WO2008025234A1 - Special platform for generating electricity using solar energy - Google Patents
Special platform for generating electricity using solar energy Download PDFInfo
- Publication number
- WO2008025234A1 WO2008025234A1 PCT/CN2007/002478 CN2007002478W WO2008025234A1 WO 2008025234 A1 WO2008025234 A1 WO 2008025234A1 CN 2007002478 W CN2007002478 W CN 2007002478W WO 2008025234 A1 WO2008025234 A1 WO 2008025234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- platform
- water
- solar
- power generation
- tube
- Prior art date
Links
- 230000005611 electricity Effects 0.000 title abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 139
- 238000007667 floating Methods 0.000 claims abstract description 84
- 238000001816 cooling Methods 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 239000011521 glass Substances 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 238000010248 power generation Methods 0.000 claims description 61
- 238000012546 transfer Methods 0.000 claims description 33
- 238000009434 installation Methods 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 17
- 230000000903 blocking effect Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 9
- 230000001070 adhesive effect Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- 239000011152 fibreglass Substances 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 3
- 239000002826 coolant Substances 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 241000237858 Gastropoda Species 0.000 claims 1
- 238000005266 casting Methods 0.000 claims 1
- 230000002940 repellent Effects 0.000 claims 1
- 239000005871 repellent Substances 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 13
- 230000005622 photoelectricity Effects 0.000 abstract 3
- 238000005516 engineering process Methods 0.000 description 10
- 238000010276 construction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000005338 heat storage Methods 0.000 description 7
- 239000013529 heat transfer fluid Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003653 coastal water Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/34—Pontoons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/70—Waterborne solar heat collector modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/4453—Floating structures carrying electric power plants for converting solar energy into electric energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a solar energy utilization technology, in particular to a special platform for solar power generation and water. Background of the invention
- the pipelines that transmit electricity through the solar power plant are very expensive, the power grid expansion project is greatly modified, and the solar power plant suffers from harsh environmental factors such as desert sand and high temperature.
- the impact is too high, making the cost and maintenance cost of building a large desert solar farm extremely high, or the conditions for building a large desert solar farm are very restrictive.
- the existing water platform with solar power generation function makes it difficult to balance the wind resistance and the cost due to structural technical reasons.
- a large volume and weight are often used, such as
- the object of the present invention is to provide a light self-weight and high wind-proof capability, and the construction and maintenance cost is greatly reduced compared with the prior art, and the maintenance and maintenance are convenient.
- the solar photovoltaic power generation device has high power generation efficiency, and can be directly powered or stored.
- the present invention is achieved by the following technical solutions:
- the present invention uses a solar power generation water-specific platform, including
- the water platform comprises a floating body, a platform or a deck, a truss connection structure, and the platform or deck is connected by a truss
- the structure is fixed to the bottom of the floating body, and is formed to match the underwater size and is suitable for setting in a rigid platform type integrated structure with a minimum water depth of 0.3 m to 0.8 m, which is arranged in an island or peninsula on the water surface.
- the solar photovoltaic conversion device comprises a solar photovoltaic or photoelectric-photothermal hybrid collector using a glass tube structure, wherein the solar photovoltaic-photothermal hybrid collector using a glass tube structure is equipped with a cooling circulation system
- the cooling circulation system comprises a connecting pipe, a circulation pump, a connecting pipe, a control device, a temperature regulating buoy in a plurality of connected floating bodies, and a heat transfer working medium, and the solar photovoltaic-photothermal hybrid heat collector passes through the heat transfer medium Circulating pump, connecting pipeline, control device and buoy in water for liquid circulation heat exchange temperature regulation;
- the solar photoelectric conversion device is directly connected to the land grid and electrically connected, Or indirectly connected to the terrestrial grid by the battery pack, the grid-connected electrical connection includes a transmission connection through a submarine safe transmission line
- the shape of the glass tube structure includes, in addition to an elliptical tube, a circular tube and a rectangular tube, a semi-circular tube, a semi-elliptical tube, a flat triangular tube and a half composed of a flat surface and other curved surfaces.
- the curved tube has a nozzle closed, and the tube is provided with a solar photovoltaic panel and a metal runner tubular cooling tube, and the back surface of the photovoltaic panel is heat-transferred with the metal runner tubular cooling tube, and the plurality of The glass tubes are arranged in parallel at intervals, and are connected by a liquid flow tube.
- the heat transfer and fixation of the back surface of the photovoltaic panel and the coolant flow tube comprises a heat transfer connection using an electrically insulating type thermal conductive adhesive, and the electrically insulating thermal conductive adhesive comprises adding an inorganic nano heat transfer material.
- Modified epoxy adhesive The perimeter of the platform or deck may have a convex water wave blocking plate
- the floating water platform can be provided with an automatic sunlight tracking device, and the automatic sunlight tracking device comprises a solar light intensity comparison azimuth detector disposed on the platform or the deck, a tracking drive control circuit, and is fixed and arranged with the truss connection structure.
- the propeller propeller in the water controls the rotation of the fixed tether to control the hoisting mechanism.
- the propeller propellers which are fixed to the truss connection structure and disposed in the water may be one or more, and one or more propeller propellers shall be symmetrically distributed according to the center of rotation, and the propeller propeller advancement direction It can be controlled manually or electronically by means of a directional control device.
- the rotating fixed tether may be disposed at the rotation center position of the water platform, and the rotation fixing rope is connected with the anchor pile type fixing structure of the underwater bottom.
- the structure of the floating water platform is a metal structure, and the structure may be provided with a lightning protection device and a sound and light electronic bird repeller device connected to the water body.
- the floating body of the floating structure of the floating platform comprises a pontoon, or a pontoon and a lifting block, wherein the pontoon and the lifting block can be compounded or combined to form a submersible or semi-submersible floating body.
- the pontoon of the floating body is a closed volume pontoon made of polymer plastic, or metal, or cement cast preform, or glass reinforced plastic material, wherein the polymer foam or glass reinforced plastic material used as the temperature regulating pontoon is provided Metal nano-transmission Thermal particle modification additive.
- the water platform includes a floating body, a platform or a deck, and a truss connection structure
- the platform or the deck is fixed to the bottom floating body by the truss connection structure, and is configured to match the underwater size and is suitable for being disposed at
- the rigid platform integrated structure with a minimum water depth of 0.3 m to 0.8 m is disposed on the water surface in an island setting or a peninsula, so that the invention has the advantages of light weight, high construction and maintenance cost compared with the above prior art.
- the range is reduced, the maintenance and maintenance is convenient, the applicable water range is wide, and it can be set in the short-distance shoal water surface of the rivers, lakes and seas along the power supply shortage.
- the power loss of the transmission and transformation lines can be greatly reduced; and the solar photoelectric conversion device includes the glass tube.
- the structure of solar photovoltaic or photoelectric-photothermal hybrid collector wherein the solar photovoltaic-photothermal hybrid collector with the glass tube structure is equipped with a cooling circulation system, which can adjust the temperature by using the heat transfer liquid flow to ensure maximum protection Conversion efficiency of solar photovoltaic converters; also because the cooling cycle system can utilize multiple floating bodies connected
- the heat transfer between the pontoon and the heat transfer medium makes the construction cost and operation cost of the water platform structure of the water platform mounted solar power generation device greatly reduced, and the output performance is stable and reliable; and since the solar photoelectric conversion device is solar energy using the glass tube structure
- the hybrid collector is arranged in a matrix in the incident direction of the sunlight, and is arranged on the platform plate or the deck surface by the installation frame connection, and the sea level height H of the solar hybrid collector installation is greater than 3 meters, and the solar photovoltaic
- the conversion device is directly connected to the terrestrial power grid,
- the technology of the present invention is based on the rigidity of the floating body, the platform or the deck, the truss connection structure, and the integrated water platform structure.
- the solar photovoltaic conversion device is a solar hybrid heat collector with a glass tube structure arranged at intervals, so that the special platform for water is small in wind load, good in stability against wind and waves, and the cost of construction and maintenance is greatly reduced, and the cost can be greatly reduced.
- the solar photovoltaic-photothermal hybrid collector is equipped with a cooling circulation system, so that the solar photovoltaic-photothermal hybrid collector can be circulated through the heat transfer medium through the circulation pump, the connecting pipeline, the control device and the buoy in the water.
- the buoy can also be filled with water and weight, increasing the stability of the device under wind and wave weather;
- the present invention is arranged in a matrix by the solar power generation device in the direction of sunlight incident, and is arranged The sea level height H is greater than 3 meters, which eliminates the adverse effects of wind and waves. Solar receiving conditions and photoelectric conversion efficiency are far superior to the prior art.
- battery charging is a variable power process, solar photovoltaic power generation is more effective. Large power generation loss due to battery Electricity is also a variable power process, which will greatly reduce the overall output efficiency of the prior art solar photoelectric conversion device and battery power supply system.
- the technology of the present invention uses a solar photovoltaic conversion device to directly connect to the terrestrial power grid, or, in the case that the terrestrial power grid cannot be directly connected to the grid, and is indirectly connected to the terrestrial grid via the battery pack, thus Compared with the real-time power supply or battery energy storage technology of the solar energy photoelectric conversion device of the technology, the solar power generation efficiency of the grid-connected power generation is much higher than that of the battery energy storage, which not only makes the installation cost of the solar photoelectric conversion device greatly reduced, but also The system solves the problem of efficiency of solar power generation and power supply, and the technical and economic performance is far higher than the prior art, and the performance and price comparison between the benefits of the solar power generation function and the construction cost of the water platform are analyzed. The practical value is far lower than the technology of the present invention.
- the significant advances in the technology of the present invention compared to the existing desert solar power plant technology are as follows: Since the earth's land area accounts for only 29% of the surface area of the earth, the desert area accounts for about one-third of the area, and the rest is the water surface area. In terms of the available area of large-scale solar power plants, the choice of water surface setting is better than the desert setting, and the construction scale can be large or small. In addition, the setting of water solar power fields in the coastal areas close to rivers, lakes and lakes is better than that in the desert. The conditions of transportation and transportation problems are far more favorable. The installation of solar-powered installations on the water platform is far lower than the weather resistance of the desert, and the natural conditions of the wind cooling under the surface or the natural conditions of cooling by the liquid flow.
- FIG. 1 is a front elevational view showing a unit body of a floating installation structure of a peninsula according to one embodiment of a solar power generation special platform for solar power generation.
- Figure 2 is a side elevational view of Figure 1.
- Fig. 3 is a front elevational view showing the use of an offshore island-mounted fixed-mounted structural unit body in the second embodiment of the solar power generation special platform for solar power generation.
- Fig. 4 is a partial structural view showing an embodiment of an automatic solar tracking device for a solar power generation special platform for solar power generation according to the present invention.
- FIG. 5 is a third embodiment of a solar power generation special platform for solar power generation, using an offshore island floating installation knot.
- FIG. 6 is a top perspective view of a third embodiment of a solar power generation special platform for solar power generation, in which a plurality of unit bodies of an offshore island floating installation structure are connected to each other to form a large platform-mounted solar power generation field.
- one embodiment of a solar power generation special platform for a solar power generation is a peninsula type water platform adopting a floating structure, and the unit body includes a solar photovoltaic-light-heat mixing part of the solar photoelectric conversion device.
- the water depth is 0. 3 m - 0.
- the water platform is provided with a minimum water depth of 0.3 m - 0. 8m rigid platform-type integrated structure, the perimeter of the platform or deck can be equipped with a convex water wave blocking board.
- the platform board or deck board and water wave blocking board are made of porous or mesh.
- the water-permeable plate; the solar photoelectric conversion device is a solar hybrid heat collector using a glass tube structure, such as a solar photovoltaic or photoelectric-photothermal hybrid collector 1, which is mounted on the collector mounting frame 4 and connected by the mounting frame.
- the solar photovoltaic conversion device is directly connected to the terrestrial power grid, and is directly connected to the grid after the control device and the inverter 2 are connected to the terrestrial power grid. Or after the battery pack is provided with the same connection with the land is electrically connected to power grid indirectly.
- the grid-connected electrical connection is a power transmission connection including a safe transmission line through the sea floor.
- the installation angle of the solar photovoltaic or opto-optic hybrid collector is 0° -90°, for example: the middle and high latitudes can be installed obliquely to the incident direction of the sun at a mounting angle of 45 ° or more.
- the solar photovoltaic or opto-optic hybrid collector is a temperature-modulated two-dimensional or three-dimensional transparent tubular photoelectric-photothermal hybrid collector, wherein the transparent tubular photoelectric-photothermal mixing
- the transparent glass energy collecting tube and the heat exchange tube or the heat conducting tube (such as the heat pipe) of the collector may be a straight tube type or a single tube type.
- the glass tube structure of the solar hybrid collector adopts a solar cell panel and a metal channel tube type cooling tube in a closed glass tube, a back surface of the photovoltaic panel and a metal channel tube cooling tube.
- the shape of the tube can also be a flat tube such as a semi-circular tube, a semi-elliptical tube, a flat triangular tube and a half composed of a plane and other curved surfaces.
- a curved tube wherein a plane in the curved surface tube or the flat triangular tube can be arranged in the direction of sunlight incident, and the advantage of using the flat tube is that the material of the special glass for the solar collector tube can be saved under the same wooden sunlight receiving working width. .
- the heat transfer and fixation of the back surface of the photovoltaic panel and the metal flow tube tubular cooling tube includes a heat transfer connection using an electrically insulating type thermal conductive adhesive, and the metal flow tube tubular cooling tube is electrically insulated with a thermal conductive adhesive and
- the back surface 3b of the photovoltaic panel constitutes a heat transfer fixing, and the electrically insulating type thermal conductive adhesive which can be used includes a modified epoxy type adhesive such as an inorganic nano heat transfer material.
- the water platform adopting the rigid and integrated floating structure is a water platform which is arranged on the water surface in a peninsula connection with the land G.
- the floating platform of the floating platform comprises a floating body 7, a platform or a deck 8, and a truss connection structure 9 and
- the tether 10 the platform or the deck is fixed to the plurality of floating bodies at the bottom via the truss connection structure, and is connected to the underwater anchor pile or the underwater stratum structure via the tether, wherein the floating structure of the floating platform of the floating platform may be the pontoon 701, or It is a floating block 702, or a combination of the two semi-submersible floats.
- the collector installation structure is connected with the truss connection structure of the water platform and is disposed on the installation platform surface of the water wave height H below the local mid-wave, such as a sea level height of 3 meters or more.
- the equipment bay 17 is disposed on the platform or deck 8, and the equipment compartment is provided with a control device and an inverter 2, and an auxiliary control device such as a circulation pump and a pipeline control device of the collector cooling circulation system 13 is also included.
- the construction of closed volumetric buoys can be used for materials such as plastic, metal, cement cast preforms, glass reinforced plastics and the like.
- the tempering pontoon includes a lifting pontoon and a heat storage pontoon, wherein the tempering pontoon made of polymer plastic or glass reinforced plastic material adopts metal nano heat transfer.
- the heat-transfer polymer plastic or FRP modified by the particulate additive can greatly improve the heat transfer and heat transfer of the polymer plastic or the FRP without significantly reducing the necessary performance.
- the volumetric tempering pontoon can also be used to increase the heat exchange contact surface between the surface and the water body, such as a tooth type, or fins with enhanced heat transfer on the inner and outer surfaces to further improve heat. Exchange performance.
- the lifting buoy is connected with the water pump and the conveying pipeline between the water bodies at the water platform installation place, and the anti-overturn water injection device of the control device is injected into the ballast liquid to adjust the reserve buoyancy.
- the floating body may also be a combination of a pontoon and a lifting block or a composite arrangement to form a semi-submersible floating body, so as to reduce the floating force of the floating body and increase the resistance to subversion and stability, for example, filling the inner cavity of a part of the pontoon.
- There is a permanent floating material such as EPS foam to form a composite floating body, which is used to reduce The buoyancy caused by the water leakage in the pontoon cavity wall is reduced.
- the heat storage buoy is provided with a foaming heat insulation layer and an inner waterproof insulation layer.
- a foaming heat insulation layer is arranged along the inner wall of the float, and a waterproof film inner layer is further disposed in the heat insulation layer.
- the heat storage fluid is isolated from the foamed thermal insulation layer. As shown in Fig.
- the heat storage buoy and the temperature control buoy are connected in the cooling circulation system pipeline, and the heat storage buoy and the temperature control buoy can be respectively connected to the cooling circulation system pipeline through the control valve K, respectively Cooling exothermic heat exchange and cooling heat storage heat exchange, wherein the hot water for cooling heat storage heat exchange can be further heated and utilized for the domestic hot water and heating needs of the water platform duty personnel, or can be used as a follow-up Preheating and heating of seawater desalination equipment.
- the solar photovoltaic or photoelectric-photothermal hybrid collector is equipped with a collector cooling circulation system 13 including a solar photovoltaic or photoelectric-photothermal hybrid collector, a circulation pipe, a circulation pump, a connecting pipe, a control device,
- the temperature control buoy and the heat transfer medium 6 of the connected plurality of floating bodies, the heat transfer medium can adopt antifreeze or deionized water or nano heat transfer fluid, and the nano heat transfer fluid comprises inorganic nano heat transfer fluid Or a composite nano-heat transfer fluid.
- the solar photovoltaic-photothermal hybrid collector is connected to the temperature regulating buoy in the water through the circulating pump, the connecting pipeline and the control device through the heat transfer working medium, and then the liquid circulation heat exchange is adjusted, and the temperature sensing element in the control device is passed. Control the circulating pump to open and close the infusion cycle for temperature control.
- the ideal operating temperature of solar photovoltaic or photoelectric-photothermal hybrid collector is 2CTC-25 °C, and the upper limit control temperature does not exceed 35 °C, so that solar photovoltaic or Photoelectric-photothermal hybrid collectors maintain optimum photovoltaic output characteristics.
- the floating platform or the floating structure of the bed-type fixed structure may be provided with a truss connection structure, in order to further reduce the adverse effects on the structural strength of the rigid water platform caused by wind waves and waves, such as the edge of the truss connection structure beam.
- the additional bending load caused by the compression deformation at the structural beam can be provided with the cable 16 and the pole 15 on the edge structural beam of the truss connecting structural beam on the water platform, and the two ends of the edge structural beam are symmetrically connected with the pole The connection takes the support.
- the floating body In order to reduce the floating resistance, the floating body should be arranged so that its longitudinal direction is consistent with the direction of wave advancement.
- the working surface of the platform for maintenance and repair is provided with a porous or mesh walkway deck to eliminate the pressure and storm of the waves. The lift load of the air.
- a second embodiment of the solar power generation special platform for solar power generation is an island type water platform using a bed type fixed structure, and the unit body includes solar photovoltaic-photothermal mixing of the solar photoelectric conversion device portion.
- the structure 9 and the underwater pillar 11 further include a small wind power generation device 12, a water wave blocking plate 14, an equipment bay 17, an acousto-optic electronic bird repeller device, and a lightning protection device 18.
- the water platform of the implantation type fixed structure is a rigid water platform which is disposed on the water surface in an island manner.
- the floating body 7 adopts a permanent floating body structure, such as a semi-submersible floating body structure which is combined with a floating body and a floating lifting block
- the water platform of the implantation type fixed structure includes a platform or a deck 8, a truss connecting structure 9 and an underwater supporting column 11 Underwater pillar 11
- a rigid structure can be used, or a "tension leg" type hinge strut can be used.
- the underwater prop is directly connected to the underwater bottom, thereby forming an offshore island-type rigid water platform.
- the equipment bay 17 is disposed on the platform or deck 8, and the equipment compartment is provided with a control device and an inverter 2, and may also include other auxiliary control devices, and may be provided with other auxiliary facilities for the staff to live.
- the solar photovoltaic or photoelectric-photothermal hybrid collector is installed on the installation platform surface of the local water wave enthalpy H through the collector installation frame, and is connected with the truss connection structure 9 of the water platform, solar photovoltaic or photoelectric-light.
- the heat mixing collectors are rehearsed in the direction of the incident direction of the sunlight, and the collectors are connected to each other, and then directly connected to the grid by the control device and the inverter 2 and the land grid are connected by the submarine cable, or can be automatically detected as needed.
- connection state is automatically switched, and some of the electric energy is stored and processed after being electrically connected to the battery pack, and then passed through the control device and the inverter and the terrestrial power grid.
- the submarine cable is connected to the grid for electrical output when the power is off during the peak period, so as to improve the dynamic power shortage during the peak period of the supporting power supply area.
- the third embodiment of the solar power generation special platform for solar power generation is another island type water platform adopting a floating structure, and the unit body includes solar photovoltaic-photothermal mixing of the solar photovoltaic power generation device.
- the circuit 502, the propeller and direction control device 503, the rotation control hoisting mechanism 504 for controlling the fixed tether, further includes a heat transfer medium 6, a floating body 7 of the floating water platform portion, a platform or deck 8, and a truss connection structure 9 And the tether 10, wherein the floating body 7 includes a pontoon 701, a floating block 702, and the floating body is a submerged floating body set which is combined with a pontoon and a lifting block, and further includes a collector cooling circulation system 13, and a water wave block.
- the floating structure of the water platform is a rigid water platform that is placed on the water surface with the land.
- more than one offshore island type is arranged on the surface of the rigid solar power water special platform on the water surface, which can be connected to each other via a tether to form a large-scale special area, such as as small as hundreds of square meters and up to several square kilometers.
- Platform type solar farm is a rigid water platform that is placed on the water surface with the land.
- the floating platform of the floating structure comprises a floating body 7, a platform or deck 8, a truss connection structure 9 and a tether 10, and the platform is connected to the bottom floating body via a truss connection structure, and is connected to the underwater anchor pile via a tether.
- the floating body of the floating platform of the floating structure may be a submerged floating body in which the buoy 701 and the floating block 702 are combined, for example, a submerged floating body formed by combining the upper floating block and the lower buoy, and the lower buoy is connectable.
- the anti-overturn water injection device is injected into the ballast water to adjust the reserve buoyancy, or may be connected to the collector cooling circulation system 13 for use as a temperature control buoy.
- the water platform mounted solar power generation device is equipped with a collector cooling circulation system 13, and the heat transfer medium can use circulating water or water.
- Base nano-heat transfer fluid, with solar photovoltaic Or the heat exchange tube, the junction tube, the circulation pump, the pipeline control device of the photoelectric-photothermal hybrid collector, and the partial buoy in the water are connected, and then the water cooling cycle is adjusted, and the temperature sensing element in the pipeline control device is controlled.
- the circulating pump is turned on and off to perform a temperature control loop.
- deionized water can also be used as the heat transfer medium, and the liquid cooling cycle is adjusted between the circulation pump, the control line and the temperature regulating buoy floating in the water.
- the floating structure of the island-wide water platform may be provided with an automatic sunlight tracking device 5.
- the automatic sunlight tracking device 5 includes a solar light intensity comparison azimuth detector 501 disposed on a platform or a deck, and a tracking drive.
- the control circuit 502, the propeller and directional control device 503 and the rotation control hoisting mechanism 504 for controlling the fixed tether 10, the solar light intensity comparison azimuth detector can adopt a photosensitive element at a certain angle, such as a phase difference of 5 ° -10 ° Setting, when performing automatic sunlight tracking, by detecting the comparison of light intensity, the solar light.
- Strong comparison azimuth detector can emit a tracking drive electric signal or an optical signal after detecting the sunlight deflection, and the tracking drive control circuit receives the signal and sends an execution signal.
- Turn on the starter motor of the propeller propeller engine to start the propeller propeller, and the propeller propeller fixed to the truss connection structure and disposed in the water may be one or more, one or more propeller propulsion
- the device should be symmetrically distributed according to the center of rotation, at the center of rotation of the water platform
- the rotating fixed tether 19 can be arranged, and the rotating fixed tether is connected with the anchor pile type fixing structure of the underwater bottom, and the propulsion direction can be manually controlled or electrically controlled by the direction control device, and the fixed tether 10 can be controlled by a rotation control hoist
- the rotation control hoisting mechanism 504 includes a hoisting machine, a pulley system, a rope and a locking control mechanism.
- the water platform can be used to generate sun tracking rotation and reset rotation in situ, so that automatic sunlight tracking can consume the lowest energy and fully meet the requirements of single-axis tracking angle error.
- the execution signal can be sent through the tracking drive control circuit 502, and the hoisting mechanism can be switched to adjust the cooperation of the fixed tethers 10, and the tracking rotation and resetting can be achieved on the water platform. Turn to get the sun tracking effect.
- a mesh water wave blocking plate 14 capable of ventilating and blocking water waves may be provided on the front and both sides of the platform, in order to further To improve the effect of the water wave blocking board, the distance A of the extension can be further increased on the platform deck surface on which the water wave blocking board is installed, and the water wave blocking board can be set to be cambered as shown in FIG. 4 in addition to the vertical setting. To further enhance the effect of blocking water waves.
- the cable 16 and the pole 15 may be arranged on the edge structural beam of the truss connection structure of the water platform, and the two ends of the edge structure beam The support is obtained by connecting the symmetrical cable to the pole.
- the solar photoelectric conversion device can adopt a three-dimensional solar photovoltaic-photothermal hybrid collector, which is installed on the collector mounting frame 4, and the collector mounting frame is directly connected with the truss connecting structure 9, and the solar photovoltaic-photothermal hybrid heat collecting
- the electrical energy can be stored after being electrically connected to the battery pack 3 disposed in the equipment bay 17, and if necessary, the control device in the equipment bay 17 and the inverter and the terrestrial power grid are electrically connected by the submarine cable for the peak power supply period.
- an acousto-optic electronic bird repeller device should be provided on the water platform.
- the structure of the floating water platform is a metal structure, and the structure can be provided with a lightning protection device 18 for connecting the water body.
- Safety warning lights and safety warning signs provided at night when the visibility is reduced, such as nighttime and foggy weather.
- a small wind power generation unit 12 may be installed to generate power in addition to the solar power generation unit to become an unattended solar power generation water.
- Dedicated platform may be used to generate power in addition to the solar power generation unit to become an unattended solar power generation water.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Photovoltaic Devices (AREA)
Description
一种太阳能发电水上专用平台 技术领域
本发明涉及一种太阳能利用技术, 尤其是一种太阳能发电水上专用平台。 发明背景
世界上大多数缺电的状况往往是发生在经济相对落后的边缘地区或者经济高度发展 的沿海地区。为了解决边缘地区的缺电可以采用建立边远山区独立光伏电站、小型户用屋 顶光伏组件、 中小型商用屋顶轻质光伏组件等解决方案, 但是对于解决经济高度发展的诸 如沿海地区的缺电或是建立对常规能源发电的可再生能源替代,需要的是较大面积和规模 的太阳能电站组件, 于是, 有人提出了选择在沙漠阳光充足地带建立大型太阳能发电场的 技术方案,这种技术方案存在的问题是沙漠太阳能发电场距离需要供电的大多数沿海地区 路途遥远, 经太阳能发电场传输电能的管线损耗很大, 电网扩容工程改造量大, 并且太阳 能发电场受沙漠中风沙、高温等恶劣环境因素的影响千扰太大, 使得建造大型沙漠太阳能 发电场的费用与使用维护成本极为高昂,或者适于建造大型沙漠太阳能发电场的条件制约 很大。
现有的具有太阳能发电功能的水上平台由于结构性技术原因使得其抗风浪性能与造 价间难以平衡, 为了改善水上平台的抗风浪性能, 往往釆用庞大的体积与重量, 如
CN2616470Y所公布的 "多功能平台", 由于其庞大的水下平衡结构和平台重量, 使得其太 阳能发电功能的收益与水上平台的建造及维护成本不成比例, 只能在水深较大区域使用, 应用范围受限,此外,由于其太阳能光伏发电装置安装位置和设置方向及供电方式等原因, 更无法满足最大限度发挥太阳能发电效率的实际要求, 因此, 需要一种更先进的利用水上 专用平台进行太阳能发电与输电的改进技术。 发明内容
本发明的目的在于提供一种自重轻、 抗风浪能力高, 建造和维护成本比现有技术大 幅度降低, 维修维护方便, 太阳能光伏发电装置的发电效率高, 可直接供电或储能供电, 适用区域广,且能在供电紧缺的江河湖海沿岸地区近距离浅滩水面上建立的太阳能发电水 上专用平台。
本发明是通过以下技术方案实现的: 本发明釆用一种太阳能发电水上专用平台, 包括
1
确认本
浮动式或是着床式固定结构的水上平台、 太阳能光电转换装置, 其特征在于如下:. ( 1 )所 述的水上平台包括浮体、 平台或甲板、 桁架连接结构, 该平台或甲板经桁架连接结构与底 部的浮体相固接, 构成与其水下尺寸匹配并适于设置在最小水深为 0. 3米 -0. 8米的刚性 平台式一体结构, 呈岛式设置或半岛式设置在水面上; (2)所述的太阳能光电转换装置包 括采用玻璃管结构的太阳能光电或光电-光热混合集热器, 其中, 采用玻璃管结构的太阳 能光电-光热混合集热器配有冷却循环系统, 冷却循环系统包括联汇管、 循环泵、 连接管 路、 控制装置、 相连的多个浮体中的调温浮筒和传热工质, 太阳能光电-光热混合集热器 经传热工质通过循环泵、 连接管路、 控制装置与水中的浮筒进行液体循环换热调温; (3) 太阳能光电转换装置迎太阳光入射方向呈矩阵排列,经安装构架连接设置在该平台板或甲 板板面上, 且该太阳能光电转换装置安装设置的海平面高度 H大于 3米; (4) 太阳能光电 转换装置与陆地电网直接并网电连接、 或者经蓄电池组后与陆地电网间接并网电连接, 所 述的并网电连接是包括通过海底安全输电线路的输电连接。所述的玻璃管结构的外形除了 包括椭园形管、 园形管和矩形管, 还包括半园形管、 半椭园形管、 扁三角形管和由一个平 面与其它曲形面组成的半曲面形管, 其管口经封闭, 其管内设有太阳能光伏电池板和金属 流道管式冷却管, 该光伏电池板的背底面与金属流道管式冷却管传热固接, 多个这样的玻 璃管间呈平行间隔设置, 经液流管联汇相接。所述的光伏电池板的背底面与冷却液流管的 传热固接包括采用电绝缘型导热粘接剂的传热连接,所述的电绝缘型导热粘接剂包括添加 无机纳米传热材料的改性环氧型粘接剂。所述的平台或甲板的周边可带有外凸的水浪拦板 |, 水浪拦板是竖直或是外倾设置,该平台板或甲板板面及水浪拦板均采用多孔状或网状的透 水板。所述的浮动式的水上平台可带有自动阳光跟踪装置, 自动阳光跟踪装置包括设置在 平台或甲板上的太阳能光强比较方位检测器、跟踪驱动控制电路、 与桁架连接结构相固接 并设置在水中的螺旋桨推进器、控制固定系绳的转动控制卷扬机构。所述的与桁架连接结 构相固接并设置在水中的螺旋浆推进器可以是 1个或多个, 1个以上的螺旋浆推进器应按 旋转中心对称分布设置,螺旋浆推进器的推进方向可以人为控制或经方向控制装置电气程 序化控制。所述的在水上平台的旋转中心位置上可设置转动固定系绳, 转动固定系绳与水 底的锚桩类固定结构相连接。所述的浮动式的水上平台的结构是金属结构, 该结构体上可 设有连接水体的避雷装置和声光电子驱鸟装置。所述的浮动式结构的水上平台的浮体包括 浮筒、 或浮筒与浮升块, 其中, 浮筒与浮升块可经复合或组合形成潜式或半潜式的浮体。 所述的浮体的浮筒系采用如高分子塑胶、 或金属、 或水泥浇铸预制件、 或玻璃钢材料制造 的封闭的容积式浮筒, 其中, 用作调温浮筒的高分子塑胶或玻璃钢材料中带有金属纳米传
热微粒改性添加剂。
本发明的优点是: 由于水上平台釆用了包括浮体、平台或甲板、桁架连接结构, 该平 台或甲板经桁架连接结构与底部的浮体相固接,构成与其水下尺寸匹配并适于设置在最小 水深为 0. 3米 -0. 8米的刚性平台式一体结构, 呈岛式设置或半岛式设置在水面上, 使得 本发明与上述现有技术相比具有自重轻、建造和维护成本大幅度降低, 维修维护方便, 适 用水域范围广阔, 且能在供电紧缺的江河湖海沿岸地区近距离浅滩水面上设置, 输变电线 路电能损耗可以大大下降;又由于太阳能光电转换装置包括采用玻璃管结构的太阳能光电 或光电 -光热混合集热器,其中, 釆用玻璃管结构的太阳能光电 -光热混合集热器配有冷却 循环系统, 能利用传热液流进行调温以最大限度保障太阳能光电转换装置的转换效率; 还 由于冷却循环系统能利用相连的多个浮体的浮筒和传热工质进行换热,使得水上平台安装 式太阳能发电装置的水上平台结构建造成本和运行成本大大下降, 输出性能稳定可靠; 再 由于太阳能光电转换装置是釆用玻璃管结构的太阳能混合集热器,迎太阳光入射方向呈矩 阵排列, 经安装构架连接设置在该平台板或甲板板面上, 且该太阳能混合集热器安装设置 的海平面高度 H大于 3米, 加之太阳能光电转换装置与陆地电网直接并网电连接、或者经 蓄电池组后与陆地电网间接并网电连接, 且并网电连接是包括通过海底安全输电线路的 输电连接, 使得本发明的太阳能发电水上专用平台的太阳能光伏发电装置发电效率高, 水 上专用平台结构体的抗风浪能力高, 并可直接供电或储能供电, 输电安全可靠。
本发明技术与上述现有技术相比较的显著进步如下: 水上平台制造成本比较, 与现有 技术相比较, 本发明技术由于采用浮体、平台或甲板、桁架连接结构的刚性与一体水上平 台结构, 且太阳能光电转换装置是采用间隔排列的玻璃管结构的太阳能混合集热器,使得 水上专用平台风载小, 抗风浪稳定性好, 且自重大大轻、 建造和维护成本大幅度降低, 并 能够在江河湖海沿岸地区近距离水深 0. 3米- -0. 8米的浅滩水面上设置, 输变电线路电能 损耗大大下降, 设置水域范围远远大于现有技术; 其次, 本发明技术由于釆用太阳能光电 -光热混合集热器配置了冷却循环系统,使得太阳能光电 -光热混合集热器可经传热工质通 过循环泵、连接管路、 控制装置与水中的浮筒进行液体循环换热调温, 在相同日照条件下 的太阳能发电效率可高出 25%左右, 并且降低了建造和运行成本, 遇到大风大浪天气时, 浮筒还能灌水镇重, 增加风浪天气下装置的稳定性; 再其次, 本发明技术由于采用太阳能 发电装置迎太阳光入射方向呈矩阵排列, 且设置的海平面高度 H大于 3米, 免除了风浪的 不利影响, 太阳能接收条件和光电转换效率也远远优于现有技术; 最后, 由于蓄电池充电 是一个变功率过程, 会使太阳能光电转换发电产生较大的发电电能损失, 又由于蓄电池放
电也是一个变功率过程,会使现有技术的太阳能光电转换装置与蓄电池供电系统的整体输 出效率大幅度下降。本发明技术釆用太阳能光电转换装置与陆地电网直接并网电连接、 或 者在陆地电网直接并网供电不能实现的条件下,采用经蓄电池组后与陆地电网间接并网供 电, 因此, 与现有技术的太阳能光电转换装置的实时供电或蓄电池储能供电技术相比, 并 网发电的太阳能发电效率要远高于经蓄电池储能发电,不但使得太阳能光电转换装置的设 置成本大大降低, 而且, 从系统上的解决了太阳能发电与供电的效率问题, 技术经济性能 远远高于现有技术, 并且, 从两者太阳能发电功能的收益与水上平台建造成本间的性能价 格比较方面分析, 现有技术的实用价值远远低于本发明技术。
本发明技术与现有沙漠太阳能发电场技术相比较的显著进步如下: 由于地球陆地面积 仅占地表面积的 29%, 其中, 沙漠面积占其三分之一左右, 其余均为水面面积, 因此, 就 设置大型太阳能发电场的可利用面积而言, 选择水面设置比沙漠设置有利, 且建设规模可 大可小; 此外, 在靠近江河湖海沿岸地区设置水上太阳能发电场与在沙漠相比, 解决交通 与运输问题的条件远为有利,建立水上平台安装式太阳能发电装置对材料的耐候性要求远 比沙漠髙温环境下要低,水面的风力冷却自然条件或利用液流冷却的自然条件都比在沙漠 中优越, 其次, 相比之下, 水面设置太阳能发电场时受环境破坏的风险相对较小, 如: 沙 漠的移动会产生发电站被埋没或崩溃的风险, 沙尘暴对光电转换发电设备的破坏, 风沙给 发电器件罩面上带来灰沙遮挡阳光入射的严重影响, 操作维护人员在沙漠深处生存的困 难, 非居住地带的线路设置与维护问题, 发电后蓄电的困难和长距离输变电的线路损失问 题等等, 两者比较, 选择建立水上平台安装式太阳能发电装置的技术与经济性远远优于设 立沙漠太阳能发电场。 附图说明
图 1 是本发明一种太阳能发电水上专用平台实施例之一的采用半岛浮动式安装结构 单元体的正示意图。
图 2 是图 1的侧向视图。
图 3 是本发明一种太阳能发电水上专用平台实施例之二的采用离岸岛着床式固定安 装结构单元体的正示意图。
图 4 是本发明一种太阳能发电水上专用平台采用自动阳光跟踪装置实施例的局部结 构示意图。
图 5 是本发明一种太阳能发电水上专用平台实施例之三的采用离岸岛浮动式安装结
构单元体的正示意图。
图 6 是本发明一种太阳能发电水上专用平台实施例之三采用离岸岛浮动式安装结构 的多个单元体相互连接设置成大型平台安装式太阳能发电场的俯视立体图。 具体实施方式
按图 1、 图 2所示, 本发明的一种太阳能发电水上专用平台实施例之一是采用浮动式 结构的半岛式水上平台, 其单元体包括太阳能光电转换装置部分的太阳能光电-光热混 '合 集热器 1、 控制装置与逆变器 2、 集热器安装构架 4、传热工质 6; 还包括浮动式水上平台 部分的浮体 7, 其中, 浮体 7包括浮筒 701、 浮升块 702, 平台或甲板 8、 桁架连接结构 9 与系绳 10, 此外, 还包括集热器冷却循环系统 13、 水浪拦板 14、 立杆 15、 拉索 16、 设 备舱 17、 声光电子驱鸟装置与避雷装置 18。
水上平台包括浮体、平台或甲板、 桁架连接结构, 该平台或甲板经桁架连接结构与底 部的浮体相固接, 构成与其水下尺寸匹配并适于设置在最小水深为 0. 3米- 0. 8米的刚性 平台式一体结构, 平台或甲板的周边可带有外凸的水浪拦板, 为了进一步减轻水浪压力, 该平台板或甲板板面及水浪拦板均采用多孔状或网状的透水板;太阳能光电转换装置是采 用玻璃管结构的太阳能混合集热器, 如太阳能光电或光电 -光热混合集热器 1, 其安装在 集热器安装构架 4上, 经安装构架连接设置在该平台板或甲板板面上,迎太阳光入射方向 呈矩阵排列; 且该太阳能混合集热器安装设置高度是在当地中浪以下的水浪高度以上, 其 海平面高度 H应大于 3米; 太阳能光电转换装置与陆地电网直接并网电连接,经控制装置 与逆变器 2与陆地电网并网电连接后直接供电,或者经蓄电池组与相同连接设置后与陆地 电网间接并网电连接。 所述的并网电连接是包括通过海底设置安全输电线路的输电连接。
太阳能光电或光电-光热混合集热器的安装倾角范围是 0° -90° , 如: 中高纬度地区 可以是与水平面的安装倾角为 45 ° 以上的迎太阳光入射方向的倾斜安装, 此外, 为了进 一步增加抗风浪稳定性, 也可以采用与水平面的安装倾角为 5 的迎太阳光入射方向的倾 斜安装。
所述的太阳能光电或光电-光热混合集热器是调温式二维或三维结构的透明管式光电 -光热混合集热器, 其中, 所述的透明管式的光电-光热混合集热器的透明玻璃集能管与换 热管或导热管(如热管)可以是直通管式的或是单通管式的。所述的玻璃管结构的太阳能 混合集热器系采用管口经封闭的玻璃管内设有太阳能光伏电池板和金属流道管式冷却管, 光伏电池板的背底面与金属流道管式冷却管传热固接,多个这样的玻璃管间呈平行间隔设
置, 经液流管联汇相接。釆用玻璃管式的混合集热器且不设反射底板并按一定间隔并行排 列设置, 有利于降低风载和散热及减少暴风雨气候时的水浪压力, 提高水上平台的抗风浪 稳定性, 玻璃管的外形除了采用椭园形管、 园形管和矩形管外, 还可采用扁形管如半园形 管、 半椭园形管、 扁三角形管和由一个平面与其它曲形面组成的半曲面形管, 其中, 曲形 面管或扁三角形管中的一个平面可迎太阳光入射方向设置,采用扁形管的优点是能在同样 的木阳光接收工作宽度下节省太阳能集热管专用玻璃的材料。
光伏电池板的背底面与金属流道管式冷却管的传热固接包括如采用电绝缘型导热粘 接剂的传热连接,金属流道管式冷却管经电绝缘型导热粘接剂与光伏电池板的背底 ¾构成 传热固接,可以采用的电绝缘型导热粘接剂包括如添加无机纳米传热材料的改性环氧型粘 接剂。
所述的采用刚性与一体的浮动式结构的水上平台是与陆地 G 呈半岛式连接设置在水 面上的水上平台, 浮动式结构的水上平台包括浮体 7、 平台或甲板 8、 桁架连接结构 9与 系绳 10, 平台或甲板经桁架连接结构与底部的多个浮体相固接, 并经系绳与水底锚桩或 水底地层结构连接, 其中, 浮动式结构的水上平台的浮体可是浮筒 701、 或是浮升块 702、 或是两者组合的半潜式浮体。集热器安装构架与水上平台的桁架连接结构相连接并设置在 当地中浪以下水浪高度 H如海平面高度 3米以上的安装平台面上。 根据研究发现 <: 与本发 明的太阳能发电水上专用平台水下尺寸匹配并适于设置在最小水深在 0. 3米- 0. 8米。
设备舱 17设置在平台或甲板 8上, 设备舱内设有控制装置与逆变器 2, 还包括集热 器冷却循环系统 13的循环泵与管路控制装置等辅助控制设备。 封闭的容积式浮筒的制造 可以釆用如塑胶、 金属、 水泥浇铸预制件、 玻璃钢等材料。 与桁架连接结构底部相固接的 多个浮体的浮筒中, 除了调温浮筒还包括升降浮筒和储热浮筒, 其中, 采用高分子塑胶或 玻璃钢材料制造的调温浮筒是采用经金属纳米传热微粒添加剂改性的换热型高分子塑胶 或玻璃钢制造的,如此可以在不显著降低必需性能的条件下大幅度提高高分子塑胶或玻璃 钢的传热换热 ί生能。 除了材料方面的传热性能考虑, 容积式调温浮筒还可制成增大表面与 水体换热接触面积的各种形状如齿型、 或内外表面带有加强传热的翅片, 进一步提高热交 换性能。
升降浮筒与水上平台设置处水体间经输送水泵和输送管路相连通,其内腔中经控制装 置的抗倾覆注水设备注入压舱液调节储备浮力。浮体还可是采用浮筒与浮升块两者的组合 或复合设置构成半潜式浮体, 以降低浮体受波浪力的作用, 增加抗颠覆能力与稳定性, 例 如, 部分浮筒的内腔中可填注有永久性浮体材料如 EPS发泡料构成复合浮体, 用以减低由
于浮筒腔壁破损漏水而引起的浮力下降。
所述的储热浮筒内设有发泡型隔热保温层和内防水隔离层,如沿浮筒内壁设置一层发 泡型隔热保温层, 在保温层内再设置一防水薄膜内层, 将储热液与发泡型隔热保温层隔离 开来。 如图 4所示, 储热浮筒与调温浮筒相并接后设置在冷却循环系统管路中, 储热浮筒 与调温浮筒可分别经控制阀 K切换与冷却循环系统管路相连接,分别进行冷却放热换热和 冷却储热换热, 其中, 冷却储热换热的热水还可经进一步加热利用后供作水上平台值守人 员的生活热水和采暖需要, 或可用作后续如海水淡化处理设备的前置预热和加热等。
太阳能光电或光电-光热混合集热器中配有集热器冷却循环系统 13, 其包括太阳能光 电或光电-光热混合集热器的联汇管、 循环泵、 连接管路、 控制装置、 相连的多个浮体的 调温浮筒和传热工质 6, 传热工质可采用抗冻液或去离子水或纳米传热流体, 所述的纳米 传热流体包括无机型纳米传热流体或复合型纳米传热流体。 太阳能光电-光热混合集热器 经传热工质通过循环泵、 连接管路、控制装置与水中的调温浮筒相连接后进行液体循环换 热调温, 经控制装置中的温度传感元件控制循环泵启闭进行调温控制的输液循环, 太阳能 光电或光电-光热混合集热器的理想工作温度是 2CTC— 25°C, 上限控制温度不超过 35°C, 如此可以使得太阳能光电或光电-光热混合集热器保持最佳的光伏输出特性。
所述的浮动式或是着床式固定结构的水上平台均可设有桁架连接结构,为了进一步降 低由风浪与波浪引起的对刚性水上平台结构强度方面的不利影响,如桁架连接结构梁的边 缘结构梁处的受压变形引起的附加弯曲载荷影响,可在水上平台桁架连接结构梁的边缘结 构梁上设置拉索 16与立杆 15, 边缘结构梁的两端经对称拉索与立杆相连接取得支承。
为了减少漂浮阻力, 浮体的设置应尽量使其长度方向与波浪前进方向相一致, 平台 面上用于维护检修的工作通道上设有多孔状或网状的走道甲板, 以消除海浪的压力与暴风 雨时空气的升力载荷。
如图 3所示,本发明的一种太阳能发电水上专用平台实施例之二是釆用着床式固定结 构的岛式水上平台, 其单元体包括太阳能光电转换装置部分的太阳能光电-光热混合集热 器 1、 控制装置与逆变器 2、 蓄电池组 3、 集热器安装构架 4; 除此之外, 还包括着床式固 定结构的水上平台的浮体 7、 平台或甲板 8、 桁架连接结构 9与水下支柱 11 , 此外, 还包 括小型风力发电装置 12、 水浪拦板 14、 设备舱 17、 声光电子驱鸟装置与避雷装置 18等。
所述的着床式固定结构的水上平台是与陆地呈岛式设置在水面上的刚性水上平台。其 中, 浮体 7采用永久性浮体结构, 如采用浮筒与浮升块两者复合的半潜式浮体结构, 着床 式固定结构的水上平台包括平台或甲板 8、 桁架连接结构 9与水下支柱 11, 水下支柱 11
可采用刚性结构, 也可采用 "张力腿"式绞链支柱, 水下支柱与水底直接连接, 由此构成 离岸岛式的刚性水上平台。
设备舱 17设置在平台或甲板 8上, 设备舱内设有控制装置与逆变器 2, 还可包括其 他辅助控制设备, 并可设置值守人员生活用的其他辅助设施等。 太阳能光电或光电-光热 混合集热器经集热器安装构架设置在当地水浪髙度 H以上的安装平台面上,并与水上平台 的桁架连接结构 9相连接, 太阳能光电或光电-光热混合集热器迎太阳光入射方向呈矩阵 排练,集热器之间相连接后经控制装置与逆变器 2与陆地电网由海底电缆并网电连接后直 接供电、或可根据需要自动检测与进行两者间切换, 即供电需求回落或无法实施并网直接 供电时, 经连接状态自动切换, 部分电能经与蓄电池组电连接后先储存处理, 再经控制装 置和逆变器与陆地电网由海底电缆并网电连接供如峰电时段缺电时进行输出补充,以此改 善配套供电地区的峰电时段的动态缺电状况。
如图 5所示为本发明一种太阳能发电水上专用平台实施例之三是采用浮动式结构的 的又一种岛式水上平台, 其单元体包括太阳能光伏发电装置部分的太阳能光电-光热混合 集热器 1、 控制装置与逆变器 2、 蓄电池组 3、 集热器安装构架 4、 自动阳光跟踪装置 5, 其中, 自动阳光跟踪装置 5包括太阳能光强比较方位检测器 501、跟踪驱动控制电路 502、 螺旋浆推进器及方向控制装置 503、 控制固定系绳的转动控制卷扬机构 504, 还包括传热 工质 6, 浮动式水上平台部分的浮体 7、平台或甲板 8、桁架连接结构 9与系绳 10, 其中, 浮体 7包括浮筒 701、 浮升块 702, 浮体是采用浮筒与浮升块两者组合的潜式浮体设置, 此外, 还包括集热器冷却循环系统 13、 水浪拦板 14、 立杆 15与拉索 16、 设备舱 17、 声 光电子驱鸟装置与避雷装置 18、 转动固定系绳 19等。
浮动式结构的水上平台是与陆地呈岛式设置在水面上的刚性水上平台。 如图 6所示, 一个以上离岸岛式设置在水面上的刚性太阳能发电水上专用平台间,可相互衔接经系绳连 成大面积如少至上百平方米到多至若干平方公里的大型专用平台式太阳能发电场。
浮动式结构的水上平台包括浮体 7、 平台或甲板 8、 桁架连接结构 9与系绳 10, 平台 经桁架连接结构与底部的浮体相连接, 并经系绳与水底锚桩连接。其中, 浮动式结构的水 上平台的浮体可是浮筒 701与浮升块 702两者复合的潜式浮体,如制成由上部浮升块与下 部浮筒两者复合的潜式浮体, 下部浮筒中可连接抗倾覆注水设备注入压舱水调节储备浮 力, 或者, 可以与集热器冷却循环系统 13连接用作调温浮筒。 除了水面自然风力对太阳 能光电或光电-光热混合集热器产生的冷却外, 水上平台安装式太阳能发电装置中配有集 热器冷却循环系统 13, 传热工质可釆用循环水或水基的纳米传热流体, 经与太阳能光电
或光电-光热混合集热器的换热管、 联汇管、 循环泵、 管路控制装置和水中的部分浮筒相 连接后进行水冷循环调温,经管路控制装置中的温度传感元件控制循环泵启闭进行调温控 制循环。此外, 也可采用去离子水为传热工质, 经循环泵、 控制管路和浮在水中的调温浮 筒间进行液冷循环调温。
所述的浮动式结构的全岛式的水上平台可带有自动阳光跟踪装置 5, 参见图 4, 自动 阳光跟踪装置 5包括设置在平台或甲板上的太阳能光强比较方位检测器 501、 跟踪驱动控 制电路 502、 螺旋桨推进器及方向控制装置 503和控制固定系绳 10的转动控制卷扬机构 504, 太阳能光强比较方位检测器可以采用感光元器件按一定的夹角如相差 5° -10° 左右 设置, 进行自动阳光跟踪时, 通过检测光强的比较, 太阳能光.强比较方位检测器检测到阳 光偏转后可以发出跟踪驱动电信号或光信号, 跟踪驱动控制电路接收到信号后, 发出执行 信号接通螺旋浆推进器发动机的启动电机, 使螺旋浆推进器开始工作, 与桁架连接结构相 固接并设置在水中的螺旋浆推进器可以是 1个或多个, 1个以上的螺旋浆推进器应按旋转 中心对称分布设置, 在水上平台的旋转中心位置上可设置转动固定系绳 19, 转动固定系 绳与水底的锚桩类固定结构相连接,其推进方向可以人为控制或经方向控制装置电气程序 化控制, 固定系绳 10可经与一转动控制卷扬机构配套使用, 转动控制卷扬机构 504包括 卷扬机、滑轮系、 绳索与锁定控制机构, 当通过转动控制卷扬机构放松固定系绳和改变螺 旋浆推进器的推进方向时, 在水体反作用力矩的作用下, 可使水上平台在原地产生阳光跟 踪转动和复位转动, 如此, 可以使得自动阳光跟踪消耗最低的能源和完全满足单轴跟踪角 度误差的要求。在螺旋浆推进器不能正常工作时, 还可以通过经跟踪驱动控制电路 502发 出执行信号, 切换控制卷扬机构来调节各固定系绳 10的配合收放, 同样可以达到使水上 平台产生跟踪转动和复位转动来取得阳光跟踪效果。
为了在风浪天气减少或消除水浪对平台面上安装的太阳能光电转换装置的不利影响, 在平台的正面与两側可设有能透风与阻挡水浪的网状水浪拦板 14, 为了进一步提高水浪 拦板的效果, 可以在安装水浪拦板的平台甲板面上进一步增大其外伸的距离 A, 水浪拦板 除了竖直设置还可以如图 4所示呈外倾设置, 以进一步增强阻挡水浪的效果。为了加强水 上水上平台桁架连接结构梁的抗弯强度,进一步减少结构材料消耗与降低成本,可在水上 平台桁架连接结构的边缘结构梁上设置拉索 16与立杆 15, 边缘结构梁的两端经对称拉索 与立杆相连接取得支承。
太阳能光电转换装置可采用三维结构的太阳能光电-光热混合集热器, 安装在集热器 安装构架 4上, 集热器安装构架与桁架连接结构 9直接连接, 太阳能光电-光热混合集热
器经与设置在设备舱 17内的蓄电池组 3电连接后可储存电能,需要时经设备舱 17内的控 制装置与逆变器与陆地电网由海底电缆并网电连接作峰电时段配套电网的缺电补充,改善 配套供电地区的峰电时段的缺电状况。
此外, 为了防止鸟类等筑巢等的安全不利影响, 在水上平台上应设置声光电子驱鸟装 置, 浮动式的水上平台的结构是金属结构, 该结构上可设有连接水体的避雷装置 18、 夜 间及雾雨天气等可见度下降时配备的安全警示灯与安全警示信号旗等, 此外,还可设置小 型风力发电装置 12, 与太阳能发电场构成部分互补发电, 成为无人值守的太阳能发电水 上专用平台。
Claims
1、 一种太阳能发电水上专用平台, 包括浮动式或是着床式固定结构的水上平台、 太 阳能光电转换装置, 其特征在于如下:
( 1 )所述的水上平台包括浮体、 平台或甲板、 桁架连接结构, 该平台或甲板经桁架 连接结构与底部的浮体相固接, 构成与其水下尺寸匹配并适于设置在最小水深为 0. 3 米
-0. 8米的刚性平台式一体结构, 呈岛式设置或半岛式设置在水面上;
(2)所述的太阳能光电转换装置包括采用玻璃管结构的太阳能光电或光电-光热混合 集热器, 其中, 釆用玻璃管结构的太阳能光电-光热混合集热器配有冷却循环系统, 冷却 循环系统包括联汇管、 循环泵、连接管路、控制装置、 相连的多个浮体中的调温浮筒和传 热工质, 太阳能光电-光热混合集热器经传热工质通过循环泵、 连接管路、 控制装置与水 中的浮筒进行液体循环换热调温;
(3)太阳能光电转换装置迎太阳光入射方向呈矩阵排列,经安装构架连接设置在该平 台板或甲板板面上, 且该太阳能光电转换装置安装设置的海平面高度 H大于 3米;
(4)太阳能光电转换装置与陆地电网直接并网电连接、 或者经蓄电池组后与陆地电 网间接并网电连接, 所述的并网电连接是包括通过海底安全输电线路的输电连接。
2、 根据权利要求 1所述的一种太阳能发电水上专用平台, 其特征在于, 所述的玻璃 管结构的外形除了包括椭园形管、 园形管和矩形管, 还包括半园形管、 半椭园形管、扁三 角形管和由一个平面与其它曲形面组成的半曲面形管, 其管口经封闭, 其管内设有太阳能 光伏电池板和金属流道管式冷却管,该光伏电池板的背底面与金属流道管式冷却管传热固 接, 多个这样的玻璃管间呈平行间隔设置, 经液流管联汇相接。
3、 根据权利要求 2所述的一种太阳能发电水上专用平台, 其特征在于, 所述的光伏 电池板的背底面与冷却液流管的传热固接包括采用电绝缘型导热粘接剂的传热连接,所述 的电绝缘型导热粘接剂包括添加无机纳米传热材料的改性环氧型粘接剂。
4、 根据权利要求 1所述的一种太阳能发电水上专用平台, 其特征在于, 所述的平台 或甲板的周边可带有外凸的水浪拦板, 水浪拦板是竖直或是外倾设置, 该平台板或甲板梹 面及水浪拦板均采用多孔状或网状的透水板。
5、 根据权利要求 1所述的一种太阳能发电水上专用平台, 其特征在于, 所述的浮动 式的水上平台可带有自动阳光跟踪装置, 自动阳光跟踪装置包括设置在平台或甲板上的太 阳能光强比较方位检测器、跟踪驱动控制电路、与桁架连接结构相固接并设置在水中的螺
旋浆推进器、 控制固定系绳的转动控制卷扬机构。
6、 根据权利要求 5所述的一种太阳能发电水上专用平台, 其特征在于, 所述的与桁 架连接结构相固接并设置在水中的螺旋浆推进器可以是 1个或多个, 1个以上的螺旋浆推 进器应按旋转中心对称分布设置,螺旋浆推进器的推进方向可以人为控制或经方向控制装 置电气程序化控制。
7、 根据权利要求 1所述的一种太阳能发电水上专用平台, 其特征在于, 所述的在水 上平台的旋转中心位置上可设置转动固定系绳,转动固定系绳与水底的锚桩类固定结构相 连接。
8、 根据权利要求 1所述的一种太阳能发电水上专用平台, 其特征在于, 所述的浮动 式的水上平台的结构是金属结构,该结构体上可设有连接水体的避雷装置和声光电子驱鸟 装置。
9、 根据权利要求 1所述的一种太阳能发电水上专用平台, 其特征在于, 所述的浮动 式结构的水上平台的浮体包括浮筒、 或浮筒与浮升块, 其中, 浮筒与浮升块可经复合或组 合形成潜式或半潜式的浮体。
10、 根据权利要求 9所述的一种太阳能发电水上专用平台, 其特征在于, 所述的浮体 的浮筒系釆用如高分子塑胶、 或金属、 或水泥浇铸预制件、 或玻璃钢材料制造的封闭的容 积式浮筒, 其中, 用作调温浮筒的高分子塑胶或玻璃钢材料中带有金属纳米传热微粒改性 添加剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07800703A EP2058222A1 (en) | 2006-08-18 | 2007-08-17 | Special platform for generating electricity using solar energy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610030184.1 | 2006-08-18 | ||
CN200610030184 | 2006-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008025234A1 true WO2008025234A1 (en) | 2008-03-06 |
Family
ID=39135497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/002478 WO2008025234A1 (en) | 2006-08-18 | 2007-08-17 | Special platform for generating electricity using solar energy |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2058222A1 (zh) |
WO (1) | WO2008025234A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103395480A (zh) * | 2013-08-06 | 2013-11-20 | 山东华业风能设备有限公司 | 漂浮式太阳能电站 |
WO2014131782A1 (en) | 2013-02-26 | 2014-09-04 | Danmarks Tekniske Universitet | Off-shore photovoltaic installation |
CN104058073A (zh) * | 2014-06-10 | 2014-09-24 | 天津天大滨海船舶与海洋工程研究院有限公司 | 海上半潜漂浮式风力发电平台 |
CN104065330A (zh) * | 2014-07-11 | 2014-09-24 | 无锡同春新能源科技有限公司 | 锂离子电池船拖拉的非晶硅薄膜太阳能电池水面漂浮电站 |
CN104065329A (zh) * | 2014-07-11 | 2014-09-24 | 无锡同春新能源科技有限公司 | 锂离子电池船拖拉铜铟镓硒薄膜太阳能电池水面漂浮电站 |
CN104320044A (zh) * | 2014-10-27 | 2015-01-28 | 无锡同春新能源科技有限公司 | 在湖面上建光伏组件和复合浮力材料制电解水的光伏电站 |
CN106882339A (zh) * | 2017-02-28 | 2017-06-23 | 南京工业大学 | 一种水上光伏发电用复合材料浮体系统及其拼装方法 |
WO2019085520A1 (zh) * | 2017-11-03 | 2019-05-09 | 中建钢构有限公司 | 模块化海洋多功能作业平台、整体式工作平台及调运方法 |
CN109933821A (zh) * | 2017-12-15 | 2019-06-25 | 星际空间(天津)科技发展有限公司 | 一种居住类建筑间距分析方法 |
US10505492B2 (en) | 2016-02-12 | 2019-12-10 | Solarcity Corporation | Building integrated photovoltaic roofing assemblies and associated systems and methods |
CN114987703A (zh) * | 2022-03-17 | 2022-09-02 | 江苏海上龙源风力发电有限公司 | 一种开敞海域毡式海面柔性光伏系统 |
CN117401111A (zh) * | 2023-12-15 | 2024-01-16 | 中国海洋大学 | 消浪式海上光伏平台和组装消浪式海上光伏平台的方法 |
CN117526859A (zh) * | 2024-01-03 | 2024-02-06 | 昆山狮桥电力科技有限公司 | 一种光伏发电设备的分布式监控与信息采集装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH701870A2 (de) * | 2009-09-17 | 2011-03-31 | Tnc Consulting Ag | Schwimmende Photovoltaik-Anordnung. |
KR101165739B1 (ko) * | 2009-11-05 | 2012-07-23 | 김승섭 | 태양광 발전장치 및 이를 위한 계류장치 |
FR2968386B1 (fr) * | 2010-12-06 | 2014-12-26 | Ciel Et Terre | Centrale photovoltaique, flottante, destinee a recouvrir tout ou partie d'une etendue d'eau. |
FR2968267B1 (fr) * | 2010-12-06 | 2013-08-16 | Ciel Et Terre | Dispositif d'ancrage sur une etendue d'eau. |
FR2988164B1 (fr) * | 2012-03-14 | 2014-04-04 | Edmond Balzer | Support flottant de panneaux solaires |
CN103944494B (zh) * | 2014-05-15 | 2015-12-30 | 无锡同春新能源科技有限公司 | 水面上漂浮、行驶由太阳能电池组件构成的无桩光伏电站 |
JP7181450B2 (ja) * | 2018-02-07 | 2022-12-01 | キョーラク株式会社 | フロート集合体 |
NO347181B1 (en) * | 2020-06-30 | 2023-06-19 | Moss Maritime As | Floating solar power plant |
US20230170838A1 (en) * | 2021-11-28 | 2023-06-01 | Mime, Llc | Solar Panels Over Water Reservoir System |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976508A (en) * | 1974-11-01 | 1976-08-24 | Mobil Tyco Solar Energy Corporation | Tubular solar cell devices |
US4187123A (en) * | 1975-10-21 | 1980-02-05 | Diggs Richard E | Directionally controlled array of solar power units |
US4339626A (en) * | 1981-04-16 | 1982-07-13 | Varian Associates, Inc. | Solar pond power plant |
JP2002173083A (ja) * | 2000-12-05 | 2002-06-18 | Shin Kobe Electric Mach Co Ltd | 太陽電池搭載用フロートならびに太陽電池装置 |
JP2003020927A (ja) * | 2001-07-09 | 2003-01-24 | Hideaki Makita | 内燃機関の排気ガス浄化装置 |
CN1464246A (zh) * | 2002-06-24 | 2003-12-31 | 潘戈 | 一种透明玻璃真空管太阳能集热器件 |
CN2616470Y (zh) | 2003-04-11 | 2004-05-19 | 王莹 | 多功能平台 |
CN1536290A (zh) * | 2003-04-10 | 2004-10-13 | 江希年 | 一种太阳能光热光电复合管 |
CN1612360A (zh) * | 2003-10-31 | 2005-05-04 | 孔维铭 | 太阳能光伏电池管 |
CN1657360A (zh) * | 2004-02-19 | 2005-08-24 | 袁晓纪 | 一种超大型桁架式海上浮动平台 |
JP2006005306A (ja) * | 2004-06-21 | 2006-01-05 | Sharp Corp | 太陽光発電システム |
-
2007
- 2007-08-17 EP EP07800703A patent/EP2058222A1/en not_active Withdrawn
- 2007-08-17 WO PCT/CN2007/002478 patent/WO2008025234A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976508A (en) * | 1974-11-01 | 1976-08-24 | Mobil Tyco Solar Energy Corporation | Tubular solar cell devices |
US4187123A (en) * | 1975-10-21 | 1980-02-05 | Diggs Richard E | Directionally controlled array of solar power units |
US4339626A (en) * | 1981-04-16 | 1982-07-13 | Varian Associates, Inc. | Solar pond power plant |
JP2002173083A (ja) * | 2000-12-05 | 2002-06-18 | Shin Kobe Electric Mach Co Ltd | 太陽電池搭載用フロートならびに太陽電池装置 |
JP2003020927A (ja) * | 2001-07-09 | 2003-01-24 | Hideaki Makita | 内燃機関の排気ガス浄化装置 |
CN1464246A (zh) * | 2002-06-24 | 2003-12-31 | 潘戈 | 一种透明玻璃真空管太阳能集热器件 |
CN1536290A (zh) * | 2003-04-10 | 2004-10-13 | 江希年 | 一种太阳能光热光电复合管 |
CN2616470Y (zh) | 2003-04-11 | 2004-05-19 | 王莹 | 多功能平台 |
CN1612360A (zh) * | 2003-10-31 | 2005-05-04 | 孔维铭 | 太阳能光伏电池管 |
CN1657360A (zh) * | 2004-02-19 | 2005-08-24 | 袁晓纪 | 一种超大型桁架式海上浮动平台 |
JP2006005306A (ja) * | 2004-06-21 | 2006-01-05 | Sharp Corp | 太陽光発電システム |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014131782A1 (en) | 2013-02-26 | 2014-09-04 | Danmarks Tekniske Universitet | Off-shore photovoltaic installation |
CN103395480A (zh) * | 2013-08-06 | 2013-11-20 | 山东华业风能设备有限公司 | 漂浮式太阳能电站 |
CN104058073A (zh) * | 2014-06-10 | 2014-09-24 | 天津天大滨海船舶与海洋工程研究院有限公司 | 海上半潜漂浮式风力发电平台 |
CN104065330A (zh) * | 2014-07-11 | 2014-09-24 | 无锡同春新能源科技有限公司 | 锂离子电池船拖拉的非晶硅薄膜太阳能电池水面漂浮电站 |
CN104065329A (zh) * | 2014-07-11 | 2014-09-24 | 无锡同春新能源科技有限公司 | 锂离子电池船拖拉铜铟镓硒薄膜太阳能电池水面漂浮电站 |
CN104320044A (zh) * | 2014-10-27 | 2015-01-28 | 无锡同春新能源科技有限公司 | 在湖面上建光伏组件和复合浮力材料制电解水的光伏电站 |
CN104320044B (zh) * | 2014-10-27 | 2016-08-17 | 无锡同春新能源科技有限公司 | 在湖面上建光伏组件和复合浮力材料制电解水的光伏电站 |
US10505492B2 (en) | 2016-02-12 | 2019-12-10 | Solarcity Corporation | Building integrated photovoltaic roofing assemblies and associated systems and methods |
CN106882339A (zh) * | 2017-02-28 | 2017-06-23 | 南京工业大学 | 一种水上光伏发电用复合材料浮体系统及其拼装方法 |
WO2019085520A1 (zh) * | 2017-11-03 | 2019-05-09 | 中建钢构有限公司 | 模块化海洋多功能作业平台、整体式工作平台及调运方法 |
US11242117B2 (en) | 2017-11-03 | 2022-02-08 | China Construction Steel Structure Corp. Ltd. | Modular multipurpose offshore operation platform, integrated work platform, and transportation method |
CN109933821A (zh) * | 2017-12-15 | 2019-06-25 | 星际空间(天津)科技发展有限公司 | 一种居住类建筑间距分析方法 |
CN109933821B (zh) * | 2017-12-15 | 2023-05-16 | 星际空间(天津)科技发展有限公司 | 一种居住类建筑间距分析方法 |
CN114987703A (zh) * | 2022-03-17 | 2022-09-02 | 江苏海上龙源风力发电有限公司 | 一种开敞海域毡式海面柔性光伏系统 |
CN114987703B (zh) * | 2022-03-17 | 2024-05-31 | 江苏海上龙源风力发电有限公司 | 一种开敞海域毡式海面柔性光伏系统 |
CN117401111A (zh) * | 2023-12-15 | 2024-01-16 | 中国海洋大学 | 消浪式海上光伏平台和组装消浪式海上光伏平台的方法 |
CN117401111B (zh) * | 2023-12-15 | 2024-02-27 | 中国海洋大学 | 消浪式海上光伏平台和组装消浪式海上光伏平台的方法 |
CN117526859A (zh) * | 2024-01-03 | 2024-02-06 | 昆山狮桥电力科技有限公司 | 一种光伏发电设备的分布式监控与信息采集装置 |
CN117526859B (zh) * | 2024-01-03 | 2024-04-19 | 昆山狮桥电力科技有限公司 | 一种光伏发电设备的分布式监控与信息采集装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2058222A1 (en) | 2009-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008025234A1 (en) | Special platform for generating electricity using solar energy | |
CN101143616B (zh) | 一种太阳能发电水上专用平台 | |
CN201215928Y (zh) | 水上平台安装式太阳能发电装置 | |
JP7555451B2 (ja) | 太陽発電設備 | |
US9404677B2 (en) | Inflatable linear heliostatic concentrating solar module | |
Sharma et al. | Design parameters of 10 KW floating solar power plant | |
JP5331982B2 (ja) | 波力発電プラント | |
US20110168235A1 (en) | Apparatus and method for generating electricity using photovoltaic panels | |
CN103346697A (zh) | 一种水上太阳能光伏发电系统 | |
CA2741512A1 (en) | Integrated generator device for producing energy from a wave motion | |
GB2525389A (en) | Thermal solar power generation system | |
CN101688692A (zh) | 可缩回的太阳能面板系统 | |
KR102640092B1 (ko) | 태양광 발전 장치 | |
CN115123469A (zh) | 一种海上漂浮能源岛 | |
CN102745322A (zh) | 可膨胀的太阳能面板支撑系统 | |
CN101000177A (zh) | 浮力平台定日跟踪商业化太阳能发电装置 | |
GB2449620A (en) | Using existing oil and gas drilling platforms for the conversion of renewable energy sources | |
CN106155108A (zh) | 一种水上太阳能发电系统和方法 | |
US9181102B2 (en) | Method for producing crystallized salt and bittern with a system through the evaporation process | |
CN208285246U (zh) | 一种水上用太阳能光伏发电系统 | |
CN107769709A (zh) | 一种水上漂浮光伏阵列 | |
CN201621011U (zh) | 悬浮于空气中的风力发电机 | |
CN215622583U (zh) | 一种新型的海上漂浮式太阳能发电装置 | |
KR101849936B1 (ko) | 태양광발전용 부유구조물 | |
KR101545869B1 (ko) | 태양열발전시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07800703 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007800703 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |