WO2008023498A1 - Electrophoretic display medium - Google Patents

Electrophoretic display medium Download PDF

Info

Publication number
WO2008023498A1
WO2008023498A1 PCT/JP2007/063077 JP2007063077W WO2008023498A1 WO 2008023498 A1 WO2008023498 A1 WO 2008023498A1 JP 2007063077 W JP2007063077 W JP 2007063077W WO 2008023498 A1 WO2008023498 A1 WO 2008023498A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
charged particles
display
particle
charged
Prior art date
Application number
PCT/JP2007/063077
Other languages
French (fr)
Japanese (ja)
Inventor
Yumiko Oshika
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2008023498A1 publication Critical patent/WO2008023498A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the present invention relates to an electrophoretic display medium, and more particularly, to an electrophoretic display medium that displays an image using an electrophoretic phenomenon.
  • an electrophoretic display device that can display an image on a display panel (electrophoretic display medium) using an electrophoretic phenomenon.
  • This display panel includes a transparent display substrate and a rear substrate disposed to face the display substrate. Electrodes are formed on the surfaces of the display substrate and the back substrate. A display liquid is sealed between the display substrate and the back substrate via a spacer, and two kinds of charged particles are dispersed in the display liquid. These charged particles are generally composed of black charged particles and white charged particles that are charged to a polarity different from that of the black charged particles.
  • a liquid in which two types of electrophoretic fine particles (charged particles) having different color tones and charging characteristics are dispersed in a highly insulating, low-viscosity, non-colored dispersion medium is used.
  • An encapsulating electrophoretic display element (electrophoretic display medium) is known (for example, see Patent Document 1).
  • each electrophoretic fine particle undergoes electrophoresis. Specifically, one electrophoretic fine particle moves to and adheres to one electrode according to its charging polarity. The other electrophoretic fine particles move to and adhere to the other electrode. At this time, the color tone of the electrophoretic fine particles adhering to the electrode is displayed on the transparent electrode.
  • Patent Document 1 JP-A 62-269124
  • An object of the present disclosure is to provide an electrophoretic display medium capable of improving display switching responsiveness by avoiding collision between charged particles having different polarities.
  • a pair of substrates spaced apart from each other, a display liquid sealed with a spacer interposed between the pair of substrates, and dispersed in the display liquid, by the action of an electric field A pair of charged particles moving in the display liquid, wherein the pair of charged particles is a first charged particle and a second charged particle having a different color and polarity from the first charged particle.
  • Electrophoretic display media with different rates of movement It is.
  • FIG. 1 is a cross-sectional view of a display panel 2.
  • FIG. 2 is a front view of black charged particles 50.
  • FIG. 3 is a front view of white charged particles 60.
  • FIG. 4 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
  • FIG. 5 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
  • FIG. 6 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
  • FIG. 7 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
  • FIG. 8 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
  • FIG. 9 is an explanatory diagram showing a test method for a straightness evaluation test.
  • FIG. 10 is a table showing the results of a straightness evaluation test.
  • FIG. 11 is an explanatory diagram showing movement amounts of convex particles 82, spherical particles 81, and dimple particles 83.
  • FIG. 12 is a table showing the results of a display switching time evaluation test.
  • FIG. 13 is an explanatory view showing the movement of black charged particles 50 and white charged particles 60 in display panel 600.
  • FIG. 14 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60 in display panel 600.
  • FIG. 15 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60 in display panel 600.
  • FIG. 16 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60 in the display panel 600.
  • the upper surface of the display panel 2 is the upper surface of the display panel 2, and the lower surface is the lower surface of the display panel 2.
  • the display panel 2 of the present embodiment is mounted on, for example, a portable electronic device.
  • Various images can be displayed by being driven and controlled by a control device (not shown).
  • the display panel 2 includes a display substrate 10 provided horizontally, and a rear substrate 20 disposed horizontally opposite to the display substrate 10 with a spacer 31 interposed therebetween. ing.
  • the separation width between the display substrate 10 and the rear substrate 20 is adjusted to 25 m.
  • a plurality of display portions 30 divided by the partition walls 32 are formed in a lattice shape.
  • the partition wall 32 is provided so as to surround each pixel.
  • the display substrate 10 is formed of a transparent member.
  • the display substrate 10 includes a display layer 11 as a display surface.
  • a transparent display electrode layer 12 for generating an electric field in the display section 30 is provided on the lower surface side of the display layer 11.
  • the display layer 11 is formed of a material having high transparency and high insulation. For example, polyethylene naphthalate, polyether sulfone, polyimide, polyethylene terephthalate, glass and the like are used.
  • the electrode layer 12 is made of a material that has high transparency and can be used as an electrode.
  • indium tin oxide which is a metal oxide, tin oxide doped with fluorine, aluminum oxalate aluminum Doped acid zinc oxide or the like is used.
  • the display layer 11 is a transparent glass substrate.
  • the display electrode layer 12 is a transparent electrode formed of indium tin oxide.
  • the back substrate 20 includes a housing support layer 21 that supports the display panel 2. Further, a back electrode layer 22 corresponding to each display unit 30 is provided on the upper surface of the housing support layer 21.
  • the back electrode layer 22 generates an electric field in each display unit 30.
  • the casing support layer 21 is made of a highly insulating material. For example, glass, an inorganic material such as an insulated metal film, or an organic material such as polyethylene terephthalate is used. Note that each layer forming the back substrate 20 may be transparent or colored, unlike the display substrate 10.
  • the housing support layer 21 is a glass substrate
  • the back electrode layer 22 is an electrode formed of indium tin oxide.
  • Channel CH1 is connected to each back electrode layer 22, and channel CH2 is connected to display electrode layer 12.
  • These channels CH1 and CH2 are controlled by a control device (not shown), and a voltage is applied to the back electrode layer 22 and the display electrode layer 12.
  • a control device not shown
  • a voltage is applied to the back electrode layer 22 and the display electrode layer 12.
  • an electric field is generated in the display unit 30.
  • the display electrode layer 12 when the display electrode layer 12 is set to the reference potential (zero volts) and a positive voltage is applied to the back electrode layer 22, the back electrode layer 22 is positive and the display electrode layer 12 is negative.
  • the back electrode layer 22 is negative and the display electrode layer 12 is positive.
  • the display electrode layer 12 may be set at a reference potential (zero volts).
  • the method for generating the electric field may be other methods.
  • a spacer 31 is provided between the display substrate 10 and the back substrate 20.
  • the spacer 31 is provided along the outer periphery of the display panel 2.
  • a sealed space is formed between the display substrate 10, the back substrate 20, and the spacer 31. This sealed space is evenly divided by the partition wall 32.
  • a plurality of display portions 30 are formed by being divided.
  • Each of the display units 30 corresponds to a pixel. That is, the display panel 2 is a panel in which a plurality of display units 30 are arranged in a lattice pattern.
  • the spacer 31 and the partition wall 32 are made of polyethylene terephthalate resin film.
  • the display liquid 40 is sealed in the sealed space of the display unit 30 of the display panel 2 having such a structure.
  • the display liquid 40 is a dispersion medium in which a plurality of white charged particles 60 and a plurality of black charged particles 50 are dispersed.
  • the dispersion medium refers to a liquid substance in which particles (dispersoid) are dispersed.
  • the display liquid 40 of the present embodiment uses black liquid particles 50 and white charged particles 60 as a dispersoid, and a liquid substance obtained by adding a predetermined amount of a polar solvent to a nonpolar solvent as a dispersion medium.
  • a nonpolar solvent a hydrocarbon solvent is mainly used.
  • no ⁇ raffin solvent (73 wt%) (trade name "Isopar Gj: manufactured by ExxonMobil Co., Ltd.) is used.
  • an alcohol that is soluble in a nonpolar solvent is used as a polar solvent.
  • hexanol is used, and a part of the polar solvent in the display liquid 40 stays around the white charged particles 60 and the black charged particles 50 so that these charged particles are used. The charging property is improved.
  • black charged particles 50 and the white charged particles 60 are suspended in the display liquid 40.
  • the black charged particles 50 are positively charged (+), and the white charged particles 60 are negatively charged ( ⁇ ). Therefore, when an electric field is generated in the display unit 30 with the display substrate 10 side minus and the back substrate 20 side plus, the black charged particles 50 move to the display substrate 10 side, and the white charged particles 60 are the back substrate 20 side. Move to. At this time, black is displayed on the display substrate 10.
  • the black charged particles 50 move to the back substrate 20 side, and the white charged particles 60 are Move to display board 10 side. At this time, the black color displayed on the display substrate 10 is switched to white. As will be described later, the black and white display switching time is greatly affected by the movement time of the black charged particles 50 and the white charged particles 60 in the display liquid.
  • the straightness of charged particles refers to the display base. It shows the ratio of the amount of movement in the direction of the shortest distance to the amount of movement in the direction orthogonal to the direction of the shortest distance between the plate 10 and the back substrate 20. In other words, the amount of movement in the direction of the shortest distance force The greater the amount of movement in the direction perpendicular to the direction of the shortest distance, the higher the straightness of the charged particles. Conversely, the greater the amount of movement in the direction perpendicular to the direction of the shortest distance than the amount of movement in the direction of the shortest distance, the lower the straightness.
  • particles having a surface shape that is not easily resisted by the surrounding liquid have high rectilinearity and are susceptible to ambient resistance, and particles having a surface shape have low rectilinearity.
  • the straightness of the black charged particles 50 and the straightness of the white charged particles 60 are different from each other. Yes. Thereby, since the collision frequency between the black charged particles 50 and the white charged particles 60 can be reduced, the display switching time can be shortened. The effect of shortening the display switching time will be described later.
  • the black charged particles 50 are so-called “polymerized dimple particles”, and have a large number of dimples 51 on a spherical surface.
  • the large number of dimples 51 can improve the straightness when the display liquid 40 is moved. The effect of improving the straightness of the black charged particles 50 by the dimple structure and the evaluation thereof will be described later.
  • the black dimple particles as the basis of the black charged particles 50 are cross-linked polymer particles obtained by adding a cross-linking agent while polymerizing monomers.
  • the method for producing the crosslinked polymer particles includes a polymer particle production step of producing a polymerized dimple particle by adding a crosslinking agent while polymerizing a monomer, and a dyeing process in which the produced polymer particle is dyed via a dye or the like. Process.
  • polymer particles produced by this polymerization reaction are separated from the dispersion medium and dried, polymer particles having a plurality of dimples on the surface as shown in FIG. 2 are obtained.
  • the polymer particles had an average particle size of 4.9 / ⁇ ⁇ and a dispersity of 1.05.
  • the particle size of the polymer particles at the time when the cross-linking agent is added there is a mutual relationship between the particle size of the polymer particles at the time when the cross-linking agent is added and the amount of the cross-linking agent added.
  • the particle size of the polymer particles at the time of adding the cross-linking agent is small, it is difficult to form dimples on the polymer particles unless the addition amount of the cross-linking agent to be added is increased.
  • the particle size of the polymer particles at the time when the cross-linking agent is added is large, dimples are easily formed on the polymer particles even if the amount of the cross-linking agent added is small.
  • the polymer particles at the time of adding the cross-linking agent when the particle size of the polymer particles at the time of adding the cross-linking agent is in the range of 3 to 6 ⁇ m, the polymer particles can be added by adding 1% or more of the cross-linking agent with respect to the charged amount of monomer. Dimples can be formed on the substrate.
  • the cross-linking material is desirably added at 2% or more, more desirably 3% or more.
  • the addition amount of the crosslinking agent is preferably added in an amount of 8% to 1% with respect to the charged amount of the monomer.
  • the particle size of the polymer particles is in the range of 1 to: LO / zm, it is preferable to add 10% to 0.1% of a crosslinking agent.
  • the crosslinking agent that can be used in this example is not limited to divinylbenzene, and various compounds shown below can be used as the crosslinking agent. For example, aromatic divinyl compounds and carboxylic acid esters having two or more vinyl groups can be used.
  • Aromatic dibule compounds include dibulalnaphthalene, N, N dibularin and their derivatives.
  • carboxylic acid ester having two or more vinyl groups polyethylene glycol dimethacrylate Tatari, polyethylene glycol di Atari rate, Toryechi glycol dimethacrylate, triethylene glycol di Atari rate, 1, 3 Buchiren glycol dimethacrylate Tatari rate, 1 , 3 Butylene glycol diatalylate, 1,6 hexylene glycol dimetatalate, 1, 6 hexylene glycol diatalate, neopentyl glycol dimetatalylate, neoventil glycol ditalariate, dipropylene glycol dimetatalate , Dipropylene glycol diatalylate, polypropylene glycol dimethacrylate, polypropylene glycol diathalate, 2, 2 bis (4-methacryloxydiethoxyphenol) Bread, 2, 2 bis (4-atarioxydiethoxyphenol) propane, trimethylol
  • the white charged particle 60 is a particle in which a large number of child particles 62 having a diameter smaller than that of the mother particle 61 are combined with a spherical mother particle 61. And the surface is convex.
  • the mother particle 61 is formed of a chargeable material, and for example, acrylic resin is used. Examples of this acrylic resin include polyacrylic acid and esters thereof.
  • acrylic resin polycarbonate
  • HDPE high density polyethylene
  • PP polypropylene
  • ABS acrylonitrile butadiene styrene
  • PET polyethylene terephthalate
  • POM polyacetal
  • the child particle 62 is mechanically coupled in a state where a part of the child particle 62 is buried in the surface of the mother particle 61.
  • the child particles 62 increase the resistance received from the display liquid 40 when the white charged particles 60 move the display liquid 40. Therefore, it is possible to reduce the straightness in the movement of the white charged particles 60 contrary to the black charged particles 50.
  • the child particle 62 is mechanically bonded to the surface of the mother particle 61 by a hybridization method. Specifically, the child particle 62 is bonded to the surface of the mother particle 61 in a state where a part of the child particle 62 is buried.
  • the treatment method of this hybridization method is as follows.
  • the processing equipment used was the Nobbridation System (NHS) manufactured by Nara Machinery Co., Ltd.
  • NHS is a mixer that forms a mixture of powders, a hybridizer that combines fine powders in a dry manner, a collector, a control panel that controls each device, and an operation for operating the device. And a board.
  • the child particles 62 may be mechanically bonded to the surface of the mother particle 61 by a hybridization method. Further, a plurality of convex shapes may be formed by covering the surface of the mother particle 61. Furthermore, a plurality of convex shapes may be formed by processing the surface shape of the mother particle 61.
  • an electric field is generated in the display unit 30 with the display electrode layer 12 minus and the back electrode layer 22 plus.
  • the positively charged black charged particles 50 move to the display substrate 10 side and adhere to the display electrode layer 12.
  • the white charged particles 60 move to the back substrate 20 side and adhere to the back electrode layer 22.
  • black is displayed on the display substrate 10.
  • all of the black charged particles 50 are gathered together in the center of the display electrode layer 12 to form a black charged particle layer consisting of one layer in a close-packed state.
  • the close-packed means that the adjacent black charged particles 50 are in contact with each other.
  • a gap is formed on both sides of the black charged particle layer so that at least one white charged particle 60 can be disposed.
  • the distance between the gaps may be adjusted according to the particle diameter and the number of particles of the black charged particles 50 and the white charged particles 60, the distance between the spacer 31 and the partition wall 32, the distance between the partition wall 32 and the partition wall 32, and the like.
  • the black charged particles 50 are displayed as shown in FIG.
  • the white charged particles 60 are separated from the back electrode layer 22 away from the electrode layer 12.
  • the black charged particles 50 having high straightness move toward the back electrode layer 22 without substantially destroying the arrangement.
  • the white charged particles 60 that are easily subjected to the resistance of the display liquid 40 are pushed toward the back substrate 20 by the flow of the display liquid 40 accompanying the movement of the black charged particles 50.
  • the white charged particles 60 are divided into two groups at the center and move so as to wrap around the gaps on both sides of the black charged particles 50 aligned in a row.
  • the closer the black charged particles 50 are to the white charged particles 60 the more the white charged particles 60 are pushed away by the display liquid 40 and move away from the black charged particles 50.
  • the collision between the black charged particles 50 and the white charged particles 60 can be avoided.
  • the black charged particle layer moves straight in the display liquid 40. From this, since the gaps on both sides of the black charged particle layer are maintained, collision between different particles can be avoided.
  • the black charged particles 50 move toward the back electrode layer 22.
  • the white charged particles 60 move toward the display electrode layer 12 while wrapping around the black charged particles 50.
  • the arrangement of the black charged particles 50 and the arrangement of the white charged particles 60 are reversed and switched.
  • the black charged particles 50 adhere to the back electrode layer 22 as they are in a line.
  • the white charged particles 60 also adhere to the display electrode layer 12 in a state of being arranged in a line. At this time, white is displayed on the display substrate 10. In this way, collisions between particles can be avoided by using two types of particles that are different from each other. Further, since the time required for switching between the black charged particles 50 and the white charged particles 60 can be shortened, the display switching response of the display panel 2 can be improved.
  • the test method will be described.
  • an experimental cell 500 having the same configuration as that of the display panel 2 was used.
  • the cell 500 includes a first substrate 100 and a second substrate 200.
  • a display unit 300 formed with a spacer 310 interposed is provided in the display unit 300.
  • the display liquid 400 is sealed.
  • the first substrate 100 includes a display layer 110 and a first electrode layer 120 provided on the inner surface of the display layer 11 (the surface facing the display unit 300). It is.
  • the second substrate 200 includes a housing support layer 210 and a second electrode layer 220 provided on the inner surface of the housing support layer 210 (the surface facing the display unit 300).
  • the distance between the first substrate 100 and the second substrate 200 was lcm. Furthermore, 0.1 wt. / c ⁇ Test particle 80 was charged and test particle 80 was negatively charged.
  • the first electrode layer 120 of the cell 500 is connected to the ground 71 via a wiring.
  • the second electrode layer 220 is connected to the switch 72 via a wiring.
  • the switch 72 is connected to the positive side of the 200V DC power source 73.
  • the negative side of the DC power supply 73 is connected to the ground 74 through wiring.
  • the amount of movement of the test particles 80 after 5 seconds from applying an electric field to the display liquid 400 was observed with a microscope.
  • the amount of movement of the test particles 80 was selected from a number of test particles 80 dispersed in the display liquid, and the amount of movement of the test particles 80 was measured by image analysis using a PC (personal computer). .
  • image analysis based on the amount of movement of the test particle 80, the amount of movement in the X direction and the amount of movement in the y direction, which will be described later, were obtained, and xZy indicating straightness (T) was calculated. Then, the straightness of the three types of test particles 80 was compared. Three types of test particles 80 were prepared: 1.
  • the convex particles 82 correspond to the white charged particles 60 (see FIG. 3) of the present embodiment.
  • the dimple particles 83 correspond to the black charged particles 50 (see FIG. 2) in the present embodiment.
  • These three kinds of test particles 80 all have the same diameter. Furthermore, the diameter of the convex particles was based on the diameter of the mother particles.
  • straightness in this test is the shortest distance between the first substrate 100 and the second substrate 200 when the test particles 80 move between the first substrate 100 and the second substrate 200.
  • the ratio of the amount of movement in the direction of the shortest distance to the amount of movement in the direction perpendicular to the direction of distance shall be indicated.
  • the thickness direction of the cell 500 direction of force from the first substrate 100 to the second substrate 200
  • the direction perpendicular to the thickness direction was taken as the y direction.
  • the amount of movement of convex particles 82 in the X direction was 3.0 (X 10 _2 mm), and the amount of movement in the y direction was 22.0 (X 10 " 2 mm).
  • the amount of movement of the conventional spherical particles 81 in the X direction was 6.3 (X 10 " 2 mm), and the amount of movement in the y direction was 5.3 (X 10 _2 mm).
  • the amount of movement of the dimple particle 83 in the x direction was 20.3 (X 10 _2 mm), and the amount of movement in the y direction was 2.8 (X 10 _2 mm).
  • the spherical particles 81 having the conventional shape move to the second substrate 200 side while receiving the resistance of the display liquid 400. Therefore, not only the amount of movement in the X direction but also the amount of movement in the y direction occurs.
  • the movement amount in the y direction of the convex particle 82 is higher than the movement amount in the X direction. This is presumed that the straightness was greatly reduced because the large number of child particles 62 bonded to the surface of the mother particle 61 was strongly subjected to the resistance of the display liquid 400.
  • the dimple particle 83 has a much higher amount of movement in the X direction than that in the y direction. This is presumably because the display liquid 400 smoothly circulates behind the particles due to a large number of dimples provided on the particle surface, so that the resistance of the display liquid 400 is reduced and the straightness is improved.
  • test particles 1 and 2 are particles corresponding to the black charged particles 50 and the white charged particles 60 of the present embodiment.
  • the test particles 1 were adjusted to white and the test particles 2 were adjusted to black so that the charging polarities were different from each other.
  • three types were prepared: 1. spherical particles (standard), 2. convex particles, and 3. dimple particles. These three kinds of particles are combined as test particles 1 and 2, respectively. 1. Spherical particles Spherical particles 2. Spherical particles Dimple particles 3. Spherical particles-Convex particles 4. Convex particles Dimple particles 5.
  • Convex particles -6 types of combinations were set: convex particles and 6. dimple particles and dimple particles. Then, according to these combinations, a plurality of test particles 1 and 2 were put into the display liquid 40, and the time required for display switching in the display panel 2 was measured. In this test, the time required to switch the white display power to black display was also measured.
  • test result will be considered.
  • the conventional spherical particle combination of spherical particles had a display switching time of 70 (msec), while the combination of spherical particles and dimple particles shortened the display switching time to 40 (msec).
  • test particle 2 which is a dimple particle has improved straightness compared to spherical test particle 1, and a difference has occurred between the straightness of test particle 1 and test particle 1.
  • the rectilinearity of the test particles 1 and the rectilinearity of the test particles 2 are different from each other, thereby reducing the collision frequency and shortening the display switching time.
  • the shape of test particle 1 and the shape of test particle 2 are different from each other, so that the straightness of test particle 1 and the straightness of test particle 2 are different from each other. Therefore, it is considered that collision between particles was avoided and display switching time was shortened. However, since the moving speed of each particle is slower than the dimple particle which is not the dimple particle, the display switching time is estimated to be longer than the combination of the spherical particle and the dimple particle.
  • the combination of convex particles and dimple particles was the shortest of 30 (msec), and the display switching time was further shortened compared to the combination of spherical particles and dimple particles. This is because the convex particles receive the resistance of the display liquid more strongly than the spherical particles, so they move quickly with respect to the dimple particles moving straight, and more reliably avoid collision with the dimple particles. It is guessed. On the other hand, in the combination of convex particles and convex particles, the surface shape is easy to receive the resistance of the display liquid, so the time required for movement between the substrates becomes longer. Spherical particles It is estimated that the display switching time is longer than the combination of spherical particles.
  • both the surface shapes of the dimple particles with high straightness and force straightness are the same, so the collision frequency is higher and the display switching time is longer. Presumed to be Natsuta. From the above, the display switching time of the display panel 2 can be shortened the most by making the combination of the particle shapes a combination of convex particles and dimple particles.
  • the display panel 2 of the present embodiment uses the black charged particles 50 and the white charged particles 60 having different surface shapes.
  • the straightness of the black charged particles 50 and the straightness of the white charged particles 60 can be made different from each other, so that collision between these particles can be avoided.
  • the black charged particles 50 are dimple particles having a large number of dimples 51 on the surface
  • the white charged particles 60 are convex particles having a large number of child particles 62 on the surface. Accordingly, the straightness of the black charged particles 50 is improved, and the white charged particles 60 are strongly subjected to the resistance of the display liquid 40, so that the straightness is lowered.
  • the black charged particles 50 move between the display substrate 10 and the back substrate 20 with the shortest distance, and the white charged particles 60 move so as to avoid the black charged particles 50. Therefore, collision between the black charged particles 50 and the white charged particles 60 can be effectively avoided. And since the display switching time of the display panel 2 is shortened, the responsiveness of display switching can be improved.
  • the electrophoretic display medium according to the present disclosure is not limited to the above-described embodiment, and various modifications are possible.
  • the surface area of the display electrode layer 12 and the surface area of the back electrode layer 22 are the same as each other. By making the surface areas different from each other, collisions between charged particles can be avoided more reliably. . Therefore, as a modification of the above embodiment, a display panel 600 in which the surface area of the display electrode layer and the surface area of the back electrode layer are different from each other will be described with reference to FIGS. Note that the same components as those of the display panel 2 of the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the display panel 600 has a configuration similar to that of the display panel 2.
  • the back substrate 90 different from the back substrate 20 of the above embodiment is provided.
  • the back substrate 90 includes a housing support layer 91, and a back electrode layer 92 is provided at the center of the top surface of the housing support layer 91.
  • the back electrode layer 92 has a smaller surface area than the display electrode layer 12.
  • the panel 600 is provided on the upper surface of the housing support layer 91 with a gap between both sides.
  • the display liquid 40, the black charged particles 50, and the white charged particles 60 are the same as those in the above embodiment.
  • the black charged particles 50 are “dimple particles”, and the white charged particles 60 are “convex particles”.
  • FIGS. 13 to 16 the particle diameter, the number of particles, and the like are changed in order to clearly explain the movement of the black charged particles 50 and the white charged particles 60.
  • the positively charged black charged particles 50 are added to the display substrate 10. And adheres to the display electrode layer 12 in a line.
  • the white charged particles 60 move to the back substrate 20 side and adhere to the back electrode layer 92.
  • the back electrode layer 92 is disposed at the center of the back substrate 90, the plurality of white charged particles 60 are folded in a dump shape and attached to the back electrode layer 92. At this time, black is displayed on the display substrate 10.
  • the black charged particles 50 are converted into the display electrode layer.
  • the white charged particles 60 are separated from the back electrode layer 92.
  • the black charged particles 50 having high straightness move straightly by directing the back electrode layer 92. Therefore, the black charged particles 50 move so that the arrangement thereof collapses and gathers in the center of the display unit 30.
  • the white charged particles 60 that are easily subjected to the resistance of the display liquid 40 are pushed by the flow of the display liquid 40 as the black charged particles 50 move. Therefore, the plurality of white charged particles 60 are divided into two aggregates at the center, and move while wrapping around both sides of the black charged particles 50 assembled at the center.
  • the arrangement of the black charged particles 50 and the white charged particles 60 is reversed and reversed.
  • the black charged particles 50 adhere to the back electrode layer 92 in a bunched state, and the white charged particles 60 adhere to the display electrode layer 12 in a row.
  • white is displayed on the display substrate 10.
  • the black charged particles 50 gather from the display electrode layer 12 while gathering at the center of the display liquid 40. It moves toward the back electrode layer 92.
  • a large gap is formed between the black charged particles 50 adhering to the back electrode layer 92 and the spacers 31 or the partition walls 32.
  • the white charged particles 60 can pass through the gap with a margin, it is possible to more reliably avoid the black charged particles 50 and the white charged particles 60 from colliding with each other. Further, since the surface area of the back electrode layer 92 is made smaller than the surface area of the display electrode layer 12, the display area of the color displayed on the display substrate 10 cannot be reduced.
  • the white charged particles 60 may be dimple particles and the black charged particles 50 may be convex particles.
  • the display electrode layer 12 and the back electrode layer 22 are provided on the display substrate 10 and the back substrate 20, respectively.
  • these electrodes (the display electrode layer 12 and the back electrode) With the layer 22), it can also be applied to display panels.
  • the first charged particles are arranged on one substrate side according to their own charge polarity.
  • the second charged particles move to the other substrate side according to their charge polarity.
  • the ratio of the amount of movement in the direction of the shortest distance to the amount of movement of the first charged particles in the direction perpendicular to the direction of the shortest distance between the pair of substrates when the first charged particles move between the pair of substrates is shown.
  • the second charged particles which indicate the ratio of the amount of movement in the direction, are different from the straightness of the second charged particles, so the charged particles with lower straightness and the higher charged particles should move so as to avoid movement of the charged particles with higher straightness. To do. This is because the charged particle force with the lower straightness is more resistant to the peripheral force than the charged particle with the higher straightness. In other words, the charged particles with the lower straightness receive the flow of the charged particles with the higher straightness as resistance, and move so as to avoid the resistance. Therefore, the first charged particles and the second charged particles can be effectively prevented from colliding with each other. And since the movement time of the 1st charged particle and the 2nd charged particle can be shortened, the time required for display switching can be shortened.
  • the resistance to the flow of the display liquid can be made different from each other.
  • the straightness of the first charged particles and the straightness of the second charged particles can be made different from each other.
  • the surface shape of the first charged particles has a dimple structure. Therefore, straightness can be improved like a golf ball with dimples. That is, the display liquid smoothly flows behind the first charged particles by the dimples, so that the resistance due to the display liquid is reduced and the straightness can be improved. Accordingly, the straight traveling property of the first charged particles can be made higher than the straight traveling property of the second charged particles, so that the first charged particles and the second charged particles can be effectively prevented from colliding with each other.
  • the first charged particles are cross-linked polymer particles obtained chemically by polymerizing a monomer. Therefore, since a plurality of concave portions can be formed on the surface of the particle, a dimple structure can be easily formed.
  • the surface shape of the second charged particles is a convex shape. Accordingly, since the resistance to the flow of the display liquid can be increased, the straightness of the second charged particles can be made lower than the straightness of the first charged particles. In addition, since the straightness of the second charged particles decreases, the second charged particles move so as to avoid the movement of the first charged particles. As a result, the probability that the first charged particles and the second charged particles collide with each other can be lowered, so that the moving time of the first charged particles and the second charged particles can be shortened.
  • the resistance of the display liquid to the second charged particles can be easily increased by the child particles bonded to the mother particles of the second charged particles. This makes it possible to form second charged particles having straightness lower than that of the first charged particles.
  • the child particles are physically and firmly bonded to the surface of the mother particle by the hybridization method, the child particles are separated from the surface of the mother particle in the display liquid. It will not peel off.
  • one charged particle attached to the first electrode moves so as to converge toward the second electrode having a surface area smaller than the surface area of the first electrode.
  • the other charged particles adhering to the second electrode move so as to diffuse toward the first electrode. Move.
  • the other charged particle moves to the first electrode while diffusing outward to escape one charged particle force.
  • the second charged particles when the first charged particles are most densely arranged in one layer and moved from one substrate cover to the other substrate side, the second charged particles are It can pass through the gap between the first charged particle and the spacer located at the end. Thereby, the probability that the first charged particles and the second charged particles collide with each other can be effectively reduced.
  • the electrophoretic display medium of the present disclosure can be applied to various electronic devices including a display unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

In display panel (2), the surface configurations of black charged particles (50) and white charged particles (60) are different from each other. The black charged particles (50) are dimple particles having a multiplicity of dimples on the particle surface, thereby exhibiting high straight marching capability. On the other hand, the white charged particles (60) are protrudent particles having a multiplicity of offspring particles on the particle surface, thereby exhibiting low straight marching capability. Consequently, while the black charged particles (50) make shortest-distance migration between display substrate (10) and backside substrate (20), the white charged particles (60) migrate in a manner keeping away from the black charged particles (50). Therefore, as collision of the black charged particles (50) with the white charged particles (60) can be avoided, there can be attained an enhancement of response performance of display switching.

Description

明 細 書  Specification
電気泳動表示媒体  Electrophoretic display medium
技術分野  Technical field
[0001] 本発明は、電気泳動表示媒体に関し、詳細には、電気泳動現象を利用して画像を 表示する電気泳動表示媒体に関する。  The present invention relates to an electrophoretic display medium, and more particularly, to an electrophoretic display medium that displays an image using an electrophoretic phenomenon.
背景技術  Background art
[0002] 従来より、電気泳動現象を利用して表示パネル (電気泳動表示媒体)に画像を表 示できる電気泳動表示装置が知られている。この表示パネルは、透明な表示基板と 、その表示基板に対向して配置される背面基板とを備えている。これら表示基板及び 背面基板の表面には、電極が形成されている。そして、これら表示基板及び背面基 板の間には、スぺーサを介在して表示液が封入され、その表示液中には 2種類の帯 電粒子が分散している。これらの帯電粒子は、黒色帯電粒子と、その黒色帯電粒子 とは異なる極性に帯電する白色帯電粒子とで構成されるのが一般的である。このよう な表示パネルとして、例えば、高絶縁性の低粘度の無着色分散媒中に、色調及び帯 電特性が互!、に異なる 2種の電気泳動性微粒子 (帯電粒子)を分散した液を封入す る電気泳動表示素子 (電気泳動表示媒体)が知られて 、る (例えば、特許文献 1参照 Conventionally, an electrophoretic display device that can display an image on a display panel (electrophoretic display medium) using an electrophoretic phenomenon is known. This display panel includes a transparent display substrate and a rear substrate disposed to face the display substrate. Electrodes are formed on the surfaces of the display substrate and the back substrate. A display liquid is sealed between the display substrate and the back substrate via a spacer, and two kinds of charged particles are dispersed in the display liquid. These charged particles are generally composed of black charged particles and white charged particles that are charged to a polarity different from that of the black charged particles. As such a display panel, for example, a liquid in which two types of electrophoretic fine particles (charged particles) having different color tones and charging characteristics are dispersed in a highly insulating, low-viscosity, non-colored dispersion medium is used. An encapsulating electrophoretic display element (electrophoretic display medium) is known (for example, see Patent Document 1).
) o ) o
[0003] この電気泳動表示素子では、一対の電極間に電圧が印加され、分散媒中に電界 が発生すると、各電気泳動性微粒子が電気泳動を起こす。具体的には、一方の電気 泳動微粒子は、その帯電極性に応じて一方の電極に移動して付着する。他方の電 気泳動微粒子は他方の電極に移動して付着する。このとき、透明な電極上には、そ の電極に付着する電気泳動性微粒子の色調が表示される。  In this electrophoretic display element, when a voltage is applied between a pair of electrodes and an electric field is generated in the dispersion medium, each electrophoretic fine particle undergoes electrophoresis. Specifically, one electrophoretic fine particle moves to and adheres to one electrode according to its charging polarity. The other electrophoretic fine particles move to and adhere to the other electrode. At this time, the color tone of the electrophoretic fine particles adhering to the electrode is displayed on the transparent electrode.
特許文献 1:特開昭 62— 269124号公報  Patent Document 1: JP-A 62-269124
発明の開示  Disclosure of the invention
[0004] し力しながら、特許文献 1に記載の電気泳動表示素子では、分散媒に力かる電界 の向きが切り替わると、 2種類の電気泳動性微粒子は互いに反対の電極に向力つて それぞれ移動する。このとき、互いに極性の異なる電気泳動性微粒子同士が、その 移動中に衝突することがあるため、表示切替に要する時間が長くなるという問題点が あった。 [0004] However, in the electrophoretic display element described in Patent Document 1, when the direction of the electric field applied to the dispersion medium is switched, the two types of electrophoretic fine particles move to the electrodes opposite to each other. To do. At this time, the electrophoretic fine particles having different polarities are There is a problem that the time required for switching the display becomes long because of collision during movement.
[0005] 本開示は、互いに極性の異なる帯電粒子同士の衝突を回避することにより、表示切 替の応答性を向上できる電気泳動表示媒体を提供することを目的とする。  [0005] An object of the present disclosure is to provide an electrophoretic display medium capable of improving display switching responsiveness by avoiding collision between charged particles having different polarities.
[0006] 本開示によれば、互いに離間した一対の基板と、当該一対の基板の間にスぺーサ を介在して封入される表示液と、当該表示液内に分散され、電界の作用によって前 記表示液内を移動する一対の帯電粒子とを備え、前記一対の帯電粒子が、第 1帯電 粒子と、当該第 1帯電粒子とは異なる色及び極性を有する第 2帯電粒子とであって、 前記第 1帯電粒子が前記一対の基板間を移動する際の、前記一対の基板間の最短 距離の方向に直交する方向の前記第 1帯電粒子の移動量に対する前記最短距離の 方向の移動量の割合と、前記第 2帯電粒子が前記一対の基板間を移動する際の、 前記一対の基板間の最短距離の方向に直交する方向の前記第 2帯電粒子の移動 量に対する前記最短距離の方向の移動量の割合とが互いに異なる電気泳動表示媒 体が提供される。  [0006] According to the present disclosure, a pair of substrates spaced apart from each other, a display liquid sealed with a spacer interposed between the pair of substrates, and dispersed in the display liquid, by the action of an electric field A pair of charged particles moving in the display liquid, wherein the pair of charged particles is a first charged particle and a second charged particle having a different color and polarity from the first charged particle. The amount of movement in the direction of the shortest distance with respect to the amount of movement of the first charged particles in a direction orthogonal to the direction of the shortest distance between the pair of substrates when the first charged particles move between the pair of substrates. And the direction of the shortest distance with respect to the amount of movement of the second charged particles in a direction perpendicular to the direction of the shortest distance between the pair of substrates when the second charged particles move between the pair of substrates. Electrophoretic display media with different rates of movement It is.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]表示パネル 2の断面図である。 FIG. 1 is a cross-sectional view of a display panel 2.
[図 2]黒色帯電粒子 50の正面図である。  FIG. 2 is a front view of black charged particles 50.
[図 3]白色帯電粒子 60の正面図である。  FIG. 3 is a front view of white charged particles 60.
[図 4]黒色帯電粒子 50及び白色帯電粒子 60の動きを示す説明図である。  FIG. 4 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
[図 5]黒色帯電粒子 50及び白色帯電粒子 60の動きを示す説明図である。  FIG. 5 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
[図 6]黒色帯電粒子 50及び白色帯電粒子 60の動きを示す説明図である。  FIG. 6 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
[図 7]黒色帯電粒子 50及び白色帯電粒子 60の動きを示す説明図である。  FIG. 7 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
[図 8]黒色帯電粒子 50及び白色帯電粒子 60の動きを示す説明図である。  FIG. 8 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60.
[図 9]直進性評価試験の試験方法を示した説明図である。  FIG. 9 is an explanatory diagram showing a test method for a straightness evaluation test.
[図 10]直進性評価試験の結果を示す表である。  FIG. 10 is a table showing the results of a straightness evaluation test.
[図 11]凸型粒子 82、球状粒子 81、ディンプル粒子 83の移動量を示した説明図であ る。  FIG. 11 is an explanatory diagram showing movement amounts of convex particles 82, spherical particles 81, and dimple particles 83.
[図 12]表示切替時間評価試験の結果を示す表である。 [図 13]表示パネル 600における黒色帯電粒子 50及び白色帯電粒子 60の動きを示 す説明図である。 FIG. 12 is a table showing the results of a display switching time evaluation test. FIG. 13 is an explanatory view showing the movement of black charged particles 50 and white charged particles 60 in display panel 600.
[図 14]表示パネル 600における黒色帯電粒子 50及び白色帯電粒子 60の動きを示 す説明図である。  FIG. 14 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60 in display panel 600.
[図 15]表示パネル 600における黒色帯電粒子 50及び白色帯電粒子 60の動きを示 す説明図である。  FIG. 15 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60 in display panel 600.
[図 16]表示パネル 600における黒色帯電粒子 50及び白色帯電粒子 60の動きを示 す説明図である。  FIG. 16 is an explanatory diagram showing the movement of black charged particles 50 and white charged particles 60 in the display panel 600.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本開示の実施形態である表示パネル 2について、図面を参照して説明する。 [0008] Hereinafter, the display panel 2 according to an embodiment of the present disclosure will be described with reference to the drawings.
なお、図 1,図 4乃至図 8において、表示パネル 2の上側の面を表示パネル 2の上面 とし、下側の面を表示パネル 2の下面とする。  1, 4 to 8, the upper surface of the display panel 2 is the upper surface of the display panel 2, and the lower surface is the lower surface of the display panel 2.
[0009] 本実施形態の表示パネル 2は、例えば、携帯用の電子機器等に搭載されるもので ある。そして、制御装置(図示外)に駆動制御されることによって、種々の画像を表示 できるものである。 [0009] The display panel 2 of the present embodiment is mounted on, for example, a portable electronic device. Various images can be displayed by being driven and controlled by a control device (not shown).
[0010] まず、表示パネル 2の構成について説明する。図 1に示すように、表示パネル 2は、 水平に設けられる表示基板 10と、その表示基板 10の下側に、スぺーサ 31を介在し て水平に対向配置された背面基板 20とを備えている。なお、本実施形態では、この 表示基板 10と背面基板 20との離間幅は 25 mに調整されている。そして、表示基 板 10と背面基板 20とに挟まれる隙間には、隔壁 32によって区分けされた複数の表 示部 30が格子状に形成されている。なお、この隔壁 32は、各画素の周囲を取り囲む ようにして設けられている。  First, the configuration of the display panel 2 will be described. As shown in FIG. 1, the display panel 2 includes a display substrate 10 provided horizontally, and a rear substrate 20 disposed horizontally opposite to the display substrate 10 with a spacer 31 interposed therebetween. ing. In the present embodiment, the separation width between the display substrate 10 and the rear substrate 20 is adjusted to 25 m. In the gap between the display substrate 10 and the back substrate 20, a plurality of display portions 30 divided by the partition walls 32 are formed in a lattice shape. The partition wall 32 is provided so as to surround each pixel.
[0011] 次に、表示基板 10の構造について説明する。図 1に示すように、表示基板 10は、 透明部材により形成されている。この表示基板 10は、表示面としての表示層 11を備 えている。その表示層 11の下面側には、表示部 30に電界を発生させるための透明 な表示電極層 12が設けられている。表示層 11は、高い透明性と、高い絶縁性を有 する材料によって形成されている。例えば、ポリエチレンナフタレート、ポリエーテル サルホン、ポリイミド、ポリエチレンテレフタレート、ガラス等が使用される。一方、表示 電極層 12は、高い透明性を有し、電極として利用できる材料によって形成されている o例えば、金属酸化物である酸化インジウムスズ、フッ素がドープされた酸化スズ、ィ ンジゥムゃ酸ィ匕アルミニウムがドープされた酸ィ匕亜鉛等が使用される。なお、本実施 形態では、表示層 11は透明なガラス基板である。一方、表示電極層 12は酸化インジ ゥムスズにより形成された透明電極である。このような構造を備えることにより、利用者 は、透明な表示基板 10を介して表示部 30を視認することができる。 Next, the structure of the display substrate 10 will be described. As shown in FIG. 1, the display substrate 10 is formed of a transparent member. The display substrate 10 includes a display layer 11 as a display surface. A transparent display electrode layer 12 for generating an electric field in the display section 30 is provided on the lower surface side of the display layer 11. The display layer 11 is formed of a material having high transparency and high insulation. For example, polyethylene naphthalate, polyether sulfone, polyimide, polyethylene terephthalate, glass and the like are used. Meanwhile, display The electrode layer 12 is made of a material that has high transparency and can be used as an electrode.For example, indium tin oxide, which is a metal oxide, tin oxide doped with fluorine, aluminum oxalate aluminum Doped acid zinc oxide or the like is used. In the present embodiment, the display layer 11 is a transparent glass substrate. On the other hand, the display electrode layer 12 is a transparent electrode formed of indium tin oxide. By providing such a structure, the user can visually recognize the display unit 30 through the transparent display substrate 10.
[0012] 次に、背面基板 20の構造について説明する。図 1に示すように、背面基板 20は、 表示パネル 2を支持する筐体支持層 21を備えている。さらに、その筐体支持層 21の 上面には、各表示部 30毎に対応する背面電極層 22が設けられている。この背面電 極層 22は、各表示部 30に電界を発生させるものである。一方、筐体支持層 21は、 高い絶縁性を有する材料が使用される。例えば、ガラスや、絶縁処理された金属フィ ルム等の無機材料、ポリエチレンテレフタレート等の有機材料が使用される。なお、 背面基板 20を形成する各層は、表示基板 10とは異なり、透明でも有色でもよい。ま た、本実施形態では、筐体支持層 21はガラス基板であり、背面電極層 22は酸化イン ジゥムスズにより形成された電極である。  [0012] Next, the structure of the back substrate 20 will be described. As shown in FIG. 1, the back substrate 20 includes a housing support layer 21 that supports the display panel 2. Further, a back electrode layer 22 corresponding to each display unit 30 is provided on the upper surface of the housing support layer 21. The back electrode layer 22 generates an electric field in each display unit 30. On the other hand, the casing support layer 21 is made of a highly insulating material. For example, glass, an inorganic material such as an insulated metal film, or an organic material such as polyethylene terephthalate is used. Note that each layer forming the back substrate 20 may be transparent or colored, unlike the display substrate 10. In the present embodiment, the housing support layer 21 is a glass substrate, and the back electrode layer 22 is an electrode formed of indium tin oxide.
[0013] そして、各背面電極層 22にはチャネル CH1が接続され、表示電極層 12にはチヤ ネル CH2が各々接続されている。そして、図示外の制御装置によってこれらのチヤ ネル CH1、チャネル CH2が各々制御され、背面電極層 22、表示電極層 12に電圧 が印加される。これにより、表示部 30に電界が発生するようになっている。本実施形 態では、表示電極層 12を基準電位 (ゼロボルト)とし、背面電極層 22にプラスの電圧 が印加されると、背面電極層 22がプラス、表示電極層 12がマイナスとなる。また、背 面電極層 22にマイナスの電圧が印加されると、背面電極層 22がマイナス、表示電極 層 12がプラスとなる。なお、これとは逆に、表示電極層 12を基準電位 (ゼロボルト)と してもよい。また、電界の発生方法はこれら以外の方法でもよい。  [0013] Channel CH1 is connected to each back electrode layer 22, and channel CH2 is connected to display electrode layer 12. These channels CH1 and CH2 are controlled by a control device (not shown), and a voltage is applied to the back electrode layer 22 and the display electrode layer 12. As a result, an electric field is generated in the display unit 30. In the present embodiment, when the display electrode layer 12 is set to the reference potential (zero volts) and a positive voltage is applied to the back electrode layer 22, the back electrode layer 22 is positive and the display electrode layer 12 is negative. When a negative voltage is applied to the back electrode layer 22, the back electrode layer 22 is negative and the display electrode layer 12 is positive. On the other hand, the display electrode layer 12 may be set at a reference potential (zero volts). Further, the method for generating the electric field may be other methods.
[0014] 次に、表示部 30の構造について説明する。図 1に示すように、表示基板 10と背面 基板 20との間には、スぺーサ 31が設けられている。このスぺーサ 31は、表示パネル 2の外周に沿って設けられている。さらに、表示基板 10と背面基板 20とスぺーサ 31 との間には、密閉空間が形成されている。この密閉空間が、隔壁 32によって均等に 分割され、複数の表示部 30が形成されている。そして、これら表示部 30の 1つ 1つが 、画素に相当する。つまり、表示パネル 2は、複数の表示部 30が格子状に並んだパ ネルである。なお、スぺーサ 31及び隔壁 32には、ポリエチレンテレフタレートの榭脂 フィルムが使用されている。そして、このような構造を有する表示パネル 2の表示部 30 の密閉空間に、表示液 40が封入されている。 Next, the structure of the display unit 30 will be described. As shown in FIG. 1, a spacer 31 is provided between the display substrate 10 and the back substrate 20. The spacer 31 is provided along the outer periphery of the display panel 2. Further, a sealed space is formed between the display substrate 10, the back substrate 20, and the spacer 31. This sealed space is evenly divided by the partition wall 32. A plurality of display portions 30 are formed by being divided. Each of the display units 30 corresponds to a pixel. That is, the display panel 2 is a panel in which a plurality of display units 30 are arranged in a lattice pattern. The spacer 31 and the partition wall 32 are made of polyethylene terephthalate resin film. The display liquid 40 is sealed in the sealed space of the display unit 30 of the display panel 2 having such a structure.
[0015] 次に、表示液 40について説明する。この表示液 40は、複数の白色帯電粒子 60と、 複数の黒色帯電粒子 50とが分散する分散媒である。分散媒とは、粒子 (分散質)が 分散する液体物質をいう。本実施形態の表示液 40は、黒色帯電粒子 50及び白色帯 電粒子 60を分散質とし、無極性溶媒に所定量の極性溶媒を添加した液体物質を分 散媒とする。無極性溶媒には、主に炭化水素系溶剤が使用される。本実施形態では 、ノ《ラフィン系溶剤 (73wt%) (商品名「Isopar Gj:ェクソンモービル社製)が使用さ れている。一方、極性溶媒には、無極性溶媒に可溶なアルコールが使用される。本 実施形態では、へキサノールが使用されている。そして、表示液 40中の極性溶媒の 一部が、白色帯電粒子 60及び黒色帯電粒子 50の周囲に留まることによって、これら 帯電粒子の帯電性が向上する。  [0015] Next, the display liquid 40 will be described. The display liquid 40 is a dispersion medium in which a plurality of white charged particles 60 and a plurality of black charged particles 50 are dispersed. The dispersion medium refers to a liquid substance in which particles (dispersoid) are dispersed. The display liquid 40 of the present embodiment uses black liquid particles 50 and white charged particles 60 as a dispersoid, and a liquid substance obtained by adding a predetermined amount of a polar solvent to a nonpolar solvent as a dispersion medium. As the nonpolar solvent, a hydrocarbon solvent is mainly used. In the present embodiment, no << raffin solvent (73 wt%) (trade name "Isopar Gj: manufactured by ExxonMobil Co., Ltd.) is used. On the other hand, an alcohol that is soluble in a nonpolar solvent is used as a polar solvent. In this embodiment, hexanol is used, and a part of the polar solvent in the display liquid 40 stays around the white charged particles 60 and the black charged particles 50 so that these charged particles are used. The charging property is improved.
[0016] 次に、黒色帯電粒子 50及び白色帯電粒子 60について説明する。図 1に示すように 、表示液 40には、黒色帯電粒子 50と、白色帯電粒子 60とが浮遊している。そして、 本実施形態では、黒色帯電粒子 50をプラス(+ )に帯電させ、白色帯電粒子 60をマ ィナス(―)に帯電させている。よって、表示基板 10側をマイナス、背面基板 20側を プラスにして表示部 30に電界を発生させた場合、黒色帯電粒子 50は表示基板 10 側に移動し、白色帯電粒子 60は背面基板 20側に移動する。このとき、表示基板 10 には黒色が表示される。また、表示基板 10側をプラス、背面基板 20側をマイナスに して表示部 30に逆向きの電界を発生させた場合、黒色帯電粒子 50は背面基板 20 側に移動し、白色帯電粒子 60は表示基板 10側に移動する。このとき、表示基板 10 に表示されていた黒色は白色に切り替わる。なお、後述するが、この黒色と白色の表 示切替時間は、黒色帯電粒子 50及び白色帯電粒子 60の表示液中の移動時間によ つて大きく影響を受ける。  Next, the black charged particles 50 and the white charged particles 60 will be described. As shown in FIG. 1, black charged particles 50 and white charged particles 60 are suspended in the display liquid 40. In this embodiment, the black charged particles 50 are positively charged (+), and the white charged particles 60 are negatively charged (−). Therefore, when an electric field is generated in the display unit 30 with the display substrate 10 side minus and the back substrate 20 side plus, the black charged particles 50 move to the display substrate 10 side, and the white charged particles 60 are the back substrate 20 side. Move to. At this time, black is displayed on the display substrate 10. In addition, when a reverse electric field is generated in the display unit 30 with the display substrate 10 side being positive and the back substrate 20 side being negative, the black charged particles 50 move to the back substrate 20 side, and the white charged particles 60 are Move to display board 10 side. At this time, the black color displayed on the display substrate 10 is switched to white. As will be described later, the black and white display switching time is greatly affected by the movement time of the black charged particles 50 and the white charged particles 60 in the display liquid.
[0017] ここで、帯電粒子の「直進性」につ 、て説明する。帯電粒子の直進性とは、表示基 板 10と背面基板 20との間の最短距離の方向に直交する方向の移動量に対する最 短距離の方向の移動量の割合を示すものである。つまり、最短距離の方向の移動量 力 最短距離の方向に直交する方向の移動量よりも大きければ大きいほど、帯電粒 子の直進性は高くなる。その逆に、最短距離の方向に直交する方向の移動量が、最 短距離の方向の移動量よりも大きければ大きいほど、直進性は低くなる。一般的に、 周囲の液体の抵抗を受けにくい表面形状を備える粒子は直進性が高ぐ周囲の抵抗 を受けやす 、表面形状を備える粒子は直進性が低 、と 、える。 Here, “straightness” of the charged particles will be described. The straightness of charged particles refers to the display base. It shows the ratio of the amount of movement in the direction of the shortest distance to the amount of movement in the direction orthogonal to the direction of the shortest distance between the plate 10 and the back substrate 20. In other words, the amount of movement in the direction of the shortest distance force The greater the amount of movement in the direction perpendicular to the direction of the shortest distance, the higher the straightness of the charged particles. Conversely, the greater the amount of movement in the direction perpendicular to the direction of the shortest distance than the amount of movement in the direction of the shortest distance, the lower the straightness. In general, particles having a surface shape that is not easily resisted by the surrounding liquid have high rectilinearity and are susceptible to ambient resistance, and particles having a surface shape have low rectilinearity.
[0018] そして、本実施形態では、表面形状が互いに異なる黒色帯電粒子 50及び白色帯 電粒子 60を用いるため、黒色帯電粒子 50の直進性と、白色帯電粒子 60の直進性と は互いに異なっている。これにより、黒色帯電粒子 50と白色帯電粒子 60との衝突頻 度を少なくすることができるので、表示切替時間を短縮することができる。なお、この 表示切替時間の短縮効果につ 1、ては後述する。  In the present embodiment, since the black charged particles 50 and the white charged particles 60 having different surface shapes are used, the straightness of the black charged particles 50 and the straightness of the white charged particles 60 are different from each other. Yes. Thereby, since the collision frequency between the black charged particles 50 and the white charged particles 60 can be reduced, the display switching time can be shortened. The effect of shortening the display switching time will be described later.
[0019] 次に、黒色帯電粒子 50の構造について説明する。図 2に示すように、黒色帯電粒 子 50は、所謂「重合ディンプル粒子」であり、球状の表面に多数のディンプル 51を備 えている。そして、これら多数のディンプル 51によって、表示液 40を移動する際の直 進性を向上することができる。なお、ディンプル構造による黒色帯電粒子 50の直進 性向上の効果およびその評価については後述する。  Next, the structure of the black charged particles 50 will be described. As shown in FIG. 2, the black charged particles 50 are so-called “polymerized dimple particles”, and have a large number of dimples 51 on a spherical surface. The large number of dimples 51 can improve the straightness when the display liquid 40 is moved. The effect of improving the straightness of the black charged particles 50 by the dimple structure and the evaluation thereof will be described later.
[0020] 次に、ディンプル構造を備える黒色帯電粒子 50の作製方法について説明する。こ の黒色帯電粒子 50の基礎となる黒色ディンプル粒子は、モノマーを重合しつつ架橋 剤を添加することによって得られる架橋重合粒子である。この架橋重合粒子の製造 方法は、モノマーを重合しつつ架橋剤を添加して、重合ディンプル粒子を製造する 重合粒子製造工程と、その製造した重合粒子に染料等を介して染着処理する染着 工程とからなる。  [0020] Next, a method for producing the black charged particles 50 having the dimple structure will be described. The black dimple particles as the basis of the black charged particles 50 are cross-linked polymer particles obtained by adding a cross-linking agent while polymerizing monomers. The method for producing the crosslinked polymer particles includes a polymer particle production step of producing a polymerized dimple particle by adding a crosslinking agent while polymerizing a monomer, and a dyeing process in which the produced polymer particle is dyed via a dye or the like. Process.
[0021] まず、重合粒子製造工程について説明する。はじめに、攪拌機、冷却管、温度計、 ガス導入管等を備える反応器に、溶媒として、メタノール (関東ィ匕学 (株)製) 582g、 及びイソプロピルアルコール(関東ィ匕学 (株)製) 145gを充填する。更に分散剤として 、ポリビュルピロリドン (ナカライテスタ (株)製 K— 30) 30g、 1—へキサデ力ノール (ナ 力ライテスタ (株)) 7gを反応器に投入する。続いて、榭脂材料となるモノマーとして、 スチレンモノマー(関東化学 (株)製) 207g、及び n—ブチルアタリレート(関東化学( 株)製) 43gを反応器に投入する。次いで、反応器内にガス導入管から窒素ガスを充 填して、窒素ガス置換を行なう。 First, the process for producing polymer particles will be described. First, in a reactor equipped with a stirrer, a cooling pipe, a thermometer, a gas introduction pipe, etc., 582 g of methanol (manufactured by Kanto Yigaku Co., Ltd.) and 145 g of isopropyl alcohol (manufactured by Kanto Yigaku Co., Ltd.) as solvents Fill. Furthermore, as a dispersant, 30 g of polybulurpyrrolidone (K-30, manufactured by Nacalai Testa Co., Ltd.) and 7 g of 1-hexanedeol (Nakora Tester Co., Ltd.) are charged into the reactor. Subsequently, as a monomer that becomes a resin material, Charge 207 g of styrene monomer (manufactured by Kanto Chemical Co., Ltd.) and 43 g of n-butyl acrylate (manufactured by Kanto Chemical Co., Ltd.) to the reactor. Next, nitrogen gas replacement is performed by filling the reactor with nitrogen gas from the gas introduction pipe.
[0022] その後、重合開始剤として、 α , α '—ァゾビスイソプチ口-トリル(関東ィ匕学 (株)製 ) 15gを反応器内に投入する。そして、前記のように調整された溶液を攪拌機により 攪拌しつつ、約 60°Cに加温して 8時間重合させる。この重合反応によって、球状の重 合粒子 (スチレン Zn—ブチルアタリレート共重合体)を得ることができる。ここで、重 合粒子は、ほぼ球状の形状を有している。そして、重合粒子の平均粒子径及び分散 度を、分散度測定器 (コールター製コールターマルチサイザ一を使用)にて測定した ところ、平均粒子径約 4 111、分散度 1. 03であることが確認された。  [0022] Thereafter, 15 g of α, α'-azobisisobutyl-tolyl (manufactured by Kanto Chemical Co., Ltd.) as a polymerization initiator is charged into the reactor. Then, while stirring the solution prepared as described above with a stirrer, the solution is heated to about 60 ° C. and polymerized for 8 hours. By this polymerization reaction, spherical polymer particles (styrene Zn-butyl acrylate copolymer) can be obtained. Here, the polymer particles have a substantially spherical shape. The average particle size and dispersity of the polymer particles were measured with a dispersity meter (using a Coulter Coulter Multisizer), and it was confirmed that the average particle size was about 4111 and the dispersity was 1.03. It was done.
[0023] そして、前記のような球状の重合粒子が得られた後、重合反応系中に架橋剤として 、ジビュルベンゼン (ナカライテスタ (株)製) 5gを添加し、更に約 2時間の重合反応を 行なう。このとき、重合粒子の重合反応が進行する過程において、重合反応系中に 添加された架橋剤は、モノマー分子間でランダムに架橋反応を起こす。その結果、重 合粒子の表面部に、複数のディンプルが形成されると考えられる。そして、この重合 反応によって生成された重合粒子を、分散媒から分別して乾燥すると、図 2に示すよ うな、複数のディンプルを表面に有する重合粒子が得られる。なお、この重合粒子の 平均粒子径は 4. 9 /ζ πι、分散度は 1. 05であった。  [0023] After the spherical polymer particles as described above are obtained, 5 g of dibutenebenzene (manufactured by Nacalai Testa Co., Ltd.) is added as a cross-linking agent to the polymerization reaction system, and the polymerization is continued for about 2 hours. Perform the reaction. At this time, in the process in which the polymerization reaction of the polymer particles proceeds, the crosslinking agent added to the polymerization reaction system causes a crosslinking reaction randomly between the monomer molecules. As a result, it is considered that a plurality of dimples are formed on the surface portion of the polymer particles. Then, when the polymer particles produced by this polymerization reaction are separated from the dispersion medium and dried, polymer particles having a plurality of dimples on the surface as shown in FIG. 2 are obtained. The polymer particles had an average particle size of 4.9 / ζ πι and a dispersity of 1.05.
[0024] また、架橋剤を添加する時点における重合粒子の粒子径と、架橋剤の添加量との 間には相互関係が成立する。例えば、架橋剤を添加する時点における重合粒子の 粒子径が小さい場合には、添加する架橋剤の添加量を多くしないと、重合粒子にデ インプルが形成され難い。一方、架橋剤の添加する時点における重合粒子の粒子径 が大きい場合には、架橋剤の添加量が少量であっても、重合粒子にディンプルが形 成され易い。例えば、架橋剤を添加する時点における重合粒子の粒子径が、 3〜6 μ mの範囲にある場合には、モノマーの仕込量に対して 1 %以上の架橋剤を添加す れば、重合粒子にディンプルを形成することができる。架橋材は、望ましくは 2%以上 、更に望ましくは 3%以上添加するのがよい。  [0024] Further, there is a mutual relationship between the particle size of the polymer particles at the time when the cross-linking agent is added and the amount of the cross-linking agent added. For example, when the particle size of the polymer particles at the time of adding the cross-linking agent is small, it is difficult to form dimples on the polymer particles unless the addition amount of the cross-linking agent to be added is increased. On the other hand, when the particle size of the polymer particles at the time when the cross-linking agent is added is large, dimples are easily formed on the polymer particles even if the amount of the cross-linking agent added is small. For example, when the particle size of the polymer particles at the time of adding the cross-linking agent is in the range of 3 to 6 μm, the polymer particles can be added by adding 1% or more of the cross-linking agent with respect to the charged amount of monomer. Dimples can be formed on the substrate. The cross-linking material is desirably added at 2% or more, more desirably 3% or more.
[0025] また、重合粒子の平均粒子径に応じて、架橋剤の添加量を調整することが望ま ヽ 。例えば、重合粒子の粒子径が 2〜8 /ζ πιの範囲にある場合、架橋剤はモノマーの 仕込量に対して 8%〜1%添加するのがよい。また、重合粒子の粒子径が 1〜: LO /z mの範囲にある場合には、 10%〜0. 1%の架橋剤を添加するのがよい。なお、本実 施例に使用可能な架橋剤はジビニルベンゼンに限定されず、以下に示す各種の化 合物が架橋剤として使用することができる。例えば、芳香族ジビニル化合物、ビニル 基を 2つ以上有するカルボン酸エステル等が使用可能である。 [0025] Further, it is desirable to adjust the addition amount of the crosslinking agent according to the average particle diameter of the polymer particles. . For example, when the particle diameter of the polymer particles is in the range of 2 to 8 / ζ πι, the crosslinking agent is preferably added in an amount of 8% to 1% with respect to the charged amount of the monomer. Further, when the particle size of the polymer particles is in the range of 1 to: LO / zm, it is preferable to add 10% to 0.1% of a crosslinking agent. The crosslinking agent that can be used in this example is not limited to divinylbenzene, and various compounds shown below can be used as the crosslinking agent. For example, aromatic divinyl compounds and carboxylic acid esters having two or more vinyl groups can be used.
芳香族ジビュル化合物としては、ジビュルナフタレン、 N, N ジビュルァ-リン及 びその誘導体がある。また、ビニル基を 2つ以上有するカルボン酸エステルとしては、 ポリエチレングリコールジメタタリレート、ポリエチレングリコールジアタリレート、トリェチ レングリコールジメタクリレート、トリエチレングリコールジアタリレート、 1, 3ーブチレン グリコールジメタタリレート、 1, 3 ブチレングリコールジアタリレート、 1, 6 へキシレ ングリコールジメタタリレート、 1, 6 へキシレングリコールジアタリレート、ネオベンチ ルグリコールジメタタリレート、ネオベンチルグリコールジアタリレート、ジプロピレングリ コールジメタタリレート、ジプロピレングリコールジアタリレート、ポリプロピレングリコー ルジメタタリレート、ポリプロピレングリコールジアタリレート、 2, 2 ビス(4—メタクリロ キシジエトキシフエ-ル)プロパン、 2, 2 ビス(4—アタリ口キシジエトキシフエ-ル) プロパン、トリメチロールプロパントリメタタリレート、トリメチロールプロパントリアタリレー ト、テトラメチロールメタンテトラメタタリレート、テトラメチロールメタンテトラアタリレート 、ジブロムネオペンチルグリコールジメタタリレート、ジブ口ネオペンチルグリコールジ アタリレート、フタル酸ジアクリル、エチレングリコールジメタタリレート、エチレングリコ ールジアタリレート、ジエチレングリコールジメタタリレート、ジエチレングリコールジァ タリレート、トリメチロールプロパントリメタタリレート、トリメチロールプロパントリアタリレ ート、ァリルメタタリレート、ァリルアタリレート、 t—ブチルアミノエチルジメタタリレート、 t ブチルアミノエチルジアタリレート、テトラエチレングリコールジメタタリレート、テトラ エチレングリコールジアタリレート、 1, 3 ブタンジオールジメタタリレート、 1, 3 ブタ ンジオールジアタリレート等がある。その他、ジビュルエーテル、ジビニルスルフイド、 ジビニルスルホン等のジビ-ルイ匕合物や、ビュル基を 3つ以上有する化合物が単独 、又は混合物として使用可能である。 [0027] 次に、染着工程について説明する。まず、黒色染料 (オリエントィ匕学 (株)製 オイル ブラック 860) 15. Ogと、荷電制御剤 (オリエント化学 (株)製 E— 84) 6. Ogとを、分 散溶媒としてのエタノール 750cc中に分散させて染着溶液を調整する。このような染 着溶液中に、ディンプル付き重合粒子 150gを加えて、 30°Cに加温しながら約 1時間 攪拌する。これにより、ディンプル付き重合粒子は黒色染料により染着される。その後 、染着されたディンプル付き重合粒子と、分散溶媒とをろ過して分別することによって 、乾燥した黒色粒子を得ることができる。そして、この黒色粒子を、表示液 40中でプ ラスに帯電させることによって、黒色帯電粒子 50を得ることができる。 Aromatic dibule compounds include dibulalnaphthalene, N, N dibularin and their derivatives. As the carboxylic acid ester having two or more vinyl groups, polyethylene glycol dimethacrylate Tatari, polyethylene glycol di Atari rate, Toryechi glycol dimethacrylate, triethylene glycol di Atari rate, 1, 3 Buchiren glycol dimethacrylate Tatari rate, 1 , 3 Butylene glycol diatalylate, 1,6 hexylene glycol dimetatalate, 1, 6 hexylene glycol diatalate, neopentyl glycol dimetatalylate, neoventil glycol ditalariate, dipropylene glycol dimetatalate , Dipropylene glycol diatalylate, polypropylene glycol dimethacrylate, polypropylene glycol diathalate, 2, 2 bis (4-methacryloxydiethoxyphenol) Bread, 2, 2 bis (4-atarioxydiethoxyphenol) propane, trimethylolpropane trimetatalylate, trimethylolpropane tritalatolate, tetramethylolmethane tetrametatalylate, tetramethylolmethane tetraatalylate, Dibromoneopentylglycol dimetatalylate, dibu-mouth neopentylglycol diacrylate, diacrylic phthalate, ethylene glycol dimethacrylate, ethylene glycol diatalate, diethylene glycol dimethacrylate, diethylene glycol dimethylate, trimethylolpropane trimetatali Rate, trimethylolpropane tritalylate, aryl methacrylate, aryl arylate, t-butylaminoethyl dimetatalylate, t-butylamino Chill di Atari rate, tetraethylene glycol dimethacrylate Tatari rate, tetraethylene glycol di Atari rate, 1, 3-butanediol dimethacrylate Tatari rate, there is a 1, 3 pigs down di Atari rates. In addition, dibilyl compounds such as dibule ether, divinylsulfide and divinylsulfone, and compounds having three or more bur groups can be used alone or as a mixture. [0027] Next, the dyeing process will be described. First, black dye (Oil Black 860 manufactured by Orienti Chemical Co., Ltd.) 15. Og and charge control agent (E-84 manufactured by Orient Chemical Co., Ltd.) 6. Og in ethanol 750cc as the dispersion solvent To prepare a dyeing solution. In such a dye solution, add 150 g of polymer particles with dimples and stir for about 1 hour while heating to 30 ° C. Thereby, the polymer particles with dimples are dyed with the black dye. Then, dried black particles can be obtained by filtering and separating the dyed polymer particles with dimples and the dispersion solvent. The black charged particles 50 can be obtained by positively charging the black particles in the display liquid 40.
[0028] 次に、白色帯電粒子 60について説明する。図 3に示すように、白色帯電粒子 60は 、球状の母粒子 61に、その母粒子 61よりも小さい径を有する多数の子粒子 62が結 合された粒子である。そしてその表面は凸状になっている。母粒子 61は帯電可能な 材料で形成され、例えば、アクリル榭脂等が使用される。このアクリル榭脂の例として は、ポリアクリル酸や、そのエステル類等が挙げられる。なお、アクリル榭脂の他にも、 PC (ポリカーボネイト)、 HDPE (高密度ポリエチレン)、 PP (ポリプロピレン)、 ABS ( アクリロニトリルブタジエンスチレン)、 PET (ポリエチレンテレフタレート)、 POM (ポリ ァセタール)等が利用可能である。一方、子粒子 62は、母粒子 61の表面に一部が埋 没した状態で機械的に結合されている。この子粒子 62によって、白色帯電粒子 60が 表示液 40を移動する際の、表示液 40から受ける抵抗が大きくなる。よって、黒色帯 電粒子 50とは逆〖こ、白色帯電粒子 60の移動における直進性を低下させることができ る。  [0028] Next, the white charged particles 60 will be described. As shown in FIG. 3, the white charged particle 60 is a particle in which a large number of child particles 62 having a diameter smaller than that of the mother particle 61 are combined with a spherical mother particle 61. And the surface is convex. The mother particle 61 is formed of a chargeable material, and for example, acrylic resin is used. Examples of this acrylic resin include polyacrylic acid and esters thereof. In addition to acrylic resin, PC (polycarbonate), HDPE (high density polyethylene), PP (polypropylene), ABS (acrylonitrile butadiene styrene), PET (polyethylene terephthalate), POM (polyacetal), etc. are available. is there. On the other hand, the child particle 62 is mechanically coupled in a state where a part of the child particle 62 is buried in the surface of the mother particle 61. The child particles 62 increase the resistance received from the display liquid 40 when the white charged particles 60 move the display liquid 40. Therefore, it is possible to reduce the straightness in the movement of the white charged particles 60 contrary to the black charged particles 50.
[0029] 次に、母粒子 61に対する子粒子 62の結合方法について説明する。図 3に示すよう に、子粒子 62は、ハイブリダィゼーシヨン法によって、母粒子 61の表面に機械的に 結合されている。具体的には、子粒子 62は、その一部が埋没した状態で母粒子 61 の表面に結合されている。このハイブリダィゼーシヨン法の処理方法は以下の通りで ある。処理装置は、奈良機械製作所製のノ、イブリダィゼーシヨンシステム (NHS)を使 用した。この NHSは、粉体同士の混合物を形成する混合機と、乾式で微粉体同士を 結合するハイブリダィザ一と、捕集器と、各装置を制御する制御盤と、装置を操作す るための操作盤とを備えている。 [0030] まず、母粒子となる粉体 lOgと、子粒子となる粉体 0. 4gとを混合機で混合する。次 いで、これらの粉体をハイブリダィザ一に投入する。そして、ハイブリダィザ一では、 2 5°C、 9700rpmで 3分間の処理を行う。すると、ハイブリダィザ一では、粒子が気相中 に分散しながら、衝撃力主体とする機械的 ·熱的エネルギーが粒子に与えられること によって固定ィ匕処理が行われる。そして、生成された処理粉体は、捕集器によって速 やかに捕集される。こうして、母粒子 61の表面に子粒子 62が結合した白色帯電粒子 60を生成することができる。 [0029] Next, a method for binding the child particles 62 to the mother particles 61 will be described. As shown in FIG. 3, the child particle 62 is mechanically bonded to the surface of the mother particle 61 by a hybridization method. Specifically, the child particle 62 is bonded to the surface of the mother particle 61 in a state where a part of the child particle 62 is buried. The treatment method of this hybridization method is as follows. The processing equipment used was the Nobbridation System (NHS) manufactured by Nara Machinery Co., Ltd. This NHS is a mixer that forms a mixture of powders, a hybridizer that combines fine powders in a dry manner, a collector, a control panel that controls each device, and an operation for operating the device. And a board. [0030] First, powder lOg serving as mother particles and 0.4g serving as child particles are mixed with a mixer. Next, these powders are put into a hybridizer. In the hybridizer, the treatment is performed at 25 ° C. and 9700 rpm for 3 minutes. Then, in the hybridizer 1, while the particles are dispersed in the gas phase, the mechanical and thermal energy mainly composed of an impact force is given to the particles, and thus the fixed metal treatment is performed. The generated processed powder is quickly collected by a collector. In this way, white charged particles 60 in which the child particles 62 are bonded to the surface of the mother particles 61 can be generated.
[0031] なお、本実施形態では、子粒子 62は、ハイブリダィゼーシヨン法によって母粒子 61 の表面に機械的に結合されている力 化学的に結合してもよい。また、母粒子 61の 表面をカ卩ェすることによって複数の凸形状を形成してもよい。さらには、母粒子 61の 表面形状を加工することによって複数の凸形状を形成してもよい。  In the present embodiment, the child particles 62 may be mechanically bonded to the surface of the mother particle 61 by a hybridization method. Further, a plurality of convex shapes may be formed by covering the surface of the mother particle 61. Furthermore, a plurality of convex shapes may be formed by processing the surface shape of the mother particle 61.
[0032] 次に、表示パネル 2の駆動時における黒色帯電粒子 50及び白色帯電粒子 60のそ れぞれの動きについて、図 4乃至図 8を参照して説明する。なお、図 4乃至図 8では、 黒色帯電粒子 50及び白色帯電粒子 60の動きを明確に説明するため、粒子径、粒 子数等を変更して示して 、る。  Next, the movements of the black charged particles 50 and the white charged particles 60 when the display panel 2 is driven will be described with reference to FIGS. 4 to 8. 4 to 8, the particle diameter, the number of particles, etc. are changed and shown in order to clearly explain the movement of the black charged particles 50 and the white charged particles 60.
[0033] まず、図 4に示すように、表示電極層 12をマイナス、背面電極層 22をプラスにして 表示部 30に電界を発生させる。すると、プラスに帯電した黒色帯電粒子 50は、表示 基板 10側に移動して表示電極層 12に付着する。一方、白色帯電粒子 60は背面基 板 20側に移動して背面電極層 22に付着する。このとき、表示基板 10には黒色が表 示される。次いで、黒色帯電粒子 50の全てを表示電極層 12の中央に寄せ集め、最 密の状態で 1層からなる黒色帯電粒子層を形成する。なお、最密とは、隣り合う黒色 帯電粒子 50同士が接触した状態を意味する。そしてこの黒色帯電粒子層の両側に 、少なくとも 1個の白色帯電粒子 60を配置できる程度の隙間を形成する。この隙間の 間隔は、黒色帯電粒子 50及び白色帯電粒子 60の粒子径、粒子数、スぺーサ 31と 隔壁 32の間の距離、隔壁 32と隔壁 32の間の距離等によって調整するとよい。  First, as shown in FIG. 4, an electric field is generated in the display unit 30 with the display electrode layer 12 minus and the back electrode layer 22 plus. Then, the positively charged black charged particles 50 move to the display substrate 10 side and adhere to the display electrode layer 12. On the other hand, the white charged particles 60 move to the back substrate 20 side and adhere to the back electrode layer 22. At this time, black is displayed on the display substrate 10. Next, all of the black charged particles 50 are gathered together in the center of the display electrode layer 12 to form a black charged particle layer consisting of one layer in a close-packed state. The close-packed means that the adjacent black charged particles 50 are in contact with each other. A gap is formed on both sides of the black charged particle layer so that at least one white charged particle 60 can be disposed. The distance between the gaps may be adjusted according to the particle diameter and the number of particles of the black charged particles 50 and the white charged particles 60, the distance between the spacer 31 and the partition wall 32, the distance between the partition wall 32 and the partition wall 32, and the like.
[0034] 次に、表示電極層 12をプラス、背面電極層 22をマイナスにして、表示部 30にかか る電界の向きが切り替わった場合、図 5に示すように、黒色帯電粒子 50は表示電極 層 12から離れ、白色帯電粒子 60は背面電極層 22から離れる。さらに、図 6に示すよ うに、直進性の高い黒色帯電粒子 50は、その配列をほぼ崩すことなぐ背面電極層 2 2に向力つて移動する。一方、表示液 40の抵抗を受け易い白色帯電粒子 60は、黒 色帯電粒子 50の移動に伴う表示液 40の流れによって背面基板 20側に押される。そ のため、白色帯電粒子 60は、その中央で 2つの集合に分断されるとともに、一列に並 んだ黒色帯電粒子 50の両側の隙間に向力つて回り込むようにそれぞれ移動する。 つまり、黒色帯電粒子 50が白色帯電粒子 60に近づけば近づくほど、白色帯電粒子 60は表示液 40に押し流され、黒色帯電粒子 50から離れる方向に移動する。これに より、黒色帯電粒子 50と白色帯電粒子 60との衝突を回避できる。また、表示切替が 複数回繰り返された場合でも、黒色帯電粒子層は直進して表示液 40内を移動する。 このことから、黒色帯電粒子層の両側の隙間が保持されるので、異なる粒子同士の 衝突を回避することができる。 Next, when the direction of the electric field applied to the display unit 30 is switched with the display electrode layer 12 being positive and the back electrode layer 22 being negative, the black charged particles 50 are displayed as shown in FIG. The white charged particles 60 are separated from the back electrode layer 22 away from the electrode layer 12. In addition, it is shown in Figure 6. In this way, the black charged particles 50 having high straightness move toward the back electrode layer 22 without substantially destroying the arrangement. On the other hand, the white charged particles 60 that are easily subjected to the resistance of the display liquid 40 are pushed toward the back substrate 20 by the flow of the display liquid 40 accompanying the movement of the black charged particles 50. For this reason, the white charged particles 60 are divided into two groups at the center and move so as to wrap around the gaps on both sides of the black charged particles 50 aligned in a row. In other words, the closer the black charged particles 50 are to the white charged particles 60, the more the white charged particles 60 are pushed away by the display liquid 40 and move away from the black charged particles 50. Thereby, the collision between the black charged particles 50 and the white charged particles 60 can be avoided. Even when display switching is repeated a plurality of times, the black charged particle layer moves straight in the display liquid 40. From this, since the gaps on both sides of the black charged particle layer are maintained, collision between different particles can be avoided.
[0035] さらに、黒色帯電粒子 50は背面電極層 22に向かって移動する。一方、白色帯電 粒子 60は、その黒色帯電粒子 50の周囲を回り込みながら表示電極層 12に向かって 移動する。そして、図 7に示すように、黒色帯電粒子 50の配置と、白色帯電粒子 60 の配置とが逆転して入れ替わる。そして、図 8に示すように、黒色帯電粒子 50は、背 面電極層 22に一列に並んだ状態でそのまま付着する。一方、白色帯電粒子 60も表 示電極層 12に一列に配列した状態で付着する。このとき、表示基板 10には白色が 表示される。このように、直進性の互いに異なる 2種類の粒子を用いることによって、 粒子同士の衝突を回避することができる。そして、黒色帯電粒子 50と白色帯電粒子 60とが入れ替わる際に要する時間を短縮できるので、表示パネル 2の表示切替の応 答性を向上できる。 Further, the black charged particles 50 move toward the back electrode layer 22. On the other hand, the white charged particles 60 move toward the display electrode layer 12 while wrapping around the black charged particles 50. Then, as shown in FIG. 7, the arrangement of the black charged particles 50 and the arrangement of the white charged particles 60 are reversed and switched. As shown in FIG. 8, the black charged particles 50 adhere to the back electrode layer 22 as they are in a line. On the other hand, the white charged particles 60 also adhere to the display electrode layer 12 in a state of being arranged in a line. At this time, white is displayed on the display substrate 10. In this way, collisions between particles can be avoided by using two types of particles that are different from each other. Further, since the time required for switching between the black charged particles 50 and the white charged particles 60 can be shortened, the display switching response of the display panel 2 can be improved.
[0036] 次に、ディンプル粒子の直進性評価試験にっ 、て説明する。この試験は、ディンプ ル粒子の直進性を評価するものである。まず、試験方法について説明する。本試験 では、図 9に示すように、表示パネル 2と同様の構成である実験用のセル 500を使用 した。このセル 500は、第 1基板 100と第 2基板 200とを備えている。その間には、ス ぺーサ 310を介在して形成された表示部 300が設けられている。そして、その表示部 300には、表示液 400が封入されている。なお、第 1基板 100は、表示層 110と、そ の表示層 11の内面 (表示部 300に対向する面)に設けられた第 1電極層 120とを備 えている。また、第 2基板 200は、筐体支持層 210と、その筐体支持層 210の内面( 表示部 300に対向する面)に設けられた第 2電極層 220とを備えている。なお、第 1 基板 100と第 2基板 200との間の距離は lcmとした。さらに、この表示液 400内に、 0 . lwt。/c^テスト粒子 80を投入するとともに、テスト粒子 80をマイナスに帯電させた。 Next, a straightness evaluation test for dimple particles will be described. This test evaluates the straightness of dimple particles. First, the test method will be described. In this test, as shown in FIG. 9, an experimental cell 500 having the same configuration as that of the display panel 2 was used. The cell 500 includes a first substrate 100 and a second substrate 200. In the meantime, a display unit 300 formed with a spacer 310 interposed is provided. In the display unit 300, the display liquid 400 is sealed. The first substrate 100 includes a display layer 110 and a first electrode layer 120 provided on the inner surface of the display layer 11 (the surface facing the display unit 300). It is. The second substrate 200 includes a housing support layer 210 and a second electrode layer 220 provided on the inner surface of the housing support layer 210 (the surface facing the display unit 300). The distance between the first substrate 100 and the second substrate 200 was lcm. Furthermore, 0.1 wt. / c ^ Test particle 80 was charged and test particle 80 was negatively charged.
[0037] また、セル 500の第 1電極層 120は、配線を介してグランド 71に接続されている。そ して、第 2電極層 220は、配線を介してスィッチ 72に接続されている。さらにスィッチ 7 2は、 200Vの直流電源 73のプラス側に接続されている。その直流電源 73のマイナ ス側は配線を介してグランド 74に接続されている。そしてスィッチ 72をオンすると、第 1電極層 120が基準電位 (ゼロボルト)となり、第 2電極層 220にプラスの電圧が印加 される。したがって、第 2電極層 220がプラス、第 1電極層 120がマイナスとなるので、 表示液 40に電界をかけることができる。  [0037] Further, the first electrode layer 120 of the cell 500 is connected to the ground 71 via a wiring. The second electrode layer 220 is connected to the switch 72 via a wiring. Further, the switch 72 is connected to the positive side of the 200V DC power source 73. The negative side of the DC power supply 73 is connected to the ground 74 through wiring. When the switch 72 is turned on, the first electrode layer 120 becomes the reference potential (zero volts), and a positive voltage is applied to the second electrode layer 220. Accordingly, since the second electrode layer 220 is positive and the first electrode layer 120 is negative, an electric field can be applied to the display liquid 40.
[0038] そして、上記構造力 なるセル 500において、表示液 400に電界をかけてから 5秒 後のテスト粒子 80の移動量を顕微鏡で観察した。なお、テスト粒子 80の移動量は、 表示液中に分散する多数のテスト粒子 80の中からいくつかを選択し、そのテスト粒子 80の移動量を、 PC (パーソナルコンピュータ)による画像解析で測定した。また、画 像解析では、テスト粒子 80の移動量をもとに、後述する X方向の移動量と、 y方向の 移動量とを求め、直進性 (T)を示す xZyを算出した。そして、 3種類のテスト粒子 80 の直進性の比較をおこなった。テスト粒子 80としては、 1.球状粒子 81 (スタンダード ) , 2.凸型粒子 82、 3.ディンプル粒子 83の 3種類を用意した。ここで、凸型粒子 82 は、本実施形態の白色帯電粒子 60 (図 3参照)に相当する。ディンプル粒子 83は、 本実施形態で黒色帯電粒子 50 (図 2参照)に相当する。また、これら 3種類のテスト 粒子 80の径は全て同じとした。さらに、凸型粒子の径については母粒子の径を基準 とした。  [0038] Then, in the cell 500 having the structural force, the amount of movement of the test particles 80 after 5 seconds from applying an electric field to the display liquid 400 was observed with a microscope. The amount of movement of the test particles 80 was selected from a number of test particles 80 dispersed in the display liquid, and the amount of movement of the test particles 80 was measured by image analysis using a PC (personal computer). . In the image analysis, based on the amount of movement of the test particle 80, the amount of movement in the X direction and the amount of movement in the y direction, which will be described later, were obtained, and xZy indicating straightness (T) was calculated. Then, the straightness of the three types of test particles 80 was compared. Three types of test particles 80 were prepared: 1. spherical particles 81 (standard), 2. convex particles 82, and 3. dimple particles 83. Here, the convex particles 82 correspond to the white charged particles 60 (see FIG. 3) of the present embodiment. The dimple particles 83 correspond to the black charged particles 50 (see FIG. 2) in the present embodiment. These three kinds of test particles 80 all have the same diameter. Furthermore, the diameter of the convex particles was based on the diameter of the mother particles.
[0039] なお、本試験でいう「直進性」とは、テスト粒子 80が第 1基板 100と第 2基板 200との 間を移動する際の、第 1基板 100と第 2基板 200との最短距離の方向に直交する方 向の移動量に対する最短距離の方向の移動量の割合を示すものとする。そして、図 9に示すように、セル 500の厚み方向(第 1基板 100から第 2基板 200に向力 方向) を X方向とした。さらにその厚み方向に直交する方向^ y方向とした。そして、テスト開 始から 5秒後のテスト粒子 80の x方向の移動量と、 y方向の移動量とを求め、直進性( T) =xZyを算出し、テスト粒子 80の直進性を評価した。 Note that “straightness” in this test is the shortest distance between the first substrate 100 and the second substrate 200 when the test particles 80 move between the first substrate 100 and the second substrate 200. The ratio of the amount of movement in the direction of the shortest distance to the amount of movement in the direction perpendicular to the direction of distance shall be indicated. Then, as shown in FIG. 9, the thickness direction of the cell 500 (direction of force from the first substrate 100 to the second substrate 200) was taken as the X direction. Furthermore, the direction perpendicular to the thickness direction was taken as the y direction. And test opening The amount of movement of the test particle 80 in the x direction and the amount of movement in the y direction after 5 seconds from the beginning was obtained, and straightness (T) = xZy was calculated to evaluate the straightness of the test particle 80.
[0040] 次に、直進性評価試験の結果について説明する。図 10,図 11に示すように、凸型 粒子 82の X方向の移動量は 3. 0 ( X 10_2mm)、y方向の移動量は 22. 0 ( X 10"2m m)であった。また、従来形状である球状粒子 81の X方向の移動量は 6. 3 ( X 10"2m m)、y方向の移動量は 5. 3 ( X 10_2mm)であった。さら〖こ、ディンプル粒子 83の x方 向の移動量は 20. 3 ( X 10_2mm)、y方向の移動量は 2. 8 ( X 10_2mm)であった。 [0040] Next, the results of the straightness evaluation test will be described. As shown in Fig. 10 and Fig. 11, the amount of movement of convex particles 82 in the X direction was 3.0 (X 10 _2 mm), and the amount of movement in the y direction was 22.0 (X 10 " 2 mm). The amount of movement of the conventional spherical particles 81 in the X direction was 6.3 (X 10 " 2 mm), and the amount of movement in the y direction was 5.3 (X 10 _2 mm). Furthermore, the amount of movement of the dimple particle 83 in the x direction was 20.3 (X 10 _2 mm), and the amount of movement in the y direction was 2.8 (X 10 _2 mm).
[0041] 次に、上記の試験結果について考察する。従来形状の球状粒子 81は、図 11に示 すように、表示液 400の抵抗を受けながら第 2基板 200側に移動する。よって、 X方向 の移動量のみならず、 y方向の移動量が生じている。これに対し、凸型粒子 82は、 X 方向の移動量よりも y方向の移動量が高くなつた。これは、母粒子 61表面に結合され た多数の子粒子 62によって、表示液 400の抵抗を強く受けたため、直進性が大きく 低下したと推測される。これに反し、ディンプル粒子 83は、 y方向の移動量よりも X方 向の移動量がはるかに高くなつた。これは、粒子表面に設けられた多数のディンプル によって、粒子後方に表示液 400がスムーズに回り込んだため、表示液 400による抵 抗が軽減されて直進性が向上したと推測される。 [0041] Next, the above test results will be considered. As shown in FIG. 11, the spherical particles 81 having the conventional shape move to the second substrate 200 side while receiving the resistance of the display liquid 400. Therefore, not only the amount of movement in the X direction but also the amount of movement in the y direction occurs. On the other hand, the movement amount in the y direction of the convex particle 82 is higher than the movement amount in the X direction. This is presumed that the straightness was greatly reduced because the large number of child particles 62 bonded to the surface of the mother particle 61 was strongly subjected to the resistance of the display liquid 400. On the other hand, the dimple particle 83 has a much higher amount of movement in the X direction than that in the y direction. This is presumably because the display liquid 400 smoothly circulates behind the particles due to a large number of dimples provided on the particle surface, so that the resistance of the display liquid 400 is reduced and the straightness is improved.
[0042] 次に、表示パネル 2の表示切替評価試験にっ 、て説明する。この試験では、粒子 形状の組合せと、切替表示に要する時間との関係について調べた。まず、試験方法 について説明する。本試験では、図 1に示す表示パネル 2と同じ実験用の表示パネ ル(図示外)を使用した。この表示パネルでは、 2種類のテスト粒子 1, 2を組み合わせ 、表示液中に対して所定濃度となるようにそれぞれ投入した。  Next, a display switching evaluation test for the display panel 2 will be described. In this test, the relationship between the combination of particle shapes and the time required for switching display was investigated. First, the test method will be described. In this test, the same experimental display panel (not shown) as the display panel 2 shown in FIG. 1 was used. In this display panel, two types of test particles 1 and 2 were combined, and each was added so as to have a predetermined concentration in the display liquid.
[0043] ここで、テスト粒子 1, 2について説明する。テスト粒子 1, 2は、本実施形態の黒色 帯電粒子 50及び白色帯電粒子 60に相当する粒子である。そして、テスト粒子 1は白 色、テスト粒子 2は黒色に調整し、帯電極性が互いに異なるように調整した。さらに、 テスト粒子 1, 2については、 1.球状粒子 (スタンダード)、 2.凸型粒子、 3.ディンプ ル粒子の 3種類をそれぞれ用意した。そして、これら 3種類の粒子を、テスト粒子 1, 2 としてそれぞれ互いに組み合わせ、 1.球状粒子 球状粒子、 2.球状粒子 ディン プル粒子、 3.球状粒子ー凸型粒子、 4.凸型粒子 ディンプル粒子、 5.凸型粒子 ー凸型粒子、 6.ディンプル粒子 ディンプル粒子、の計 6種類の組合せを設定した 。そして、これらの組合せにしたがって、複数のテスト粒子 1, 2を表示液 40内に投入 し、表示パネル 2における表示切替に要する時間を計測した。なお、本試験では、白 表示力も黒表示に切り替わる際に要した時間を計測した。 Here, the test particles 1 and 2 will be described. The test particles 1 and 2 are particles corresponding to the black charged particles 50 and the white charged particles 60 of the present embodiment. The test particles 1 were adjusted to white and the test particles 2 were adjusted to black so that the charging polarities were different from each other. For test particles 1 and 2, three types were prepared: 1. spherical particles (standard), 2. convex particles, and 3. dimple particles. These three kinds of particles are combined as test particles 1 and 2, respectively. 1. Spherical particles Spherical particles 2. Spherical particles Dimple particles 3. Spherical particles-Convex particles 4. Convex particles Dimple particles 5. Convex particles -6 types of combinations were set: convex particles and 6. dimple particles and dimple particles. Then, according to these combinations, a plurality of test particles 1 and 2 were put into the display liquid 40, and the time required for display switching in the display panel 2 was measured. In this test, the time required to switch the white display power to black display was also measured.
[0044] 次に、切替表示評価試験の結果について説明する。図 12に示すように、球状粒子 球状粒子の組合せの場合は 70 (msec)であった。球状粒子 ディンプル粒子の 組合せの場合は 40 (msec)であった。球状粒子—凸型粒子の組合せの場合は 50 ( msec)であった。凸型粒子 ディンプル粒子の組合せの場合は 30 (msec)であった 。凸型粒子—凸型粒子の組合せの場合は 100 (msec)であった。ディンプル粒子— ディンプル粒子の組合せの場合は 50 (msec)であった。  Next, the result of the switching display evaluation test will be described. As shown in FIG. 12, it was 70 (msec) in the case of a combination of spherical particles and spherical particles. In the case of a combination of spherical particles and dimple particles, it was 40 (msec). In the case of a combination of spherical particles and convex particles, the value was 50 (msec). In the case of a combination of convex particles and dimple particles, the value was 30 (msec). In the case of the combination of convex particles and convex particles, the value was 100 (msec). In the case of a combination of dimple particles and dimple particles, it was 50 (msec).
[0045] 次に、上記の試験結果について考察する。従来の球状粒子 球状粒子の組合せ では、表示切替時間が 70 (msec)であったのに対し、球状粒子 ディンプル粒子の 組合せでは、表示切替時間が 40 (msec)と短くなつた。これは、ディンプル粒子であ るテスト粒子 2が、球状のテスト粒子 1よりも直進性が向上し、テスト粒子 1の直進性と の間に差異が生じたためと推測される。つまり、テスト粒子 1の直進性と、テスト粒子 2 の直進性とが互いに異なることによって衝突頻度が低下し、表示切替時間が短縮し たと考えられる。また、球状粒子—凸型粒子の組合せでも同様に、テスト粒子 1の形 状とテスト粒子 2の形状とが互いに異なるので、テスト粒子 1の直進性とテスト粒子 2の 直進性とが互いに異なる。よって、粒子同士の衝突が回避され、表示切替時間が短 縮したと考えられる。し力し、何れの粒子もディンプル粒子ではなぐディンプル粒子 よりも移動速度は遅 、ので、表示切替時間は球状粒子 ディンプル粒子の組合せよ りは長くなつたと推測される。  Next, the test result will be considered. The conventional spherical particle combination of spherical particles had a display switching time of 70 (msec), while the combination of spherical particles and dimple particles shortened the display switching time to 40 (msec). This is presumably because test particle 2 which is a dimple particle has improved straightness compared to spherical test particle 1, and a difference has occurred between the straightness of test particle 1 and test particle 1. In other words, it is considered that the rectilinearity of the test particles 1 and the rectilinearity of the test particles 2 are different from each other, thereby reducing the collision frequency and shortening the display switching time. Similarly, in the combination of spherical particles and convex particles, the shape of test particle 1 and the shape of test particle 2 are different from each other, so that the straightness of test particle 1 and the straightness of test particle 2 are different from each other. Therefore, it is considered that collision between particles was avoided and display switching time was shortened. However, since the moving speed of each particle is slower than the dimple particle which is not the dimple particle, the display switching time is estimated to be longer than the combination of the spherical particle and the dimple particle.
[0046] そして、凸型粒子 ディンプル粒子の組合せでは 30 (msec)と最も短く、球状粒子 ディンプル粒子の組合せよりも表示切替時間がさらに短くなつた。これは、凸型粒 子が、球状粒子よりも表示液の抵抗を強く受けるため、真っ直ぐに移動するディンプ ル粒子に対して素早く移動し、より確実にディンプル粒子に対する衝突を回避できた 力ゝらと推測される。一方、凸型粒子—凸型粒子の組合せでは、表面形状が何れも表 示液の抵抗を受け易い形状であるため、各基板間の移動に要する時間が長くなり、 球状粒子 球状粒子の組合せに比べて表示切替時間が長くなつたと推測される。ま た、ディンプル粒子 ディンプル粒子の組合せでは、表面形状が何れも直進性の高 いディンプル粒子である力 直進性が共に同じになってしまうので、かえって衝突頻 度が高くなり、表示切替時間が長くなつたと推測される。以上のことから、粒子形状の 組合せを凸型粒子 ディンプル粒子の組合せにすることによって、表示パネル 2の 表示切替時間を最も短縮できる。 [0046] The combination of convex particles and dimple particles was the shortest of 30 (msec), and the display switching time was further shortened compared to the combination of spherical particles and dimple particles. This is because the convex particles receive the resistance of the display liquid more strongly than the spherical particles, so they move quickly with respect to the dimple particles moving straight, and more reliably avoid collision with the dimple particles. It is guessed. On the other hand, in the combination of convex particles and convex particles, the surface shape is easy to receive the resistance of the display liquid, so the time required for movement between the substrates becomes longer. Spherical particles It is estimated that the display switching time is longer than the combination of spherical particles. In addition, in the combination of dimple particles and dimple particles, both the surface shapes of the dimple particles with high straightness and force straightness are the same, so the collision frequency is higher and the display switching time is longer. Presumed to be Natsuta. From the above, the display switching time of the display panel 2 can be shortened the most by making the combination of the particle shapes a combination of convex particles and dimple particles.
[0047] 以上説明したように、本実施形態の表示パネル 2では、互いに表面形状の異なる黒 色帯電粒子 50及び白色帯電粒子 60を用いる。これにより、黒色帯電粒子 50の直進 性と、白色帯電粒子 60の直進性とを互いに異ならせることができるので、これら粒子 同士の衝突を回避することができる。例えば、黒色帯電粒子 50を多数のディンプル 5 1を表面に備えるディンプル粒子とし、白色帯電粒子 60を多数の子粒子 62を表面に 備える凸型粒子とする。これにより、黒色帯電粒子 50の直進性が向上し、白色帯電 粒子 60は表示液 40の抵抗を強く受けるので直進性が低下する。つまり、黒色帯電 粒子 50は、表示基板 10及び背面基板 20の間を最短距離で移動し、白色帯電粒子 60は、その黒色帯電粒子 50を避けるようにして移動する。よって、黒色帯電粒子 50 と白色帯電粒子 60との衝突を効果的に回避することができる。そして、表示パネル 2 の表示切替時間が短縮するので、表示切替の応答性を向上することができる。  [0047] As described above, the display panel 2 of the present embodiment uses the black charged particles 50 and the white charged particles 60 having different surface shapes. As a result, the straightness of the black charged particles 50 and the straightness of the white charged particles 60 can be made different from each other, so that collision between these particles can be avoided. For example, the black charged particles 50 are dimple particles having a large number of dimples 51 on the surface, and the white charged particles 60 are convex particles having a large number of child particles 62 on the surface. Accordingly, the straightness of the black charged particles 50 is improved, and the white charged particles 60 are strongly subjected to the resistance of the display liquid 40, so that the straightness is lowered. That is, the black charged particles 50 move between the display substrate 10 and the back substrate 20 with the shortest distance, and the white charged particles 60 move so as to avoid the black charged particles 50. Therefore, collision between the black charged particles 50 and the white charged particles 60 can be effectively avoided. And since the display switching time of the display panel 2 is shortened, the responsiveness of display switching can be improved.
[0048] なお、本開示に力かる電気泳動表示媒体は、上記実施形態に限らず、各種変形が 可能なことはいうまでもない。例えば、上記実施形態では、表示電極層 12の表面積 と、背面電極層 22の表面積とは互いに同じである力 表面積を互いに異ならせること によって、より確実に帯電粒子同士の衝突を回避することができる。そこで、上記実 施形態の変形例として、表示電極層の表面積と、背面電極層の表面積とが互いに異 なる表示パネル 600について、図 13乃至図 16を参照して説明する。なお、上記実施 形態の表示パネル 2と同じ構成部分については同符号を付して説明を省略する。  [0048] Needless to say, the electrophoretic display medium according to the present disclosure is not limited to the above-described embodiment, and various modifications are possible. For example, in the above embodiment, the surface area of the display electrode layer 12 and the surface area of the back electrode layer 22 are the same as each other. By making the surface areas different from each other, collisions between charged particles can be avoided more reliably. . Therefore, as a modification of the above embodiment, a display panel 600 in which the surface area of the display electrode layer and the surface area of the back electrode layer are different from each other will be described with reference to FIGS. Note that the same components as those of the display panel 2 of the above embodiment are denoted by the same reference numerals and description thereof is omitted.
[0049] 図 13に示すように、表示パネル 600は、表示パネル 2と同様の構成を備えている。  As shown in FIG. 13, the display panel 600 has a configuration similar to that of the display panel 2.
そして、上記実施形態の背面基板 20とは異なる背面基板 90を備えている。この背面 基板 90は、筐体支持層 91を備え、その筐体支持層 91の上面の中央に背面電極層 92が設けられている。背面電極層 92は、表示電極層 12よりも表面積が小さぐ表示 パネル 600の断面を見たときに、その両側に隙間を空けた状態で筐体支持層 91の 上面に設けられている。なお、表示液 40、黒色帯電粒子 50及び白色帯電粒子 60は 上記実施形態と同じであり、黒色帯電粒子 50は「ディンプル粒子」であり、白色帯電 粒子 60は「凸型粒子」である。 A back substrate 90 different from the back substrate 20 of the above embodiment is provided. The back substrate 90 includes a housing support layer 91, and a back electrode layer 92 is provided at the center of the top surface of the housing support layer 91. The back electrode layer 92 has a smaller surface area than the display electrode layer 12. When the cross section of the panel 600 is viewed, the panel 600 is provided on the upper surface of the housing support layer 91 with a gap between both sides. The display liquid 40, the black charged particles 50, and the white charged particles 60 are the same as those in the above embodiment. The black charged particles 50 are “dimple particles”, and the white charged particles 60 are “convex particles”.
[0050] 次に、表示パネル 600の駆動時における黒色帯電粒子 50及び白色帯電粒子 60 のそれぞれの動きについて、図 13乃至図 16を参照して説明する。なお、図 13乃至 図 16では、黒色帯電粒子 50及び白色帯電粒子 60の動きを明確に説明するため、 粒子径、粒子数等を変更して示している。  Next, the movements of the black charged particles 50 and the white charged particles 60 when the display panel 600 is driven will be described with reference to FIGS. 13 to 16. In FIGS. 13 to 16, the particle diameter, the number of particles, and the like are changed in order to clearly explain the movement of the black charged particles 50 and the white charged particles 60.
[0051] まず、図 13に示すように、表示電極層 12をマイナス、背面電極層 92をプラスにして 表示部 30に電界を発生させた場合、プラスに帯電した黒色帯電粒子 50は表示基板 10側に移動して、一列に並んだ状態で表示電極層 12に付着する。一方、白色帯電 粒子 60は背面基板 20側に移動して背面電極層 92に付着する。しかし、背面電極層 92は背面基板 90の中央に配置されているので、複数の白色帯電粒子 60は団子状 に折り重なって背面電極層 92に付着する。このとき、表示基板 10には黒色が表示さ れる。  First, as shown in FIG. 13, when an electric field is generated in the display unit 30 with the display electrode layer 12 minus and the back electrode layer 92 plus, the positively charged black charged particles 50 are added to the display substrate 10. And adheres to the display electrode layer 12 in a line. On the other hand, the white charged particles 60 move to the back substrate 20 side and adhere to the back electrode layer 92. However, since the back electrode layer 92 is disposed at the center of the back substrate 90, the plurality of white charged particles 60 are folded in a dump shape and attached to the back electrode layer 92. At this time, black is displayed on the display substrate 10.
[0052] 次いで、表示電極層 12をプラス、背面電極層 92をマイナスにして表示部 30にかか る電界の向きが切り替わった場合、図 14に示すように、黒色帯電粒子 50は表示電極 層 12から離れ、白色帯電粒子 60は背面電極層 92から離れる。さらに、図 15に示す ように、直進性の高い黒色帯電粒子 50は、背面電極層 92に向力つて真っ直ぐに移 動する。よって、黒色帯電粒子 50は、その配列が崩れて表示部 30の中央に集合す るように移動する。一方、表示液 40の抵抗を受け易い白色帯電粒子 60は、黒色帯 電粒子 50の移動に伴って表示液 40の流れに押される。そのため、複数の白色帯電 粒子 60は、その中央で 2つの集合に分断され、中央に集合する黒色帯電粒子 50の 両側に回り込みながら移動する。  Next, when the direction of the electric field applied to the display unit 30 is switched with the display electrode layer 12 being positive and the back electrode layer 92 being negative, as shown in FIG. 14, the black charged particles 50 are converted into the display electrode layer. The white charged particles 60 are separated from the back electrode layer 92. Further, as shown in FIG. 15, the black charged particles 50 having high straightness move straightly by directing the back electrode layer 92. Therefore, the black charged particles 50 move so that the arrangement thereof collapses and gathers in the center of the display unit 30. On the other hand, the white charged particles 60 that are easily subjected to the resistance of the display liquid 40 are pushed by the flow of the display liquid 40 as the black charged particles 50 move. Therefore, the plurality of white charged particles 60 are divided into two aggregates at the center, and move while wrapping around both sides of the black charged particles 50 assembled at the center.
[0053] 次いで、黒色帯電粒子 50と、白色帯電粒子 60との配置が互いに入れ替わって逆 転する。そして、図 16に示すように、黒色帯電粒子 50は背面電極層 92に団子状に 折り重なった状態で付着し、白色帯電粒子 60は表示電極層 12に一列に配列した状 態で付着する。このとき、表示基板 10には白色が表示される。 [0054] このように、背面電極層 92の表面積を、表示電極層 12の表面積よりも小さくするこ とによって、黒色帯電粒子 50は表示液 40の中央に集合しながら、表示電極層 12か ら背面電極層 92に向かって移動する。そして、背面電極層 92に付着する黒色帯電 粒子 50とスぺーサ 31、又は隔壁 32との間には大きな隙間ができる。その隙間を白色 帯電粒子 60が余裕を持って通過することができるので、黒色帯電粒子 50と白色帯 電粒子 60とが互いに衝突することを、より確実に回避することができる。また、背面電 極層 92の表面積を、表示電極層 12の表面積よりも小さくするため、表示基板 10に 表示される色の表示領域を狭めることがな ヽ。 [0053] Next, the arrangement of the black charged particles 50 and the white charged particles 60 is reversed and reversed. As shown in FIG. 16, the black charged particles 50 adhere to the back electrode layer 92 in a bunched state, and the white charged particles 60 adhere to the display electrode layer 12 in a row. At this time, white is displayed on the display substrate 10. Thus, by making the surface area of the back electrode layer 92 smaller than the surface area of the display electrode layer 12, the black charged particles 50 gather from the display electrode layer 12 while gathering at the center of the display liquid 40. It moves toward the back electrode layer 92. A large gap is formed between the black charged particles 50 adhering to the back electrode layer 92 and the spacers 31 or the partition walls 32. Since the white charged particles 60 can pass through the gap with a margin, it is possible to more reliably avoid the black charged particles 50 and the white charged particles 60 from colliding with each other. Further, since the surface area of the back electrode layer 92 is made smaller than the surface area of the display electrode layer 12, the display area of the color displayed on the display substrate 10 cannot be reduced.
[0055] なお、このような変形例の他にも種々の変更が可能である。例えば、白色帯電粒子 60をディンプル粒子にして、黒色帯電粒子 50を凸型粒子にしてもょ ヽ。  [0055] It should be noted that various modifications are possible in addition to such modifications. For example, the white charged particles 60 may be dimple particles and the black charged particles 50 may be convex particles.
[0056] また、上記実施形態では、表示基板 10及び背面基板 20に、表示電極層 12及び 背面電極層 22がそれぞれ設けられているが、本開示は、これら電極 (表示電極層 12 及び背面電極層 22)を備えて 、な 、表示パネルにも適用可能である。  [0056] In the above embodiment, the display electrode layer 12 and the back electrode layer 22 are provided on the display substrate 10 and the back substrate 20, respectively. However, in the present disclosure, these electrodes (the display electrode layer 12 and the back electrode) With the layer 22), it can also be applied to display panels.
[0057] 以上説明したように、本開示によれば、一対の基板の間に封入された表示液に電 界がかけられると、第 1帯電粒子は自身の帯電極性に応じて一方の基板側に移動し 、第 2帯電粒子は自身の帯電極性に応じて他方の基板側に移動する。そして、第 1 帯電粒子が一対の基板間を移動する際の、一対の基板間の最短距離の方向に直交 する方向の第 1帯電粒子の移動量に対する最短距離の方向の移動量の割合を示す 第 1帯電粒子の直進性と、第 2帯電粒子が一対の基板間を移動する際の、一対の基 板間の最短距離の方向に直交する方向の第 2帯電粒子の移動量に対する最短距離 の方向の移動量の割合を示す第 2帯電粒子の直進性とが互いに異なるので、直進 性の低 、方の帯電粒子は、直進性の高 、方の帯電粒子の移動を避けるようにして移 動する。これは、直進性の低い方の帯電粒子力 直進性の高い方の帯電粒子に比 ベて周囲力 受ける抵抗を強く受けるからである。つまり、直進性の低い方の帯電粒 子は、直進性の高い方の帯電粒子の流れを抵抗として受けるので、その抵抗を避け るようにして移動する。よって、第 1帯電粒子及び第 2帯電粒子が互いに衝突すること を効果的に回避できる。そして、第 1帯電粒子及び第 2帯電粒子の移動時間を短縮 できるので、表示切替に要する時間を短縮できる。 [0058] さらに本開示によれば、第 1帯電粒子の形状と、第 2帯電粒子の形状とが互いに異 なるので、表示液の流れに対する抵抗を互いに異ならせることができる。これにより、 第 1帯電粒子の直進性と、第 2帯電粒子の直進性とを互いに異ならせることができる [0057] As described above, according to the present disclosure, when an electric field is applied to the display liquid sealed between a pair of substrates, the first charged particles are arranged on one substrate side according to their own charge polarity. The second charged particles move to the other substrate side according to their charge polarity. The ratio of the amount of movement in the direction of the shortest distance to the amount of movement of the first charged particles in the direction perpendicular to the direction of the shortest distance between the pair of substrates when the first charged particles move between the pair of substrates is shown. The straightness of the first charged particles and the shortest distance relative to the amount of movement of the second charged particles in the direction perpendicular to the direction of the shortest distance between the pair of substrates when the second charged particles move between the pair of substrates. The second charged particles, which indicate the ratio of the amount of movement in the direction, are different from the straightness of the second charged particles, so the charged particles with lower straightness and the higher charged particles should move so as to avoid movement of the charged particles with higher straightness. To do. This is because the charged particle force with the lower straightness is more resistant to the peripheral force than the charged particle with the higher straightness. In other words, the charged particles with the lower straightness receive the flow of the charged particles with the higher straightness as resistance, and move so as to avoid the resistance. Therefore, the first charged particles and the second charged particles can be effectively prevented from colliding with each other. And since the movement time of the 1st charged particle and the 2nd charged particle can be shortened, the time required for display switching can be shortened. [0058] Furthermore, according to the present disclosure, since the shape of the first charged particles and the shape of the second charged particles are different from each other, the resistance to the flow of the display liquid can be made different from each other. As a result, the straightness of the first charged particles and the straightness of the second charged particles can be made different from each other.
[0059] さらに本開示によれば、第 1帯電粒子の表面形状はディンプル構造である。よって 、ディンプル付きのゴルフボールと同様に直進性を向上させることができる。つまり、 ディンプルによって第 1帯電粒子の後方に表示液がスムーズに回り込むことにより、 表示液による抵抗が軽減されて直進性を向上することができる。したがって、第 1帯 電粒子の直進性を、第 2帯電粒子の直進性よりも高くできるので、第 1帯電粒子及び 第 2帯電粒子が互いに衝突することを効果的に回避できる。 [0059] Furthermore, according to the present disclosure, the surface shape of the first charged particles has a dimple structure. Therefore, straightness can be improved like a golf ball with dimples. That is, the display liquid smoothly flows behind the first charged particles by the dimples, so that the resistance due to the display liquid is reduced and the straightness can be improved. Accordingly, the straight traveling property of the first charged particles can be made higher than the straight traveling property of the second charged particles, so that the first charged particles and the second charged particles can be effectively prevented from colliding with each other.
[0060] さらに本開示によれば、第 1帯電粒子は、モノマーを重合させて化学的に得られる 架橋重合粒子である。よって、粒子の表面に複数の凹部を形成できるので、ディンプ ル構造を容易に形成できる。  Furthermore, according to the present disclosure, the first charged particles are cross-linked polymer particles obtained chemically by polymerizing a monomer. Therefore, since a plurality of concave portions can be formed on the surface of the particle, a dimple structure can be easily formed.
[0061] さらに本開示によれば、第 2帯電粒子の表面形状は凸形状になっている。よって、 表示液の流れに対する抵抗を高くすることができるので、第 2帯電粒子の直進性を、 第 1帯電粒子の直進性よりも低くすることができる。また、第 2帯電粒子の直進性が低 下するので、第 2帯電粒子は第 1帯電粒子の移動を避けるようにして移動する。これ により、第 1帯電粒子と第 2帯電粒子が互いに衝突する確率を低くすることができるの で、第 1帯電粒子及び第 2帯電粒子の移動時間を短縮することができる。  Furthermore, according to the present disclosure, the surface shape of the second charged particles is a convex shape. Accordingly, since the resistance to the flow of the display liquid can be increased, the straightness of the second charged particles can be made lower than the straightness of the first charged particles. In addition, since the straightness of the second charged particles decreases, the second charged particles move so as to avoid the movement of the first charged particles. As a result, the probability that the first charged particles and the second charged particles collide with each other can be lowered, so that the moving time of the first charged particles and the second charged particles can be shortened.
[0062] さらに本開示によれば、第 2帯電粒子の母粒子に結合された子粒子によって、第 2 帯電粒子に対する表示液の抵抗を容易に高くすることができる。これにより、第 1帯電 粒子の直進性よりも低い直進性を備える第 2帯電粒子を形成することができる。  [0062] Furthermore, according to the present disclosure, the resistance of the display liquid to the second charged particles can be easily increased by the child particles bonded to the mother particles of the second charged particles. This makes it possible to form second charged particles having straightness lower than that of the first charged particles.
[0063] さらに本開示によれば、子粒子は、ハイブリダィゼーシヨン法により、母粒子の表面 に物理的に強固に結合されているので、表示液中で子粒子が母粒子の表面から剥 がれ落ちることがない。  [0063] Furthermore, according to the present disclosure, since the child particles are physically and firmly bonded to the surface of the mother particle by the hybridization method, the child particles are separated from the surface of the mother particle in the display liquid. It will not peel off.
[0064] さらに本開示によれば、第 1電極に付着していた一方の帯電粒子は、第 1電極の表 面積よりも小さい表面積を有する第 2電極に向力つて収束するように移動する。また、 第 2電極に付着していた他方の帯電粒子は、第 1電極に向カゝつて拡散するように移 動する。つまり、収束するように第 2電極に移動する一方の帯電粒子に対し、他方の 帯電粒子は、一方の帯電粒子力 逃げるように外側に拡散しながら第 1電極に移動 する。これにより、例えば、多数の第 1帯電粒子が第 1電極の表面に隙間無く付着し ている場合でも、多数の第 1帯電粒子は第 2電極に向かって収束するように移動する 。つまり、収束して移動する第 1帯電粒子の外側に、第 2帯電粒子が通過できる空間 が形成される。よって、第 1帯電粒子及び第 2帯電粒子の衝突を効果的に回避するこ とができる。さらに、第 1電極を表示基板側に設け、第 2電極を背面基板側に設けるこ とによって、表示基板に表示される色の領域を狭めることがない。 Furthermore, according to the present disclosure, one charged particle attached to the first electrode moves so as to converge toward the second electrode having a surface area smaller than the surface area of the first electrode. In addition, the other charged particles adhering to the second electrode move so as to diffuse toward the first electrode. Move. In other words, for one charged particle that moves to the second electrode so as to converge, the other charged particle moves to the first electrode while diffusing outward to escape one charged particle force. Thereby, for example, even when a large number of first charged particles adhere to the surface of the first electrode without a gap, the large number of first charged particles move so as to converge toward the second electrode. That is, a space through which the second charged particles can pass is formed outside the first charged particles that converge and move. Therefore, collision between the first charged particles and the second charged particles can be effectively avoided. Furthermore, by providing the first electrode on the display substrate side and the second electrode on the rear substrate side, the color region displayed on the display substrate is not reduced.
[0065] さらに本開示によれば、例えば、第 1帯電粒子が最も密に 1層に配列した状態で、 一方の基板カゝら他方の基板側に移動した場合、第 2帯電粒子は、その端に位置する 第 1帯電粒子とスぺーサとの間の隙間を通過することができる。これにより、第 1帯電 粒子と第 2帯電粒子が互いに衝突する確率を効果的に低くすることができる。 [0065] Further, according to the present disclosure, for example, when the first charged particles are most densely arranged in one layer and moved from one substrate cover to the other substrate side, the second charged particles are It can pass through the gap between the first charged particle and the spacer located at the end. Thereby, the probability that the first charged particles and the second charged particles collide with each other can be effectively reduced.
産業上の利用可能性  Industrial applicability
[0066] 本開示の電気泳動表示媒体は、表示部を備えた様々な電子機器に適用可能であ る。 [0066] The electrophoretic display medium of the present disclosure can be applied to various electronic devices including a display unit.

Claims

請求の範囲 The scope of the claims
[1] 互いに離間した一対の基板と、  [1] a pair of substrates spaced apart from each other;
当該一対の基板の間にスぺーサを介在して封入される表示液と、  A display liquid sealed with a spacer between the pair of substrates;
当該表示液内に分散され、電界の作用によって前記表示液内を移動する一対の 帯電粒子と  A pair of charged particles dispersed in the display liquid and moving in the display liquid by the action of an electric field;
を備え、  With
前記一対の帯電粒子は、第 1帯電粒子と、当該第 1帯電粒子とは異なる色及び極 性を有する第 2帯電粒子とであって、  The pair of charged particles is a first charged particle and a second charged particle having a color and polarity different from the first charged particle,
前記第 1帯電粒子が前記一対の基板間を移動する際の、前記一対の基板間の最 短距離の方向に直交する方向の前記第 1帯電粒子の移動量に対する前記最短距離 の方向の移動量の割合と、前記第 2帯電粒子が前記一対の基板間を移動する際の 、前記一対の基板間の最短距離の方向に直交する方向の前記第 2帯電粒子の移動 量に対する前記最短距離の方向の移動量の割合とが互いに異なることを特徴とする 電気泳動表示媒体。  When the first charged particles move between the pair of substrates, the amount of movement in the direction of the shortest distance with respect to the amount of movement of the first charged particles in a direction orthogonal to the direction of the shortest distance between the pair of substrates. And the direction of the shortest distance with respect to the amount of movement of the second charged particles in a direction orthogonal to the direction of the shortest distance between the pair of substrates when the second charged particles move between the pair of substrates. An electrophoretic display medium characterized in that the ratio of the amount of movement differs from each other.
[2] 前記第 1帯電粒子の形状と、前記第 2帯電粒子の形状とが互いに異なることを特徴 とする請求項 1に記載の電気泳動表示媒体。  2. The electrophoretic display medium according to claim 1, wherein the shape of the first charged particles and the shape of the second charged particles are different from each other.
[3] 前記第 1帯電粒子の表面形状はディンプル構造であることを特徴とする請求項 1又 は 2に記載の電気泳動表示媒体。 [3] The electrophoretic display medium according to [1] or [2], wherein the surface shape of the first charged particles has a dimple structure.
[4] 前記第 1帯電粒子は、架橋重合粒子であることを特徴とする請求項 3に記載の電気 泳動表示媒体。 4. The electrophoretic display medium according to claim 3, wherein the first charged particles are cross-linked polymer particles.
[5] 前記第 2帯電粒子の表面形状は凸形状になっていることを特徴とする請求項 1乃 至 3の何れかに記載の電気泳動表示媒体。  5. The electrophoretic display medium according to any one of claims 1 to 3, wherein the surface shape of the second charged particles is a convex shape.
[6] 前記第 2帯電粒子は母粒子と、 [6] The second charged particles are mother particles,
当該母粒子の表面に結合され、前記母粒子よりも径の小さい子粒子と から構成されていることを特徴とする請求項 5に記載の電気泳動表示媒体。  6. The electrophoretic display medium according to claim 5, wherein the electrophoretic display medium is composed of child particles bonded to a surface of the mother particle and having a smaller diameter than the mother particle.
[7] 前記子粒子は、ハイブリダィゼーシヨン法により、前記母粒子の表面に物理的に結 合されていることを特徴とする請求項 6に記載の電気泳動表示媒体。 7. The electrophoretic display medium according to claim 6, wherein the child particles are physically bonded to the surface of the mother particle by a hybridization method.
[8] 前記一対の基板は、透明な表示基板と背面基板とから構成され、 前記表示基板に設けられる第 1電極と、前記背面基板に設けられる第 2電極とを備 え、 [8] The pair of substrates includes a transparent display substrate and a back substrate, A first electrode provided on the display substrate and a second electrode provided on the back substrate;
前記第 2電極の表面積は、前記第 1電極の表面積よりも小さいことを特徴とする請 求項 1乃至 7の何れかに記載の電気泳動表示媒体。  8. The electrophoretic display medium according to claim 1, wherein a surface area of the second electrode is smaller than a surface area of the first electrode.
複数の前記第 1帯電粒子が、前記第 1基板又は前記第 2基板の表面に沿って最密 に 1層カゝらなる第 1帯電粒子層を形成した場合に、  When a plurality of the first charged particles form a first charged particle layer that is closest to one another along the surface of the first substrate or the second substrate,
当該第 1帯電粒子層の端に位置する前記第 1帯電粒子と前記スぺーサとの間には 、少なくとも 1個の前記第 2帯電粒子が配置可能な隙間があることを特徴とする請求 項 1乃至 7の何れかに記載の電気泳動表示媒体。  The gap between the first charged particle and the spacer located at an end of the first charged particle layer is a space in which at least one second charged particle can be arranged. The electrophoretic display medium according to any one of 1 to 7.
PCT/JP2007/063077 2006-08-25 2007-06-29 Electrophoretic display medium WO2008023498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-228836 2006-08-25
JP2006228836A JP2008052084A (en) 2006-08-25 2006-08-25 Electrophoretic display medium

Publications (1)

Publication Number Publication Date
WO2008023498A1 true WO2008023498A1 (en) 2008-02-28

Family

ID=39106591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063077 WO2008023498A1 (en) 2006-08-25 2007-06-29 Electrophoretic display medium

Country Status (2)

Country Link
JP (1) JP2008052084A (en)
WO (1) WO2008023498A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099217B2 (en) * 2008-09-12 2012-12-19 コニカミノルタビジネステクノロジーズ株式会社 Display particles for image display device and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174896A (en) * 1994-12-20 1996-07-09 Brother Ind Ltd Image-forming device
WO2004090626A1 (en) * 2003-04-02 2004-10-21 Bridgestone Corporation Particle used for image display medium, image display panel using same, and image display
JP2005000647A (en) * 2003-06-09 2005-01-06 Taylor Made Golf Co Inc Golf ball incorporating peptizer and its manufacturing method
JP2006077609A (en) * 2004-09-07 2006-03-23 Kanto Auto Works Ltd Muffler structure of automobile
JP2006146191A (en) * 2004-10-22 2006-06-08 Canon Inc Particle for particle movement type display apparatus, process for producing particle, and display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174896A (en) * 1994-12-20 1996-07-09 Brother Ind Ltd Image-forming device
WO2004090626A1 (en) * 2003-04-02 2004-10-21 Bridgestone Corporation Particle used for image display medium, image display panel using same, and image display
JP2005000647A (en) * 2003-06-09 2005-01-06 Taylor Made Golf Co Inc Golf ball incorporating peptizer and its manufacturing method
JP2006077609A (en) * 2004-09-07 2006-03-23 Kanto Auto Works Ltd Muffler structure of automobile
JP2006146191A (en) * 2004-10-22 2006-06-08 Canon Inc Particle for particle movement type display apparatus, process for producing particle, and display apparatus

Also Published As

Publication number Publication date
JP2008052084A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
KR100729970B1 (en) Image display and method for manufacturing image display
JP4061863B2 (en) Image display device and display driving method
JP4862311B2 (en) Image display device
EP2626740B1 (en) Suspended particle device, light control device using the same, and driving method
TW200415432A (en) An improved electrophoretic display with dual-mode switching
JP2006343650A (en) Dimmer composition, optical element, and dimming method of element
WO2008023495A1 (en) Electrophoretic display medium
WO2008023498A1 (en) Electrophoretic display medium
JP6127924B2 (en) Display device and electronic device
JP3977362B2 (en) Method for manufacturing electrophoretic display device
JP2016090897A (en) Production method of electrophoretic particle, electrophoretic particle, electrophoretic dispersion, electrophoretic sheet, electrophoretic device, and electronic equipment
JP4662728B2 (en) Electrophoretic particle manufacturing method, electrophoretic particle dispersion manufacturing method, image display medium, and image display device
JP4683877B2 (en) IMAGE RECORDING MEDIUM CONTAINING 2 Hue Dipolar Spherical Particles
CN103149766B (en) The preparation method of a kind of electrophoretic display apparatus and electrophoretic display apparatus
JP2013218036A (en) Electrophoretic particle, manufacturing method of electrophoretic particle, electrophoretic dispersion liquid, electrophoretic sheet, electrophoretic apparatus and electronic apparatus
TW200923535A (en) Display
JP2005275221A (en) Method for manufacturing particle, particle and display medium using same
JP2015197491A (en) Display unit and electronic apparatus
JPWO2008120510A1 (en) Electrophoretic display medium
JP2003091024A (en) Electrophoresis material and optical element using the same material
JP6851226B2 (en) Electrophoretic particles, methods for producing electrophoretic particles, electrophoretic dispersions, electrophoretic sheets, electrophoretic devices and electronic devices
JP4449338B2 (en) Electrophoretic dispersion, electrophoretic display, electronic equipment
JP2004077805A (en) Electrophoresis dispersion solution, manufacturing method of electrophoresis dispersion solution, electrophoresis display device, and electronic device
JP2017146457A (en) Electrophoretic dispersion liquid, electrophoretic sheet, electrophoretic device, and electronic apparatus
KR100628645B1 (en) Aging system of dry-type electrical paper display and aging method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767864

Country of ref document: EP

Kind code of ref document: A1