WO2008026426A1 - Optical information recording medium - Google Patents

Optical information recording medium Download PDF

Info

Publication number
WO2008026426A1
WO2008026426A1 PCT/JP2007/065356 JP2007065356W WO2008026426A1 WO 2008026426 A1 WO2008026426 A1 WO 2008026426A1 JP 2007065356 W JP2007065356 W JP 2007065356W WO 2008026426 A1 WO2008026426 A1 WO 2008026426A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
recording medium
thin film
layer
optical information
Prior art date
Application number
PCT/JP2007/065356
Other languages
French (fr)
Japanese (ja)
Inventor
Hirohisa Yamada
Masaki Yamamoto
Yasuhiro Harada
Go Mori
Hideharu Tajima
Nobuyuki Takamori
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2008532007A priority Critical patent/JP4597240B2/en
Publication of WO2008026426A1 publication Critical patent/WO2008026426A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24065Layers assisting in recording or reproduction below the optical diffraction limit, e.g. non-linear optical layers or structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2437Non-metallic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)

Definitions

  • the present invention relates to an optical information recording medium capable of recording and reproducing information or only reproducing using light.
  • the present invention relates to an optical information recording medium using a super-resolution medium technology capable of reproducing a recording mark having an optical resolution or less determined by a diffraction-limited light spot diameter.
  • the upper limit of the recording density of an optical information recording medium is mainly limited by the spot diameter of a light beam for recording or reproducing information. This is because as the recording mark diameter of an optical information recording medium is reduced and the recording density is increased, a plurality of marks are included in the spot area, and each mark cannot be detected! / It is.
  • the spot diameter of the light beam is approximately expressed as ⁇ / ⁇ where ⁇ is the wavelength of the light source and ⁇ is the numerical aperture of the object lens for forming the light spot. Therefore, the optical information recording medium has been improved in recording density by shortening the wavelength ⁇ of the light source and increasing the numerical aperture of the objective lens to reduce the spot diameter of the light beam.
  • the wavelength ⁇ of the light source is considered to be limited by the wavelength in the ultraviolet region due to the absorption of the optical element and the limitation of the sensitivity characteristics of the detector. Further, the improvement of the numerical aperture of the objective lens is almost limited by the allowable amount of tilt of the optical information recording medium. Therefore, there is a limit to improving the recording density by reducing the spot diameter of the light beam.
  • an optical information recording medium using super-resolution technology which is a technology capable of reproducing a mark having a length less than the diffraction limit of the reproduction optical system (hereinafter referred to as the light diffraction limit or less), has been developed.
  • an optical information recording medium using this technique is called a super-resolution optical information recording medium, and reproducing a recording pit having a mark length less than the optical diffraction limit using this technique is called super-resolution reproduction.
  • the optical diffraction limit value is theoretically known to be ⁇ / (2 ⁇ 2 ⁇ ⁇ ) when the wavelength of the reproduction light is obtained and the numerical aperture of the objective lens is ⁇ . In practice, this The optical diffraction limit value includes a certain width.
  • the reflectance of the thin film portion changes according to the incident light intensity
  • the wavelength distribution of the reflectance of the thin film portion at room temperature is the wavelength of the incident light for reproduction.
  • Patent Document 2 discloses an optical information recording medium having a temperature sensitive layer in which the optical characteristics of a light beam change as the temperature rises due to light beam irradiation.
  • This temperature-sensitive layer has a relationship of r 100 ⁇ a ⁇ r when the optical absorption edge wavelength of the temperature-sensitive layer is ⁇ a (nm) and the wavelength of the light beam is ⁇ r (nm).
  • An optical information recording medium is disclosed in which the material of the temperature sensitive layer is selected and / or the film thickness is set, so that the effective spot diameter of the light beam is reduced and super-resolution reproduction is possible. .
  • Patent Document 3 a detailed reproduction principle is unknown. Light that enables super-resolution reproduction by providing a functional layer made of a single metal, semiconductor, or the like on an information recording surface having unevenness. An information recording medium is disclosed.
  • the minimum length pre-pit that is the shortest mark length and several types of pre-pits based on the length are defined by the standards, and these lengths are different.
  • a system in which prepits are arranged in order in the direction of signal reproduction in accordance with the rules stipulated by the standard is used (hereinafter referred to as random pattern system).
  • jitter is important as an evaluation index.
  • jitter will be described.
  • an optical information recording medium using super-resolution technology often has insufficient reproduction durability, and the power consumption of a drive device with high power of a light beam irradiated during reproduction is high. There is also the problem of becoming higher.
  • Patent Document 1 Japanese Patent Publication “JP 2005-18964 Publication (Publication Date: January 20, 2005)”
  • Patent Document 2 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2006-73169 (Publication Date: March 16, 2006)”
  • Patent Document 3 Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2001-250274 (Publication Date: September 14, 2001)”
  • the present invention has been made in view of the above problems, and its purpose is to achieve stable supersolution. Realizing an optical information recording medium on which information is recorded by a random pattern method including marks having a length less than or equal to the optical diffraction limit, which enables efficient image reproduction and further improvement in recording density There is.
  • the reflectance changes from the incident side of the reproduction light based on the change in the state of the light transmitting layer and the optical multiple interference.
  • An optical information recording medium in which a thin film portion and a substrate on which information is recorded by a random pattern method consisting of convex and / or concave corresponding to recording information are sequentially laminated, wherein the thin film portion is for reproducing light.
  • the optical constant at the wavelength of the reproduction light which changes the refractive index and extinction coefficient, changes the optical multiple interference state, and the incident layer.
  • a light absorption layer that raises the temperature of the reproduction layer by absorbing a portion of the reproduced light that is converted into heat, and has a wavelength distribution of the reflectance at room temperature of the thin film portion. O! /, The local minimum and local maximum will be next to each other Length, respectively, and min Oyobie max, when the e r the wavelength of the reproduction light, the relationship of ⁇ min ⁇ r ⁇ max is satisfied.
  • the translucent layer, the thin film portion, and the substrate are laminated in this order from the side on which the reproduction light is incident, and adjacent to each other in the reflectance wavelength distribution of the thin film portion at room temperature.
  • the thin film portion is formed so that the relationship of min ⁇ ⁇ ⁇ max is established, where the minimum and maximum wavelengths to be matched are min and max, respectively, and the wavelength of the reproduction light is r. Has been.
  • the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at the room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • the wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. So of the playback light
  • the reflectivity of the thin film portion at the wavelength r decreases at higher temperatures (see FIG. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, thereby effectively reducing jitter. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion. For this reason, it is possible to form the thin film portion by setting the film thickness of the reproducing layer so that the relationship of max ⁇ min is established in the wavelength distribution of the reflectance of the thin film portion at room temperature. Noh. In this case, the refractive index n at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of reflectance at high temperatures in the thin film part shifts to the longer wavelength side compared to that at room temperature (see Fig. 5).
  • the thin film portion has the structure according to the present invention!
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
  • the second optical information recording medium provides information from the incident side of the reproduction light by a random pattern method consisting of convex and / or concave corresponding to the recorded information. Is an optical information recording medium in which a thin film portion whose reflectivity changes based on a change in the state of optical multiple interference is laminated, and the thin film portion is from the incident side of the reproduction light.
  • the optical constant at the wavelength of the reproduction light which changes the refractive index and extinction coefficient, changes the state of optical multiple interference, and the incident reproduction
  • the substrate and the thin film portion are sequentially laminated from the side on which the reproduction light is incident, and the adjacent local minimum value and local maximum value in the wavelength distribution of the reflectance of the thin film portion at room temperature.
  • the thin film portion is formed so that the relationship of min ⁇ ⁇ ⁇ max is established, where min and e max are the wavelengths to be obtained, and r is the wavelength of the reproduction light.
  • the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at the room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • the wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, thereby effectively reducing jitter. It will be possible to achieve this. That is, reading in the playback system However, an error occurs, so that stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion
  • the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced.
  • the power to make it becomes S Kanakura.
  • the reproducing layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproducing layer are separately formed. Therefore, it is possible to improve the reproduction durability.
  • the third optical information recording medium has a translucent layer, a metal oxide, or a mixture containing the metal oxide as main components from the incident side of the reproduction light.
  • the information is recorded by a metal oxide layer made of Si, Ge, or a thin film layer made of a mixture mainly composed of Si, Ge, or which force, and a random pattern method of convex and / or concave according to the recorded information.
  • the optical information recording medium in which the substrate is laminated in order, and the wavelength distribution of the reflectance at the room temperature of the thin film portion composed of the metal oxide layer and the thin film layer, the wavelength having the adjacent minimum value and the maximum value is determined.
  • min and e max are set, and the wavelength of the reproduction light is r, the relationship of min ⁇ ⁇ ⁇ max is established.
  • the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si, Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer.
  • the refractive index at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at a room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • the wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
  • the reproduction layer that changes the state of optical multiple interference due to the temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability.
  • the fourth optical information recording medium in order to solve the above-mentioned problem, information is recorded from the incident side of the reproduction light by a random pattern method composed of convex and / or concave according to the recording information. And a metal oxide, or a metal oxide layer composed of the metal oxide as a main component, and a thin film layer composed of Si or Ge, or a mixture based on either of them.
  • a metal oxide, or a metal oxide layer composed of the metal oxide as a main component and a thin film layer composed of Si or Ge, or a mixture based on either of them.
  • adjacent minimum and maximum wavelengths are set to min and When max is set and r is the wavelength of the reproduction light, the relationship min ⁇ ⁇ ⁇ max is established.
  • the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si, Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer.
  • the minimum and maximum wavelengths adjacent to each other are min and max, respectively, and the wavelength of the reproduction light is r. Then, the thin film portion is formed so that the relationship of l min ⁇ ⁇ ⁇ max is established.
  • the refractive index at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at a room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • the wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • the wave length distribution of the anti-reflection emissivity of the thin film portion depends on the film thickness of the thin film portion. Therefore, it is possible to easily and easily control the anti-reflective emissivity control of the optical information recording / recording medium body. This will reduce the production cost of the information recording / recording medium, and this will be the power SS Kanakura. .
  • the thin film portion is covered with the temperature and temperature.
  • a regenerated biolayer that changes the state of the photo-optics multi-multilayer interference, and the temperature temperature of the regenerated biolayer is increased and raised.
  • the light-absorbing and absorbing layer to be formed is separated and formed into a separated shape, which improves the durability of the regenerated raw material. And become possible. .
  • FIG. 2 is a schematic diagram of an optical system of a recording / reproducing apparatus capable of recording / reproducing information using the optical information recording medium of the present invention.
  • FIG. 3, showing Embodiment 1 of the present invention, is a sectional view showing a schematic configuration of an optical information recording medium.
  • FIG. 4 is a diagram showing a schematic configuration of prepits provided on a substrate on which the optical information recording medium shown in FIG. 3 is formed.
  • FIG. 5U is a diagram showing a spectral spectrum with respect to the measurement wavelength of the reflectance of the optical information recording medium in the case of a relationship of max ⁇ min.
  • FIG. 6 shows Example 1 of the optical information recording medium shown in FIG. 3, wherein the thickness of the reproducing layer is
  • FIG. 7 shows Comparative Example 1 of the optical information recording medium shown in FIG.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of an optical information recording medium that does not use the super-resolution medium technology, showing Comparative Example 2 of the optical information recording medium shown in FIG.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of an optical information recording medium shown in FIG. 6, in which Comparative Example 3 of the optical information recording medium shown in FIG.
  • FIG. 10 is a diagram showing a change in jitter with respect to reproducing optical laser power in the optical information recording media shown in FIGS. 6 to 9, respectively.
  • FIG. 11 is a diagram showing a change in jitter with respect to the thickness of the light absorption layer of the optical information recording medium shown in FIG.
  • FIG. 12 showing Embodiment 2 of the present invention, is a cross-sectional view showing a schematic configuration of an optical information recording medium when reproducing light is incident from the substrate side.
  • the recording / reproducing apparatus includes a laser light source, condensing optical means, relative motion means, photoelectric conversion means, servo means, address information detection means, and a reproduction signal demodulation circuit.
  • the laser light source for example, a semiconductor laser that emits light with a wavelength of 406 nm can be used.
  • the condensing optical means condenses the laser light generated by the laser device force in the form of a beam on an optical information recording medium, and includes optical components such as a condensing lens and a beam splitter.
  • the relative motion means is for moving the condensing optical means and the optical information recording medium relative to each other, and is composed of a linear actuator such as a swing arm.
  • the movement includes at least one of a movement in which the optical information recording medium rotates or translates, and a movement in which the condensing lens included in the condensing optical means moves in a direction perpendicular to the optical axis.
  • the photoelectric conversion means converts the level of reflected light from the optical information recording medium into an electric signal, and the servo means performs autofocus and tracking of the laser light.
  • the address information detecting means detects address information from an electrical signal obtained by reproducing an address information mark provided on the optical information recording medium.
  • the reproduction signal demodulating circuit The recorded information is reproduced from the reflected light of the recording medium.
  • the laser light source, the condensing optical means, the photoelectric conversion means, and the servo means are housed in an optical head that performs relative motion with the optical information recording medium by the relative motion means. . It is also possible to place the laser light source and the photoelectric conversion means in a separate case from the condensing optical means. [0063] In addition, it is preferable that the recording / reproducing apparatus further includes means for adjusting the angle formed between the focused laser beam and the optical information recording medium. In addition, the deterioration of the light spot due to the occurrence of aberration can be prevented.
  • FIG. 2 shows a configuration diagram of a general optical system when the optical information recording medium mounted on such a recording / reproducing apparatus as an optical head is a disc-shaped optical disk.
  • the optical system includes a semiconductor laser 61, a collimating lens 62, a beam shaping prism 63, a beam splitter 64, an objective lens 65, and a detection optical system 67.
  • Laser light from the semiconductor laser 61 as a light source is converted into substantially parallel light by the collimator lens 62, and the light intensity distribution is shaped into a substantially circular shape by the beam shaping prism 63.
  • the substantially circular parallel light passes through the beam splitter 64 and is then focused on the optical information recording medium 66 by the objective lens 65. This reflected light is branched by the beam splitter 64 and guided to the detection optical system 67.
  • the spindle motor 68 rotates the optical information recording medium 66 to scan the optical spot on the optical information recording medium 66.
  • the detection optical system 67 discriminates signals from changes in the polarization direction of reflected light and changes in reflected light intensity, and at the same time reads the recording marks recorded on the optical information recording medium 66 and simultaneously records the optical information of the light spot. By detecting a defocus signal and a track position shift signal with respect to the medium 66 and feeding back to the drive system of the objective lens 65, the position shift of the light spot is corrected.
  • the numerical aperture (NA) of the objective lens is set to 0.85.
  • the optical information recording medium 66 and the optical information recording medium 66 according to the present invention adopting the super-resolution medium technology as the optical information recording medium 66 and the super-resolution medium technology. It is desirable to be able to record / reproduce both the optical disc and the ordinary optical information recording medium. Therefore, in the optical information recording / reproducing apparatus, the gain of the detector, the reproduction light intensity, the recording light intensity, the recording waveform, in the case of the optical information recording medium according to the present invention and in the case of the normal optical information recording medium, The optical information recording medium is configured to be able to switch the number of rotations. However, since these are in an electrically controllable range, it is not necessary to make significant changes to the optical system as compared with an apparatus that records and reproduces only ordinary media.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the optical information recording medium 1 according to the present embodiment.
  • the optical information recording medium 1 includes a light-transmitting layer 10, a thin film portion 20, and a substrate 30, and is formed in this order from the reproduction light incident surface.
  • the light transmissive layer 10 may be made of a material that can sufficiently transmit the reproduction light.
  • the light transmissive layer 10 is formed of polycarbonate film, ultraviolet curable resin, or the like. As a result, it is possible to prevent the thin film portion 20 from being broken by an external factor.
  • the substrate 30 is formed with concavity and convexity prepits (pits) 31 corresponding to recording information in a concentric or spiral shape.
  • the optical characteristics of the material constituting the substrate 30 are not particularly limited and may be transparent or opaque.
  • the material constituting the substrate 30 include glass, polycarbonate, amorphous polyolefin, thermoplastic polyimide, thermoplastic transparent resins such as PET, PEN, and PES, thermosetting polyimide, and ultraviolet curable acrylic resin. Examples thereof include curable transparent resins, metals, and the like, and combinations thereof.
  • the thin film portion 20 includes a reproduction layer 21 and a light absorption layer 22, and is formed in this order from the reproduction light incident surface.
  • the thin film portion 20 includes, for example, a reflection that reflects reproduction light between the light absorption layer 22 and the substrate 30.
  • a layer may be provided.
  • the reproduction layer 21 changes the refractive index n and the extinction coefficient k, which are optical constants at the wavelength of the reproduction light, and causes optical multiple interference.
  • the light absorption layer 22 absorbs a part of the reproduction light and converts it into heat, thereby raising the temperature of the reproduction layer 21.
  • the light absorption layer 22 absorbs a part of the reproduction light and converts it into heat.
  • this heat is supplied to the reproduction layer 21, a high temperature region and a low temperature region are generated in the light spot region of the reproduction light on the reproduction layer 21.
  • the refractive index n and the extinction coefficient k which are the optical constants of the reproducing layer 21, change, respectively, thereby changing the complex refractive index.
  • the state of optical multiple interference in the reproduction layer 21 changes, and as a result, the reflectance of the reproduction layer 21 changes.
  • the material constituting the reproduction layer 21 is excellent in durability that the composition or shape hardly changes even when a chemical structural change is repeated due to a temperature change.
  • metal oxides include zinc oxide, tin oxide, indium oxide, nickel oxide, vanadium oxide, titanium oxide, cerium oxide, strontium titanate, cobalt oxide, and tantalum oxide. Of these, zinc oxide is particularly preferable because it is inexpensive and has a low environmental impact. A mixture containing these as main components may also be used.
  • the thickness S of the reproducing layer 21 is preferably 80 nm or more and less than 120 nm from experiments and theoretical values. The film thickness of the reproducing layer 21 will be described in detail later.
  • any material that absorbs light to some extent and can effectively raise the temperature of the reproduction layer 21 can be used.
  • examples include metals, phase change materials, and organic dyes.
  • organic dyes are expensive, and phase change materials are difficult to manage. Therefore, Si or Ge or a mixture based on Si or Ge is cheaper than semiconductors or metalloids such as Si and Ge. Is preferred.
  • the light absorption layer 22 is formed on the substrate 30 so that the unevenness of the prepits 31 is reflected.
  • the light absorption layer 22 is usually formed by a magnetron sputtering method.
  • the atoms forming the light absorption layer 22 evaporated by sputtering do not necessarily enter the substrate 30 completely perpendicularly. For this reason, if the thickness of the light absorption layer 22 is greater than 500 nm, the unevenness of the prepits 31 may not be accurately reflected. Therefore, the film thickness of the light absorption layer 22 is preferably 500 nm or less. The film thickness of the light absorption layer 22 will be described in detail later.
  • the thickness of the reproducing layer 21 is set to 80 nm or more and less than 120, the wavelength distribution of the reflectance of the thin film portion 20 at room temperature (30 ° C) is As shown in FIG. 1, when the adjacent local minimum and local maximum values are min and max, respectively, and the wavelength of the reproduction light is r, min ⁇ r ⁇ max.
  • the refractive index n of the reproducing layer 21 forming the thin film portion 20 increases as the temperature increases. . Accordingly, as shown in FIG. 1, the wavelength distribution of the reflectance of the thin film portion 20 at a high temperature (200 ° C.) is shifted to the longer wavelength side as compared with the wavelength distribution at room temperature. For this reason, at the wavelength r of the reproduction light, the reflectance of the thin film portion 20 at a high temperature is lower than the reflectance at a room temperature. Further, since the extinction coefficient k of the reproducing layer 21 increases as the temperature increases, the transmittance of the reproducing layer 21 is reduced accordingly. Therefore, the reflectance of the thin film portion 20 is lowered at the wavelength r of the reproduction light.
  • the refractive index n and the extinction coefficient k in the high temperature region of the light spot of the reproduction light act to enhance the change in the reflectivity of the thin film portion 20.
  • the film thickness of the reproducing layer 21 is preferably set to 80 nm or more and less than 120 nm, but it can be set at less than 80 nm or 120 nm or more even at room temperature.
  • the force S can be applied so that the wavelength distribution of the reflectance of the thin film portion 20 satisfies min ⁇ ⁇ ⁇ max.
  • the thickness of the reproducing layer 21 is less than 80 nm, the effect of optical multiple interference cannot be obtained sufficiently, and there is a possibility that stable super-resolution reproduction cannot be performed. Further, when the thickness of the reproducing layer 21 is 120 nm or more, there is a possibility that the minimum value of the reflectance is around 00 nm in the wavelength dependence of the reflectance of the thin film portion 20. At this time, for example, when a Blu-ray optical system is used, the wavelength of the reproduction light and the wavelength that takes the minimum value of the reflectance are close to each other. For this reason, when the optical information recording medium is reproduced, the necessary reflected light cannot be obtained sufficiently, and the focus focus is increased. Furthermore, when the optical information recording medium is reproduced, the heat supplied from the light absorption layer 22 cannot be sufficiently obtained, and there is a possibility that the reproduction sensitivity is lowered.
  • the thickness of the reproducing layer 21 is preferably set to 80 nm or more and less than 120 nm.
  • FIG. 5 shows the wavelength distribution of the reflectance of the thin film portion 20 at room temperature (30 ° C.) when the thickness of the reproducing layer 21 is 144 nm.
  • the relationship between the adjacent minimum value ⁇ min and maximum value ⁇ max of the wavelength distribution and the wavelength ⁇ r of the reproduction light is ⁇ max ⁇ ⁇ ⁇ ⁇ ⁇ min.
  • the refractive index n of the reproducing layer 21 forming the thin film portion 20 increases as the temperature increases. Accordingly, the wavelength distribution of the reflectance of the thin film portion 20 at a high temperature (200 ° C.) is shifted to the longer wavelength side as compared with the wavelength distribution at room temperature, as shown in FIG.
  • the reflectance of the thin film portion 20 at a high temperature is higher than the reflectance at a room temperature.
  • the extinction coefficient k of the reproducing layer 21 increases as the temperature increases, and accordingly, the transmittance of the reproducing layer 21 is decreased. For this reason, the reflectance of the thin film portion 20 is lowered at the wavelength of the reproduction light. Therefore, when the wavelength distribution of the reflectivity of the thin film portion 20 at room temperature is max ⁇ ⁇ ⁇ ⁇ min, the refractive index n and the extinction coefficient k are It can be seen that the change in the reflectivity of the thin film portion 20 is strengthened.
  • the refractive index n and the extinction coefficient k are the reflectance of the thin film portion 20. Jitter can be reduced because it works to increase the rate drop. That is, since the optical information recording medium 1 can efficiently perform stable super-resolution reproduction, the reproduction sensitivity of the optical information recording medium 1 can be improved.
  • the thin film portion 20 of the optical information recording medium 1 is separately formed into a reproducing layer 21 and a light absorbing layer 22. Thereby, since the role is shared in the thin film portion 20, it is possible to improve the reproduction durability.
  • the wavelength distribution of the reflectance of the thin film portion 20 at room temperature can be appropriately changed according to the film thickness of the reproducing layer 21. Accordingly, since the reflectance control of the optical information recording medium 1 can be easily performed, the production cost of the optical information recording medium 1 can be reduced.
  • the jitter is reduced by setting the film thickness of the reproducing layer 21 so that the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is ⁇ min ⁇ r ⁇ max.
  • the present invention will be described in detail by showing examples.
  • the optical information recording medium 2 is Example 1 of the optical information recording medium 1, and is the most preferable example of the optical information recording medium 1.
  • the optical information recording medium 2 includes a translucent layer 10, A thin film portion 20 and a substrate 30 are provided, and are formed in this order from the reproduction light incident surface.
  • the light-transmitting layer 10 includes a polycarbonate film 11 (film thickness: 80 in) and a transparent adhesive layer 12 (film thickness).
  • the thin film portion 20 includes a reproduction layer 21 (thickness: 11 lnm) made of zinc oxide and a light absorption layer 22 (thickness: 50 nm) made of Ge, and is formed in this order from the reproduction light incident surface.
  • the substrate 30 is made of a polyolefin resin.
  • the film thickness of the thin film portion 20 of the optical information recording medium 2 in Example 1 is set so that the relationship of l min ⁇ ⁇ ⁇ max is satisfied.
  • the optical information recording medium 3 is a comparative example 1 of the optical information recording medium 1, and includes a light-transmitting layer 10, a thin film portion 20, and a substrate 30, and is reproduced. They are formed in this order from the light incident surface.
  • the light transmitting layer 10 includes a polycarbonate film 11 (film thickness: 80 in) and a transparent adhesive layer 12 (film thickness).
  • the thin film portion 20 includes a reproduction layer 21 (thickness: 144 nm) made of zinc oxide and a light absorption layer 22 (thickness: 50 nm) made of Ge, and is formed in this order from the reproduction light incident surface.
  • the substrate 30 is made of a polyolefin resin. That is, the thickness of the reproducing layer 21 of the optical information recording medium 3 is set to 120 nm or more, which is thicker than the thickness of the reproducing layer 21 of the optical information recording medium 2. In the above configuration, the film thickness of the thin film portion 20 of the optical information recording medium 3 in Comparative Example 1 is set so as to satisfy the relationship of max ⁇ ⁇ ⁇ min.
  • optical information recording media 2 and 3 are produced by the following method, for example.
  • the optical information recording medium 4 is a comparative example 2 with respect to the optical information recording medium 2, and does not use the super-resolution medium technology! / Show me!
  • the optical information recording medium 4 includes a light transmitting layer 10, a thin film layered portion 40, and a substrate 30, and is formed in this order from the reproduction light incident surface!
  • the light transmissive layer 10 includes a polycarbonate film 11 (film thickness: 80 111) and a transparent adhesive layer 12 (film thickness: 20 ⁇ m), and is formed in this order from the reproduction light incident surface! /,
  • the film thickness of the thin film layered portion 40 made of Au is 50 nm.
  • the substrate 30 is made of a polyolefin resin.
  • the optical information recording medium 5 is a comparative example 3 with respect to the optical information recording medium 2, and shows the super-resolution optical information recording medium described in Patent Document 3! / The
  • the optical information recording medium 5 includes a light transmitting layer 10, a thin film layered portion 50, and a substrate 30, and is formed in this order from the reproduction light incident surface.
  • the light-transmitting layer 10 includes a polycarbonate film 11 (film thickness: 80 111) and a transparent adhesive layer 12 (film thickness).
  • the film thickness of the thin film layered portion 50 made of Ge is 50 nm.
  • the substrate 30 is made of a polyolefin resin.
  • the substrate 30 forming the optical information recording media 2, 3, 4 and 5 has a monotone pattern system having a mark length of 0 ⁇ 12 m which is not more than the optical diffraction limit. Is used, and single frequency repetitive phase pits (mark'space ratio 1: 1) are recorded.
  • the number of the prepits with the minimum length that is the shortest mark (0.12 m) at the length equal to or less than the optical diffraction limit, Prepits of various lengths are arranged in order in the signal reproduction direction according to the rules defined by the standard. That is, in this embodiment, the shortest mark length (0.12 ⁇ 111 ) Prepits with several lengths are arranged according to the standard, so prepits with a mark length below the optical diffraction limit and prepits with a mark length longer than the optical diffraction limit are mixed. In other words, prepits that include a recording mark length that is less than or equal to the optical system resolution limit of the playback device and prepits that are longer than the optical system resolution limit of the playback device and have a recording mark length are mixed. Information is recorded at!
  • FIG. 10 shows the change in jitter with respect to the reproduction light laser power in Example 1 and Comparative Examples 1 to 3.
  • Example 1 and Comparative Example 2 are compared.
  • the jitter bottom value of Example 1 is about 7% lower than the jitter bottom value of Comparative Example 2. That is, it can be seen that the random pattern type optical information recording medium 2 having a mark with a length less than or equal to the optical diffraction limit can perform more stable super-resolution reproduction more efficiently than Comparative Example 2. .
  • Example 1 and Comparative Example 1 are compared. As described above, Example 1 and Comparative Example 1 In addition, the jitter bottom is almost unchanged. However, the jitter becomes the bottom when the reproduction laser power is 0.5 mW in Example 1, and when the reproduction optical laser power is 1.6 mW in Comparative Example 1. That is, it can be seen that the reproduction laser power in Example 1 is 1/3 or less of the reproduction laser power in Comparative Example 1 and has a jitter bottom value. Therefore, the optical information recording medium 2 of Example 1 enables stable super-resolution reproduction with low power compared to the optical information recording medium 3 of Comparative Example 1.
  • Example 1 and Comparative Example 3 are compared.
  • Example 1 and Comparative Example 3 are recorded in a monotone pattern method, and the C / N when a prepit having a length less than the optical diffraction limit is reproduced has a good C / N value. It was found that resolution reproduction is possible.
  • good C / N can be obtained with a mark having a length less than or equal to the optical diffraction limit.
  • the power S that guarantees the reproduction characteristics, the information is recorded in a random pattern method that can be recorded at higher density! /, And the reproduction characteristics of super-resolution media are guaranteed! /, That's right!
  • the optical information recording medium 2 according to Example 1 is designed such that the wavelength distribution of the reflectance of the thin film portion 20 at room temperature satisfies min ⁇ ⁇ max. To be In both cases, jitter is also reduced. That is, Example 1 is more stable than the optical information recording medium 3 according to Comparative Example 1, which is designed such that the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is max ⁇ min. this and power s Wakakaru it is possible to perform super-resolution reproduction efficiently.
  • an optical information recording medium in which the film thickness of the light absorption layer 22 of Example 1 was changed was produced, and the jitter of each optical information recording medium was measured using the disk evaluator. As shown in FIG. 11, the film thickness of the light absorption layer 22 is such that the jitter decreases as the film thickness increases.
  • the film thickness of the light absorption layer 22 is preferably 5 nm or more.
  • the thickness of the light absorption layer 22 when the thickness of the light absorption layer 22 is 5 nm or more, the jitter is reduced, but when the thickness is 50 nm or more, the jitter value is almost zero. Since it does not change, there is no further reduction in jitter. Therefore, it is preferable to set the thickness of the light absorption layer to 50 nm or more in order to ensure that the jitter is reduced.
  • the film thickness of the light absorption layer 22 is preferably 500 nm or less.
  • jitter can be reduced, that is, stable super-resolution reproduction can be performed efficiently. Further, when the thickness of the light absorption layer 22 is set to 50 nm or more and 500 nm or less, it becomes possible to reliably reduce the jitter.
  • the light transmitting layer 10, the thin film portion 20, and the substrate 30 are formed in this order from the reproduction light incident surface. Power that is not limited to this film formation.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of the optical information recording medium 6 of the present embodiment. Note that members having the same functions as those of the optical information recording media 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
  • the optical information recording medium 6 includes a substrate 30 and a thin film portion 20, and is formed in this order from the reproduction light incident surface.
  • the thin film portion 20 includes a reproducing layer 21 and a light absorbing layer 22 and is formed in this order from the reproducing light incident surface. That is, the optical information recording medium 6 is different from the optical information recording media 1 and 2 in that the light transmitting layer 10 that functions as a protective film is not formed.
  • the optical information recording medium 6 is not limited to the above configuration.
  • the optical information recording medium 6 further includes an intermediate layer (not shown) made of a transparent resin, and an information recording layer for recording and / or reproducing information. (Not shown) and the board
  • This configuration conforms to the DVD (HD—DVD) standard.
  • the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is
  • the thickness of the reproducing layer 21 in an appropriate range so that l min ⁇ ⁇ ⁇ max.
  • the refractive index n and the extinction coefficient k of the reproducing layer 21 enhance the decrease in the reflectance of the thin film portion 20 when the temperature becomes high. Therefore, it is possible to reduce jitter. That is, the optical information recording medium 6 can efficiently perform stable super-resolution reproduction.
  • the thin film portion 20 of the optical information recording medium 6 is similar to the optical information recording media 1 and 2 in the reproducing layer.
  • the optical information recording medium 6 performs optical reading through the substrate 30, even if the reproduction light incident surface of the substrate 30 is damaged, reading errors are unlikely to occur.
  • the substrate since the substrate is positioned on the side where the reproduction light is incident, the substrate functions as a protective film, and it is not necessary to separately provide a protective film or the like. . Therefore, optical information recording is cheaper than optical information recording media with a protective film or the like provided separately. A medium can be provided.
  • optical readout since optical readout is performed through the substrate, it is possible to prevent reading errors even when the substrate on the reproduction light incident side is damaged.
  • the optical information recording media 1, 2 and 6 may be read-only optical information recording media composed of a read-only substrate, and information recording having a recording film on which information can be recorded. It can be an optical information recording medium! /.
  • the optical information recording media 1, 2 and 6 are CD-ROM (Compact Disk Read Only Memory), D—R (and ompact Disk Recordable 8 CD—RAV (and ompact Disk Rewrita ble). ), DVD—ROM (Digital Versatile Disk Read Only Memory), DVD-RW (Digital Versatile Disk Rewritable), BD (Blu-ray Disc), BD—ROM, etc.
  • the present invention can be applied to an optical disc such as a type disc, etc.
  • the present invention is not limited to the recording method and the size of the optical information recording medium.
  • the first optical information recording medium according to the present invention is based on the change in the state of the light-transmitting layer and the optical multiple interference from the incident side of the reproduction light in order to solve the above problem.
  • An optical information recording medium in which a thin film portion having a change in reflectance and a substrate on which information is recorded by a random pattern method corresponding to recording information and having a convex pattern and / or a concave pattern are sequentially stacked. Changes the state of optical multiple interference by changing the refractive index and extinction coefficient, which are the optical constants in the wavelength of the reproduction light, by increasing the temperature in order from the incident side of the reproduction light.
  • a light absorption layer that raises the temperature of the reproduction layer by absorbing a part of the incident reproduction light and converting it into heat, and has a reflectance of the thin film portion at room temperature.
  • the translucent layer, the thin film portion, and the substrate are laminated in this order from the side on which the reproduction light is incident, and adjacent to each other in the reflectance wavelength distribution of the thin film portion at room temperature.
  • the thin film portion is formed so that the relationship of min ⁇ ⁇ ⁇ max is established, where the minimum and maximum wavelengths to be matched are min and max, respectively, and the wavelength of the reproduction light is r. Has been.
  • the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • the wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, thereby effectively reducing jitter. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion. For this reason, it is possible to form the thin film portion by setting the film thickness of the reproducing layer so that the relationship of max ⁇ min is established in the wavelength distribution of the reflectance of the thin film portion at room temperature. Noh. In this case, the refractive index n at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of reflectance at high temperatures in the thin film part shifts to the longer wavelength side compared to that at room temperature (see Fig. 5).
  • the thin film portion has the structure according to the present invention!
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
  • the reproducing layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproducing layer are separately formed. Therefore, it is possible to improve the reproduction durability.
  • the second optical information recording medium uses the random pattern method of convex and / or concave corresponding to the recording information from the incident side of the reproduction light.
  • the optical constant at the wavelength of the reproduction light which changes the refractive index and extinction coefficient, changes the state of optical multiple interference, and the incident reproduction
  • the substrate and the thin film portion are sequentially laminated from the side on which the reproduction light is incident, and the adjacent local minimum value and local maximum value in the wavelength distribution of the reflectance of the thin film portion at room temperature.
  • the thin film portion is formed so that the relationship of min ⁇ ⁇ ⁇ max is established, where min and e max are the wavelengths to be obtained, and r is the wavelength of the reproduction light.
  • the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • Thin film part at room temperature In the wavelength distribution of the reflectance, when the adjacent minimum and maximum wavelengths are min and max, respectively, ⁇ min approaches the wavelength r of the reproduction light, so the wavelength of the reproduction light
  • the reflectivity of the thin film portion at r decreases at higher temperatures (see FIG. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
  • the reproduction layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability.
  • the light absorption layer is preferably made of Si or Ge, or a mixture containing either of them as a main component. According to this, the temperature of the reproducing layer is effectively increased, and it is cheaper than organic dyes, semiconductors, metalloids, etc., and is easier to manage than phase change materials, and thus provides an inexpensive optical information recording medium.
  • the power S is preferably made of Si or Ge, or a mixture containing either of them as a main component. According to this, the temperature of the reproducing layer is effectively increased, and it is cheaper than organic dyes, semiconductors, metalloids, etc., and is easier to manage than phase change materials, and thus provides an inexpensive optical information recording medium.
  • the reproducing layer is preferably made of a metal oxide or a mixture containing the metal oxide as a main component. According to this, since the metal oxide is chemically stable, the metal oxide is not easily damaged by the incident reproduction light. For this reason, it becomes possible to improve the reproduction durability of the optical information recording medium. In addition, since metal oxides can be recovered as metals by reduction treatment, optical information recording It becomes possible to improve the recycling efficiency of the medium.
  • the metal oxide is preferably zinc oxide or a mixture containing zinc oxide as a main component.
  • zinc oxide is a particularly chemically stable substance among metal oxides, it is not melted by the incidence of reproduction light. For this reason, zinc oxide is less susceptible to destruction due to the incidence of reproduction light than when other metal oxides are used for the thin film! For this reason, it becomes possible to further improve the reproduction durability of the optical information recording medium.
  • zinc oxide is a low-cost metal oxide and has a low environmental impact. As a result, production costs can be reduced, and an environment-friendly optical information recording medium can be provided.
  • the third optical information recording medium has a translucent layer, a metal oxide, or a mixture containing the metal oxide as main components from the incident side of the reproduction light.
  • the information is recorded by a metal oxide layer made of Si, Ge, or a thin film layer made of a mixture mainly composed of Si, Ge, or which force, and a random pattern method of convex and / or concave according to the recorded information.
  • the optical information recording medium in which the substrate is laminated in order, and the wavelength distribution of the reflectance at the room temperature of the thin film portion composed of the metal oxide layer and the thin film layer, the wavelength having the adjacent minimum value and the maximum value is determined.
  • min and e max are set, and the wavelength of the reproduction light is r, the relationship of min ⁇ ⁇ ⁇ max is established.
  • the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si, Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer.
  • the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • ⁇ min approaches the wavelength r of the reproduction light, so the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases as the temperature rises (see FIG. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectance of the thin film portion, and the change in reflectance is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
  • the reproduction layer that changes the state of optical multiple interference due to the temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability.
  • the fourth optical information recording medium in order to solve the above-mentioned problem, information is recorded from the incident side of the reproduction light by a random pattern method composed of convex and / or concave according to the recorded information. And a metal oxide, or a metal oxide layer composed of the metal oxide as a main component, and a thin film layer composed of Si or Ge, or a mixture based on either of them.
  • a metal oxide, or a metal oxide layer composed of the metal oxide as a main component and a thin film layer composed of Si or Ge, or a mixture based on either of them.
  • adjacent minimum and maximum wavelengths are set to min and When max is set and r is the wavelength of the reproduction light, the relationship min ⁇ ⁇ ⁇ max is established.
  • the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si or Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer. [0159] Further, in the wavelength distribution of the reflectance of the thin film portion at room temperature, when the adjacent local minimum and local maximum wavelengths are min and max, respectively, and the reproduction light wavelength is r, The thin film portion is formed so that the relationship of l min ⁇ ⁇ ⁇ max is established.
  • the refractive index at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature.
  • the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature.
  • the wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1).
  • the transmittance of the reproducing layer decreases.
  • the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
  • both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
  • the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
  • the reproducing layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproducing layer are separately formed. Therefore, it is possible to improve the reproduction durability.
  • the metal oxide layer is preferably made of zinc oxide or a mixture containing zinc oxide as a main component.
  • zinc oxide is a particularly chemically stable substance among metal oxides, it does not melt when incident on the reproduction light. For this reason, zinc oxide is thin. It is less susceptible to damage due to the incidence of reproduction light than when other metal oxides are used for the film part. For this reason, it becomes possible to further improve the reproduction durability of the optical information recording medium.
  • zinc oxide is an inexpensive metal oxide that has a low environmental impact. Therefore, the production cost can be reduced, and an environmentally conscious optical information recording medium can be provided.
  • the thickness of the reproducing layer is preferably 80 nm or more and less than 120 nm. If the thickness of the reproducing layer is less than 80 nm, it is considered that the effect of optical multiple interference cannot be obtained sufficiently! / And there is a possibility that stable super-resolution reproduction cannot be performed. In addition, when the thickness of the reproducing layer is 120 ⁇ m or more, there is a thickness of the reproducing layer such that the minimum wavelength is around 400 ⁇ m in the wavelength dependence of the reflectance of the thin film portion. In this case, for example, when reproducing an optical information recording medium in a Blu-ray optical system, there is a possibility that the reproducing layer cannot sufficiently obtain reflected light. For this reason, it is considered that the focus force S will be applied. Further, when the thickness of the reproducing layer is further increased, the reflectance of the thin film portion is considered to decrease the reproducing sensitivity because the heat supplied from the light absorbing layer is not sufficient when reproducing the optical information recording medium. .
  • the optical information recording medium can be designed so that the relationship of min ⁇ ⁇ ⁇ max is surely established. It becomes possible to reduce the jitter efficiently. In other words, stable super-resolution reproduction can be performed efficiently.
  • the film thickness of the reproducing layer is 80 nm or more and less than 120 nm, jitter can be reduced, and the necessary power consumption of the reproducing light laser power can be reduced. As a result, it is possible to reduce the power consumption of the drive and to prevent deterioration of the reproducing optical element, and to prevent deterioration of the optical information recording medium due to irradiation of the reproducing light laser.
  • the thickness of the light absorption layer is preferably 5 nm or more and 500 nm or less. If the film thickness is less than 5 nm, it is considered that the reproduction durability cannot be ensured because the film thickness is too thin.
  • the thickness of the light absorption layer is made thicker than 500 nm, for example, when the light absorption layer is formed by the magnetron sputtering method, the atoms forming the light absorption layer evaporated by sputtering are completely on the substrate. It is not always perpendicular to the light. For this reason, the uneven pin on the substrate It is difficult to accurately reflect the network.
  • the thickness of the light absorption layer is set to 5 nm or more and 500 ⁇ m or less, it is possible to improve the reproduction durability and accurately reflect the uneven shape of the pit. Also, with the above configuration, jitter can be efficiently reduced and stable reproduction can be achieved.
  • the thickness of the light absorption layer is preferably 50 nm or more and 500 nm or less. As the film thickness of the light absorption layer increases, the jitter S is reduced, and when the film thickness of the light absorption layer is increased from 50 nm, the jitter reduction becomes approximately the same. Therefore, it is possible to reliably reduce jitter by setting the film thickness of the light absorption layer to 50 nm or more.
  • the optical information recording medium of the present application may be a reproduction-only optical information recording medium composed of a reproduction-only substrate, and an information-recordable optical information recording having a recording film capable of recording information is possible. It may be a medium.
  • the optical information recording medium has a thin film portion whose reflectance changes based on a change in the state of optical multiple interference, and the thin film portion is on the incident side of the reproduction light. More sequentially, as the temperature rises, a reproducing layer that changes the state of optical multiple interference as the refractive index and extinction coefficient, which are optical constants at the wavelength of the reproduced light, are changed. A light absorbing layer that absorbs a part of the reproduced light and converts it into heat to raise the temperature of the reproducing layer.
  • the optical information recording medium according to the present invention has a metal oxide or a metal oxide layer composed of a mixture containing the metal oxide as a main component, and Si or Ge, or either of them. And a thin film portion made of the metal oxide and the thin film layer.
  • the optical information recording medium according to the present invention corresponding to the recorded information, absorbs at least a part of the reproduced light in order on a substrate on which information is recorded in a random pattern consisting of convex and / or concave.
  • the light absorption layer is made of S, Ge, or a mixture containing either of them as a main component.
  • the reproduction layer is mainly made of a metal oxide, and the metal oxide layer is mainly made of zinc oxide.
  • optical multiple interference occurs sequentially on a substrate on which information is recorded in a random pattern consisting of convex and / or concave according to the recorded information, and the refractive index n at the reproduction light wavelength due to temperature rise.
  • a reproducing layer in which the extinction coefficient k increases and a light absorbing layer that absorbs part of the reproduced light and converts it into heat and supplies heat to the reproduced layer, and the reproduced light is incident from the substrate surface.
  • adjacent minimum and maximum wavelengths are represented by / L min and ⁇ , respectively.
  • the light absorption layer is made of Si, Ge, or a mixture containing either of them as a main component.
  • the reproduction layer is mainly made of a metal oxide.
  • the metal oxide layer is mainly composed of zinc oxide.
  • An optical information recording medium in which a thin film layer made of a material, a metal oxide layer mainly made of a metal oxide, and a light-transmitting layer are laminated, and reproduction light is incident from the surface of the light-transmitting layer, In the wavelength distribution of the reflectance at room temperature of the thin film layer and the thin film portion made of the metal oxide layer, when the adjacent minimum and maximum wavelengths are min and ⁇ max, respectively, the reproduction light wave length r is obtained. Min is set so that ⁇ ⁇ ⁇ max. Also, the metal oxide layer Is mainly composed of zinc oxide.
  • a metal oxide layer mainly made of metal oxide, S or Ge
  • an optical information recording medium in which a thin film layer made of a mixture containing either of them as a main component is laminated and reproduction light is incident from the substrate surface, the thin film portion comprising the metal oxide layer and the thin film layer.
  • the metal oxide layer is mainly composed of zinc oxide.
  • the thickness of the reproducing layer is 80 nm or more and less than 120 nm.
  • the thickness of the light absorption layer is 5 nm or more and 500 nm or less. Furthermore, the film thickness of the light absorption layer is 50 nm or more and 500 nm or less.
  • the optical information recording medium according to the present invention is applicable to both a read-only type having a concavo-convex recording surface on which information is recorded in advance and a type having a recording film capable of recording information. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

An optical information recording medium (1) includes a thin film portion (20) on a substrate (30). The thin film portion (20) has a reproduction layer for changing an optical multiplex interference state when a refractive index n and an attenuation coefficient k are changed by increase of the temperature and a light absorbing layer (22) which absorbs a part of the incident reproduced light and converts the light into heat so as to increase the temperature of the reproduction layer (21). The reproduction layer (21) and the light absorbing layer (22) are arranged in this order from the reproduced light incident side. When the wavelength of the adjacent minimal value and the maximal value in the wavelength distribution of the refractive index of the thin film portion (20) at the room temperature are λmin and λmax and the wavelength of the reproduced light is λr, the reproduction layer (21) satisfies the relationship: λmin < λr < λmax. This realizes an optical information recording medium where information is recorded by the random pattern method including a recording mark not greater than the optical diffraction limit and capable of effectively performing stable ultra-resolution reproduction and improving the recording density.

Description

明 細 書  Specification
光情報記録媒体  Optical information recording medium
技術分野  Technical field
[0001] 本発明は、光を用いて情報の記録および再生、あるいは、再生のみが可能な光情 報記録媒体に関する。特に、回折限界光スポット径で決まる光学的分解能以下の記 録マークを再生可能な超解像媒体技術を用いた光情報記録媒体に関する。  [0001] The present invention relates to an optical information recording medium capable of recording and reproducing information or only reproducing using light. In particular, the present invention relates to an optical information recording medium using a super-resolution medium technology capable of reproducing a recording mark having an optical resolution or less determined by a diffraction-limited light spot diameter.
背景技術  Background art
[0002] 近年、高度情報化、情報通信およびマルチメディア技術の発展によって、光情報 記録媒体の高密度化、大容量化の要求が高まって!/、る。  In recent years, with the advancement of advanced information technology, information communication, and multimedia technology, demands for higher density and larger capacity of optical information recording media have increased!
[0003] 光情報記録媒体の記録密度の上限は、主に情報を記録または再生する光ビーム のスポット径によって制限される。これは、光情報記録媒体の記録マーク径を縮小し て高密度化するにつれて、スポット領域内に複数のマークが含まれるようになり、各マ 一クを検知することができな!/、ためである。  [0003] The upper limit of the recording density of an optical information recording medium is mainly limited by the spot diameter of a light beam for recording or reproducing information. This is because as the recording mark diameter of an optical information recording medium is reduced and the recording density is increased, a plurality of marks are included in the spot area, and each mark cannot be detected! / It is.
[0004] ところで、光ビームのスポット径は、光源の波長を λ、光スポットを形成するための対 物レンズの開口数を ΝΑとすると、ほぼ λ /ΝΑで表される。従って、光情報記録媒 体は、光源の波長 λを短くすると共に対物レンズの開口数を増加させて、光ビームの スポット径を縮小することにより、記録密度の向上が行われてきた。  [0004] By the way, the spot diameter of the light beam is approximately expressed as λ / ΝΑ where λ is the wavelength of the light source and 開口 is the numerical aperture of the object lens for forming the light spot. Therefore, the optical information recording medium has been improved in recording density by shortening the wavelength λ of the light source and increasing the numerical aperture of the objective lens to reduce the spot diameter of the light beam.
[0005] しかしながら、光源の波長 λは、光学素子の吸収や検出器の感度特性の制限によ つて紫外線領域の波長が限界と考えられる。また、対物レンズの開口数 ΝΑの向上も 、光情報記録媒体の傾きの許容量によってほぼ制限される。そのため、光ビームのス ポット径を縮小することによって、記録密度向上を図るには限界がある。  However, the wavelength λ of the light source is considered to be limited by the wavelength in the ultraviolet region due to the absorption of the optical element and the limitation of the sensitivity characteristics of the detector. Further, the improvement of the numerical aperture of the objective lens is almost limited by the allowable amount of tilt of the optical information recording medium. Therefore, there is a limit to improving the recording density by reducing the spot diameter of the light beam.
[0006] そこで、再生光学系の回折限界以下(以降、光回折限界以下と呼ぶ)の長さのマー クを再生可能な技術である超解像技術を用いた光情報記録媒体の開発がなされて きた。なお、以降、この技術を用いた光情報記録媒体を超解像光情報記録媒体と呼 び、この技術を用いて光回折限界以下のマーク長の記録ピットを再生することを超解 像再生と呼ぶ。また、光回折限界値は、再生光の波長をえ、対物レンズの開口数を ΝΑとすると、理論上では、 λ /(2 · 2 ·ΝΑ)となることが知られている。実際の場合、こ の光回折限界値はある程度の幅を含むものとなる。 [0006] Therefore, an optical information recording medium using super-resolution technology, which is a technology capable of reproducing a mark having a length less than the diffraction limit of the reproduction optical system (hereinafter referred to as the light diffraction limit or less), has been developed. I have Hereinafter, an optical information recording medium using this technique is called a super-resolution optical information recording medium, and reproducing a recording pit having a mark length less than the optical diffraction limit using this technique is called super-resolution reproduction. The optical diffraction limit value is theoretically known to be λ / (2 · 2 · ΝΑ) when the wavelength of the reproduction light is obtained and the numerical aperture of the objective lens is ΝΑ. In practice, this The optical diffraction limit value includes a certain width.
[0007] この限界を超え、超解像再生を可能とする技術として、特許文献;!〜 3に示されるよ うな超解像技術がある。 [0007] As a technique that enables super-resolution reproduction exceeding this limit, there is a super-resolution technique as shown in Patent Documents;
[0008] 具体的には、特許文献 1では、入射光強度に応じて薄膜部の反射率が変化すると ともに、該薄膜部の室温時における反射率の波長分布が、再生用の入射光の波長 ± 80nmの範囲内にて極小値をとるように、光学多重干渉膜の組成および膜厚が設 定されることにより、実効的な光ビームのスポット径が縮小され、超解像再生が可能と なる光情報記録媒体が開示されてレ、る。  [0008] Specifically, in Patent Document 1, the reflectance of the thin film portion changes according to the incident light intensity, and the wavelength distribution of the reflectance of the thin film portion at room temperature is the wavelength of the incident light for reproduction. By setting the composition and film thickness of the optical multi-interference film so that it takes a minimum value within the range of ± 80 nm, the effective spot diameter of the light beam is reduced and super-resolution reproduction is possible. An optical information recording medium is disclosed.
[0009] また、特許文献 2では、光ビーム照射による温度の上昇に応じて、光ビームの光学 特性が変化する温度感応層を有する光情報記録媒体が開示されている。この温度 感応層は、該温度感応層の光学吸収端波長を λ a (nm)、光ビームの波長を λ r (n m)としたとき、 r 100 < a < λ rの関係が成立するように、該温度感応層の材料 が選択および/または膜厚が設定されることにより、実効的な光ビームのスポット径 が縮小され、超解像再生が可能となる光情報記録媒体が開示されている。  [0009] Further, Patent Document 2 discloses an optical information recording medium having a temperature sensitive layer in which the optical characteristics of a light beam change as the temperature rises due to light beam irradiation. This temperature-sensitive layer has a relationship of r 100 <a <λ r when the optical absorption edge wavelength of the temperature-sensitive layer is λ a (nm) and the wavelength of the light beam is λ r (nm). An optical information recording medium is disclosed in which the material of the temperature sensitive layer is selected and / or the film thickness is set, so that the effective spot diameter of the light beam is reduced and super-resolution reproduction is possible. .
[0010] さらに、特許文献 3では、詳細な再生原理は不明である力 凹凸を有する情報記録 面に金属、半導体等の単体からなる機能層を備えることにより、超解像再生が可能と なる光情報記録媒体が開示されてレ、る。  [0010] Further, in Patent Document 3, a detailed reproduction principle is unknown. Light that enables super-resolution reproduction by providing a functional layer made of a single metal, semiconductor, or the like on an information recording surface having unevenness. An information recording medium is disclosed.
[0011] また、特許文献;!〜 3に記載の光情報記録媒体では、共通して、光回折限界以下 の同一形状のマークを信号再生する方向に配置する方式が採用されている。また、 これらの光情報記録媒体は、単一周波数繰り返し位相ピット(マーク'スペース比 1: 1 、以降、モノトーンパターン方式と呼ぶ)を再生するものであり、 C/N (Carrier to Noi se ratio,搬送波雑音比)を用いて評価されている。この評価によって、記録密度の向 上ができ、超解像再生ができることが記載されている。  [0011] In addition, in the optical information recording media described in Patent Documents !! to 3, a system is commonly employed in which marks having the same shape below the optical diffraction limit are arranged in a signal reproducing direction. These optical information recording media reproduce single-frequency repetitive phase pits (mark-space ratio 1: 1, hereinafter referred to as monotone pattern method), and C / N (Carrier to Noise ratio, (Carrier-to-noise ratio). This evaluation describes that the recording density can be improved and super-resolution reproduction can be performed.
[0012] しかしながら、一般に、再生ビーム走査方向に、最も短いマーク長となる最小長さの プリピットと、その長さを基準に数種類の長さのプリピットとが規格によって定められ、 これら長さの異なるプリピットを、規格によって定められた規則にしたがって、信号再 生する方向に順に配置された方式が採用されている(以降、ランダムパターン方式と 呼ぶ)。 [0013] これにより、光学回折限界以下で同一長のマークを用いて情報を記録する場合と 比べ、該光学回折限界以下の長さであるマークを最小マークの基準とした、ランダム ノ ターン方式を用いて情報を記録するほうが、より高密度に情報を記録することでき However, in general, in the reproduction beam scanning direction, the minimum length pre-pit that is the shortest mark length and several types of pre-pits based on the length are defined by the standards, and these lengths are different. A system in which prepits are arranged in order in the direction of signal reproduction in accordance with the rules stipulated by the standard is used (hereinafter referred to as random pattern system). [0013] Thus, compared to the case where information is recorded using a mark having the same length below the optical diffraction limit, a random pattern method using a mark having a length below the optical diffraction limit as a reference for the minimum mark is used. To record information at a higher density.
[0014] なお、このランダムパターン方式には、数多くの実用化例がある。例えば、 CDの場 合、 EFM (8— 14)変調方式(Eight to Fourteen Modulation)が採用されている。また 、 DVD、 Blu— RayDisc (BD ;登録商標)および HD— DVDの場合、変調方式が C Dの場合とは異なり、 DVDでは EFMPlus (8— 16)変調方式、 BDでは 1— 7PP変調 方式、 HD— DVDでは ETM (8— 12)変調方式がそれぞれ採用されている。すなわ ち、多くの光情報記録媒体において、記録密度の向上が可能なランダムパターン方 式が採用されている。 [0014] There are many practical examples of this random pattern method. For example, in the case of CD, EFM (8-14) modulation (Eight to Fourteen Modulation) is adopted. Also, in the case of DVD, Blu-RayDisc (BD; registered trademark) and HD-DVD, the modulation method is different from that of CD, EFMPlus (8-16) modulation method for DVD, 1-7PP modulation method for HD, HD — DVD uses ETM (8-12) modulation method. In other words, in many optical information recording media, a random pattern method capable of improving the recording density is adopted.
[0015] このように、一般的な記録方式であるランダムパターン方式の場合、評価指標として ジッタが重要となる。以下、ジッタについて述べる。  As described above, in the case of a random pattern method which is a general recording method, jitter is important as an evaluation index. Hereinafter, jitter will be described.
[0016] 光情報記録媒体を再生する場合、再生光ビームが、情報が記録されたマークに照 射されると、その反射光量 (反射強度)の変化をディテクターが検知することによって 信号が生成される。実際には、この過程において、信号の変換点位置誤差、すなわ ちジッタが生じてしまう。ジッタは、さまざまな要因に起因するが、雑音(レーザによる 雑音、または、隣接トラックからの反射回折光に起因したクロストーク、メディア欠陥に よる雑音等)によって生じる場合がある。ジッタが大きくなると、再生系における読み出 し誤りが生じてしまい、安定した再生が困難となる。そのため、安定した超解像再生を 可能とし、かつ超解像光情報記媒体の高密度化の実現のためには、ジッタの低減が 必要不可欠である。  When reproducing an optical information recording medium, when a reproduction light beam is irradiated onto a mark on which information is recorded, a signal is generated by detecting a change in the amount of reflected light (reflection intensity). The Actually, in this process, a signal conversion point position error, that is, jitter occurs. Jitter is caused by a variety of factors, but may be caused by noise (laser noise, crosstalk due to reflected diffracted light from adjacent tracks, noise due to media defects, etc.). When the jitter becomes large, a read error occurs in the reproduction system, and stable reproduction becomes difficult. Therefore, jitter reduction is indispensable in order to enable stable super-resolution reproduction and to increase the density of super-resolution optical information storage media.
[0017] ところで、光回折限界より大きいマーク長のみからなる光情報記録媒体を再生する 場合、 C/Nが向上すると、ジッタも低減する。従って、 C/Nとジッタとの間には相関 関係が成立するため、 C/Nのみを評価し、該 C/Nの向上のみを図ればよかった。  By the way, when reproducing an optical information recording medium having only a mark length larger than the optical diffraction limit, the jitter is reduced as the C / N is improved. Therefore, since there is a correlation between C / N and jitter, it is only necessary to evaluate only C / N and improve the C / N.
[0018] しかしながら、詳細は後で示す力 我々は、光回折限界以下の長さのマークを含む ランダムパターン (記録情報に応じて複数の長さの凸および/または凹が配列され、 かつ、光回折限界以下の長さの凸および/または凹が含まれる)方式で情報が記録 された光情報記録媒体を再生する場合、前述のような相関関係が必ずしも成立しな いことを見出した。すなわち、光回折限界以下の長さの記録マークを含むランダムパ ターン方式で情報が記録された光情報記録媒体の場合、 C/Nの向上だけでは、必 ずしもジッタの低減にはつながらないことがわかった。 [0018] However, the power to be described later in detail. We have included a random pattern including a mark having a length less than or equal to the optical diffraction limit (a plurality of lengths of convexes and / or concaves are arranged according to recorded information, and light Information is recorded in a way that includes convex and / or concave lengths below the diffraction limit) The present inventors have found that the above-described correlation does not always hold when reproducing the recorded optical information recording medium. In other words, in the case of an optical information recording medium in which information is recorded by a random pattern method including a recording mark having a length less than or equal to the optical diffraction limit, improvement of C / N alone does not necessarily lead to reduction of jitter. I understood.
[0019] つまり、光回折限界以下のマーク長を有し、同一形状のマークが等間隔に配置さ れたモノトーンパターン方式で情報が記録された基板から構成され、超解像再生が 可能となる光情報記録媒体において、良好な C/Nが得られるということは、光回折 限界以下の同一のマークのみにより情報が記録された、超解像再生が可能となる光 情報記録媒体の再生特性を保障していることを示している。し力、しながら、光回折限 界以下の長さのマークを含み、より高密度に記録可能であるランダムパターン方式で 情報が記録されて!/、る、超解像再生が可能となる光記録情報媒体の再生特性に対 しては、何ら保障していないことになる。  That is, it is composed of a substrate on which information is recorded in a monotone pattern system having a mark length equal to or less than the optical diffraction limit and having the same shape of the marks arranged at equal intervals, and super-resolution reproduction is possible. Good C / N is obtained in an optical information recording medium. This means that the reproduction characteristics of an optical information recording medium in which information is recorded only by the same mark below the optical diffraction limit and super-resolution reproduction is possible. It shows that it is guaranteed. However, information that is recorded in a random pattern system that includes marks with a length less than or equal to the optical diffraction limit and that can be recorded with higher density! /, That enables super-resolution reproduction There is no guarantee for the playback characteristics of the recorded information medium.
[0020] 従って、ランダムパターン方式の超解像再生が可能となる光情報記録媒体では、 C /Nとジッタとの間の相関関係が必ずしも成立するとは限らないため、 C/Nの向上 を図るとともに、ジッタを低減させることも考慮する必要がある。つまり、より高記録密 度なランダムパターン方式に対応した超解像媒体の実現化のためには、ジッタの低 減が重要となる。  [0020] Therefore, in an optical information recording medium capable of super-resolution reproduction by a random pattern method, the correlation between C / N and jitter does not always hold, so C / N is improved. At the same time, it is necessary to consider reducing jitter. In other words, the reduction of jitter is important for the realization of a super-resolution medium compatible with a higher pattern density random pattern method.
[0021] さらに、一般的に、超解像技術を利用した光情報記録媒体は、再生耐久性が十分 でない場合が多ぐ再生時に照射する光ビームのパワーが高ぐ駆動装置の消費電 力が高くなるという問題もある。  [0021] Further, in general, an optical information recording medium using super-resolution technology often has insufficient reproduction durability, and the power consumption of a drive device with high power of a light beam irradiated during reproduction is high. There is also the problem of becoming higher.
特許文献 1 :日本国公開特許公報「特開 2005— 18964号公報 (公開日: 2005年 1 月 20日)」  Patent Document 1: Japanese Patent Publication “JP 2005-18964 Publication (Publication Date: January 20, 2005)”
特許文献 2 :日本国公開特許公報「特開 2006— 73169号公報 (公開日: 2006年 3 月 16日)」  Patent Document 2: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2006-73169 (Publication Date: March 16, 2006)”
特許文献 3 :日本国公開特許公報「特開 2001— 250274号公報 (公開日: 2001年 9 月 14日)」  Patent Document 3: Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2001-250274 (Publication Date: September 14, 2001)”
発明の開示  Disclosure of the invention
[0022] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、安定した超解 像再生を効率的に行え、かつ、より記録密度の向上を図ることが可能となる光回折限 界以下の長さのマークを含むランダムパターン方式で情報が記録された光情報記録 媒体を実現させることにある。 [0022] The present invention has been made in view of the above problems, and its purpose is to achieve stable supersolution. Realizing an optical information recording medium on which information is recorded by a random pattern method including marks having a length less than or equal to the optical diffraction limit, which enables efficient image reproduction and further improvement in recording density There is.
[0023] 本発明に係る第 1の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、透光層と、光学多重干渉の状態の変化に基づいて反射率が変化する薄膜部 と、記録情報に対応し、凸および/または凹からなるランダムパターン方式により情 報が記録された基板とが順に積層された光情報記録媒体であって、上記薄膜部は、 再生光の入射側より順に、温度が上昇することによって、再生光の波長における光学 定数である、屈折率および消衰係数を変化させることに伴って、光学多重干渉の状 態を変化させる再生層と、入射される再生光の一部を吸収して熱に変換することによ り、上記再生層の温度を上昇させる光吸収層とを有し、上記薄膜部の室温時におけ る反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ 、 minおよびえ maxとし、再生光の波長をえ rとしたとき、 λ min< λ r< λ maxの 関係が成立する。 In the first optical information recording medium according to the present invention, in order to solve the above problems, the reflectance changes from the incident side of the reproduction light based on the change in the state of the light transmitting layer and the optical multiple interference. An optical information recording medium in which a thin film portion and a substrate on which information is recorded by a random pattern method consisting of convex and / or concave corresponding to recording information are sequentially laminated, wherein the thin film portion is for reproducing light. As the temperature rises in order from the incident side, the optical constant at the wavelength of the reproduction light, which changes the refractive index and extinction coefficient, changes the optical multiple interference state, and the incident layer. A light absorption layer that raises the temperature of the reproduction layer by absorbing a portion of the reproduced light that is converted into heat, and has a wavelength distribution of the reflectance at room temperature of the thin film portion. O! /, The local minimum and local maximum will be next to each other Length, respectively, and min Oyobie max, when the e r the wavelength of the reproduction light, the relationship of λ min <λ r <λ max is satisfied.
[0024] 従来からある超解像技術を利用し作製された光回折限界以下の長さの記録マーク を含む、ランダムパターン方式の光情報記録媒体では、 C/Nが向上した場合であ つても、ジッタが低減するとは限らない。このため、ジッタを低減させることは、安定し た超解像再生を行う上で重要である。  [0024] In a random pattern type optical information recording medium including a recording mark having a length less than or equal to the optical diffraction limit manufactured by using a conventional super-resolution technique, even when C / N is improved. Jitter is not always reduced. Therefore, reducing jitter is important for stable super-resolution reproduction.
[0025] 上記構成によれば、再生光が入射される側から透光層と、薄膜部と、基板とが順に 積層されており、該薄膜部の室温時における反射率の波長分布において、隣り合う 極小値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波 長をえ rとしたとき、 min< λ τ< λ maxの関係が成立するように、該薄膜部が形成 されている。  [0025] According to the above configuration, the translucent layer, the thin film portion, and the substrate are laminated in this order from the side on which the reproduction light is incident, and adjacent to each other in the reflectance wavelength distribution of the thin film portion at room temperature. The thin film portion is formed so that the relationship of min <λ τ <λ max is established, where the minimum and maximum wavelengths to be matched are min and max, respectively, and the wavelength of the reproduction light is r. Has been.
[0026] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数が増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、る In this case, the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at the room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. So of the playback light The reflectivity of the thin film portion at the wavelength r decreases at higher temperatures (see FIG. 1). Furthermore, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
[0027] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。 [0027] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, thereby effectively reducing jitter. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0028] また、薄膜部の反射率の波長分布は、該薄膜部の膜厚に依存する。このため、薄 膜部の室温における反射率の波長分布において、 max≤ λ τ≤ minの関係が 成立するように、再生層の膜厚を設定することによって、該薄膜部を形成することも可 能である。この場合、薄膜部を構成する再生層の高温時における屈折率 nは、室温 時におけるそれと比較して増加する。これに伴い、薄膜部の高温時における反射率 の波長分布は、室温時のそれと比べ、長波長側にシフトする(図 5参照)。すなわち、 λ maxが再生光の波長 λ rに近づくので、再生光の波長 λ rにおける薄膜部の反射 率は、高温になると増加することとなる。し力もながら、このとき、再生層の消衰係数 k は増加するため、再生層の透過率は減少する。結果として、再生層の消衰係数 kは、 薄膜部の反射率を低下させるように働く。このように、屈折率 nおよび消衰係数 kそれ ぞれの変化が、薄膜部の反射率変化を増強させることはない。従って、薄膜部は、本 発明に係る構成からなることが好まし!/、。  [0028] The wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion. For this reason, it is possible to form the thin film portion by setting the film thickness of the reproducing layer so that the relationship of max≤λτ≤min is established in the wavelength distribution of the reflectance of the thin film portion at room temperature. Noh. In this case, the refractive index n at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of reflectance at high temperatures in the thin film part shifts to the longer wavelength side compared to that at room temperature (see Fig. 5). That is, since λ max approaches the wavelength λ r of the reproduction light, the reflectance of the thin film portion at the wavelength λ r of the reproduction light increases at a high temperature. However, at this time, the extinction coefficient k of the reproducing layer increases, and thus the transmittance of the reproducing layer decreases. As a result, the extinction coefficient k of the reproducing layer works to reduce the reflectivity of the thin film portion. Thus, changes in the refractive index n and the extinction coefficient k do not enhance the reflectance change of the thin film portion. Therefore, it is preferable that the thin film portion has the structure according to the present invention!
[0029] さらに、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。  [0029] Further, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0030] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。 [0031] 本発明に係る第 2の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、記録情報に対応して、凸および/または凹からなるランダムパターン方式に より情報が記録された基板と、光学多重干渉の状態の変化に基づいて反射率が変 化する薄膜部とが積層された光情報記録媒体であって、上記薄膜部は、再生光の入 射側より順に、温度が上昇することによって、再生光の波長における光学定数である 、屈折率および消衰係数を変化させることに伴って、光学多重干渉の状態を変化さ せる再生層と、入射される再生光の一部を吸収して熱に変換することにより、上記再 生層の温度を上昇させる光吸収層とを有し、上記薄膜部の室温時における反射率の 波長分布において、隣り合う極小値および極大値となる波長をそれぞれ、 minおよ びえ maxとし、再生光の波長をえ rとしたとき、 min< λ τ< λ maxの関係が成立す [0030] Further, according to the above configuration, in the thin film portion, the reproduction layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability. [0031] In order to solve the above problems, the second optical information recording medium according to the present invention provides information from the incident side of the reproduction light by a random pattern method consisting of convex and / or concave corresponding to the recorded information. Is an optical information recording medium in which a thin film portion whose reflectivity changes based on a change in the state of optical multiple interference is laminated, and the thin film portion is from the incident side of the reproduction light. In turn, as the temperature rises, the optical constant at the wavelength of the reproduction light, which changes the refractive index and extinction coefficient, changes the state of optical multiple interference, and the incident reproduction A light absorption layer that raises the temperature of the regeneration layer by absorbing part of the light and converting it into heat, and the adjacent local minimum value in the wavelength distribution of the reflectance of the thin film portion at room temperature And the maximum wavelength And min Oyo Bie max, when the e r the wavelength of the reproduction light, to establish the relationship min <λ τ <λ max
[0032] 上記構成によれば、再生光が入射される側から基板と、薄膜部とが順に積層されて おり、薄膜部の室温時における反射率の波長分布において、隣り合う極小値および 極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたと き、 min< λ τ< λ maxの関係が成立するように、薄膜部が形成されている。 [0032] According to the above configuration, the substrate and the thin film portion are sequentially laminated from the side on which the reproduction light is incident, and the adjacent local minimum value and local maximum value in the wavelength distribution of the reflectance of the thin film portion at room temperature. The thin film portion is formed so that the relationship of min <λ τ <λ max is established, where min and e max are the wavelengths to be obtained, and r is the wavelength of the reproduction light.
[0033] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数が増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、る  In this case, the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at the room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1). Furthermore, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
[0034] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。 [0034] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, thereby effectively reducing jitter. It will be possible to achieve this. That is, reading in the playback system However, an error occurs, so that stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0035] また、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。 [0035] Further, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0036] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。  Furthermore, according to the above configuration, in the thin film portion, the reproducing layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproducing layer are separately formed. Therefore, it is possible to improve the reproduction durability.
[0037] 本発明に係る第 3の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、透光層と、金属酸化物、または該金属酸化物を主成分とした混合物からなる 金属酸化物層と、 Siもしくは Ge、またはどちら力、を主成分とした混合物からなる薄膜 層と、記録情報に応じた、凸および/または凹からなるランダムパターン方式により情 報が記録された基板とが順に積層された光情報記録媒体であって、上記金属酸化 物層および薄膜層からなる薄膜部の室温時における反射率の波長分布において、 隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生 光の波長をえ rとしたとき、 minく λ τ< λ maxの関係が成立する。  [0037] In order to solve the above problems, the third optical information recording medium according to the present invention has a translucent layer, a metal oxide, or a mixture containing the metal oxide as main components from the incident side of the reproduction light. The information is recorded by a metal oxide layer made of Si, Ge, or a thin film layer made of a mixture mainly composed of Si, Ge, or which force, and a random pattern method of convex and / or concave according to the recorded information. The optical information recording medium in which the substrate is laminated in order, and the wavelength distribution of the reflectance at the room temperature of the thin film portion composed of the metal oxide layer and the thin film layer, the wavelength having the adjacent minimum value and the maximum value is determined. When min and e max are set, and the wavelength of the reproduction light is r, the relationship of min λ τ <λ max is established.
[0038] 上記構成によれば、光情報記録媒体は、主に金属酸化物からなる金属酸化物層と 、 Siもしくは Ge、またはどちら力、を主成分とした混合物からなる薄膜層を有しており、 上記金属酸化物層および薄膜層によって薄膜部が構成されている。  [0038] According to the above configuration, the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si, Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer.
[0039] また、薄膜部の室温時における反射率の波長分布において、隣り合う極小値およ び極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとし たとき、 l min< λ ΐ< λ maxの関係が成立するように、薄膜部が形成されている。  [0039] In the wavelength distribution of the reflectance of the thin film portion at room temperature, when the adjacent local minimum and local maximum wavelengths are min and max, respectively, and the reproduction light wavelength is r, The thin film portion is formed so that the relationship of l min <λΐ <λ max is established.
[0040] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数は増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、るIn this case, the refractive index at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at a room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1). further, As the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
Yes
[0041] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。  [0041] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0042] また、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。  [0042] Further, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0043] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。  [0043] Further, according to the above configuration, in the thin film portion, the reproduction layer that changes the state of optical multiple interference due to the temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability.
[0044] 本発明に係る第 4の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、記録情報に応じた、凸および/または凹からなるランダムパターン方式により 情報が記録された基板と、金属酸化物、または該金属酸化物を主成分とした混合物 力、らなる金属酸化物層と、 Siもしくは Ge、またはどちらかを主成分とした混合物からな る薄膜層とが順に積層された光情報記録媒体であって、上記金属酸化物層および 薄膜層からなる薄膜部の室温時における反射率の波長分布において、隣り合う極小 値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長を rとしたとき、 min< λ τ< λ maxの関係が成立する。  In the fourth optical information recording medium according to the present invention, in order to solve the above-mentioned problem, information is recorded from the incident side of the reproduction light by a random pattern method composed of convex and / or concave according to the recording information. And a metal oxide, or a metal oxide layer composed of the metal oxide as a main component, and a thin film layer composed of Si or Ge, or a mixture based on either of them. In the optical information recording medium laminated in order, in the wavelength distribution of the reflectance at room temperature of the thin film portion composed of the metal oxide layer and the thin film layer, adjacent minimum and maximum wavelengths are set to min and When max is set and r is the wavelength of the reproduction light, the relationship min <λ τ <λ max is established.
[0045] 上記構成によれば、光情報記録媒体は、主に金属酸化物からなる金属酸化物層と 、 Siもしくは Ge、またはどちら力、を主成分とした混合物からなる薄膜層を有しており、 上記金属酸化物層および薄膜層によって薄膜部が構成されている。  [0045] According to the above configuration, the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si, Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer.
[0046] また、薄膜部の室温時における反射率の波長分布において、隣り合う極小値およ び極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとし たとき、 l min< λ τ< λ maxの関係が成立するように、薄膜部が形成されている。 [0046] Further, in the wavelength distribution of the reflectance of the thin film portion at room temperature, the minimum and maximum wavelengths adjacent to each other are min and max, respectively, and the wavelength of the reproduction light is r. Then, the thin film portion is formed so that the relationship of l min <λ τ <λ max is established.
[0047] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数は増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、る In this case, the refractive index at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at a room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1). Further, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
[[00004488]] 従従っってて、、再再生生光光のの光光ススポポッットトのの高高温温領領域域ににおおいいてて、、屈屈折折率率おおよよびび消消衰衰係係数数はは共共にに 薄薄膜膜部部のの反反射射率率をを低低下下ささせせるるよよううにに働働きき、、反反射射率率変変化化がが増増強強さされれるるたためめ、、効効率率的的にに ジジッッタタのの低低減減をを図図るるここととがが可可能能ととななるるとと考考ええらられれるる。。すすななわわちち、、再再生生系系ににおおけけるる読読みみ出出 しし誤誤りりがが生生じじにに《《ななりり、、安安定定ししたた超超解解像像再再生生をを効効率率的的にに行行ううここととががでできき、、光光情情報報記記録録 媒媒体体のの再再生生感感度度をを向向上上ささせせるるここととがが可可能能ととななるる。。 [[00004488]] Therefore, the refractive index and extinction of the regenerated raw light in the high and high temperature region of the light spot. Both coefficient factors work to lower the anti-reflective emissivity of the thin film part, and the change in anti-reflective emissivity increases and increases the strength. As a result, it can be considered that it will become possible to achieve a low reduction and reduction of the jitter in an efficient manner. . Susuna, that is, reading and reading in a regenerative reproduction system, and erroneous errors occur. This is an efficient and efficient way to perform the re-playing of the resolution and improves the sensitivity of the re-playing of the optical information recording / recording medium. This is what makes you uplifted. .
[[00004499]] ままたた、、薄薄膜膜部部のの反反射射率率のの波波長長分分布布がが薄薄膜膜部部のの膜膜厚厚にに依依存存すするるたためめ、、光光情情報報記記録録 媒媒体体のの反反射射率率制制御御をを容容易易にに行行ううここととががでできき、、該該光光情情報報記記録録媒媒体体のの生生産産ココスストトをを減減少少ささ せせるるこことと力力 SS可可倉倉 ととななるる。。  [[00004499]] Also, the wave length distribution of the anti-reflection emissivity of the thin film portion depends on the film thickness of the thin film portion. Therefore, it is possible to easily and easily control the anti-reflective emissivity control of the optical information recording / recording medium body. This will reduce the production cost of the information recording / recording medium, and this will be the power SS Kanakura. .
[[00005500]] ささららにに、、上上記記構構成成にによよれればば、、薄薄膜膜部部ににおおいいてて、、温温度度上上昇昇にによよっってて、、光光学学多多重重干干渉渉のの 状状態態をを変変化化ささせせるる再再生生層層とと、、再再生生層層のの温温度度をを上上昇昇ささせせるる光光吸吸収収層層ととがが、、分分離離形形成成ささ れれてていいるるたためめ、、再再生生耐耐久久性性をを向向上上ささせせるるここととがが可可能能ととななるる。。  [[00005500]] Furthermore, according to the above configuration, according to the above configuration, the thin film portion is covered with the temperature and temperature. A regenerated biolayer that changes the state of the photo-optics multi-multilayer interference, and the temperature temperature of the regenerated biolayer is increased and raised. The light-absorbing and absorbing layer to be formed is separated and formed into a separated shape, which improves the durability of the regenerated raw material. And become possible. .
[[00005511]] 本本発発明明のの他他のの目目的的、、特特徴徴、、おおよよびび優優れれたた点点はは、、以以下下にに示示すす記記載載にによよっってて十十分分分分かか るるででああろろうう。。ままたた、、本本発発明明のの利利点点はは、、添添付付図図面面をを参参照照ししたた次次のの説説明明にによよっってて明明白白にになな るるででああろろうう。。 [[00005511]] Other objectives, features, and superior points of the present invention are described below. It will take ten minutes enough. . In addition, the advantages of the present invention are clearly and clearly made clear by the following explanation with reference to the attached drawings. Let ’s do it. .
図図面面のの簡簡単単なな説説明明  Simple and simple explanation on the drawing
[[00005522]] [[図図 11]]本本発発明明のの一一実実施施形形態態をを示示すすももののでであありり、、光光情情報報記記録録媒媒体体のの反反射射率率のの測測定定波波長長
Figure imgf000013_0001
[図 2]本発明の光情報記録媒体を用いて情報の記録再生可能な記録再生装置の光 学系の模式図である。
[[00005522]] [[Fig. 11]] This shows one embodiment of the present invention, and is a recording medium for optical information recording / recording medium. Measurement of anti-reflectance emissivity of constant wave wavelength
Figure imgf000013_0001
FIG. 2 is a schematic diagram of an optical system of a recording / reproducing apparatus capable of recording / reproducing information using the optical information recording medium of the present invention.
[図 3]本発明の実施形態 1を示すものであり、光情報記録媒体の概略構成を示す断 面図である。  FIG. 3, showing Embodiment 1 of the present invention, is a sectional view showing a schematic configuration of an optical information recording medium.
[図 4]図 3に示される光情報記録媒体を形成する基板に設けられたプリピットの概略 構成を示す図である。  4 is a diagram showing a schematic configuration of prepits provided on a substrate on which the optical information recording medium shown in FIG. 3 is formed.
[図 5U max≤ λ τ≤ λ minの関係にある場合の、光情報記録媒体の反射率の測定 波長に対する分光スペクトルを示す図である。  [FIG. 5U is a diagram showing a spectral spectrum with respect to the measurement wavelength of the reflectance of the optical information recording medium in the case of a relationship of max≤λτ≤λmin.
[図 6]図 3に示される光情報記録媒体の実施例 1を示すものであり、再生層の膜厚が FIG. 6 shows Example 1 of the optical information recording medium shown in FIG. 3, wherein the thickness of the reproducing layer is
11 lnmに設定された光情報記録媒体の概略構成を示す断面図である。 It is sectional drawing which shows schematic structure of the optical information recording medium set to 11 lnm.
[図 7]図 6に示される光情報記録媒体の比較例 1を示すものであり、再生層の膜厚が FIG. 7 shows Comparative Example 1 of the optical information recording medium shown in FIG.
144nmに設定された光情報記録媒体の概略構成を示す断面図である。 It is sectional drawing which shows schematic structure of the optical information recording medium set to 144 nm.
[図 8]図 6に示される光情報記録媒体の比較例 2を示すものであり、超解像媒体技術 を用いない光情報記録媒体の概略構成を示す断面図である。  FIG. 8 is a cross-sectional view showing a schematic configuration of an optical information recording medium that does not use the super-resolution medium technology, showing Comparative Example 2 of the optical information recording medium shown in FIG.
[図 9]図 6に示される光情報記録媒体の比較例 3を示すものであり、薄膜層状部が膜 厚 50nmの Geからなる光情報記録媒体の概略構成を示す断面図である。  FIG. 9 is a cross-sectional view showing a schematic configuration of an optical information recording medium shown in FIG. 6, in which Comparative Example 3 of the optical information recording medium shown in FIG.
[図 10]図 6〜図 9にそれぞれ示される光情報記録媒体の、再生光レーザパワーに対 するジッタの変化を示す図である。  FIG. 10 is a diagram showing a change in jitter with respect to reproducing optical laser power in the optical information recording media shown in FIGS. 6 to 9, respectively.
[図 11]図 6に示される光情報記録媒体の光吸収層の膜厚に対するジッタの変化を示 す図である。  FIG. 11 is a diagram showing a change in jitter with respect to the thickness of the light absorption layer of the optical information recording medium shown in FIG.
[図 12]本発明の実施形態 2を示すものであり、再生光が基板側から入射する場合の 光情報記録媒体の概略構成を示す断面図である。  FIG. 12, showing Embodiment 2 of the present invention, is a cross-sectional view showing a schematic configuration of an optical information recording medium when reproducing light is incident from the substrate side.
符号の説明 Explanation of symbols
1、 2、 6 光情報記録媒体  1, 2, 6 Optical information recording media
10 透光層  10 Translucent layer
20 薄膜部  20 Thin film part
21 再生層  21 Playback layer
22 光吸収層 30 基板 22 Light absorption layer 30 substrates
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 〔実施形態 1〕 [Embodiment 1]
本発明の一実施形態について図 1ないし図 12に基づいて説明すると以下の通りで ある。  One embodiment of the present invention is described below with reference to FIGS.
[0055] まず、本発明の光情報記録媒体に対して情報の記録再生を行うことが可能な記録 再生装置について、その主な構成を説明する。  First, the main configuration of a recording / reproducing apparatus capable of recording / reproducing information with respect to the optical information recording medium of the present invention will be described.
[0056] 記録再生装置は、レーザ光源と、集光光学手段と、相対運動手段と、光電変換手 段と、サーボ手段と、アドレス情報検出手段と、再生信号復調回路とを有する。 The recording / reproducing apparatus includes a laser light source, condensing optical means, relative motion means, photoelectric conversion means, servo means, address information detection means, and a reproduction signal demodulation circuit.
[0057] レーザ光源としては、例えば波長 406nmの光を発する半導体レーザ等を用いるこ と力 Sできる。 As the laser light source, for example, a semiconductor laser that emits light with a wavelength of 406 nm can be used.
[0058] 集光光学手段は、レーザ装置力 発生されたレーザ光をビーム状にして光情報記 録媒体上に集光するもので、集光レンズ、ビームスプリッタ等の光学部品を含んでい  [0058] The condensing optical means condenses the laser light generated by the laser device force in the form of a beam on an optical information recording medium, and includes optical components such as a condensing lens and a beam splitter.
[0059] 相対運動手段は、集光光学手段と光情報記録媒体とを相対運動させるもので、リニ ァァクチユエータゃスイングアーム等からなる。その運動は、光情報記録媒体が回転 または平行移動する運動と、上記集光光学手段に含まれる集光レンズが、その光軸 に直角方向に移動する運動との少なくとも一方を含む。 [0059] The relative motion means is for moving the condensing optical means and the optical information recording medium relative to each other, and is composed of a linear actuator such as a swing arm. The movement includes at least one of a movement in which the optical information recording medium rotates or translates, and a movement in which the condensing lens included in the condensing optical means moves in a direction perpendicular to the optical axis.
[0060] 光電変換手段は、光情報記録媒体からの反射光レベルの高低を電気信号に変換 するもので、サーボ手段は、レーザ光のオートフォーカス及びトラッキングを行うもの である。  [0060] The photoelectric conversion means converts the level of reflected light from the optical information recording medium into an electric signal, and the servo means performs autofocus and tracking of the laser light.
[0061] アドレス情報検出手段は、光情報記録媒体上に設けられたアドレス情報マークを再 生することにより得られる電気信号から、アドレス情報を検出するもので、再生信号復 調回路は、光情報記録媒体の反射光より記録情報を再生するものである。  [0061] The address information detecting means detects address information from an electrical signal obtained by reproducing an address information mark provided on the optical information recording medium. The reproduction signal demodulating circuit The recorded information is reproduced from the reflected light of the recording medium.
[0062] これら構成部材のうち、レーザ光源、集光光学手段、光電変換手段、および、サー ボ手段は、上記相対運動手段によって光情報記録媒体と相対運動を行う光学ヘッド 内に収納されている。レーザ光源と光電変換手段とを、集光光学手段とは別のケー スに収めることも可能である。 [0063] また、記録再生装置におレ、ては、集光されるレーザ光と光情報記録媒体とのなす 角度を調節するための手段をさらに備えておくことが好ましぐこれによれば、収差の 発生による光スポットの劣化をも防止することができる。 Of these components, the laser light source, the condensing optical means, the photoelectric conversion means, and the servo means are housed in an optical head that performs relative motion with the optical information recording medium by the relative motion means. . It is also possible to place the laser light source and the photoelectric conversion means in a separate case from the condensing optical means. [0063] In addition, it is preferable that the recording / reproducing apparatus further includes means for adjusting the angle formed between the focused laser beam and the optical information recording medium. In addition, the deterioration of the light spot due to the occurrence of aberration can be prevented.
[0064] 図 2は、このような記録再生装置に光学ヘッドとして搭載される、光情報記録媒体が 円盤状の光ディスクである場合の一般的な光学系の構成図を示す。光学系は、半導 体レーザ 61、コリメートレンズ 62、ビーム整形プリズム 63、ビームスプリッタ 64、対物 レンズ 65、及び検出光学系 67を備えている。  FIG. 2 shows a configuration diagram of a general optical system when the optical information recording medium mounted on such a recording / reproducing apparatus as an optical head is a disc-shaped optical disk. The optical system includes a semiconductor laser 61, a collimating lens 62, a beam shaping prism 63, a beam splitter 64, an objective lens 65, and a detection optical system 67.
[0065] 光源である半導体レーザ 61からのレーザ光は、コリメートレンズ 62によってほぼ平 行光に変換され、ビーム整形プリズム 63によって光強度の分布をほぼ円形に整形さ れる。このほぼ円形の平行光はビームスプリッタ 64を透過した後、対物レンズ 65によ つて光情報記録媒体 66に集光される。この反射光はビームスプリッタ 64で分岐され 、検出光学系 67に導かれる。  Laser light from the semiconductor laser 61 as a light source is converted into substantially parallel light by the collimator lens 62, and the light intensity distribution is shaped into a substantially circular shape by the beam shaping prism 63. The substantially circular parallel light passes through the beam splitter 64 and is then focused on the optical information recording medium 66 by the objective lens 65. This reflected light is branched by the beam splitter 64 and guided to the detection optical system 67.
[0066] スピンドルモータ 68は、光情報記録媒体 66を回転させることにより、光スポットを光 情報記録媒体 66上で走査させる。検出光学系 67は、反射光の偏光方向の変化や 反射光強度の変化などから信号を識別し、光情報記録媒体 66上に記録された記録 マークを読み取るのと同時に、光スポットの光情報記録媒体 66に対しての焦点ずれ 信号とトラック位置ずれ信号とを検出し、対物レンズ 65の駆動系にフィードバックする ことにより光スポットの位置ずれを補正する。対物レンズの開口数 (NA)は、例えば 0 . 85に設定する。  The spindle motor 68 rotates the optical information recording medium 66 to scan the optical spot on the optical information recording medium 66. The detection optical system 67 discriminates signals from changes in the polarization direction of reflected light and changes in reflected light intensity, and at the same time reads the recording marks recorded on the optical information recording medium 66 and simultaneously records the optical information of the light spot. By detecting a defocus signal and a track position shift signal with respect to the medium 66 and feeding back to the drive system of the objective lens 65, the position shift of the light spot is corrected. For example, the numerical aperture (NA) of the objective lens is set to 0.85.
[0067] このような光情報記録再生装置にお!/、ては、光情報記録媒体 66として、超解像媒 体技術を採用した本発明に係る光情報記録媒体と、超解像媒体技術を用いなレ、通 常の光情報記録媒体との両方を記録再生できることが望ましい。そこで、上記光情報 記録再生装置では、本発明に係る光情報記録媒体の場合と、通常の光情報記録媒 体の場合とで、検出器のゲイン、再生光強度、記録光強度、記録波形、光情報記録 媒体の回転数などをそれぞれ切り換えることができるように構成されている。但し、こ れらは電気的に制御できる範囲であるため、通常媒体のみを記録再生する装置と比 ベて、光学系に大きな変更を施す必要はない。  In such an optical information recording / reproducing apparatus, the optical information recording medium 66 and the optical information recording medium 66 according to the present invention adopting the super-resolution medium technology as the optical information recording medium 66 and the super-resolution medium technology. It is desirable to be able to record / reproduce both the optical disc and the ordinary optical information recording medium. Therefore, in the optical information recording / reproducing apparatus, the gain of the detector, the reproduction light intensity, the recording light intensity, the recording waveform, in the case of the optical information recording medium according to the present invention and in the case of the normal optical information recording medium, The optical information recording medium is configured to be able to switch the number of rotations. However, since these are in an electrically controllable range, it is not necessary to make significant changes to the optical system as compared with an apparatus that records and reproduces only ordinary media.
[0068] 次に、本発明に係る超解像媒体技術を用いた光情報記録媒体につ!/、て説明する 。図 3は、本実施形態に係る光情報記録媒体 1の概略構成を示す断面図である。 Next, an optical information recording medium using the super-resolution medium technique according to the present invention will be described. . FIG. 3 is a cross-sectional view showing a schematic configuration of the optical information recording medium 1 according to the present embodiment.
[0069] 光情報記録媒体 1は、図 3に示されるように、透光層 10と、薄膜部 20と、基板 30と を備え、再生光入射面からこの順に形成されて!/、る。  As shown in FIG. 3, the optical information recording medium 1 includes a light-transmitting layer 10, a thin film portion 20, and a substrate 30, and is formed in this order from the reproduction light incident surface.
[0070] 透光層 10は、再生光が充分に透過できる材料であればよぐ例えば、ポリカーボネ 一トフイルム、紫外線硬化樹脂等から形成される。これにより、外的要因による薄膜部 20の破壊を防ぐことが可能となる。  [0070] The light transmissive layer 10 may be made of a material that can sufficiently transmit the reproduction light. For example, the light transmissive layer 10 is formed of polycarbonate film, ultraviolet curable resin, or the like. As a result, it is possible to prevent the thin film portion 20 from being broken by an external factor.
[0071] 基板 30は、図 4に示されるように、記録情報に対応した凹凸形状のプリピット(ピット ) 31が、同心円状、または、スパイラル状に形成されている。基板 30を構成する材料 の光学的特性は、特に限定されるものではなぐ透明でも不透明であってもよい。基 板 30を構成する材料としては、例えば、ガラス、ポリカーボネート、アモルファスポリオ レフイン、熱可塑型ポリイミド、 PET、 PEN, PES等の熱可塑性透明樹脂、熱硬化型 ポリイミド、紫外線硬化型アクリル樹脂等の熱硬化性透明樹脂、金属等、およびそれ らの組合せが挙げられる。  As shown in FIG. 4, the substrate 30 is formed with concavity and convexity prepits (pits) 31 corresponding to recording information in a concentric or spiral shape. The optical characteristics of the material constituting the substrate 30 are not particularly limited and may be transparent or opaque. Examples of the material constituting the substrate 30 include glass, polycarbonate, amorphous polyolefin, thermoplastic polyimide, thermoplastic transparent resins such as PET, PEN, and PES, thermosetting polyimide, and ultraviolet curable acrylic resin. Examples thereof include curable transparent resins, metals, and the like, and combinations thereof.
[0072] 薄膜部 20は、再生層 21と、光吸収層 22とを備え、再生光入射面からこの順に形成 されている。なお、薄膜部 20は、再生層 21と、光吸収層 22とによって形成されている 1S これらの他にも、例えば、光吸収層 22と基板 30との間に、再生光を反射する反 射層を備えていてもよい。  The thin film portion 20 includes a reproduction layer 21 and a light absorption layer 22, and is formed in this order from the reproduction light incident surface. In addition to 1S formed by the reproduction layer 21 and the light absorption layer 22, the thin film portion 20 includes, for example, a reflection that reflects reproduction light between the light absorption layer 22 and the substrate 30. A layer may be provided.
[0073] 再生層 21は、温度が上昇すると、再生光の波長における光学定数である、屈折率 nおよび消衰係数 kを変化させ、光学多重干渉を生じさせる。光吸収層 22は、再生光 の一部を吸収して熱に変換することで、再生層 21の温度を上昇させる。  [0073] When the temperature rises, the reproduction layer 21 changes the refractive index n and the extinction coefficient k, which are optical constants at the wavelength of the reproduction light, and causes optical multiple interference. The light absorption layer 22 absorbs a part of the reproduction light and converts it into heat, thereby raising the temperature of the reproduction layer 21.
[0074] 具体的には、光吸収層 22は、光情報記録媒体 1に再生光が入射されると、再生光 の一部を吸収し、熱に変換する。この熱は、再生層 21に供給されると、該再生層 21 上の再生光の光スポット領域内に、高温領域と低温領域とを生じさせる。この温度分 布に対応して、高温領域では、再生層 21の光学定数である、屈折率 nおよび消衰係 数 kがそれぞれ変化することによって、複素屈折率が変化する。これに伴い、再生層 21での光学多重干渉の状態が変化し、その結果、再生層 21の反射率が変化する。  [0074] Specifically, when the reproduction light is incident on the optical information recording medium 1, the light absorption layer 22 absorbs a part of the reproduction light and converts it into heat. When this heat is supplied to the reproduction layer 21, a high temperature region and a low temperature region are generated in the light spot region of the reproduction light on the reproduction layer 21. Corresponding to this temperature distribution, in the high temperature region, the refractive index n and the extinction coefficient k, which are the optical constants of the reproducing layer 21, change, respectively, thereby changing the complex refractive index. Along with this, the state of optical multiple interference in the reproduction layer 21 changes, and as a result, the reflectance of the reproduction layer 21 changes.
[0075] 従って、再生光の入射強度に応じて光スポット内の一部の反射率が変化することに よって、光スポット領域内にあり、光スポットよりも小さい記録マークを強調して読み取 ること力 Sできる。結果として、実効再生スポットを縮小できるため、超解像再生が可能 になるとともに、記録密度を向上させることが可能となると考えられる。 [0075] Therefore, when the reflectance of a part of the light spot changes according to the incident intensity of the reproduction light, the recording mark that is in the light spot area and is smaller than the light spot is emphasized and read. Ability to do S. As a result, the effective reproduction spot can be reduced, so that super-resolution reproduction is possible and the recording density can be improved.
[0076] また、再生層 21を構成する材料としては、温度変化によって化学的な構造変化が 繰り返された場合であっても、組成または形状が変化しにくぐ耐久性に優れているこ とから、金属酸化物が挙げられる。具体的には、例えば、酸化亜鉛、酸化すず、酸化 インジウム、酸化ニッケル、酸化バナジウム、酸化チタン、酸化セリウム、チタン酸スト ロンチウム、酸化コバルト、酸化タンタル等が挙げられる。これらのうちでも、安価であ り、環境に対して負荷の少ない酸化亜鉛が特に好ましい。また、これらを主成分とし た混合物でも良い。 [0076] In addition, the material constituting the reproduction layer 21 is excellent in durability that the composition or shape hardly changes even when a chemical structural change is repeated due to a temperature change. And metal oxides. Specific examples include zinc oxide, tin oxide, indium oxide, nickel oxide, vanadium oxide, titanium oxide, cerium oxide, strontium titanate, cobalt oxide, and tantalum oxide. Of these, zinc oxide is particularly preferable because it is inexpensive and has a low environmental impact. A mixture containing these as main components may also be used.
[0077] さらに、再生層 21の膜厚は、実験および理論値より、 80nm以上 120nm未満であ ること力 S好ましい。なお、再生層 21の膜厚については、後で詳しく述べる。  Furthermore, the thickness S of the reproducing layer 21 is preferably 80 nm or more and less than 120 nm from experiments and theoretical values. The film thickness of the reproducing layer 21 will be described in detail later.
[0078] また、光吸収層 22を構成する材料としては、光吸収がある程度あって、再生層 21 の温度を効果的に上昇させるものであればよぐ例えば、 Si、 Ge等の半導体または 半金属、相変化材料、有機色素等が挙げられる。特に、有機色素は高価であり、相 変化材料は管理が難しいため、 Si、 Ge等の半導体または半金属がよぐその中でも 安価な、 Siもしくは Ge、または、 Siもしくは Geを主成分とした混合物が好ましい。  [0078] Further, as a material constituting the light absorption layer 22, any material that absorbs light to some extent and can effectively raise the temperature of the reproduction layer 21 can be used. Examples include metals, phase change materials, and organic dyes. In particular, organic dyes are expensive, and phase change materials are difficult to manage. Therefore, Si or Ge or a mixture based on Si or Ge is cheaper than semiconductors or metalloids such as Si and Ge. Is preferred.
[0079] さらに、光吸収層 22は、プリピット 31の凹凸が反映された状態となるように、基板 30 上に形成される。光吸収層 22は、通常、マグネトロンスパッタ法によって形成されるが 、スパッタによって蒸発した光吸収層 22を形成する原子は、基板 30上に対して、完 全に垂直に入射するとは限らない。このため、光吸収層 22の膜厚を 500nmより厚く すると、プリピット 31の凹凸を、正確に反映できなくなってしまう虞がある。従って、光 吸収層 22の膜厚は、 500nm以下であることが好ましい。なお、光吸収層 22の膜厚 については、後で詳しく述べる。  Furthermore, the light absorption layer 22 is formed on the substrate 30 so that the unevenness of the prepits 31 is reflected. The light absorption layer 22 is usually formed by a magnetron sputtering method. However, the atoms forming the light absorption layer 22 evaporated by sputtering do not necessarily enter the substrate 30 completely perpendicularly. For this reason, if the thickness of the light absorption layer 22 is greater than 500 nm, the unevenness of the prepits 31 may not be accurately reflected. Therefore, the film thickness of the light absorption layer 22 is preferably 500 nm or less. The film thickness of the light absorption layer 22 will be described in detail later.
[0080] 再生層 21の膜厚が、上述のように、 80nm以上 120未満に設定されていることによ つて、室温時(30°C)における該薄膜部 20の反射率の波長分布は、図 1に示される ように、隣り合う極小値および極大値をそれぞれ、 minおよびえ maxとし、再生光 の波長をえ rとしたとき、 min< r< maxとなる。  [0080] As described above, since the thickness of the reproducing layer 21 is set to 80 nm or more and less than 120, the wavelength distribution of the reflectance of the thin film portion 20 at room temperature (30 ° C) is As shown in FIG. 1, when the adjacent local minimum and local maximum values are min and max, respectively, and the wavelength of the reproduction light is r, min <r <max.
[0081] この場合、薄膜部 20を形成する再生層 21の屈折率 nは、高温になるほど増加する 。これに伴い、高温時(200°C)における薄膜部 20の反射率の波長分布は、図 1に示 されるように、室温時の波長分布に比べ、長波長側にシフトされる。このため、再生光 の波長え rにおいて、高温時における薄膜部 20の反射率は、室温時の反射率に比 ベて低下している。さらに、再生層 21の消衰係数 kは、高温になるほど増加するため 、これに伴い、該再生層 21の透過率を減少させる。このため、再生光の波長え rにお いて、薄膜部 20の反射率を低下させるように働く。従って、室温時における薄膜部 2 0の反射率の波長分布が λ minく λ τ< λ maxとなっている場合には、再生光の光 スポットの高温領域において、屈折率 nおよび消衰係数 kは、ともに該薄膜部 20の反 射率の変化を増強させるように働く。 In this case, the refractive index n of the reproducing layer 21 forming the thin film portion 20 increases as the temperature increases. . Accordingly, as shown in FIG. 1, the wavelength distribution of the reflectance of the thin film portion 20 at a high temperature (200 ° C.) is shifted to the longer wavelength side as compared with the wavelength distribution at room temperature. For this reason, at the wavelength r of the reproduction light, the reflectance of the thin film portion 20 at a high temperature is lower than the reflectance at a room temperature. Further, since the extinction coefficient k of the reproducing layer 21 increases as the temperature increases, the transmittance of the reproducing layer 21 is reduced accordingly. Therefore, the reflectance of the thin film portion 20 is lowered at the wavelength r of the reproduction light. Therefore, when the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is λ min and λ τ <λ max, the refractive index n and the extinction coefficient k in the high temperature region of the light spot of the reproduction light Both act to enhance the change in the reflectivity of the thin film portion 20.
[0082] なお、再生層 21の膜厚は、 80nm以上 120nm未満に設定されていることが好まし いが、 80nm未満、または、 120nm以上に設定されることによつても、室温時におけ る薄膜部 20の反射率の波長分布を、 min< λ τ< λ maxとなるようにすること力 S可 能である。 [0082] Note that the film thickness of the reproducing layer 21 is preferably set to 80 nm or more and less than 120 nm, but it can be set at less than 80 nm or 120 nm or more even at room temperature. The force S can be applied so that the wavelength distribution of the reflectance of the thin film portion 20 satisfies min <λ τ <λ max.
[0083] しかしながら、再生層 21の膜厚が 80nm未満となった場合には、光学多重干渉の 効果を充分に得ることができないため、安定した超解像再生を行うことができない虞 がある。また、再生層 21の膜厚が 120nm以上となった場合には、薄膜部 20の反射 率の波長依存性において、該反射率の極小値力 00nm付近になる虞がある。この とき、例えば、 Blu-ray光学系を使用した場合、再生光の波長と、反射率の極小値をと る波長とが近い値となる。このため、光情報記録媒体を再生するときに、必要とされる 反射光を充分に得られなくなり、フォーカスカ Sかかりに《なってしまう。さらに、光情 報記録媒体の再生するときに、光吸収層 22から供給される熱を充分に得られなくな るため、再生感度が低下する虞がある。  However, when the thickness of the reproducing layer 21 is less than 80 nm, the effect of optical multiple interference cannot be obtained sufficiently, and there is a possibility that stable super-resolution reproduction cannot be performed. Further, when the thickness of the reproducing layer 21 is 120 nm or more, there is a possibility that the minimum value of the reflectance is around 00 nm in the wavelength dependence of the reflectance of the thin film portion 20. At this time, for example, when a Blu-ray optical system is used, the wavelength of the reproduction light and the wavelength that takes the minimum value of the reflectance are close to each other. For this reason, when the optical information recording medium is reproduced, the necessary reflected light cannot be obtained sufficiently, and the focus focus is increased. Furthermore, when the optical information recording medium is reproduced, the heat supplied from the light absorption layer 22 cannot be sufficiently obtained, and there is a possibility that the reproduction sensitivity is lowered.
[0084] 従って、再生層 21の膜厚は、 80nm以上 120nm未満に設定されることが好ましい  Therefore, the thickness of the reproducing layer 21 is preferably set to 80 nm or more and less than 120 nm.
[0085] 一方、図 5は、再生層 21の膜厚が 144nmである場合の、室温時(30°C)における 該薄膜部 20の反射率の波長分布を示している。図 5に示されるように、波長分布の 隣り合う極小値 λ minおよび極大値 λ maxと、再生光の波長 λ rとの関係は、 λ max ≤ λ τ≤ λ minとなる。 [0086] この場合も、薄膜部 20を形成する再生層 21の屈折率 nは、高温になるほど増加す る。これに伴い、高温時(200°C)における薄膜部 20の反射率の波長分布は、図 5に 示されるように、室温時の波長分布に比べ、長波長側にシフトされる。このため、再生 光の波長え rにおいて、高温時における薄膜部 20の反射率は、室温時の反射率に 比べて増加している。一方、再生層 21の消衰係数 kは、高温になるほど増加するた め、これに伴い、該再生層 21の透過率を減少させる。このため、再生光の波長え に おいて、薄膜部 20の反射率を低下させるように働く。従って、室温時における薄膜部 20の反射率の波長分布が max≤ λ τ≤ λ minとなっている場合には、再生光の光 スポットの高温領域において、屈折率 nおよび消衰係数 kは、薄膜部 20の反射率の 変化を増強させてレ、なレ、ことがわかる。 On the other hand, FIG. 5 shows the wavelength distribution of the reflectance of the thin film portion 20 at room temperature (30 ° C.) when the thickness of the reproducing layer 21 is 144 nm. As shown in FIG. 5, the relationship between the adjacent minimum value λ min and maximum value λ max of the wavelength distribution and the wavelength λ r of the reproduction light is λ max ≤ λ τ ≤ λ min. Also in this case, the refractive index n of the reproducing layer 21 forming the thin film portion 20 increases as the temperature increases. Accordingly, the wavelength distribution of the reflectance of the thin film portion 20 at a high temperature (200 ° C.) is shifted to the longer wavelength side as compared with the wavelength distribution at room temperature, as shown in FIG. For this reason, at the wavelength r of the reproduction light, the reflectance of the thin film portion 20 at a high temperature is higher than the reflectance at a room temperature. On the other hand, the extinction coefficient k of the reproducing layer 21 increases as the temperature increases, and accordingly, the transmittance of the reproducing layer 21 is decreased. For this reason, the reflectance of the thin film portion 20 is lowered at the wavelength of the reproduction light. Therefore, when the wavelength distribution of the reflectivity of the thin film portion 20 at room temperature is max≤ λ τ≤ λ min, the refractive index n and the extinction coefficient k are It can be seen that the change in the reflectivity of the thin film portion 20 is strengthened.
[0087] 上述のように、室温時における薄膜部 20の反射率の波長分布が min< λ τ< λ maxとなっている場合、上記屈折率 nおよび消衰係数 kは、薄膜部 20の反射率の低 下を増強させるように働くため、ジッタを低減させることが可能となる。すなわち、光情 報記録媒体 1は、安定した超解像再生を効率的に行うことができるため、該光情報記 録媒体 1の再生感度を向上させることが可能となる。  As described above, when the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is min <λ τ <λ max, the refractive index n and the extinction coefficient k are the reflectance of the thin film portion 20. Jitter can be reduced because it works to increase the rate drop. That is, since the optical information recording medium 1 can efficiently perform stable super-resolution reproduction, the reproduction sensitivity of the optical information recording medium 1 can be improved.
[0088] また、光情報記録媒体 1の薄膜部 20は、再生層 21と光吸収層 22とに分離形成さ れている。これにより、薄膜部 20内において役割が分担されているため、再生耐久 性を向上させることが可能となる。  Further, the thin film portion 20 of the optical information recording medium 1 is separately formed into a reproducing layer 21 and a light absorbing layer 22. Thereby, since the role is shared in the thin film portion 20, it is possible to improve the reproduction durability.
[0089] さらに、室温時における薄膜部 20の反射率の波長分布は、再生層 21の膜厚によ つて適宜変更することが可能である。従って、光情報記録媒体 1の反射率制御を容 易に行うことができるため、該光情報記録媒体 1の生産コストを減少させることが可能 となる。  Furthermore, the wavelength distribution of the reflectance of the thin film portion 20 at room temperature can be appropriately changed according to the film thickness of the reproducing layer 21. Accordingly, since the reflectance control of the optical information recording medium 1 can be easily performed, the production cost of the optical information recording medium 1 can be reduced.
[0090] なお、室温時における薄膜部 20の反射率の波長分布が λ min< λ r< λ maxとな るように再生層 21の膜厚を設定することによって、ジッタが低減されることに関して、 以下に、実施例を示すことにより詳細に説明する。  [0090] Note that the jitter is reduced by setting the film thickness of the reproducing layer 21 so that the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is λ min <λ r <λ max. Hereinafter, the present invention will be described in detail by showing examples.
[0091] (実施例)  [0091] (Example)
光情報記録媒体 2は、図 6に示されるように、光情報記録媒体 1の実施例 1であり、 該光情報記録媒体 1のもっとも好適な例である。光情報記録媒体 2は、透光層 10と、 薄膜部 20と、基板 30とを備え、再生光入射面からこの順に形成されている。 As shown in FIG. 6, the optical information recording medium 2 is Example 1 of the optical information recording medium 1, and is the most preferable example of the optical information recording medium 1. The optical information recording medium 2 includes a translucent layer 10, A thin film portion 20 and a substrate 30 are provided, and are formed in this order from the reproduction light incident surface.
[0092] 透光層 10は、ポリカーボネートフィルム 11 (膜厚: 80 in)と、透明粘着層 12 (膜厚 [0092] The light-transmitting layer 10 includes a polycarbonate film 11 (film thickness: 80 in) and a transparent adhesive layer 12 (film thickness).
: 2(^ 111)とを備え、再生光入射面からこの順に形成されている。薄膜部 20は、酸化 亜鉛からなる再生層 21 (膜厚: 11 lnm)と、 Geからなる光吸収層 22 (膜厚: 50nm)と を備え、再生光入射面からこの順に形成されている。基板 30は、ポリオレフイン系樹 脂で形成されている。  : 2 (^ 111) and is formed in this order from the reproduction light incident surface. The thin film portion 20 includes a reproduction layer 21 (thickness: 11 lnm) made of zinc oxide and a light absorption layer 22 (thickness: 50 nm) made of Ge, and is formed in this order from the reproduction light incident surface. The substrate 30 is made of a polyolefin resin.
[0093] なお、上記構成において、実施例 1における光情報記録媒体 2の薄膜部 20の膜厚 は、 l min< λ τ< λ maxの関係が成り立つように設定されている。  In the above configuration, the film thickness of the thin film portion 20 of the optical information recording medium 2 in Example 1 is set so that the relationship of l min <λ τ <λ max is satisfied.
[0094] また、光情報記録媒体 3は、図 7に示されるように、光情報記録媒体 1の比較例 1で あり、透光層 10と、薄膜部 20と、基板 30とを備え、再生光入射面からこの順に形成さ れている。  Further, as shown in FIG. 7, the optical information recording medium 3 is a comparative example 1 of the optical information recording medium 1, and includes a light-transmitting layer 10, a thin film portion 20, and a substrate 30, and is reproduced. They are formed in this order from the light incident surface.
[0095] 透光層 10は、ポリカーボネートフィルム 11 (膜厚: 80 in)と、透明粘着層 12 (膜厚  [0095] The light transmitting layer 10 includes a polycarbonate film 11 (film thickness: 80 in) and a transparent adhesive layer 12 (film thickness).
: 2(^ 111)とを備え、再生光入射面からこの順に形成されている。薄膜部 20は、酸化 亜鉛からなる再生層 21 (膜厚: 144nm)と、 Geからなる光吸収層 22 (膜厚: 50nm)と を備え、再生光入射面からこの順に形成されている。基板 30は、ポリオレフイン系樹 脂で形成されている。すなわち、光情報記録媒体 3の再生層 21の膜厚は、光情報記 録媒体 2の再生層 21の膜厚よりも厚ぐ 120nm以上に設定されている。なお、上記 構成において、比較例 1における光情報記録媒体 3の薄膜部 20の膜厚は、 max ≤ λ τ≤ minの関係が成り立つように設定されている。  : 2 (^ 111) and is formed in this order from the reproduction light incident surface. The thin film portion 20 includes a reproduction layer 21 (thickness: 144 nm) made of zinc oxide and a light absorption layer 22 (thickness: 50 nm) made of Ge, and is formed in this order from the reproduction light incident surface. The substrate 30 is made of a polyolefin resin. That is, the thickness of the reproducing layer 21 of the optical information recording medium 3 is set to 120 nm or more, which is thicker than the thickness of the reproducing layer 21 of the optical information recording medium 2. In the above configuration, the film thickness of the thin film portion 20 of the optical information recording medium 3 in Comparative Example 1 is set so as to satisfy the relationship of max ≦ λτ ≦ min.
[0096] ここで、光情報記録媒体 2および 3は、例えば、以下の方法により作製される。  Here, the optical information recording media 2 and 3 are produced by the following method, for example.
[0097] まず、 5 X 10_4 (Pa)以下まで排気されたスパッタ装置内において、 0. 05mm厚の ポリオレフイン系樹脂からなる基板 30上に、直径 3インチの Geをターゲットとして配置 した後、スパッタ装置内にアルゴンガスを送り込み、高周波電力 200Wを供給する。 これにより、基板 30上に、 Geからなる膜厚 50nmの光吸収層 22が形成される。 [0097] First, in 5 X 10_ 4 (Pa) in a sputtering apparatus which is evacuated to less, on a substrate 30 made of 0. 05mm thick polyolefin-based resin, after placing the Ge 3-inch diameter as a target, sputtering Argon gas is fed into the device and high-frequency power 200W is supplied. As a result, the light absorption layer 22 made of Ge and having a thickness of 50 nm is formed on the substrate 30.
[0098] 次に、スパッタ装置内に酸化亜鉛をターゲットとして配置した後、アルゴンおよび酸 素(アルゴン流量:酸素流量 = 16: 1)の混合ガスを送り込み、高周波電力 200Wを 供給する。これにより、光吸収層 22上に、酸化亜鉛からなる膜厚 11 lnmほたは、 14 4nm)の再生層 21が形成され、結果、基板 30上に薄膜部 20が形成される。 [0099] その後、基板 30上に薄膜部 20が形成されたディスクを大気中に取り出し、該薄膜 部 20上には、膜厚 80nmのポリカーボネートフィルム 11を、膜厚 20nmの透明粘着 層 12を用いて貼り合わせる。これにより、薄膜部 20上に透光層 10が形成される。こ のようにして、光情報記録媒体 2および 3が作製される。 [0098] Next, after arranging zinc oxide as a target in the sputtering apparatus, a mixed gas of argon and oxygen (argon flow rate: oxygen flow rate = 16: 1) is fed and high-frequency power 200W is supplied. As a result, a reproducing layer 21 made of zinc oxide and having a thickness of 11 lnm or 144 nm is formed on the light absorption layer 22, and as a result, the thin film portion 20 is formed on the substrate 30. [0099] Thereafter, the disk having the thin film portion 20 formed on the substrate 30 is taken out into the atmosphere, and the polycarbonate film 11 having a thickness of 80 nm and the transparent adhesive layer 12 having a thickness of 20 nm are used on the thin film portion 20. And paste them together. Thereby, the translucent layer 10 is formed on the thin film portion 20. In this way, optical information recording media 2 and 3 are produced.
[0100] また、光情報記録媒体 4は、図 8に示されるように、光情報記録媒体 2に対する比較 例 2であり、超解像媒体技術を用いな!/、通常の光情報記録媒体を示して!/、る。  Further, as shown in FIG. 8, the optical information recording medium 4 is a comparative example 2 with respect to the optical information recording medium 2, and does not use the super-resolution medium technology! / Show me!
[0101] 光情報記録媒体 4は、透光層 10と、薄膜層状部 40と、基板 30とを備え、再生光入 射面からこの順に形成されて!/、る。  The optical information recording medium 4 includes a light transmitting layer 10, a thin film layered portion 40, and a substrate 30, and is formed in this order from the reproduction light incident surface!
[0102] 透光層 10は、ポリカーボネートフィルム 11 (膜厚: 80 111)と、透明粘着層 12 (膜厚 : 20 ^ m)とを備え、再生光入射面からこの順に形成されて!/、る。 Auからなる薄膜層 状部 40の膜厚は、 50nmである。また、基板 30は、ポリオレフイン系樹脂で形成され ている。  [0102] The light transmissive layer 10 includes a polycarbonate film 11 (film thickness: 80 111) and a transparent adhesive layer 12 (film thickness: 20 ^ m), and is formed in this order from the reproduction light incident surface! /, The The film thickness of the thin film layered portion 40 made of Au is 50 nm. The substrate 30 is made of a polyolefin resin.
[0103] さらに、光情報記録媒体 5は、図 9に示されるように、光情報記録媒体 2に対する比 較例 3であり、特許文献 3に記載の超解像光情報記録媒体を示して!/、る。  Further, as shown in FIG. 9, the optical information recording medium 5 is a comparative example 3 with respect to the optical information recording medium 2, and shows the super-resolution optical information recording medium described in Patent Document 3! / The
[0104] 光情報記録媒体 5は、透光層 10と、薄膜層状部 50と、基板 30とを備え、再生光入 射面からこの順に形成されて!/、る。  [0104] The optical information recording medium 5 includes a light transmitting layer 10, a thin film layered portion 50, and a substrate 30, and is formed in this order from the reproduction light incident surface.
[0105] 透光層 10は、ポリカーボネートフィルム 11 (膜厚: 80 111)と、透明粘着層 12 (膜厚  [0105] The light-transmitting layer 10 includes a polycarbonate film 11 (film thickness: 80 111) and a transparent adhesive layer 12 (film thickness).
: 20 111)とを備え、再生光入射面からこの順に形成されている。 Geからなる薄膜層 状部 50の膜厚は、 50nmである。また、基板 30は、ポリオレフイン系樹脂で形成され ている。  20 111) and is formed in this order from the reproduction light incident surface. The film thickness of the thin film layered portion 50 made of Ge is 50 nm. The substrate 30 is made of a polyolefin resin.
[0106] また、光情報記録媒体 2、 3、 4および 5を形成する基板 30には、図 4に示されるよう に、光回折限界以下であるマーク長 0· 12 mからなる、モノトーンパターン方式が 採用されており、単一周波数繰り返し位相ピット(マーク'スペース比 1: 1)が記録され ている。  Further, as shown in FIG. 4, the substrate 30 forming the optical information recording media 2, 3, 4 and 5 has a monotone pattern system having a mark length of 0 · 12 m which is not more than the optical diffraction limit. Is used, and single frequency repetitive phase pits (mark'space ratio 1: 1) are recorded.
[0107] さらに、本実施例では、ランダムパターン方式に従い、光学回折限界以下の長さで 、最も短いマーク(0. 12 m)となる最小長さのプリピットと、その長さを基準に、数種 類の長さをもつプリピットが、規格によって定められた規則にしたがって、信号再生す る方向に順に配置されている。つまり、本実施例では、最も短いマーク長(0. 12 ^ 111 )を基準に数種類の長さを持つプリピットを規格に準じて配置するため、光回折限界 以下のマーク長となるプリピットと、光回折限界より長いマーク長を持つプリピットが混 在する。すなわち、再生装置の光学系解像限界以下の記録マーク長を含むプリピッ トと、再生装置の光学系解像限界より長レ、記録マーク長からなるプリピットとが混在し 、これらプリピットがランダムパターン方式にて情報が記録されて!/、る。 [0107] Furthermore, in this example, according to the random pattern method, the number of the prepits with the minimum length that is the shortest mark (0.12 m) at the length equal to or less than the optical diffraction limit, Prepits of various lengths are arranged in order in the signal reproduction direction according to the rules defined by the standard. That is, in this embodiment, the shortest mark length (0.12 ^ 111 ) Prepits with several lengths are arranged according to the standard, so prepits with a mark length below the optical diffraction limit and prepits with a mark length longer than the optical diffraction limit are mixed. In other words, prepits that include a recording mark length that is less than or equal to the optical system resolution limit of the playback device and prepits that are longer than the optical system resolution limit of the playback device and have a recording mark length are mixed. Information is recorded at!
[0108] まず、実施例 1、比較例 2および比較例 3の光情報記録媒体において、再生信号の C/Nを測定した結果を示す。このとき、それぞれの光情報記録媒体に記録されたプ リピットであり、光回折限界以下のマークで長さが 0. 12 mであるモノトーンパターン 方式のプリピットを再生した場合の C/Nを測定した。また、測定は、波長 406nm、 対物レンズの開口数 NAO. 85、再生光レーザパワーの上限が 2. OmWの光ディスク 評価器で行った。 First, the results of measuring the C / N of the reproduction signal in the optical information recording media of Example 1, Comparative Example 2 and Comparative Example 3 are shown. At this time, C / N was measured when monopit pattern type prepits were reproduced that were prepits recorded on each optical information recording medium and having a length less than the optical diffraction limit and having a length of 0.12 m. . The measurement was performed with an optical disk evaluator having a wavelength of 406 nm, an objective lens numerical aperture of NAO. 85, and an upper limit of the reproduction laser power of 2. OmW.
[0109] 再生光レーザパワーが増加し、飽和するときの C/Nを表す到達 C/Nは、実施例 1では 42dB、比較例 2では 10dB、比較例 3では 39dBであった。一般に、到達 C/ Nが 30dB以上あれば、光情報記録媒体の実用化が可能であると言われている。従 つて、比較例 2は、超解像媒体技術を用いない通常の光情報記録媒体であるため、 光限界以下のマーク長の再生ができていない一方、実施例 1および比較例 3では、 超解像再生が可能であることがわかる。  The arrival C / N, which represents the C / N when the reproduction laser power increases and becomes saturated, was 42 dB in Example 1, 10 dB in Comparative Example 2, and 39 dB in Comparative Example 3. In general, it is said that an optical information recording medium can be put to practical use if the reaching C / N is 30 dB or more. Therefore, since Comparative Example 2 is a normal optical information recording medium that does not use super-resolution medium technology, the mark length below the optical limit cannot be reproduced. On the other hand, in Example 1 and Comparative Example 3, It can be seen that resolution reproduction is possible.
[0110] 次に、上記ディスク評価器において、実施例 1、および比較例 1ないし 3のジッタを 測定した結果を示す。このとき最小長さのプリピット(マーク長 0. 12 111)を基準とし て、数種類のプリピットが形成されている、ランダムパターン方式のプリピットを再生し た場合のジッタを測定した。  [0110] Next, the results of measuring the jitter of Example 1 and Comparative Examples 1 to 3 in the disk evaluator are shown. At this time, jitter was measured when a random pattern type prepit was reproduced with several types of prepits formed on the basis of the minimum length prepit (mark length 0.12 111).
[0111] 図 10は、実施例 1、および比較例 1ないし 3の、再生光レーザパワーに対するジッタ の変化を示している。  FIG. 10 shows the change in jitter with respect to the reproduction light laser power in Example 1 and Comparative Examples 1 to 3.
[0112] まず、実施例 1と比較例 2とを比較する。実施例 1のジッタ底値は、比較例 2のジッタ 底値より約 7%低減されている。すなわち、光回折限界以下の長さのマークをもつラ ンダムパターン方式の光情報記録媒体 2は、比較例 2よりも、安定した超解像再生を 効率的に行うことが可能であることがわかる。  [0112] First, Example 1 and Comparative Example 2 are compared. The jitter bottom value of Example 1 is about 7% lower than the jitter bottom value of Comparative Example 2. That is, it can be seen that the random pattern type optical information recording medium 2 having a mark with a length less than or equal to the optical diffraction limit can perform more stable super-resolution reproduction more efficiently than Comparative Example 2. .
[0113] 次に、実施例 1と比較例 1とを比較する。上記のように、実施例 1および、比較例 1と もに、ジッタ底値はほとんど変わらない。し力もながら、ジッタが底値となるのは、実施 例 1では、再生レーザパワーが 0. 5mWのときであり、比較例 1では、該再生光レー ザパワーが 1. 6mWのときである。すなわち、実施例 1での再生光レーザパワーは、 比較例 1での再生光レーザパワーの 1/3以下で、ジッタ底値となっていることがわか る。従って、実施例 1の光情報記録媒体 2は、比較例 1の光情報記録媒体 3と比べ、 低電力で安定した超解像再生を可能とする。 [0113] Next, Example 1 and Comparative Example 1 are compared. As described above, Example 1 and Comparative Example 1 In addition, the jitter bottom is almost unchanged. However, the jitter becomes the bottom when the reproduction laser power is 0.5 mW in Example 1, and when the reproduction optical laser power is 1.6 mW in Comparative Example 1. That is, it can be seen that the reproduction laser power in Example 1 is 1/3 or less of the reproduction laser power in Comparative Example 1 and has a jitter bottom value. Therefore, the optical information recording medium 2 of Example 1 enables stable super-resolution reproduction with low power compared to the optical information recording medium 3 of Comparative Example 1.
[0114] さらに、実施例 1と比較例 3とを比較する。実施例 1と比較例 3とは、モノトーンパター ン方式で記録され、光回折限界以下の長さのプリピットを再生した場合の C/Nは、 良好な C/N値が得られており、超解像再生が可能であることがわかった。  [0114] Further, Example 1 and Comparative Example 3 are compared. Example 1 and Comparative Example 3 are recorded in a monotone pattern method, and the C / N when a prepit having a length less than the optical diffraction limit is reproduced has a good C / N value. It was found that resolution reproduction is possible.
[0115] しかしながら、比較例 3は、超解像再生ができない比較例 2と比較して、図 10に示さ れるように、光回折限界以下の長さのマークをもつランダムパターン方式では、ジッタ が低減されていないことがわかる。すなわち、比較例 3では、光回折限界以下の長さ であるマークの単一周波数繰り返し位相ピット(モノトーンパターン方式)の再生にお いて、良好な C/Nが得られたとしても、光回折限界以下の長さと、光回折限界以上 の長さのマークを持つランダムパターン方式ではジッタが低減されて!/、な!/、。これより 、光回折限界以下の長さのマークと光回折限界以上の長さのマークが混在するラン ダムパターン方式にて情報が記録された光情報記録媒体では、 C/Nとジッタとの間 に必ずしも相関関係が成立するとは限らないと言える。  [0115] However, in Comparative Example 3, compared to Comparative Example 2 in which super-resolution reproduction is not possible, as shown in FIG. 10, the random pattern method having a mark with a length less than or equal to the optical diffraction limit causes jitter to be reduced. It turns out that it is not reduced. That is, in Comparative Example 3, even when good C / N was obtained in the reproduction of a single frequency repetitive phase pit (monotone pattern method) of a mark having a length shorter than the optical diffraction limit, The random pattern method with the following lengths and marks longer than the optical diffraction limit reduces jitter! / ,! Thus, in an optical information recording medium on which information is recorded by a random pattern method in which a mark having a length less than the optical diffraction limit and a mark having a length longer than the optical diffraction limit are mixed, the C / N and jitter are not recorded. It can be said that the correlation is not necessarily established.
[0116] つまり、光回折限界以下の長さのマークで良好な C/Nが得られるということは、光 回折限界以下の長さの同一のマークのみにより情報が記録された超解像媒体の再 生特性を保障している力 S、より高密度に記録可能であるランダムパターン方式で情報 が記録されて!/、る超解像媒体の再生特性に対しては何ら保障して!/、な!/、ことになる。 このことは、記録密度がより高密度なランダムパターン方式に対応した超解像光情報 記録媒体において、光回折限界以下の長さの記録マークと、光回折限界以上の長さ の記録マークとを再生評価する場合には、ジッタによる評価が重要であることを示し ている。  [0116] In other words, good C / N can be obtained with a mark having a length less than or equal to the optical diffraction limit. The power S that guarantees the reproduction characteristics, the information is recorded in a random pattern method that can be recorded at higher density! /, And the reproduction characteristics of super-resolution media are guaranteed! /, That's right! This means that in a super-resolution optical information recording medium that supports a random pattern method with a higher recording density, a recording mark with a length less than the optical diffraction limit and a recording mark with a length longer than the optical diffraction limit are evaluated for reproduction. This indicates that jitter evaluation is important.
[0117] 実施例 1に係る光情報記録媒体 2は、室温時における薄膜部 20の反射率の波長 分布が min< λ τ< λ maxになるように設計されているため、良好な C/Nであると ともに、ジッタも低減されている。すなわち、実施例 1は、室温時における薄膜部 20の 反射率の波長分布が max≤ λ τ≤ minとなるように設計されている、比較例 1に 係る光情報記録媒体 3よりも、安定した超解像再生を効率的に行うことが可能である こと力 sゎカゝる。 [0117] The optical information recording medium 2 according to Example 1 is designed such that the wavelength distribution of the reflectance of the thin film portion 20 at room temperature satisfies min <λτ <λmax. To be In both cases, jitter is also reduced. That is, Example 1 is more stable than the optical information recording medium 3 according to Comparative Example 1, which is designed such that the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is max≤λτ≤min. this and power s Wakakaru it is possible to perform super-resolution reproduction efficiently.
[0118] 次に、実施例 1の光吸収層 22の膜厚を変更した光情報記録媒体を作製し、上記デ イスク評価器を用いて、各光情報記録媒体のジッタを測定した。光吸収層 22の膜厚 は、図 11に示されるように、該膜厚が増加するにつれて、ジッタも減少していること力 s ゎカゝる。  Next, an optical information recording medium in which the film thickness of the light absorption layer 22 of Example 1 was changed was produced, and the jitter of each optical information recording medium was measured using the disk evaluator. As shown in FIG. 11, the film thickness of the light absorption layer 22 is such that the jitter decreases as the film thickness increases.
[0119] なお、光吸収層 22の膜厚が 5nm未満の場合、該膜厚が薄すぎるために、再生光 入射時の再生耐久性が確保できない。従って、光吸収層 22の膜厚は、 5nm以上で あることが好ましい。  [0119] If the thickness of the light absorption layer 22 is less than 5 nm, the film thickness is too thin, so that the reproduction durability when the reproduction light is incident cannot be ensured. Therefore, the film thickness of the light absorption layer 22 is preferably 5 nm or more.
[0120] また、図 11に示されるように、光吸収層 22の膜厚が 5nm以上の場合には、ジッタの 低減がみられるものの、該膜厚が 50nm以上になると、ジッタの値がほとんど変わらな くなるため、ジッタの更なる低減がみられなくなる。従って、ジッタを確実に低減させた 状態にするためには、光吸収層の膜厚を 50nm以上にすることが好ましい。  Further, as shown in FIG. 11, when the thickness of the light absorption layer 22 is 5 nm or more, the jitter is reduced, but when the thickness is 50 nm or more, the jitter value is almost zero. Since it does not change, there is no further reduction in jitter. Therefore, it is preferable to set the thickness of the light absorption layer to 50 nm or more in order to ensure that the jitter is reduced.
[0121] しかしながら、上述のように、スパッタ法にて光吸収層 22を形成する場合、該光吸 収層 22の膜厚が 500nmより厚くなると、基板 30上のプリピット 31の凹凸を、正確に 反映できなくなってしまうと考えられる。従って、光吸収層 22の膜厚は、 500nm以下 であることが好ましい。  However, as described above, when the light absorption layer 22 is formed by the sputtering method, when the film thickness of the light absorption layer 22 is greater than 500 nm, the unevenness of the prepits 31 on the substrate 30 is accurately determined. It will be impossible to reflect. Therefore, the film thickness of the light absorption layer 22 is preferably 500 nm or less.
[0122] これにより、光吸収層 22の膜厚を適宜設定することによって、ジッタを低減させるこ とが可能となり、すなわち、安定した超解像再生を効率的に行うことが可能となる。さ らに、光吸収層 22の膜厚を、 50nm以上 500nm以下に設定すると、ジッタを確実に 低減させた状態にすることが可能となる。  Thus, by appropriately setting the film thickness of the light absorption layer 22, jitter can be reduced, that is, stable super-resolution reproduction can be performed efficiently. Further, when the thickness of the light absorption layer 22 is set to 50 nm or more and 500 nm or less, it becomes possible to reliably reduce the jitter.
[0123] なお、光情報記録媒体 1と、その実施例である光情報記録媒体 2とでは、透光層 10 と、薄膜部 20と、基板 30とが、再生光入射面からこの順に形成されている力 この膜 形成に限定されるものではなレ、。  [0123] In the optical information recording medium 1 and the optical information recording medium 2 that is an example thereof, the light transmitting layer 10, the thin film portion 20, and the substrate 30 are formed in this order from the reproduction light incident surface. Power that is not limited to this film formation.
[0124] 〔実施形態 2〕  [Embodiment 2]
本発明の他の実施形態について説明すれば、以下の通りである。なお、実施形態 1と同一の機能を有する部材については、同一の符号を付記し、その説明は省略す Another embodiment of the present invention will be described as follows. Embodiment For members having the same function as 1, the same reference numerals are given, and the description thereof is omitted.
[0125] 図 12は、本実施形態の光情報記録媒体 6の概略構成を示す断面図である。なお、 光情報記録媒体 1および 2と同一の機能を有する部材については、同一の符号を付 記し、その説明は省略する。 FIG. 12 is a cross-sectional view showing a schematic configuration of the optical information recording medium 6 of the present embodiment. Note that members having the same functions as those of the optical information recording media 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
[0126] 光情報記録媒体 6は、図 12に示されるように、基板 30と、薄膜部 20とを備え、再生 光入射面からこの順に形成されている。また、薄膜部 20には、再生層 21と、光吸収 層 22とを備え、再生光入射面からこの順に形成されている。すなわち、光情報記録 媒体 6は、光情報記録媒体 1および 2と、保護膜として機能する透光層 10が形成され ていない点で異なる。  As shown in FIG. 12, the optical information recording medium 6 includes a substrate 30 and a thin film portion 20, and is formed in this order from the reproduction light incident surface. The thin film portion 20 includes a reproducing layer 21 and a light absorbing layer 22 and is formed in this order from the reproducing light incident surface. That is, the optical information recording medium 6 is different from the optical information recording media 1 and 2 in that the light transmitting layer 10 that functions as a protective film is not formed.
[0127] なお、光情報記録媒体 6は、上記構成に限定されるものではなぐ例えば、さらに、 透明樹脂からなる中間層(図示しない)と、情報の記録および/または再生するため の情報記録層(図示しない)と、基板 30とを有する構成であってもよい。この構成は、 DVD (HD— DVD)の規格に適合するものである。  [0127] The optical information recording medium 6 is not limited to the above configuration. For example, the optical information recording medium 6 further includes an intermediate layer (not shown) made of a transparent resin, and an information recording layer for recording and / or reproducing information. (Not shown) and the board | substrate 30 may be sufficient. This configuration conforms to the DVD (HD—DVD) standard.
[0128] 光情報記録媒体 6においても、室温時における薄膜部 20の反射率の波長分布が  [0128] Also in the optical information recording medium 6, the wavelength distribution of the reflectance of the thin film portion 20 at room temperature is
l min< λ τ< λ maxとなるように、再生層 21の膜厚を適切な範囲に設定することが 可能である。上記波長分布え min< λ τ< λ maxとなっている場合、再生層 21の屈 折率 nおよび消衰係数 kは、高温になった場合に、薄膜部 20の反射率の低下を増強 させるように働くため、ジッタを低減させることが可能である。すなわち、光情報記録 媒体 6は、安定した超解像再生を効率的に行うことが可能となる。  It is possible to set the thickness of the reproducing layer 21 in an appropriate range so that l min <λ τ <λ max. When the wavelength distribution is min <λ τ <λ max, the refractive index n and the extinction coefficient k of the reproducing layer 21 enhance the decrease in the reflectance of the thin film portion 20 when the temperature becomes high. Therefore, it is possible to reduce jitter. That is, the optical information recording medium 6 can efficiently perform stable super-resolution reproduction.
[0129] また、光情報記録媒体 6の薄膜部 20は、光情報記録媒体 1および 2と同様、再生層  Further, the thin film portion 20 of the optical information recording medium 6 is similar to the optical information recording media 1 and 2 in the reproducing layer.
21と光吸収層 22とに分離形成されている。これにより、薄膜部 20内において役割が 分担されているため、再生耐久性を向上させることが可能となる。加えて、光情報記 録媒体 6では、基板 30を通して光読み出しを行うため、該基板 30の再生光入射面に 傷がついた場合であっても、読み取り誤りが生じにくい。  21 and the light absorption layer 22 are formed separately. Thereby, since the role is shared in the thin film portion 20, it is possible to improve the reproduction durability. In addition, since the optical information recording medium 6 performs optical reading through the substrate 30, even if the reproduction light incident surface of the substrate 30 is damaged, reading errors are unlikely to occur.
[0130] 従って、本実施形態に係る光情報記録媒体は、再生光が入射される側に基板が位 置するため、該基板が保護膜として機能し、別途、保護膜等を設ける必要がない。従 つて、保護膜等が別途設けられている光情報記録媒体に比べ、安価な光情報記録 媒体を提供することが可能となる。加えて、基板を通して光読み出しを行うため、再生 光の入射側である基板上に傷がついた場合であっても、読み取り誤りを防ぐことが可 能となる。 Accordingly, in the optical information recording medium according to the present embodiment, since the substrate is positioned on the side where the reproduction light is incident, the substrate functions as a protective film, and it is not necessary to separately provide a protective film or the like. . Therefore, optical information recording is cheaper than optical information recording media with a protective film or the like provided separately. A medium can be provided. In addition, since optical readout is performed through the substrate, it is possible to prevent reading errors even when the substrate on the reproduction light incident side is damaged.
[0131] なお、光情報記録媒体 1、 2および 6は、再生専用基板から構成した再生専用光情 報記録媒体であってもよレ、し、情報の記録ができる記録膜を有した情報記録可能な 光情報記録媒体であってもよ!/、。  [0131] The optical information recording media 1, 2 and 6 may be read-only optical information recording media composed of a read-only substrate, and information recording having a recording film on which information can be recorded. It can be an optical information recording medium! /.
[0132] 具体的には、光情報記録媒体 1、 2および 6は、 CD -ROM(Compact Disk Read O nly Memory)、 し D— R (し ompact Disk Recordable八 CD— RAV (し ompact Disk Rewrita ble)、 DVD— ROM(Digital Versatile Disk Read Only Memory), DVD -RW(Digital Versatile Disk Rewritable), BD (Blu-ray Disc)、 BD— ROM等の光学読取式のディ スク、光磁気ディスク、相変化型ディスク等の光ディスクを適応できるものである。また 、本発明は、記録の方式、および、光情報記録媒体の大きさに限定されるものではな い。  [0132] Specifically, the optical information recording media 1, 2 and 6 are CD-ROM (Compact Disk Read Only Memory), D—R (and ompact Disk Recordable 8 CD—RAV (and ompact Disk Rewrita ble). ), DVD—ROM (Digital Versatile Disk Read Only Memory), DVD-RW (Digital Versatile Disk Rewritable), BD (Blu-ray Disc), BD—ROM, etc. Optically readable disc, magneto-optical disc, phase change The present invention can be applied to an optical disc such as a type disc, etc. The present invention is not limited to the recording method and the size of the optical information recording medium.
[0133] 以上のように、本発明の係る第 1の光情報記録媒体は、上記課題を解決するため、 再生光の入射側より、透光層と、光学多重干渉の状態の変化に基づいて反射率が 変化する薄膜部と、記録情報に対応し、凸および/または凹からなるランダムパター ン方式により情報が記録された基板とが順に積層された光情報記録媒体であって、 上記薄膜部は、再生光の入射側より順に、温度が上昇することによって、再生光の波 長における光学定数である、屈折率および消衰係数を変化させることに伴って、光学 多重干渉の状態を変化させる再生層と、入射される再生光の一部を吸収して熱に変 換することにより、上記再生層の温度を上昇させる光吸収層とを有し、上記薄膜部の 室温時における反射率の波長分布において、隣り合う極小値および極大値となる波 長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたとき、 λ πήη< λ r< λ maxの関係が成立する。  [0133] As described above, the first optical information recording medium according to the present invention is based on the change in the state of the light-transmitting layer and the optical multiple interference from the incident side of the reproduction light in order to solve the above problem. An optical information recording medium in which a thin film portion having a change in reflectance and a substrate on which information is recorded by a random pattern method corresponding to recording information and having a convex pattern and / or a concave pattern are sequentially stacked. Changes the state of optical multiple interference by changing the refractive index and extinction coefficient, which are the optical constants in the wavelength of the reproduction light, by increasing the temperature in order from the incident side of the reproduction light. And a light absorption layer that raises the temperature of the reproduction layer by absorbing a part of the incident reproduction light and converting it into heat, and has a reflectance of the thin film portion at room temperature. In the wavelength distribution, adjacent local minima and Wavelength to be Daine respectively, and min Oyobie max, when the e r the wavelength of the reproduction light, the relationship of λ πήη <λ r <λ max is satisfied.
[0134] 従来力 ある超解像技術を利用し作製された光回折限界以下の長さの記録マーク を含む、ランダムパターン方式の光情報記録媒体では、 C/Nが向上した場合であ つても、ジッタが低減するとは限らない。このため、ジッタを低減させることは、安定し た超解像再生を行う上で重要である。 [0135] 上記構成によれば、再生光が入射される側から透光層と、薄膜部と、基板とが順に 積層されており、該薄膜部の室温時における反射率の波長分布において、隣り合う 極小値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波 長をえ rとしたとき、 min< λ τ< λ maxの関係が成立するように、該薄膜部が形成 されている。 [0134] In a random pattern type optical information recording medium including a recording mark with a length less than or equal to the optical diffraction limit produced using a conventional super-resolution technology, even when C / N is improved. Jitter is not always reduced. Therefore, reducing jitter is important for stable super-resolution reproduction. [0135] According to the above configuration, the translucent layer, the thin film portion, and the substrate are laminated in this order from the side on which the reproduction light is incident, and adjacent to each other in the reflectance wavelength distribution of the thin film portion at room temperature. The thin film portion is formed so that the relationship of min <λ τ <λ max is established, where the minimum and maximum wavelengths to be matched are min and max, respectively, and the wavelength of the reproduction light is r. Has been.
[0136] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数が増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、る  In this case, the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1). Furthermore, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
[0137] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。 [0137] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, thereby effectively reducing jitter. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0138] また、薄膜部の反射率の波長分布は、該薄膜部の膜厚に依存する。このため、薄 膜部の室温における反射率の波長分布において、 max≤ λ ΐ≤ minの関係が 成立するように、再生層の膜厚を設定することによって、該薄膜部を形成することも可 能である。この場合、薄膜部を構成する再生層の高温時における屈折率 nは、室温 時におけるそれと比較して増加する。これに伴い、薄膜部の高温時における反射率 の波長分布は、室温時のそれと比べ、長波長側にシフトする(図 5参照)。すなわち、 λ maxが再生光の波長 λ rに近づくので、再生光の波長 λ rにおける薄膜部の反射 率は、高温になると増加することとなる。し力もながら、このとき、再生層の消衰係数 k は増加するため、再生層の透過率は減少する。結果として、再生層の消衰係数 kは、 薄膜部の反射率を低下させるように働く。このように、屈折率 nおよび消衰係数 kそれ ぞれの変化が、薄膜部の反射率変化を増強させることはない。従って、薄膜部は、本 発明に係る構成からなることが好まし!/、。 [0138] The wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion. For this reason, it is possible to form the thin film portion by setting the film thickness of the reproducing layer so that the relationship of max≤λλ≤min is established in the wavelength distribution of the reflectance of the thin film portion at room temperature. Noh. In this case, the refractive index n at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of reflectance at high temperatures in the thin film part shifts to the longer wavelength side compared to that at room temperature (see Fig. 5). That is, since λ max approaches the wavelength λ r of the reproduction light, the reflectance of the thin film portion at the wavelength λ r of the reproduction light increases at a high temperature. However, at this time, the extinction coefficient k of the reproducing layer Increases, so the transmittance of the playback layer decreases. As a result, the extinction coefficient k of the reproducing layer works to reduce the reflectivity of the thin film portion. Thus, changes in the refractive index n and the extinction coefficient k do not enhance the reflectance change of the thin film portion. Therefore, it is preferable that the thin film portion has the structure according to the present invention!
[0139] さらに、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。 [0139] Furthermore, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0140] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。  [0140] Furthermore, according to the above configuration, in the thin film portion, the reproducing layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproducing layer are separately formed. Therefore, it is possible to improve the reproduction durability.
[0141] 本発明に係る第 2の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、記録情報に対応して、凸および/または凹からなるランダムパターン方式に より情報が記録された基板と、光学多重干渉の状態の変化に基づいて反射率が変 化する薄膜部とが積層された光情報記録媒体であって、上記薄膜部は、再生光の入 射側より順に、温度が上昇することによって、再生光の波長における光学定数である 、屈折率および消衰係数を変化させることに伴って、光学多重干渉の状態を変化さ せる再生層と、入射される再生光の一部を吸収して熱に変換することにより、上記再 生層の温度を上昇させる光吸収層とを有し、上記薄膜部の室温時における反射率の 波長分布において、隣り合う極小値および極大値となる波長をそれぞれ、 minおよ びえ maxとし、再生光の波長をえ rとしたとき、 min< λ τ< λ maxの関係が成立す  [0141] In order to solve the above-described problem, the second optical information recording medium according to the present invention uses the random pattern method of convex and / or concave corresponding to the recording information from the incident side of the reproduction light. Is an optical information recording medium in which a thin film portion whose reflectivity changes based on a change in the state of optical multiple interference is laminated, and the thin film portion is from the incident side of the reproduction light. In turn, as the temperature rises, the optical constant at the wavelength of the reproduction light, which changes the refractive index and extinction coefficient, changes the state of optical multiple interference, and the incident reproduction A light absorption layer that raises the temperature of the regeneration layer by absorbing part of the light and converting it into heat, and the adjacent local minimum value in the wavelength distribution of the reflectance of the thin film portion at room temperature And the maximum wavelength And min Oyo Bie max, when the e r the wavelength of the reproduction light, to establish the relationship min <λ τ <λ max
[0142] 上記構成によれば、再生光が入射される側から基板と、薄膜部とが順に積層されて おり、薄膜部の室温時における反射率の波長分布において、隣り合う極小値および 極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたと き、 min< λ τ< λ maxの関係が成立するように、薄膜部が形成されている。 [0142] According to the above configuration, the substrate and the thin film portion are sequentially laminated from the side on which the reproduction light is incident, and the adjacent local minimum value and local maximum value in the wavelength distribution of the reflectance of the thin film portion at room temperature. The thin film portion is formed so that the relationship of min <λ τ <λ max is established, where min and e max are the wavelengths to be obtained, and r is the wavelength of the reproduction light.
[0143] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数が増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、る In this case, the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. Thin film part at room temperature In the wavelength distribution of the reflectance, when the adjacent minimum and maximum wavelengths are min and max, respectively, λ min approaches the wavelength r of the reproduction light, so the wavelength of the reproduction light The reflectivity of the thin film portion at r decreases at higher temperatures (see FIG. 1). Furthermore, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
[0144] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。 [0144] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0145] また、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。  [0145] Further, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0146] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。  [0146] Further, according to the above configuration, in the thin film portion, the reproduction layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability.
[0147] 上記した本発明の第 1、第 2の光情報記録媒体においては、上記光吸収層は、 Siも しくは Ge、または、どちらかを主成分とした混合物からなることが好ましい。これによれ ば、再生層の温度を効果的に上昇させるとともに、有機色素、半導体、半金属等より も安価で、相変化材料より管理が容易であるため、安価な光情報記録媒体を提供す ること力 Sでさる。  [0147] In the first and second optical information recording media of the present invention described above, the light absorption layer is preferably made of Si or Ge, or a mixture containing either of them as a main component. According to this, the temperature of the reproducing layer is effectively increased, and it is cheaper than organic dyes, semiconductors, metalloids, etc., and is easier to manage than phase change materials, and thus provides an inexpensive optical information recording medium. The power S
[0148] 上記した本発明の第 1、第 2の光情報記録媒体においては、上記再生層は、金属 酸化物、または、該金属酸化物を主成分とした混合物からなることが好ましい。これ によれば、金属酸化物は、化学的に安定であるため、再生光の入射に伴う破壊を受 けにくい。このため、光情報記録媒体の再生耐久性の向上を図ることが可能となる。 また、金属酸化物は、還元処理により金属として回収が可能であるため、光情報記録 媒体のリサイクル効率を向上させることが可能となる。 In the first and second optical information recording media of the present invention described above, the reproducing layer is preferably made of a metal oxide or a mixture containing the metal oxide as a main component. According to this, since the metal oxide is chemically stable, the metal oxide is not easily damaged by the incident reproduction light. For this reason, it becomes possible to improve the reproduction durability of the optical information recording medium. In addition, since metal oxides can be recovered as metals by reduction treatment, optical information recording It becomes possible to improve the recycling efficiency of the medium.
[0149] 上記した本発明の第 1、第 2の光情報記録媒体においては、上記金属酸化物は、 酸化亜鉛、または該酸化亜鉛を主成分とした混合物であることが好ましい。これによ れば、酸化亜鉛は、金属酸化物の中でも、特に化学的に安定した物質であるため、 再生光が入射されることによって融解することがない。このため、酸化亜鉛は、薄膜 部に他の金属酸化物を使用した場合よりも、再生光の入射に伴う破壊を受けにく!/、。 このため、光情報記録媒体の再生耐久性をさらに向上させることが可能となる。また、 酸化亜鉛は、金属酸化物の中でも安価であり、環境に負荷が少ない物質である。そ のため、生産コストが抑えられ、環境調和型の光情報記録媒体を提供することができ [0149] In the first and second optical information recording media of the present invention, the metal oxide is preferably zinc oxide or a mixture containing zinc oxide as a main component. According to this, since zinc oxide is a particularly chemically stable substance among metal oxides, it is not melted by the incidence of reproduction light. For this reason, zinc oxide is less susceptible to destruction due to the incidence of reproduction light than when other metal oxides are used for the thin film! For this reason, it becomes possible to further improve the reproduction durability of the optical information recording medium. In addition, zinc oxide is a low-cost metal oxide and has a low environmental impact. As a result, production costs can be reduced, and an environment-friendly optical information recording medium can be provided.
[0150] 本発明に係る第 3の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、透光層と、金属酸化物、または該金属酸化物を主成分とした混合物からなる 金属酸化物層と、 Siもしくは Ge、またはどちら力、を主成分とした混合物からなる薄膜 層と、記録情報に応じた、凸および/または凹からなるランダムパターン方式により情 報が記録された基板とが順に積層された光情報記録媒体であって、上記金属酸化 物層および薄膜層からなる薄膜部の室温時における反射率の波長分布において、 隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生 光の波長をえ rとしたとき、 minく λ τ< λ maxの関係が成立する。 [0150] In order to solve the above problems, the third optical information recording medium according to the present invention has a translucent layer, a metal oxide, or a mixture containing the metal oxide as main components from the incident side of the reproduction light. The information is recorded by a metal oxide layer made of Si, Ge, or a thin film layer made of a mixture mainly composed of Si, Ge, or which force, and a random pattern method of convex and / or concave according to the recorded information. The optical information recording medium in which the substrate is laminated in order, and the wavelength distribution of the reflectance at the room temperature of the thin film portion composed of the metal oxide layer and the thin film layer, the wavelength having the adjacent minimum value and the maximum value is determined. When min and e max are set, and the wavelength of the reproduction light is r, the relationship of min λ τ <λ max is established.
[0151] 上記構成によれば、光情報記録媒体は、主に金属酸化物からなる金属酸化物層と 、 Siもしくは Ge、またはどちら力、を主成分とした混合物からなる薄膜層を有しており、 上記金属酸化物層および薄膜層によって薄膜部が構成されている。  [0151] According to the above configuration, the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si, Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer.
[0152] また、薄膜部の室温時における反射率の波長分布において、隣り合う極小値およ び極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとし たとき、 l min< λ ΐ< λ maxの関係が成立するように、薄膜部が形成されている。  [0152] Further, in the wavelength distribution of the reflectance of the thin film portion at room temperature, when the adjacent local minimum and local maximum wavelengths are min and max, respectively, and the reproduction light wavelength is r, The thin film portion is formed so that the relationship of l min <λΐ <λ max is established.
[0153] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数は増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、るIn this case, the refractive index at the high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of the reflectance of the thin film at room temperature! /, And the adjacent local minimum and local maximum wavelengths, When min and e max are set, λ min approaches the wavelength r of the reproduction light, so the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases as the temperature rises (see FIG. 1). Further, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
Yes
[0154] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。  [0154] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectance of the thin film portion, and the change in reflectance is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0155] また、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。  [0155] Further, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0156] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。  [0156] Further, according to the above configuration, in the thin film portion, the reproduction layer that changes the state of optical multiple interference due to the temperature rise and the light absorption layer that raises the temperature of the reproduction layer are separately formed. Therefore, it is possible to improve the reproduction durability.
[0157] 本発明に係る第 4の光情報記録媒体は、上記課題を解決するため、再生光の入射 側より、記録情報に応じた、凸および/または凹からなるランダムパターン方式により 情報が記録された基板と、金属酸化物、または該金属酸化物を主成分とした混合物 力、らなる金属酸化物層と、 Siもしくは Ge、またはどちらかを主成分とした混合物からな る薄膜層とが順に積層された光情報記録媒体であって、上記金属酸化物層および 薄膜層からなる薄膜部の室温時における反射率の波長分布において、隣り合う極小 値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長を rとしたとき、 min< λ τ< λ maxの関係が成立する。  In the fourth optical information recording medium according to the present invention, in order to solve the above-mentioned problem, information is recorded from the incident side of the reproduction light by a random pattern method composed of convex and / or concave according to the recorded information. And a metal oxide, or a metal oxide layer composed of the metal oxide as a main component, and a thin film layer composed of Si or Ge, or a mixture based on either of them. In the optical information recording medium laminated in order, in the wavelength distribution of the reflectance at room temperature of the thin film portion composed of the metal oxide layer and the thin film layer, adjacent minimum and maximum wavelengths are set to min and When max is set and r is the wavelength of the reproduction light, the relationship min <λ τ <λ max is established.
[0158] 上記構成によれば、光情報記録媒体は、主に金属酸化物からなる金属酸化物層と 、 Siもしくは Ge、またはどちら力、を主成分とした混合物からなる薄膜層を有しており、 上記金属酸化物層および薄膜層によって薄膜部が構成されている。 [0159] また、薄膜部の室温時における反射率の波長分布において、隣り合う極小値およ び極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとし たとき、 l min< λ τ< λ maxの関係が成立するように、薄膜部が形成されている。 [0158] According to the above configuration, the optical information recording medium has a metal oxide layer mainly made of a metal oxide and a thin film layer made of a mixture mainly composed of Si or Ge, or which force. And the thin film part is comprised by the said metal oxide layer and thin film layer. [0159] Further, in the wavelength distribution of the reflectance of the thin film portion at room temperature, when the adjacent local minimum and local maximum wavelengths are min and max, respectively, and the reproduction light wavelength is r, The thin film portion is formed so that the relationship of l min <λ τ <λ max is established.
[0160] この場合、薄膜部を構成する再生層の高温時における屈折率は、室温時における それと比較して増加する。これに伴い、薄膜部の高温時における反射率の波長分布 は、室温時のそれと比べ、同様に長波長側にシフトする。薄膜部の室温時における 反射率の波長分布にお!/、て、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとするとき、 λ minが再生光の波長え rに近づくので、再生光の 波長え rにおける該薄膜部の反射率は、高温になると低下する(図 1参照)。さらに、 再生層の消衰係数は増加することに伴い、該再生層の透過率は減少する。結果とし て、再生層の消衰係数は、薄膜部の反射率を低下させるように働く。このように、屈折 率および消衰係数それぞれの変化が、共に薄膜部の反射率低下を増強させてレ、る  [0160] In this case, the refractive index at a high temperature of the reproducing layer constituting the thin film portion increases as compared with that at room temperature. Along with this, the wavelength distribution of the reflectance of the thin film portion at high temperature shifts to the longer wavelength side in the same manner as that at room temperature. The wavelength distribution of reflectance at room temperature of the thin film part is! /, Where the minimum and maximum adjacent wavelengths are min and max, respectively. Therefore, the reflectivity of the thin film portion at the wavelength r of the reproduction light decreases at a high temperature (see Fig. 1). Further, as the extinction coefficient of the reproducing layer increases, the transmittance of the reproducing layer decreases. As a result, the extinction coefficient of the reproducing layer works to reduce the reflectivity of the thin film portion. In this way, each change in refractive index and extinction coefficient enhances the decrease in reflectivity of the thin film portion.
[0161] 従って、再生光の光スポットの高温領域において、屈折率および消衰係数は共に 薄膜部の反射率を低下させるように働き、反射率変化が増強されるため、効率的に ジッタの低減を図ることが可能となると考えられる。すなわち、再生系における読み出 し誤りが生じに《なり、安定した超解像再生を効率的に行うことができ、光情報記録 媒体の再生感度を向上させることが可能となる。 [0161] Therefore, in the high temperature region of the light spot of the reproduction light, both the refractive index and the extinction coefficient work to lower the reflectivity of the thin film portion, and the change in reflectivity is enhanced, so that the jitter is efficiently reduced. It will be possible to achieve this. That is, read errors occur in the reproduction system, and stable super-resolution reproduction can be performed efficiently, and the reproduction sensitivity of the optical information recording medium can be improved.
[0162] また、薄膜部の反射率の波長分布が薄膜部の膜厚に依存するため、光情報記録 媒体の反射率制御を容易に行うことができ、該光情報記録媒体の生産コストを減少さ せること力 S可倉 となる。  [0162] Further, since the wavelength distribution of the reflectance of the thin film portion depends on the film thickness of the thin film portion, the reflectance control of the optical information recording medium can be easily performed, and the production cost of the optical information recording medium is reduced. The power to make it becomes S Kanakura.
[0163] さらに、上記構成によれば、薄膜部において、温度上昇によって、光学多重干渉の 状態を変化させる再生層と、再生層の温度を上昇させる光吸収層とが、分離形成さ れているため、再生耐久性を向上させることが可能となる。  [0163] Furthermore, according to the above configuration, in the thin film portion, the reproducing layer that changes the state of optical multiple interference due to a temperature rise and the light absorption layer that raises the temperature of the reproducing layer are separately formed. Therefore, it is possible to improve the reproduction durability.
[0164] 上記した本発明の第 3、第 4の光情報記録媒体においては、上記金属酸化物層は 、酸化亜鉛、または該酸化亜鉛を主成分とした混合物からなることが好ましい。これ によれば、酸化亜鉛は、金属酸化物の中でも、特に化学的に安定した物質であるた め、再生光が入射されることによって融解することがない。このため、酸化亜鉛は、薄 膜部に他の金属酸化物を使用した場合よりも、再生光の入射に伴う破壊を受けにく い。このため、光情報記録媒体の再生耐久性をさらに向上させることが可能となる。ま た、酸化亜鉛は、金属酸化物の中でも安価であり、環境に負荷が少ない物質である 。そのため、生産コストが抑えられ、環境調和型の光情報記録媒体を提供することが できる。 In the third and fourth optical information recording media of the present invention described above, the metal oxide layer is preferably made of zinc oxide or a mixture containing zinc oxide as a main component. According to this, since zinc oxide is a particularly chemically stable substance among metal oxides, it does not melt when incident on the reproduction light. For this reason, zinc oxide is thin. It is less susceptible to damage due to the incidence of reproduction light than when other metal oxides are used for the film part. For this reason, it becomes possible to further improve the reproduction durability of the optical information recording medium. In addition, zinc oxide is an inexpensive metal oxide that has a low environmental impact. Therefore, the production cost can be reduced, and an environmentally conscious optical information recording medium can be provided.
[0165] 上記再生層の膜厚は、 80nm以上 120nm未満であることが好ましい。再生層の膜 厚が 80nm未満の場合、光学多重干渉の効果を充分に得ることができな!/、と考えら れ、安定した超解像再生を行うことができない虞がある。また、再生層の膜厚が 120η m以上の場合、薄膜部の反射率の波長依存性において、極小値となる波長が 400η m付近となるような、再生層の膜厚が存在する。この場合、例えば、 Blu— ray光学系 において光情報記録媒体を再生するときに、再生層は、反射光を充分に得ることが できない虞がある。このため、フォーカスカ Sかかりに《なると考えられる。また、再生 層の膜厚がさらに増加すると、薄膜部の反射率は、光情報記録媒体を再生するとき に、光吸収層から供給される熱が十分ではなくなるため、再生感度が低下すると考え られる。  [0165] The thickness of the reproducing layer is preferably 80 nm or more and less than 120 nm. If the thickness of the reproducing layer is less than 80 nm, it is considered that the effect of optical multiple interference cannot be obtained sufficiently! / And there is a possibility that stable super-resolution reproduction cannot be performed. In addition, when the thickness of the reproducing layer is 120 ηm or more, there is a thickness of the reproducing layer such that the minimum wavelength is around 400 ηm in the wavelength dependence of the reflectance of the thin film portion. In this case, for example, when reproducing an optical information recording medium in a Blu-ray optical system, there is a possibility that the reproducing layer cannot sufficiently obtain reflected light. For this reason, it is considered that the focus force S will be applied. Further, when the thickness of the reproducing layer is further increased, the reflectance of the thin film portion is considered to decrease the reproducing sensitivity because the heat supplied from the light absorbing layer is not sufficient when reproducing the optical information recording medium. .
[0166] 上記構成によれば、上記問題点を回避することができるため、確実に min< λ τ < λ maxの関係が成立するように、光情報記録媒体を設計することができるため、効 率的なジッタの低減を図ることが可能となる。すなわち、安定した超解像再生を効率 的に行うことが可能となる。  [0166] According to the above configuration, since the above problem can be avoided, the optical information recording medium can be designed so that the relationship of min <λ τ <λ max is surely established. It becomes possible to reduce the jitter efficiently. In other words, stable super-resolution reproduction can be performed efficiently.
[0167] 加えて、再生層の膜厚を上記 80nm以上 120nm未満とすることによって、ジッタの 低減が図れ、かつ必要な再生光レーザパワーの消費電力を削減することができる。こ れにより、ドライブの低電力化、再生光部素子の劣化を防ぐことが可能となり、再生光 レーザの照射による光情報記録媒体の劣化を防ぐことができる。  In addition, by setting the film thickness of the reproducing layer to 80 nm or more and less than 120 nm, jitter can be reduced, and the necessary power consumption of the reproducing light laser power can be reduced. As a result, it is possible to reduce the power consumption of the drive and to prevent deterioration of the reproducing optical element, and to prevent deterioration of the optical information recording medium due to irradiation of the reproducing light laser.
[0168] 上記光吸収層の膜厚は、 5nm以上 500nm以下であることが好ましい。 5nm未満 の膜厚では、該膜厚が薄すぎるために、再生耐久性が確保できないと考えられる。ま た、光吸収層の膜厚を 500nmより厚くすると、例えば、マグネトロンスパッタ法で光吸 収層を形成する場合、スパッタによって蒸発した光吸収層を形成する原子は、基板 上に対して、完全に垂直に入射するとは限らない。このため、基板上の凹凸形状のピ ットを正確に反映することが困難となる。従って、光吸収層の膜厚を 5nm以上 500η m以下とすることにより、再生耐久性を向上させることができるとともに、凹凸形状のピ ットを正確に反映することが可能となる。また、上記構成により、効率的にジッタが低 減され、安定した再生ができるようになる。 [0168] The thickness of the light absorption layer is preferably 5 nm or more and 500 nm or less. If the film thickness is less than 5 nm, it is considered that the reproduction durability cannot be ensured because the film thickness is too thin. In addition, when the thickness of the light absorption layer is made thicker than 500 nm, for example, when the light absorption layer is formed by the magnetron sputtering method, the atoms forming the light absorption layer evaporated by sputtering are completely on the substrate. It is not always perpendicular to the light. For this reason, the uneven pin on the substrate It is difficult to accurately reflect the network. Therefore, by setting the thickness of the light absorption layer to 5 nm or more and 500 ηm or less, it is possible to improve the reproduction durability and accurately reflect the uneven shape of the pit. Also, with the above configuration, jitter can be efficiently reduced and stable reproduction can be achieved.
[0169] 上記光吸収層の膜厚が 50nm以上 500nm以下であることが好ましい。光吸収層の 膜厚が増加するとともに、ジッタが低減される力 S、該光吸収層の膜厚が 50nmより増 加すると、ジッタ低減がほぼ同程度となる。従って、光吸収層の膜厚を 50nm以上に 設定することにより、ジッタを確実に低減させることが可能となる。  [0169] The thickness of the light absorption layer is preferably 50 nm or more and 500 nm or less. As the film thickness of the light absorption layer increases, the jitter S is reduced, and when the film thickness of the light absorption layer is increased from 50 nm, the jitter reduction becomes approximately the same. Therefore, it is possible to reliably reduce jitter by setting the film thickness of the light absorption layer to 50 nm or more.
[0170] なお、本願の光情報記録媒体は再生専用基板から構成した再生専用光情報記録 媒体であってもよレ、し、情報の記録ができる記録膜を有した情報記録可能な光情報 記録媒体であってもよい。  [0170] The optical information recording medium of the present application may be a reproduction-only optical information recording medium composed of a reproduction-only substrate, and an information-recordable optical information recording having a recording film capable of recording information is possible. It may be a medium.
[0171] 本発明に係る光情報記録媒体は、以上のように、光学多重干渉の状態の変化に基 づいて反射率が変化する薄膜部を有し、上記薄膜部は、再生光の入射側より順に、 温度が上昇することによって、再生光の波長における光学定数である、屈折率およ び消衰係数を変化させることに伴って、光学多重干渉の状態を変化させる再生層と、 入射される再生光の一部を吸収して熱に変換し、上記再生層の温度を上昇させる光 吸収層とを有している。  [0171] As described above, the optical information recording medium according to the present invention has a thin film portion whose reflectance changes based on a change in the state of optical multiple interference, and the thin film portion is on the incident side of the reproduction light. More sequentially, as the temperature rises, a reproducing layer that changes the state of optical multiple interference as the refractive index and extinction coefficient, which are optical constants at the wavelength of the reproduced light, are changed. A light absorbing layer that absorbs a part of the reproduced light and converts it into heat to raise the temperature of the reproducing layer.
[0172] また、本発明に係る光情報記録媒体は、以上のように、金属酸化物、または該金属 酸化物を主成分とした混合物からなる金属酸化物層と、 Siもしくは Ge、またはどちら かを主成分とした混合物からなる薄膜層とを有し、上記金属酸化物および薄膜層か らなる薄膜部を有している。  [0172] Further, as described above, the optical information recording medium according to the present invention has a metal oxide or a metal oxide layer composed of a mixture containing the metal oxide as a main component, and Si or Ge, or either of them. And a thin film portion made of the metal oxide and the thin film layer.
[0173] 上記薄膜部の室温時における反射率の波長分布において、隣り合う極小値および 極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたと き、 min< λ τ< λ maxの関係が成立することで、記録情報に対応し、凸および/ または凹からなるランダムパターン方式により情報が記録された光情報記録媒体に おいても、効率的にジッタの低減され、安定した超解像再生を効率的に行うことが可 能となる。これにより、記録密度がより向上した光情報記録媒体を提供できるとういう 効果を奏する。 [0174] さらに、本発明に係る光情報記録媒体は、記録情報に対応し、凸および/または 凹からなるランダムパターンで情報が記録された基板上に順に、少なくとも、再生光 の一部を吸収して熱に変換する光吸収層と、該光吸収層の発熱により加熱され、再 生光波長における屈折率 nおよび消衰係数 kが増加し、かつ光学多重干渉を生じる 再生層と、さらに、透光層が積層され、該透光層表面から再生光が入射される光情 報記録媒体であって、該光吸収層と該再生層からなる薄膜部の室温における反射率 の波長分布において、隣り合う極小値、極大値となる波長をそれぞれ、 min、 I ma xとしたとき、再生光波長え rがえ minく λ τ< λ maxであるように設定されている。ま た、上記光吸収層が Sほたは Ge、または、どちらかを主成分とした混合物からなる。 さらに、上記再生層が主に金属酸化物からなり、金属酸化物層が主に酸化亜鉛から なる。 [0173] In the wavelength distribution of the reflectance of the thin film portion at room temperature, when the adjacent minimum and maximum wavelengths are min and max, respectively, and the wavelength of the reproduction light is r, min < Since the relationship of λ τ <λ max is established, jitter can be effectively reduced even in an optical information recording medium corresponding to recorded information and recorded information by a random pattern method consisting of convex and / or concave. Therefore, stable super-resolution reproduction can be performed efficiently. This produces an effect that an optical information recording medium with improved recording density can be provided. [0174] Furthermore, the optical information recording medium according to the present invention, corresponding to the recorded information, absorbs at least a part of the reproduced light in order on a substrate on which information is recorded in a random pattern consisting of convex and / or concave. A light-absorbing layer that is converted into heat, a reproducing layer that is heated by the heat generation of the light-absorbing layer, increases the refractive index n and extinction coefficient k at the wavelength of the regenerated light, and generates optical multiple interference; An optical information recording medium in which a light-transmitting layer is laminated and reproduction light is incident from the surface of the light-transmitting layer, and in the wavelength distribution of reflectance at room temperature of a thin film portion composed of the light-absorbing layer and the reproduction layer, When the adjacent minimum and maximum wavelengths are set to min and I max, the reproduction light wavelength r is set to be min λ τ <λ max. The light absorption layer is made of S, Ge, or a mixture containing either of them as a main component. Further, the reproduction layer is mainly made of a metal oxide, and the metal oxide layer is mainly made of zinc oxide.
[0175] また、記録情報に応じた凸および/または凹からなるランダムパターンで情報が記 録された基板上に順に、光学多重干渉が生じ、かつ温度上昇により再生光波長にお ける屈折率 nおよび消衰係数 kが増加する再生層と、再生光の一部を吸収して熱に 変換し、該再生層に熱を供給する光吸収層が積層され、基板表面から再生光が入 射される光情報記録媒体であって、該再生層と該光吸収層からなる薄膜部の室温に おける反射率の波長分布において、隣り合う極小値、極大値となる波長をそれぞれ、 /L min, λ maxとしたとき、冉生光 Ϊ皮; ¾ λ rか L min< λ τ< λ maxであるよつにであ るように設定されている。また、上記光吸収層が Siまたは Ge、または、どちらかを主成 分とした混合物からなる。さらに、上記再生層が主に金属酸化物からなる。さらに、上 記金属酸化物層が主に酸化亜鉛からなる。  [0175] In addition, optical multiple interference occurs sequentially on a substrate on which information is recorded in a random pattern consisting of convex and / or concave according to the recorded information, and the refractive index n at the reproduction light wavelength due to temperature rise. And a reproducing layer in which the extinction coefficient k increases and a light absorbing layer that absorbs part of the reproduced light and converts it into heat and supplies heat to the reproduced layer, and the reproduced light is incident from the substrate surface. In the wavelength distribution of the reflectance at room temperature of the thin film portion composed of the reproducing layer and the light absorbing layer, adjacent minimum and maximum wavelengths are represented by / L min and λ, respectively. When max is set, it is set so that 光 生 光 Ϊ 皮; ¾ λ r or L min <λ τ <λ max. Further, the light absorption layer is made of Si, Ge, or a mixture containing either of them as a main component. Furthermore, the reproduction layer is mainly made of a metal oxide. Further, the metal oxide layer is mainly composed of zinc oxide.
[0176] また、記録情報に応じた凸および/または凹からなるランダムパターンで情報が記 録された基板上に順に、少なくとも、 Sほたは Ge、または、どちらかを主成分とした混 合物からなる薄膜層と、主に金属酸化物からなる金属酸化物層と、さらに、透光層が 積層され、該透光層表面から再生光が入射される光情報記録媒体であって、該薄膜 層と該金属酸化物層からなる薄膜部の室温における反射率の波長分布において、 隣り合う極小値、極大値となる波長をそれぞれ、 min、 λ maxとしたとき、再生光波 長え rがえ minく λ τ< λ maxであるように設定されている。また、上記金属酸化物層 が主に酸化亜鉛からなる。 [0176] In addition, at least S or Ge, or a mixture containing either of them as a main component in order on a substrate on which information is recorded in a random pattern of convex and / or concave according to the recorded information. An optical information recording medium in which a thin film layer made of a material, a metal oxide layer mainly made of a metal oxide, and a light-transmitting layer are laminated, and reproduction light is incident from the surface of the light-transmitting layer, In the wavelength distribution of the reflectance at room temperature of the thin film layer and the thin film portion made of the metal oxide layer, when the adjacent minimum and maximum wavelengths are min and λ max, respectively, the reproduction light wave length r is obtained. Min is set so that λ τ <λ max. Also, the metal oxide layer Is mainly composed of zinc oxide.
[0177] また、記録情報に応じた凸および/または凹からなるランダムパターンで情報が記 録された基板上に順に、主に金属酸化物からなる金属酸化物層と、 Sほたは Ge、ま たは、どちらかを主成分とした混合物からなる薄膜層が積層され、基板表面から再生 光が入射される光情報記録媒体であって、該金属酸化物層と該薄膜層からなる薄膜 部の室温における反射率の波長分布において、隣り合う極小値、極大値となる波長 をそれぞれ、 min、 maxとしたとき、再生光波長え rがえ min< r< maxであ るように設定されている。また、上記金属酸化物層が主に酸化亜鉛からなる。さらに、 上記再生層の膜厚が 80nm以上 120nm未満である。  [0177] In addition, on a substrate on which information is recorded in a random pattern composed of convex and / or concave according to the recorded information, a metal oxide layer mainly made of metal oxide, S or Ge, Alternatively, an optical information recording medium in which a thin film layer made of a mixture containing either of them as a main component is laminated and reproduction light is incident from the substrate surface, the thin film portion comprising the metal oxide layer and the thin film layer. In the wavelength distribution of reflectance at room temperature, when the adjacent minimum and maximum wavelengths are set to min and max, respectively, the reproduction light wavelength is set so that min <r <max. Yes. The metal oxide layer is mainly composed of zinc oxide. Furthermore, the thickness of the reproducing layer is 80 nm or more and less than 120 nm.
[0178] また、本発明に係る光情報記録媒体は、上記光吸収層の膜厚が 5nm以上 500nm 以下である。さらに、上記光吸収層の膜厚が 50nm以上 500nm以下である。  [0178] In the optical information recording medium according to the present invention, the thickness of the light absorption layer is 5 nm or more and 500 nm or less. Furthermore, the film thickness of the light absorption layer is 50 nm or more and 500 nm or less.
[0179] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にお!/、て、レ、ろ!/、ろと変更して実施することができるものである。  [0179] The specific embodiments or examples made in the detailed description section of the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Therefore, the present invention should not be interpreted in a narrow sense, and can be carried out with modifications within the spirit of the present invention and within the scope of the following claims! .
産業上の利用可能性  Industrial applicability
[0180] 本発明に係る光情報記録媒体は、予め情報が記録された、凹凸形状の記録面を 有する再生専用タイプにも、情報を記録することが可能な記録膜を有するタイプにも 適用することが可能である。 [0180] The optical information recording medium according to the present invention is applicable to both a read-only type having a concavo-convex recording surface on which information is recorded in advance and a type having a recording film capable of recording information. It is possible.

Claims

請求の範囲 The scope of the claims
[1] 再生光の入射側より、透光層と、光学多重干渉の状態の変化に基づいて反射率が 変化する薄膜部と、記録情報に対応し、凸および/または凹からなるランダムパター ン方式により情報が記録された基板とが順に積層された光情報記録媒体であって、 上記薄膜部は、再生光の入射側より順に、温度が上昇することによって、再生光の 波長における光学定数である、屈折率および消衰係数を変化させることに伴って、光 学多重干渉の状態を変化させる再生層と、  [1] From the incident side of the reproduction light, a translucent layer, a thin film portion whose reflectance changes based on a change in the state of optical multiple interference, and a random pattern consisting of convex and / or concave corresponding to recording information An optical information recording medium in which a substrate on which information is recorded by a method is sequentially laminated, and the thin film portion has an optical constant at a wavelength of the reproduction light as the temperature rises sequentially from the incident side of the reproduction light. A reproducing layer that changes the state of optical multiple interference with changing the refractive index and extinction coefficient;
入射される再生光の一部を吸収して熱に変換することにより、上記再生層の温度を 上昇させる光吸収層とを有し、  A light absorption layer that raises the temperature of the reproduction layer by absorbing a part of the incident reproduction light and converting it into heat,
上記薄膜部の室温時における反射率の波長分布にお!/、て、隣り合う極小値および 極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたと き、 min< λ τ< λ maxの関係が成立することを特徴とする光情報記録媒体。  In the wavelength distribution of the reflectance of the thin film portion at room temperature, when the adjacent minimum and maximum wavelengths are min and max, respectively, and the wavelength of the reproduction light is r, An optical information recording medium characterized in that a relationship of min <λ τ <λ max is established.
[2] 上記光吸収層は、 Siもしくは Ge、またはどちらかを主成分とした混合物からなること を特徴とする請求の範囲第 1項に記載の光情報記録媒体。  [2] The optical information recording medium according to [1], wherein the light absorption layer is made of Si or Ge, or a mixture containing either of them as a main component.
[3] 上記再生層は、金属酸化物、または該金属酸化物を主成分とした混合物からなる ことを特徴とする請求の範囲第 1項または第 2項に記載の光情報記録媒体。  [3] The optical information recording medium according to [1] or [2], wherein the reproduction layer is made of a metal oxide or a mixture containing the metal oxide as a main component.
[4] 上記金属酸化物は、酸化亜鉛であることを特徴とする請求の範囲第 3項に記載の 光情報記録媒体。  [4] The optical information recording medium according to claim 3, wherein the metal oxide is zinc oxide.
[5] 再生光の入射側より、記録情報に対応して、凸および/または凹からなるランダム ノ ターン方式により情報が記録された基板と、光学多重干渉の状態の変化に基づい て反射率が変化する薄膜部とが積層された光情報記録媒体であって、  [5] From the incident side of the reproduction light, the reflectance is based on the substrate on which the information is recorded by the random pattern of convex and / or concave corresponding to the recorded information and the change in the state of optical multiple interference. An optical information recording medium in which a changing thin film portion is laminated,
上記薄膜部は、再生光の入射側より順に、温度が上昇することによって、再生光の 波長における光学定数である、屈折率および消衰係数を変化させることに伴って、光 学多重干渉の状態を変化させる再生層と、  The thin film portion is in a state of optical multiple interference as the temperature rises in order from the incident side of the reproduction light and the refractive index and extinction coefficient, which are optical constants at the wavelength of the reproduction light, are changed. A playback layer that changes
入射される再生光の一部を吸収して熱に変換することにより、上記再生層の温度を 上昇させる光吸収層とを有し、  A light absorption layer that raises the temperature of the reproduction layer by absorbing a part of the incident reproduction light and converting it into heat,
上記薄膜部の室温時における反射率の波長分布にお!/、て、隣り合う極小値および 極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたと き、 min< λ ΐ< λ maxの関係が成立することを特徴とする光情報記録媒体。 In the wavelength distribution of the reflectance of the thin film portion at room temperature, the adjacent minimum and maximum wavelengths are min and max, respectively, and the reproduction light wavelength is r. An optical information recording medium wherein the relationship of min <λΐ <λmax is established.
[6] 上記光吸収層は、 Siもしくは Ge、またはどちらかを主成分とした混合物からなること を特徴とする請求の範囲第 5項に記載の光情報記録媒体。 6. The optical information recording medium according to claim 5, wherein the light absorption layer is made of Si or Ge, or a mixture containing either of them as a main component.
[7] 上記再生層は、金属酸化物、または該金属酸化物を主成分とした混合物からなる ことを特徴とする請求の範囲第 5項または第 6項に記載の光情報記録媒体。 7. The optical information recording medium according to claim 5 or 6, wherein the reproduction layer is made of a metal oxide or a mixture containing the metal oxide as a main component.
[8] 上記金属酸化物は、酸化亜鉛、または該酸化亜鉛を主成分とした混合物であるこ とを特徴とする請求の範囲第 7項に記載の光情報記録媒体。 8. The optical information recording medium according to claim 7, wherein the metal oxide is zinc oxide or a mixture containing zinc oxide as a main component.
[9] 再生光の入射側より、透光層と、金属酸化物、または該金属酸化物を主成分とした 混合物からなる金属酸化物層と、 Siもしくは Ge、またはどちらかを主成分とした混合 物からなる薄膜層と、記録情報に応じた、凸および/または凹からなるランダムバタ ーン方式により情報が記録された基板とが順に積層された光情報記録媒体であって 上記金属酸化物層および薄膜層からなる薄膜部の室温時における反射率の波長 分布において、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたとき、 minく λ τ< λ maxの関係が成立するこ とを特徴とする光情報記録媒体。 [9] From the incident side of the reproduction light, a translucent layer, a metal oxide or a metal oxide layer made of a mixture containing the metal oxide as a main component, and Si or Ge, or one of the main components An optical information recording medium in which a thin film layer made of a mixture and a substrate on which information is recorded by a random pattern method consisting of convexes and / or concaves according to the recorded information are sequentially laminated, the metal oxide In the wavelength distribution of reflectivity at room temperature of the thin film part consisting of a layer and a thin film layer, the minimum and maximum adjacent wavelengths are denoted as min and max, respectively, and the wavelength of the reproduction light is defined as r. An optical information recording medium characterized in that a relationship of λ τ <λ max is established.
[10] 上記金属酸化物層は、酸化亜鉛からなることを特徴とする請求の範囲第 9項に記 載の光情報記録媒体。 10. The optical information recording medium according to claim 9, wherein the metal oxide layer is made of zinc oxide.
[11] 再生光の入射側より、記録情報に応じた、凸および/または凹からなるランダムパ ターン方式により情報が記録された基板と、金属酸化物、または該金属酸化物を主 成分とした混合物からなる金属酸化物層と、 Siもしくは Ge、またはどちらかを主成分 とした混合物からなる薄膜層とが順に積層された光情報記録媒体であって、 上記金属酸化物層および薄膜層からなる薄膜部の室温時における反射率の波長 分布において、隣り合う極小値および極大値となる波長をそれぞれ、 minおよびえ maxとし、再生光の波長をえ rとしたとき、 minく λ τ< λ maxの関係が成立するこ とを特徴とする光情報記録媒体。  [11] A substrate on which information is recorded by a random pattern method of convex and / or concave according to recorded information from the incident side of the reproduction light, and a metal oxide or the metal oxide as a main component An optical information recording medium in which a metal oxide layer made of a mixture and a thin film layer made of a mixture containing Si or Ge as a main component are sequentially laminated. The optical information recording medium comprises the metal oxide layer and the thin film layer. In the wavelength distribution of the reflectance of the thin film at room temperature, when the adjacent local minimum and maximum wavelengths are min and max, respectively, and the wavelength of the reproduction light is r, min λ τ <λ max An optical information recording medium characterized by
[12] 上記金属酸化物層は、酸化亜鉛、または該酸化亜鉛を主成分とした混合物からな ることを特徴とする請求の範囲第 11項に記載の光情報記録媒体。 12. The optical information recording medium according to claim 11, wherein the metal oxide layer is made of zinc oxide or a mixture containing zinc oxide as a main component.
[13] 上記再生層の膜厚は、 80nm以上 120nm未満であることを特徴とする請求の範囲 第 1項〜第 12項の何れか 1項に記載の光情報記録媒体。 [13] The optical information recording medium according to any one of [1] to [12], wherein the thickness of the reproducing layer is not less than 80 nm and less than 120 nm.
[14] 上記光吸収層の膜厚は、 5nm以上 500nm以下であることを特徴とする請求の範 囲第 1項〜第 12項の何れか 1項に記載の光情報記録媒体。 [14] The optical information recording medium according to any one of [1] to [12], wherein the thickness of the light absorption layer is 5 nm or more and 500 nm or less.
[15] 上記光吸収層の膜厚が 50nm以上 500nm以下であることを特徴とする請求の範 囲第 1項〜第 12項の何れか 1項に記載の光情報記録媒体。 [15] The optical information recording medium according to any one of [1] to [12], wherein the thickness of the light absorption layer is from 50 nm to 500 nm.
PCT/JP2007/065356 2006-08-28 2007-08-06 Optical information recording medium WO2008026426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008532007A JP4597240B2 (en) 2006-08-28 2007-08-06 Optical information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-230999 2006-08-28
JP2006230999 2006-08-28

Publications (1)

Publication Number Publication Date
WO2008026426A1 true WO2008026426A1 (en) 2008-03-06

Family

ID=39135712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065356 WO2008026426A1 (en) 2006-08-28 2007-08-06 Optical information recording medium

Country Status (2)

Country Link
JP (1) JP4597240B2 (en)
WO (1) WO2008026426A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075268A1 (en) * 2002-03-05 2003-09-12 Sharp Kabushiki Kaisha Optical information recording medium
JP2006134519A (en) * 2004-11-08 2006-05-25 Sharp Corp Optical information recording medium and optical information reproduction apparatus
JP2006269040A (en) * 2005-02-28 2006-10-05 Sharp Corp Optical information storage medium and optical information storage medium reproducing apparatus
JP2006277918A (en) * 2005-03-03 2006-10-12 Sharp Corp Optical information recording medium, reproducing method using the same and optical information processing apparatus
JP2006302494A (en) * 2005-03-24 2006-11-02 Sharp Corp Optical information recording medium, and reproducing device for optical information recording medium
JP2007012146A (en) * 2005-06-29 2007-01-18 Sharp Corp Optical information recording medium and optical information processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075268A1 (en) * 2002-03-05 2003-09-12 Sharp Kabushiki Kaisha Optical information recording medium
JP2006134519A (en) * 2004-11-08 2006-05-25 Sharp Corp Optical information recording medium and optical information reproduction apparatus
JP2006269040A (en) * 2005-02-28 2006-10-05 Sharp Corp Optical information storage medium and optical information storage medium reproducing apparatus
JP2006277918A (en) * 2005-03-03 2006-10-12 Sharp Corp Optical information recording medium, reproducing method using the same and optical information processing apparatus
JP2006302494A (en) * 2005-03-24 2006-11-02 Sharp Corp Optical information recording medium, and reproducing device for optical information recording medium
JP2007012146A (en) * 2005-06-29 2007-01-18 Sharp Corp Optical information recording medium and optical information processing apparatus

Also Published As

Publication number Publication date
JP4597240B2 (en) 2010-12-15
JPWO2008026426A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP2001084643A (en) Optical disk medium
JP5422009B2 (en) Optical information recording medium
JP4298667B2 (en) Optical information recording medium, reproducing method using the same, and optical information processing apparatus
JP2005018964A (en) Optical information recording medium, reproducing method using the same, and optical information processing device
JP2005302275A (en) Optical information recording medium, recording and reproducing method, and recording and reproducing device
JP4837415B2 (en) Optical information recording medium and optical information recording medium reproducing apparatus
JP4209416B2 (en) Optical information recording medium and optical information recording medium reproducing apparatus
JP4252482B2 (en) Read-only multilayer optical information recording medium and manufacturing method thereof
JP4597240B2 (en) Optical information recording medium
JP4685166B2 (en) Optical information recording medium reproducing apparatus and optical information recording medium reproducing method
JPWO2007135827A1 (en) Optical information recording medium, optical information reproducing method, and optical information reproducing apparatus
JP2007141417A5 (en)
JP4339227B2 (en) Optical information recording medium and optical information reproducing apparatus
JP4372776B2 (en) Optical information recording medium and optical information recording medium reproducing apparatus
TW201140577A (en) Optical recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008532007

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792026

Country of ref document: EP

Kind code of ref document: A1