WO2008023726A1 - Radar apparatus and distance measuring method - Google Patents

Radar apparatus and distance measuring method Download PDF

Info

Publication number
WO2008023726A1
WO2008023726A1 PCT/JP2007/066259 JP2007066259W WO2008023726A1 WO 2008023726 A1 WO2008023726 A1 WO 2008023726A1 JP 2007066259 W JP2007066259 W JP 2007066259W WO 2008023726 A1 WO2008023726 A1 WO 2008023726A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
delay time
fourier
transmission signal
Prior art date
Application number
PCT/JP2007/066259
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Ueno
Kazumasa Nomura
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Publication of WO2008023726A1 publication Critical patent/WO2008023726A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers

Definitions

  • the present invention relates to a radar apparatus and a distance measuring method for measuring a distance to a target.
  • FIG. 10 is a waveform diagram illustrating the operating principle of the chaotic laser radar device.
  • Chaos laser radar equipment modulates light and radio waves with a transmission signal that is a random signal (chaos signal), irradiates the target with the modulated light and radio waves, and uses the reflected light and radio waves as an electric signal. A received signal is obtained by conversion.
  • one point on the time axis of the binarized transmission signal (ST in Fig. 10) converted into binary values of +1 and 1 is set as the reference time, and the first transmission signal ST from this reference time Time Dl, time to second rising edge D2, time to third rising edge D3, n (n is an arbitrary positive integer) time Dn to the first rising edge
  • the received signals SRI, SR2, SR3,..., SRn are generated by shifting the binarized received signal (SR in FIG. 10) by the respective times from D1 to Dn.
  • n received signals SR1, SR2, SR3,..., SRn are added, a zero cross point appears in the added signal SUM where it corresponds to the time difference between the transmitted signal and the received signal.
  • the random pulse waveform is averaged and the sum signal SUM converges to zero.
  • this delay time 100 is until light and radio waves are reflected by the target and returned. Therefore, it is possible to calculate the separation from the target based on the delay time 100.
  • the received signals are shifted and added by a known time so that the rising edges of the signals are aligned. Therefore, the signal processing is possible regardless of the reception state, and the received signal contains noise. Even in the case of! /, It only affects the peak value of the added signal, so it has the advantage of being excellent in noise resistance.
  • the chaotic laser radar device has a distance resolution pulse (electromagnetic wave speed / clock frequency)
  • a high-speed circuit that operates at a very high clock frequency is required to improve the resolution.
  • a high-speed circuit cannot be used due to cost or other reasons, there is a problem that the distance measurement accuracy deteriorates.
  • the present invention has been made to solve the above problems, and provides a radar apparatus and a distance measurement method capable of measuring a distance to a target with high accuracy without using a high-speed circuit.
  • the purpose is to do.
  • a radar apparatus includes a transmission signal generation unit that generates a transmission signal that is a substantially aperiodic pseudorandom signal, a transmission unit that radiates a transmission wave obtained by modulating an electromagnetic wave with the transmission signal, Receiving means for receiving a reflected wave of the transmitted wave and outputting a received signal; and obtaining a delay time of the received signal with respect to the transmitted signal, and calculating a distance to an object reflecting the transmitted wave based on the delay time
  • a first Fourier transform unit that performs a one-dimensional discrete Fourier transform on the transmission signal and the reception signal, respectively, to generate a Fourier transmission signal and a Fourier reception signal; and
  • a synthesis processing unit configured to combine the Fourier transmission signal and the Fourier reception signal to generate a synthesized Fourier signal; an amplitude suppression processing unit configured to perform amplitude suppression processing of the synthesized Fourier signal; and the amplitude suppression.
  • Second Fourier transform means for generating a correlation signal by applying one of the one-dimensional discrete Fourier transform and the one-dimensional discrete inverse Fourier transform to the composite Fourier signal after the control processing, and the peak position of the correlation signal
  • First delay time detecting means for obtaining the delay time
  • distance calculating means for calculating a distance to the object reflecting the transmission wave based on the delay time.
  • the distance measurement method of the present invention provides a transmission signal that is a substantially aperiodic pseudorandom signal.
  • a transmission signal generating step for generating a transmission wave, a transmission step for emitting a transmission wave obtained by modulating an electromagnetic wave with the transmission signal, a reception step for receiving a reflected wave of the transmission wave and outputting a reception signal, and the transmission signal Calculating a distance to an object reflecting the transmission wave based on the delay time, and the calculation step is performed on the transmission signal and the reception signal, respectively. And performing a discrete Fourier transform to obtain the delay time.
  • the transmission signal generation means, the transmission means, the reception means, and the calculation means are provided, and the calculation means receives the transmission signal using the phase only correlation method. Since the delay time of the received signal is obtained and the distance to the object reflecting the transmitted wave is calculated based on this delay time, the speed of the circuit is limited as in conventional chaotic laser radar devices and time-of-flight. The distance to the target can be measured with high accuracy
  • FIG. 1 is a block diagram showing a configuration of a radar apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the radar apparatus of FIG.
  • FIG. 3 is a block diagram showing a configuration example of a phase only correlation calculation unit in the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the phase only correlation calculation unit in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the relationship between the transmission signal and the sampling timing of the phase only correlation calculation unit in the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a radar apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration example of a chaos laser radar calculation unit in the second embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operations of the chaotic laser radar computing unit and the phase-only correlation computing unit in the second embodiment of the present invention.
  • FIG. 9 shows other transmission signals used in the first and second embodiments of the present invention and the transmission signals.
  • FIG. 6 is a waveform diagram of a random noise signal that is the source of a signal.
  • FIG. 10 is a waveform diagram illustrating the operating principle of a conventional chaotic laser radar device.
  • the transmission signal of the present invention has substantially non-periodic force.
  • Lmax in equation (1) is the maximum measurable distance assumed by the radar apparatus of the present invention.
  • the technical idea of the present invention is that the pattern of the transmission signal is similar to the pattern of the reception signal reflected back to the target (since the reception signal includes some noise).
  • the pattern matching method using Fourier transform was applied. is there.
  • FIG. 1 is a block diagram showing a configuration of a radar apparatus according to a first embodiment of the present invention.
  • the radar apparatus according to the present embodiment includes a transmission signal generation unit 1 that generates a transmission signal that is a substantially non-periodic pseudo-random signal, and a transmission unit 2 that emits transmission light in which laser light is intensity-modulated with the transmission signal.
  • the transmission unit 2 includes a laser diode (LD) 20 and an LD drive circuit 21 that drives the LD 20.
  • An LED may be used instead of the LD.
  • the receiving unit 3 includes a photodiode (PD) 30 and an amplifier circuit 31 that amplifies a signal output from the PD 30.
  • PD photodiode
  • Fig. 2 is a flowchart showing the operation of the radar system.
  • the transmission signal generation unit generates a transmission signal that is a pseudo-random signal (step Sl).
  • a pseudo-random signal is obtained by means.
  • a pseudo-random signal is sampled periodically according to the clock pulse, and this sampling value is compared with an appropriate threshold value. If it is small, 0 is held and 1 is held until the next sampling.
  • a pseudo-random signal (hereinafter sometimes referred to as a random pulse signal) is obtained as a pulse signal in which one of the states 0 and 1 can be generated approximately aperiodically for each clock cycle.
  • the transmission signal is preferably a random pulse signal having a trapezoidal pulse rather than a square wave. Converting a square wave to a trapezoidal wave can be realized by a known signal processing technique. At this time, the trapezoidal wave may be a curved substantially trapezoidal wave in which the rising and falling slopes, which are not a perfect trapezoidal wave, are represented by an exponential function using CR, for example.
  • the pseudo-random signal described above may be newly generated every time it is used, or may be stored in advance in a memory and reproduced every time it is used.
  • phase-only correlation method it is necessary to use an analog signal as a transmission signal.
  • the transmission signal has a steep and reproducible rise in nature. It is necessary to use a signal such as By using either a trapezoidal wave or a substantially trapezoidal wave, the phase-only correlation method and the chaotic laser radar can be performed with relatively simple means (for example, by adding a first-order delay circuit such as a CR circuit to the output of a random noise signal). It is possible to make the transmission signal suitable for both systems.
  • the LD drive circuit 21 of the transmission unit 2 drives the LD 20 in accordance with the transmission signal, so that the transmission light, which is a Norse-shaped laser beam whose intensity is modulated in accordance with the transmission signal, is output from the LD 20. (Step S2). This transmitted light is irradiated as parallel light by a projection lens (not shown).
  • the transmission light emitted from the transmission unit 2 is reflected by an object in front of the transmission unit 2 (hereinafter referred to as a target object 10), and a part of the reflected light is collected by a light receiving lens (not shown). Then, it enters the PD 30 of the receiver 3.
  • a target object 10 an object in front of the transmission unit 2
  • a light receiving lens not shown
  • the PD 30 converts the incident light into a current
  • the amplifier circuit 31 converts the output current of the PD 30 into a voltage, amplifies it, and outputs it as a received signal (step S3).
  • LPF 4 removes a high-frequency component of the reception signal output from reception unit 3.
  • the phase only correlation calculation unit 5 receives the transmission signal generated by the transmission signal generation unit 1 and the reception signal that has passed through the LPF 4 to obtain the delay time of the reception signal with respect to the transmission signal, and based on this delay time.
  • the distance to the target 10 is calculated (step S4).
  • the phase-only correlation calculation unit 5 uses the phase-only correlation method as a method for obtaining the delay time of the received signal with respect to the transmitted signal.
  • the phase only correlation method is a cross-correlation algorithm that focuses on the phase of a signal.
  • the force S that gives the amplitude spectrum and phase spectrum when the signal is Fourier-transformed, of which the phase spectrum stores information related to the signal intensity change, that is, the shape of the signal.
  • the phase-only correlation method is a cross-correlation algorithm that removes amplitude information (or decreases the weight of amplitude information) and uses only phase information (or increases the weight of phase information) in the correlation value calculation process.
  • this phase-only correlation method will be described in more detail.
  • FIG. 3 is a block diagram showing a configuration example of the phase only correlation calculation unit 5
  • FIG. 4 is a flowchart showing the operation of the phase only correlation calculation unit 5.
  • the phase only correlation calculation unit 5 includes an input unit 50, a first Fourier transform unit 51, a synthesis processing unit 52, an amplitude suppression processing unit 53, a second Fourier transform unit 54, and a delay time detection unit 55. And a distance calculation unit 56.
  • the input unit 50 performs AD conversion on each of the transmission signal and the reception signal (step S100 in FIG. 4).
  • the AD conversion sampling period 500 is required to be shorter than the trapezoidal wave length 502 of the transmission signal 501.
  • the transmission signal 501 is generated such that the trapezoidal wave length 502 is longer than the sampling period 500.
  • the rise time 503 and the fall time 504 of the transmission signal 501 are longer than the sampling period 500.
  • reference numeral 505 in FIG. 5 denotes a sampling timing.
  • the first Fourier transform unit 51 performs one-dimensional discrete Fourier transform (DFT) on the transmission signal and the reception signal captured by the input unit 50 (step S101).
  • DFT discrete Fourier transform
  • data on the time axis is converted into data on the frequency axis.
  • the transmission signal and the reception signal after Fourier transform are called the Fourier transmission signal and the Fourier reception signal, respectively.
  • the synthesis processing unit 52 synthesizes the Fourier transmission signal and the Fourier reception signal to obtain a synthesized Fourier signal (step S 102).
  • the synthesized Fourier signal is expressed as AXBXe j (e ⁇ ) , where the Fourier received signal is AXe je and the Fourier transmitted signal is BXe ] .
  • a and ⁇ are amplitude spectra and ⁇ and ⁇ are phase spectra, both of which are functions in the frequency (Fourier) space.
  • This synthesized Fourier signal AXBXe j (e ⁇ ) is expressed by the following equation.
  • AXBXe —) AXBXcos ( ⁇ -) + j XAXBXsin ( ⁇ -)
  • AXBXe ⁇ —) AXBX e je X) + j (
  • a synthesized Fourier signal may be obtained as aX ⁇ -aX ⁇ ).
  • the amplitude suppression processing unit 53 performs amplitude suppression processing of the synthesized Fourier signal (step S103).
  • logarithmic (log) processing is performed as amplitude suppression processing. That is, the amplitude suppression processing unit 53 takes the logarithm of the synthesized Fourier signal AXBXe i (e ⁇ ) and takes it as log (AXB) Xe i ( ⁇ — ⁇ ) , thereby obtaining the amplitude AX ⁇ of the synthesized Fourier signal as log Suppress to (AX ⁇ ) (AX B> log (AXB)).
  • a process for obtaining the square root of the synthesized Fourier signal may be performed as the amplitude suppression process. In addition to logarithmic processing and square root processing, any processing can be used as long as the amplitude can be suppressed! /.
  • the intensity difference between the transmission signal and the reception signal is caused.
  • the effect is smaller.
  • the spectrum intensity of the synthesized Fourier signal is suppressed, so there are no outstanding values, and more information becomes effective.
  • a characteristic part that is information necessary for deriving the delay time is more emphasized.
  • the second Fourier transform unit 54 performs one-dimensional discrete Fourier transform (DFT) on the synthesized Fourier signal after the amplitude suppression process (step S104).
  • DFT discrete Fourier transform
  • data on the frequency axis is converted into data on the time axis, and a correlation signal is obtained.
  • the second Fourier transform unit 54 may perform a one-dimensional discrete inverse Fourier transform instead of performing the one-dimensional discrete Fourier transform.
  • the delay time detector 55 obtains the delay time of the received signal with respect to the transmission signal based on the peak position of the correlation signal (step S105). At this time, the delay time detection unit 55 obtains the delay of the received signal by obtaining the peak position with a precision of a fraction of the sampling period 500 to a few tenths using the internal method for the correlation signal. Time can be calculated with high accuracy
  • the distance calculation unit 56 calculates the distance L to the target object 10 using the equation (3) from the delay time d detected by the delay time detection unit 55 (step S106).
  • the delay time of the reception signal with respect to the transmission signal can be detected with high accuracy.
  • the distance to the target can be measured with high accuracy without being limited by the circuit speed as in the case of time-of-flight.
  • FIG. 6 is a block diagram showing the configuration of the radar apparatus according to the second embodiment of the present invention.
  • the same components as those in FIG. is there.
  • the radar apparatus according to the present embodiment includes a transmission signal generation unit 1, a transmission unit 2, a reception unit 3, an LPF 4, a phase only correlation calculation unit 5, and a binary signal that binarizes the transmission signal and the reception signal.
  • a chaos laser radar operation unit 7 for obtaining a delay time of the reception signal with respect to the transmission signal by the chaos laser radar system.
  • the binarization circuit 6 converts the transmission signal output from the transmission signal generation unit 1 into a binary value of +1 and 1, and similarly converts the reception signal that has passed through the LPF 4 into a binary value.
  • the received signal that passed through LPF4 is used to reduce noise.
  • FIG. 7 is a block diagram showing a configuration example of the chaos laser radar calculation unit 7, and FIG. 8 is a flowchart showing the operations of the force male laser radar calculation unit 7 and the phase-only correlation calculation unit 5.
  • the chaos laser radar calculation unit 7 includes an edge detection unit 70, a shift register 71, an addition processing unit 72, and a delay time detection unit 73.
  • the phase-only correlation calculation unit 5 receives the transmission signal generated by the transmission signal generation unit 1 and the reception signal that has passed through the LPF 4, and the chaos laser radar calculation unit 7 is binarized by the binarization circuit 6. Send signal and receive signal are input
  • the edge detection unit 70 of the chaos laser radar calculation unit 7 performs the binarized transmission signal.
  • a certain point on the time axis of (ST in Fig. 10) is set as the reference time, the time Dl from this reference time to the first rising edge of the transmission signal ST, the time D 2 to the second rising edge, and the third Time D3, n (n is an arbitrary positive integer) th rising force S Time Dn until the rising edge is detected.
  • the shift register 71 generates received signals SRI, SR2, SR3,..., SRn obtained by shifting the binarized received signal (SR in FIG. 10) by each time from D1 to Dn. (Fig. 8, step S200).
  • the addition processing unit 72 performs calorie calculation on the n received signals SRI, SR2, SR3,..., SRn generated by the shift register 71 (step S201). As a result, the calorie calculation signal SUM as shown in Fig. 10 is obtained. In this sum signal SUM, a zero cross point appears at a position corresponding to the time difference between the transmission signal and the reception signal.
  • the delay time detection unit 73 obtains the delay time of the reception signal with respect to the reference time of the transmission signal based on the position of the zero cross point of the addition signal SUM (step S202). And The delay time detection unit 73 notifies the phase-only correlation calculation unit 5 of the detected delay time.
  • the added signal SUM in Fig. 10 shows the waveform when processed for continuous time for ease of description. However, since the received signal is actually processed discretely, the added signal is also shown in the figure. It becomes a discrete value like SUM 'of 10. 101 in FIG. 10 is a sampling timing.
  • the input unit 50, the first Fourier transform unit 51, the synthesis processing unit 52, the amplitude suppression processing unit 53, the second Fourier transform unit 54, and the delay time detection unit 55 of the phase only correlation calculation unit 5 are delayed. Only in the predetermined time range centered on the delay time detected by the time detector 73, the processing described in steps S100 to S105 in FIG. 4 is executed to obtain the delay time of the received signal with respect to the transmission signal (step S203). ).
  • the distance calculation unit 56 calculates the distance L to the target 10 in the same manner as Step S106 in FIG. 4 (Step S204).
  • the delay time of the received signal is obtained by the phase-only correlation method only for a predetermined time range centered on the delay time detected by the chaotic laser radar method.
  • the calculation amount of the limited correlation calculation unit 5 can be reduced.
  • the phase-only correlation method can be combined with the power chaotic laser radar method, which has the disadvantage of being vulnerable to noise, to realize a radar device with excellent noise resistance.
  • light is used as the carrier wave of the transmission signal.
  • the present invention is not limited to this, and other electromagnetic waves such as radio waves may be used.
  • one random noise signal having a trapezoidal waveform or a substantially trapezoidal waveform is used as the transmission signal, but a random noise signal having a sinusoidal pulse (sine wave and random pulse) is used.
  • a sine wave it is easy to generate a transmission signal, and it is possible to limit the frequency band processed by the phase-only correlation method, thereby reducing the possibility of erroneous calculation of the delay time by the phase-only correlation method. Therefore, it is possible to realize a radar apparatus that achieves both noise resistance and high resolution.
  • Figure 9 shows the waveforms of the random noise signal and transmission signal in this case. In this case, LPF4 Instead, a narrow-band bandpass filter can be used. From the viewpoint of the sampling theorem, the clock and sampling period of the random noise signal must be higher than the frequency twice that of the sine wave. It is more preferable if it is more than 4 times the frequency of the sine wave!
  • the position shift is converted into a phase shift proportional to the frequency.
  • frequency C / “wavelength 10 cm”
  • double frequency C / “wavelength 5 cm”
  • the same lcm corresponds to a 72 ° deviation (where C is the distance traveled in unit time of electromagnetic waves).
  • the frequency of the transmitted signal includes various frequencies as in the general phase-only correlation method, noise and the received signal cannot be separated when calculating the proportional coefficient of the phase difference with respect to the frequency!
  • the proportionality coefficient is obtained from the result including the phase shift of noise.
  • the present invention can be applied to a radar apparatus such as an automobile collision prevention sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A transport signal generating part (1) generates a transport signal that is a pseudo random signal having a substantially non-periodic characteristic. A transmitting part (2) radiates a transport wave obtained by modulating an electromagnetic wave with the transport signal, and a receiving part (3) receives a reflected wave. A phase-only correlation calculating part (5) comprises a first Fourier transforming part that subjects the transport signal and received signal to a one-dimensional discrete Fourier transformation; a combining part that combines the Fourier transport signal with the Fourier received signal; an amplitude suppressing part that suppresses the amplitude of the combined Fourier signal; a second Fourier transforming part that subjects the combined Fourier signal as amplitude suppressed to a one-dimensional discrete Fourier transformation or a one-dimensional discrete inverse Fourier transformation; a delay time determining part that determines, based on the peak position of a correlation signal, a delay time; and a distance calculating part that calculates, based on the delay time, the distance from an object.

Description

明 細 書  Specification
レーダ装置および距離測定方法  Radar apparatus and distance measuring method
技術分野  Technical field
[0001] 本発明は、 目標物までの距離を測定するレーダ装置および距離測定方法に関する ものである。  [0001] The present invention relates to a radar apparatus and a distance measuring method for measuring a distance to a target.
背景技術  Background art
[0002] 従来より、簡単な信号処理で、 目標物までの距離を測定するレーダ装置として、特 開 2004— 301588号公報にカオスレーザーレーダ装置が開示されている。図 10は 、カオスレーザーレーダ装置の動作原理を説明する波形図である。カオスレーザー レーダ装置は、ランダム信号 (カオス信号)である送信信号により光や電波を変調し、 変調した光や電波を目標物に照射して、 目標物に当たって反射した光や電波を電 気信号に変換して受信信号を得る。  Conventionally, a chaos laser radar device has been disclosed in Japanese Patent Application Publication No. 2004-301588 as a radar device that measures the distance to a target by simple signal processing. FIG. 10 is a waveform diagram illustrating the operating principle of the chaotic laser radar device. Chaos laser radar equipment modulates light and radio waves with a transmission signal that is a random signal (chaos signal), irradiates the target with the modulated light and radio waves, and uses the reflected light and radio waves as an electric signal. A received signal is obtained by conversion.
[0003] 次に、 + 1と 1の 2値に変換した 2値化送信信号(図 10の ST)の時間軸上のある 1 点を基準時刻とし、この基準時刻から送信信号 STの 1番目の立ち上がりエッジまで の時間 Dl、 2番目の立ち上がりエッジまでの時間 D2、 3番目の立ち上がりエッジまで の時間 D3、 n (nは任意の正の整数)番目の立ち上がりエッジまでの時間 Dnを検出し て、 2値化した受信信号(図 10の SR)を D1から Dnまでの各々の時間分だけシフトし た受信信号 SRI , SR2, SR3, · · · , SRnを生成する。そして、 n個の受信信号 SR1 , SR2, SR3, · · · , SRnを加算すると、加算信号 SUMには、送信信号と受信信号 の時間差に相当するところにゼロクロス点が現れる。このゼロクロス点の前後の時間 では、ランダムパルス波形が平均化されて加算信号 SUMが 0に収束する。加算信号 SUMのゼロクロス点の位置に基づいて、送信信号 STの基準時刻に対する受信信 号 SRの遅延時間 100を求めると、この遅延時間 100は光や電波が目標物で反射し て戻ってくるまでの時間(飛行時間)であるから、遅延時間 100を基に目標物までの £巨離を算出すること力 Sできる。  [0003] Next, one point on the time axis of the binarized transmission signal (ST in Fig. 10) converted into binary values of +1 and 1 is set as the reference time, and the first transmission signal ST from this reference time Time Dl, time to second rising edge D2, time to third rising edge D3, n (n is an arbitrary positive integer) time Dn to the first rising edge The received signals SRI, SR2, SR3,..., SRn are generated by shifting the binarized received signal (SR in FIG. 10) by the respective times from D1 to Dn. When n received signals SR1, SR2, SR3,..., SRn are added, a zero cross point appears in the added signal SUM where it corresponds to the time difference between the transmitted signal and the received signal. During the time before and after the zero cross point, the random pulse waveform is averaged and the sum signal SUM converges to zero. When the delay time 100 of the received signal SR with respect to the reference time of the transmission signal ST is obtained based on the position of the zero cross point of the sum signal SUM, this delay time 100 is until light and radio waves are reflected by the target and returned. Therefore, it is possible to calculate the separation from the target based on the delay time 100.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] カオスレーザーレーダ装置では、信号の立ち上がりが揃うように既知の時間だけ受 信信号をずらして加算するため、受信状態に関わらず信号処理ができる上に、受信 信号にノイズが含まれて!/、る場合でも、加算信号のピーク値に影響を与えるだけであ るので、耐ノイズ性に優れるとレ、う利点がある。 Problems to be solved by the invention [0004] In the chaotic laser radar device, the received signals are shifted and added by a known time so that the rising edges of the signals are aligned. Therefore, the signal processing is possible regardless of the reception state, and the received signal contains noise. Even in the case of! /, It only affects the peak value of the added signal, so it has the advantage of being excellent in noise resistance.
しかしながら、カオスレーザーレーダ装置では、距離の分解能カパルスの(電磁波 の速度/クロック周波数)となっているために、分解能を向上させるためには非常に 高いクロック周波数で作動する高速の回路を必要とし、例えばコスト等の理由により 高速の回路が使用できない場合には、距離の測定精度が悪くなるという問題点があ つた。  However, because the chaotic laser radar device has a distance resolution pulse (electromagnetic wave speed / clock frequency), a high-speed circuit that operates at a very high clock frequency is required to improve the resolution. For example, when a high-speed circuit cannot be used due to cost or other reasons, there is a problem that the distance measurement accuracy deteriorates.
[0005] 本発明は、上記課題を解決するためになされたもので、高速の回路を使用すること なぐ 目標物までの距離を高精度に測定することができるレーダ装置および距離測 定方法を提供することを目的とする。  [0005] The present invention has been made to solve the above problems, and provides a radar apparatus and a distance measurement method capable of measuring a distance to a target with high accuracy without using a high-speed circuit. The purpose is to do.
課題を解決するための手段  Means for solving the problem
[0006] 本発明のレーダ装置は、略非周期性の疑似ランダム信号である送信信号を生成す る送信信号生成手段と、電磁波を前記送信信号で変調した送信波を放射する送信 手段と、前記送信波の反射波を受信して受信信号を出力する受信手段と、前記送信 信号に対する前記受信信号の遅延時間を求め、この遅延時間を基に前記送信波を 反射した物体までの距離を算出する演算手段とを有し、前記演算手段は、前記送信 信号と前記受信信号にそれぞれ 1次元離散的フーリエ変換を施してフーリエ送信信 号とフーリエ受信信号を生成する第 1のフーリエ変換手段と、前記フーリエ送信信号 と前記フーリエ受信信号を合成して合成フーリエ信号を生成する合成処理手段と、 前記合成フーリエ信号の振幅抑制処理を行う振幅抑制処理手段と、前記振幅抑制 処理後の合成フーリエ信号に 1次元離散的フーリエ変換及び 1次元離散的逆フーリ ェ変換の一方を施して相関信号を生成する第 2のフーリエ変換手段と、前記相関信 号のピーク位置に基づいて前記遅延時間を求める第 1の遅延時間検出手段と、前記 遅延時間を基に前記送信波を反射した物体までの距離を算出する距離算出手段と を備える。 [0006] A radar apparatus according to the present invention includes a transmission signal generation unit that generates a transmission signal that is a substantially aperiodic pseudorandom signal, a transmission unit that radiates a transmission wave obtained by modulating an electromagnetic wave with the transmission signal, Receiving means for receiving a reflected wave of the transmitted wave and outputting a received signal; and obtaining a delay time of the received signal with respect to the transmitted signal, and calculating a distance to an object reflecting the transmitted wave based on the delay time A first Fourier transform unit that performs a one-dimensional discrete Fourier transform on the transmission signal and the reception signal, respectively, to generate a Fourier transmission signal and a Fourier reception signal; and A synthesis processing unit configured to combine the Fourier transmission signal and the Fourier reception signal to generate a synthesized Fourier signal; an amplitude suppression processing unit configured to perform amplitude suppression processing of the synthesized Fourier signal; and the amplitude suppression. Based on the second Fourier transform means for generating a correlation signal by applying one of the one-dimensional discrete Fourier transform and the one-dimensional discrete inverse Fourier transform to the composite Fourier signal after the control processing, and the peak position of the correlation signal First delay time detecting means for obtaining the delay time, and distance calculating means for calculating a distance to the object reflecting the transmission wave based on the delay time.
[0007] また、本発明の距離測定方法は、略非周期性の疑似ランダム信号である送信信号 を生成する送信信号生成ステップと、電磁波を前記送信信号で変調した送信波を放 射する送信ステップと、前記送信波の反射波を受信して受信信号を出力する受信ス テツプと、前記送信信号に対する前記受信信号の遅延時間を求め、この遅延時間を 基に前記送信波を反射した物体までの距離を算出する演算ステップとを有し、前記 演算ステップは、前記送信信号と前記受信信号にそれぞれ離散的フーリエ変換を施 して前記遅延時間を求めるステップを含む。 [0007] In addition, the distance measurement method of the present invention provides a transmission signal that is a substantially aperiodic pseudorandom signal. A transmission signal generating step for generating a transmission wave, a transmission step for emitting a transmission wave obtained by modulating an electromagnetic wave with the transmission signal, a reception step for receiving a reflected wave of the transmission wave and outputting a reception signal, and the transmission signal Calculating a distance to an object reflecting the transmission wave based on the delay time, and the calculation step is performed on the transmission signal and the reception signal, respectively. And performing a discrete Fourier transform to obtain the delay time.
発明の効果  The invention's effect
[0008] 以上説明したように、本発明によれば、送信信号生成手段と、送信手段と、受信手 段と、演算手段とを設け、演算手段が位相限定相関法を用いて送信信号に対する受 信信号の遅延時間を求め、この遅延時間を基に送信波を反射した物体までの距離 を算出するようにしたので、従来のカオスレーザーレーダ装置やタイムォブフライトの ように回路の速度に制限されず、 目標物までの距離を高精度に測定することができる [0008] As described above, according to the present invention, the transmission signal generation means, the transmission means, the reception means, and the calculation means are provided, and the calculation means receives the transmission signal using the phase only correlation method. Since the delay time of the received signal is obtained and the distance to the object reflecting the transmitted wave is calculated based on this delay time, the speed of the circuit is limited as in conventional chaotic laser radar devices and time-of-flight. The distance to the target can be measured with high accuracy
Yes
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明の第 1実施例に係るレーダ装置の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of a radar apparatus according to a first embodiment of the present invention.
[図 2]図 2は、図 1のレーダ装置の動作を示すフローチャートである。  FIG. 2 is a flowchart showing the operation of the radar apparatus of FIG.
[図 3]図 3は、本発明の第 1実施例における位相限定相関演算部の 1構成例を示す ブロック図である。  FIG. 3 is a block diagram showing a configuration example of a phase only correlation calculation unit in the first embodiment of the present invention.
[図 4]図 4は、本発明の第 1実施例における位相限定相関演算部の動作を示すフロ 一チャートである。  FIG. 4 is a flowchart showing the operation of the phase only correlation calculation unit in the first embodiment of the present invention.
[図 5]図 5は、本発明の第 1実施例における送信信号と位相限定相関演算部のサン プリングタイミングとの関係を示す図である。  FIG. 5 is a diagram showing the relationship between the transmission signal and the sampling timing of the phase only correlation calculation unit in the first embodiment of the present invention.
[図 6]図 6は、本発明の第 2実施例に係るレーダ装置の構成を示すブロック図である。  FIG. 6 is a block diagram showing a configuration of a radar apparatus according to a second embodiment of the present invention.
[図 7]図 7は、本発明の第 2実施例におけるカオスレーザーレーダ演算部の 1構成例 を示すブロック図である。  FIG. 7 is a block diagram showing a configuration example of a chaos laser radar calculation unit in the second embodiment of the present invention.
[図 8]図 8は、本発明の第 2実施例におけるカオスレーザーレーダ演算部と位相限定 相関演算部の動作を示すフローチャートである。  FIG. 8 is a flowchart showing the operations of the chaotic laser radar computing unit and the phase-only correlation computing unit in the second embodiment of the present invention.
[図 9]図 9は、本発明の第 1実施例、第 2実施例で用いる他の送信信号とこの送信信 号の元になるランダムノ ルス信号の波形図である。 FIG. 9 shows other transmission signals used in the first and second embodiments of the present invention and the transmission signals. FIG. 6 is a waveform diagram of a random noise signal that is the source of a signal.
[図 10]図 10は、従来のカオスレーザーレーダ装置の動作原理を説明する波形図で ある。  FIG. 10 is a waveform diagram illustrating the operating principle of a conventional chaotic laser radar device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 概念上では、信号 n (t)がランダム信号であるという時、他の時系列との相関が 0で あり、ラグが 0の場合以外は自己相関係数が 0となる (すなわち非周期性の)信号を指 す。しかし、工学的にはそのような理想状態にあるランダム信号を常に実現すること はできず、通常はある程度の自己相関を持った (すなわち略非周期性の)信号しか 得られない。ここでは工学的に実現可能なランダム信号を総称して「擬似ランダム信 号」という。  [0010] Conceptually, when the signal n (t) is a random signal, the correlation with other time series is 0, and the autocorrelation coefficient is 0 except when the lag is 0 (ie, non- Refers to a periodic signal. However, engineering cannot always realize a random signal in such an ideal state, and usually only a signal having a certain degree of autocorrelation (ie, substantially non-periodic) can be obtained. Here, engineering-realizable random signals are collectively referred to as “pseudo-random signals”.
なお、本発明の送信信号は、略非周期性を有するとしている力 この略非周期性とは It should be noted that the transmission signal of the present invention has substantially non-periodic force.
、送信信号の周期を τ、高速を Cとすると、次式を満たすことを意味する。 If the transmission signal period is τ and the high speed is C, it means that the following equation is satisfied.
T> (2 X Lmax) /C · · · (1)  T> (2 X Lmax) / C (1)
式(1)における Lmaxは本発明のレーダ装置で想定している測定可能な最大距離で ある。  Lmax in equation (1) is the maximum measurable distance assumed by the radar apparatus of the present invention.
[0011] 本発明の技術的思想は、送信信号のパターンとこれが目標物に反射して戻ってき た受信信号のパターンとが類似してレ、る(受信信号には多少のノイズが含まれるので 完全な同一ではない)ことに着目し、両パターンの時間軸上のズレを送信信号に対 する受信信号の遅延時間として検出するために、フーリエ変換を用いたパターン照 合方法を適用したことにある。  [0011] The technical idea of the present invention is that the pattern of the transmission signal is similar to the pattern of the reception signal reflected back to the target (since the reception signal includes some noise). In order to detect the shift on the time axis of both patterns as the delay time of the received signal with respect to the transmitted signal, the pattern matching method using Fourier transform was applied. is there.
[0012] [第 1実施例]  [0012] [First embodiment]
以下、本発明の実施例について図面を参照して説明する。図 1は本発明の第 1実 施例に係るレーダ装置の構成を示すブロック図である。本実施例のレーダ装置は、 略非周期性の疑似ランダム信号である送信信号を生成する送信信号生成部 1と、レ 一ザ一光を送信信号で強度変調した送信光を放射する送信部 2と、送信光の反射 光を受光して受信信号を出力する受信部 3と、ローパスフィルタ(LPF) 4と、送信信 号に対する受信信号の遅延時間を求め、この遅延時間を基に、送信光を反射した物 体までの距離を算出する位相限定相関演算部 5とを有する。 [0013] 送信部 2は、レーザーダイオード(LD) 20と、 LD20を駆動する LD駆動回路 21とか ら構成される。なお、 LDの代わりに LEDを用いてもよい。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a radar apparatus according to a first embodiment of the present invention. The radar apparatus according to the present embodiment includes a transmission signal generation unit 1 that generates a transmission signal that is a substantially non-periodic pseudo-random signal, and a transmission unit 2 that emits transmission light in which laser light is intensity-modulated with the transmission signal. Then, the receiver 3 that receives the reflected light of the transmitted light and outputs the received signal, the low pass filter (LPF) 4, and the delay time of the received signal with respect to the transmitted signal are obtained, and based on this delay time, the transmitted light And a phase-only correlation calculation unit 5 for calculating the distance to the object reflecting the light. The transmission unit 2 includes a laser diode (LD) 20 and an LD drive circuit 21 that drives the LD 20. An LED may be used instead of the LD.
受信部 3は、フォトダイオード (PD) 30と、 PD30から出力される信号を増幅する増 幅回路 31とから構成される。  The receiving unit 3 includes a photodiode (PD) 30 and an amplifier circuit 31 that amplifies a signal output from the PD 30.
[0014] 以下、本実施例のレーダ装置の動作を説明する。図 2はレーダ装置の動作を示す フローチャートである。送信信号生成部丄は、疑似ランダム信号である送信信号を生 成する (ステップ Sl)。詳述すると、電子回路の抵抗器等に発生する熱雑音、大気雑 音または宇宙雑音、放射性元素の崩壊による放射線の発生、あるいはマイクロコンビ ユータに搭載されている擬似乱数発生器 PRNG等の周知の手段により擬似ランダム 信号を得る。次に、擬似ランダム信号をクロック 'パルスに合わせて周期的にサンプリ ングし、このサンプリング値を適当な閾値と比較し、小さければ 0、大きければ 1を次 回のサンプリングまで保持する。このようにして、クロックの周期毎に 0及び 1のいずれ かの状態が略非周期的に出来するパルス信号としての擬似ランダム信号 (以下、ラン ダムパルス信号ということもある)を得る。なお、後述する位相限定相関法の誤算出率 を低減するために、送信信号は方形波よりもパルスが台形波状のランダムパルス信 号であることが好ましい。方形波を台形波に変換することは周知の信号処理技術で 実現できる。このとき、台形波は、完全な台形波ではなぐ立ち上がりと立ち下がりの スロープが例えば CRを用いた指数関数で表される曲線状の略台形波でもよい。な お、上述の擬似ランダム信号は、使用する度に新たに生成されるものであっても良い し、予めメモリに記憶されていて使用する度に再生されるものであっても良い。  [0014] Hereinafter, the operation of the radar apparatus of the present embodiment will be described. Fig. 2 is a flowchart showing the operation of the radar system. The transmission signal generation unit generates a transmission signal that is a pseudo-random signal (step Sl). Specifically, it is well known that thermal noise generated in resistors of electronic circuits, atmospheric noise or cosmic noise, generation of radiation due to decay of radioactive elements, or pseudo-random number generator PRNG mounted on a microcomputer. A pseudo-random signal is obtained by means. Next, a pseudo-random signal is sampled periodically according to the clock pulse, and this sampling value is compared with an appropriate threshold value. If it is small, 0 is held and 1 is held until the next sampling. In this way, a pseudo-random signal (hereinafter sometimes referred to as a random pulse signal) is obtained as a pulse signal in which one of the states 0 and 1 can be generated approximately aperiodically for each clock cycle. In order to reduce the error calculation rate of the phase-only correlation method described later, the transmission signal is preferably a random pulse signal having a trapezoidal pulse rather than a square wave. Converting a square wave to a trapezoidal wave can be realized by a known signal processing technique. At this time, the trapezoidal wave may be a curved substantially trapezoidal wave in which the rising and falling slopes, which are not a perfect trapezoidal wave, are represented by an exponential function using CR, for example. The pseudo-random signal described above may be newly generated every time it is used, or may be stored in advance in a memory and reproduced every time it is used.
[0015] 位相限定相関法では、送信信号にはアナログ信号を用いる必要があり、一方、後 述するカオスレーザーレーダでは、送信信号には本来急峻で再現性のある立ち上が りを持つノ ルスのような信号を用いる必要がある。台形波及び略台形波の一方を用 いることにより、比較的簡単な手段(例えばランダムノ ルス信号の出力に CR回路など の 1次遅延回路を追加するなど)で位相限定相関法とカオスレーザーレーダ方式の 双方に適した送信信号とすることができる。  [0015] In the phase-only correlation method, it is necessary to use an analog signal as a transmission signal. On the other hand, in the chaotic laser radar described later, the transmission signal has a steep and reproducible rise in nature. It is necessary to use a signal such as By using either a trapezoidal wave or a substantially trapezoidal wave, the phase-only correlation method and the chaotic laser radar can be performed with relatively simple means (for example, by adding a first-order delay circuit such as a CR circuit to the output of a random noise signal). It is possible to make the transmission signal suitable for both systems.
[0016] 送信部 2の LD駆動回路 21は、送信信号に応じて LD20を駆動することにより、送 信信号に応じて強度変調されたノ ルス状のレーザー光である送信光を LD20から出 力させる(ステップ S2)。この送信光は、図示しない投射レンズにより平行光となって 照射される。 [0016] The LD drive circuit 21 of the transmission unit 2 drives the LD 20 in accordance with the transmission signal, so that the transmission light, which is a Norse-shaped laser beam whose intensity is modulated in accordance with the transmission signal, is output from the LD 20. (Step S2). This transmitted light is irradiated as parallel light by a projection lens (not shown).
[0017] 送信部 2から照射された送信光は、送信部 2の前方にある物体(以下、 目標物 10と 呼ぶ)に当たって反射され、この反射光の一部が図示しない受光レンズで集光されて 、受信部 3の PD30に入射する。  [0017] The transmission light emitted from the transmission unit 2 is reflected by an object in front of the transmission unit 2 (hereinafter referred to as a target object 10), and a part of the reflected light is collected by a light receiving lens (not shown). Then, it enters the PD 30 of the receiver 3.
PD30は、入射した光を電流に変換し、増幅回路 31は、 PD30の出力電流を電圧 に変換して増幅し、受信信号として出力する (ステップ S3)。  The PD 30 converts the incident light into a current, and the amplifier circuit 31 converts the output current of the PD 30 into a voltage, amplifies it, and outputs it as a received signal (step S3).
[0018] LPF4は、受信部 3から出力された受信信号の高周波成分を除去する。  LPF 4 removes a high-frequency component of the reception signal output from reception unit 3.
次に、位相限定相関演算部 5は、送信信号生成部 1が生成した送信信号と LPF4 を通過した受信信号とを受けて、送信信号に対する受信信号の遅延時間を求め、こ の遅延時間を基に目標物 10までの距離を計算する (ステップ S4)。位相限定相関演 算部 5は、送信信号に対する受信信号の遅延時間を求める手法として、位相限定相 関法を用いる。  Next, the phase only correlation calculation unit 5 receives the transmission signal generated by the transmission signal generation unit 1 and the reception signal that has passed through the LPF 4 to obtain the delay time of the reception signal with respect to the transmission signal, and based on this delay time. The distance to the target 10 is calculated (step S4). The phase-only correlation calculation unit 5 uses the phase-only correlation method as a method for obtaining the delay time of the received signal with respect to the transmitted signal.
[0019] 位相限定相関法は、信号の位相に着目した相互相関アルゴリズムである。信号を フーリエ変換すると振幅スペクトルと位相スペクトルが得られる力 S、このうち位相スぺク トルは信号の強度変化、すなわち信号の形状に関わる情報を保存しており、振幅ス ベクトルにはこうした情報は含まれていない。位相限定相関法は、相関値の計算過 程において振幅情報を除去し(あるいは振幅情報の重みを減じ)、位相情報のみを 用いる(あるいは位相情報の重みを増して用いる)相互相関アルゴリズムである。以下 、この位相限定相関法についてより詳細に説明する。  [0019] The phase only correlation method is a cross-correlation algorithm that focuses on the phase of a signal. The force S that gives the amplitude spectrum and phase spectrum when the signal is Fourier-transformed, of which the phase spectrum stores information related to the signal intensity change, that is, the shape of the signal. Not included. The phase-only correlation method is a cross-correlation algorithm that removes amplitude information (or decreases the weight of amplitude information) and uses only phase information (or increases the weight of phase information) in the correlation value calculation process. Hereinafter, this phase-only correlation method will be described in more detail.
[0020] 図 3は位相限定相関演算部 5の 1構成例を示すブロック図、図 4は位相限定相関演 算部 5の動作を示すフローチャートである。位相限定相関演算部 5は、入力部 50と、 第 1のフーリエ変換部 51と、合成処理部 52と、振幅抑制処理部 53と、第 2のフーリエ 変換部 54と、遅延時間検出部 55と、距離算出部 56とを有する。  FIG. 3 is a block diagram showing a configuration example of the phase only correlation calculation unit 5, and FIG. 4 is a flowchart showing the operation of the phase only correlation calculation unit 5. The phase only correlation calculation unit 5 includes an input unit 50, a first Fourier transform unit 51, a synthesis processing unit 52, an amplitude suppression processing unit 53, a second Fourier transform unit 54, and a delay time detection unit 55. And a distance calculation unit 56.
[0021] まず、入力部 50は、送信信号と受信信号をそれぞれ AD変換して取り込む(図 4ス テツプ S 100)。このとき図 5に示すように、 AD変換のサンプリング周期 500は、送信 信号 501の台形波の長さ 502よりも短いことが必要とされる。言い換えると、送信信号 501は、台形波の長さ 502がサンプリング周期 500よりも長くなるように生成される。さ らに、台形波の形状を適切に取り込むために、送信信号 501の立ち上がり時間 503 および立ち下がり時間 504は、サンプリング周期 500よりも長いことが望ましい。なお 、図 5における 505はサンプリングタイミングである。 [0021] First, the input unit 50 performs AD conversion on each of the transmission signal and the reception signal (step S100 in FIG. 4). At this time, as shown in FIG. 5, the AD conversion sampling period 500 is required to be shorter than the trapezoidal wave length 502 of the transmission signal 501. In other words, the transmission signal 501 is generated such that the trapezoidal wave length 502 is longer than the sampling period 500. The Further, in order to properly capture the shape of the trapezoidal wave, it is desirable that the rise time 503 and the fall time 504 of the transmission signal 501 are longer than the sampling period 500. Note that reference numeral 505 in FIG. 5 denotes a sampling timing.
[0022] 続いて、第 1のフーリエ変換部 51は、入力部 50が取り込んだ送信信号と受信信号 にそれぞれ 1次元離散的フーリエ変換 (DFT)を施す (ステップ S 101)。これにより、 時間軸に関するデータが周波数軸に関するデータに変換される。以後、フーリエ変 換後の送信信号、受信信号をそれぞれフーリエ送信信号、フーリエ受信信号と呼ぶ [0022] Subsequently, the first Fourier transform unit 51 performs one-dimensional discrete Fourier transform (DFT) on the transmission signal and the reception signal captured by the input unit 50 (step S101). As a result, data on the time axis is converted into data on the frequency axis. Hereinafter, the transmission signal and the reception signal after Fourier transform are called the Fourier transmission signal and the Fourier reception signal, respectively.
[0023] 次に、合成処理部 52は、フーリエ送信信号とフーリエ受信信号とを合成して、合成 フーリエ信号を得る (ステップ S 102)。ここで、合成フーリエ信号は、フーリエ受信信 号を AXejeとし、フーリエ送信信号を BXe] とした場合、 AXBXej(e Φ)で表される。 ただし、 A, Βは振幅スペクトル、 θ , φは位相スペクトルで、いずれも周波数(フーリ ェ)空間の関数とする。この合成フーリエ信号 AXBXej(e Φ)は、次式で表される。 Next, the synthesis processing unit 52 synthesizes the Fourier transmission signal and the Fourier reception signal to obtain a synthesized Fourier signal (step S 102). Here, the synthesized Fourier signal is expressed as AXBXe j (e Φ) , where the Fourier received signal is AXe je and the Fourier transmitted signal is BXe ] . Where A and Β are amplitude spectra and θ and φ are phase spectra, both of which are functions in the frequency (Fourier) space. This synthesized Fourier signal AXBXe j (e Φ) is expressed by the following equation.
AXBXe — )=AXBXcos( θ - ) +j XAXBXsin( θ - )  AXBXe —) = AXBXcos (θ-) + j XAXBXsin (θ-)
••• (2)  ••• (2)
[0024] そして、 AXe】e = a +j β , BXeJ = α +j β とすると、 Α= 2+ /3 2) 1/2, Β = [0024] And AXe] e = a + j β, BXe J = α + j β, Α = 2 + / 3 2 ) 1/2 , Β =
2 2 1 1  2 2 1 1
2 2+ β Υ2, θ φ =tan— 1 ( /3 , a 2)となる。式(2)を計算す
Figure imgf000009_0001
2 2 + β Υ 2 , θ φ = tan— 1 (/ 3, a 2 ).
Figure imgf000009_0001
ることにより合成フーリエ信号を得ることカできる。なお、 AXBXe^— )=AXBXe je X ) +j (
Figure imgf000009_0002
Thus, a synthesized Fourier signal can be obtained. AXBXe ^ —) = AXBX e je X) + j (
Figure imgf000009_0002
a X β - a X β )として、合成フーリエ信号を求めるようにしてもよい。  a synthesized Fourier signal may be obtained as aXβ-aXβ).
2 1 1 2  2 1 1 2
[0025] 振幅抑制処理部 53は、合成フーリエ信号の振幅抑制処理を行う(ステップ S103) 。本実施例では、振幅抑制処理として、対数 (log)処理を行う。すなわち、振幅抑制 処理部 53は、前記の合成フーリエ信号 AXBXei(e Φ)の対数をとり、 log(AXB) Xei( ΘΦ)とすることにより、合成フーリエ信号の振幅 AX Βを log (AX Β)に抑制する (AX B〉log(AXB))。なお、振幅抑制処理として合成フーリエ信号の平方根を求める処 理を行うようにしてもよい。また、対数処理や平方根処理に限らず、振幅を抑制するこ とができればどのような処理でもよ!/、。 [0025] The amplitude suppression processing unit 53 performs amplitude suppression processing of the synthesized Fourier signal (step S103). In this embodiment, logarithmic (log) processing is performed as amplitude suppression processing. That is, the amplitude suppression processing unit 53 takes the logarithm of the synthesized Fourier signal AXBXe i (e Φ ) and takes it as log (AXB) Xe i ( ΘΦ) , thereby obtaining the amplitude AX の of the synthesized Fourier signal as log Suppress to (AX Β) (AX B> log (AXB)). A process for obtaining the square root of the synthesized Fourier signal may be performed as the amplitude suppression process. In addition to logarithmic processing and square root processing, any processing can be used as long as the amplitude can be suppressed! /.
[0026] 振幅抑制処理を施した合成フーリエ信号では、送信信号と受信信号の強度差によ る影響が小さくなる。すなわち、振幅抑制処理を行うことにより、合成フーリエ信号の スペクトラム強度が抑圧されるので、飛び抜けた値がなくなり、より多くの情報が有効 となる。また、振幅抑制処理を行うことにより、遅延時間の導出に必要な情報である特 徴的な部分がより強調される。 [0026] In the synthesized Fourier signal subjected to the amplitude suppression process, the intensity difference between the transmission signal and the reception signal is caused. The effect is smaller. In other words, by performing the amplitude suppression process, the spectrum intensity of the synthesized Fourier signal is suppressed, so there are no outstanding values, and more information becomes effective. In addition, by performing the amplitude suppression process, a characteristic part that is information necessary for deriving the delay time is more emphasized.
[0027] 次に、第 2のフーリエ変換部 54は、振幅抑制処理後の合成フーリエ信号に 1次元 離散的フーリエ変換 (DFT)を施す (ステップ S104)。この 1次元離散的フーリエ変換 により周波数軸に関するデータが時間軸に関するデータに変換され、相関信号が得 られる。なお、第 2のフーリエ変換部 54は、 1次元離散的フーリエ変換を施す代わり に、 1次元離散的逆フーリエ変換を施すようにしてもよい。  Next, the second Fourier transform unit 54 performs one-dimensional discrete Fourier transform (DFT) on the synthesized Fourier signal after the amplitude suppression process (step S104). By this one-dimensional discrete Fourier transform, data on the frequency axis is converted into data on the time axis, and a correlation signal is obtained. Note that the second Fourier transform unit 54 may perform a one-dimensional discrete inverse Fourier transform instead of performing the one-dimensional discrete Fourier transform.
[0028] 第 2のフーリエ変換部 54から出力される相関信号(時間軸に関するデータ)では、 送信信号と受信信号の時間差に相当するところに振幅のピークが現れる。遅延時間 検出部 55は、この相関信号のピーク位置に基づいて、送信信号に対する受信信号 の遅延時間を求める(ステップ S105)。このとき、遅延時間検出部 55は、相関信号に 対して内揷法を用いてピーク位置をサンプリング周期 500の数分の 1から数十分の 1 程度の精度で求めることにより、受信信号の遅延時間を高精度に求めることができる In the correlation signal (data related to the time axis) output from the second Fourier transform unit 54, an amplitude peak appears at a position corresponding to the time difference between the transmission signal and the reception signal. The delay time detector 55 obtains the delay time of the received signal with respect to the transmission signal based on the peak position of the correlation signal (step S105). At this time, the delay time detection unit 55 obtains the delay of the received signal by obtaining the peak position with a precision of a fraction of the sampling period 500 to a few tenths using the internal method for the correlation signal. Time can be calculated with high accuracy
Yes
[0029] 遅延時間検出部 55が検出した遅延時間を d[s]、 目標物 10までの距離を L[m]、 光速を C [m/s]とすると、次式の関係が成り立つ。  [0029] When the delay time detected by the delay time detector 55 is d [s], the distance to the target 10 is L [m], and the speed of light is C [m / s], the following relationship holds.
d= (2 X L) /C · · · (3)  d = (2 X L) / C (3)
距離算出部 56は、遅延時間検出部 55が検出した遅延時間 dから、式(3)により目 標物 10までの距離 Lを算出する(ステップ S 106)。  The distance calculation unit 56 calculates the distance L to the target object 10 using the equation (3) from the delay time d detected by the delay time detection unit 55 (step S106).
[0030] 以上のように、本実施例では、位相限定相関法を用いることにより、送信信号に対 する受信信号の遅延時間を高精度に検出することができるので、従来のカオスレー ザ一レーダ装置やタイムォブフライトのように回路の速度に制限されず、 目標物まで の距離を高精度に測定することができる。  [0030] As described above, in the present embodiment, by using the phase-only correlation method, the delay time of the reception signal with respect to the transmission signal can be detected with high accuracy. The distance to the target can be measured with high accuracy without being limited by the circuit speed as in the case of time-of-flight.
[0031] [第 2実施例] [0031] [Second Embodiment]
次に、本発明の第 2実施例について説明する。図 6は本発明の第 2実施例に係るレ ーダ装置の構成を示すブロック図であり、図 1と同一の構成には同一の符号を付して ある。本実施例のレーダ装置は、送信信号生成部 1と、送信部 2と、受信部 3と、 LPF 4と、位相限定相関演算部 5と、送信信号と受信信号をそれぞれ 2値化する 2値化回 路 6と、カオスレーザーレーダ方式により送信信号に対する受信信号の遅延時間を 求めるカオスレーザーレーダ演算部 7とを有する。 Next, a second embodiment of the present invention will be described. FIG. 6 is a block diagram showing the configuration of the radar apparatus according to the second embodiment of the present invention. The same components as those in FIG. is there. The radar apparatus according to the present embodiment includes a transmission signal generation unit 1, a transmission unit 2, a reception unit 3, an LPF 4, a phase only correlation calculation unit 5, and a binary signal that binarizes the transmission signal and the reception signal. And a chaos laser radar operation unit 7 for obtaining a delay time of the reception signal with respect to the transmission signal by the chaos laser radar system.
[0032] 送信信号生成部 1、送信部 2、受信部 3、 LPF4の動作は第 1実施例と同じである。  [0032] The operations of the transmission signal generator 1, the transmitter 2, the receiver 3, and the LPF 4 are the same as those in the first embodiment.
2値化回路 6は、送信信号生成部 1から出力された送信信号を + 1と 1の 2値に変 換すると共に、 LPF4を通過した受信信号を同様に 2値に変換する。 LPF4を通過し た受信信号を用いるのはノイズ低減のためである。  The binarization circuit 6 converts the transmission signal output from the transmission signal generation unit 1 into a binary value of +1 and 1, and similarly converts the reception signal that has passed through the LPF 4 into a binary value. The received signal that passed through LPF4 is used to reduce noise.
[0033] 図 7はカオスレーザーレーダ演算部 7の 1構成例を示すブロック図、図 8は力オスレ 一ザ一レーダ演算部 7と位相限定相関演算部 5の動作を示すフローチャートである。 カオスレーザーレーダ演算部 7は、エッジ検出部 70と、シフトレジスタ 71と、加算処理 部 72と、遅延時間検出部 73とを有する。位相限定相関演算部 5には送信信号生成 部 1が生成した送信信号と LPF4を通過した受信信号が入力され、カオスレーザーレ ーダ演算部 7には 2値化回路 6によって 2値化された送信信号と受信信号が入力され  FIG. 7 is a block diagram showing a configuration example of the chaos laser radar calculation unit 7, and FIG. 8 is a flowchart showing the operations of the force male laser radar calculation unit 7 and the phase-only correlation calculation unit 5. The chaos laser radar calculation unit 7 includes an edge detection unit 70, a shift register 71, an addition processing unit 72, and a delay time detection unit 73. The phase-only correlation calculation unit 5 receives the transmission signal generated by the transmission signal generation unit 1 and the reception signal that has passed through the LPF 4, and the chaos laser radar calculation unit 7 is binarized by the binarization circuit 6. Send signal and receive signal are input
[0034] まず、カオスレーザーレーダ演算部 7のエッジ検出部 70は、 2値化された送信信号 [0034] First, the edge detection unit 70 of the chaos laser radar calculation unit 7 performs the binarized transmission signal.
(図 10の ST)の時間軸上のある 1点を基準時刻とし、この基準時刻から送信信号 ST の 1番目の立ち上がりエッジまでの時間 Dl、 2番目の立ち上がりエッジまでの時間 D 2、 3番目の立ち上がりエッジまでの時間 D3、 n (nは任意の正の整数)番目の立ち上 力 Sりエッジまでの時間 Dnを検出する。そして、シフトレジスタ 71は、 2値化された受信 信号(図 10の SR)を D1から Dnまでの各々の時間分だけシフトした受信信号 SRI , S R2, SR3, · · · , SRnを生成する(図 8ステップ S200)。  A certain point on the time axis of (ST in Fig. 10) is set as the reference time, the time Dl from this reference time to the first rising edge of the transmission signal ST, the time D 2 to the second rising edge, and the third Time D3, n (n is an arbitrary positive integer) th rising force S Time Dn until the rising edge is detected. Then, the shift register 71 generates received signals SRI, SR2, SR3,..., SRn obtained by shifting the binarized received signal (SR in FIG. 10) by each time from D1 to Dn. (Fig. 8, step S200).
[0035] 加算処理部 72は、シフトレジスタ 71によって生成された n個の受信信号 SRI , SR2 , SR3, · · · , SRnをカロ算する(ステップ S201)。これにより、図 10に示したようなカロ算 信号 SUMが得られる。この加算信号 SUMでは、送信信号と受信信号の時間差に 相当するところにゼロクロス点が現れる。  The addition processing unit 72 performs calorie calculation on the n received signals SRI, SR2, SR3,..., SRn generated by the shift register 71 (step S201). As a result, the calorie calculation signal SUM as shown in Fig. 10 is obtained. In this sum signal SUM, a zero cross point appears at a position corresponding to the time difference between the transmission signal and the reception signal.
遅延時間検出部 73は、この加算信号 SUMのゼロクロス点の位置に基づいて、送 信信号の基準時刻に対する受信信号の遅延時間を求める (ステップ S202)。そして 、遅延時間検出部 73は、検出した遅延時間を位相限定相関演算部 5に通知する。 なお、図 10の加算信号 SUMでは、記載を容易にするために、連続した時間で処理 した場合の波形を示しているが、実際には離散的に受信信号を処理するため、加算 信号も図 10の SUM'のように離散的な値となる。図 10における 101は、サンプリング タイミングである。 The delay time detection unit 73 obtains the delay time of the reception signal with respect to the reference time of the transmission signal based on the position of the zero cross point of the addition signal SUM (step S202). And The delay time detection unit 73 notifies the phase-only correlation calculation unit 5 of the detected delay time. Note that the added signal SUM in Fig. 10 shows the waveform when processed for continuous time for ease of description. However, since the received signal is actually processed discretely, the added signal is also shown in the figure. It becomes a discrete value like SUM 'of 10. 101 in FIG. 10 is a sampling timing.
[0036] 位相限定相関演算部 5の入力部 50、第 1のフーリエ変換部 51、合成処理部 52、振 幅抑制処理部 53、第 2のフーリエ変換部 54および遅延時間検出部 55は、遅延時間 検出部 73で検出された遅延時間を中心とする所定の時間範囲についてのみ、図 4 のステップ S100〜S 105で説明した処理を実行し、送信信号に対する受信信号の 遅延時間を求める(ステップ S203)。  [0036] The input unit 50, the first Fourier transform unit 51, the synthesis processing unit 52, the amplitude suppression processing unit 53, the second Fourier transform unit 54, and the delay time detection unit 55 of the phase only correlation calculation unit 5 are delayed. Only in the predetermined time range centered on the delay time detected by the time detector 73, the processing described in steps S100 to S105 in FIG. 4 is executed to obtain the delay time of the received signal with respect to the transmission signal (step S203). ).
距離算出部 56は、図 4のステップ S106と同様に目標物 10までの距離 Lを算出す る(ステップ S204)。  The distance calculation unit 56 calculates the distance L to the target 10 in the same manner as Step S106 in FIG. 4 (Step S204).
[0037] 以上のように、本実施例では、カオスレーザーレーダ方式により検出した遅延時間 を中心とする所定の時間範囲についてのみ位相限定相関法により受信信号の遅延 時間を求めるようにしたので、位相限定相関演算部 5の計算量を少なくすることがで きる。また、位相限定相関法にはノイズに弱いという欠点がある力 カオスレーザーレ ーダ方式を併用することにより、耐ノイズ性に優れたレーダ装置を実現することができ る。本実施例では、距離の測定精度の向上は位相限定相関演算部 5によって実現し ているため、カオスレーザーレーダ演算部 7に高速の回路を使用する必要はない。  As described above, in this embodiment, the delay time of the received signal is obtained by the phase-only correlation method only for a predetermined time range centered on the delay time detected by the chaotic laser radar method. The calculation amount of the limited correlation calculation unit 5 can be reduced. In addition, the phase-only correlation method can be combined with the power chaotic laser radar method, which has the disadvantage of being vulnerable to noise, to realize a radar device with excellent noise resistance. In this embodiment, since the improvement of the distance measurement accuracy is realized by the phase-only correlation calculation unit 5, it is not necessary to use a high-speed circuit for the chaos laser radar calculation unit 7.
[0038] なお、第 1実施例、第 2実施例では、送信信号の搬送波として光を用いたが、これ に限るものではなく、電波等の他の電磁波を用いてもょレ、。  [0038] In the first and second embodiments, light is used as the carrier wave of the transmission signal. However, the present invention is not limited to this, and other electromagnetic waves such as radio waves may be used.
また、第 1実施例、第 2実施例では、送信信号としてパルスが台形波状及び略台形 波状の一方のランダムノ ルス信号を用いたが、パルスが正弦波状のランダムノ ルス 信号 (正弦波とランダムパルス信号との積算信号)を用いてもょレ、。正弦波を用いると 、送信信号が生成し易い上に、位相限定相関法で処理する周波数帯域を制限する ことができ、位相限定相関法による遅延時間の誤算出される可能性を低減することが できるので、耐ノイズ性と高分解能を両立させたレーダ装置を実現することができる。 この場合のランダムノ ルス信号と送信信号の波形を図 9に示す。この場合、 LPF4の 代わりに狭帯域のバンドパスフィルタを用いることができる。ランダムノ ルス信号のクロ ックとサンプリング周期は、サンプリング定理から見て、正弦波の 2倍の周波数よりも 高レ、周波数である必要がある。正弦波の 4倍の周波数以上であればより好まし!/、。 In the first and second embodiments, one random noise signal having a trapezoidal waveform or a substantially trapezoidal waveform is used as the transmission signal, but a random noise signal having a sinusoidal pulse (sine wave and random pulse) is used. (Integrated signal with pulse signal) When a sine wave is used, it is easy to generate a transmission signal, and it is possible to limit the frequency band processed by the phase-only correlation method, thereby reducing the possibility of erroneous calculation of the delay time by the phase-only correlation method. Therefore, it is possible to realize a radar apparatus that achieves both noise resistance and high resolution. Figure 9 shows the waveforms of the random noise signal and transmission signal in this case. In this case, LPF4 Instead, a narrow-band bandpass filter can be used. From the viewpoint of the sampling theorem, the clock and sampling period of the random noise signal must be higher than the frequency twice that of the sine wave. It is more preferable if it is more than 4 times the frequency of the sine wave!
[0039] 位相限定相関法において、位置のずれは、周波数に比例した位相のずれに変換 される。例えば「周波数」 =C /「波長 10cm」のとき lcmのずれは 36° に相当し、「2 倍の周波数」 =C /「波長 5cm」においては同じ lcmは 72° のずれに相当する(た だし、 Cは電磁波の単位時間に進む距離)。位置ずれの算出は、このときの周波数と 位相の比例係数を求めることになる。  [0039] In the phase-only correlation method, the position shift is converted into a phase shift proportional to the frequency. For example, when “frequency” = C / “wavelength 10 cm”, the lcm deviation corresponds to 36 °, and for “double frequency” = C / “wavelength 5 cm,” the same lcm corresponds to a 72 ° deviation ( Where C is the distance traveled in unit time of electromagnetic waves). To calculate the displacement, the proportional coefficient of frequency and phase at this time is obtained.
一般的な位相限定相関法のように送信信号の周波数が様々な周波数を含んでい ると、周波数に対する位相差の比例係数を求めるときに、ノイズと受信信号の分離が できな!/、ため、ノイズの位相ずれを含む結果で比例係数を求めることになる。  If the frequency of the transmitted signal includes various frequencies as in the general phase-only correlation method, noise and the received signal cannot be separated when calculating the proportional coefficient of the phase difference with respect to the frequency! The proportionality coefficient is obtained from the result including the phase shift of noise.
[0040] 一方、図 9に示すように送信信号として単一周波数の正弦波とランダムノ^レス信号 との積算信号を用いた場合には、受信信号をバンドパスフィルタ(BPF)に通してノィ ズを除去することができるので、傾きの算出精度が向上する。ただし、周波数軸上の 1点の位相ずれの情報しかな!/、ため、測定点が少なくなるとレ、うノイズには弱!/、要素 を含む。  On the other hand, as shown in FIG. 9, when an integrated signal of a sine wave of a single frequency and a random noise signal is used as a transmission signal, the received signal is passed through a bandpass filter (BPF) and noise is received. Since the shift can be removed, the calculation accuracy of the slope is improved. However, there is only information on the phase shift at one point on the frequency axis, so when the number of measurement points decreases, it is weak against noise and includes elements.
送信信号として単一周波数の正弦波を 0で折り返した正弦半波とランダムパルス信 号との積算信号を用いた場合には、同様に受信信号を BPFに通してノイズを除去す ること力 Sできると共に、測定点が増えるために傾きの算出精度が向上する。さらに、ラ ンダムパルス信号と積算する正弦波を異なる周波数の複数の正弦波とすれば、さら に測定点を増やすことができ、傾きの算出精度をさらに向上させることができる。 産業上の利用可能性  When using an integrated signal of a sine half wave obtained by folding a single frequency sine wave at 0 and a random pulse signal as the transmission signal, it is also possible to remove the noise by passing the received signal through the BPF. In addition, since the number of measurement points increases, the calculation accuracy of the slope improves. Furthermore, if the sine wave to be integrated with the random pulse signal is a plurality of sine waves of different frequencies, the number of measurement points can be further increased, and the slope calculation accuracy can be further improved. Industrial applicability
[0041] 本発明は、例えば自動車の衝突防止センサなどのレーダ装置に適用することがで きる。 [0041] The present invention can be applied to a radar apparatus such as an automobile collision prevention sensor.

Claims

請求の範囲 The scope of the claims
[1] 略非周期性の疑似ランダム信号である送信信号を生成する送信信号生成手段と、 電磁波を前記送信信号で変調した送信波を放射する送信手段と、  [1] A transmission signal generating unit that generates a transmission signal that is a substantially aperiodic pseudorandom signal, a transmission unit that radiates a transmission wave obtained by modulating an electromagnetic wave with the transmission signal,
前記送信波の反射波を受信して受信信号を出力する受信手段と、  Receiving means for receiving a reflected wave of the transmission wave and outputting a reception signal;
前記送信信号に対する前記受信信号の遅延時間を求め、この遅延時間を基に前 記送信波を反射した物体までの距離を算出する演算手段とを有し、  Calculating a delay time of the reception signal with respect to the transmission signal, and calculating a distance to an object reflecting the transmission wave based on the delay time;
前記演算手段は、  The computing means is
前記送信信号と前記受信信号にそれぞれ 1次元離散的フーリエ変換を施してフー リエ送信信号とフーリエ受信信号を生成する第 1のフーリエ変換手段と、  First Fourier transform means for performing a one-dimensional discrete Fourier transform on each of the transmission signal and the reception signal to generate a Fourier transmission signal and a Fourier reception signal;
前記フーリエ送信信号と前記フーリエ受信信号を合成して合成フーリエ信号を生成 する合成処理手段と、  Combining processing means for generating a combined Fourier signal by combining the Fourier transmission signal and the Fourier reception signal;
前記合成フーリエ信号の振幅抑制処理を行う振幅抑制処理手段と、  Amplitude suppression processing means for performing amplitude suppression processing of the synthesized Fourier signal;
前記振幅抑制処理後の合成フーリエ信号に 1次元離散的フーリエ変換及び 1次元 離散的逆フーリエ変換の一方を施して相関信号を生成する第 2のフーリエ変換手段 と、  A second Fourier transform means for generating a correlation signal by applying one of a one-dimensional discrete Fourier transform and a one-dimensional discrete inverse Fourier transform to the synthesized Fourier signal after the amplitude suppression processing;
前記相関信号のピーク位置に基づいて前記遅延時間を求める第 1の遅延時間検 出手段と、  First delay time detection means for obtaining the delay time based on a peak position of the correlation signal;
前記遅延時間を基に前記送信波を反射した物体までの距離を算出する距離算出 手段とを備えることを特徴とするレーダ装置。  A radar apparatus comprising: distance calculation means for calculating a distance to an object reflecting the transmission wave based on the delay time.
[2] 請求項 1記載のレーダ装置において、 [2] The radar device according to claim 1,
前記送信信号は、パルスが台形波状及び略台形波状の一方のランダムパルス信 号であることを特徴とするレーダ装置。  The radar apparatus according to claim 1, wherein the transmission signal is a random pulse signal having one of a trapezoidal waveform and a substantially trapezoidal waveform.
[3] 請求項 1記載のレーダ装置において、 [3] The radar device according to claim 1,
前記送信信号は、パルスが正弦波状のランダムパルス信号であることを特徴とする レーダ装置。  The transmission device is a random pulse signal having a sinusoidal pulse.
[4] 請求項 1記載のレーダ装置において、 [4] The radar device according to claim 1,
さらに、前記送信信号と前記受信信号をそれぞれ 2値化して 2値化送信信号と 2値 化受信信号を生成する 2値化手段と、 前記 2値化送信信号の基準時刻から複数の立ち上がりエッジまでの時間をそれぞ れ検出するエッジ検出手段と、 And binarization means for binarizing the transmission signal and the reception signal to generate a binary transmission signal and a binary reception signal, respectively. Edge detection means for detecting each time from a reference time of the binarized transmission signal to a plurality of rising edges;
前記 2値化受信信号を前記エッジ検出手段が検出した複数の時間分だけシフトし た複数の受信信号を生成するシフトレジスタと、  A shift register that generates a plurality of reception signals obtained by shifting the binarized reception signal by a plurality of times detected by the edge detection unit;
前記シフトレジスタによって生成された複数の受信信号を加算して加算信号を生成 する加算処理手段と、  Addition processing means for adding a plurality of reception signals generated by the shift register to generate an addition signal;
前記加算信号のゼロクロス点の位置に基づ!/、て、前記 2値化送信信号の基準時刻 に対する前記 2値化受信信号の遅延時間を求める第 2の遅延時間検出手段とを有し 前記演算手段の第 1のフーリエ変換手段と合成処理手段と振幅抑制処理手段と第 2のフーリエ変換手段と第 1の遅延時間検出手段とは、前記第 2の遅延時間検出手 段が検出した遅延時間を中心とする所定の時間範囲についてのみ、前記送信信号 に対する前記受信信号の遅延時間を求めることを特徴とするレーダ装置。  Second delay time detecting means for determining a delay time of the binarized reception signal with respect to a reference time of the binarized transmission signal based on a position of a zero cross point of the addition signal! / The first Fourier transform means, the synthesis processing means, the amplitude suppression processing means, the second Fourier transform means, and the first delay time detection means are the delay times detected by the second delay time detection means. A radar apparatus, wherein a delay time of the reception signal with respect to the transmission signal is obtained only in a predetermined time range centered.
[5] 略非周期性の疑似ランダム信号である送信信号を生成する送信信号生成ステップ と、 [5] A transmission signal generation step of generating a transmission signal that is a substantially aperiodic pseudorandom signal;
電磁波を前記送信信号で変調した送信波を放射する送信ステップと、 前記送信波の反射波を受信して受信信号を出力する受信ステップと、 前記送信信号に対する前記受信信号の遅延時間を求め、この遅延時間を基に前 記送信波を反射した物体までの距離を算出する演算ステップとを有し、  A transmission step of radiating a transmission wave obtained by modulating an electromagnetic wave with the transmission signal; a reception step of receiving a reflected wave of the transmission wave and outputting a reception signal; and obtaining a delay time of the reception signal with respect to the transmission signal, A calculation step for calculating the distance to the object reflecting the transmission wave based on the delay time,
前記演算ステップは、前記送信信号と前記受信信号にそれぞれ離散的フーリエ変 換を施して前記遅延時間を求めるステップを含むことを特徴とする距離測定方法。  The calculation step includes a step of performing discrete Fourier transform on each of the transmission signal and the reception signal to obtain the delay time.
PCT/JP2007/066259 2006-08-22 2007-08-22 Radar apparatus and distance measuring method WO2008023726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006225202A JP4437804B2 (en) 2006-08-22 2006-08-22 Radar apparatus and distance measuring method
JP2006-225202 2006-08-22

Publications (1)

Publication Number Publication Date
WO2008023726A1 true WO2008023726A1 (en) 2008-02-28

Family

ID=39106811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066259 WO2008023726A1 (en) 2006-08-22 2007-08-22 Radar apparatus and distance measuring method

Country Status (2)

Country Link
JP (1) JP4437804B2 (en)
WO (1) WO2008023726A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607424B2 (en) * 2010-05-24 2014-10-15 古野電気株式会社 Pulse compression device, radar device, pulse compression method, and pulse compression program
JP2012037294A (en) * 2010-08-05 2012-02-23 Jtekt Corp Ultrasonic measuring method and ultrasonic workpiece diameter measuring device
RU2557808C1 (en) * 2014-04-09 2015-07-27 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Method of determining inclined range to moving target using passive monostatic direction-finder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020454A1 (en) * 1996-11-01 1998-05-14 Yamatake Corporation Pattern extraction apparatus
JPH11237475A (en) * 1998-02-19 1999-08-31 Mitsubishi Electric Corp Radar device and detection method for target scattering point in this radar device
JP2004125733A (en) * 2002-10-07 2004-04-22 Nippon Steel Corp Apparatus and method for measuring distance
JP2004301588A (en) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp Radar system
JP2006194802A (en) * 2005-01-17 2006-07-27 Fujitsu Component Ltd Distance measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020454A1 (en) * 1996-11-01 1998-05-14 Yamatake Corporation Pattern extraction apparatus
JPH11237475A (en) * 1998-02-19 1999-08-31 Mitsubishi Electric Corp Radar device and detection method for target scattering point in this radar device
JP2004125733A (en) * 2002-10-07 2004-04-22 Nippon Steel Corp Apparatus and method for measuring distance
JP2004301588A (en) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp Radar system
JP2006194802A (en) * 2005-01-17 2006-07-27 Fujitsu Component Ltd Distance measuring apparatus

Also Published As

Publication number Publication date
JP4437804B2 (en) 2010-03-24
JP2008051523A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US7463181B2 (en) Method of suppressing interferences in systems for detecting objects
US7564400B2 (en) Spread spectrum radar apparatus
US9075138B2 (en) Efficient pulse Doppler radar with no blind ranges, range ambiguities, blind speeds, or Doppler ambiguities
US8209146B2 (en) System and method for range-finding
US11360217B2 (en) Lidar system and method of operation
KR102658557B1 (en) Lidar system and how it works.
US20070040729A1 (en) System and method for sidelobe reduction using detect-and-subtract techniques
US8358575B2 (en) Methods and apparatus for generating and processing transmitter signals
JP2004184393A (en) Pulse radar system
RU2507536C1 (en) Coherent pulsed signal measuring detector
KR101210421B1 (en) Method for driving ultra-wideband radar and ultra-wideband radar
WO2008023726A1 (en) Radar apparatus and distance measuring method
JP2008298604A (en) Radar device
JP2018066669A (en) Ultrasonic distance measuring device, ultrasonic distance measuring method and ultrasonic distance measuring program
EP2960674B1 (en) Radar and object detection method
WO2023064412A1 (en) Lidar system and method of operation
JP5004139B2 (en) Radar equipment
JP2019517681A (en) Nonuniform sampling for unique Doppler measurements
WO2020174567A1 (en) Distance measurement device and distance measurement method
RU2408033C1 (en) Method of detecting parametric scatterers
RU90222U1 (en) GROUP PARAMETRIC DIFFUSER
CN113906306A (en) Signal processing device and radar device
US20230273319A1 (en) Lidar system and method of operation
JP6865674B2 (en) Proximity detection device
JP4670404B2 (en) Signal interference check method and radar apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792857

Country of ref document: EP

Kind code of ref document: A1