WO2008022060A2 - composés organiques et leurs utilisations - Google Patents

composés organiques et leurs utilisations Download PDF

Info

Publication number
WO2008022060A2
WO2008022060A2 PCT/US2007/075771 US2007075771W WO2008022060A2 WO 2008022060 A2 WO2008022060 A2 WO 2008022060A2 US 2007075771 W US2007075771 W US 2007075771W WO 2008022060 A2 WO2008022060 A2 WO 2008022060A2
Authority
WO
WIPO (PCT)
Prior art keywords
phenyl
methoxy
imidazo
pyridin
piperidine
Prior art date
Application number
PCT/US2007/075771
Other languages
English (en)
Other versions
WO2008022060A3 (fr
Inventor
Christopher Thomas Brain
Kim Sunkyu
David L. Farley
Original Assignee
Novartis Ag
Novartis Pharma Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Ag, Novartis Pharma Gmbh filed Critical Novartis Ag
Publication of WO2008022060A2 publication Critical patent/WO2008022060A2/fr
Publication of WO2008022060A3 publication Critical patent/WO2008022060A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Protein kinases constitute a large family of structurally related enzymes that are responsible for the control of a variety of signal transduction processes within the cell. (Hardie, G. and Hanks, S. The Protein Kinase Facts Book, I and II, Academic Press, San Diego, Calif: 1995). Protein kinases are thought to have evolved from a common ancestral gene due to the conservation of their structure and catalytic function. Almost all kinases contain a similar 250-300 amino acid catalytic domain. The kinases may be categorized into families by the substrates they phosphorylate ⁇ e.g., protein-tyrosine, protein-serine/threonine, lipids, etc.).
  • protein kinases mediate intracellular signaling by affecting a phosphoryl transfer from a nucleoside triphosphate to a protein acceptor that is involved in a signaling pathway. These phosphorylation events act as molecular on/off switches that can modulate or regulate the target protein biological function. These phosphorylation events are ultimately triggered in response to a variety of extracellular and other stimuli.
  • Examples of such stimuli include environmental and chemical stress signals ⁇ e.g., osmotic shock, heat shock, ultraviolet radiation, bacterial endotoxin, and H 2 O 2 ), cytokines ⁇ e.g., interleukin-1 (IL-I) and tumor necrosis factor- ⁇ (TNF- ⁇ )), and growth factors ⁇ e.g., granulocyte macrophage-colony- stimulating factor (GM-CSF), and fibroblast growth factor (FGF)).
  • An extracellular stimulus may affect one or more cellular responses related to cell growth, migration, differentiation, secretion of hormones, activation of transcription factors, muscle contraction, glucose metabolism, control of protein synthesis, and regulation of the cell cycle.
  • diseases are associated with abnormal cellular responses triggered by protein kinase-mediated events as described above. These diseases include, but are not limited to, autoimmune diseases, inflammatory diseases, bone diseases, metabolic diseases, neurological and neurodegenerative diseases, cancer, cardiovascular diseases, allergies and asthma, Alzheimer's disease, and hormone-related diseases. Accordingly, there has been a substantial effort in medicinal chemistry to find protein kinase inhibitors that are effective as therapeutic agents.
  • CDK cyclin-dependent kinase
  • CDKl also known as cdc2, and CDK2
  • CDKl cyclin B1-B3
  • CDK2, CDK4, CDK5, CDK6 cyclin E
  • CDKs 7, 8, and 9 are implicated in the regulation of transcription
  • CDK5 plays a role in neuronal and secretory cell function.
  • CDKs The activity of CDKs is regulated post-translationally, by transitory associations with other proteins, and by alterations of their intracellular localization. Tumor development is closely associated with genetic alteration and deregulation of CDKs and their regulators, suggesting that inhibitors of CDKs may be useful anti-cancer therapeutics. Indeed, early results suggest that transformed and normal cells differ in their requirement for, e.g., cyclin A/CDK2 and that it may be possible to develop novel antineoplastic agents devoid of the general host toxicity observed with conventional cytotoxic and cytostatic drugs. While inhibition of cell cycle-related CDKs is clearly relevant in, e.g., oncology applications, this may not be the case for the inhibition of RNA polymerase-regulating CDKs.
  • CDK9/cyclin T function was recently linked to prevention of HIV replication and the discovery of new CDK biology thus continues to open up new therapeutic indications for CDK inhibitors (Sausville, E. A. Trends Molec. Med. 2002, 8, S32-S37).
  • the function of CDKs is to phosphorylate and thus activate or deactivate certain proteins, including e.g. retinoblastoma proteins, lamins, histone Hl, and components of the mitotic spindle.
  • the catalytic step mediated by CDKs involves a phospho-transfer reaction from ATP to the macromolecular enzyme substrate.
  • Several groups of compounds have been found to possess anti-proliferative properties by virtue of CDK-specific ATP antagonism.
  • the invention provides a compound of Formula I:
  • the protein kinase is a protein tyrosine kinase.
  • the protein kinase is selected from the group consisting of CDKl , CDK2, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9.
  • the protein kinase is in a cell culture. In still another aspect, the protein kinase is in a mammal.
  • the invention provides a method of treating a protein kinase-associated disorder, wherein the method includes administering to a subject in need thereof a pharmaceutically acceptable amount of a compound of the Formula I, such that the protein kinase-associated disorder is treated.
  • the protein kinase is selected from the group consisting of CDKl, CDK2, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9.
  • the protein kinase-associated disorder is selected from the group consisting of blood vessel proliferative disorders, fibrotic disorders, mesangial cell proliferative disorders, metabolic disorders, allergies, asthma, thrombosis, nervous system diseases and cancer.
  • the protein kinase-associated disorder is cancer.
  • the cancer is selected from the group consisting of breast, stomach, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract (including bladder and prostate), ovarian, gastric, bone, and pancreatic cancer.
  • the protein kinase-associated disorder is selected from the group consisting of organ transplant rejection, xeno transplantation, lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type 1 diabetes and complications from diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn's disease, Alzheimer's disease and leukemia.
  • the disease is selected from an immune response, an autoimmune disease, a neurodegenerative disease, or a solid or hematologic malignancy.
  • the disease is selected from an allergic or type I hypersensitivity reaction, asthma, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, multiple sclerosis, Familial amyotrophic lateral sclerosis, leukemia, or lymphoma
  • the invention provides a method of treating an autoimmune disease, wherein the treatment includes administering to a subject in need thereof a pharmaceutically acceptable amount of a compound of the Formula I, such that the autoimmune disease is treated.
  • the autoimmune disease is selected from the group consisting of autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis, multiple sclerosis, neuritis, uveitis ophthalmia, polyendocrinopathies, purpura, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, autoimmune inflammatory eye, autoimmune thyroiditis, hypothyroidism, systemic lupus erythematosus, Goodpasture's syndrome, Pemphigus, Receptor autoimmunities, autoinunune hemolytic anemia, autoimmune thrombocyto
  • the invention provides a method of treating transplant rejection, wherein the treatment includes administering to a subject in need thereof a pharmaceutically acceptable amount of a compound of the Formula I such that the transplant rejection is treated.
  • the transplant rejection is selected from the group consisting of graft versus host disease, rejection related to xeno transplantation, rejection related to organ transplant, rejection related to acute transplant, heterograft or homograft rejection and ischemic or reperfusion injury incurred during organ transplantation.
  • the invention provides a method of treating cancer, wherein the method includes administering to a subject in need thereof a pharmaceutically acceptable amount of a compound of the Formula I such that the transplant rejection is treated.
  • the cancer is selected from the group consisting of bladder, head and neck, breast, stomach, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, gastrointestinal, ovarian, prostate, gastric, bone, small-cell lung, glioma, colorectal and pancreatic cancer.
  • the Formula I or salt thereof is administered, simultaneously or sequentially, with an antiinflammatory, antiproliferative, chemotherapeutic agent, immunosuppressant, anti-cancer, cytotoxic agent or kinase inhibitor other than a compound of the Formula I or salt thereof.
  • the compound of the Formula I or salt thereof is administered, simultaneously or sequentially, with one or more of a PTK inhibitor, cyclosporin A, CTLA4-Ig, antibodies selected from anti-ICAM-3, anti-IL-2 receptor, anti-CD45RB, anti-CD2, anti-CD3, anti-CD4, anti-CD80, anti-CD86, and monoclonal antibody OKT3, agents blocking the interaction between CD40 and gp39, fusion proteins constructed from CD40 and g ⁇ 39, inhibitors of NF-kappa B function, non-steroidal antiinflammatory drugs, steroids, gold compounds, antiproliferative agents, FK506, mycophenolate mofetil, cytotoxic drugs, TNF- ⁇ inhibitors, anti-TNF antibodies or soluble TNF receptor, rapamycin, leflunimide, cyclooxygenase-2 inhibitors, paclitaxel, cisplatin, carboplatin, doxorubicin, carminomycin, daunorubicin, aminopterin
  • the invention provides a packaged protein kinase-associated disorder treatment, wherein the treatment includes a protein kinase-modulating compound of the Formula I, packaged with instructions for using an effective amount of the protein kinase- modulating compound to treat a protein kinase-associated disorder.
  • This invention is directed to compounds of Formula I, and intermediates thereto, as well as pharmaceutical compositions containing the compounds for use in treatment of protein kinase-associated disorders.
  • This invention is also directed to the compounds of the invention or compositions thereof as modulators of CDKl, CDK2, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9.
  • the present invention is also directed to methods of combination therapy for inhibiting protein kinase activity in cells, or for treating, preventing or ameliorating of one or more symptoms of cancer, transplant rejections, and autoimmune diseases in patients using the compounds of the invention or pharmaceutical compositions, or kits thereof.
  • the invention provides compounds of the Formula I:
  • Ri is a thiophen or a phenyl substituted with Ci-C 6 alkoxyl, Ci-C 6 alkoxyl.
  • R 2 is a piperadine substituted by C(O)-R 3 or R 4
  • R 3 is selected from the following:
  • R 4 is selected from the following:
  • the compounds are:
  • the compound of the present invention is further characterized as a modulator of a protein kinase, wherein the protein kinase is selected from the group consisting of CDKl, CDK2, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9.
  • the compounds of the present invention are used for the treatment of protein kinase-associated disorders.
  • protein kinase-associated disorder includes disorders and states (e.g., a disease state) that are associated with the activity of a protein kinase, e.g., CDK4.
  • disorders and states e.g., a disease state
  • Non-limiting examples of a protein kinase- associated disorder include blood vessel proliferative disorders, f ⁇ brotic disorders, mesangial cell proliferative disorders, metabolic disorders, allergies, asthma, thrombosis, nervous system diseases, organ transplant rejection, autoimmune diseases, and cancer.
  • the compound of the present invention is further characterized as a modulator of a combination of protein kinases, e.g., CDK4.
  • a compound of the present invention is used for protein kinase-associated diseases, and use of the compound of the present invention as an inhibitor of any one or more protein kinases. It is envisioned that a use can be a treatment of inhibiting one or more isoforms of protein kinases.
  • the compounds of the invention are inhibitors of cyclin-dependent kinase enzymes (CDKs). Without being bound by theory, inhibition of the CDK4/cyclin Dl complex blocks phosphorylation of the Rb/inactive E2F complex, thereby preventing release of activated E2F and ultimately blocking E2F-dependent DNA transcription. This has the effect of inducing Gi cell cycle arrest. In particular, the CDK4 pathway has been shown to have tumor-specific deregulation and cytotoxic effects.
  • the compounds of this invention have the potential to block the expansion of auto- or alloreactive T cells, and thus have beneficial effects on autoimmune diseases, as well as transplant rejections.
  • the present invention includes treatment of one or more symptoms of cancer, transplant rejections, and autoimmune diseases, as well as protein kinase-associated disorders, as described above, but the invention is not intended to be limited to the manner by which the compound performs its intended function of treatment of a disease.
  • the present invention includes treatment of diseases described herein in any manner that allows treatment to occur, e.g., cancer, transplant rejections, and autoimmune diseases.
  • the invention provides a pharmaceutical composition of any of the compounds of the present invention.
  • the invention provides a pharmaceutical composition of any of the compounds of the present invention and a pharmaceutically acceptable carrier or excipient of any of these compounds.
  • the invention includes a packaged protein kinase-associated disorder treatment.
  • the packaged treatment includes a compound of the invention packaged with instructions for using an effective amount of the compound of the invention for an intended use.
  • the compounds of the present invention are suitable as active agents in pharmaceutical compositions that are efficacious particularly for treating protein kinase- associated disorders, e.g., cancer, transplant rejections, and autoimmune diseases.
  • the pharmaceutical composition in various embodiments has a pharmaceutically effective amount of the present active agent along with other pharmaceutically acceptable excipients, carriers, fillers, diluents and the like.
  • phrases, "pharmaceutically effective amount” as used herein indicates an amount necessary to administer to a host, or to a cell, issue, or organ of a host, to achieve a therapeutic result, especially the regulating, modulating, or inhibiting protein kinase activity, e.g., inhibition of the activity of a protein kinase, or treatment of cancer, transplant rejections, or autoimmune diseases.
  • the present invention provides a method for inhibiting the activity of a protein kinase.
  • the method includes contacting a cell with any of the compounds of the present invention.
  • the method further provides that the compound is present in an amount effective to selectively inhibit the activity of a protein kinase.
  • the present invention provides a use of any of the compounds of the invention for manufacture of a medicament to treat cancer, transplant rejections, or autoimmune diseases in a subject.
  • the invention provides a method of manufacture of a medicament, including formulating any of the compounds of the present invention for treatment of a subject.
  • treat includes the diminishment or alleviation of at least one symptom associated or caused by the state, disorder or disease being treated.
  • the treatment comprises the induction of a protein kinase- associated disorder, followed by the activation of the compound of the invention, which would in turn diminish or alleviate at least one symptom associated or caused by the protein kinase-associated disorder being treated.
  • treatment can be diminishment of one or several symptoms of a disorder or complete eradication of a disorder.
  • subject is intended to include organisms, e.g., prokaryotes and eukaryotes, which are capable of suffering from or afflicted with a disease, disorder or condition associated with the activity of a protein kinase.
  • subjects include mammals, e.g., humans, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non- human animals.
  • the subject is a human, e.g., a human suffering from, at risk of suffering from, or potentially capable of suffering from cancer, transplant rejections, and autoimmune diseases, and for other diseases or conditions described herein.
  • the subject is a cell.
  • protein kinase-modulating compound refers to compounds that modulate, e.g., inhibit, or otherwise alter, the activity of a protein kinase.
  • protein kinase-modulating compounds include compounds of Formula I, as well as Table A, Table B, Table C and Table D (including pharmaceutically acceptable salts thereof, as well as enantiomers, stereoisomers, rotamers, tautomers, diastereomers, atropisomers or racemates thereof).
  • a method of the invention includes administering to a subject an effective amount of a protein kinase-modulating compound of the invention, e.g., protein kinase-modulating compounds of Formula I, as well as Table A (including pharmaceutically acceptable salts thereof, as well as enantiomers, stereoisomers, rotamers, tautomers, diastereomers, atropisomers or racemates thereof).
  • a protein kinase-modulating compound of the invention e.g., protein kinase-modulating compounds of Formula I, as well as Table A (including pharmaceutically acceptable salts thereof, as well as enantiomers, stereoisomers, rotamers, tautomers, diastereomers, atropisomers or racemates thereof).
  • alkyl includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched -chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
  • alkyl also includes alkenyl groups and alkynyl groups.
  • alkyl e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, etc.
  • alkyl include both "unsubstituted alkyl” and “substituted alkyl", the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone, which allow the molecule to perform its intended function.
  • bonds and/or hydrogen atoms are added to provide the following number of total bonds to each of the following types of atoms: carbon: four bonds; nitrogen: three bonds; oxygen: two bonds; and sulfur: two-six bonds.
  • the structures of some of the compounds of this invention include asymmetric carbon atoms. It is to be understood accordingly that the isomers arising from such asymmetry (e.g., all enantiomers, stereoisomers, rotamers, tautomers, diastereomers, or racemates) are included within the scope of this invention. Such isomers can be obtained in substantially pure form by classical separation techniques and by stereochemically controlled synthesis. Furthermore, the structures and other compounds and moieties discussed in this application also include all tautomers thereof. Compounds described herein may be obtained through art recognized synthesis strategies.
  • substituents of some of the compounds of this invention include isomeric cyclic structures. It is to be understood accordingly that constitutional isomers of particular substituents are included within the scope of this invention, unless indicated otherwise.
  • tetrazole includes tetrazole, 2H-tetrazole, 3H- tetrazole, 4//-tetrazole and 5//-tetrazole.
  • the compounds of the present invention have valuable pharmacological properties and are useful in the treatment of diseases.
  • compounds of the invention are useful in the treatment of cancer.
  • cancers that may be treated by the compounds of the invention include, but are not limited to, bladder, head and neck, breast, stomach, ovary, colon, lung, brain, larynx, lymphatic system, genitourinary tract, gastrointestinal, ovarian, prostate, gastric, bone, small-cell lung, glioma, colorectal and pancreatic cancer.
  • compounds of the invention are useful in the treatment of transplant rejections.
  • transplant rejections that may be treated by the compounds of the invention include, but are not limited to, graft versus host disease, rejection related to xeno transplantation, rejection related to organ transplant, rejection related to acute transplant, heterograft or homograft rejection and ischemic or reperfusion injury incurred during organ transplantation.
  • compounds of the invention are useful in the treatment of autoimmune diseases.
  • autoimmune diseases to be treated by the compounds of the invention include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis, multiple sclerosis, neuritis, uveitis ophthalmia, polyendocrinopathies, purpura, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, autoimmune inflammatory eye, autoimmune thyroiditis, hypothyroidism, systemic lupus erhythematosus, Goodpasture's syndrome,
  • use includes any one or more of the following embodiments of the invention, respectively: the use in the treatment of protein kinase-associated disorders; the use for the manufacture of pharmaceutical compositions for use in the treatment of these diseases, e.g., in the manufacture of a medicament; methods of use of compounds of the invention in the treatment of these diseases; pharmaceutical preparations having compounds of the invention for the treatment of these diseases; and compounds of the invention for use in the treatment of these diseases; as appropriate and expedient, if not stated otherwise.
  • diseases to be treated and are thus preferred for use of a compound of the present invention are selected from cancer, transplant rejections, or autoimmune diseases, as well as those diseases that depend on the activity of protein kinases.
  • compositions herein which bind to a protein kinase sufficiently to serve as tracers or labels, so that when coupled to a fluor or tag, or made radioactive, can be used as a research reagent or as a diagnostic or an imaging agent.
  • the inhibition of protein kinase activity by the compounds of the invention may be measured using a number of assays available in the art. Examples of such assays are described in the Exemplification section below.
  • an effective amount of the compound is that amount necessary or sufficient to treat or prevent a protein kinase-associated disorder, e.g. prevent the various morphological and somatic symptoms of a protein kinase-associated disorder, and/or a disease or condition described herein.
  • an effective amount of the compound of the invention is the amount sufficient to treat a protein kinase-associated disorder in a subject.
  • the effective amount can vary depending on such factors as the size and weight of the subject, the type of illness, or the particular compound of the invention. For example, the choice of the compound of the invention can affect what constitutes an "effective amount.”
  • One of ordinary skill in the art would be able to study the factors contained herein and make the determination regarding the effective amount of the compounds of the invention without undue experimentation.
  • the regimen of administration can affect what constitutes an effective amount.
  • the compound of the invention can be administered to the subject either prior to or after the onset of a protein kinase-associated disorder. Further, several divided dosages, as well as staggered dosages, can be administered daily or sequentially, or the dose can be continuously infused, or can be a bolus injection. Further, the dosages of the compound(s) of the invention can be proportionally increased or decreased as indicated by the exigencies of the therapeutic or prophylactic situation.
  • Compounds of the invention may be used in the treatment of states, disorders or diseases as described herein, or for the manufacture of pharmaceutical compositions for use in the treatment of these diseases. Methods of use of compounds of the present invention in the treatment of these diseases, or pharmaceutical preparations having compounds of the present invention for the treatment of these diseases.
  • composition includes preparations suitable for administration to mammals, e.g., humans.
  • pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
  • phrases "pharmaceutically acceptable carrier” is art recognized and includes a pharmaceutically acceptable material, composition or vehicle, suitable for administering compounds of the present invention to mammals.
  • the carriers include liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject agent from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
  • materials which can serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, saf ⁇ lower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ring
  • wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • antioxidants examples include: water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, ⁇ -tocopherol, and the like; and metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin
  • Formulations of the present invention include those suitable for oral, nasal, topical, buccal, sublingual, rectal, vaginal and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of active ingredient that can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound that produces a therapeutic effect. Generally, out of one hundred per cent, this amount will range from about 1 per cent to about ninety-nine percent of active ingredient, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent.
  • Methods of preparing these formulations or compositions include the step of bringing into association a compound of the present invention with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient.
  • a compound of the present invention may also be administered as a bolus, electuary or paste.
  • the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; humectants, such as glycerol; disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; solution retarding agents, such as paraffin; absorption accelerators, such as quaternary ammonium compounds; wetting agents, such as, for example, cetyl alcohol and glycerol monostea
  • the pharmaceutical compositions may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface- active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • the tablets, and other solid dosage forms of the pharmaceutical compositions of the present invention such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres.
  • compositions may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions that can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
  • These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
  • embedding compositions that can be used include polymeric substances and waxes.
  • the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
  • Liquid dosage forms for oral administration of the compounds of the invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluent commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsif ⁇ ers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluent commonly used in the art, such as, for example, water or other solvents, solubilizing agents and
  • the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • Suspensions in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Formulations of the pharmaceutical compositions of the invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more compounds of the invention with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.
  • suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.
  • Formulations of the present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for the topical or transdermal administration of a compound of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.
  • the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to a compound of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body.
  • dosage forms can be made by dissolving or dispersing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the active compound in a polymer matrix or gel.
  • Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.
  • compositions of this invention suitable for parenteral administration comprise one or more compounds of the invention in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
  • microorganisms Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
  • antibacterial and antifungal agents for example, paraben, chlorobutanol, phenol sorbic acid, and the like.
  • isotonic agents such as sugars, sodium chloride, and the like into the compositions.
  • prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
  • the absorption of the drug in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
  • Injectable depot forms are made by forming microencapsule matrices of the subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissue.
  • the preparations of the present invention may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, etc., administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories. Oral and/or IV administration is preferred.
  • parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
  • systemic administration means the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
  • These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.
  • the compounds of the present invention which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of factors including the activity of the particular compound of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required.
  • the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • a suitable daily dose of a compound of the invention will be that amount of the compound that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above.
  • intravenous and subcutaneous doses of the compounds of this invention for a patient when used for the indicated analgesic effects, will range from about 0.0001 to about 100 mg per kilogram of body weight per day, more preferably from about 0.01 to about 50 mg per kg per day, and still more preferably from about 1.0 to about 100 mg per kg per day.
  • An effective amount is that amount treats a protein kinase-associated disorder.
  • the effective daily dose of the active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.
  • a compound of the present invention While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical composition.
  • Salts of compounds of the present invention having at least one salt-forming group may be prepared in a manner known per se.
  • salts of compounds of the present invention having acid groups may be formed, for example, by treating the compounds with metal compounds, such as alkali metal salts of suitable organic carboxylic acids, e.g., the sodium salt of 2-ethylhexanoic acid, with organic alkali metal or alkaline earth metal compounds, such as the corresponding hydroxides, carbonates or hydrogen carbonates, such as sodium or potassium hydroxide, carbonate or hydrogen carbonate, with corresponding calcium compounds or with ammonia or a suitable organic amine, stoichiometric amounts or only a small excess of the salt-forming agent preferably being used.
  • metal compounds such as alkali metal salts of suitable organic carboxylic acids, e.g., the sodium salt of 2-ethylhexanoic acid
  • organic alkali metal or alkaline earth metal compounds such as the corresponding hydroxides, carbonates or hydrogen carbonates, such
  • Acid addition salts of compounds of the present invention are obtained in customary manner, e.g., by treating the compounds with an acid or a suitable anion exchange reagent.
  • Internal salts of compounds of the present invention containing acid and basic salt-forming groups, e.g., a free carboxy group and a free amino group, may be formed, e.g., by the neutralisation of salts, such as acid addition salts, to the isoelectric point, e.g., with weak bases, or by treatment with ion exchangers.
  • Salts can be converted in customary manner into the free compounds; metal and ammonium salts can be converted, for example, by treatment with suitable acids, and, acid addition salts, for example, by treatment with a suitable basic agent.
  • diastereoisomers can be separated in a manner known per se into the individual isomers; diastereoisomers can be separated, for example, by partitioning between polyphasic solvent mixtures, recrystallisation and/or chromatographic separation, for example over silica gel or by, e.g., medium pressure liquid chromatography over a reversed phase column, and racemates can be separated, for example, by the formation of salts with optically pure salt-forming reagents and separation of the mixture of diastereoisomers so obtainable, for example by means of fractional crystallisation, or by chromatography over optically active column materials.
  • Prodrugs This invention also encompasses pharmaceutical compositions containing, and methods of treating protein kinase-associated disorders through administering, pharmaceutically acceptable prodrugs of compounds of the compounds of the invention.
  • compounds of the invention having free amino, amido, hydroxy or carboxylic groups can be converted into prodrugs.
  • Prodrugs include compounds wherein an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues is covalently joined through an amide or ester bond to a free amino, hydroxy or carboxylic acid group of compounds of the invention.
  • the amino acid residues include but are not limited to the 20 naturally occurring amino acids commonly designated by three letter symbols and also includes 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline homocysteine, homoserine, ornithine and methionine sulfone. Additional types of prodrugs are also encompassed. For instance, free carboxyl groups can be derivatized as amides or alkyl esters.
  • Free hydroxy groups may be derivatized using groups including but not limited to hemisuccinates, phosphate esters, dimethylaminoacetates, and phosphoryloxymethyloxycarbonyls, as outlined in Advanced Drug Delivery Reviews, 1996, 19, 115.
  • Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs, sulfonate esters and sulfate esters of hydroxy groups.
  • acyl group may be an alkyl ester, optionally substituted with groups including but not limited to ether, amine and carboxylic acid functionalities, or where the acyl group is an amino acid ester as described above, are also encompassed.
  • Prodrugs of this type are described in J. Med. Chem. 1996, 39, 10. Free amines can also be derivatized as amides, sulfonamides or phosphonamides. All of these prodrug moieties may incorporate groups including but not limited to ether, amine and carboxylic acid functionalities.
  • a compound of the present invention may also be used in combination with other agents, e.g., an additional protein kinase inhibitor that is or is not a compound of the invention, for treatment of a protein kinase-associated disorder in a subject.
  • additional protein kinase inhibitor that is or is not a compound of the invention
  • combination is meant either a fixed combination in one dosage unit form, or a kit of parts for the combined administration where a compound of the present invention and a combination partner may be administered independently at the same time or separately within time intervals that especially allow that the combination partners show a cooperative, e.g., synergistic, effect, or any combination thereof.
  • the compounds of the invention may be administered, simultaneously or sequentially, with an antiinflammatory, antiproliferative, chemotherapeutic agent, immunosuppressant, anti-cancer, cytotoxic agent or kinase inhibitor other than a compound of the Formula I or salt thereof.
  • the compound of the invention and any additional agent may be formulated in separate dosage forms.
  • the compound of the invention and any additional agent may be formulated together in any combination.
  • the compound of the invention inhibitor may be formulated in one dosage form and the additional agent may be formulated together in another dosage form. Any separate dosage forms may be administered at the same time or different times.
  • composition of this invention comprises an additional agent as described herein.
  • Each component may be present in individual compositions, combination compositions, or in a single composition.
  • BIOLOGICAL ACTIVITY In order to test the CDK4 activity of the compounds of the invention, an ELISA based assay can be utilized, where the enzyme is a purified active CDK4/Cyclin-Dl kinase complex and the substrate is a purified Retinoblastoma (Rb) protein.
  • the active CDK4/Cyclin-Dl kinase complex phosphorylates the Rb substrate at Serine780 residue, and then the phosphorylated Rb/S780 is detected via an antibody specific to the phosphorylated site.
  • the compounds that inhibit the CDK4 kinase activity would inhibit the signal output of the assay. Data acquired for the compounds of the invention using this assay are shown in Table C.
  • the CDK2 assay is a flourescence polarization assay, where the enzyme is a purified active CDK2/Cyclin-A kinase complex and the substrate is a synthesized peptide derived from Histone Hl.
  • This assay utilizes the IMAP technology from Molecular Devices.
  • the active CDK2/Cyclin-A complex phosphorylates the peptide substrate, which is conjugated with the TAMRA tag.
  • the phosphorylated site is then recognized by a metal containing molecule that interacts with the TAMRA tag to induce a high flourescence polarization.
  • the compounds that inhibit the CDK2 kinase activity would inhibit the flourescence output of the assay. Data acquired for the compounds of the invention using this assay are shown in Table A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention a pour objet des composés organiques utilisés pour le traitement, la prévention et/ou l'amélioration de maladies.
PCT/US2007/075771 2006-08-14 2007-08-13 composés organiques et leurs utilisations WO2008022060A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82226706P 2006-08-14 2006-08-14
US60/822,267 2006-08-14

Publications (2)

Publication Number Publication Date
WO2008022060A2 true WO2008022060A2 (fr) 2008-02-21
WO2008022060A3 WO2008022060A3 (fr) 2008-12-31

Family

ID=39083015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/075771 WO2008022060A2 (fr) 2006-08-14 2007-08-13 composés organiques et leurs utilisations

Country Status (1)

Country Link
WO (1) WO2008022060A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445515B2 (en) 2008-12-22 2013-05-21 Chemocentryx, Inc. C5aR antagonists
US9126939B2 (en) 2010-06-24 2015-09-08 Pingchen Fan C5AR antagonists
US9745268B2 (en) 2014-09-29 2017-08-29 Chemocentryx, Inc. Processes and intermediates in the preparation of C5aR antagonists
EP3601264A4 (fr) * 2017-03-22 2021-03-24 Xibin Liao Inhibiteurs de tyrosine kinase de bruton
CN113811533A (zh) * 2019-03-15 2021-12-17 艾特里提治疗有限公司 用于治疗疾病的化合物和方法
US11285138B2 (en) 2016-01-14 2022-03-29 Chemocentryx, Inc. Method of treating C3 glomerulopathy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019828A2 (fr) * 1999-09-17 2001-03-22 Basf Aktiengesellschaft Inhibiteurs de kinase utilises comme agents therapeutiques
WO2004058755A2 (fr) * 2002-12-24 2004-07-15 Biofocus Plc Bibliotheques de composes
WO2004058264A1 (fr) * 2002-12-24 2004-07-15 Biofocus Plc Bibliotheques de composes de derives 2h-spiro(isoquinoline-1,4-piperidine) et composes associes pour des composes de ciblage pouvant se lier au recepteur de la proteine g
WO2005021545A1 (fr) * 2003-09-03 2005-03-10 Galapagos Nv Derives d'imidazo[1,5-a]pyridine ou d'imidazo[1,5-a]piperidine et leur utilisation dans la preparation d'un medicament dirige contre les troubles lies au recepteur 5-ht2a
WO2005037836A2 (fr) * 2003-10-15 2005-04-28 Osi Pharmaceuticals, Inc. Imidazopyrazines utilisees comme inhibiteurs de la tyrosine kinase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019828A2 (fr) * 1999-09-17 2001-03-22 Basf Aktiengesellschaft Inhibiteurs de kinase utilises comme agents therapeutiques
WO2004058755A2 (fr) * 2002-12-24 2004-07-15 Biofocus Plc Bibliotheques de composes
WO2004058264A1 (fr) * 2002-12-24 2004-07-15 Biofocus Plc Bibliotheques de composes de derives 2h-spiro(isoquinoline-1,4-piperidine) et composes associes pour des composes de ciblage pouvant se lier au recepteur de la proteine g
WO2005021545A1 (fr) * 2003-09-03 2005-03-10 Galapagos Nv Derives d'imidazo[1,5-a]pyridine ou d'imidazo[1,5-a]piperidine et leur utilisation dans la preparation d'un medicament dirige contre les troubles lies au recepteur 5-ht2a
WO2005037836A2 (fr) * 2003-10-15 2005-04-28 Osi Pharmaceuticals, Inc. Imidazopyrazines utilisees comme inhibiteurs de la tyrosine kinase

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660897B2 (en) 2008-12-22 2020-05-26 Chemocentryx, Inc. C5aR antagonists
US8906938B2 (en) 2008-12-22 2014-12-09 Chemocentryx, Inc. C5aR antagonists
US8445515B2 (en) 2008-12-22 2013-05-21 Chemocentryx, Inc. C5aR antagonists
US9126939B2 (en) 2010-06-24 2015-09-08 Pingchen Fan C5AR antagonists
US9573897B2 (en) 2010-06-24 2017-02-21 Chemocentryx, Inc. C5AR antagonists
US10035768B2 (en) 2010-06-24 2018-07-31 Chemocentryx, Inc. C5aR antagonists
US9745268B2 (en) 2014-09-29 2017-08-29 Chemocentryx, Inc. Processes and intermediates in the preparation of C5aR antagonists
US10532982B2 (en) 2014-09-29 2020-01-14 Chemocentryx, Inc. Processes and intermediates in the preparation of C5aR antagonists
US10266492B2 (en) 2014-09-29 2019-04-23 Chemocentryx, Inc. Processes and intermediates in the preparation of C5aR antagonists
US11845729B2 (en) 2014-09-29 2023-12-19 Chemocentryx, Inc. Processes and intermediates in the preparation of C5aR antagonists
US11285138B2 (en) 2016-01-14 2022-03-29 Chemocentryx, Inc. Method of treating C3 glomerulopathy
US11779576B2 (en) 2016-01-14 2023-10-10 Chemocentryx, Inc. Method of treating C3 glomerulopathy
EP3601264A4 (fr) * 2017-03-22 2021-03-24 Xibin Liao Inhibiteurs de tyrosine kinase de bruton
AU2018237123B2 (en) * 2017-03-22 2022-08-04 Xibin Liao Bruton's tyrosine kinase inhibitors
US11554118B2 (en) 2017-03-22 2023-01-17 Xibin Liao Bruton's tyrosine kinase inhibitors
IL269152B1 (en) * 2017-03-22 2023-07-01 Liao Xibin Broughton's kinase designers
CN113811533A (zh) * 2019-03-15 2021-12-17 艾特里提治疗有限公司 用于治疗疾病的化合物和方法
EP3938364A4 (fr) * 2019-03-15 2022-01-19 Alterity Therapeutics Limited Composés et méthodes de traitement de maladies

Also Published As

Publication number Publication date
WO2008022060A3 (fr) 2008-12-31

Similar Documents

Publication Publication Date Title
US8324225B2 (en) Pyrrolopyrimidine compounds and their uses
US8367687B2 (en) Pyrazole derivatives
CN106413716B (zh) 通过jak和pi3k抑制剂组合治疗b细胞恶性肿瘤
US10300054B2 (en) Methods for treating antipsychotic-induced weight gain
JP2023029899A (ja) 同種抗体により駆動される慢性移植片対宿主病を処置及び予防する方法
US20200048268A1 (en) Benzodiazepine derivatives, compositions, and methods for treating cognitive impairment
WO2008022060A2 (fr) composés organiques et leurs utilisations
US20220041588A1 (en) Substituted imidazo[1,2-a]pyridine and [1,2,4]triazolo[1,5-a]pyridine compounds as ret kinase inhibitors
US20220142975A1 (en) Pharmaceutical Combination and Use Thereof
US11866423B2 (en) Inhibitors of LRRK2 kinase
JP2022527451A (ja) Pkm2モジュレーターおよびその使用方法
WO2022256808A1 (fr) Polythérapie comprenant un inhibiteur de mat2a et un inhibiteur de prmt de type i
CN109476666A (zh) 作为激酶抑制剂的取代的吡咯并[2,3-d]哒嗪-4-酮和吡唑并[3,4-d]哒嗪-4-酮
CN115996716A (zh) Eif4a抑制剂组合
KR20220132538A (ko) 디하이드로오로테이트 데하이드로게나제를 억제하는 방법 및 조성물
US20090221648A1 (en) Compositions for treatment of cognitive disorders
WO2024059665A1 (fr) Composés chimériques utilisés en tant qu'inhibiteurs de glycogène synthase 1 (gys1) et leurs procédés d'utilisation
NZ719050B2 (en) Combination therapy combining a CDK4/6 inhibitor and a PI3K inhibitor for use in the treatment of cancer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

NENP Non-entry into the national phase in:

Ref country code: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07814015

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07814015

Country of ref document: EP

Kind code of ref document: A2