WO2008023604A1 - Compound for surface modification and surface modifying method using the same - Google Patents

Compound for surface modification and surface modifying method using the same Download PDF

Info

Publication number
WO2008023604A1
WO2008023604A1 PCT/JP2007/065839 JP2007065839W WO2008023604A1 WO 2008023604 A1 WO2008023604 A1 WO 2008023604A1 JP 2007065839 W JP2007065839 W JP 2007065839W WO 2008023604 A1 WO2008023604 A1 WO 2008023604A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
surface modification
hydrophobic substrate
structural unit
modifying compound
Prior art date
Application number
PCT/JP2007/065839
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Iwasaki
Kazuhiko Ishihara
Original Assignee
National University Corporation, Tokyo Medical And Dental University
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation, Tokyo Medical And Dental University, The University Of Tokyo filed Critical National University Corporation, Tokyo Medical And Dental University
Priority to JP2008530864A priority Critical patent/JPWO2008023604A1/en
Publication of WO2008023604A1 publication Critical patent/WO2008023604A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/395Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D151/085Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds on to polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Definitions

  • the present invention relates to a surface modification compound suitable for use in modifying the surface of a hydrophobic substrate such as silicone and a surface modification method using the same.
  • the artificial joint is subject to wear because friction occurs at the sliding portion due to the operation of daily life.
  • the wear powder generated by the wear has an adverse effect on the human body, and when the wear progresses! / So-called loose looseness, the function as an artificial joint becomes difficult to fully function.
  • Patent Document 1 describes that the sliding surface of the artificial joint is made of a polymer having a phosphorylcholine group, for example, a heavy polymer composed of 2-methacryloyloxychetyl phosphorylcholine.
  • a method of forming a coalescence (called MPC polymer) is described! /.
  • MPC polymer the material to be treated made of ultra high molecular weight polyethylene is immersed in an acetone solution containing benzophenone, further immersed in an aqueous solution containing MPC, and then irradiated with ultraviolet light.
  • MPC polymer is synthesized on the surface of the workpiece.
  • Patent Document 2 A medical member made of a polymer material is immersed in a solution containing a diisocyanate compound, and further immersed in a solution containing a mixture of a polyalkylene oxide and a polyurethane prepolymer, whereby the surface of the medical device is lubricated. A method for imparting is described.
  • Patent Document 1 JP 2003-310649 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-287845
  • Patent Document 2 the method described in Patent Document 2 described above requires a coating of a diisocyanate compound and then a mixture of a polyalkylene oxide and a polyurethane prepolymer, which is favorable in terms of operability.
  • a functional group such as a hydroxyl group that reacts with a diisocyanate compound be present on the surface of the medical member, it is not suitable for surface modification of a hydrophobic substrate.
  • the present invention has been proposed in view of the problems as described above, and is suitable for use in modifying the surface of a hydrophobic substrate such as silicone to impart lubricity. It is an object of the present invention to provide a medical compound, a surface modification method using the same, and a surface-modified hydrophobic substrate and a medical member.
  • a polymer (B) composed of a hydrophilic monomer capable of radical polymerization is polymerized via a chain transfer agent or an alkyl halide initiator on a polysiloxane compound (A) having a bur group in the side chain.
  • Compound for surface modification is a polymer (B) composed of a hydrophilic monomer capable of radical polymerization.
  • the hydrophobic substrate after surface modification is suitable for surface modification of medical members because non-specific adsorption of biological substances and the like is suppressed.
  • the polymer (B) is polymerized at both ends of the polysiloxane compound (A)! /,
  • the polymer (B) at both ends is polymerized after the surface modification. It is arranged in a cilia-like manner on the surface of the hydrophobic substrate. Therefore, the lubricity of the hydrophobic substrate surface can be further enhanced.
  • the polysiloxane compound (A) contains in its structure a copolymer of a structural unit (al) derived from dimethylsiloxane and a structural unit (a2) derived from a butylmethylsiloxane force.
  • the surface modifying compound according to (1) or (2) is a copolymer of a structural unit (al) derived from dimethylsiloxane and a structural unit (a2) derived from a butylmethylsiloxane force.
  • the polysiloxane compound (A) is a copolymer of the structural unit ( a 1) derived from 1S dimethylsiloxane and the structural unit ( a 2) derived from butylmethylsiloxane. Is included in the structure, and therefore, the force S is bonded to the surface of the hydrophobic substrate via the bull group of the structural unit (a2).
  • the polymer (B) is composed of the structural unit (b) induced by the 2-methacryloyloxychetyl phosphorylcholine force, and is therefore excellent in biocompatibility. Therefore, it is particularly suitable for surface modification of medical members.
  • the surface modifying compound according to (3), wherein the polysiloxane compound (A) is represented by the following general formula (1).
  • R 2 independently represents an alkylene group having 1 to 4 carbon atoms, and 1 and m represent the number of polymerizations of the structural unit (al) and the structural unit (a2), respectively.
  • the polysiloxane compound (A) since the polysiloxane compound (A) has a structure represented by the general formula (1), it is particularly preferable as the structure of the surface modifying compound.
  • the molar ratio of the structural unit (al) to the structural unit (a2) is in the above range, it can be stably bonded to the surface of the hydrophobic substrate.
  • the surface is stably bonded to the surface of the hydrophobic substrate.
  • it can provide sufficient lubricity.
  • the force S is preferably used for surface modification.
  • a hydrophilic monomer is polymerized into a living radical polymerization (reversible addition-fragmentation chain transfer (RAFT) polymerization or atom transfer radical polymerization (ATR)) to the polysiloxane compound (A). Since it is polymerized by P)), it can be suitably used for surface modification with a narrow molecular weight distribution.
  • RAFT reversible addition-fragmentation chain transfer
  • ATR atom transfer radical polymerization
  • the surface of a hydrophobic substrate having a Si-H group or having a Si-H group introduced therein particularly a substrate made of silicone or ceramics Suitable for use in reforming.
  • a surface modification method comprising: a treatment step; and a step of heating the hydrophobic substrate treated with a solution containing the surface modification compound.
  • the surface of the hydrophobic substrate is hydrosilylated in advance as necessary, and the bull group is formed by treating with a solution containing the surface modifying compound.
  • the surface modifying compound can be bonded to the surface of the hydrophobic substrate.
  • the compound for surface modification has a polymer (B) composed of a hydrophilic monomer, it can impart lubricity to the surface of the hydrophobic substrate after the surface modification.
  • the polymer (B) is arranged in a cilia-like manner on the surface of the hydrophobic substrate. Therefore, the cilia-like polymer (B) retains the liquid and maintains the lubricity.
  • the surface of the hydrophobic substrate after surface modification is suitable for surface modification of medical members because nonspecific adsorption of biological substances and the like is suppressed.
  • a surface modification method comprising a step of coating the surface of a hydrophobic substrate with the surface modification compound according to any one of (1) to (11) by a plasma polymerization method.
  • the compound for surface modification can be bonded to the surface of the hydrophobic substrate.
  • the coalesced (B) is arranged in the form of cilia on the surface of the hydrophobic substrate, the ciliary polymer (B) retains the liquid and maintains the lubricity.
  • non-specific adsorption of biological substances and the like is suppressed on the surface of the hydrophobic substrate after surface modification.
  • lubricity can be imparted to the surface of a hydrophobic substrate by modifying the surface of a hydrophobic substrate such as silicone using the surface modifying compound of the present invention.
  • a hydrophobic substrate such as silicone
  • the surface modifying compound of the present invention by performing surface modification of the hydrophobic substrate using the surface modifying compound of the present invention, nonspecific adsorption of biological substances or the like on the surface of the hydrophobic substrate can be suppressed.
  • FIG. 1 is a graph showing the relationship between polymerization time and MPC concentration.
  • FIG. 2 is a graph showing the relationship between the polymerization time and the molecular weight of the surface modifying compound.
  • FIG. 3 is a diagram showing a procedure for applying surface modification to a test piece.
  • FIG. 4 is a graph showing the surface analysis results of a test piece after surface modification.
  • FIG. 5 is a graph showing a comparison of the coefficient of friction of test pieces with and without surface modification.
  • FIG. 6 is a diagram showing non-specific adhesion of platelets with and without surface modification.
  • the compound for surface modification of the present invention is a polysiloxane compound having a bur group in the side chain (A).
  • a polymer (B) composed of a hydrophilic monomer capable of radical polymerization is polymerized via a chain transfer agent or a halogenated alkyl initiator.
  • the polysiloxane compound (A) is not particularly limited as long as it has a bull group in the side chain. This polysiloxane compound (A) is hydrophobic and can be bonded to the surface of the hydrophobic substrate via a vinyl group as described later.
  • polysiloxane compounds (A) those having a hydroxyl group at one or both ends for introducing a chain transfer agent or a halogenated alkyl initiator are preferred.
  • the polymer (B) By introducing a chain transfer agent or an alkyl halide initiator through this hydroxyl group, the polymer (B) can be polymerized at one or both ends of the polysiloxane compound (A).
  • the polysiloxane compound (A) is preferable because it can polymerize the polymer (B) at both ends, and the effect of surface modification can be further enhanced.
  • polysiloxane compounds (A) those containing a copolymer of a structural unit (al) derived from dimethylsiloxane and a structural unit (a2) derived from butylmethylsiloxane force in the structure.
  • a2 structural unit derived from dimethylsiloxane
  • a2 structural unit derived from butylmethylsiloxane force in the structure.
  • Those having a structure represented by the following general formula (1) are more preferable.
  • R 2 independently represents an alkylene group having 1 to 4 carbon atoms, and 1 and m represent the number of polymerizations of the structural unit (al) and the structural unit (a2), respectively.
  • Each R 2 independently represents an alkylene group having 1 to 4 carbon atoms.
  • Examples of the alkylene group having a carbon number of! To 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group and the like, and a group from which one hydrogen atom has been removed.
  • 1 and m represent the number of polymerization of the structural unit (a 1) and the structural unit (a2), respectively.
  • the molar ratio of the structural unit (al) to the structural unit (a2) is preferably 1: 9 to 9: 1. More preferably, it is 3: 7 to 7: 3.
  • the surface modifying compound can be stably bonded to the surface of the hydrophobic substrate.
  • the polymer (B) can be used without particular limitation as long as it is composed of a radically polymerizable hydrophilic monomer, such as acrylamide, N-butylpyrrolidone, and polyethylene glycol methacrylate. This polymer (B) is hydrophilic and can impart lubricity to the surface of the hydrophobic substrate.
  • a radically polymerizable hydrophilic monomer such as acrylamide, N-butylpyrrolidone, and polyethylene glycol methacrylate.
  • This polymer (B) is hydrophilic and can impart lubricity to the surface of the hydrophobic substrate.
  • polymers (B) a polymer obtained by polymerizing a structural unit (b) derived from 2 methacryloyloxyphosphorylcholine shown in the following structural formula (2). Particularly preferred for modification.
  • 2-Methacryloyloxychetylphosphorylcholine is known to have the same polarity as the phospholipid molecules constituting the biological membrane and is excellent in biocompatibility.
  • CH 2 C 1 C— O— CH 2 — CH 2 — 0— P— 0—CH 2 — CH 2 — N + — CH 3
  • the molar ratio of the structural units (al) and (a2) to the structural unit (b) Is preferably 1: 9 to 9: 1. More preferably, it is 3: 7 to 7: 3.
  • the surface modifying compound can be controlled with a force S that imparts sufficient lubricity while stably bonding to the surface of the hydrophobic substrate.
  • the polymer (B) is obtained by polymerizing the polysiloxane compound (A) with a hydrophilic monomer by living radical polymerization (reversible addition-fragmentation chain transfer (RAFT) polymerization or atom transfer radical polymerization (ATRP)).
  • RAFT reversible addition-fragmentation chain transfer
  • ATRP atom transfer radical polymerization
  • A) is polymerized via a chain transfer agent or an alkyl halide initiator.
  • the chain transfer agent used in the case of reversible addition-cleavage chain transfer polymerization is not particularly limited, but includes 4 cyanopentanoic acid dithiobenzoate, acetic acid dithiobenzoate, butanoic acid dithiobenzoate, 4 toluic acid dithiol. Examples include benzoate.
  • the halogenated alkyl initiator used in the case of atom transfer radical polymerization is not particularly limited, 2-bromoisobutyryl bromide, 2-chloroisobutyryl chloride, bromoacetyl bromide, bromoacetyl And chloride.
  • the surface modifying compound of the present invention preferably has a mass average molecular weight of 1000 to 1000000. More preferably, it is 10,000 to 500,000. By setting the content in the above range, the surface modifying compound of the present invention can be suitably used for surface modification of a hydrophobic substrate.
  • the surface modifying compound of the present invention synthesizes a polysiloxane compound (A), introduces a chain transfer agent into the polysiloxane compound (A), and performs chain transfer to the polysiloxane compound (A) by living radical polymerization. It can be synthesized by polymerizing the polymer (B) via an agent or an alkyl halide initiator.
  • the polymer (B) may be synthesized at one end or at both ends of the polysiloxane compound (A) . In the following, as an example, the polymer (B) is synthesized at both ends of the polysiloxane compound (A). Explain how to synthesize!
  • the polysiloxane compound (A) is synthesized.
  • This polysiloxane compound (A) is, for example, a hydroxyl group or a hydroxyl group-terminated functional group bonded to both ends (dimethylsiloxane) as a starting material, and otamethylcyclotetrasiloxane and tetramethyltetrabule. Synthesized by adding ring-opening polymerization reaction by adding cyclotetrasiloxane in a desired ratio.
  • a chain transfer agent or an alkyl halide initiator is introduced into the polysiloxane compound (A).
  • This chain transfer agent or alkyl halide initiator is reacted, for example, by adding a dicyclohexyl carpositimide solution dropwise into a solution in which the polysiloxane compound (A) and the chain transfer agent or alkyl halide initiator are dissolved. Can be introduced.
  • the polymer (B) is polymerized to the polysiloxane compound (A) via a chain transfer agent or a halogenated alkyl initiator by living radical polymerization.
  • This polymerization reaction is reversible
  • the polysiloxane compound (A) having a chain binder introduced therein and a hydrophilic monomer are dissolved in a predetermined solvent, a polymerization initiator is added, and the mixture is added at 50 to 80 ° C. Performed by heating for ⁇ 48 hours.
  • the solvent used in the polymerization reaction is not particularly limited, but water, methanol, ethanol, propanol, tert-butanol, benzene, toluene, dimethylformamide, tetrahydrofuran, chloroform, or a mixture thereof can be used. Can be mentioned.
  • the polymerization initiator is not particularly limited, but 2,2'-azobisisoptyronitrile, benzoyl peroxide, diisopropyl peroxycarbonate, t-butyl peroxy 2-ethino hexanoate, tert-butyl olepenoleoxy Pivalate, t-butinolepenoleoxydiisoptylate, persulfate, persulfate bisulfite, and the like can be used.
  • the transition metal complex is not particularly limited, and complexes such as monovalent copper and divalent ruthenium can be used.
  • the first surface modification method of the present invention comprises a step of treating the surface of a hydrophobic substrate having Si—H groups or having Si—H groups introduced therein with a solution containing the surface modification compound of the present invention. And heating the hydrophobic substrate treated with the solution containing the surface modifying compound.
  • the surface of the hydrophobic substrate may be hydrosilylated to further include a step of introducing Si-H groups.
  • This hydrosilation can be achieved by known methods such as immersing the hydrophobic substrate in a poly (hydromethylsiloxane) solution, for example.
  • the surface of the hydrophobic substrate having Si—H groups or having Si—H groups introduced therein is treated with a solution containing the surface modifying compound of the present invention.
  • a solution containing the surface modifying compound of the present invention may be applied by a known coating method such as a spin coating method in which a hydrophobic substrate may be immersed in a solution containing a surface modifying compound.
  • the solvent of the solution containing the surface modifying compound is not particularly limited, but methanol, ethanol, isopropanol, or a mixed solution thereof can be used.
  • the compound for surface modification is dissolved in this solvent at a concentration of 0.0;
  • the solution contains a catalyst such as a Pt catalyst.
  • the surface modifying compound is bonded to the surface of the hydrophobic substrate by heating the hydrophobic substrate treated with the solution containing the surface modifying compound.
  • the heating temperature is preferably 35 to 80 ° C.
  • the Si—H group of the hydrophobic substrate is bonded to the bull group of the polysiloxane (A) of the surface modifying compound. Note that the time required for bonding can be shortened by increasing the heating temperature.
  • the polysiloxane compound (A) is fixed via a vinyl group, and the polymer (B) is arranged in a cilia shape. Accordingly, the liquid is held by the ciliated polymer (B) and the lubricity is maintained. In addition, non-specific adsorption of biological substances and the like is suppressed on the surface of the hydrophobic substrate after surface modification.
  • the second surface modification method of the present invention includes a step of coating the surface of the hydrophobic substrate with the surface modification compound of the present invention by a plasma polymerization method.
  • the surface modification compound can be bonded to the surface of the hydrophobic substrate.
  • the polymer (B) is arranged in a cilia shape on the surface of the hydrophobic substrate, so that the liquid is retained by the ciliated polymer (B) and the lubricity is maintained.
  • non-specific adsorption of biological substances and the like is suppressed on the surface of the hydrophobic substrate after surface modification.
  • the hydrophobic substrate of the present invention has been modified with the surface modifying compound of the present invention.
  • the hydrophobic substrate include silicone, ceramics, glass, metal, and semiconductor nanoparticles. Among these, silicone and ceramics are preferable.
  • the medical member of the present invention has been modified using the surface modifying compound of the present invention.
  • This medical member is manufactured using a hydrophobic base material that has been surface-modified in advance, even if it has been surface-modified to a medical member that has already been manufactured.
  • Medical members include artificial joints, catheters, balloon force tables Examples include treatment machine instruments such as drills and guide wires, inspection instrument instruments such as fiberscope endoscopes, and ophthalmic members such as contour lenses.
  • Tetrasiloxane (Me SiO) (manufactured by Shin-Etsu Chemical Co., Ltd.) and tetramethyltetraburushiku
  • PD V MS was synthesized by causing a ring-opening polymerization reaction.
  • the molecular weight (Mw) and dispersity (Mw / Mn) are shown in Table 1.
  • the apparent molecular weight was measured by gel filtration chromatography (GPC), and the absolute molecular weight was measured by a multi-angle light scattering detector (MALL S).
  • V m S-CTA 4 Cyananopentanoic acid dithiobenzoate was used as the chain transfer agent and this was added to McC Synthesized according to the method of ormic et al. (Mitsukami, Y .; Donovan, MS; Lowe, AB; McCormick, CL Macromolecules 2001, 34, 2248). Di-solubilized a given amount of PD V MS and a 4-fold molar amount of 4-cyanopentanoic acid dithiobenzoate
  • Chloromethane (in CH CI UOOmL, dicyclohexyl dissolved in lOOmL of dichloromethane)
  • Lucal positive imide (manufactured by Kanto Chemical Co., Inc.) was added dropwise and stirred at 40 ° C for 20 hours. Thereafter, insoluble matters were removed by filtration through a filter. Next, the dichloromethane was distilled off, and the reaction product was washed with methanol until the methanol was no longer colored, and then dissolved in chloroform. Then, after washing three times with saturated saline, the water was removed with magnesium sulfide and concentrated.
  • DCC Lucal positive imide
  • Methacryloyloxetyl phosphorylcholine was polymerized to synthesize PMPC -PD V MS -PMPC, a surface modification compound.
  • Fig. 1 shows the relationship between the polymerization time and the MPC concentration when the molar amounts of MPC, CTA, and AIBN as raw materials are 15 mmol, 0.05 mmol, and 0.025 mmol, respectively.
  • M represents the initial concentration of MPC
  • M represents the MPC concentration at a certain time point.
  • Figure 2 shows the relationship between the polymerization time and the molecular weight of PMPC -PD V MS -PMPC.
  • the MPC polymerization reaction in the present invention is a living radical reaction, the rate of decrease in MPC concentration is almost constant as shown in Fig. 1, and the molecule of PMPC -PD V MS -PMPC
  • V MS -PMPC The molecular weight of V MS -PMPC is shown in Table 2.
  • PDMS prepolymer (Silpotl8 4, Dow 'Koyungu Co.) and 1 0 of the crosslinking catalyst: 1 and stirred well a mixture of (w / w), was added dropwise a Teflon plate. That Thereafter, it was deaerated and cured by heating at 100 ° C. for 2 hours. The cured film was peeled off from the plate and processed into a disk shape with a diameter of 15 mm. The obtained disc-shaped test piece was washed with hexane and acetone and dried at room temperature under reduced pressure for 1 day.
  • Pt catalyst platinum dibule tetramethyldisiloxane complex
  • Figure 4 shows the ratio (P / C) of the phosphorus atom signal to the carbon atom signal.
  • XPS X-ray photoelectron spectrometer
  • FIG. 5B is an enlarged view of a portion surrounded by a broken line in FIG.
  • the coefficient of static friction of the test piece surface-modified with the surface modifying compound of the present invention is higher than that of the test piece not surface-modified. Both the dynamic friction coefficients are significantly reduced. This is presumably because water as a lubricating liquid was retained by the polymer (B) of the surface modifying compound.
  • Platelet rich plasma was prepared by centrifuging human whole blood with 1/10 volume of 8% sodium citrate added to blood at 12000 rpm for 15 minutes and collecting the supernatant. The sample was fixed to a 24-well culture plate with a silicon ring, and 1 ml of phosphate buffered saline was added to equilibrate. Thereafter, 1 ml of PRP was added to each well and allowed to stand at room temperature for 180 minutes.
  • Figure 6 shows the results of surface observation with a scanning electron microscope (SEM).
  • the surface modifying compound of the present invention is suitable for surface modification of a medical member that comes into contact with a biological substance or the like.
  • the surface modifying compound of the present invention has been described focusing on the effect of imparting lubricity, but the surface modifying compound of the present invention is as shown in FIG.
  • the biosensor can be suitably used for applications that require less non-specific adsorption rather than lubricity, such as biochips.

Abstract

Disclosed is a compound for surface modification which is capable of modifying the surface of a hydrophobic base, which is composed of a silicone or the like, for providing lubricity thereto. Also disclosed are a surface modifying method using such a compound for surface modification, a surface-modified hydrophobic base and a surface-modified medical member. Specifically disclosed is a compound for surface modification which is obtained by polymerizing a polymer (B) composed of a radically polymerizable hydrophilic monomer to a polysiloxane compound (A) having a vinyl group in a side chain through a chain transfer agent or a halogenated alkyl initiator. During surface modification, the surface of a hydrophobic base may be hydrosilylated if necessary, and then processed with a solution containing the compound for surface modification. Alternatively, the surface of a hydrophobic base is coated with the compound for surface modification by plasma polymerization.

Description

明 細 書  Specification
表面改質用化合物及びそれを用いた表面改質方法  Surface modifying compound and surface modification method using the same
技術分野  Technical field
[0001] 本発明は、シリコーン等の疎水性基材の表面を改質する際に用いて好適な表面改 質用化合物及びそれを用いた表面改質方法に関する。  The present invention relates to a surface modification compound suitable for use in modifying the surface of a hydrophobic substrate such as silicone and a surface modification method using the same.
背景技術  Background art
[0002] 近年、人工関節は、人やその他の動物に関する医療分野において、各部関節の代 替品として広く利用されるようになっている。例えば、ステンレス、コバルトクロム合金、 チタン合金等の金属材料を用いた骨頭部材と、超高分子量ポリエチレン等の樹脂を 用いた臼蓋とを組み合わせた人工関節は、我が国だけでも年間数万件の手術に用 いられている。このように、各部関節を人工関節で置換することにより、患者は健康な 人と同様の生活を営むまで生活の質(QOUを向上させることができる。  In recent years, artificial joints have been widely used as substitutes for joints in the medical field related to humans and other animals. For example, in Japan alone, tens of thousands of operations are performed annually in Japan alone, with a combination of a bone head member made of a metal material such as stainless steel, cobalt chrome alloy, or titanium alloy and a acetabulum made of resin such as ultrahigh molecular weight polyethylene. It is used for. In this way, by replacing each joint with an artificial joint, patients can improve their quality of life (QOU) until they live a life similar to that of a healthy person.
[0003] しかしながら、人工関節は、 日常生活の動作により摺動部位で摩擦が起こるため、 摩耗が生じてしまう。そして、摩耗により生じる摩耗粉は人体に悪影響を与え、摩耗 が進行して!/、わゆるルーズユングが生じると、人工関節としての機能が十分に発揮さ れ難くなる。  [0003] However, the artificial joint is subject to wear because friction occurs at the sliding portion due to the operation of daily life. The wear powder generated by the wear has an adverse effect on the human body, and when the wear progresses! / So-called loose looseness, the function as an artificial joint becomes difficult to fully function.
[0004] そこで、このような摩耗を防止するため、下記特許文献 1には、人工関節の摺動面 を、ホスホリルコリン基を有する高分子、例えば 2—メタクリロイルォキシェチルホスホリ ルコリンからなる重合体 (MPCポリマーと称される)で形成する方法が記載されて!/、る 。この特許文献 1に記載された方法では、超高分子量ポリエチレンからなる被処理部 材を、ベンゾフエノンを含むアセトン溶液に浸漬し、さらに MPCを含む水溶液に浸漬 した後、紫外光を照射することにより、被処理部材表面で MPCポリマーを合成する。 このように人工関節の摺動面を MPCポリマーで形成することにより、摺動面に潤滑性 が付与され、摩耗が抑えられる。  [0004] Therefore, in order to prevent such wear, the following Patent Document 1 describes that the sliding surface of the artificial joint is made of a polymer having a phosphorylcholine group, for example, a heavy polymer composed of 2-methacryloyloxychetyl phosphorylcholine. A method of forming a coalescence (called MPC polymer) is described! /. In the method described in Patent Document 1, the material to be treated made of ultra high molecular weight polyethylene is immersed in an acetone solution containing benzophenone, further immersed in an aqueous solution containing MPC, and then irradiated with ultraviolet light. MPC polymer is synthesized on the surface of the workpiece. By forming the sliding surface of the artificial joint with MPC polymer in this way, lubricity is imparted to the sliding surface and wear is suppressed.
[0005] また、人工関節に限らず、カテーテル、バルーンカテーテル、ガイドワイヤー、フアイ バースコープ型内視鏡、コンタクトレンズ等の医療用部材においても、表面を親水性 ポリマー等でコーティングすることが提案されている。例えば、下記特許文献 2には、 高分子材料からなる医療用部材を、ジイソシァネート化合物を含む溶液に浸漬し、さ らに、ポリアルキレンオキサイドとポリウレタンプレボリマーとの混合物を含む溶液に浸 漬することにより、医療用具の表面に潤滑性を付与する方法が記載されている。 特許文献 1 :特開 2003— 310649号公報 [0005] Further, not only artificial joints but also medical members such as catheters, balloon catheters, guide wires, fiberscope endoscopes, contact lenses, etc., it has been proposed to coat the surface with a hydrophilic polymer or the like. ing. For example, in Patent Document 2 below, A medical member made of a polymer material is immersed in a solution containing a diisocyanate compound, and further immersed in a solution containing a mixture of a polyalkylene oxide and a polyurethane prepolymer, whereby the surface of the medical device is lubricated. A method for imparting is described. Patent Document 1: JP 2003-310649 A
特許文献 2:特開 2005— 287845号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-287845
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、上記特許文献 1に記載された方法は、紫外光を照射することにより被 処理部材表面で MPCポリマーを合成するものであるため、非処理部材の形状によつ ては、 MPCポリマーが良好に合成されず、潤滑性が不十分となる虞があった。ここで 、簡便かつ効果的に表面改質を行う方法としては、 MPCポリマーを含む溶液中に被 処理部材を浸漬することなどが考えられる力、 MPCポリマーは親水性であり、水等の 高極性溶媒にしか溶解しない。したがって、シリコーン等の疎水性基材の表面改質 には適用することが困難である。  [0006] However, since the method described in Patent Document 1 synthesizes MPC polymer on the surface of the member to be processed by irradiating with ultraviolet light, the MPC depends on the shape of the non-treated member. There was a possibility that the polymer was not synthesized well and the lubricity was insufficient. Here, as a method for performing surface modification simply and effectively, it is possible to immerse the member to be treated in a solution containing MPC polymer. MPC polymer is hydrophilic and has high polarity such as water. It is only soluble in solvents. Therefore, it is difficult to apply to surface modification of hydrophobic substrates such as silicone.
[0007] 一方、上記特許文献 2に記載された方法は、ジイソシァネート化合物をコーティング した後、ポリアルキレンオキサイドとポリウレタンプレポリマーとの混合物をコーティング する必要があり、操作性の面で好ましくな力 た。また、医療用部材の表面には、ジィ ソシァネート化合物と反応するヒドロキシル基等の官能基が存在する必要があるため 、疎水性基材の表面改質には不向きであった。  [0007] On the other hand, the method described in Patent Document 2 described above requires a coating of a diisocyanate compound and then a mixture of a polyalkylene oxide and a polyurethane prepolymer, which is favorable in terms of operability. In addition, since it is necessary that a functional group such as a hydroxyl group that reacts with a diisocyanate compound be present on the surface of the medical member, it is not suitable for surface modification of a hydrophobic substrate.
[0008] 本発明は、以上のような課題に鑑みて提案されたものであり、シリコーン等の疎水 性基材の表面を改質して潤滑性を付与する際に用いて好適な表面改質用化合物及 びそれを用いた表面改質方法、並びに表面改質された疎水性基材及び医療用部材 を提供することを目的とする。  [0008] The present invention has been proposed in view of the problems as described above, and is suitable for use in modifying the surface of a hydrophobic substrate such as silicone to impart lubricity. It is an object of the present invention to provide a medical compound, a surface modification method using the same, and a surface-modified hydrophobic substrate and a medical member.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、側鎖にビュル 基を有するポリシロキサン化合物に親水性ポリマーが重合した化合物が、疎水性基 材の表面改質に適用できることを見出し、本発明を完成するに至った。より具体的に は、本発明は以下のようなものを提供する。 [0010] (1) 側鎖にビュル基を有するポリシロキサン化合物 (A)に、ラジカル重合可能な 親水性モノマーからなる重合体 (B)が連鎖移動剤又はハロゲン化アルキル開始剤を 介して重合した表面改質用化合物。 [0009] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a compound obtained by polymerizing a hydrophilic polymer with a polysiloxane compound having a bur group in the side chain is a surface modification of the hydrophobic substrate. As a result, the present invention was completed. More specifically, the present invention provides the following. [0010] (1) A polymer (B) composed of a hydrophilic monomer capable of radical polymerization is polymerized via a chain transfer agent or an alkyl halide initiator on a polysiloxane compound (A) having a bur group in the side chain. Compound for surface modification.
[0011] (1)の表面改質用化合物によれば、側鎖にビュル基を有するポリシロキサン化合物  [0011] According to the surface modifying compound of (1), a polysiloxane compound having a bur group in the side chain
(A)を有するため、ビュル基を介して疎水性基材の表面に結合することができる。ま た、親水性モノマーからなる重合体 (B)を有するため、表面改質後の疎水性基材表 面に潤滑性を付与することができる。特に、表面改質後にはこの重合体 (B)が疎水 性基材表面で繊毛状に配列される。したがって、この繊毛状の重合体 (B)によって 液体が保持され、潤滑性が維持される。さらに、表面改質後の疎水性基材表面は、 生体物質等の非特異的吸着が抑制されるため、医療用部材の表面改質に好適であ  Since it has (A), it can be bonded to the surface of the hydrophobic substrate via a bur group. In addition, since it has a polymer (B) composed of a hydrophilic monomer, lubricity can be imparted to the surface of the hydrophobic substrate after surface modification. In particular, after the surface modification, the polymer (B) is arranged in a cilia shape on the surface of the hydrophobic substrate. Therefore, the cilia-like polymer (B) retains the liquid and maintains the lubricity. Furthermore, the surface of the hydrophobic substrate after surface modification is suitable for surface modification of medical members because non-specific adsorption of biological substances and the like is suppressed.
[0012] (2) 前記ポリシロキサン化合物 (A)の両端に、前記重合体 (B)が連鎖移動剤又は ノ、ロゲン化アルキル開始剤を介して重合した(1)記載の表面改質用化合物。 [0012] (2) The surface modifying compound according to (1), wherein the polymer (B) is polymerized on both ends of the polysiloxane compound (A) via a chain transfer agent, or a halogenated alkyl initiator. .
[0013] (2)の態様によれば、ポリシロキサン化合物 (A)の両端に重合体 (B)が重合して!/、 るため、表面改質後にはこの両端の重合体 (B)が疎水性基材表面で繊毛状に配列 される。したがって、疎水性基材表面の潤滑性をさらに高めることができる。  [0013] According to the embodiment of (2), since the polymer (B) is polymerized at both ends of the polysiloxane compound (A)! /, The polymer (B) at both ends is polymerized after the surface modification. It is arranged in a cilia-like manner on the surface of the hydrophobic substrate. Therefore, the lubricity of the hydrophobic substrate surface can be further enhanced.
[0014] (3) 前記ポリシロキサン化合物 (A)が、ジメチルシロキサンから誘導される構成単 位(al)とビュルメチルシロキサン力 誘導される構成単位(a2)との共重合体を構造 中に含む(1)又は(2)記載の表面改質用化合物。  [0014] (3) The polysiloxane compound (A) contains in its structure a copolymer of a structural unit (al) derived from dimethylsiloxane and a structural unit (a2) derived from a butylmethylsiloxane force. The surface modifying compound according to (1) or (2).
[0015] (3)の態様によれば、ポリシロキサン化合物 (A) 1S ジメチルシロキサンから誘導さ れる構成単位(a 1)とビュルメチルシロキサンから誘導される構成単位(a2)との共重 合体を構造中に含むため、構成単位(a2)のビュル基を介して疎水性基材の表面に 結合すること力 Sでさる。 [0015] According to the embodiment of (3), the polysiloxane compound (A) is a copolymer of the structural unit ( a 1) derived from 1S dimethylsiloxane and the structural unit ( a 2) derived from butylmethylsiloxane. Is included in the structure, and therefore, the force S is bonded to the surface of the hydrophobic substrate via the bull group of the structural unit (a2).
[0016] (4) 前記重合体 (B)が、 2—メタクリロイルォキシェチルホスホリルコリンカも誘導さ れる構成単位 (b)からなる(3)記載の表面改質用化合物。  [0016] (4) The surface modifying compound according to (3), wherein the polymer (B) comprises a structural unit (b) from which 2-methacryloyloxychetyl phosphorylcholineca is also derived.
[0017] (4)の態様によれば、重合体 (B)が、 2—メタクリロイルォキシェチルホスホリルコリ ン力 誘導される構成単位 (b)からなるため、生体適合性に優れている。したがって、 医療用部材の表面改質に特に好適である。 [0018] (5) 前記ポリシロキサン化合物 (A)が下記一般式(1 )で表される(3)記載の表面 改質用化合物。 [0017] According to the embodiment (4), the polymer (B) is composed of the structural unit (b) induced by the 2-methacryloyloxychetyl phosphorylcholine force, and is therefore excellent in biocompatibility. Therefore, it is particularly suitable for surface modification of medical members. [0018] (5) The surface modifying compound according to (3), wherein the polysiloxane compound (A) is represented by the following general formula (1).
[化 1コ
Figure imgf000005_0001
[Chemical 1
Figure imgf000005_0001
—— (1) —— (1)
[式(1)中、
Figure imgf000005_0002
R2はそれぞれ独立に炭素数 1〜4のアルキレン基を表し、 1、 mはそ れぞれ前記構成単位(al)及び前記構成単位(a2)の重合数を表す。 ]
[In the formula (1),
Figure imgf000005_0002
R 2 independently represents an alkylene group having 1 to 4 carbon atoms, and 1 and m represent the number of polymerizations of the structural unit (al) and the structural unit (a2), respectively. ]
[0019] (5)の態様によれば、ポリシロキサン化合物 (A)が上記一般式(1)で表される構造 であるため、表面改質用化合物の構造として特に好ましい。 According to the aspect (5), since the polysiloxane compound (A) has a structure represented by the general formula (1), it is particularly preferable as the structure of the surface modifying compound.
[0020] (6) 前記構成単位(al)と前記構成単位(a2)とのモル比が、 1 : 9〜9 : 1である(3) 記載の表面改質用化合物。 [0020] (6) The surface modifying compound according to (3), wherein the molar ratio of the structural unit (al) to the structural unit (a2) is 1: 9 to 9: 1.
[0021] (6)の態様によれば、構成単位(al)と構成単位(a2)とのモル比が上記範囲である ため、疎水性基材表面に安定して結合することができる。 [0021] According to the aspect (6), since the molar ratio of the structural unit (al) to the structural unit (a2) is in the above range, it can be stably bonded to the surface of the hydrophobic substrate.
[0022] (7) 前記構成単位(al)及び(a2)と前記構成単位(b)とのモル比力 1 : 9〜9 : 1 である (4)記載の表面改質用化合物。 [0022] (7) The surface modifying compound according to (4), wherein the molar specific power between the structural units (al) and (a2) and the structural unit (b) is 1: 9 to 9: 1.
[0023] (7)の態様によれば、構成単位(al)及び (a2)と構成単位 (b)とのモル比が上記範 囲であるため、疎水性基材表面に安定して結合しつつ、十分な潤滑性を付与するこ と力 Sできる。 [0023] According to the aspect (7), since the molar ratio between the structural units (al) and (a2) and the structural unit (b) is in the above range, the surface is stably bonded to the surface of the hydrophobic substrate. However, it can provide sufficient lubricity.
[0024] (8) 質量平均分子量が 1000〜1000000である(1)から(7)いずれか記載の表 面改質用化合物。  [0024] (8) The surface modifying compound according to any one of (1) to (7), having a mass average molecular weight of 1,000 to 100,000.
[0025] (8)の態様によれば、質量平均分子量が上記範囲であるため、表面改質に好適に 用いること力 Sでさる。  [0025] According to the aspect (8), since the mass average molecular weight is in the above range, the force S is preferably used for surface modification.
[0026] (9) 前記重合体 (B)は、前記ポリシロキサン化合物 (A)に前記親水性モノマーが リビングラジカル重合により重合したものである(1)から(8)いずれか記載の表面改質 用化合物。  [0026] (9) The surface modification according to any one of (1) to (8), wherein the polymer (B) is obtained by polymerizing the hydrophilic monomer on the polysiloxane compound (A) by living radical polymerization. Compounds.
[0027] (9)の態様によれば、ポリシロキサン化合物 (A)に親水性モノマーがリビングラジカ ル重合(可逆的付加開裂連鎖移動 (RAFT)重合又は原子移動ラジカル重合 (ATR P) )により重合しているため、分子量分布が狭ぐ表面改質に好適に用いることがで きる。 [0027] According to the embodiment of (9), a hydrophilic monomer is polymerized into a living radical polymerization (reversible addition-fragmentation chain transfer (RAFT) polymerization or atom transfer radical polymerization (ATR)) to the polysiloxane compound (A). Since it is polymerized by P)), it can be suitably used for surface modification with a narrow molecular weight distribution.
[0028] (10) Si— H基を有する又は Si— H基が導入された疎水性基材の表面改質に用 いられる(1)から (9) V、ずれか記載の表面改質用化合物。  [0028] (10) Used for surface modification of a hydrophobic substrate having Si—H groups or having Si—H groups introduced therein (1) to (9) For surface modification according to V, deviation Compound.
[0029] (11) シリコーン又はセラミックスからなる基材の表面改質に用いられる(10)記載 の表面改質用化合物。 [0029] (11) The surface modifying compound as described in (10), which is used for surface modification of a substrate made of silicone or ceramics.
[0030] (1)から(9)のいずれかの態様によれば、 Si— H基を有する又は Si— H基が導入さ れた疎水性基材、特にシリコーン又はセラミックスからなる基材の表面改質に好適に 用いること力 Sでさる。  [0030] According to any one of the aspects (1) to (9), the surface of a hydrophobic substrate having a Si-H group or having a Si-H group introduced therein, particularly a substrate made of silicone or ceramics Suitable for use in reforming.
[0031] (12) Si— H基を有する又は Si— H基が導入された疎水性基材の表面を、(1)か ら(11)いずれか記載の表面改質用化合物を含む溶液で処理する工程と、前記表面 改質用化合物を含む溶液で処理された前記疎水性基材を加熱する工程と、を含む 表面改質方法。  [0031] (12) The surface of the hydrophobic substrate having a Si—H group or having a Si—H group introduced therein is treated with a solution containing the surface modifying compound according to any one of (1) to (11). A surface modification method comprising: a treatment step; and a step of heating the hydrophobic substrate treated with a solution containing the surface modification compound.
[0032] (13) 前記疎水性基材の表面をヒドロシリル化し、 Si— H基を導入する工程をさら に含む(12)記載の表面改質方法。  [0032] (13) The surface modification method according to (12), further comprising a step of hydrosilylating the surface of the hydrophobic substrate and introducing Si—H groups.
[0033] (12)、 (13)の態様によれば、疎水性基材の表面を必要に応じて予めヒドロシリル 化しておき、表面改質用化合物を含む溶液で処理することにより、ビュル基を介して 表面改質用化合物を疎水性基材表面に結合させることができる。また、表面改質用 化合物は、親水性モノマーからなる重合体 (B)を有するため、表面改質後の疎水性 基材表面に潤滑性を付与することができる。特に、表面改質後にはこの重合体 (B) が疎水性基材表面で繊毛状に配列される。したがって、この繊毛状の重合体 (B)に よって液体が保持され、潤滑性が維持される。さらに、表面改質後の疎水性基材表 面は、生体物質等の非特異的吸着が抑制されるため、医療用部材の表面改質に好 適である。  [0033] According to the embodiments of (12) and (13), the surface of the hydrophobic substrate is hydrosilylated in advance as necessary, and the bull group is formed by treating with a solution containing the surface modifying compound. Thus, the surface modifying compound can be bonded to the surface of the hydrophobic substrate. Further, since the compound for surface modification has a polymer (B) composed of a hydrophilic monomer, it can impart lubricity to the surface of the hydrophobic substrate after the surface modification. In particular, after the surface modification, the polymer (B) is arranged in a cilia-like manner on the surface of the hydrophobic substrate. Therefore, the cilia-like polymer (B) retains the liquid and maintains the lubricity. Furthermore, the surface of the hydrophobic substrate after surface modification is suitable for surface modification of medical members because nonspecific adsorption of biological substances and the like is suppressed.
[0034] (14) (1)から(11)いずれか記載の表面改質用化合物をプラズマ重合法により疎 水性基材の表面にコーティングする工程を含む表面改質方法。  [0034] (14) A surface modification method comprising a step of coating the surface of a hydrophobic substrate with the surface modification compound according to any one of (1) to (11) by a plasma polymerization method.
[0035] (14)の態様によれば、プラズマ重合用の装置が必要になるものの、表面改質用化 合物を疎水性基材表面に結合させることができる。この場合にも、表面改質後には重 合体 (B)が疎水性基材表面で繊毛状に配列されるため、この繊毛状の重合体 (B)に よって液体が保持され、潤滑性が維持される。また、表面改質後の疎水性基材表面 は、生体物質等の非特異的吸着が抑制される。 [0035] According to the aspect (14), although an apparatus for plasma polymerization is required, the compound for surface modification can be bonded to the surface of the hydrophobic substrate. Again, after surface modification Since the coalesced (B) is arranged in the form of cilia on the surface of the hydrophobic substrate, the ciliary polymer (B) retains the liquid and maintains the lubricity. In addition, non-specific adsorption of biological substances and the like is suppressed on the surface of the hydrophobic substrate after surface modification.
[0036] (15) (1)から(11)いずれか記載の表面改質用化合物を用いて表面改質された 疎水性基材。 [0036] (15) A hydrophobic substrate surface-modified using the surface modifying compound according to any one of (1) to (11).
[0037] (16) (1)から(11)いずれか記載の表面改質用化合物を用いて表面改質された 医療用部材。  [0037] (16) A medical member having a surface modified with the surface modifying compound according to any one of (1) to (11).
[0038] (15)、(16)の態様によれば、表面改質により、潤滑性が付与され、生体物質等の 非特異的吸着が抑制された疎水性基材、医療用部材を提供することができる。 発明の効果  [0038] According to the embodiments of (15) and (16), there are provided a hydrophobic substrate and a medical member to which lubricity is imparted by surface modification and nonspecific adsorption of a biological substance or the like is suppressed. be able to. The invention's effect
[0039] 本発明によれば、本発明の表面改質用化合物を用いてシリコーン等の疎水性基材 の表面改質を行うことにより、疎水性基材表面に潤滑性を付与することができる。また 、本発明の表面改質用化合物を用いて疎水性基材の表面改質を行うことにより、疎 水性基材表面に対する生体物質等の非特異的吸着を抑制することができる。  [0039] According to the present invention, lubricity can be imparted to the surface of a hydrophobic substrate by modifying the surface of a hydrophobic substrate such as silicone using the surface modifying compound of the present invention. . In addition, by performing surface modification of the hydrophobic substrate using the surface modifying compound of the present invention, nonspecific adsorption of biological substances or the like on the surface of the hydrophobic substrate can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]重合時間と MPC濃度との関係を示すグラフである。  [0040] FIG. 1 is a graph showing the relationship between polymerization time and MPC concentration.
[図 2]重合時間と表面改質用化合物の分子量との関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the polymerization time and the molecular weight of the surface modifying compound.
[図 3]試験片に表面改質を施す手順を示す図である。  FIG. 3 is a diagram showing a procedure for applying surface modification to a test piece.
[図 4]表面改質後の試験片の表面分析結果を示すグラフである。  FIG. 4 is a graph showing the surface analysis results of a test piece after surface modification.
[図 5]試験片の摩擦係数を表面改質の有無で比較して示すグラフである。  FIG. 5 is a graph showing a comparison of the coefficient of friction of test pieces with and without surface modification.
[図 6]血小板の非特異的な接着を表面改質の有無で比較して示す図である。  FIG. 6 is a diagram showing non-specific adhesion of platelets with and without surface modification.
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下、本発明を適用した具体的な実施の形態について、詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail.
[0042] 〔表面改質用化合物〕 [Surface modifying compound]
本発明の表面改質用化合物は、側鎖にビュル基を有するポリシロキサン化合物 (A The compound for surface modification of the present invention is a polysiloxane compound having a bur group in the side chain (A
)に、ラジカル重合可能な親水性モノマーからなる重合体 (B)が連鎖移動剤又はハロ ゲン化アルキル開始剤を介して重合したものである。 ) And a polymer (B) composed of a hydrophilic monomer capable of radical polymerization is polymerized via a chain transfer agent or a halogenated alkyl initiator.
[0043] [ポリシロキサン化合物(A) ] ポリシロキサン化合物 (A)としては、側鎖にビュル基を有するものであれば、特に限 定されずに使用することができる。このポリシロキサン化合物 (A)は疎水性であり、ビ 二ル基を介して後述のように疎水性基材表面に結合することができる。 [0043] [Polysiloxane compound (A)] The polysiloxane compound (A) is not particularly limited as long as it has a bull group in the side chain. This polysiloxane compound (A) is hydrophobic and can be bonded to the surface of the hydrophobic substrate via a vinyl group as described later.
[0044] このようなポリシロキサン化合物(A)の中でも、連鎖移動剤又はハロゲン化アルキ ル開始剤を導入するためのヒドロキシル基を片端又は両端に有するものが好ましい。 このヒドロキシル基を介して連鎖移動剤又はハロゲン化アルキル開始剤を導入するこ とにより、ポリシロキサン化合物 (A)の片端又は両端で重合体 (B)を重合させることが できる。なお、ポリシロキサン化合物 (A)は、その両端で重合体 (B)を重合させること ができるもの力 S、表面改質の効果をより高められることから好ましい。  [0044] Among such polysiloxane compounds (A), those having a hydroxyl group at one or both ends for introducing a chain transfer agent or a halogenated alkyl initiator are preferred. By introducing a chain transfer agent or an alkyl halide initiator through this hydroxyl group, the polymer (B) can be polymerized at one or both ends of the polysiloxane compound (A). The polysiloxane compound (A) is preferable because it can polymerize the polymer (B) at both ends, and the effect of surface modification can be further enhanced.
[0045] また、ポリシロキサン化合物(A)の中でも、ジメチルシロキサンから誘導される構成 単位(al)とビュルメチルシロキサン力 誘導される構成単位(a2)との共重合体を構 造中に含むものが好ましぐ下記一般式(1)で表される構造を有するものがより好まし い。  [0045] Among the polysiloxane compounds (A), those containing a copolymer of a structural unit (al) derived from dimethylsiloxane and a structural unit (a2) derived from butylmethylsiloxane force in the structure. Those having a structure represented by the following general formula (1) are more preferable.
[化 2]
Figure imgf000008_0001
[Chemical 2]
Figure imgf000008_0001
—— (1) —— (1)
[式(1)中、
Figure imgf000008_0002
R2はそれぞれ独立に炭素数 1〜4のアルキレン基を表し、 1、 mはそ れぞれ前記構成単位(al)及び前記構成単位(a2)の重合数を表す。 ]
[In the formula (1),
Figure imgf000008_0002
R 2 independently represents an alkylene group having 1 to 4 carbon atoms, and 1 and m represent the number of polymerizations of the structural unit (al) and the structural unit (a2), respectively. ]
[0046] R2は、それぞれ独立に炭素数 1〜4のアルキレン基を表す。炭素数;!〜 4のァ ルキレン基としては、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基等 力、ら水素原子 1個を除いた基が挙げられる。
Figure imgf000008_0003
R2の好ましい組み合わせの一例とし ては、 =プロピレン基、 R2 =エチレン基が挙げられる。また、 1、 mは、それぞれ構 成単位(a 1)及び構成単位(a2)の重合数を表す。
[0046] Each R 2 independently represents an alkylene group having 1 to 4 carbon atoms. Examples of the alkylene group having a carbon number of! To 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group and the like, and a group from which one hydrogen atom has been removed.
Figure imgf000008_0003
An example of a preferred combination of R 2 includes = propylene group and R 2 = ethylene group. In addition, 1 and m represent the number of polymerization of the structural unit (a 1) and the structural unit (a2), respectively.
[0047] 構成単位(al)と構成単位(a2)とのモル比は、 1: 9〜9: 1であることが好ましい。よ り好ましくは、 3 : 7〜7 : 3である。上記範囲とすることで、表面改質用化合物は、疎水 性基材表面に安定して結合することができる。  [0047] The molar ratio of the structural unit (al) to the structural unit (a2) is preferably 1: 9 to 9: 1. More preferably, it is 3: 7 to 7: 3. By setting the content in the above range, the surface modifying compound can be stably bonded to the surface of the hydrophobic substrate.
[0048] [重合体 (B) ] 重合体 (B)としては、ラジカル重合可能な親水性モノマーからなるものであれば、ァ クリルアミド、 N ビュルピロリドン、ポリエチレングリコールメタタリレートなど、特に限 定されずに使用することができる。この重合体 (B)は親水性であり、疎水性基材表面 に潤滑性を付与することができる。 [0048] [Polymer (B)] The polymer (B) can be used without particular limitation as long as it is composed of a radically polymerizable hydrophilic monomer, such as acrylamide, N-butylpyrrolidone, and polyethylene glycol methacrylate. This polymer (B) is hydrophilic and can impart lubricity to the surface of the hydrophobic substrate.
[0049] このような重合体 (B)の中でも、下記構造式(2)に示す 2 メタクリロイルォキシェチ ルホスホリルコリンから誘導される構成単位 (b)が重合したもの力 医療用部材の表 面改質には特に好ましい。 2—メタクリロイルォキシェチルホスホリルコリンは、生体膜 を構成するリン脂質分子と同じ極性を有し、生体適合性に優れていることが知られて いる。 [0049] Among such polymers (B), a polymer obtained by polymerizing a structural unit (b) derived from 2 methacryloyloxyphosphorylcholine shown in the following structural formula (2). Particularly preferred for modification. 2-Methacryloyloxychetylphosphorylcholine is known to have the same polarity as the phospholipid molecules constituting the biological membrane and is excellent in biocompatibility.
[化 3コ  [Chemical 3
CH3 0" CH3 CH 3 0 "CH 3
CH2= C一 C— O— CH2— CH2— 0— P— 0—CH2— CH2— N+— CH3 CH 2 = C 1 C— O— CH 2 — CH 2 — 0— P— 0—CH 2 — CH 2 — N + — CH 3
II II \  II II \
O O CH3 (2) OO CH 3 (2)
[0050] ここで、ポリシロキサン化合物(A)として上記構成単位(al)及び(a2)を有するもの を使用する場合、構成単位(al)及び (a2)と構成単位 (b)とのモル比は、 1 : 9〜9 : 1 であることが好ましい。より好ましくは、 3 : 7〜7 : 3である。上記範囲とすることで、表面 改質用化合物は、疎水性基材表面に安定して結合しつつ、十分な潤滑性を付与す ること力 Sでさる。 [0050] Here, when the polysiloxane compound (A) having the structural units (al) and (a2) is used, the molar ratio of the structural units (al) and (a2) to the structural unit (b) Is preferably 1: 9 to 9: 1. More preferably, it is 3: 7 to 7: 3. By setting the amount within the above range, the surface modifying compound can be controlled with a force S that imparts sufficient lubricity while stably bonding to the surface of the hydrophobic substrate.
[0051] [連鎖移動剤/ハロゲン化アルキル開始剤]  [0051] [Chain transfer agent / alkyl halide initiator]
重合体(B)は、ポリシロキサン化合物 (A)に親水性モノマーがリビングラジカル重合 (可逆的付加開裂連鎖移動 (RAFT)重合又は原子移動ラジカル重合 (ATRP) )に より重合した結果、ポリシロキサン化合物 (A)に連鎖移動剤又はハロゲン化アルキル 開始剤を介して重合して!/、る。  The polymer (B) is obtained by polymerizing the polysiloxane compound (A) with a hydrophilic monomer by living radical polymerization (reversible addition-fragmentation chain transfer (RAFT) polymerization or atom transfer radical polymerization (ATRP)). (A) is polymerized via a chain transfer agent or an alkyl halide initiator.
[0052] 可逆的付加開裂連鎖移動重合の場合に用いられる連鎖移動剤としては、特に限 定されないが、 4 シァノペンタン酸ジチォベンゾエート、酢酸ジチォベンゾエート、 ブタン酸ジチォベンゾエート、 4 トルィル酸ジチォベンゾエート等が挙げられる。 [0053] また、原子移動ラジカル重合の場合に用いられるハロゲン化アルキル開始剤として は、特に限定されないが、 2—ブロモイソブチリルブロミド、 2—クロロイソブチリルクロリ ド、ブロモアセチルブロミド、ブロモアセチルクロリド等が挙げられる。 [0052] The chain transfer agent used in the case of reversible addition-cleavage chain transfer polymerization is not particularly limited, but includes 4 cyanopentanoic acid dithiobenzoate, acetic acid dithiobenzoate, butanoic acid dithiobenzoate, 4 toluic acid dithiol. Examples include benzoate. [0053] Although the halogenated alkyl initiator used in the case of atom transfer radical polymerization is not particularly limited, 2-bromoisobutyryl bromide, 2-chloroisobutyryl chloride, bromoacetyl bromide, bromoacetyl And chloride.
[0054] このリビングラジカル重合によれば、精密合成が可能となるば力、りでなぐ合成され る表面改質用化合物の分子量分布が狭くなるため(Mw/Mn= l .;!〜 1. 5程度)、 表面改質に好適に用いることができる。  [0054] According to this living radical polymerization, if the precision synthesis is possible, the molecular weight distribution of the surface modifying compound synthesized by the process becomes narrow (Mw / Mn = l .;! ~ 1. About 5) and can be suitably used for surface modification.
[0055] 本発明の表面改質用化合物の質量平均分子量は、 1000〜; 1000000であること カ好ましい。より好ましくは、 10000〜500000である。上記範囲とすることで、本発 明の表面改質用化合物を疎水性基材の表面改質に好適に用いることができる。  [0055] The surface modifying compound of the present invention preferably has a mass average molecular weight of 1000 to 1000000. More preferably, it is 10,000 to 500,000. By setting the content in the above range, the surface modifying compound of the present invention can be suitably used for surface modification of a hydrophobic substrate.
[0056] [表面改質用化合物の合成方法]  [0056] [Method for synthesizing compound for surface modification]
本発明の表面改質用化合物は、ポリシロキサン化合物 (A)を合成し、このポリシ口 キサン化合物 (A)に連鎖移動剤を導入し、リビングラジカル重合により、ポリシロキサ ン化合物 (A)に連鎖移動剤又はハロゲン化アルキル開始剤を介して重合体 (B)を 重合することにより合成すること力 Sできる。重合体 (B)は、ポリシロキサン化合物 (A) の片端で合成してもよく両端で合成してもよいが、以下では一例として、ポリシロキサ ン化合物 (A)の両端で重合体 (B)を合成する場合の合成方法につ!/、て説明する。  The surface modifying compound of the present invention synthesizes a polysiloxane compound (A), introduces a chain transfer agent into the polysiloxane compound (A), and performs chain transfer to the polysiloxane compound (A) by living radical polymerization. It can be synthesized by polymerizing the polymer (B) via an agent or an alkyl halide initiator. The polymer (B) may be synthesized at one end or at both ends of the polysiloxane compound (A) .In the following, as an example, the polymer (B) is synthesized at both ends of the polysiloxane compound (A). Explain how to synthesize!
[0057] 先ず、ポリシロキサン化合物 (A)を合成する。このポリシロキサン化合物 (A)は、例 えば、ヒドロキシル基又はヒドロキシル基を末端に有する官能基が両端に結合したォ リゴ (ジメチルシロキサン)を出発原料とし、オタタメチルシクロテトラシロキサンとテトラ メチルテトラビュルシクロテトラシロキサンとを所望の割合で加えて開環重合反応を起 こさせることにより合成すること力 Sでさる。  [0057] First, the polysiloxane compound (A) is synthesized. This polysiloxane compound (A) is, for example, a hydroxyl group or a hydroxyl group-terminated functional group bonded to both ends (dimethylsiloxane) as a starting material, and otamethylcyclotetrasiloxane and tetramethyltetrabule. Synthesized by adding ring-opening polymerization reaction by adding cyclotetrasiloxane in a desired ratio.
[0058] 次に、ポリシロキサン化合物 (A)に連鎖移動剤又はハロゲン化アルキル開始剤を 導入する。この連鎖移動剤又はハロゲン化アルキル開始剤は、例えば、ポリシロキサ ン化合物 (A)と連鎖移動剤又はハロゲン化アルキル開始剤とが溶解された溶液中に ジシクロへキシルカルポジイミド溶液を滴下して反応させることにより、導入することが できる。 [0058] Next, a chain transfer agent or an alkyl halide initiator is introduced into the polysiloxane compound (A). This chain transfer agent or alkyl halide initiator is reacted, for example, by adding a dicyclohexyl carpositimide solution dropwise into a solution in which the polysiloxane compound (A) and the chain transfer agent or alkyl halide initiator are dissolved. Can be introduced.
[0059] 次に、リビングラジカル重合により、ポリシロキサン化合物 (A)に連鎖移動剤又はハ ロゲン化アルキル開始剤を介して重合体 (B)を重合する。この重合反応は、可逆的 付加開裂連鎖移動重合の場合には、連鎖結合剤が導入されたポリシロキサン化合 物 (A)と親水性モノマーとを所定の溶媒に溶解し、重合開始剤を加え、 50〜80°Cで 2〜48時間加熱することにより行われる。また、原子移動ラジカル重合の場合には、 ハロゲン化アルカリ開始剤が導入されたポリシロキサン化合物 (A)と親水性モノマー とを所定の溶媒に溶解し、遷移金属錯体を加え、 25〜80°Cで 2〜48時間加熱する ことにより行われる。 [0059] Next, the polymer (B) is polymerized to the polysiloxane compound (A) via a chain transfer agent or a halogenated alkyl initiator by living radical polymerization. This polymerization reaction is reversible In the case of addition-cleavage chain transfer polymerization, the polysiloxane compound (A) having a chain binder introduced therein and a hydrophilic monomer are dissolved in a predetermined solvent, a polymerization initiator is added, and the mixture is added at 50 to 80 ° C. Performed by heating for ~ 48 hours. In addition, in the case of atom transfer radical polymerization, the polysiloxane compound (A) in which an alkali halide initiator is introduced and a hydrophilic monomer are dissolved in a predetermined solvent, a transition metal complex is added, and 25 to 80 ° C is added. For 2 to 48 hours.
[0060] 重合反応に用いる溶媒としては、特に限定されないが、水、メタノール、エタノール 、プロパノール、 tーブタノ一ノレ、ベンゼン、トルエン、ジメチルホルムアミド、テトラヒド 口フラン、クロ口ホルム、又はこれらの混合液を挙げることができる。  [0060] The solvent used in the polymerization reaction is not particularly limited, but water, methanol, ethanol, propanol, tert-butanol, benzene, toluene, dimethylformamide, tetrahydrofuran, chloroform, or a mixture thereof can be used. Can be mentioned.
[0061] 重合開始剤としては、特に限定されないが、 2, 2'ーァゾビスイソプチロニトリル、過 酸化べンゾィル、ジイソプロピルペルォキシカーボネート、 t ブチルペルォキシ 2 ーェチノレへキサノエート、 tーブチノレぺノレォキシピバレート、 tーブチノレぺノレオキシジ イソプチレート、過硫酸塩、過硫酸 亜硫酸水素塩等を用いることができる。  [0061] The polymerization initiator is not particularly limited, but 2,2'-azobisisoptyronitrile, benzoyl peroxide, diisopropyl peroxycarbonate, t-butyl peroxy 2-ethino hexanoate, tert-butyl olepenoleoxy Pivalate, t-butinolepenoleoxydiisoptylate, persulfate, persulfate bisulfite, and the like can be used.
[0062] 遷移金属錯体としては、特に限定されないが、 1価の銅、 2価のルテニウム等の錯 体を用いることができる。  [0062] The transition metal complex is not particularly limited, and complexes such as monovalent copper and divalent ruthenium can be used.
[0063] 〔表面改質方法〕  [0063] [Surface modification method]
本発明の第 1の表面改質方法は、 Si— H基を有する又は Si— H基が導入された疎 水性基材の表面を、本発明の表面改質用化合物を含む溶液で処理する工程と、表 面改質用化合物を含む溶液で処理された疎水性基材を加熱する工程と、を含むも のである。  The first surface modification method of the present invention comprises a step of treating the surface of a hydrophobic substrate having Si—H groups or having Si—H groups introduced therein with a solution containing the surface modification compound of the present invention. And heating the hydrophobic substrate treated with the solution containing the surface modifying compound.
[0064] なお、疎水性基材が Si— H基を有さない場合には、疎水性基材の表面をヒドロシリ ル化し、 Si— H基を導入する工程をさらに含めるようにしても構わない。このヒドロシリ ル化は、疎水性基材を例えばポリ(ヒドロメチルシロキサン)溶液に浸漬するなど、公 知の方法により実現できる。  [0064] If the hydrophobic substrate does not have Si-H groups, the surface of the hydrophobic substrate may be hydrosilylated to further include a step of introducing Si-H groups. . This hydrosilation can be achieved by known methods such as immersing the hydrophobic substrate in a poly (hydromethylsiloxane) solution, for example.
[0065] 先ず、 Si— H基を有する又は Si— H基が導入された疎水性基材の表面を、本発明 の表面改質用化合物を含む溶液で処理する。この工程では、表面改質用化合物を 含む溶液に疎水性基材を浸漬してもよぐスピンコート法など、公知のコーティング方 法により塗布してもよい。 [0066] 表面改質用化合物を含む溶液の溶媒としては、特に限定されな!/、が、メタノーノレ、 エタノール、イソプロパノール、又はこれらの混合液等を用いることができる。表面改 質用化合物は、この溶媒中に 0. 0;!〜 50質量%の濃度で溶解される。また、この溶 液中には、 Pt触媒等の触媒が含まれる。 First, the surface of the hydrophobic substrate having Si—H groups or having Si—H groups introduced therein is treated with a solution containing the surface modifying compound of the present invention. In this step, it may be applied by a known coating method such as a spin coating method in which a hydrophobic substrate may be immersed in a solution containing a surface modifying compound. [0066] The solvent of the solution containing the surface modifying compound is not particularly limited, but methanol, ethanol, isopropanol, or a mixed solution thereof can be used. The compound for surface modification is dissolved in this solvent at a concentration of 0.0; The solution contains a catalyst such as a Pt catalyst.
[0067] 次に、表面改質用化合物を含む溶液で処理された疎水性基材を加熱することによ り、疎水性基材表面に表面改質用化合物を結合させる。加熱温度は、 35〜80°Cが 好ましい。この加熱により、疎水性基材の Si— H基と、表面改質用化合物のポリシ口 キサン (A)のビュル基とが結合する。なお、加熱温度を高めることにより、結合に要す る時間を短縮化することができる。  Next, the surface modifying compound is bonded to the surface of the hydrophobic substrate by heating the hydrophobic substrate treated with the solution containing the surface modifying compound. The heating temperature is preferably 35 to 80 ° C. By this heating, the Si—H group of the hydrophobic substrate is bonded to the bull group of the polysiloxane (A) of the surface modifying compound. Note that the time required for bonding can be shortened by increasing the heating temperature.
[0068] このようにして改質された疎水性基材表面では、ポリシロキサン化合物 (A)がビニ ル基を介して固着されるとともに、重合体 (B)が繊毛状に配列される。したがって、こ の繊毛状の重合体 (B)によって液体が保持され、潤滑性が維持される。また、表面 改質後の疎水性基材表面は、生体物質等の非特異的吸着が抑制される。  [0068] On the surface of the hydrophobic substrate thus modified, the polysiloxane compound (A) is fixed via a vinyl group, and the polymer (B) is arranged in a cilia shape. Accordingly, the liquid is held by the ciliated polymer (B) and the lubricity is maintained. In addition, non-specific adsorption of biological substances and the like is suppressed on the surface of the hydrophobic substrate after surface modification.
[0069] また、本発明の第 2の表面改質方法は、本発明の表面改質用化合物をプラズマ重 合法により疎水性基材の表面にコーティングする工程を含むものである。  [0069] The second surface modification method of the present invention includes a step of coating the surface of the hydrophobic substrate with the surface modification compound of the present invention by a plasma polymerization method.
[0070] このような表面改質方法によれば、プラズマ重合用の装置が必要になるものの、表 面改質用化合物を疎水性基材表面に結合させることができる。この場合にも、表面 改質後には重合体 (B)が疎水性基材表面で繊毛状に配列されるため、この繊毛状 の重合体 (B)によって液体が保持され、潤滑性が維持される。また、表面改質後の 疎水性基材表面は、生体物質等の非特異的吸着が抑制される。  [0070] According to such a surface modification method, an apparatus for plasma polymerization is required, but the surface modification compound can be bonded to the surface of the hydrophobic substrate. Also in this case, after the surface modification, the polymer (B) is arranged in a cilia shape on the surface of the hydrophobic substrate, so that the liquid is retained by the ciliated polymer (B) and the lubricity is maintained. The In addition, non-specific adsorption of biological substances and the like is suppressed on the surface of the hydrophobic substrate after surface modification.
[0071] 〔疎水性基材、医療用部材〕  [Hydrophobic substrate, medical member]
本発明の疎水性基材は、本発明の表面改質用化合物を用いて改質されたもので ある。疎水性基材としては、シリコーン、セラミックス、ガラス、金属、半導体ナノ粒子等 が挙げられる。その中でも、シリコーン及びセラミックスが好ましい。  The hydrophobic substrate of the present invention has been modified with the surface modifying compound of the present invention. Examples of the hydrophobic substrate include silicone, ceramics, glass, metal, and semiconductor nanoparticles. Among these, silicone and ceramics are preferable.
[0072] また、本発明の医療用部材は、本発明の表面改質用化合物を用いて改質されたも のである。この医療用部材は、既に製造された医療用部材に対して表面改質が施さ れたものであってもよぐ予め表面改質が施された疎水性基材を用いて製造されたも のであってもよい。医療用部材としては、人工関節、カテーテル、バルーン力テーテ ノレ、ガイドワイヤー等の処置用機械器具、ファイバースコープ型内視鏡等の検査用 機械器具、コンタ外レンズ等の眼科用部材等が挙げられる。 [0072] Further, the medical member of the present invention has been modified using the surface modifying compound of the present invention. This medical member is manufactured using a hydrophobic base material that has been surface-modified in advance, even if it has been surface-modified to a medical member that has already been manufactured. There may be. Medical members include artificial joints, catheters, balloon force tables Examples include treatment machine instruments such as drills and guide wires, inspection instrument instruments such as fiberscope endoscopes, and ophthalmic members such as contour lenses.
実施例  Example
[0073] 以下、実施例を用いて本発明をさらに詳細に説明する。  [0073] Hereinafter, the present invention will be described in more detail with reference to examples.
[0074] <表面改質用化合物の合成〉 [0074] <Synthesis of surface modifying compound>
[ポリシロキサン化合物の合成]  [Synthesis of polysiloxane compounds]
以下の反応スキームに示すsよ ■.うに、ヒドロキシエトキシプロピルージメチルシリル基力 S 両端に結合したポリ(ジメチルシロキサン co ビュルメチルシロキサン)(PD V M  The following reaction scheme shows the following: ■ Hydroxyethoxypropyl-dimethylsilyl group S Poly (dimethylsiloxane co butylmethylsiloxane) bonded at both ends (PD V M
1 m 1 m
S)を合成した。 S) was synthesized.
[化 4コ  [Chemical 4
. ハ/ DH C / DH
0 I 0  0 I 0
MR 2D8 M R 2 D 8
( e2SiO)4 (e 2 SiO) 4
(MeViSiO)4 (MeViSiO) 4
Figure imgf000013_0001
Figure imgf000013_0001
PD,VmMS PD, V m MS
ヒドロキシエトキシプロピルジメチルシリル基が両端に結合したオリゴ (ジメチルシ口 キサン)(MR D , n = 8) (信越化学工業 (株)製)を出発原料とし、オタタメチルシクロ Hydroxyethoxypropyl butyldimethylsilyl group is bonded to both ends oligo (Jimechirushi port hexane) (M R D, n = 8) (manufactured by Shin-Etsu Chemical Co.) was used as a starting material, OTA data methylcyclopropyl
2 8  2 8
テトラシロキサン((Me SiO) ) (信越化学工業 (株)製)とテトラメチルテトラビュルシク  Tetrasiloxane ((Me SiO)) (manufactured by Shin-Etsu Chemical Co., Ltd.) and tetramethyltetraburushiku
2 4  twenty four
ロテトラシロキサン((MeViSiO) ) (信越化学工業 (株)製)とを約 l : mの割合で加え  Add rotetrasiloxane ((MeViSiO)) (manufactured by Shin-Etsu Chemical Co., Ltd.) at a ratio of about l: m
4  Four
て開環重合反応を起こさせることにより、 PD V MSを合成した。 合成した PD V MSの種類、原料としての MR D、(Me SiO) 、及び(MeViSiO)PD V MS was synthesized by causing a ring-opening polymerization reaction. Type of synthesized PD V MS, M R D as a raw material, (Me SiO), and (MeViSiO)
1 m 2 8 2 4 1 m 2 8 2 4
のモル量、 Me SiOと MeViSiOとのモル分率、合成した PD V MSの質量平均分 Molar amount, Me SiO and MeViSiO mole fraction, synthesized PD V MS mass average
4 2 1 m 4 2 1 m
子量 (Mw)及び分散度(Mw/Mn)を表 1に示す。なお、みかけ分子量はゲル濾過 クロマトグラフィー(GPC)により測定し、絶対分子量は多角度光散乱検出器 (MALL S)により測定した。 The molecular weight (Mw) and dispersity (Mw / Mn) are shown in Table 1. The apparent molecular weight was measured by gel filtration chromatography (GPC), and the absolute molecular weight was measured by a multi-angle light scattering detector (MALL S).
[表 1] [table 1]
Figure imgf000014_0002
Figure imgf000014_0002
a〉理論値、 b)GPGで測定したみかけ分子量、 e)MALLSで測定した絶対分子量 先ず、以下の反応スキームに示すように、 PD V MSの両端に連鎖移動剤(CTA) a) Theoretical value, b) Apparent molecular weight measured by GPG, e) Absolute molecular weight measured by MALLS First, as shown in the following reaction scheme, a chain transfer agent (CTA) is attached to both ends of PD V MS.
1 m  1 m
を導入して、 CTA-PD V MS— CTAを合成した。 Was introduced to synthesize CTA-PD V MS—CTA.
1 m  1 m
[化 5] 〜。 一 i_Q ^ 。〜 OH + PD|VmMS CTA [Chemical 5] One i _ Q ^. ~ OH + PD | V m MS CTA
DCC CH2CI2 DCC CH 2 CI 2
Figure imgf000014_0001
Figure imgf000014_0001
CTA-PD|Vm S-CTA 連鎖移動剤としては 4 シァノペンタン酸ジチォベンゾエートを使用し、これを McC ormicらの方法 (Mitsukami, Y. ; Donovan, M. S. ; Lowe, A. B. ; McCor mick, C. L. Macromolecules 2001 , 34, 2248)に従って合成した。所定量の PD V MSと 4倍モル量の 4 シァノペンタン酸ジチォベンゾエートとが溶解されたジ CTA-PD | V m S-CTA 4 Cyananopentanoic acid dithiobenzoate was used as the chain transfer agent and this was added to McC Synthesized according to the method of ormic et al. (Mitsukami, Y .; Donovan, MS; Lowe, AB; McCormick, CL Macromolecules 2001, 34, 2248). Di-solubilized a given amount of PD V MS and a 4-fold molar amount of 4-cyanopentanoic acid dithiobenzoate
1 m  1 m
クロロメタン(CH CI UOOmLに、 lOOmLのジクロロメタンに溶解したジシクロへキシ Chloromethane (in CH CI UOOmL, dicyclohexyl dissolved in lOOmL of dichloromethane)
2 2  twenty two
ルカルポジイミド (DCC) (関東化学 (株)製)を滴下し、 40°Cで 20時間攪拌した。そ の後、フィルター濾過により不溶物を除いた。次いで、ジクロロメタンを留去し、メタノ ールに色が付かなくなるまで反応生成物をメタノールで洗浄した後、クロ口ホルムに 溶解した。そして、飽和食塩水で 3回洗浄した後、硫化マグネシウムで水分を除去し 、濃縮した。 Lucal positive imide (DCC) (manufactured by Kanto Chemical Co., Inc.) was added dropwise and stirred at 40 ° C for 20 hours. Thereafter, insoluble matters were removed by filtration through a filter. Next, the dichloromethane was distilled off, and the reaction product was washed with methanol until the methanol was no longer colored, and then dissolved in chloroform. Then, after washing three times with saturated saline, the water was removed with magnesium sulfide and concentrated.
次に、以下の反応スキームに示すように、 CTA-PD V MS— CTAの両端で 2—  Next, as shown in the reaction scheme below, CTA-PD V MS—
1 m  1 m
メタクリロイルォキシェチルホスホリルコリン (MPC)を重合させ、表面改質用化合物 である PMPC -PD V MS -PMPCを合成した。 Methacryloyloxetyl phosphorylcholine (MPC) was polymerized to synthesize PMPC -PD V MS -PMPC, a surface modification compound.
n 1 m n  n 1 m n
[化 6]
Figure imgf000015_0001
[Chemical 6]
Figure imgf000015_0001
CTA-PD|Vm S-CTA CTA-PD | V m S-CTA
MPC MPC
Figure imgf000015_0002
Figure imgf000015_0002
15mmolの MPC (日本油脂(株)製)と所定量の CTA— PD V MS— CTAとをトル 15 mmol of MPC (manufactured by NOF Corporation) and a predetermined amount of CTA—PD V MS—CTA
1 m  1 m
ェン/エタノール(1/1)溶液に溶解し、全量を 30mLに調整した。次いで、重合開 始剤として 2, 2'—ァゾビスイソプチロニトリル (AIBN) (関東化学 (株)製)を所定量 添加した後、溶液にアルゴンガスを 30分間通すことにより、酸素を除去した。その後 、 70°Cで緩やかに攪拌しながら所定時間反応させることにより、 PMPC -PD V M n 1 mDissolved in an ethanol / ethanol (1/1) solution, the total volume was adjusted to 30 mL. Next, after adding a predetermined amount of 2,2'-azobisisoptyronitrile (AIBN) (manufactured by Kanto Chemical Co., Inc.) as a polymerization initiator, oxygen was removed by passing argon gas through the solution for 30 minutes. did. Then, PMPC -PD V M n 1 m by reacting for a predetermined time with gentle stirring at 70 ° C
S— PMPCを合成した。そして、合成された PMPC -PD V MS— PMPCをテト ラヒドロフラン中で沈殿させ、沈殿物をエタノールに溶解した後、再度テトラヒドロフラ ン中で沈殿させ、最後に沈殿物を減圧乾燥した。 S—PMPC was synthesized. The synthesized PMPC -PD V MS—PMPC Precipitation was performed in lahydrofuran, and the precipitate was dissolved in ethanol, and then precipitated again in tetrahydrofuran. Finally, the precipitate was dried under reduced pressure.
[0081] 原料としての MPC、 CTA、 AIBNのモル量がそれぞれ 15mmol、 0. 05mmol、 0 . 025mmolである場合における、重合時間と MPC濃度との関係を図 1に示す。図 1 において、 Mは MPCの初期濃度を表し、 Mはある時点における MPC濃度を表す。 [0081] Fig. 1 shows the relationship between the polymerization time and the MPC concentration when the molar amounts of MPC, CTA, and AIBN as raw materials are 15 mmol, 0.05 mmol, and 0.025 mmol, respectively. In FIG. 1, M represents the initial concentration of MPC, and M represents the MPC concentration at a certain time point.
0  0
また、重合時間と PMPC -PD V MS -PMPCの分子量との関係を図 2に示す。  Figure 2 shows the relationship between the polymerization time and the molecular weight of PMPC -PD V MS -PMPC.
n 1 m n  n 1 m n
本発明における MPCの重合反応はリビングラジカル反応であるため、図 1に示すよう に MPC濃度の減少率は略々一定であり、 PMPC -PD V MS -PMPCの分子  Since the MPC polymerization reaction in the present invention is a living radical reaction, the rate of decrease in MPC concentration is almost constant as shown in Fig. 1, and the molecule of PMPC -PD V MS -PMPC
n 1 m n  n 1 m n
量は、 MPC濃度の減少に伴って図 2に示すように増加する。  The amount increases as shown in Figure 2 with decreasing MPC concentration.
[0082] 合成した PMPC -PD V MS -PMPCの種類及びコード、原料としての MPC、 [0082] Type and code of synthesized PMPC -PD V MS -PMPC, MPC as raw material,
n 1 m n  n 1 m n
CTA、及び AIBNのモル量、 PMPCの重合数(PMPC )、合成した PMPC—PD  Molar amount of CTA and AIBN, number of polymerizations of PMPC (PMPC), synthesized PMPC-PD
PDI n 1 PDI n 1
V MS -PMPCの分子量を表 2に示す。なお、化合物中における PMPCの重合数 m n The molecular weight of V MS -PMPC is shown in Table 2. The number of polymerizations of PMPC in the compound m n
は、リン定量により測定した。  Was measured by phosphorus quantification.
[表 2] [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
[MPC]=0.5mol/L [CTA]/[AIBN]=2 重合温度 = 70°C 溶媒:エタノール/トルエン = 1/1 (vol)  [MPC] = 0.5mol / L [CTA] / [AIBN] = 2 Polymerization temperature = 70 ° C Solvent: Ethanol / Toluene = 1/1 (vol)
[0083] <表面改質用化合物を用いた試験片の表面改質〉  [0083] <Surface Modification of Specimen Using Surface Modification Compound>
合成した表面改質用化合物を用いて、図 3に示すような手順でシリコーン製の試験 片の表面改質を行った。  Using the synthesized surface modifying compound, the surface modification of a silicone test piece was performed in the procedure shown in FIG.
[0084] [試験片の作製及びヒドロシリル化] [0084] [Preparation of test piece and hydrosilylation]
先ず、 PDMSプレポリマー(Silpotl84、ダウ'コーユング社製)とその架橋触媒の 1 0 : 1 (w/w)の混合物をよく攪拌し、テフロン (登録商標)プレート上に滴下した。その 後、脱気して、 100°Cで 2時間加熱することにより硬化させた。そして、硬化したフィル ムをプレートから剥がし、直径 15mmのディスク状に加工した。得られたディスク状の 試験片をへキサン及びアセトンで洗浄し、減圧下、室温で 1日乾燥させた。 First, PDMS prepolymer (Silpotl8 4, Dow 'Koyungu Co.) and 1 0 of the crosslinking catalyst: 1 and stirred well a mixture of (w / w), was added dropwise a Teflon plate. That Thereafter, it was deaerated and cured by heating at 100 ° C. for 2 hours. The cured film was peeled off from the plate and processed into a disk shape with a diameter of 15 mm. The obtained disc-shaped test piece was washed with hexane and acetone and dried at room temperature under reduced pressure for 1 day.
[0085] 次に、ポリ(ヒドロメチルシロキサン)(KF99P、信越化学工業 (株)製)とイソプロパノ 一ノレとの 3: 5 (v/v)混合溶液 30mlに、触媒として 0. 02mlのトリフルォロメタンスル ホン酸を加えた溶液中に試験片を浸漬し、室温で 15分間攪拌することにより、試験 片のヒドロシリル化を行った。その後、試験片を溶液から取り出し、イソプロパノール 及びへキサンでよく洗浄した後、減圧下、室温で 1日乾燥させた。試験片表面の Si— H基は全反射吸収 フーリエ変換赤外分光法 (ATR— FTIR)により確認した。  [0085] Next, 30 ml of a 3: 5 (v / v) mixed solution of poly (hydromethylsiloxane) (KF99P, manufactured by Shin-Etsu Chemical Co., Ltd.) and isopropanol monore was added as a catalyst with 0.02 ml of trifluoro. The test piece was hydrosilylated by immersing the test piece in a solution containing romethanesulfonic acid and stirring at room temperature for 15 minutes. Thereafter, the test piece was taken out of the solution, washed thoroughly with isopropanol and hexane, and then dried at room temperature under reduced pressure for 1 day. The Si—H group on the specimen surface was confirmed by total reflection absorption Fourier transform infrared spectroscopy (ATR—FTIR).
[0086] [試験片の表面改質]  [0086] [Surface Modification of Specimen]
1質量%の表面改質用化合物を含有するエタノール 10mL中に、 Pt触媒(白金 ジビュルテトラメチルジシロキサン複合体)を 2滴加え、ポリマー溶液を調製した。この ポリマー溶液をヒドロシリル化後の試験片に滴下し、 4000rpmで 10分間、スピンコー トした。その後、 80°Cで 2時間加熱することにより、表面改質用化合物を試験片に結 合させた。そして、試験片をエタノール中に浸漬し、途中エタノールを交換しながら 5 0°Cで 24時間リンスした後、減圧下で乾燥させた。  Two drops of Pt catalyst (platinum dibule tetramethyldisiloxane complex) were added to 10 mL of ethanol containing 1% by mass of a surface modifying compound to prepare a polymer solution. This polymer solution was dropped on the test piece after hydrosilylation and spin-coated at 4000 rpm for 10 minutes. Thereafter, the surface modifying compound was bonded to the test piece by heating at 80 ° C. for 2 hours. Then, the test piece was immersed in ethanol, rinsed at 50 ° C. for 24 hours while ethanol was being exchanged, and then dried under reduced pressure.
[0087] <表面改質後の表面分析〉  [0087] <Surface analysis after surface modification>
表面改質後の試験片に表面改質用化合物が結合しているか否かを確認するため 、表面改質後の試験片表面を X線光電子スペクトル装置 (XPS)により分析した。リン 原子のシグナルと炭素原子のシグナルとの比(P/C)を図 4に示す。なお、図 4中、 例えば「26— 173」とは、表 2に示す表面改質用化合物のコード、すなわち PMPC  In order to confirm whether or not the surface modifying compound was bound to the surface-modified test piece, the surface of the test piece after the surface modification was analyzed with an X-ray photoelectron spectrometer (XPS). Figure 4 shows the ratio (P / C) of the phosphorus atom signal to the carbon atom signal. In FIG. 4, for example, “26-173” means the code of the surface modifying compound shown in Table 2, that is, PMPC.
26 26
-PD V MS -PMPC を表す。 -PD V MS Represents PMPC.
173 17 26  173 17 26
[0088] 図 4に示すように、構成要素の重合数によって若干の差はあるものの、いずれも M PC由来のリン原子のシグナルが確認されており、試験片に表面改質用化合物が結 合して!/、ること力 S確言忍された。  [0088] As shown in Fig. 4, although there is a slight difference depending on the number of polymerized components, a signal of a phosphorus atom derived from MPC was confirmed, and the surface modifying compound was bound to the test piece. And! /, The power of S.
[0089] <摩擦係数の測定〉  [0089] <Measurement of friction coefficient>
表面改質後の試験片の摩擦係数を測定することにより、試験片の潤滑性を評価し た。試験片上に潤滑液として純水を介して直径 25mmのステンレス製ディスクを載せ 、このステンレス製ディスクを lOOgの荷重を加えた状態で速度 10mm/sで滑らせる ことにより、静止摩擦係数及び動摩擦係数を測定した。結果を図 5 (A)、 (B)に示す 。図 5 (B)は、図 5 (A)の破線で囲まれた部分を拡大して示したものである。 The lubricity of the test piece was evaluated by measuring the coefficient of friction of the test piece after surface modification. Place a 25 mm diameter stainless steel disk on the test piece via pure water as a lubricant. The coefficient of static friction and the coefficient of dynamic friction were measured by sliding this stainless steel disk at a speed of 10 mm / s with a load of lOOg. The results are shown in Fig. 5 (A) and (B). FIG. 5B is an enlarged view of a portion surrounded by a broken line in FIG.
[0090] 図 5 (A)、 (B)から分かるように、本発明の表面改質用化合物で表面改質した試験 片では、表面改質していない試験片と比較して、静止摩擦係数、動摩擦係数ともに 著しく減少している。これは、表面改質用化合物の重合体 (B)によって潤滑液である 水が保持されたためと考えられる。  [0090] As can be seen from Figs. 5 (A) and (B), the coefficient of static friction of the test piece surface-modified with the surface modifying compound of the present invention is higher than that of the test piece not surface-modified. Both the dynamic friction coefficients are significantly reduced. This is presumably because water as a lubricating liquid was retained by the polymer (B) of the surface modifying compound.
[0091] <血小板接着試験〉  [0091] <Platelet adhesion test>
表面改質後の試験片への非特異的吸着の有無を評価するため、血小板接着試験 を行った。 3. 8%クェン酸ナトリウムを血液に対し 1/10容加えたヒト全血を、 12000 rpmで 15分間遠心分離し、上清を回収することにより、多血小板血漿 (PRP)を調製 した。そして、試料を 24ゥエル培養プレートにシリコンリングで固定し、リン酸緩衝生 理食塩水を lml添加してー晚平衡化した。その後、各ゥエルに PRPを lml添加し、室 温で 180分間静置した。走査型電子顕微鏡(SEM)で表面を観察した結果を図 6に 示す。  In order to evaluate the presence or absence of nonspecific adsorption to the test piece after surface modification, a platelet adhesion test was performed. 3. Platelet rich plasma (PRP) was prepared by centrifuging human whole blood with 1/10 volume of 8% sodium citrate added to blood at 12000 rpm for 15 minutes and collecting the supernatant. The sample was fixed to a 24-well culture plate with a silicon ring, and 1 ml of phosphate buffered saline was added to equilibrate. Thereafter, 1 ml of PRP was added to each well and allowed to stand at room temperature for 180 minutes. Figure 6 shows the results of surface observation with a scanning electron microscope (SEM).
[0092] 図 6から分かるように、本発明の表面改質用化合物で表面改質した場合には、血小 板の接着が著しく抑えられている。したがって、本発明の表面改質用化合物は、生体 物質等に接触する医療用部材の表面改質に好適である。  [0092] As can be seen from FIG. 6, when the surface was modified with the surface modifying compound of the present invention, the adhesion of the blood platelets was remarkably suppressed. Therefore, the surface modifying compound of the present invention is suitable for surface modification of a medical member that comes into contact with a biological substance or the like.
[0093] 以上、本発明を実施するための最良の形態について説明した力 本発明は、上述 した実施の形態のみに限定されるものではなぐ本発明の要旨を変更しない限り、様 々な変更が可能であることは勿論である。  [0093] The power described in the best mode for carrying out the present invention has been described above. The present invention is not limited only to the above-described embodiment, and various modifications can be made without changing the gist of the present invention. Of course, it is possible.
[0094] 例えば、上述した実施の形態では、潤滑性を付与する効果を中心として本発明の 表面改質用化合物について説明したが、本発明の表面改質用化合物は、図 6に示 したように生体物質等の非特異的吸着を抑えることができるため、バイオセンサゃバ ィォチップなど、潤滑性よりは寧ろ非特異的吸着の少なさが要求される用途にも好適 に用いることができる。  For example, in the above-described embodiment, the surface modifying compound of the present invention has been described focusing on the effect of imparting lubricity, but the surface modifying compound of the present invention is as shown in FIG. In addition, since non-specific adsorption of biological substances and the like can be suppressed, the biosensor can be suitably used for applications that require less non-specific adsorption rather than lubricity, such as biochips.

Claims

請求の範囲 The scope of the claims
[1] 側鎖にビュル基を有するポリシロキサン化合物 (A)に、ラジカル重合可能な親水性 モノマーからなる重合体 (B)が連鎖移動剤又はハロゲン化アルキル開始剤を介して 重合した表面改質用化合物。  [1] Surface modification in which a polymer (B) made of a hydrophilic monomer capable of radical polymerization is polymerized via a chain transfer agent or an alkyl halide initiator to a polysiloxane compound (A) having a bur group in the side chain Compounds.
[2] 前記ポリシロキサン化合物 (A)の両端に、前記重合体 (B)が連鎖移動剤又はハロ ゲン化アルキル開始剤を介して重合した請求項 1記載の表面改質用化合物。 [2] The surface modifying compound according to claim 1, wherein the polymer (B) is polymerized on both ends of the polysiloxane compound (A) via a chain transfer agent or a halogenated alkyl initiator.
[3] 前記ポリシロキサン化合物 (A)力 ジメチルシロキサン力、ら誘導される構成単位(al[3] Structural unit derived from the polysiloxane compound (A) force dimethylsiloxane force (al
)とビュルメチルシロキサンから誘導される構成単位(a2)との共重合体を構造中に含 む請求項 1又は 2記載の表面改質用化合物。 3) The compound for surface modification according to claim 1 or 2, comprising a copolymer of a structural unit (a2) derived from butylmethylsiloxane in the structure.
[4] 前記重合体 (B)が、 2—メタクリロイルォキシェチルホスホリルコリンから誘導される 構成単位 (b)力 なる請求項 3記載の表面改質用化合物。 4. The surface modifying compound according to claim 3, wherein the polymer (B) is a structural unit (b) force derived from 2-methacryloyloxychetylphosphorylcholine.
[5] 前記ポリシロキサン化合物 (A)が、下記一般式(1)で表される請求項 3記載の表面 改質用化合物。 5. The surface modifying compound according to claim 3, wherein the polysiloxane compound (A) is represented by the following general formula (1).
[化 1コ
Figure imgf000019_0001
[Chemical 1
Figure imgf000019_0001
—— (1) —— (1)
[式(1)中、
Figure imgf000019_0002
R2はそれぞれ独立に炭素数 1〜4のアルキレン基を表し、 1、 mはそ れぞれ前記構成単位(al)及び前記構成単位(a2)の重合数を表す。 ]
[In the formula (1),
Figure imgf000019_0002
R 2 independently represents an alkylene group having 1 to 4 carbon atoms, and 1 and m represent the number of polymerizations of the structural unit (al) and the structural unit (a2), respectively. ]
[6] 前記構成単位(al)と前記構成単位(a2)とのモル比力 1: 9〜9: 1である請求項 3 記載の表面改質用化合物。 6. The surface modifying compound according to claim 3, wherein the molar ratio between the structural unit (al) and the structural unit (a2) is 1: 9 to 9: 1.
[7] 前記構成単位(al)及び(a2)と前記構成単位(b)とのモル比力 S、 1 : 9〜9 : 1である 請求項 4記載の表面改質用化合物。 7. The surface modifying compound according to claim 4, wherein the molar specific force S between the structural units (al) and (a2) and the structural unit (b) is S: 1: 9 to 9: 1.
[8] 質量平均分子量が 1000〜; 1000000である請求項 1から 7いずれか記載の表面改 質用化合物。 [8] The compound for surface modification according to any one of [1] to [7], having a mass average molecular weight of 1000 to 1000000.
[9] 前記重合体 (B)は、前記ポリシロキサン化合物 (A)に前記親水性モノマーカ^ビン グラジカル重合により重合したものである請求項 1から 8いずれか記載の表面改質用 化合物。 [9] The surface modification agent according to any one of [1] to [8], wherein the polymer (B) is polymerized by the hydrophilic monomer coupling radical polymerization to the polysiloxane compound (A). Compound.
[10] Si— H基を有する又は Si— H基が導入された疎水性基材の表面改質に用いられる 請求項 1から 91/、ずれか記載の表面改質用化合物。  [10] The surface modifying compound according to any one of claims 1 to 91 /, which is used for surface modification of a hydrophobic substrate having a Si—H group or having a Si—H group introduced therein.
[11] シリコーン又はセラミックスの表面改質に用いられる請求項 10記載の表面改質用 化合物。 11. The surface modifying compound according to claim 10, which is used for surface modification of silicone or ceramics.
[12] Si— H基を有する又は Si— H基が導入された疎水性基材の表面を、請求項 1から  [12] The surface of the hydrophobic substrate having Si—H groups or having Si—H groups introduced therein,
1 1 V、ずれか記載の表面改質用化合物を含む溶液で処理する工程と、  1 1 V, a step of treating with a solution containing the surface modifying compound described in the deviation,
前記表面改質用化合物を含む溶液で処理された前記疎水性基材を加熱する工程 と、を含む表面改質方法。  Heating the hydrophobic substrate treated with a solution containing the surface modifying compound.
[13] 前記疎水性基材の表面をヒドロシリル化し、 Si— H基を導入する工程をさらに含む 請求項 12記載の表面改質方法。  13. The surface modification method according to claim 12, further comprising the step of hydrosilylating the surface of the hydrophobic substrate and introducing Si—H groups.
[14] 請求項 1から 1 1いずれか記載の表面改質用化合物をプラズマ重合法により疎水性 基材の表面にコーティングする工程を含む表面改質方法。 [14] A surface modification method comprising a step of coating the surface of a hydrophobic substrate with the surface modification compound according to any one of [1] to [11] by a plasma polymerization method.
[15] 請求項 1から 1 1いずれか記載の表面改質用化合物を用いて表面改質された疎水 性基材。 [15] A hydrophobic substrate surface-modified with the surface-modifying compound according to any one of claims 1 to 11.
[16] 請求項 1から 1 1いずれか記載の表面改質用化合物を用いて表面改質された医療 用部材。  [16] A medical member surface-modified with the surface-modifying compound according to any one of claims 1 to 11.
PCT/JP2007/065839 2006-08-21 2007-08-14 Compound for surface modification and surface modifying method using the same WO2008023604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530864A JPWO2008023604A1 (en) 2006-08-21 2007-08-14 Surface modifying compound and surface modification method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006224442 2006-08-21
JP2006-224442 2006-08-21

Publications (1)

Publication Number Publication Date
WO2008023604A1 true WO2008023604A1 (en) 2008-02-28

Family

ID=39106690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065839 WO2008023604A1 (en) 2006-08-21 2007-08-14 Compound for surface modification and surface modifying method using the same

Country Status (2)

Country Link
JP (1) JPWO2008023604A1 (en)
WO (1) WO2008023604A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505993A (en) * 2006-10-03 2010-02-25 センター ナショナル ド ラ ルシェルシュ サイエンティフィーク Method for treating a surface containing Si-H groups
WO2010122817A1 (en) * 2009-04-24 2010-10-28 株式会社ネクスト21 Resin product for medical use and respiration-assisting tube
WO2010147779A3 (en) * 2009-06-15 2011-02-17 Dsm Ip Assets B.V. Phosphorylcholine-based amphiphilic silicones for medical applications
WO2015060129A1 (en) * 2013-10-21 2015-04-30 住友ゴム工業株式会社 Metal medical device having lubricity and low protein adsorption properties and/or low cell adsorption properties, and method for producing same
EP2992909A1 (en) * 2014-09-02 2016-03-09 Sumitomo Rubber Industries, Ltd. Metal medical device
WO2018212209A1 (en) * 2017-05-17 2018-11-22 国立大学法人九州大学 Medical polymer material having excellent bone binding property
KR20190103728A (en) * 2018-02-28 2019-09-05 인하대학교 산학협력단 Method for Modifying Surface of Polydimethylsiloxan by Using Method of Applying Polymethylhydrosiloxane, and Polydimethylsiloxan Made thereby
WO2019194264A1 (en) 2018-04-05 2019-10-10 日油株式会社 Phosphorylcholine group-containing polysiloxane monomer
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
US10759918B2 (en) 2015-08-03 2020-09-01 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940415B2 (en) * 2015-04-24 2021-09-29 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Surface modified polymer composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296019A (en) * 1996-05-08 1997-11-18 Nof Corp Block copolymer and medical material
JP2003310649A (en) * 2002-02-19 2003-11-05 Kobe Steel Ltd Artificial joint member made of high polymer material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296019A (en) * 1996-05-08 1997-11-18 Nof Corp Block copolymer and medical material
JP2003310649A (en) * 2002-02-19 2003-11-05 Kobe Steel Ltd Artificial joint member made of high polymer material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDO B ET AL: "MPC/DMS-kei polymer alloy no kyuchaku tokusei", POLYMER PREPRINTS, vol. 52, no. 11, 10 September 2003 (2003-09-10), pages 3009 - 3010, XP003020275 *
IWASAKI Y ET AL: "Surface modification with well-defined biocompatible triblock copolymers. Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surfece", COLLOIDS SURFACES B: BIOINTERFACES, vol. 57, no. 2, 11 February 2007 (2007-02-11), pages 226 - 236, XP022053583 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505993A (en) * 2006-10-03 2010-02-25 センター ナショナル ド ラ ルシェルシュ サイエンティフィーク Method for treating a surface containing Si-H groups
WO2010122817A1 (en) * 2009-04-24 2010-10-28 株式会社ネクスト21 Resin product for medical use and respiration-assisting tube
JPWO2010122817A1 (en) * 2009-04-24 2012-10-25 株式会社ネクスト21 Medical plastic products and breathing assistance tubes
US8957173B2 (en) 2009-04-24 2015-02-17 Next21 K.K. Resin product for medical use and respiration-assisting tube
WO2010147779A3 (en) * 2009-06-15 2011-02-17 Dsm Ip Assets B.V. Phosphorylcholine-based amphiphilic silicones for medical applications
EP2444448A1 (en) * 2009-06-15 2012-04-25 DSM IP Assets B.V. Phosphorylcholine-based amphiphilic silicones for medical applications
CN102803350A (en) * 2009-06-15 2012-11-28 帝斯曼知识产权资产管理有限公司 Phosphorylcholine-based amphiphilic silicones for medical applications
JP2012530052A (en) * 2009-06-15 2012-11-29 ディーエスエム アイピー アセッツ ビー.ブイ. Medical amphiphilic silicones based on phosphorylcholine
US9181401B2 (en) 2009-06-15 2015-11-10 Dsm Ip Assets B.V. Phosphorylcholine-based amphiphilic silicones for medical applications
US10647829B2 (en) 2013-06-20 2020-05-12 Sumitomo Rubber Industries, Ltd. Surface modification method and surface modification body
WO2015060129A1 (en) * 2013-10-21 2015-04-30 住友ゴム工業株式会社 Metal medical device having lubricity and low protein adsorption properties and/or low cell adsorption properties, and method for producing same
EP2992909A1 (en) * 2014-09-02 2016-03-09 Sumitomo Rubber Industries, Ltd. Metal medical device
US10092680B2 (en) 2014-09-02 2018-10-09 Sumitomo Rubber Industries, Ltd. Metal medical device
US10759918B2 (en) 2015-08-03 2020-09-01 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
WO2018212209A1 (en) * 2017-05-17 2018-11-22 国立大学法人九州大学 Medical polymer material having excellent bone binding property
JPWO2018212209A1 (en) * 2017-05-17 2020-03-19 国立大学法人九州大学 Medical polymer materials with excellent osteointegration
JP7157458B2 (en) 2017-05-17 2022-10-20 国立大学法人九州大学 Medical polymer material with excellent osseointegration
US11542367B2 (en) 2017-05-17 2023-01-03 Kyushu University, National University Corporation Medical polymer material having excellent bone-bonding property
KR20190103728A (en) * 2018-02-28 2019-09-05 인하대학교 산학협력단 Method for Modifying Surface of Polydimethylsiloxan by Using Method of Applying Polymethylhydrosiloxane, and Polydimethylsiloxan Made thereby
KR102050715B1 (en) * 2018-02-28 2020-01-08 인하대학교 산학협력단 Method for Modifying Surface of Polydimethylsiloxan by Using Method of Applying Polymethylhydrosiloxane, and Polydimethylsiloxan Made thereby
WO2019194264A1 (en) 2018-04-05 2019-10-10 日油株式会社 Phosphorylcholine group-containing polysiloxane monomer
KR20200128081A (en) 2018-04-05 2020-11-11 니치유 가부시키가이샤 Phosphorylcholine group-containing polysiloxane monomer

Also Published As

Publication number Publication date
JPWO2008023604A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2008023604A1 (en) Compound for surface modification and surface modifying method using the same
JP6085075B2 (en) Ultra-low fouling sulfobetaine and carboxybetaine materials and related methods
EP2919920B1 (en) Method for grafting polymers on metallic substrates
Yuan et al. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility
JP2578472B2 (en) Polyvinyl end-functional macromers, polymers thereof and contact lenses made therefrom
KR101539804B1 (en) Polysiloxane, acrylic compound, and vinyl compound
US20230077050A1 (en) Lubricious structures, methods of making them, and methods of use
Kuliasha et al. Engineering the surface properties of poly (dimethylsiloxane) utilizing aqueous RAFT photografting of acrylate/methacrylate monomers
Iwasaki et al. Surface modification with well-defined biocompatible triblock copolymers: improvement of biointerfacial phenomena on a poly (dimethylsiloxane) surface
JP6246195B2 (en) Implantable material grafted with a cell antiproliferative and / or antibacterial coating and method of grafting thereof
Nakano et al. Long-lasting hydrophilic surface generated on poly (dimethyl siloxane) with photoreactive zwitterionic polymers
TWI330657B (en) Super-low fouling carboxybetaine materials and related methods
Hou et al. Synthesis and surface analysis of siloxane-containing amphiphilic graft copolymers, poly (2-hydroxyethyl methacrylate-g-dimethylsiloxane) and poly (2, 3-dihydroxypropyl methacrylate-g-dimethylsiloxane)
TWI629320B (en) An antibiofouling material and its preparation
JP6956403B2 (en) Porous surface treatment polymer
JP6156874B2 (en) Bioinert film, coating liquid, production method thereof, and bioinert-treated substrate
JP4824151B2 (en) Glass substrate and film forming agent having polymer film containing terminal functional phosphorylcholine-like group
Ishihara et al. Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition
US7247387B1 (en) Material and process for controlled thin polymeric coatings on plastic surface
JP3647852B2 (en) Material surface modification method
Anders et al. Surface modification with hydrogels via macroinitiators for enhanced friction properties of biomaterials
JP6844258B2 (en) Medical devices, manufacturing methods for medical devices, and surface treatment liquids for medical devices
WO2022202805A1 (en) Hydrophilic copolymer and medical instrument
WO2023195514A1 (en) Polymer, resin composition, and medical material
Snellings et al. Synthesis and characterisation of water‐soluble poly (ethylene glycol) modified polymethacrylates with the ability to crosslink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530864

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792482

Country of ref document: EP

Kind code of ref document: A1