  Technical field
[0001] 本発明は、給水の流れを利用して発電する水栓用発電機に関する。  TECHNICAL FIELD [0001] The present invention relates to a faucet generator that generates electric power using a flow of water supply.
背景技術  Background art
[0002] 従来より、蛇口の下に手を差し出すことによって、これをセンサが感知し、蛇口から 水を自動的に吐水する自動水栓装置が知られている。また、そのような自動水栓装 置の流路に小型発電機を配設し、この発電機で得られた電力を蓄電しておき、上述 のセンサ等の回路の電力を補う装置も知られて!/、る。  Conventionally, there has been known an automatic faucet device in which a sensor senses this by putting a hand under the faucet and water is automatically discharged from the faucet. There is also known a device in which a small generator is disposed in the flow path of such an automatic water faucet device, the electric power obtained by this generator is stored, and the electric power of the circuit such as the sensor described above is supplemented. /!
[0003] 例えば、特許文献 1には、流体が流通する流路に、羽根部を有する軸流式の水車 を設けた発電装置が開示されている。水車の羽根部の外周側には、略円筒状のマグ ネットが固定され、このマグネットの下流側にマグネットの回転により起電力を発生す るコイルが配設されている。水車の上流側には、水車にあてる水流の流速を高めると ともに、その水流が水車の軸方向に対して旋回するようにする噴流口が形成され、そ の噴流口を流れた旋回流は、水車の羽根部とマグネット内周面との間の空間を流れ て、水車に回転力を与える。  [0003] For example, Patent Document 1 discloses a power generation device in which an axial flow type water turbine having blade portions is provided in a flow path through which a fluid flows. A substantially cylindrical magnet is fixed on the outer peripheral side of the blade portion of the water turbine, and a coil for generating an electromotive force by rotating the magnet is disposed on the downstream side of the magnet. At the upstream side of the water turbine, a jet port is formed to increase the flow velocity of the water flow applied to the water turbine and to make the water flow swirl with respect to the axial direction of the water turbine. It flows through the space between the blade of the turbine and the inner peripheral surface of the magnet, and gives the turbine a rotational force.
[0004] しかし、特許文献 1では、噴流口の出口幅と、水車への流入口幅とが略等しぐ遠 心方向(径外方向)への成分を多く持った旋回流が水車に流入する際、マグネット内 周面に衝突することによる圧力損失や、マグネットの外周側を流れる水流の割合が高 くなり水車を流れる流量が低減することなどにより、水力エネルギーから回転エネル ギ一への変換効率が悪ぐ発電効率の向上が期待できない。 [0004] However, in Patent Document 1, a swirling flow having a large amount of components in the distal direction (outer diameter direction) in which the outlet width of the jet nozzle and the inlet width to the turbine are substantially equal flows into the turbine. In this case, conversion from hydraulic energy to rotational energy is achieved by reducing pressure flow due to collision with the inner peripheral surface of the magnet and reducing the flow rate flowing through the water turbine by increasing the proportion of the water flow flowing on the outer periphery of the magnet. We cannot expect improvement of power generation efficiency that efficiency is bad.
特許文献 1 :特開 2004— 336982号公報  Patent Document 1: JP 2004-336982 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、動翼に回転力を与えない無駄な流れを抑制し、発電効率を向上させた 水栓用発電機を提供する。 [0005] The present invention provides a faucet generator that suppresses a wasteful flow that does not give rotational force to a moving blade and improves power generation efficiency.
課題を解決するための手段 [0006] 本発明の一態様によれば、給水流路に対して略平行な中心軸と、周面に複数の動 翼羽根部を有し、前記中心軸のまわりに回転可能に前記給水流路に設けられる動 翼と、前記動翼に対して間隙を隔てて前記動翼の上流側に設けられ、前記動翼に旋 回流を与える複数の静翼羽根部を周面に有する予旋回静翼と、前記動翼と一体に 回転可能なマグネットと、前記マグネットに対向するコイルと、を備え、前記静翼羽根 部間に形成される静翼流路の中心よりも、前記動翼羽根部間に形成される動翼流路 の中心の方が径外方向に位置していることを特徴とする水栓用発電機が提供される 図面の簡単な説明 Means for solving the problem [0006] According to one aspect of the present invention, the feed water flow has a central axis that is substantially parallel to the feed water flow path, and a plurality of blade blade portions on the circumferential surface, and is rotatable about the central axis. A pre-rotating static blade having a peripheral surface with a moving blade provided on a road and a plurality of stationary blade blade portions provided on the upstream side of the moving blade with a gap with respect to the moving blade and providing a rotating flow to the moving blade. A blade that includes a blade, a magnet that can rotate integrally with the blade, and a coil that faces the magnet, and the blade portion of the blade more than a center of a stationary blade channel formed between the blade portions. A faucet generator is provided, characterized in that the center of the blade flow path formed between them is located in the radially outward direction.
[0007] [図 1]図 1は、本発明の第 1の具体例に係る水栓用発電機の内部を表す模式断面図 である。  FIG. 1 is a schematic cross-sectional view showing the inside of a faucet generator according to a first specific example of the present invention.
[図 2]図 2は、本発明の実施形態に係る発電機付自動水栓装置の取付例を表す模式 図である。  FIG. 2 is a schematic diagram showing an example of attachment of the automatic faucet device with a generator according to the embodiment of the present invention.
[図 3]図 3は、同自動水栓装置の内部構成を表す模式図である。  FIG. 3 is a schematic diagram showing the internal configuration of the automatic water faucet device.
[図 4]図 4は、本発明の第 1の具体例に係る水栓用発電機における予旋回静翼、動 翼、軸受の斜視図である。  [Fig. 4] Fig. 4 is a perspective view of a pre-turning stationary blade, a moving blade, and a bearing in a faucet generator according to a first specific example of the present invention.
[図 5]図 5は、同第 1の具体例に係る水栓用発電機におけるマグネットとヨーク極歯と の配置関係を表す模式斜視図である。  FIG. 5 is a schematic perspective view showing an arrangement relationship between magnets and yoke pole teeth in the faucet generator according to the first specific example.
[図 6]図 6は、動翼流路入口幅比率と圧力損失の比との関係を表すグラフ図である。  [Fig. 6] Fig. 6 is a graph showing the relationship between the ratio of the inlet width of the rotor blade flow passage and the ratio of pressure loss.
[図 7]図 7は、動翼流路入口幅比率と損失流出の比との関係を表すグラフ図である。  [Fig. 7] Fig. 7 is a graph showing the relationship between the inlet width ratio of the rotor blade flow path and the ratio of loss outflow.
[図 8]図 8は、動翼流路入口幅比率と羽根車効率の比との関係を表すグラフ図である  [Fig. 8] Fig. 8 is a graph showing the relationship between the ratio of the inlet width of the rotor blade passage and the ratio of the impeller efficiency.
[図 9]図 9は、本発明の第 2の具体例に係る水栓用発電機の内部を表す模式断面図 である。 FIG. 9 is a schematic cross-sectional view showing the inside of a faucet generator according to a second specific example of the present invention.
[図 10]図 10は、同第 2の具体例に係る水栓用発電機におけるコイルを表す模式斜視 図である。  FIG. 10 is a schematic perspective view showing a coil in a faucet generator according to the second specific example.
[図 11]図 11は、図 10に表されるコイルの分解斜視図である。  FIG. 11 is an exploded perspective view of the coil shown in FIG.
[図 12]図 12は、同第 2の具体例に係る水栓用発電機におけるマグネットとヨーク極歯 との配置関係を表す模式平面図である。 FIG. 12 shows a magnet and yoke pole teeth in the faucet generator according to the second specific example. FIG.
[図 13]図 13は、本発明の第 3の具体例に係る水栓用発電機の内部を表す模式断面 図である。  FIG. 13 is a schematic cross-sectional view showing the inside of a faucet generator according to a third specific example of the present invention.
[図 14]図 14は、本発明の実施形態に係る水栓装置において、発電機の設置位置の 一具体例を表す模式図である。  FIG. 14 is a schematic diagram showing a specific example of the installation position of the generator in the faucet device according to the embodiment of the present invention.
[図 15]図 15は、本発明の実施形態に係る水栓装置において、発電機の設置位置及 び発電した電力の使用例の一具体例を表す模式図である。  FIG. 15 is a schematic diagram showing a specific example of the installation position of the generator and a usage example of the generated power in the faucet device according to the embodiment of the present invention.
[図 16]図 16は、本発明の実施形態に係る水栓装置において、発電機の設置位置及 び発電した電力の使用例の一具体例を表す模式図である。  FIG. 16 is a schematic diagram showing a specific example of the installation position of the generator and the usage example of the generated power in the faucet device according to the embodiment of the present invention.
符号の説明 Explanation of symbols
3 自動水栓装置  3 Automatic faucet device
7 センサ  7 Sensor
8 電磁弁  8 Solenoid valve
9、 16 コィノレ  9, 16 Coinole
11 水栓用発電機  11 Faucet generator
14 予旋回静翼  14 Pre-turning vane
15 動翼  15 blade
17 軸受  17 Bearing
18 静翼羽根部  18 Stator blade
19 動翼羽根部  19 Rotor blade
24 中心軸  24 Center axis
55 定流量弁  55 Constant flow valve
56 尤  56 likelihood
57 制御部  57 Control unit
71 静翼流路  71 Stator blade channel
72 動翼流路  72 Rotor flow path
Ml 〜Μ3 マグネ:  Ml ~ Μ3 Magne:
発明を実施するための最良の形態 [0009] 以下、図面を参照し、本発明の実施形態について説明する。なお、各図面中、同 一の構成要素には同一の符号を付している。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals.
[0010] 図 2は、本発明の実施形態に係る発電機付自動水栓装置 (以下、単に自動水栓装 置とも称する)の取付例を表す模式図である。  FIG. 2 is a schematic diagram showing an example of attachment of the automatic faucet device with a generator (hereinafter also simply referred to as an automatic faucet device) according to an embodiment of the present invention.
図 3は、同自動水栓装置の内部構成を表す模式図である。  FIG. 3 is a schematic diagram showing the internal configuration of the automatic faucet device.
[0011] 本実施形態に係る自動水栓装置 3は、例えば洗面台 2などに取り付けられる。 自動 水栓装置 3は、配管 4を介して、水道水等の流入口 5に接続されている。 自動水栓装 置 3は、円筒状の本体 3aと、この本体 3aの径外方向に延出して本体 3aの上部に設 けられた吐水部 3bとを有する。本体 3aと吐水部 3bは水栓金具を構成する。吐水部 3 bの先端には、吐水口 6が形成され、さらにこの吐水口 6の近傍にセンサ 7が内蔵され ている。  [0011] The automatic faucet device 3 according to the present embodiment is attached to a wash basin 2, for example. The automatic faucet device 3 is connected to an inlet 5 for tap water or the like via a pipe 4. The automatic water faucet device 3 includes a cylindrical main body 3a and a water discharge portion 3b that extends in a radially outward direction of the main body 3a and is provided on the upper portion of the main body 3a. The main body 3a and the water discharger 3b constitute a faucet fitting. A water discharge port 6 is formed at the tip of the water discharge part 3 b, and a sensor 7 is built in the vicinity of the water discharge port 6.
[0012] 自動水栓装置 3の内部には、流入口 5から流入し配管 4を流れてきた給水を、吐水 口 6へと導く給水流路 10が形成されている。 自動水栓装置 3の本体 3aの内部には、 その給水流路 10を開閉する電磁弁 8が内蔵され、さらに電磁弁 8の下流側には、吐 水量を一定に制限する定流量弁 55が内蔵されている。また、水道元圧が使用圧より も高すぎる場合に減圧するための減圧弁または調圧弁(図示省略)が、電磁弁 8より 上流側に内蔵されている。なお、定流量弁 55、減圧弁、調圧弁は、必要に応じて適 宜設けられる。  [0012] Inside the automatic water faucet device 3, a water supply passage 10 is formed that guides water supplied from the inlet 5 and flowing through the pipe 4 to the water outlet 6. Inside the main body 3a of the automatic faucet device 3, there is a built-in solenoid valve 8 that opens and closes the water supply flow path 10, and a constant flow valve 55 that restricts the amount of water discharge to a constant downstream of the solenoid valve 8. Built in. In addition, a pressure reducing valve or a pressure regulating valve (not shown) for reducing pressure when the water supply source pressure is too higher than the working pressure is built in upstream of the solenoid valve 8. A constant flow valve 55, a pressure reducing valve, and a pressure regulating valve are provided as needed.
[0013] 定流量弁 55より下流の吐水部 3bの内部には、水栓用発電機 11が内蔵されている 。本体 3aの内部には、水栓用発電機 11で発電された電力を充電しておく充電器 56 、センサ 7の駆動と電磁弁 8の開閉を制御する制御部 57が設けられている。水栓用 発電機 11は、電磁弁 8及び定流量弁 55よりも下流側に配設されているため、水道元 圧(一次圧)が、水栓用発電機 11に直接作用しない。したがって、水栓用発電機 11 は、それほど高い耐圧性を要求されず、信頼性やコストの点で有利である。  A faucet generator 11 is built in the water discharger 3b downstream of the constant flow valve 55. Inside the main body 3a, a charger 56 for charging the electric power generated by the faucet generator 11 and a controller 57 for controlling the driving of the sensor 7 and the opening / closing of the electromagnetic valve 8 are provided. Since the faucet generator 11 is disposed downstream of the solenoid valve 8 and the constant flow valve 55, the water supply pressure (primary pressure) does not act directly on the faucet generator 11. Therefore, the faucet generator 11 is not required to have such a high pressure resistance, and is advantageous in terms of reliability and cost.
[0014] 次に、水栓用発電機 11の具体例について説明する。  [0014] Next, a specific example of the faucet generator 11 will be described.
[0015] [第 1の具体例]  [0015] [First example]
図 1は、本発明の第 1の具体例に係る水栓用発電機の内部を表す模式断面図であ 図 4は、同水栓用発電機における予旋回静翼 14、動翼 15、軸受 17の斜視図であ 図 5は、同水栓用発電機におけるマグネット Mlとヨーク極歯 33c、 34aとの配置関 係を表す模式斜視図である。 FIG. 1 is a schematic cross-sectional view showing the inside of a faucet generator according to a first specific example of the present invention. Fig. 4 is a perspective view of the pre-swivel stationary blade 14, rotor blade 15 and bearing 17 in the faucet generator.Fig. 5 shows the magnet Ml and yoke pole teeth 33c and 34a in the faucet generator. FIG. 6 is a schematic perspective view showing an arrangement relationship.
[0016] 本具体例に係る水栓用発電機は、主として、筒体 13、予旋回静翼 14、動翼 15、マ グネット Ml、コイル 9を備え、これらは、図 3に表されるケース 12の中に収容されてい [0016] The faucet generator according to this specific example mainly includes a cylindrical body 13, a pre-turning stationary blade 14, a moving blade 15, a magnet Ml, and a coil 9, which are shown in FIG. Housed in twelve
[0017] 筒体 13は、小径部 13aと大径部 13bとからなる段付き形状を呈し、その内部が給水 流路に連通した状態で、図 2、 3に図示される吐水部 3bに内蔵され、筒体 13の中心 軸方向は、流水方向に対して略平行になるよう設置される。筒体 13は、小径部 13a を上流側に、大径部 13bを下流側に向けて配置される。 [0017] The cylindrical body 13 has a stepped shape including a small-diameter portion 13a and a large-diameter portion 13b, and is incorporated in the water discharge portion 3b illustrated in FIGS. 2 and 3 in a state where the inside communicates with the water supply channel. The central axis direction of the cylinder 13 is installed so as to be substantially parallel to the flowing water direction. The cylindrical body 13 is arranged with the small diameter portion 13a facing the upstream side and the large diameter portion 13b facing the downstream side.
[0018] 筒体 13の内部には、上流側から順に、予旋回静翼 14、動翼 15、軸受 17が設けら れている。予旋回静翼 14は小径部 13aの内部に設けられ、動翼 15及び軸受 17は大 径部 13bの内部に設けられている。  [0018] Inside the cylinder 13, a pre-turning stationary blade 14, a moving blade 15, and a bearing 17 are provided in this order from the upstream side. The pre-turning stationary blade 14 is provided inside the small diameter portion 13a, and the moving blade 15 and the bearing 17 are provided inside the large diameter portion 13b.
[0019] 予旋回静翼 14は、円柱体の一方の端面(上流側に位置する面)に、円錐体を一体 に設けた形状を呈する。予旋回静翼 14の周面には、径外方向に突出した複数の突 起状の静翼羽根部 18が設けられている。図 4に表すように、静翼羽根部 18は、予旋 回静翼 14の軸中心に対して右方向にねじれつつ、上流側から下流側に向けて傾斜 している。予旋回静翼 14は、筒体 13に対して固定されている。  [0019] The pre-turning stationary blade 14 has a shape in which a conical body is integrally provided on one end surface (a surface located on the upstream side) of the cylindrical body. A plurality of protruding stationary vane blade portions 18 projecting outward in the radial direction are provided on the circumferential surface of the pre-turning stationary vane 14. As shown in FIG. 4, the stationary blade vane 18 is inclined from the upstream side to the downstream side while twisting rightward with respect to the axial center of the pre-rotating stationary blade 14. The pre-turning stationary blade 14 is fixed to the cylindrical body 13.
[0020] 予旋回静翼 14に対して間隙(例えば 0. 55mm)を隔てて、予旋回静翼 14の下流 側に動翼 15が設けられている。動翼 15は、円柱状を呈し、その周面には径外方向 に突出した複数の突起状の動翼羽根部 19が設けられている。図 4に表すように、動 翼羽根部 19は、静翼羽根部 18とは逆に、軸中心に対して左方向にねじれつつ、上 流側から下流側に向けて傾斜している。動翼 15は、給水流路に対して略平行な中 心軸 24を介して、筒体 13に対して固定された軸受 17上に支持されている。動翼 15 は、中心軸 24のまわりに回転可能となっている。軸受 17は、動翼 15に対して間隙を 隔てて、動翼 15の下流側に設けられている。  A moving blade 15 is provided on the downstream side of the pre-turning stator blade 14 with a gap (for example, 0.55 mm) from the pre-turning stator blade 14. The rotor blade 15 has a cylindrical shape, and a plurality of protrusion-like rotor blade blade portions 19 projecting radially outward are provided on the peripheral surface thereof. As shown in FIG. 4, the rotor blade portion 19 is inclined to the downstream side from the upstream side while twisting leftward with respect to the axial center, contrary to the stationary blade portion 18. The rotor blade 15 is supported on a bearing 17 fixed to the cylindrical body 13 via a central shaft 24 substantially parallel to the water supply flow path. The rotor blade 15 is rotatable around the central axis 24. The bearing 17 is provided on the downstream side of the moving blade 15 with a gap from the moving blade 15.
[0021] 筒体大径部 13bの下流端の開口は、 Oリング 52を介して、封止部材 51によって液 密に塞がれている。封止部材 51の内部には段付き孔が形成され、その段部 51aは 環状に形成され、この段部 51aの上に軸受 17が支持されている。 [0021] The opening at the downstream end of the cylindrical large-diameter portion 13b is liquidated by the sealing member 51 via the O-ring 52. Closely closed. A stepped hole is formed inside the sealing member 51, the stepped portion 51a is formed in an annular shape, and the bearing 17 is supported on the stepped portion 51a.
[0022] 軸受 17は、封止部材 51内部の段部 51aの上に支持されるリング部材 21と、このリ ング部材 21の中心に設けられた軸支持部 22とが、放射状に設けられた連結部材 23 (図 4)によって結合されてなる。連結部材 23間は、閉塞せず貫通しているため、筒体 13内部の給水の流れを妨げな!/、。  [0022] In the bearing 17, a ring member 21 supported on a step portion 51a inside the sealing member 51 and a shaft support portion 22 provided in the center of the ring member 21 are provided radially. It is connected by a connecting member 23 (FIG. 4). The connecting member 23 penetrates without blocking, so the flow of the water supply inside the cylinder 13 is not hindered! /.
[0023] 軸受 17の軸支持部 22には、動翼 15の軸中心に固定された中心軸 24が回転可能 に支持されている。中心軸 24の先端部は、動翼 15から突出して予旋回静翼 14に嵌 め込まれている。中心軸 24の先端部と予旋回静翼 14とは、互いに固定されておらず 、筒体 13に対して固定された予旋回静翼 14に対して中心軸 24は回転可能になって いる。あるいは、中心軸 24の両端部をそれぞれ軸支持部 22と予旋回静翼 14に固定 させ、その中心軸 24に対して回転可能に動翼 15を嵌め込む構成としてもよい。  [0023] On the shaft support portion 22 of the bearing 17, a center shaft 24 fixed to the shaft center of the rotor blade 15 is rotatably supported. The tip of the central shaft 24 protrudes from the moving blade 15 and is fitted into the pre-turning stationary blade 14. The tip end portion of the central shaft 24 and the pre-turning stationary blade 14 are not fixed to each other, and the central shaft 24 is rotatable with respect to the pre-turning stationary blade 14 fixed to the cylindrical body 13. Alternatively, both end portions of the central shaft 24 may be fixed to the shaft support portion 22 and the pre-turning stationary blade 14 and the moving blade 15 may be fitted to the central shaft 24 so as to be rotatable.
[0024] 中心軸 24と予旋回静翼 14の周面との間の径方向寸法と、中心軸 24と動翼 15の周 面との間の径方向寸法とは略等しぐ予旋回静翼 14の周面と動翼 15の周面とは軸 方向に見て略面一となつている。  [0024] The pre-swirling static dimension in which the radial dimension between the central shaft 24 and the peripheral surface of the pre-rotating stationary blade 14 and the radial dimension between the central shaft 24 and the peripheral surface of the moving blade 15 are substantially equal. The peripheral surface of the blade 14 and the peripheral surface of the rotor blade 15 are substantially flush when viewed in the axial direction.
[0025] 静翼羽根部 18の径外方向への突出幅は、上流側から下流側にかけてほぼ同じと なっている。同様に、動翼羽根部 19の径外方向への突出幅は、上流側から下流側 にかけてほぼ同じとなっている。動翼羽根部 19の方が静翼羽根部 18よりも突出幅は 大きぐ動翼羽根部 19は静翼羽根部 18よりも径外方向に突出している。静翼羽根部 18の外周部 18aは、動翼羽根部 19の内周部 19aよりも径外方向に突出している。  [0025] The protruding width of the stationary blade blade 18 in the radially outward direction is substantially the same from the upstream side to the downstream side. Similarly, the protruding width of the rotor blade blade portion 19 in the radially outward direction is substantially the same from the upstream side to the downstream side. The moving blade blade portion 19 has a larger protruding width than the stationary blade blade portion 18, and the moving blade blade portion 19 protrudes outward in the radial direction from the stationary blade blade portion 18. The outer peripheral portion 18 a of the stationary blade blade portion 18 protrudes in the radially outward direction from the inner peripheral portion 19 a of the moving blade blade portion 19.
[0026] 周方向に見て隣り合う静翼羽根部 18間の空間は、静翼流路 71として機能する。周 方向に見て隣り合う動翼羽根部 19間の空間は、動翼流路 72として機能する。図 1に 示すように、静翼流路 71における幅方向(径方向)の中心 C 1よりも、動翼流路 72に おける幅方向(径方向)の中心 C2の方が径外方向に位置している。静翼流路 71の 出口は、間隙(例えば 0. 55mm)を隔てて、動翼流路 72の入口に対向している。動 翼流路 72の入口幅 bは、静翼流路 71の出口幅 aより大き!/、。  A space between the adjacent stationary blade blade portions 18 as viewed in the circumferential direction functions as a stationary blade channel 71. The space between adjacent blade blades 19 as viewed in the circumferential direction functions as a blade flow path 72. As shown in FIG. 1, the center C2 in the width direction (radial direction) in the rotor blade flow path 72 is positioned more radially outward than the center C 1 in the width direction (radial direction) in the stationary blade flow path 71. is doing. The outlet of the stationary blade channel 71 faces the inlet of the moving blade channel 72 with a gap (for example, 0.55 mm). The inlet width b of the rotor blade channel 72 is larger than the outlet width a of the stator blade channel 71! /.
[0027] 筒体 13の大径部 13bの内部に、動翼流路 72を囲むように動翼羽根部 19に固定さ れた筒状のマグネット Mlが収容されている。図 4において 2点鎖線で表されるマグネ ット Mlの内周面は、動翼羽根部 19の側端部に固定されている。 [0027] Inside the large-diameter portion 13b of the cylindrical body 13, a cylindrical magnet Ml fixed to the rotor blade blade portion 19 so as to surround the rotor blade flow path 72 is accommodated. Magne represented by the two-dot chain line in Fig. 4. The inner peripheral surface of the blade Ml is fixed to the side end portion of the rotor blade blade portion 19.
[0028] 大径部 13bの外側には、マグネット Mlの上流側端面に対向させてコイル 9が配置 されている。なお、コイル 9は、マグネット Mlの下流側端面に対向させて配置してもよ く、あるいは、マグネット Mlの上流側及び下流側の両端面にそれぞれ対向させて 1 対のコイル 9を配置してもよレ、。 [0028] A coil 9 is disposed outside the large-diameter portion 13b so as to face the upstream end surface of the magnet Ml. The coil 9 may be disposed so as to face the downstream end surface of the magnet Ml, or a pair of coils 9 may be disposed facing both the upstream and downstream end surfaces of the magnet Ml. Moyore.
[0029] コイル 9は、図 5に表される円筒状のヨーク 31と、このヨーク 31の内部に配置される コイル配線部(図示省略)とを有する。ヨーク 31は、共に磁性体からなる 3つのヨーク 3The coil 9 includes a cylindrical yoke 31 shown in FIG. 5, and a coil wiring portion (not shown) disposed inside the yoke 31. The yoke 31 has three yokes 3 made of magnetic material.
2、 33、 34を組み合わせてなる。 2, 33, 34 combined.
[0030] ヨーク 33は、内部に収容したコイル配線部の周面部に対向される周面部 33bと、マ グネット Mlに対向される複数の極歯 33aと、を有する。複数の極歯 33aは、径内方に 突出して周面部 33bに一体に設けられ、周方向に沿って等間隔で設けられている。 [0030] The yoke 33 has a peripheral surface portion 33b facing the peripheral surface portion of the coil wiring portion accommodated therein, and a plurality of pole teeth 33a facing the magnet Ml. The plurality of pole teeth 33a project inward in the diameter and are provided integrally with the peripheral surface portion 33b, and are provided at equal intervals along the circumferential direction.
[0031] ヨーク 34は、径外方向に突出し、ヨーク 33の極歯 33aの間に配置される複数の極 歯 34aを有する。極歯 33a、 34aは、内部に収容されたコイル配線部を間に挟んで、 ヨーク 32に対向している。 The yoke 34 has a plurality of pole teeth 34 a that protrude in the radially outward direction and are disposed between the pole teeth 33 a of the yoke 33. The pole teeth 33a and 34a are opposed to the yoke 32 with the coil wiring portion housed inside interposed therebetween.
[0032] マグネット Mlの軸方向の端面には、周方向に沿って N極と S極とが交互に着磁さ れている。 [0032] On the end face in the axial direction of the magnet Ml, N poles and S poles are alternately magnetized along the circumferential direction.
[0033] 次に、本実施形態に係る水栓用発電機及び自動水栓装置の作用につ!/、て説明す  Next, the operation of the faucet generator and the automatic faucet device according to this embodiment will be described!
[0034] 使用者が、吐水口 6 (図 3)の下に手をかざすと、これをセンサ 7が感知して、制御部 [0034] When the user holds his hand under the spout 6 (Fig. 3), the sensor 7 senses this and the control unit
57が電磁弁 8を開にする。これにより、水栓用発電機 11の筒体 13の内部に流水が 供給され、筒体 13の内部を流れた水は吐水口 6から吐水される。使用者が、吐水口 6の下から手を遠ざけると、電磁弁 8が閉となり、自動で水が止まる。  57 opens solenoid valve 8. As a result, running water is supplied to the inside of the cylinder 13 of the faucet generator 11, and the water flowing inside the cylinder 13 is discharged from the water outlet 6. When the user moves his hand away from under the spout 6, the solenoid valve 8 is closed and the water stops automatically.
[0035] 筒体 13内に流れ込んだ流水は、予旋回静翼 14の円錐体表面を流れて径外方向 に拡散され、図 1及び図 4に図示される具体例においては、軸中心に対して右方向 に旋回するような旋回流となって、静翼羽根部 18間の静翼流路 71を流れる。  [0035] The flowing water flowing into the cylindrical body 13 flows on the surface of the conical body of the pre-swirl stationary blade 14 and is diffused in the radially outward direction. In the specific examples shown in FIGS. The swirl flow is swirling in the right direction and flows through the vane channel 71 between the vane blades 18.
[0036] 静翼流路 71を流れた旋回流は、動翼流路 72に流入し、動翼羽根部 19の上側の 傾斜面に衝突する。本具体例では、動翼流路 72に流入する旋回流は、軸中心に対 して右方向に旋回した流れなので、動翼羽根部 19に対して右方向の力が作用し、動 翼 15は右回りに回転する。動翼流路 72を流れた流水は、軸受 17の内側を通過して 、筒体 13内部を抜け、吐水口 6へと至る。 The swirl flow that has flowed through the stationary blade flow path 71 flows into the moving blade flow path 72 and collides with the upper inclined surface of the moving blade blade portion 19. In this specific example, the swirl flow that flows into the blade flow path 72 is a flow swirled in the right direction with respect to the axial center. Wing 15 rotates clockwise. The flowing water flowing through the rotor blade flow path 72 passes through the inside of the bearing 17, passes through the inside of the cylindrical body 13, and reaches the water discharge port 6.
[0037] 動翼 15が回転すると、これに固定されたマグネット Mlも回転し、このマグネット Ml に対向している極歯 33a、 34a (図 5)の極性が変化していく。すなわち、ヨーク 33 (極 歯 33a)が N極のときヨーク 34 (極歯 34a)が S極、ヨーク 33 (極歯 33a)力 極のときョ ーク 34 (極歯 34a)が N極という状態が繰り返されることで、ヨーク 33、 34の内部に配 置されたコイル配線部に対する鎖交磁束が変化し、そのコイル配線部に起電力が生 じ、発電する。発電した電力は、充電器 56へと充電された後、例えば、電磁弁 8、セ ンサ 7、制御部 57の駆動に使用される。  [0037] When the rotor blade 15 rotates, the magnet Ml fixed thereto also rotates, and the polarities of the pole teeth 33a and 34a (Fig. 5) facing the magnet Ml change. That is, when yoke 33 (pole tooth 33a) is N pole, yoke 34 (pole tooth 34a) is S pole, and when yoke 33 (pole tooth 33a) is a force pole, yoke 34 (pole tooth 34a) is N pole. By repeating the above, the flux linkage with respect to the coil wiring portion arranged inside the yokes 33 and 34 changes, and an electromotive force is generated in the coil wiring portion to generate power. After the generated power is charged into the charger 56, it is used for driving the solenoid valve 8, the sensor 7, and the control unit 57, for example.
[0038] 本具体例においては、静翼羽根部 18と筒体 13内周面とによって囲まれる空間が 静翼流路 71として機能し、前述したように流水がその静翼流路 71を流れることで旋 回流が形成される。この旋回流は、動翼羽根部 19とマグネット Ml内周面とによって 囲まれる空間である動翼流路 72に流入し、動翼 15に回転力を与える。  [0038] In this specific example, the space surrounded by the stationary blade blade 18 and the inner peripheral surface of the cylinder 13 functions as the stationary blade channel 71, and the flowing water flows through the stationary blade channel 71 as described above. As a result, a rotating flow is formed. This swirling flow flows into the rotor blade flow path 72, which is a space surrounded by the rotor blade blade portion 19 and the inner peripheral surface of the magnet Ml, and gives rotational force to the rotor blade 15.
[0039] 動翼流路 72に流入する流水は旋回流であるため、動翼流路 72に流入する流水は 、動翼流路 72の径外方に設けられたマグネット Mlに衝突する成分を多くもって!/、る 。そこで、本具体例では、動翼流路 72の中心 C2を静翼流路 71の中心 C1よりも径外 方向に位置させることにより、静翼流路 71から流出して径外方向に広がった流れの 中心を、動翼流路 72の中心 C2に合わせることで、効率良く水流を動翼 15で受ける こと力 Sできる。さらに、動翼羽根部 19を静翼羽根部 18よりも径外方向に突出させ、静 翼流路 71の出口幅 aよりも広!/、動翼流路 72の入口幅 bを確保することで、予旋回静 翼 14を通過した水流が径外方向に進んでマグネット Mlに衝突するまでの距離を長 くすること力 Sでき、マグネット衝突時の水流の流速の低減が図れる。そのため、予旋回 静翼 14を通過した水流がマグネット Mlに衝突する時の圧力損失を原因とする、水 力エネルギーから回転エネルギーへの変換損失を低減させることができ、発電効率 の向上が図れる。  [0039] Since the flowing water flowing into the moving blade flow path 72 is a swirling flow, the flowing water flowing into the moving blade flow path 72 has a component that collides with the magnet Ml provided on the outer diameter side of the moving blade flow path 72. Take a lot! Therefore, in this specific example, by positioning the center C2 of the blade flow path 72 in the radially outward direction from the center C1 of the stationary blade flow path 71, it flows out of the stationary blade flow path 71 and spreads in the radially outward direction. By matching the center of the flow with the center C2 of the blade flow path 72, the force S can be received by the blade 15 efficiently. Furthermore, make the blade blade 19 project radially outward from the stationary blade blade 18 and ensure that the outlet width a of the stationary blade channel 71 is wider! /, And the inlet width b of the blade channel 72 is secured. Thus, it is possible to increase the distance S until the water flow that has passed through the pre-rotating vane 14 advances radially and collides with the magnet Ml, and the flow velocity of the water flow at the time of magnet collision can be reduced. Therefore, it is possible to reduce the conversion loss from hydraulic energy to rotational energy caused by the pressure loss when the water flow that has passed through the pre-turning stator blade 14 collides with the magnet Ml, and the power generation efficiency can be improved.
[0040] 特に、節水効果をアピールした自動水栓のように発電に用いる水力エネルギーが 小さいものでは、わずかな圧力損失であっても低減したいという要求が強ぐ本実施 形態はそのようなものに非常に有効である。 [0041] なお、静翼流路 71の出口幅 bに対して、動翼流路 72の入口幅 aをあまり大きくしす ぎると、流路の急拡大による圧力損失が生じるため、この流路の急拡大による圧力損 失の影響を抑えつつ、前述した旋回流のマグネット Mlへの衝突による圧力損失も抑 えるために、静翼流路 71の出口幅 bと動翼流路 72の入口幅 aとの関係を適切に設定 する必要がある。 [0040] In particular, in the case where the hydraulic energy used for power generation is small, such as an automatic faucet that emphasizes the water-saving effect, this embodiment has a strong demand for reducing even a slight pressure loss. It is very effective. [0041] Note that if the inlet width a of the rotor blade flow path 72 is too large with respect to the outlet width b of the stationary blade flow path 71, pressure loss occurs due to a sudden expansion of the flow path. In order to suppress the pressure loss due to the collision of the swirling flow with the magnet Ml as described above, while suppressing the effect of pressure loss due to sudden expansion, the outlet width b of the stationary blade channel 71 and the inlet width a of the rotor channel 72 It is necessary to set the relationship with.
[0042] 次に、静翼流路出口幅に対する動翼流路入口幅の比率を、 1. 0、 1. 5、 2. 0、 2.  [0042] Next, the ratio of the moving blade channel inlet width to the stationary blade channel outlet width is 1.0, 1.5, 2.0, 2.
5と変えた場合における、圧力損失の比(%)、損失流出の比(%)、羽根車効率の比 (%)をシミュレーションした結果について、表 1、図 6〜8を参照して説明する。なお、 静翼流路は、その上流側の入口から下流側の出口にかけて径方向の幅は同じとし、 同様に、動翼流路は、その上流側の入口から下流側の出口にかけて径方向の幅は 同じとした。  The results of simulating the pressure loss ratio (%), loss outflow ratio (%), and impeller efficiency ratio (%) when changed to 5 will be described with reference to Table 1 and Figs. . The vane channel has the same radial width from the upstream inlet to the downstream outlet. Similarly, the moving blade channel has a radial width from the upstream inlet to the downstream outlet. The width was the same.
[0043] [表 1]  [0043] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[0044] 損失流量とは、静翼流路 71を通過した流水のうち、動翼流路 72を通過せずに、マ グネット Mlと、筒体 13内壁面との間の隙間を通過してしまう流量を表す。羽根車効 率とは、与えた水流のエネルギーのうち回転エネルギーに変換された割合のことをい[0044] The loss flow rate means that the flowing water that has passed through the stationary blade channel 71 passes through the gap between the magnet Ml and the inner wall surface of the cylindrical body 13 without passing through the moving blade channel 72. This represents the flow rate. The impeller efficiency is the ratio of the energy of the given water stream that has been converted to rotational energy.
5。 Five.
[0045] 図 6において、横軸は、静翼流路出口幅に対する動翼流路入口幅の比率を表し、 縦軸は、動翼流路入口幅比率が 1. 0のときの圧力損失の比を 100 (%)として、動翼 流路入口幅比率が 1. 5、 2. 0、 2. 5のときの圧力損失の比(%)を表している。  [0045] In FIG. 6, the horizontal axis represents the ratio of the moving blade channel inlet width to the stationary blade channel outlet width, and the vertical axis represents the pressure loss when the moving blade channel inlet width ratio is 1.0. When the ratio is 100 (%), the ratio of pressure loss when the blade flow path inlet width ratio is 1.5, 2.0, 2.5 is shown.
図 7において、横軸は、静翼流路出口幅に対する動翼流路入口幅の比率を表し、 縦軸は、動翼流路入口幅比率が 1. 0のときの損失流量の比を 100 (%)として、動翼 流路入口幅比率が 1. 5、 2. 0、 2. 5のときの損失流量の比(%)を表している。  In Fig. 7, the horizontal axis represents the ratio of the rotor blade channel inlet width to the stationary blade channel outlet width, and the vertical axis represents the ratio of the loss flow rate when the rotor blade channel inlet width ratio is 1.0. (%) Represents the ratio (%) of the loss flow rate when the blade flow path inlet width ratio is 1.5, 2.0, or 2.5.
図 8において、横軸は、静翼流路出口幅に対する動翼流路入口幅の比率を表し、 縦軸は、動翼流路入口幅比率が 1. 0のときの羽根車効率の比を 100 (%)として、動 翼流路入口幅比率が 1. 5、 2. 0、 2. 5のときの羽根車効率の比(%)を表している。 [0046] 図 6より、動翼流路入口幅比率が 2. 0のとき、最も圧力損失が小さい。また、図 7の グラフ図よりわ力、ることは、動翼流路入口幅を拡大することで、動翼流路を通らずにマ グネットと筒体内壁面との間の隙間を通過していた水量が減少し、その分、動翼流路 を通って動翼の回転に寄与する水量が増え、発電効率を向上させることができる。し たがって、動翼流路入口幅を広げることにより、前述したマグネットへの衝突による圧 力損失低減および動翼に回転力を与えなレ、損失流量の減少と!/、う 2つの作用により 発電効率を向上させることができる。また、図 8より、動翼流路入口幅比率が 2. 0のと き、最も羽根車効率がよい。図 6、 7、 8に基づく知見より、動翼流路入口幅としては、 静翼流路出口幅の 1. 5倍以上 2. 5倍以下が望ましい。具体的な動翼流路の入口幅 寸法としては、例えば 1. Ommを挙げること力 Sできる。 In FIG. 8, the horizontal axis represents the ratio of the rotor blade channel inlet width to the stationary blade channel outlet width, and the vertical axis represents the ratio of the impeller efficiency when the rotor blade channel inlet width ratio is 1.0. 100 (%) represents the ratio (%) of the impeller efficiency when the blade passage inlet width ratio is 1.5, 2.0, or 2.5. [0046] From FIG. 6, the pressure loss is the smallest when the blade flow path inlet width ratio is 2.0. In addition, the force from the graph in Fig. 7 is that the width of the inlet of the rotor blade channel is increased, so that it passes through the gap between the magnet and the cylinder wall surface without passing through the rotor blade channel. Therefore, the amount of water that contributes to the rotation of the moving blade through the blade flow path increases, and the power generation efficiency can be improved. Therefore, by increasing the inlet width of the rotor blade flow path, the pressure loss due to the collision with the magnet described above and the rotational power to the rotor blade are reduced, the loss flow rate is reduced! Power generation efficiency can be improved. In addition, as shown in Fig. 8, the impeller efficiency is the best when the blade flow path inlet width ratio is 2.0. From the findings based on Figs. 6, 7, and 8, the blade passage width is preferably 1.5 times or more and 2.5 times or less than the width of the stationary blade passage. For example, the inlet width dimension of the rotor blade flow path can be as follows: 1. Omm.
[0047] なお、動翼羽根部 19を静翼羽根部 18よりも径外方向に突出させて動翼流路 72の 拡大を図るには、設置箇所における径方向寸法に余裕が必要である。本具体例で は、コイル 9を、マグネット Mlの軸方向に対向配置させた構造のため、コイル 9をマグ ネット Mlの径外方向に対向配置させた場合に比べて、径方向寸法を小さくすること ができ、例えば図 2に表される円筒状の吐水部 3bの中に内蔵させても吐水部 3bの細 くスッキリとしたデザイン性を損ねなレ、。  [0047] It should be noted that in order to expand the moving blade flow path 72 by causing the moving blade blade portion 19 to protrude more radially outward than the stationary blade blade portion 18, it is necessary to have a margin in the radial dimension at the installation location. In this specific example, since the coil 9 is disposed opposite to the magnet Ml in the axial direction, the radial dimension is reduced as compared with the case where the coil 9 is disposed opposite to the outer side of the magnet Ml. For example, even if it is incorporated in the cylindrical water discharge portion 3b shown in FIG. 2, the fine and clean design of the water discharge portion 3b is not impaired.
[0048] [第 2の具体例]  [0048] [Second specific example]
図 9は、本発明の第 2の具体例に係る水栓用発電機の内部を表す模式断面図であ 図 10は、同水栓用発電機におけるコイル 16を表す模式斜視図である。 図 11は、図 10に表されるコイル 16の分解斜視図である。  FIG. 9 is a schematic sectional view showing the inside of the faucet generator according to the second specific example of the present invention. FIG. 10 is a schematic perspective view showing the coil 16 in the faucet generator. FIG. 11 is an exploded perspective view of the coil 16 shown in FIG.
図 12は、同水栓用発電機におけるマグネット M2とヨーク極歯 25c、 26bとの配置関 係を表す模式平面図である。  FIG. 12 is a schematic plan view showing an arrangement relationship between the magnet M2 and the yoke pole teeth 25c and 26b in the faucet generator.
[0049] 本具体例では、マグネット M2とコイル 16との配置関係が第 1の具体例と異なる。 [0049] In this specific example, the positional relationship between the magnet M2 and the coil 16 is different from that of the first specific example.
[0050] 筒体 13の大径部 13bの内部に、動翼流路 72を囲むように動翼羽根部 19に固定さ れた筒状のマグネット M2が収容されている。大径部 13bの径外方向の外側には、マ グネット M2の外周面に対向させてコイル 16が配置されている。 [0050] Inside the large-diameter portion 13b of the cylindrical body 13, a cylindrical magnet M2 fixed to the rotor blade blade portion 19 so as to surround the rotor blade flow path 72 is accommodated. A coil 16 is disposed outside the large-diameter portion 13b in the radially outward direction so as to face the outer peripheral surface of the magnet M2.
[0051] コィノレ 16は、図 10、 11に表される 1対のヨーク 25、 26と、これらヨーク 25、 26力糸且 み合わされて形成される環状の空間内に配設されたコイル配線部 16aとを有する。 [0051] Coinole 16 includes a pair of yokes 25 and 26 shown in FIGS. And a coil wiring portion 16a disposed in an annular space formed by mating.
[0052] ヨーク 25、 26は、共に磁性体からなる。ヨーク 25は、コイル配線部 16aの一方の端 面部に対向される環状部 25aと、コイル配線部 16aの周面部に対向される周面部 25 bとを有し、さらに環状部 25aの内周縁部には、軸方向に突出した複数の極歯 25cが 設けられている。ヨーク 26は、コイル配線部 16aの他方の端面部に対向される環状 部 26aと、この環状部 26aの内周縁部に、軸方向に突出して設けられた複数の極歯 2 6bとを有する。ヨーク 25の極歯 25cは、周方向に沿って等間隔で設けられ、ヨーク 26 の極歯 26bも周方向に沿って等間隔で設けられており、図 10に表されるように、一方 のヨークの極歯の間に、他方のヨークの極歯を位置させて、両ヨーク 25、 26の極歯 2 5c、 26bは、コィノレ酉己泉部 16aの内周面に対向する。  [0052] The yokes 25 and 26 are both made of a magnetic material. The yoke 25 has an annular portion 25a facing one end surface portion of the coil wiring portion 16a, and a peripheral surface portion 25b facing the peripheral surface portion of the coil wiring portion 16a, and further, an inner peripheral edge portion of the annular portion 25a Is provided with a plurality of pole teeth 25c projecting in the axial direction. The yoke 26 has an annular portion 26a facing the other end surface portion of the coil wiring portion 16a, and a plurality of pole teeth 26b provided on the inner peripheral edge portion of the annular portion 26a so as to protrude in the axial direction. The pole teeth 25c of the yoke 25 are provided at equal intervals along the circumferential direction, and the pole teeth 26b of the yoke 26 are also provided at equal intervals along the circumferential direction. As shown in FIG. The pole teeth of the other yoke are positioned between the pole teeth of the yoke, and the pole teeth 25c and 26b of both yokes 25 and 26 face the inner peripheral surface of the coinore spring part 16a.
[0053] マグネット M2は、図 12に表されるように、周方向に N極と S極とが交互に着磁され ており、それぞれのヨーク 25、 26の極歯 25c、 26bは、筒体 13の管壁を間に挟んで 、マグネット M2の N極または S極に対向する。コイル酉 泉部 16aは、極歯 25c、 26b および筒体 13の管壁を間に挟んで、マグネット M2に対向する。  [0053] As shown in Fig. 12, the magnet M2 has N poles and S poles alternately magnetized in the circumferential direction, and the pole teeth 25c and 26b of the yokes 25 and 26 are cylindrical bodies. Opposite the N or S pole of the magnet M2 with 13 tube walls in between. The coil spring portion 16a faces the magnet M2 with the pole teeth 25c and 26b and the tube wall of the cylindrical body 13 interposed therebetween.
[0054] 第 1の具体例と同様、予旋回静翼 14によって形成された旋回流の水力を受けて動 翼 15が回転されると、これに固定されたマグネット M2も回転する。マグネット M2は、 図 12に表されるように、周方向に沿って N極と S極が交互に並んで着磁されているた め、マグネット M2に対向しているヨーク 25、 26の極歯 25c、 26bの極性が変化して いく。すなわち、ヨーク 25が N極のときヨーク 26が S極、ヨーク 25が S極のときヨーク 2 6が N極という状態が繰り返されることで、コイル配線部 16aに対する鎖交磁束が変化 し、コイル配線部 16aに起電力が生じ、発電する。  [0054] As in the first specific example, when the moving blade 15 is rotated by the hydraulic force of the swirling flow formed by the pre-rotating stationary blade 14, the magnet M2 fixed to the rotating blade 15 also rotates. As shown in Fig. 12, the magnet M2 is magnetized with alternating N and S poles along the circumferential direction, so the pole teeth of the yokes 25 and 26 facing the magnet M2 The polarity of 25c and 26b changes. That is, when the yoke 25 is the N pole, the yoke 26 is the S pole, and when the yoke 25 is the S pole, the yoke 26 is the N pole. An electromotive force is generated in part 16a to generate electricity.
[0055] 本具体例においても、動翼流路 72の中心 C2を静翼流路 71の中心 C1よりも径外 方向に位置させることにより、静翼流路 71から流出して径外方向に広がった流れの 中心を、動翼流路 72の中心 C2に合わせることで、効率良く水流を動翼 15で受ける こと力 Sできる。さらに、動翼羽根部 19を静翼羽根部 18よりも径外方向に突出させ、静 翼流路 71の出口幅 aよりも広!/、動翼流路 72の入口幅 bを確保することで、予旋回静 翼 14を通過した水流が径外方向に進んでマグネット M2に衝突するまでの距離を長 くすること力 Sでき、マグネット衝突時の水流の流速の低減が図れる。そのため、予旋回 静翼 14を通過した水流がマグネット M2に衝突する時の圧力損失を原因とする、水 力エネルギーから回転エネルギーへの変換損失を低減させることができ、発電効率 の向上が図れる。 [0055] Also in this specific example, by positioning the center C2 of the blade flow path 72 in the radially outward direction from the center C1 of the stationary blade flow path 71, it flows out of the stationary blade flow path 71 and moves radially outward. By matching the center of the expanded flow with the center C2 of the blade flow path 72, the force S can be received efficiently by the blade 15. Furthermore, make the blade blade 19 project radially outward from the stationary blade blade 18 and ensure that the outlet width a of the stationary blade channel 71 is wider! /, And the inlet width b of the blade channel 72 is secured. Thus, it is possible to increase the distance S until the water flow that has passed through the pre-turning vane 14 advances radially and collides with the magnet M2, and the flow velocity of the water flow at the time of magnet collision can be reduced. Therefore, pre-turn The conversion loss from hydraulic energy to rotational energy caused by the pressure loss when the water flow that passed through the stationary blade 14 collides with the magnet M2 can be reduced, and the power generation efficiency can be improved.
[0056] [第 3の具体例] [0056] [Third example]
図 13は、本発明の第 3の具体例に係る水栓用発電機の内部を表す模式断面図で ある。  FIG. 13 is a schematic cross-sectional view showing the inside of a faucet generator according to a third specific example of the present invention.
[0057] 本具体例では、筒体 13の内部に、給水が流れる方向の上流側から順に、予旋回 静翼 14、動翼 15、マグネット M3、および軸受 17が、互いの軸中心を一致させて設 けられている。マグネット M3は、円筒状を呈し、動翼 15の下流側に動翼 15に対して 離間して設けられている。  [0057] In this specific example, the pre-turning stationary blade 14, the moving blade 15, the magnet M3, and the bearing 17 are arranged in the cylindrical body 13 in this order from the upstream side in the direction in which the feed water flows. It is installed. The magnet M3 has a cylindrical shape and is provided on the downstream side of the moving blade 15 so as to be separated from the moving blade 15.
[0058] 動翼 15の軸中心に固定され、軸受 17上に回転可能に支持された中心軸 24は、マ グネット M3の中空部を貫通しており、その中心軸 24には、放射状に延びる複数本の 連結部材 35を介して、マグネット装着部材 36が固定されている。マグネット装着部材 36は、リング状のプレート部 37と、このプレート部 37の中央孔の縁部に一体に設けら れ上流側に向けて延在する筒部 38とを有する。  [0058] The central shaft 24 fixed to the shaft center of the moving blade 15 and rotatably supported on the bearing 17 passes through the hollow portion of the magnet M3, and extends radially to the central shaft 24. The magnet mounting member 36 is fixed via a plurality of connecting members 35. The magnet mounting member 36 includes a ring-shaped plate portion 37 and a cylindrical portion 38 that is provided integrally with the edge of the central hole of the plate portion 37 and extends toward the upstream side.
[0059] マグネット M3は、その中空部を、マグネット装着部材 36の筒部 38の外周面に嵌合 させてプレート部 37上に固定されている。したがって、マグネット M3は、マグネット装 着部材 36および中心軸 24を介して、動翼 15に対して固定されており、動翼 15が回 転すると、マグネット M3は動翼 15と一体となって回転する。  The magnet M3 is fixed on the plate portion 37 by fitting the hollow portion thereof to the outer peripheral surface of the cylindrical portion 38 of the magnet mounting member 36. Therefore, the magnet M3 is fixed to the moving blade 15 via the magnet mounting member 36 and the central shaft 24, and when the moving blade 15 rotates, the magnet M3 rotates together with the moving blade 15. To do.
[0060] あるいは、中心軸 24の両端部をそれぞれ軸支持部 22と予旋回静翼 14に固定させ 、その中心軸 24に対して回転可能に動翼 15をはめ込む構成としてもよい。この具体 例の場合、マグネット装着部材 36の連結部材 35は、中心軸 24のまわりを回転可能 に中心軸 24に対して係合しており、さらに筒部 38の上端が動翼 15に固定されてい るので、動翼 15が回転すると、マグネット M3はマグネット装着部材 36と共に中心軸 2 4のまわりに回転する。  Alternatively, both end portions of the central shaft 24 may be fixed to the shaft support portion 22 and the pre-turning stationary blade 14, respectively, and the moving blade 15 may be fitted so as to be rotatable with respect to the central shaft 24. In this specific example, the connecting member 35 of the magnet mounting member 36 is engaged with the central shaft 24 so as to be rotatable around the central shaft 24, and the upper end of the cylindrical portion 38 is fixed to the rotor blade 15. Therefore, when the rotor blade 15 rotates, the magnet M3 rotates around the central axis 24 together with the magnet mounting member 36.
[0061] 筒体 13の外周面における、マグネット M3に対向する部分には、マグネット M3の軸 方向長さに合わせて、例えば 2つのコイル 16が設けられている。コイル 16は、前述し た第 2の具体例と同じ構成を有し、マグネット M3は、第 2の具体例のマグネット M2と 同様、周方向に沿って N極と S極が交互に並んで着磁されており、マグネット M3が回 転することによる発電の原理も第 2の具体例と同じである。 [0061] For example, two coils 16 are provided on the outer peripheral surface of the cylindrical body 13 so as to face the magnet M3 in accordance with the axial length of the magnet M3. The coil 16 has the same configuration as the second specific example described above, and the magnet M3 is the same as the magnet M2 of the second specific example. Similarly, the north and south poles are alternately magnetized along the circumferential direction, and the principle of power generation by rotating the magnet M3 is the same as in the second example.
[0062] 本具体例においては、静翼羽根部 18と筒体 13内周面とによって囲まれる空間が 静翼流路 71として機能し、動翼羽根部 19と筒体 13内周面とによって囲まれる空間 が動翼流路 72として機能する。前述したように流水が静翼流路 71を流れることで旋 回流が形成され、この旋回流は、動翼流路 72に流入し、動翼 15に回転力を与える。 動翼流路 72を流れた流水は、マグネット M3の中空部、軸受 17の内側を通過して、 筒体 13内部を抜け、吐水口 6へと至る。  In this specific example, the space surrounded by the stationary blade blade 18 and the inner peripheral surface of the cylinder 13 functions as the stationary blade channel 71, and the moving blade blade 19 and the inner peripheral surface of the cylindrical body 13 The enclosed space functions as the blade flow path 72. As described above, a swirling flow is formed by flowing water through the stationary blade channel 71, and this swirling flow flows into the moving blade channel 72 and gives a rotating force to the moving blade 15. The flowing water flowing through the rotor blade flow path 72 passes through the hollow portion of the magnet M3 and the inside of the bearing 17, passes through the inside of the cylindrical body 13, and reaches the water discharge port 6.
[0063] 動翼流路 72に流入する流水は旋回流であるため、動翼流路 72に流入する流水は 、動翼流路 72の径外方に位置する筒体 13内周面に衝突する成分を多くもっている 。本具体例においても、動翼流路 72の中心 C2を静翼流路 71の中心 C1よりも径外 方向に位置させることにより、静翼流路 71から流出して径外方向に広がった流れの 中心を、動翼流路 72の中心 C2に合わせることで、効率良く水流を動翼 15で受ける こと力 Sできる。さらに、動翼羽根部 19を静翼羽根部 18よりも径外方向に突出させ、静 翼流路 71の出口幅 aよりも広!/、動翼流路 72の入口幅 bを確保することで、予旋回静 翼 14を通過した水流が径外方向に進んで筒体 13内周面に衝突するまでの距離を 長くすること力でき、その衝突時の水流の流速の低減が図れる。そのため、予旋回静 翼 14を通過した水流が筒体 13内周面に衝突する時の圧力損失を原因とする、水力 エネルギーから回転エネルギーへの変換損失を低減させることができ、発電効率の 向上が図れる。  Since the flowing water flowing into the blade flow path 72 is a swirling flow, the flowing water flowing into the moving blade flow path 72 collides with the inner peripheral surface of the cylindrical body 13 located outside the moving blade flow path 72. Has a lot of ingredients to do. Also in this specific example, by positioning the center C2 of the rotor blade flow path 72 in the radially outward direction from the center C1 of the stationary blade flow path 71, the flow that flows out of the stationary blade flow path 71 and spreads in the radially outward direction. By aligning the center with the center C2 of the rotor blade flow path 72, the force S can be received efficiently by the rotor blade 15. Furthermore, make the blade blade 19 project radially outward from the stationary blade blade 18 and ensure that the outlet width a of the stationary blade channel 71 is wider! /, And the inlet width b of the blade channel 72 is secured. Thus, it is possible to increase the distance until the water flow that has passed through the pre-turning vane 14 advances in the radial direction and collides with the inner peripheral surface of the cylindrical body 13, and the flow velocity of the water flow at the time of the collision can be reduced. Therefore, the conversion loss from hydraulic energy to rotational energy caused by the pressure loss caused when the water flow that passed through the pre-swirl stator blade 14 collides with the inner peripheral surface of the cylinder 13 can be reduced, and the power generation efficiency is improved. Can be planned.
[0064] なお、本具体例において、動翼 15の周面を囲むように動翼羽根部 19に動翼リング を設けてもよい。このような構成にすれば、動翼リングの外周面と、筒体 13の内周面 との間の隙間が狭められて、動翼羽根部 19よりも径外方側の流路抵抗が大きくなつ て、動翼流路 72を流れる流量が多くなり、水力エネルギーから回転エネルギーへの 変換効率が高まる。  In this specific example, a moving blade ring may be provided on the moving blade 15 so as to surround the peripheral surface of the moving blade 15. With such a configuration, the gap between the outer peripheral surface of the blade ring and the inner peripheral surface of the cylinder 13 is narrowed, and the flow resistance on the radially outer side than the blade portion 19 is increased. As a result, the flow rate through the rotor blade flow path 72 increases, and the conversion efficiency from hydraulic energy to rotational energy increases.
[0065] 以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明 は、それらに限定されるものではなぐ本発明の技術的思想に基づいて種々の変形 が可能である。 [0066] 水栓用発電機 11は、水栓装置 3の水栓金具の内部に設けられることに限らない。 例えば、図 14に表すように、水栓装置 3の水栓金具(本体 3a及び吐水部 3b)と、これ よりも上流側に設けられた止水栓 (元栓) 105との間を接続する配管 (流路) 4に設け てもよい。この場合、発電機 11は洗面台等のカウンター 2下に配設される。また、水 栓装置 3の吐水口 6へとつながる給水流路を開閉する電磁弁 8も水栓金具の内部に 設けることに限らず、例えば図 14の例では、止水栓 105と発電機 11との間の配管( 流路) 4に設けてもよい。 [0065] The embodiments of the present invention have been described above with reference to specific examples. However, the present invention can be variously modified based on the technical idea of the present invention, which is not limited thereto. The faucet generator 11 is not limited to being provided inside the faucet fitting of the faucet device 3. For example, as shown in FIG. 14, a pipe connecting the faucet fitting (the main body 3a and the water discharge part 3b) of the faucet device 3 and a stop cock (main plug) 105 provided on the upstream side of this. (Channel) 4 may be provided. In this case, the generator 11 is disposed under the counter 2 such as a washstand. In addition, the solenoid valve 8 that opens and closes the water supply channel connected to the water outlet 6 of the faucet device 3 is not limited to being provided inside the faucet fitting. For example, in the example of FIG. 14, the stop cock 105 and the generator 11 It may be provided in a pipe (flow path) 4 between the two.
[0067] 本発明の水栓用発電機は、止水栓(元栓) 105と水栓装置 3の吐水口 6との間の流 路に設けられ、止水栓 105から水栓装置 3の吐水口 6へと向けて流れる流水の水力 によって発電される。水栓装置としては、例えば、キッチン用水栓、リビングダイニング 用水栓、シャワー用水栓、トイレ用水栓、洗面所用水栓などが挙げられる。また、水栓 装置において、吐出流量は、例えば、毎分 100リットル以下、望ましくは毎分 30リット ル以下に設定される。特に、洗面所用水栓においては、毎分 5リットル以下に設定さ れていることが望ましい。また、トイレ用水栓のような吐出流量が比較的多い場合には 、給水管から、発電機 11に流れる水流を分岐させて、発電機 11を流れる流量を毎分 30リットル以下に調整することが望ましい。これは、給水管からのすべての水流を発 電機 11に流すと、動翼 15の回転数が大きくなり、騒音や軸摩耗が増大する可能性 が懸念され、また、回転数が増大しても適正回転数以下でなければ、渦電流ゃコィ ル熱によるエネルギー損失が生じるため、発電量は増大しないからである。また、水 栓金具が取り付けられる水道管の給水圧としては、例えば、 日本においては 0. 05 ( MPa)程度の低水圧である場合もあり得る。  The faucet generator of the present invention is provided in the flow path between the stop cock (main plug) 105 and the spout 6 of the faucet device 3, and the spout 105 of the faucet device 3 is discharged from the faucet 105. Power is generated by the hydropower of the flowing water that flows toward the water inlet 6. Examples of the faucet device include kitchen faucets, living / dining faucets, shower faucets, toilet faucets, toilet faucets, and the like. In the faucet device, the discharge flow rate is set to 100 liters per minute or less, preferably 30 liters or less, for example. In particular, it is desirable for toilet faucets to be set at 5 liters per minute or less. In addition, when the discharge flow rate is relatively high, such as a toilet faucet, the water flow flowing from the water supply pipe to the generator 11 can be branched to adjust the flow rate flowing through the generator 11 to 30 liters per minute or less. desirable. This is because there is a concern that if all the water flow from the water supply pipe flows to the generator 11, the rotational speed of the rotor blade 15 increases, noise and shaft wear may increase, and even if the rotational speed increases. This is because, if the rotational speed is not less than the proper value, energy loss will occur due to eddy current and coil heat, and the power generation will not increase. In addition, the water supply pressure of the water pipe to which the faucet fitting is attached may be as low as 0.05 (MPa) in Japan, for example.
[0068] また、本発明は、人体検知センサを用いた自動水栓に限らず、例えば、図 15に表 すように手動操作部や手動スィッチ 3cのオン/オフによるワンタッチ水栓、流量を力 ゥントして止水する定量吐水水栓、設定時間を経過すると止水するタイマー水栓など にも適用できる。  [0068] Further, the present invention is not limited to an automatic faucet using a human body detection sensor. For example, as shown in Fig. 15, a one-touch faucet by turning on / off a manual operation unit or a manual switch 3c, and a flow rate can be used. It can also be applied to fixed water faucets that stop and stop and timer faucets that stop when a set time has elapsed.
[0069] また、発電された電力を、例えば、図 15に表すように水栓装置 3に設けられたライト アップ用の照明 101や、その他、アルカリイオン水や銀イオン含有水などの電解機能 水の生成、流量表示(計量)、温度表示、音声ガイドなどに用いてもよい。 [0070] さらには、図 16に表すように、例えば、洗面所の天井に設けられた人体検知センサ 102に、発電機 11が発電した電力を供給してもよい。その他、発電機 11が発電した 電力を、ガスセンサ、マイクロ波センサ、ドア開閉の機械式センサ等の作動に用いて あよい。 [0069] Further, for example, the generated electric power is converted into the lighting 101 for lighting up provided in the faucet device 3 as shown in FIG. 15 or other electrolytic function water such as alkali ion water or silver ion-containing water. Generation, flow rate display (metering), temperature display, voice guide, etc. Furthermore, as shown in FIG. 16, for example, the electric power generated by the generator 11 may be supplied to the human body detection sensor 102 provided on the ceiling of the washroom. In addition, the electric power generated by the generator 11 may be used for the operation of a gas sensor, a microwave sensor, a door opening / closing mechanical sensor, and the like.
産業上の利用可能性  Industrial applicability
[0071] 本発明によれば、動翼に回転力を与えない無駄な流れを抑制し、発電効率を向上 させた水栓用発電機が提供される。 [0071] According to the present invention, there is provided a faucet generator that suppresses a wasteful flow that does not give a rotating force to a moving blade and improves power generation efficiency.

Claims

請求の範囲 The scope of the claims
[1] 給水流路に対して略平行な中心軸と、 [1] a central axis substantially parallel to the water supply channel;
周面に複数の動翼羽根部を有し、前記中心軸のまわりに回転可能に前記給水流 路に設けられる動翼と、  A rotor blade having a plurality of rotor blade portions on a peripheral surface and provided in the water supply flow path so as to be rotatable around the central axis;
前記動翼に対して間隙を隔てて前記動翼の上流側に設けられ、前記動翼に旋回 流を与える複数の静翼羽根部を周面に有する予旋回静翼と、  A pre-swirl stator blade provided on the upstream side of the rotor blade with a gap with respect to the rotor blade, and having a plurality of stator blade blade portions on the peripheral surface for giving a swirl flow to the rotor blade;
前記動翼と一体に回転可能なマグネットと、  A magnet rotatable integrally with the moving blade;
前記マグネットに対向するコイルと、  A coil facing the magnet;
を備え、  With
前記静翼羽根部間に形成される静翼流路の中心よりも、前記動翼羽根部間に形成 される動翼流路の中心の方が径外方向に位置していることを特徴とする水栓用発電 機。  The center of the moving blade flow path formed between the moving blade blade portions is positioned in the radially outward direction from the center of the stationary blade flow path formed between the stationary blade blade portions. Faucet generator.
[2] 前記動翼羽根部が前記静翼羽根部よりも径外方向に突出していることを特徴とす る請求項 1記載の水栓用発電機。  2. The faucet generator according to claim 1, wherein the moving blade blade part protrudes radially outward from the stationary blade blade part.
[3] 水栓装置の水栓金具と、前記水栓装置の上流側に設けられた止水栓との間を接続 する流路に設けられ、発電した電力を前記水栓装置の開閉動作以外に供給可能で あることを特徴とする請求項 1または 2に記載の水栓用発電機。 [3] Provided in a flow path connecting between the faucet fitting of the faucet device and the stop cock provided on the upstream side of the faucet device, and generates generated power other than the opening / closing operation of the faucet device The faucet generator according to claim 1 or 2, wherein the faucet generator can be supplied to the faucet.
[4] 水栓装置の水栓金具内に設けられ、発電した電力で前記水栓装置を開閉すること を特徴とする請求項 1または 2に記載の水栓用発電機。 4. The faucet generator according to claim 1 or 2, wherein the faucet generator is provided in a faucet fitting of the faucet device and opens and closes the faucet device with the generated electric power.
[5] 前記静翼羽根部の外周部は、前記動翼羽根部の内周部より径外方向に突出して いることを特徴とする請求項;!〜 4のいずれか 1つに記載の水栓用発電機。 [5] The water according to any one of claims 1 to 4, wherein an outer peripheral portion of the stationary blade blade portion protrudes radially outward from an inner peripheral portion of the moving blade blade portion. Plug generator.
[6] 前記動翼流路の入口幅が、前記静翼流路の出口幅より大であることを特徴とする 請求項 1〜5のいずれ力、 1つに記載の水栓用発電機。 6. The faucet generator according to any one of claims 1 to 5, wherein an inlet width of the moving blade channel is larger than an outlet width of the stationary blade channel.
[7] 前記動翼流路の入口幅が、前記静翼流路の出口幅の 1. 5倍以上 2. 5倍以下であ ることを特徴とする請求項 6記載の水栓用発電機。 7. The faucet generator according to claim 6, wherein an inlet width of the moving blade channel is 1.5 times or more and 2.5 times or less of an outlet width of the stationary blade channel. .
[8] 前記マグネットは、前記動翼流路を囲むように前記動翼羽根部に固定された筒状 を呈し、前記コイルは、前記マグネットの上流側端面及び下流側端面の少なくともい ずれかに対向して配置されたことを特徴とする請求項 1〜7のいずれ力、 1つに記載の 水栓用発電機。 [8] The magnet has a cylindrical shape fixed to the blade blade part so as to surround the blade flow path, and the coil is at least one of an upstream end surface and a downstream end surface of the magnet. The force according to any one of claims 1 to 7, wherein the forces are arranged to face each other. Faucet generator.
PCT/JP2007/066540 2006-08-28 2007-08-27 Power generator for faucet WO2008026537A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006230741 2006-08-28
JP2006-230741 2006-08-28
JP2007-063586 2007-03-13
JP2007063586 2007-03-13
JP2007-202697 2007-08-03
JP2007202697A JP4882904B2 (en) 2006-08-28 2007-08-03 Faucet generator

Publications (1)

Publication Number Publication Date
WO2008026537A1 true WO2008026537A1 (en) 2008-03-06

Family

ID=39135820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066540 WO2008026537A1 (en) 2006-08-28 2007-08-27 Power generator for faucet

Country Status (1)

Country Link
WO (1) WO2008026537A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303352A (en) * 2008-06-11 2009-12-24 Toto Ltd Power generator for faucet
JP2009303351A (en) * 2008-06-11 2009-12-24 Toto Ltd Power generator for faucet
JP2009303353A (en) * 2008-06-11 2009-12-24 Toto Ltd Power generator for faucet
WO2013088436A1 (en) * 2011-12-15 2013-06-20 Green Gold 2007 Ltd. An apparatus and method for generating electricity in hydraulic systems
US11984768B2 (en) 2020-04-17 2024-05-14 Zurn Water, Llc Hydroelectric generator for faucet and flush valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505542A (en) * 1991-07-20 1994-06-23 コスモス エントヴィックルングス ウント フォルシュングスアンシュタルト sanitary equipment
JP2004336982A (en) * 2002-09-25 2004-11-25 Denso Corp Generator and automatic faucet device equipped with generator
JP2005113437A (en) * 2003-10-06 2005-04-28 Inax Corp Spout end unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505542A (en) * 1991-07-20 1994-06-23 コスモス エントヴィックルングス ウント フォルシュングスアンシュタルト sanitary equipment
JP2004336982A (en) * 2002-09-25 2004-11-25 Denso Corp Generator and automatic faucet device equipped with generator
JP2005113437A (en) * 2003-10-06 2005-04-28 Inax Corp Spout end unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303352A (en) * 2008-06-11 2009-12-24 Toto Ltd Power generator for faucet
JP2009303351A (en) * 2008-06-11 2009-12-24 Toto Ltd Power generator for faucet
JP2009303353A (en) * 2008-06-11 2009-12-24 Toto Ltd Power generator for faucet
WO2013088436A1 (en) * 2011-12-15 2013-06-20 Green Gold 2007 Ltd. An apparatus and method for generating electricity in hydraulic systems
US11984768B2 (en) 2020-04-17 2024-05-14 Zurn Water, Llc Hydroelectric generator for faucet and flush valve

Similar Documents

Publication Publication Date Title
US7608936B2 (en) Faucet generator
TWI437162B (en) Faucet with generator
US20090188995A1 (en) Faucet apparatus
WO2008026537A1 (en) Power generator for faucet
JP2008050850A (en) Generator for water faucet
JP2009024703A (en) Generator for faucet
JP2008054472A (en) Generator for faucet
JP4882904B2 (en) Faucet generator
JP2008050849A (en) Generator for water faucet
JP2008274787A (en) Generator for faucet
JP2008050851A (en) Generator for water faucet
JP2009303352A (en) Power generator for faucet
JP4134252B1 (en) Faucet generator
JP2008054427A (en) Generator for faucet
JP2008061384A (en) Generator for faucet
JP4129804B1 (en) Faucet generator
JP5146900B2 (en) Generator and faucet device
JP2008271679A (en) Generator for cock
JP2008050852A (en) Water faucet fitting
JP4251302B1 (en) Faucet generator
JP2008266951A (en) Faucet device
JP5057038B2 (en) Faucet generator
JP4441888B2 (en) Faucet generator
JP2008266952A (en) Faucet device
JP2007274858A (en) Generator for faucet, and automatic faucet device with generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07793015

Country of ref document: EP

Kind code of ref document: A1