WO2008023489A1 - Squaric acid derivative compound, protein detection reagent comprising the compound, and protein detection method using the reagent - Google Patents

Squaric acid derivative compound, protein detection reagent comprising the compound, and protein detection method using the reagent Download PDF

Info

Publication number
WO2008023489A1
WO2008023489A1 PCT/JP2007/061199 JP2007061199W WO2008023489A1 WO 2008023489 A1 WO2008023489 A1 WO 2008023489A1 JP 2007061199 W JP2007061199 W JP 2007061199W WO 2008023489 A1 WO2008023489 A1 WO 2008023489A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
reagent
compound
protein detection
analysis
Prior art date
Application number
PCT/JP2007/061199
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Suzuki
Kenji Yokoyama
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2008530824A priority Critical patent/JPWO2008023489A1/en
Publication of WO2008023489A1 publication Critical patent/WO2008023489A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites

Definitions

  • the present invention relates to a novel squaric acid derivative compound, a protein detection reagent containing the compound, and a protein detection method using the reagent.
  • Typical methods for quantifying proteins in samples include (i) absorptiometry, (ii) Biuret method using Biuret reagent, (iii) Lowry method combining phenol reagent and Biuret method, (iv ) Bradford method. The principle, advantages and disadvantages of each method are described below.
  • the principle of this method is that 280nm is attributed to tyrosine and tryptophan in the protein.
  • the protein concentration is calculated using a nearby absorption band. Absorbance at 280nm fluctuates because the content of tyrosine and tributophan varies depending on the type of protein. Force A280nm can be calculated as 1.0 at a concentration of lmgZml.
  • the advantage of this method is that the operation is simple and the sample can be collected after measurement. Disadvantages are that the absorbance varies depending on the type of protein, proteins that do not absorb at 280 nm (collagen, gelatin, etc.) cannot be measured, and contamination with substances that absorb in the ultraviolet region interferes with the determination. (Non-patent document 1).
  • the principle of this method is to make blue color by reacting with tyrosine, tryptophan and cysteine in protein using a phenol reagent in which phosphomolybdic acid and phosphotungstic acid are dissolved in an acidic solution.
  • This method is much more sensitive than the Biuret method because of the strong color development effect derived from peptide bonds.
  • the advantage of this method is that it is most commonly used because of its high sensitivity.
  • the coloration is caused by the reduction reaction, so that the color development is hindered by other reducing substances, the operation is complicated and it takes time to measure, and the color development rate varies depending on the protein. (Non-Patent Document 2).
  • This method is an immunological technique using an antibody that binds only to a specific protein.
  • the disadvantage of this method is that it is necessary to repeat the binding reaction between the target protein (antigen) and the antibody, so that it is impossible to obtain the results quickly, for example, it takes more than 6 hours for the measurement (Non-Patent Documents). Four).
  • the fluorometric method is a conventional method for analyzing various chemical substances. This method has the advantages of high sensitivity, small amount of sample, large-scale equipment, and no need for skilled techniques. In addition, since the colorimetric analysis method can be judged visually, the protein in the sample can be analyzed quickly and easily.
  • Non-patent document 1 Masato Okada, Kasaki Kakizaki: Revised protein experiment note (above), pp29, Yodosha, 1 999
  • Non-Patent Document 2 Lowry, 0.H. et al. J. Biol. Chem., 193, 265-275 (1951).
  • Non-Patent Document 3 Bradford, M.M., Anal.Biochem., 72, 248-254 (1976).
  • Non-Patent Document 4 Biochemical Dictionary (3rd edition), Tokyo Chemical Doujin, 1998.
  • Non-Patent Document 5 RP Haugland, VL Singer, LJ Jones, TH Steinberg, US Pate nt 5616502 (1997).
  • Non-Patent Document 6 Haugland, R.P. Handbook of Fluorescent Probes and Research Chemicals, 9th ed .; Molecular Probes Inc .: Leiden, 2002.
  • Non-Patent Document 7 J. Jones, R. P. Haugland, V. and Singer, Biotechniques, 34, 850 (20 03).
  • Non-Patent Document 8 R. F. Pasternack, C. Fleming, S. Herring, P. J. Collings, J. DePaula, G. DeCastro, E. J. Gibbs, Biophys. J "79, 550 (2000).
  • the present inventor has discovered that a novel compound synthesized based on squaric acid is useful as a dye and causes color change and fluorescence emission by binding to a protein. Then, the inventors have obtained the knowledge that the protein can be detected with high sensitivity and ease by using this squaric acid derivative, and the present invention has been completed.
  • the present invention employs the following configurations 1 to 7.
  • a protein detection reagent comprising the compound according to claim 1 or 2.
  • a test sample is brought into contact with the protein detection reagent according to any one of 3 to 5, and a change in color of the protein detection reagent or fluorescence generated from the protein detection reagent is detected.
  • a method for detecting a protein in a test sample is provided.
  • a squaric acid derivative useful as a reagent for protein analysis is provided.
  • This compound reacts instantly just by mixing with protein, and fluorescence emission and color change occur at the same time. Therefore, if quantitative detection of protein is possible, visual quantitative analysis can be performed without force. Therefore, protein detection can be performed quickly and easily without the need for expensive equipment and skilled techniques.
  • FIG. 1 shows a schematic diagram of fluorescence emission and color change due to complex formation between the analytical reagent and protein.
  • FIG. 2 shows absorption spectra when various concentrations of BSA are added to the analytical reagent.
  • FIG. 3 shows changes in the color of the analytical reagent solution before and after the addition of BSA.
  • A shows reagent only, B shows reagent + BSA.
  • FIG. 4 is a graph plotting absorbance at 600 nm against BSA concentration.
  • Figure 5 Shows the fluorescence spectra of reagents when various concentrations of BSA are added to the reagents for analysis.
  • FIG. 6 is a graph plotting the fluorescence intensity at 610 nm against the BSA concentration.
  • FIG. 7 A stained image of the protein separated by SDS-PAGE. A shows the case using this analytical reagent, and B shows the case using the CBB method.
  • the squaric acid derivative of the present invention is a novel compound represented by the following general formula (I).
  • squaric acid derivative represented by the above formula (I) for example, a compound represented by the following formula ( ⁇ ) may be mentioned.
  • the squaric acid derivative represented by the formula (I) of the present invention is a kind of so-called cyanine dye, and is useful as a dye because it has a chromophore containing a squarate ring. And this These dye compounds are particularly suitably used as protein detection reagents.
  • a test sample is brought into contact with a squaric acid derivative represented by the above formula (I), and the color of the squaric acid derivative is adjusted. Changes or fluorescence resulting from the squaric acid derivative is detected.
  • This detection method can be performed by a method such as a fluorescence photometry method, an absorptiometry method, a test paper photoelectric photometry method, or the like.
  • a squaric acid derivative represented by the general formula (I) is used as a protein detection reagent.
  • the present invention is based on the fact that when a compound having the structure of formula (I) and a protein are brought into contact with each other, they form a complex by hydrophobic interaction, thereby causing a color change and fluorescence emission. ing. By measuring this dye change or fluorescence intensity, qualitative analysis and quantitative analysis of proteins can be performed.
  • the present inventor has selected (i) a squaric acid as a site that forms a complex with a protein and simultaneously causes a change in fluorescence and a change in color tone by a solvatochromism effect, and (ii) extends a conjugate system.
  • a squaric acid as a site that forms a complex with a protein and simultaneously causes a change in fluorescence and a change in color tone by a solvatochromism effect
  • an olefin group is introduced at the succinic acid site
  • a phenol group is introduced at the end of the olefin group
  • water solubility is further improved.
  • the structure of formula (I) above was designed by selecting hydroxyl groups to donate and donate electrons.
  • the solvatochromism effect usually refers to a phenomenon in which a spectrum changes due to a change in the type of solvent in a solution state.
  • the free state force is not limited to that of a protein. It also means that the spectrum changes due to the change in the environment surrounding the dye molecule to the bound state of.
  • the reagent for protein analysis of the present invention has a structure of the formula (I), so that the coloration in the free state and the coloration in the bound state with other substances are changed. Is born.
  • the change in color is considered to be stabilized by entering the energy level force of the ⁇ -electron orbital of the dye molecule into the hydrophobic field of the protein, and the absorption wavelength of light shifts to the longer wavelength side.
  • the structure represented by the formula (I) is considered to cause a change in color tone such as yellow ⁇ green, yellow ⁇ red, and green ⁇ blue due to binding with a protein. Further, as shown in FIG.
  • the reagent for protein analysis is non-fluorescent in the free state, but emits fluorescence in the bound state with other substances. Regarding fluorescence emission, it is thought that the fluorescence quantum yield increases when the dye enters the hydrophobic field of the protein.
  • the compound represented by the formula ( ⁇ ) is red in a free state and is non-fluorescent, but when it is complexed with a protein, it is blue and fluoresces. .
  • the compound having the structure of the formula (I) is, for example, 3,4-dihydroxy-3 cyclobutene 1,2 dione and the corresponding aromatic compound dissolved in a toluene ⁇ -butanol mixed solvent and then refluxed under an argon atmosphere for 24 hours.
  • a toluene ⁇ -butanol mixed solvent See, for example, KT Arun and D. Ramaiah, J. Phys. Chem. A, 109, 5571-5578 (2005).
  • purification is carried out using operations such as recrystallization, reprecipitation, or column chromatography.
  • the compound represented by the formula ( ⁇ ) can be produced by reacting phenol and squaric acid in a suitable solvent.
  • the protein detection reagent of the present invention forms a complex by hydrophobic interaction with a protein, and changes color and generates fluorescence by the solvatochromism effect. Accordingly, the protein in the sample can be detected by contacting the analytical reagent with a sample that may contain the protein and detecting the resulting color change or fluorescence.
  • the reaction between the reagent for analysis and protein has a high molar extinction coefficient and fluorescence quantum yield, so that even a trace amount of protein can be detected.
  • “detection” of protein is not only a detection of the presence or absence of protein in a sample. It also includes quantitative detection of protein.
  • the protein to be analyzed using the present analytical reagent is not particularly limited as long as it includes a plurality of linked amino acids and can bind to the present analytical reagent by hydrophobic interaction. Absent.
  • proteins to be analyzed include peptides, proteins, protein complexes (eg, glycoproteins, protein-nucleic acid complexes, labeled proteins) and the like.
  • the sample is not particularly limited as long as it is suspected of containing a protein, and may be either a liquid sample or a solid sample. Specific examples include a solution that may contain a protein, a gel obtained by electrophoresis of a protein, a membrane to which a protein has been transferred (such as a PVDF membrane), cells or tissues, feces and urine, and the like.
  • the analysis reagent used may be used after being dissolved in an appropriate solvent (NaCl solution, HEPES buffer solution, Tris buffer solution, MES buffer solution, methanol, ethanol, DMSO, etc.). It may be used by being fixed to an appropriate carrier (membrane, test paper, etc.).
  • an appropriate solvent NaCl solution, HEPES buffer solution, Tris buffer solution, MES buffer solution, methanol, ethanol, DMSO, etc.
  • Protein detection typically involves contacting a sample with the present analytical reagent and detecting a change in color and Z or fluorescence emission of the analytical reagent.
  • contact means that the protein present in the sample and the reagent for analysis are brought into close proximity so that a complex can be formed.
  • a carrier membrane, test paper, etc.
  • coating and operations such as immersing a solid sample in the reagent for this analysis, are included.
  • Conditions for bringing the sample into contact with the present analysis reagent can be appropriately selected by those skilled in the art in consideration of the type and amount of the sample to be used, the contact form, and the like.
  • the amount of protein contained in a sample is about ⁇ 1000 ⁇ g / mL, 10 to: LOO ⁇ , preferably 15 to 80 ⁇ (for example, about 20 to 30 ⁇ ⁇ ⁇ ⁇ )
  • the contact is carried out at room temperature (about 20-30 ° C.) for about 1-30 minutes, preferably about 1-15 minutes.
  • the sample After contacting the sample with the present analytical reagent, the sample is separated using a method known in the art. Detects color change and Z or fluorescence emission of analysis reagents.
  • the color change can be detected, for example, by visual observation, absorptiometry (using a spectrophotometer, a plate reader, etc.), reflection spectrum analysis, or the like.
  • Fluorescence emission can be detected by, for example, a fluorescence method (using a fluorimeter, a fluorescence plate reader, a fluorescence scanner, etc.).
  • the bound analytical reagent and protein can be desorbed by, for example, a heating operation or alkalinizing the solvent (for example, pHIO or higher).
  • the protein detection method according to the present invention can detect a protein with high sensitivity, speed, and without using a complicated device. Since this analytical reagent binds to a specific protein at a certain ratio, it can be easily quantified by creating a calibration curve. In addition, unlike the antibody that specifically binds to a specific protein, this analytical reagent can bind to any protein, so it is possible to comprehensively analyze multiple types of proteins. Therefore, this detection method is useful in the fields of biochemistry, medicine, and analytical chemistry.
  • a squaric acid derivative for use as a protein analysis reagent (dye) was synthesized.
  • This dye was synthesized according to the following reaction formula.
  • the absorption spectrum was measured using an absorptiometer (UV-165 0PC, manufactured by Shimadzu Corporation) under the following conditions:
  • [BSA] 0 to: L000 ⁇ g / mL
  • Fig. 2 shows the absorption spectra of the dyes in order of decreasing force when BSA at concentrations of 0, 60, 120, 250, 500, and 1000 gZm was added. Absorbance increased with increasing BSA concentration. Furthermore, the maximum fluorescence wavelength shifted from 530 nm to 600 nm with increasing BSA concentration. Due to this large shift in the maximum absorption wavelength, the color of the dye solution changed from red to blue before (A) and after (B) addition of BSA, as shown in Fig. 3.
  • FIG. 4 shows the results of plotting the absorbance at 600 nm against the BSA concentration. A good linear relationship represented by the following formula was obtained between the absorbance at 600 nm and the BSA concentration.
  • the fluorescence spectrum measurement was performed using a fluorometer (FP-6500 manufactured by JASCO Corporation) under the following conditions:
  • Fig. 5 shows the results of the measurement of changes in fluorescence spectrum when BSA was added to the dye at a concentration of 0, 60, 120, 250, 500, 1000 (g / mL). As shown in FIG. 5, an increase in fluorescence intensity was observed with an increase in BSA concentration. The fluorescence intensity when BSA was added at 1000 / z gZmL increased about 4500 times compared to the fluorescence intensity of the dye alone.
  • Electrophoresis experiments were performed under the following conditions:
  • the gel was taken out and washed in a fixed solution for 30 minutes. Thereafter, the gel was immersed in the staining solution for 30 minutes and then washed in the washing solution for 30 minutes.
  • the present invention provides a novel squaric acid derivative useful as a protein analysis reagent.
  • Reagents for protein analysis containing this compound can be mixed with protein. Since it reacts instantaneously and fluorescence emission and color change occur at the same time, it is possible to perform visual quantitative analysis without force if high-sensitivity detection of proteins is possible. Therefore, protein detection can be performed quickly and easily without the need for expensive equipment and skilled techniques.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Disclosed is a novel squaric acid derivative which is useful as a reagent for detecting a peptide or protein at high sensitivity and in a simple manner. Also disclosed is a protein detection reagent comprising the compound. Further disclosed is a method for determining the concentration of a peptide or protein comprehensively and with efficiency by using the reagent. A novel compound having the structure represented by the formula (I) can be used as a reagent for the analysis of a protein. [Chemical formula 1] wherein R1 and R2 independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; m1 and m2 independently represent an integer ranging from 1 to 3; and n1 and n2 represent integers respectively satisfying the requirements represented by the formulae: n1=5–m1 and n2=5-m2.

Description

明 細 書  Specification
スクェア酸誘導体ィ匕合物、及び該化合物を含むタンパク質検出用試薬、 並びに該試薬を用いたタンパク質の検出方法  SQUAREIC ACID DERIVATIVE COMPOUND, PROTEIN DETECTION REAGENT CONTAINING THE COMPOUND, AND PROTEIN DETECTION METHOD USING THE REAGENT
技術分野  Technical field
[0001] 本発明は、新規なスクェア酸誘導体化合物、及び該化合物を含むタンパク質検出 用試薬、並びに該試薬を用いたタンパク質の検出方法に関する。  [0001] The present invention relates to a novel squaric acid derivative compound, a protein detection reagent containing the compound, and a protein detection method using the reagent.
背景技術  Background art
[0002] 体内のタンパク質を網羅的に調べて病気の状態や原因を探るプロテオーム研究の 進展に伴って、癌マーカータンパク質のように疾患の目印となるタンパク質を決定し ようとする研究が急速に加速している。とりわけ、タンパク質表面の分子認識、タンパ ク質表面間の分子認識は、生命現象における共通の言語と考えられ、細胞外からの 情報の多くは、細胞膜や細胞内部でのタンパク質表面を介した相互作用によって、 増幅し伝達される。近年、 DN Aチップ技術の向上により、 RNAの発現を網羅的に解 析するトランスクリプトーム解析が盛んに行われている。しかしながら、この RNA発現 プロファイルとタンパク質の発現プロファイルは必ずしも一致するわけでなぐその相 関は 50%以下であると言われている。そこで、 RNAの網羅的解析に加え、タンパク 質の網羅的解析が重要となり、最近、著しく発達している二次元電気泳動法や質量 分析計、さらにはプロテインチップのようなゲノム解析に匹敵するハイスループット分 析を駆使して、タンパク質の機能を明らかにしようとしている。今後、その成果を医療 や健康管理の現場で役立てるためには、疾患のマーカーとなるタンパク質を、簡便 かつ迅速に分析する技術を確立しておくことが重要となってくる。  [0002] With the progress of proteome research that comprehensively investigates proteins in the body and searches for disease states and causes, research to determine proteins that are markers of diseases such as cancer marker proteins is rapidly accelerating. is doing. In particular, molecular recognition on the protein surface and molecular recognition between the protein surfaces are considered to be a common language in biological phenomena, and much of the information from outside the cell interacts with the protein surface inside the cell membrane or inside the cell. Is amplified and transmitted. In recent years, transcriptome analysis that comprehensively analyzes RNA expression has been actively performed with the improvement of DNA chip technology. However, it is said that the correlation between the RNA expression profile and the protein expression profile is not necessarily the same, and is less than 50%. Therefore, in addition to comprehensive analysis of RNA, comprehensive analysis of proteins is important, and high-level analysis comparable to genome analysis such as two-dimensional electrophoresis, mass spectrometers, and protein chips, which have recently been remarkably developed. We are trying to elucidate protein functions using throughput analysis. In the future, in order to make use of the results in the field of medical care and health management, it will be important to establish a technique for easily and quickly analyzing proteins that serve as markers for diseases.
[0003] 試料中のタンパク質を定量する代表的な方法として、(i)吸光光度法、 (ii) Biuret 試薬を用いた Biuret法、(iii)フヱノール試薬と Biuret法を組み合わせた Lowry法、 (iv) Bradford法が挙げられる。以下にそれぞれの方法の原理、長所、及び短所に ついて記す。  [0003] Typical methods for quantifying proteins in samples include (i) absorptiometry, (ii) Biuret method using Biuret reagent, (iii) Lowry method combining phenol reagent and Biuret method, (iv ) Bradford method. The principle, advantages and disadvantages of each method are described below.
[0004] (1)吸光光度法  [0004] (1) Spectrophotometric method
この方法の原理は、タンパク質中のチロシンやトリプトファンに起因する 280nm付 近の吸収帯を利用してタンパク質濃度を算出するものである。タンパク質の種類によ つてチロシンやトリブトファンの含量が異なるので 280nmにおける吸光度は変動する 力 通常 lmgZmlの濃度の時 A280nmは 1. 0として計算できる。この方法の長所は 、操作が簡便であり、測定後サンプルの回収が可能であることである。また短所は、タ ンパク質の種類により吸光度が変動すること、また 280nmに吸収を持たないタンパク 質 (コラーゲン、ゼラチンなど)は測定できないこと、さらに紫外部に吸収を持つ物質 の混入は定量を妨害することなどである (非特許文献 1)。 The principle of this method is that 280nm is attributed to tyrosine and tryptophan in the protein. The protein concentration is calculated using a nearby absorption band. Absorbance at 280nm fluctuates because the content of tyrosine and tributophan varies depending on the type of protein. Force A280nm can be calculated as 1.0 at a concentration of lmgZml. The advantage of this method is that the operation is simple and the sample can be collected after measurement. Disadvantages are that the absorbance varies depending on the type of protein, proteins that do not absorb at 280 nm (collagen, gelatin, etc.) cannot be measured, and contamination with substances that absorb in the ultraviolet region interferes with the determination. (Non-patent document 1).
[0005] (2) Biuret法  [0005] (2) Biuret method
この方法の原理は、タンパク質をアルカリ性条件下で Cu2+溶液と反応させると、 Cu 2+がポリペプチド鎖中の窒素原子と配位結合して赤色に発色する現象を利用して、 5 40nmにおける吸光度を測定するものである。この方法の長所は、タンパク質の違い による発色率の差が少なぐ操作が簡単であることである。また短所は、感度が低ぐ 低濃度試料には向かないことである(非特許文献 1)。 The principle of this method, when the protein is reacted with Cu 2+ solution under alkaline conditions, by utilizing the phenomenon that Cu 2 + is colored red by coordinate bonds with the nitrogen atom in the polypeptide chain, 5 40 nm The absorbance at is measured. The advantage of this method is that it is easy to operate with little difference in coloration rate due to protein differences. The disadvantage is that it is not suitable for low-concentration samples with low sensitivity (Non-patent Document 1).
[0006] (3) Lowry法  [0006] (3) Lowry method
この方法の原理は、リンモリブデン酸とリンタングステン酸を酸性溶液に溶解したフ ェノール試薬を用いて、タンパク質中のチロシン、トリプトファン及びシスティンと反応 させることにより、青色を呈色させるものである。この方法では、ペプチド結合に由来 する発色効果が強く表れるため Biuret法よりはるかに感度が高 、。この方法の長所 は、感度が高ぐ最も一般に使用されていることである。一方短所は、還元反応によつ て呈色させるため、他の還元物質により発色が妨害されること、操作が煩雑で測定ま でに時間が力かること、タンパク質によって発色率に差があることなどである(非特許 文献 2)。  The principle of this method is to make blue color by reacting with tyrosine, tryptophan and cysteine in protein using a phenol reagent in which phosphomolybdic acid and phosphotungstic acid are dissolved in an acidic solution. This method is much more sensitive than the Biuret method because of the strong color development effect derived from peptide bonds. The advantage of this method is that it is most commonly used because of its high sensitivity. On the other hand, the coloration is caused by the reduction reaction, so that the color development is hindered by other reducing substances, the operation is complicated and it takes time to measure, and the color development rate varies depending on the protein. (Non-Patent Document 2).
[0007] (4) Bradford法  [0007] (4) Bradford method
酸性溶液中、トリフエ-ルメタン系青色色素のクーマシーブリリアントブルー G— 25 0がタンパク質と結合すると、極大吸収波長が 465nmから 595nmにシフトし、色調が 赤紫色から青色に変化することに基づく方法である。この現象を利用してタンパク質 を定量する。この方法の長所は、妨害物質の影響を受けにくぐ操作が非常に簡単 であることである。短所は、タンパク質の種類により発色率に差があり、また界面活性 剤の混入により発色が妨害されることである (非特許文献 3)。 In acidic solution, when Coomassie Brilliant Blue G-2500, a trimethane blue dye, binds to protein, the maximum absorption wavelength shifts from 465 nm to 595 nm, and the color tone changes from red purple to blue. is there. This phenomenon is used to quantify proteins. The advantage of this method is that it is very easy to operate without being affected by interfering substances. Disadvantages are differences in coloration rate depending on the type of protein, and surface activity Coloring is disturbed by mixing of the agent (Non-patent Document 3).
[0008] (5) ELISA法  [0008] (5) ELISA method
この方法は、特定のタンパク質とだけ結合する抗体を利用した免疫学的な手法であ る。この方法の短所は、対象となるタンパク質 (抗原)と抗体の結合反応を繰り返す必 要があるため、測定に 6時間以上力かるなど、迅速に結果を求めることができないこと である (非特許文献 4)。  This method is an immunological technique using an antibody that binds only to a specific protein. The disadvantage of this method is that it is necessary to repeat the binding reaction between the target protein (antigen) and the antibody, so that it is impossible to obtain the results quickly, for example, it takes more than 6 hours for the measurement (Non-Patent Documents). Four).
[0009] 一方、蛍光光度法は、種々の化学物質を分析する慣習的な方法である。この方法 は、高感度である、試料が少量ですむ、大掛かりな装置、熟練した技術を必要としな いといった利点がある。また、比色分析法に至っては、目視で判断が出来るため、試 料中のタンパク質を迅速かつ簡易に分析することが出来る。  On the other hand, the fluorometric method is a conventional method for analyzing various chemical substances. This method has the advantages of high sensitivity, small amount of sample, large-scale equipment, and no need for skilled techniques. In addition, since the colorimetric analysis method can be judged visually, the protein in the sample can be analyzed quickly and easily.
[0010] これまでにも蛍光光度法を利用したタンパク質定量の報告はある。例えば、フルォ レサミンは 1級ァミンと反応すると、 495nmに蛍光を発する強い蛍光物質となることを 利用した方法や、シァニン系色素を用いた分析が代表的である。しかしながらこれま での方法は色素とタンパク質を共有結合を介して反応させるため、反応時間が遅い、 タンパク質の種類によって反応性が変わる、検量線が直線でない、色素同士の会合 による測定誤差、スト一タスシフトが小さいといった問題点がある。また、比色分析方 法を利用した例として、 CBBを用いた分析が代表的である。しかしながら、タンパク質 間ごとの測定誤差が大きい、色の変化が明瞭でない、酸性条件下においてのみしか 、タンパク質を認識することが出来ない、といった問題点がある (非特許文献 5〜8)。 さら〖こ、従来の分析試薬は、蛍光分析試薬であれば蛍光分析しか適用できない、あ るいは比色分析試薬であれば、比色分析にしカゝ適用できず、一つの分析試薬で両 方の分析方法を行うことが出来る試薬は無い。  [0010] There have been reports on protein quantification using a fluorometric method. For example, fluoresamine, which reacts with primary amines, is a strong fluorescent substance that emits fluorescence at 495 nm, and analysis using cyanine dyes is typical. However, the conventional methods react the dye and protein via covalent bonds, so the reaction time is slow, the reactivity changes depending on the type of protein, the calibration curve is not linear, the measurement error due to the association between dyes, There is a problem that the task shift is small. A typical example of using a colorimetric analysis method is analysis using CBB. However, there are problems such as large measurement errors between proteins, unclear color changes, and protein recognition only under acidic conditions (Non-Patent Documents 5 to 8). Furthermore, conventional analysis reagents can only be applied to fluorescence analysis if they are fluorescent analysis reagents, or if they are colorimetric analysis reagents, they cannot be applied to colorimetric analysis. There is no reagent that can perform this analysis method.
[0011] 非特許文献 1 :岡田雅人、宫崎香編:改訂タンパク質実験ノート (上) ,pp29,羊土社, 1 999  [0011] Non-patent document 1: Masato Okada, Kasaki Kakizaki: Revised protein experiment note (above), pp29, Yodosha, 1 999
非特許文献 2 : Lowry, 0. H. et al. J. Biol. Chem., 193, 265-275 (1951).  Non-Patent Document 2: Lowry, 0.H. et al. J. Biol. Chem., 193, 265-275 (1951).
非特許文献 3 : Bradford, M. M., Anal. Biochem., 72, 248-254 (1976).  Non-Patent Document 3: Bradford, M.M., Anal.Biochem., 72, 248-254 (1976).
非特許文献 4:生化学辞典 (第 3版)、東京化学同人、 1998.  Non-Patent Document 4: Biochemical Dictionary (3rd edition), Tokyo Chemical Doujin, 1998.
非特許文献 5 : R. P. Haugland, V. L. Singer, L. J. Jones, T. H. Steinberg, U. S. Pate nt 5616502 (1997). Non-Patent Document 5: RP Haugland, VL Singer, LJ Jones, TH Steinberg, US Pate nt 5616502 (1997).
非特許文献 6: Haugland, R. P. Handbook of Fluorescent Probes and Research Chem icals, 9th ed.; Molecular Probes Inc.: Leiden, 2002.  Non-Patent Document 6: Haugland, R.P. Handbook of Fluorescent Probes and Research Chemicals, 9th ed .; Molecular Probes Inc .: Leiden, 2002.
非特許文献 7 :し J. Jones, R. P. Haugland, V.し Singer, Biotechniques, 34, 850 (20 03).  Non-Patent Document 7: J. Jones, R. P. Haugland, V. and Singer, Biotechniques, 34, 850 (20 03).
非特許文献 8 : R. F. Pasternack, C. Fleming, S. Herring, P. J. Collings, J. DePaula, G. DeCastro, E. J. Gibbs, Biophys. J" 79, 550 (2000).  Non-Patent Document 8: R. F. Pasternack, C. Fleming, S. Herring, P. J. Collings, J. DePaula, G. DeCastro, E. J. Gibbs, Biophys. J "79, 550 (2000).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、上記問題点を解決し、ペプチド又はタンパク質を高感度かつ簡便に検 出することができる試薬として有用な新規ィ匕合物を提供することを目的とする。また、 本発明は効率的かつ網羅的にペプチド濃度又はタンパク質濃度を測定する方法を 提供することを目的とする。 [0012] An object of the present invention is to solve the above problems and provide a novel compound useful as a reagent capable of detecting a peptide or protein with high sensitivity and ease. Another object of the present invention is to provide a method for efficiently and comprehensively measuring peptide concentration or protein concentration.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者は、スクェア酸に基づいて合成した新規ィ匕合物が色素として有用であり、 タンパク質と結合することにより発色変化及び蛍光発光を生じることを発見した。そし て、このスクェア酸誘導体を利用してタンパク質を高感度かつ簡便に検出することが できるという知見を得、本発明を完成するに至った。 [0013] The present inventor has discovered that a novel compound synthesized based on squaric acid is useful as a dye and causes color change and fluorescence emission by binding to a protein. Then, the inventors have obtained the knowledge that the protein can be detected with high sensitivity and ease by using this squaric acid derivative, and the present invention has been completed.
[0014] すなわち本発明は、つぎの 1〜7の構成を採用するものである。 That is, the present invention employs the following configurations 1 to 7.
1.下記式 (I)で表される化合物。  1. A compound represented by the following formula (I).
[化 1]  [Chemical 1]
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 R1及び R2は互いに独立して水素原子、又は炭素数 1〜10のアルキル基を 表し; ml及び m2は 1〜3の整数; nl = 5—ml、 n2 = 5—m2の整数である。) 2.上記式 (I)で表される化合物が、下記式 (Π)で表される化合物であることを特徴と する 1に記載の化合物。 (In the formula, R1 and R2 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Representation; ml and m2 are integers of 1 to 3; nl = 5—ml, n2 = 5—m2. 2. The compound according to 1, wherein the compound represented by the above formula (I) is a compound represented by the following formula (Π):
[化 2]  [Chemical 2]
Figure imgf000007_0001
Figure imgf000007_0001
3.請求項 1又は 2に記載の化合物を含有するタンパク質検出用試薬。  3. A protein detection reagent comprising the compound according to claim 1 or 2.
4.試薬が、前記化合物を溶媒に溶解したものであることを特徴とする 3に記載のタン パク質検出用試薬。  4. The protein detection reagent according to 3, wherein the reagent is obtained by dissolving the compound in a solvent.
5.試薬が、前記化合物を担体に固定したものであることを特徴とする 3に記載のタン パク質検出用試薬。  5. The protein detection reagent according to 3, wherein the reagent is obtained by immobilizing the compound on a carrier.
6.被検サンプルと 3〜5のいずれか 1項に記載のタンパク質検出用試薬とを接触さ せ、該タンパク質検出用試薬の色の変化又は該タンパク質検出用試薬から生じる蛍 光を検出することを特徴とする被検サンプル中のタンパク質の検出方法。  6. A test sample is brought into contact with the protein detection reagent according to any one of 3 to 5, and a change in color of the protein detection reagent or fluorescence generated from the protein detection reagent is detected. A method for detecting a protein in a test sample.
7.タンパク質の検出を蛍光光度法、吸光光度法、及び試験紙光電光度法からなる 群より選択される方法で行こなうことを特徴とする 6に記載の検出方法。  7. The detection method according to 6, wherein the protein is detected by a method selected from the group consisting of fluorometry, absorptiometry, and test strip photometry.
発明の効果  The invention's effect
[0015] 本発明により、タンパク質分析用試薬として有用なスクェア酸誘導体が提供される。  [0015] According to the present invention, a squaric acid derivative useful as a reagent for protein analysis is provided.
この化合物は、タンパク質と混合するだけで瞬時に反応し、蛍光の発光と色変化が 同時に生じることから、タンパク質の高感度検出が可能となるば力りでなぐ目視定量 分析が可能となる。従って、タンパク質の検出を、高価な装置や熟練した技術を必要 とせずに、迅速にかつ簡便に行うことが可能となる。  This compound reacts instantly just by mixing with protein, and fluorescence emission and color change occur at the same time. Therefore, if quantitative detection of protein is possible, visual quantitative analysis can be performed without force. Therefore, protein detection can be performed quickly and easily without the need for expensive equipment and skilled techniques.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本分析用試薬とタンパク質との複合体形成による蛍光発光及び発色変化の模 式図を示す。  [0016] FIG. 1 shows a schematic diagram of fluorescence emission and color change due to complex formation between the analytical reagent and protein.
[図 2]分析用試薬に種々の濃度の BSAを添加したときの吸収スペクトルを示す。 [図 3]BSA添加前後の分析用試薬溶液の色の変化を示す。 Aは試薬のみ、 Bは試薬 + BSAを示す。 FIG. 2 shows absorption spectra when various concentrations of BSA are added to the analytical reagent. FIG. 3 shows changes in the color of the analytical reagent solution before and after the addition of BSA. A shows reagent only, B shows reagent + BSA.
[図 4]600nmにおける吸光度を BSA濃度に対してプロットしたグラフである。  FIG. 4 is a graph plotting absorbance at 600 nm against BSA concentration.
[図 5]分析用試薬に種々の濃度の BSAを添カ卩したときの、試薬の蛍光スペクトルを示 す。  [Figure 5] Shows the fluorescence spectra of reagents when various concentrations of BSA are added to the reagents for analysis.
[図 6]610nmにおける蛍光強度を BSA濃度に対してプロットしたグラフである。  FIG. 6 is a graph plotting the fluorescence intensity at 610 nm against the BSA concentration.
[図 7]SDS— PAGEによって分離されたタンパク質の染色画像である。 Aは本分析用 試薬を用いた場合を示し、 Bは CBB法を用いた場合を示す。  [FIG. 7] A stained image of the protein separated by SDS-PAGE. A shows the case using this analytical reagent, and B shows the case using the CBB method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明のスクェア酸誘導体は、下記の一般式 (I)で表される新規ィ匕合物である。 [0017] The squaric acid derivative of the present invention is a novel compound represented by the following general formula (I).
[化 3]  [Chemical 3]
Figure imgf000008_0001
Figure imgf000008_0001
(式中、 R1及び R2は互いに独立して水素原子、又は炭素数 1〜10のアルキル基を 表し; ml及び m2は 1〜3の整数; nl = 5—ml、 n2 = 5—m2の整数である。) 上記式 (I)で表されるスクェア酸誘導体としては、例えば下記式 (Π)で表される化 合物が挙げられる。  (In the formula, R1 and R2 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; ml and m2 are integers of 1 to 3; nl = 5—ml, n2 = 5—m2 As the squaric acid derivative represented by the above formula (I), for example, a compound represented by the following formula (Π) may be mentioned.
[化 4]  [Chemical 4]
Figure imgf000008_0002
Figure imgf000008_0002
[0019] 本発明の式 (I)で表されるスクェア酸誘導体は、いわゆるシァニン色素の 1種であり 、スクェアレート環を含む発色団を有することから色素として有用である。そして、これ らの色素化合物は、特にタンパク質検出用試薬として好適に用いられる。 The squaric acid derivative represented by the formula (I) of the present invention is a kind of so-called cyanine dye, and is useful as a dye because it has a chromophore containing a squarate ring. And this These dye compounds are particularly suitably used as protein detection reagents.
[0020] 本発明の新規ィ匕合物をタンパク質検出用試薬として使用するには、被検サンプル と上記式 (I)で表されるスクェア酸誘導体とを接触させ、該スクェア酸誘導体の色の 変化又は該スクェア酸誘導体から生じる蛍光を検出する。この検出方法は、例えば 蛍光光度法、吸光光度法、試験紙光電光度法などの方法によって行うことができる。  [0020] In order to use the novel compound of the present invention as a reagent for protein detection, a test sample is brought into contact with a squaric acid derivative represented by the above formula (I), and the color of the squaric acid derivative is adjusted. Changes or fluorescence resulting from the squaric acid derivative is detected. This detection method can be performed by a method such as a fluorescence photometry method, an absorptiometry method, a test paper photoelectric photometry method, or the like.
[0021] 以下、本発明のスクェア酸誘導体を用いたタンパク質検出用試薬について、詳細 に説明する。  [0021] Hereinafter, the reagent for protein detection using the squaric acid derivative of the present invention will be described in detail.
1.タンパク質分析用試薬  1. Reagent for protein analysis
本発明では、一般式 (I)で表されるスクェア酸誘導体をタンパク質検出用試薬とし て使用する。  In the present invention, a squaric acid derivative represented by the general formula (I) is used as a protein detection reagent.
[0022] 本発明は、式 (I)の構造を有する化合物とタンパク質とを接触させると、それらが疎 水性相互作用により複合体を形成することによって発色の変化及び蛍光発光が生じ ることに基づいている。この色素変化又は蛍光強度を測定することにより、タンパク質 の定性分析及び定量分析等を行うことができる。  The present invention is based on the fact that when a compound having the structure of formula (I) and a protein are brought into contact with each other, they form a complex by hydrophobic interaction, thereby causing a color change and fluorescence emission. ing. By measuring this dye change or fluorescence intensity, qualitative analysis and quantitative analysis of proteins can be performed.
[0023] 本発明者は、 (i)タンパク質と複合体を形成し、ソルパトクロミズム効果によって蛍光 の変化と色調の変化を同時に引き起こす部位として、スクェア酸を選択し、(ii)共役 系を伸長し、かつ高いモル吸光係数及び高い蛍光量子収率を促すために、スクェア 酸部位にォレフィン基を導入し、ォレフィン基の先に、フエ-ル基を導入し、(iii)さら に水溶性を付与するため、かつ電子を供与するために水酸基を選択することによつ て、上記式 (I)の構造を設計した。  [0023] The present inventor has selected (i) a squaric acid as a site that forms a complex with a protein and simultaneously causes a change in fluorescence and a change in color tone by a solvatochromism effect, and (ii) extends a conjugate system. In order to promote a high molar extinction coefficient and a high fluorescence quantum yield, an olefin group is introduced at the succinic acid site, a phenol group is introduced at the end of the olefin group, and (iii) water solubility is further improved. The structure of formula (I) above was designed by selecting hydroxyl groups to donate and donate electrons.
[0024] なお、ソルパトクロミズム効果とは、通常は溶液状態において溶媒の種類の変化に よりスペクトルが変化する現象を指すが、本発明においては、液相に限らず、遊離状 態力もタンパク質との結合状態への、色素分子の周囲に存在する環境の変化によつ てスペクトルが変化することも意味する。  [0024] The solvatochromism effect usually refers to a phenomenon in which a spectrum changes due to a change in the type of solvent in a solution state. However, in the present invention, the free state force is not limited to that of a protein. It also means that the spectrum changes due to the change in the environment surrounding the dye molecule to the bound state of.
[0025] 式 (I)で表される構造を有する化合物の好適な具体例としては、上記の式 (Π)で表 される化合物が挙げられる。  [0025] Preferable specific examples of the compound having a structure represented by the formula (I) include a compound represented by the above formula (Π).
[0026] これらのスクェア酸誘導体は、式 (I)の構造を有することによって、疎水性相互作用 によってタンパク質と結合し、複合体を形成することができる。したがって、タンパク質 検出用試薬として好適に用いられる。 [0026] Since these squaric acid derivatives have the structure of the formula (I), they can bind to proteins by hydrophobic interaction to form a complex. Therefore, protein It is suitably used as a detection reagent.
[0027] 本発明のタンパク質分析用試薬は、図 1に示すように、式 (I)の構造を有することに よって、遊離状態における呈色と他の物質との結合状態における呈色とに変化が生 ずる。色の変化については、色素分子の π電子軌道のエネルギー準位力 タンパク 質の疎水場に入り込むことによって安定化し、光の吸収波長が長波長側に移動する ためと考えられる。式 (I)で示した構造は、タンパク質との結合によって、例えば、黄 色→緑色、黄色→赤色、緑色→青色といった色調の変化が生じると考えられる。また 、タンパク質分析用試薬は、図 1に示すように、遊離状態においては無蛍光であるが 、他の物質との結合状態では蛍光を発する。蛍光の発光については、色素がタンパ ク質の疎水場に入ることによって、蛍光量子収率が増加するため考えられる。  As shown in FIG. 1, the reagent for protein analysis of the present invention has a structure of the formula (I), so that the coloration in the free state and the coloration in the bound state with other substances are changed. Is born. The change in color is considered to be stabilized by entering the energy level force of the π-electron orbital of the dye molecule into the hydrophobic field of the protein, and the absorption wavelength of light shifts to the longer wavelength side. The structure represented by the formula (I) is considered to cause a change in color tone such as yellow → green, yellow → red, and green → blue due to binding with a protein. Further, as shown in FIG. 1, the reagent for protein analysis is non-fluorescent in the free state, but emits fluorescence in the bound state with other substances. Regarding fluorescence emission, it is thought that the fluorescence quantum yield increases when the dye enters the hydrophobic field of the protein.
[0028] 例えば式 (Π)で表される化合物は、遊離状態において赤色を呈色し、無蛍光であ るが、タンパク質と複合体形成した際には、青色を呈色し、蛍光を発する。  [0028] For example, the compound represented by the formula (Π) is red in a free state and is non-fluorescent, but when it is complexed with a protein, it is blue and fluoresces. .
[0029] 式 (I)の構造を有する化合物は、例えば、 3, 4ージヒドロキシー 3 シクロブテン 1 , 2 ジオンと相当する芳香族化合物をトルエン η ブタノール混合溶媒に溶解後 、アルゴン雰囲気下、 24時間、還流を行うことによって合成することができる(例えば 、 K. T. Arun and D. Ramaiah, J. Phys. Chem. A, 109, 5571-5578 (2005)参照)。溶 媒を減圧留去後、再結晶、最沈殿、あるいはカラムクロマトグラフィーなどの操作を用 いて、精製を行う。  [0029] The compound having the structure of the formula (I) is, for example, 3,4-dihydroxy-3 cyclobutene 1,2 dione and the corresponding aromatic compound dissolved in a toluene η-butanol mixed solvent and then refluxed under an argon atmosphere for 24 hours. (See, for example, KT Arun and D. Ramaiah, J. Phys. Chem. A, 109, 5571-5578 (2005)). After the solvent is distilled off under reduced pressure, purification is carried out using operations such as recrystallization, reprecipitation, or column chromatography.
例えば、式 (Π)で表される化合物は、フ ノールとスクェア酸とを適当な溶媒中で反 応させること〖こより生成することができる。  For example, the compound represented by the formula (Π) can be produced by reacting phenol and squaric acid in a suitable solvent.
[0030] 2.タンパク質の検出方法 [0030] 2. Protein detection method
本発明のタンパク質検出用試薬は、タンパク質と疎水性相互作用により複合体を形 成し、ソルパトクロミズム効果によって発色の変化及び蛍光発光を生じる。従って、本 分析用試薬とタンパク質を含む可能性のあるサンプルとを接触させ、生じる発色の変 化又は蛍光を検出することによって、サンプル中のタンパク質を検出することができる 。本分析用試薬とタンパク質との反応は、モル吸光係数と蛍光量子収率が高いため 、極微量のタンパク質でも検出することができる。本発明において、タンパク質の「検 出」とは、サンプルにおけるタンパク質の存在の有無を検出することだけではなぐタ ンパク質を定量的に検出することも含む。 The protein detection reagent of the present invention forms a complex by hydrophobic interaction with a protein, and changes color and generates fluorescence by the solvatochromism effect. Accordingly, the protein in the sample can be detected by contacting the analytical reagent with a sample that may contain the protein and detecting the resulting color change or fluorescence. The reaction between the reagent for analysis and protein has a high molar extinction coefficient and fluorescence quantum yield, so that even a trace amount of protein can be detected. In the present invention, “detection” of protein is not only a detection of the presence or absence of protein in a sample. It also includes quantitative detection of protein.
[0031] 本分析用試薬を用いて分析の対象となるタンパク質は、連結した複数のアミノ酸を 含み、疎水性相互作用によって本分析用試薬と結合可能な化合物であれば特に限 定されるものではない。分析対象のタンパク質としては、例えば、ペプチド、タンパク 質、タンパク質複合体 (例:糖タンパク質、タンパク質—核酸複合体、標識タンパク質 )などが挙げられる。  [0031] The protein to be analyzed using the present analytical reagent is not particularly limited as long as it includes a plurality of linked amino acids and can bind to the present analytical reagent by hydrophobic interaction. Absent. Examples of proteins to be analyzed include peptides, proteins, protein complexes (eg, glycoproteins, protein-nucleic acid complexes, labeled proteins) and the like.
[0032] またサンプルとしては、タンパク質を含有することが疑われるサンプルであれば特に 限定されるものではなぐ液体サンプル又は固体サンプルのいずれでもよい。具体的 には、例えばタンパク質を含有する可能性のある溶液、タンパク質を電気泳動したゲ ル、タンパク質を移した膜 (PVDF膜など)、細胞又は組織、糞尿、血液などが挙げら れる。  [0032] The sample is not particularly limited as long as it is suspected of containing a protein, and may be either a liquid sample or a solid sample. Specific examples include a solution that may contain a protein, a gel obtained by electrophoresis of a protein, a membrane to which a protein has been transferred (such as a PVDF membrane), cells or tissues, feces and urine, and the like.
[0033] 使用する本分析用試薬は、適当な溶媒 (NaCl溶液、 HEPES緩衝液、 Tris緩衝液 、 MES緩衝液、メタノール、エタノール、 DMSOなど)に溶解させて使用してもよいし 、又は適当な担体 (膜、試験紙など)に固定して使用してもよい。  [0033] The analysis reagent used may be used after being dissolved in an appropriate solvent (NaCl solution, HEPES buffer solution, Tris buffer solution, MES buffer solution, methanol, ethanol, DMSO, etc.). It may be used by being fixed to an appropriate carrier (membrane, test paper, etc.).
[0034] タンパク質の検出は、典型的には、サンプルを本分析用試薬と接触させ、分析用試 薬の発色の変化及び Z又は蛍光発光を検出することを含む。本発明にお 、て「接触 」とは、サンプル中に存在するタンパク質と本分析用試薬とが複合体を形成すること ができるように近接する状態にすることを意味する。例えば、液体サンプルと本分析 用試薬の溶液とを混合すること、本分析用試薬を固定した担体 (膜、試験紙など)に 液体サンプルを浸潤させること、固体サンプルに対して本分析用試薬を塗布すること 、本分析用試薬に固体サンプルを浸漬することなどの操作が含まれる。  [0034] Protein detection typically involves contacting a sample with the present analytical reagent and detecting a change in color and Z or fluorescence emission of the analytical reagent. In the present invention, “contact” means that the protein present in the sample and the reagent for analysis are brought into close proximity so that a complex can be formed. For example, mixing a liquid sample with a solution of the analysis reagent, infiltrating the liquid sample into a carrier (membrane, test paper, etc.) on which the analysis reagent is fixed, and applying the analysis reagent to a solid sample Application | coating and operations, such as immersing a solid sample in the reagent for this analysis, are included.
[0035] サンプルと本分析用試薬とを接触させる条件は、使用するサンプルの種類及び量 、接触形態などを考慮して当業者であれば適宜選択することができる。例えばサンプ ル中に含まれるタンパク質量力^〜 1000 μ g/mL程度であると推定される場合には 、 10〜: LOO μ Μ、好ましくは 15〜80 μ Μ (例えば約 20〜30 μ Μ)の本分析用試薬 を使用する。また接触は、室温 (約 20〜30°C)で、約 1〜30分、好ましくは約 1〜15 分行う。 [0035] Conditions for bringing the sample into contact with the present analysis reagent can be appropriately selected by those skilled in the art in consideration of the type and amount of the sample to be used, the contact form, and the like. For example, when it is estimated that the amount of protein contained in a sample is about ~ 1000 μg / mL, 10 to: LOO μΜ, preferably 15 to 80 μΜ (for example, about 20 to 30 μ 例 え ば) Use this analytical reagent. The contact is carried out at room temperature (about 20-30 ° C.) for about 1-30 minutes, preferably about 1-15 minutes.
[0036] サンプルと本分析用試薬とを接触させた後、当技術分野で公知の方法を用いて分 析用試薬の発色の変化及び Z又は蛍光発光を検出する。発色の変化は、例えば目 視観察、吸光光度法 (分光光度計、プレートリーダーなどを用いる)、反射スペクトル 分析法などによって検出することができる。また蛍光発光は、例えば蛍光光度法 (蛍 光光度計、蛍光プレートリーダー、蛍光スキャナーなどを用いる)などによって検出す ることがでさる。 [0036] After contacting the sample with the present analytical reagent, the sample is separated using a method known in the art. Detects color change and Z or fluorescence emission of analysis reagents. The color change can be detected, for example, by visual observation, absorptiometry (using a spectrophotometer, a plate reader, etc.), reflection spectrum analysis, or the like. Fluorescence emission can be detected by, for example, a fluorescence method (using a fluorimeter, a fluorescence plate reader, a fluorescence scanner, etc.).
[0037] 反応後は、例えば加熱操作、溶媒のアルカリ性化 (例えば pHIO以上とする)などに よって、結合した本分析用試薬とタンパク質とを脱離することができる。  [0037] After the reaction, the bound analytical reagent and protein can be desorbed by, for example, a heating operation or alkalinizing the solvent (for example, pHIO or higher).
[0038] 本発明に係るタンパク質の検出方法は、タンパク質を高感度、迅速に、かつ複雑な 機器を用いることなく検出することが可能である。また本分析用試薬は、特定のタン ノ^質と一定割合で結合するため、検量線を作成することによって簡便に定量するこ とが可能である。さらに本分析用試薬は、特定のタンパク質と特異的に結合する抗体 などとは異なり、あらゆるタンパク質と結合することができることから、複数種のタンパク 質を網羅的に分析することが可能である。従って、本検出方法は、生化学、医療、分 析化学の分野にぉ 、て有用である。  [0038] The protein detection method according to the present invention can detect a protein with high sensitivity, speed, and without using a complicated device. Since this analytical reagent binds to a specific protein at a certain ratio, it can be easily quantified by creating a calibration curve. In addition, unlike the antibody that specifically binds to a specific protein, this analytical reagent can bind to any protein, so it is possible to comprehensively analyze multiple types of proteins. Therefore, this detection method is useful in the fields of biochemistry, medicine, and analytical chemistry.
実施例  Example
[0039] 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこ れら実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the technical scope of the present invention is not limited to these examples.
[0040] (実施例 1) [0040] (Example 1)
本実施例においては、タンパク質分析用試薬 (色素)として用いるためのスクェア酸 誘導体を合成した。この色素の合成は、下記反応式に従って行った。  In this example, a squaric acid derivative for use as a protein analysis reagent (dye) was synthesized. This dye was synthesized according to the following reaction formula.
[0041] [化 5]
Figure imgf000012_0001
[0041] [Chemical 5]
Figure imgf000012_0001
具体的には、 50ml三口フラスコに、フエノール(0. 2g, 1. 7mmol)、スクェア酸(0 . lg, 0. 9mmol)、 n—ブタノール:トルエン = 1 : 3νΖνの混合溶媒 40mLを加え、 アルゴン気流下、 24時間還流した。溶媒を減圧留去後、大型薄層クロマトグラフィー (S102,アセトン: AcOEt= l : lvZv)で精製し、褐色固体を得た。 [0043] 収率 55% Specifically, to a 50 ml three-necked flask, 40 mL of a mixed solvent of phenol (0.2 g, 1.7 mmol), squaric acid (0.3 lg, 0.9 mmol), n-butanol: toluene = 1: 3νΖν was added, and argon was added. The mixture was refluxed for 24 hours under an air stream. After evaporating the solvent under reduced pressure, the residue was purified by large thin layer chromatography (S102, acetone: AcOEt = l: lvZv) to obtain a brown solid. [0043] Yield 55%
1H-NMR (400 MHz, Acetone— d6, TMS, r.t., d/ppm) 5.5〜5.8 (m, 4H)。 1H-NMR (400 MHz, Acetone—d6, TMS, r.t., d / ppm) 5.5 to 5.8 (m, 4H).
ESI(+) [M+Na] +=353 ESI (+) [M + Na] + = 353
[0044] (実施例 2) [0044] (Example 2)
本実施例では、実施例 1で合成した色素の特性評価(吸収スペクトル測定)を行つ た。  In this example, characteristic evaluation (absorption spectrum measurement) of the dye synthesized in Example 1 was performed.
吸収スペクトル測定は、下記条件にて、吸光光度計((株)島津製作所製 UV— 165 0PC)を用いて行った:  The absorption spectrum was measured using an absorptiometer (UV-165 0PC, manufactured by Shimadzu Corporation) under the following conditions:
濃度: [色素 ] = 25 M  Concentration: [Dye] = 25 M
[BSA] =0〜: L000 μ g/mL  [BSA] = 0 to: L000 μg / mL
溶媒: 0. 9%NaCl水溶液  Solvent: 0.9% NaCl aqueous solution
測定温度: 25°C  Measurement temperature: 25 ° C
[0045] 濃度 0, 60, 120, 250, 500, 1000 gZm の BSAを添加した時の、色素の 吸収スペクトルを下力 順に図 2に示す。 BSAの濃度の増加と共に、吸光度が増加 した。さらに極大蛍光波長は BSAの濃度の増加と共に、 530nmから 600nmへシフト した。この極大吸収波長の大きなシフトによって、色素の溶液の色は、図 3に示したよ うに、 BSAの添加前 (A)と後(B)で、赤色から青色へと変化した。  [0045] Fig. 2 shows the absorption spectra of the dyes in order of decreasing force when BSA at concentrations of 0, 60, 120, 250, 500, and 1000 gZm was added. Absorbance increased with increasing BSA concentration. Furthermore, the maximum fluorescence wavelength shifted from 530 nm to 600 nm with increasing BSA concentration. Due to this large shift in the maximum absorption wavelength, the color of the dye solution changed from red to blue before (A) and after (B) addition of BSA, as shown in Fig. 3.
[0046] 600nmにおける吸光度を BSA濃度に対してプロットした結果を、図 4に示す。 600 nmにおける吸光度と BSAの濃度との間には、下記の式で表される良好な直線関係 が得られた。  [0046] FIG. 4 shows the results of plotting the absorbance at 600 nm against the BSA concentration. A good linear relationship represented by the following formula was obtained between the absorbance at 600 nm and the BSA concentration.
y=0. 0004x+0. 0101  y = 0. 0004x + 0. 0101
R2=0. 997 R 2 = 0. 997
[0047] (実施例 3)  [0047] (Example 3)
本実施例では、実施例 1で合成した色素の特性評価 (蛍光スペクトル測定)を行つ た。  In this example, characteristic evaluation (fluorescence spectrum measurement) of the dye synthesized in Example 1 was performed.
蛍光スペクトル測定は、下記条件にて、蛍光光度計(日本分光 (株)製 FP— 6500) を用いて行った:  The fluorescence spectrum measurement was performed using a fluorometer (FP-6500 manufactured by JASCO Corporation) under the following conditions:
濃度: [色素 ] = 25 M [BSA] =0〜: LOOO μ g/mL Concentration: [Dye] = 25 M [BSA] = 0 to: LOOO μg / mL
溶媒: 0. 9%NaCl水溶液  Solvent: 0.9% NaCl aqueous solution
測定温度: 25°C  Measurement temperature: 25 ° C
励起波長: 595nm  Excitation wavelength: 595nm
[0048] 色素に濃度 0, 60, 120, 250, 500, 1000 ( g/mL)の BSAを添カロしたときの 蛍光スペクトル変化を測定した結果を、図 5に下力も順に示した。図 5に示したように 、 BSA濃度の増加に伴い、蛍光強度の増加が観察された。 BSAを 1000 /z gZmL 添加した時の蛍光強度は、色素単独の蛍光強度と比較して、約 4500倍増加した。  [0048] Fig. 5 shows the results of the measurement of changes in fluorescence spectrum when BSA was added to the dye at a concentration of 0, 60, 120, 250, 500, 1000 (g / mL). As shown in FIG. 5, an increase in fluorescence intensity was observed with an increase in BSA concentration. The fluorescence intensity when BSA was added at 1000 / z gZmL increased about 4500 times compared to the fluorescence intensity of the dye alone.
[0049] 色素に BSAを添カ卩した時の 610nmにおける蛍光強度を BSA濃度に対してプロッ トしたところ、図 6に示したように、良好な直線関係が得られた。また検出限界は 100η gZmLであり、 Bradfold法よりも約 20倍感度が良いことが分かった。  [0049] When the fluorescence intensity at 610 nm when BSA was added to the dye was plotted against the BSA concentration, a good linear relationship was obtained as shown in FIG. The detection limit was 100 ηgZmL, which was found to be about 20 times more sensitive than the Bradfold method.
[0050] (実施例 4)  [0050] (Example 4)
本実施例では、実施例 1で合成した色素の特性評価 (電気泳動実験)を行った。 電気泳動実験は、下記条件にて行った:  In this example, the characteristics (electrophoresis experiment) of the dye synthesized in Example 1 were evaluated. Electrophoresis experiments were performed under the following conditions:
濃度: [色素] =0. lmgZmL (30%EtOH中)  Concentration: [Dye] = 0. lmgZmL (in 30% EtOH)
[BSA] =0〜5 μ gZゥエル  [BSA] = 0 ~ 5 μgZ uel
固定化液及び洗浄液; H O : MeOH: AcOH = 87 : 10 : 3v/v  Immobilizing solution and washing solution; H 2 O: MeOH: AcOH = 87: 10: 3v / v
2  2
電気泳動(SDS— PAGE)システム: Sureblot Fl Gel System  Electrophoresis (SDS—PAGE) system: Sureblot Fl Gel System
[0051] 電気泳動終了後、ゲルを取り出し、固定ィ匕液中で 30分間洗浄した。その後、染色 液中で 30分間、ゲルを浸した後、洗浄液中で 30分間洗浄した。 [0051] After completion of the electrophoresis, the gel was taken out and washed in a fixed solution for 30 minutes. Thereafter, the gel was immersed in the staining solution for 30 minutes and then washed in the washing solution for 30 minutes.
[0052] 結果を図 7の Aに示す。電気泳動によって泳動されたゲル中のタンパク質は、分析 用試薬と複合体を形成することによって、図 7の Aに示したような、赤色のバンドが観 察された。 [0052] The results are shown in FIG. The protein in the gel run by electrophoresis formed a complex with the analytical reagent, and a red band as shown in Fig. 7A was observed.
[0053] さらに、現在、巿販されている電気泳動のタンパク質染色剤である CBB法 (Bradfo rd法)(図 7の B)と比較したところ、 CBBよりも検出感度が高いことが明ら力となった。 産業上の利用可能性  [0053] Furthermore, when compared with the CBB method (Bradford method) (B in Fig. 7), which is a protein stain for electrophoresis currently on the market, it is clear that the detection sensitivity is higher than that of CBB. It became. Industrial applicability
[0054] 本発明により、タンパク質分析用試薬として有用な新規スクェア酸誘導体が提供さ れる。この化合物を含有するタンパク質分析用試薬は、タンパク質と混合するだけで 瞬時に反応し、蛍光の発光と色変化が同時に生じることから、タンパク質の高感度検 出が可能となるば力りでなぐ 目視定量分析が可能となる。従って、タンパク質の検出 を、高価な装置や熟練した技術を必要とせずに、迅速にかつ簡便に行うことが可能と なる。 [0054] The present invention provides a novel squaric acid derivative useful as a protein analysis reagent. Reagents for protein analysis containing this compound can be mixed with protein. Since it reacts instantaneously and fluorescence emission and color change occur at the same time, it is possible to perform visual quantitative analysis without force if high-sensitivity detection of proteins is possible. Therefore, protein detection can be performed quickly and easily without the need for expensive equipment and skilled techniques.

Claims

請求の範囲 [1] 下記式 (I)で表される化合物。 Claims [1] A compound represented by the following formula (I):
[化 1]  [Chemical 1]
Figure imgf000016_0001
Figure imgf000016_0001
(式中、 Rl及び R2は互いに独立して水素原子、又は炭素数 1〜10のアルキル基を 表し; ml及び m2は 1〜3の整数; nl = 5—ml、 n2 = 5—m2の整数である。) (In the formula, Rl and R2 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; ml and m2 are integers of 1 to 3; nl = 5—ml, n2 = 5—m2 .)
[2] 上記式 (I)で表される化合物力 下記式 (Π)で表される化合物であることを特徴とす る請求項 1に記載の化合物。 [2] The compound force represented by the above formula (I): The compound according to claim 1, which is a compound represented by the following formula (Π):
[化 2]  [Chemical 2]
Figure imgf000016_0002
Figure imgf000016_0002
[3] 請求項 1又は 2に記載の化合物を含有するタンパク質検出用試薬。  [3] A protein detection reagent comprising the compound according to claim 1 or 2.
[4] 試薬が、前記化合物を溶媒に溶解したものであることを特徴とする請求項 3に記載 のタンパク質検出用試薬。 [4] The reagent for protein detection according to [3], wherein the reagent is obtained by dissolving the compound in a solvent.
[5] 試薬が、前記化合物を担体に固定したものであることを特徴とする請求項 3に記載 のタンパク質検出用試薬。  [5] The reagent for protein detection according to [3], wherein the reagent is obtained by immobilizing the compound on a carrier.
[6] 被検サンプルと請求項 3〜5のいずれか 1項に記載のタンパク質検出用試薬とを接 触させ、該タンパク質検出用試薬の色の変化又は該タンパク質検出用試薬から生じ る蛍光を検出することを特徴とする被検サンプル中のタンパク質の検出方法。  [6] A test sample is brought into contact with the protein detection reagent according to any one of claims 3 to 5, and a color change of the protein detection reagent or fluorescence generated from the protein detection reagent is detected. A method for detecting a protein in a test sample, which comprises detecting the protein.
[7] タンパク質の検出を蛍光光度法、吸光光度法、及び試験紙光電光度法からなる群 より選択される方法で行こなうことを特徴とする請求項 6に記載の検出方法。  [7] The detection method according to [6], wherein the protein is detected by a method selected from the group consisting of fluorometry, absorptiometry, and test strip photometry.
PCT/JP2007/061199 2006-08-21 2007-06-01 Squaric acid derivative compound, protein detection reagent comprising the compound, and protein detection method using the reagent WO2008023489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530824A JPWO2008023489A1 (en) 2006-08-21 2007-06-01 Square acid derivative compound, protein detection reagent containing the compound, and protein detection method using the reagent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006224290 2006-08-21
JP2006-224290 2006-08-21

Publications (1)

Publication Number Publication Date
WO2008023489A1 true WO2008023489A1 (en) 2008-02-28

Family

ID=39106582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061199 WO2008023489A1 (en) 2006-08-21 2007-06-01 Squaric acid derivative compound, protein detection reagent comprising the compound, and protein detection method using the reagent

Country Status (2)

Country Link
JP (1) JPWO2008023489A1 (en)
WO (1) WO2008023489A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096542A1 (en) * 2007-02-08 2008-08-14 Panasonic Corporation Method of manufacturing semiconductor chip
JP2018510845A (en) * 2015-01-27 2018-04-19 ソニー株式会社 Squaline and thiophene-based molecules as materials for organic photoelectric conversion layers in organic photodiodes
US11261172B2 (en) 2017-03-31 2022-03-01 Samsung Electronics Co., Ltd. Squarylium compounds and infrared cut films, infrared cut filters and electronic devices including the same
CN115290904A (en) * 2022-10-09 2022-11-04 山东三医生物技术有限公司 In-situ hybridization HPV detection test strip, kit and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105536A (en) * 1973-01-15 1974-10-05
JP2002212455A (en) * 2000-12-28 2002-07-31 Council Scient Ind Res Heavy halogen atom-substituted squaraine-based dye, process for the prearation thereof, and use thereof as sensitizer for photodynamic, therapeutical and industrial applications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891324A (en) * 1987-01-07 1990-01-02 Syntex (U.S.A.) Inc. Particle with luminescer for assays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105536A (en) * 1973-01-15 1974-10-05
JP2002212455A (en) * 2000-12-28 2002-07-31 Council Scient Ind Res Heavy halogen atom-substituted squaraine-based dye, process for the prearation thereof, and use thereof as sensitizer for photodynamic, therapeutical and industrial applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SURESH DAS ET AL.: "Photophysics and Photochemistry of Squaraine Dyes. 3. Excited-State properties and Poly(4-vinylpyridine)-Induced Fluorescence Enhancement of Bis(2,4,6-trihydroxyphenyl)squaraine", J. PHYS. CHEM., vol. 96, 1992, pages 10327 - 10330, XP003021316 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096542A1 (en) * 2007-02-08 2008-08-14 Panasonic Corporation Method of manufacturing semiconductor chip
JP2018510845A (en) * 2015-01-27 2018-04-19 ソニー株式会社 Squaline and thiophene-based molecules as materials for organic photoelectric conversion layers in organic photodiodes
US11352500B2 (en) 2015-01-27 2022-06-07 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes
US11261172B2 (en) 2017-03-31 2022-03-01 Samsung Electronics Co., Ltd. Squarylium compounds and infrared cut films, infrared cut filters and electronic devices including the same
US11858911B2 (en) 2017-03-31 2024-01-02 Samsung Electronics Co., Ltd. Squarylium compounds and infrared cut films, infrared cut filters and electronic devices including the same
CN115290904A (en) * 2022-10-09 2022-11-04 山东三医生物技术有限公司 In-situ hybridization HPV detection test strip, kit and preparation method thereof

Also Published As

Publication number Publication date
JPWO2008023489A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
Peng et al. A fluorescent probe for thiols based on aggregation-induced emission and its application in live-cell imaging
Wang et al. A dual-site fluorescent probe for separate detection of hydrogen sulfide and bisulfite
Aragay et al. Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor
Kessler et al. Laser-induced fluorometric determination of albumin using longwave absorbing molecular probes
Waentig et al. Multi-parametric analysis of cytochrome P450 expression in rat liver microsomes by LA-ICP-MS
JP2014525905A (en) Analyte detection using near-infrared fluorophores
Wang et al. A novel hemicyanine-based near-infrared fluorescent probe for Hg2+ ions detection and its application in living cells imaging
Hoefelschweiger et al. Novel type of general protein assay using a chromogenic and fluorogenic amine-reactive probe
JP4893964B2 (en) Novel compound, reagent for analysis of peptide or protein containing the compound, and analysis method using the analysis reagent
CN110590753A (en) Near-infrared SO of target mitochondria2Derivative ratiometric fluorescent probes and uses thereof
WO2008023489A1 (en) Squaric acid derivative compound, protein detection reagent comprising the compound, and protein detection method using the reagent
Irshad et al. Triazine based fluorescent sensor for sequential detection of Hg2+ and L-Cysteine in real samples and application in logic Gate: A combination of Extensive experimental and theoretical analysis
US20110111388A1 (en) Method for the sensitive detection of polyamino acids and other macro-molecules
Wang et al. Homogeneous time-resolved fluoroimmunoassay of 3, 5, 3′-triiodo-l-thyronine in human serum by using europium fluorescence energy transfer
Li et al. Room-temperature phosphorescence of dansyl chloride solution in the absence of protective medium and its medium effect
Guo et al. A highly sensitive assay for protein using resonance light-scattering technique with dibromohydroxyphenylfluorone–molybdenum (VI) complex
Blomberg et al. A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays
Choudhury et al. Dual luminescent charge transfer probe for quantitative detection of serum albumin in aqueous samples
Samanta et al. Engineering a bromophenol derivative for rapid detection of Hg 2+/CH 3 Hg+ in both environmental and biological samples through a unique activation process
Wang et al. Homogeneous time-resolved fluoroimmunoassay of bensulfuron-methyl by using terbium fluorescence energy transfer
JP2003075443A (en) Target substance measuring reagent and target substance measuring method using the same
Sundaram Protein stains and applications
CN108801993A (en) A kind of hypochlorous kit of quick high-selectivity analysis
CN108997255A (en) A kind of vinyl ethers Hg2+Fluorescence probe and its preparation method and application
Shi et al. A multicolor nano-immunosensor for the detection of multiple targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530824

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07744587

Country of ref document: EP

Kind code of ref document: A1