WO2008020738A1 - Method and apparatus for transmitting/receiving ack/nack in a frequency division multiple access system - Google Patents

Method and apparatus for transmitting/receiving ack/nack in a frequency division multiple access system Download PDF

Info

Publication number
WO2008020738A1
WO2008020738A1 PCT/KR2007/003970 KR2007003970W WO2008020738A1 WO 2008020738 A1 WO2008020738 A1 WO 2008020738A1 KR 2007003970 W KR2007003970 W KR 2007003970W WO 2008020738 A1 WO2008020738 A1 WO 2008020738A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
dch
scch
response channel
Prior art date
Application number
PCT/KR2007/003970
Other languages
French (fr)
Inventor
Youn-Hyoung Heo
Ju-Ho Lee
Sung-Ho Choi
Seung-Hoon Park
Original Assignee
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020070075638A external-priority patent/KR100927877B1/en
Application filed by Samsung Electronics Co., Ltd. filed Critical Samsung Electronics Co., Ltd.
Publication of WO2008020738A1 publication Critical patent/WO2008020738A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency

Definitions

  • the present invention relates to an apparatus and method for transmitting/receiving an ACKnowledgement/Negative ACKnowledgement (ACKTNACK) signal for received packet data in order to support Hybrid Automatic Repeat reQuest (HARQ) in a Frequency Division Multiple Access (FDMA) wireless communication system.
  • ACKTNACK ACKnowledgement/Negative ACKnowledgement
  • HARQ Hybrid Automatic Repeat reQuest
  • FIG. 1 illustrates FDMA.
  • FDMA is a technology for distinguishing physical channels in frequency.
  • all available resources are divided in time and frequency as indicated by reference numeral 101.
  • a minimum block is composed of one symbol in time and one subcarrier in frequency. This is called a Time- Frequency (TF) bin.
  • TF bin is an actual transmission unit carrying a modulation symbol on a physical channel. The total number of TF -bins depends on a total frequency bandwidth and the number of symbols transmittable in a Transmission Time interval (TTI).
  • TTI Transmission Time interval
  • TF bins are allocated to different channels and different User Equipments (UEs). Basically, it is impossible to share one TF bin between different channels or different UEs.
  • UEs User Equipments
  • a TF bin can be shared by covering or spreading the TF bin with a code as with Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • TF bins are purely allocated. Mapping between data symbols and TF bins is equivalent to subcarrier mapping 102. The mapping relationship between a channel and TF bins is signaled beforehand or determined according to a predefined rule.
  • TF bins are allocated to the channel and then the channel with TF bins is allocated to an intended UE.
  • TF bins can be allocated on a UE basis
  • TF bins allocated to a specific channel form a logical channel as indicated by reference numeral 103, which is preferable in terms of signaling.
  • One logical channel (hereinafter, "channel") is composed of a plurality of TF bins and the number of TF bins is determined, taking into account the characteristics of the channel.
  • the lowest data rate of packet data is considered if the channel is a packet data channel, and signaling overhead of information about a scheduled channel is considered if scheduling is carried out.
  • the number of TF bins is determined according to the number of bits transmitted per TTI.
  • a channel to be allocated to a UE is scheduled every TTI or set by higher signaling.
  • DCH Data CHannel
  • packet data symbols 105 for the UE are mapped to the DCH 103 by channel mapping 104 and then mapped to actual TF bins by subcarrier mapping 102.
  • the channel may be mapped to scattered TF bins (e.g. a DCH 106) or successive TF bins (e.g. the DCH 103), depending on whether frequency diversity is to be achieved or according to a TF bin 4 allocation algorithm. Since the channel is a logical channel, when only an allocated channel is transmitted as with a UE, there may not be a need for channel mapping because transmission symbols are simply mapped to predefined TF bins of the allocated channel.
  • HARQ is a technique for increasing a reception success rate by soft- combining initial transmission data with retransmission data without discarding the initial transmission data.
  • a HARQ receiver determines whether a received packet has errors and transmits a HARQ ACK signal or a HARQ NACK signal to a HARQ transmitter according to the determination result. Accordingly, the HARQ transmitter retransmits the HARQ packet or transmits a new HARQ packet according to the received HARQ ACK/NACK signal.
  • HARQ is categorized into synchronous HARQ and asynchronous HARQ according to the timing of retransmission.
  • synchronous HARQ a retransmission occurs a predetermined time after completion of a previous transmission, whereas a retransmission occurs irrespective of the time of a previous transmission in asynchronous HARQ.
  • FIG. 2 illustrates a basic HARQ operation.
  • a HARQ transmitter transmits an initial HARQ packet on a DCH 202 by a predetermined process in step 203.
  • a HARQ receiver decodes the initial HARQ packet and determines whether the initial HARQ packet has errors by a Cyclic Redundancy Check (CRC) check.
  • CRC Cyclic Redundancy Check
  • the HARQ receiver stores the HARQ packet in a buffer and transmits an HARQ NACK to the HARQ transmitter on an ACK CHannel (ACKCH) 202 in step 205.
  • ACKCH ACK CHannel
  • the HARQ transmitter retransmits the HARQ packet.
  • the HARQ receiver soft-combines the stored HARQ packet with the retransmission HARQ packet and performs a CRC check in step 207.
  • the HARQ receiver stores the HARQ packet in the buffer and transmits an HARQ NACK to the HARQ transmitter. However, if decoding of the combined HARQ packet is successful, the HARQ receiver transmits an HARQ ACK to the HARQ transmitter in step 208.
  • the HARQ transmitter repeats the above operation until it receives an HARQ ACK from the HARQ receiver or the number of retransmissions for the HARQ packet reaches a predetermined retransmission number.
  • a dedicated channel is allocated for a UE so that the UE can transmit an ACK/NACK signal.
  • CDMA Code Division Multiple Access
  • the total amount of available resources is limited by transmit power or reception interference level rather than it is directly related to the number of codes. Therefore, allocation of a code to each UE is not a significant problem in terms of resource utilization even if the UE does not use the dedicated channel.
  • T-F resources are orthogonal and the amount of T-F resources directly affects that - A -
  • FIG. 3 illustrates one-to-one mapping between DCHs and ACKCHs.
  • reference numerals 302 to 305 are DCHs and reference numerals 307 to 310 denote ACKCHs.
  • the DCHs 302 to 305 are mapped to the ACKCHs 307 to 310 in a one-to-one correspondence and an ACK/NACK signal for a received DCH is transmitted on a predetermined ACKCH mapped to the DCH. If packet data is received on a first DCH 302 (DCH #1), an ACK/NACK signal for the packet data is transmitted on a first ACKCH 307 (ACKCH #1). If packet data is received on a second DCH 303 (DCH #2), an ACK/NACK signal for the packet data is transmitted on a second ACKCH 308 (ACKCH #2).
  • the mapping between the ACKCHs and the DCHs enables ACK/NACK transmission without allocating dedicated frequent resources to UEs.
  • FIG. 18 illustrates one-to-one mapping between SCCHs and ACKCHs.
  • reference numerals 1802 to 1805 are SCCHs and reference numerals 1807 to 1810 denote ACKCHs.
  • the SCCHs 1802 to 1805 are mapped to the ACKCHs 1807 to 1810 in a one-to-one correspondence and an ACK/NACK signal for a received DCH is transmitted on a predetermined ACKCH mapped to an SCCH by which the DCH has been scheduled. If scheduling information about packet data is received on a first SCCH 1802 (SCCH #1), an ACK/NACK signal for the packet data is transmitted on a first ACKCH 1807 (ACKCH #1). If scheduling information about packet data is received on a second SCCH 1803 (SCCH #2), an ACK/NACK signal for the packet data is transmitted on a second ACKCH 1808 (ACKCH #2). ACK/NACK repetition will be described below.
  • an ACK/NACK TTI is equal in length to a TTI of a general downlink frame or an uplink frame.
  • MS Mobile Station
  • ACK/NACK transmission When a Mobile Station (MS) at a cell boundary needs a transmit power exceeding a maximum allowed power, for ACK/NACK transmission, it transmits an ACK/NACK signal with the maximum allowed power. The resulting decreased received signal level renders the ACK/NACK transmission unreliable.
  • HSDPA High Speed Downlink Packet Access
  • ACK/NACK repetition setting information Information about whether an ACK/NACK signal is repeated (hereinafter, referred to as ACK/NACK repetition setting information) is set in an upper-layer signaling message or a Medium Access Control (MAC) message by a network.
  • MAC Medium Access Control
  • a repetition factor should be set in order to indicate whether an ACK/NACK signal is repeated and how many times the repetition occurs. For example, if the repetition factor is a non-zero number, the ACK/NACK signal is repeated as many times as the repetition factor. If the repetition factor is 0, the ACK/NACK signal is transmitted only once.
  • one cell has two UEs, UE #1 and UE #2.
  • UE #1 is located at a cell boundary and UE #2 is near to a Node B at the center of the cell.
  • three ACK/NACK repetitions are set for UE #1 so that it can transmit an ACK/NACK signal reliably. Since UE #2 has sufficient transmit power, UE #2 is supposed to transmit an ACK/NACK signal only once.
  • ACK/NACK repetition is viable on the premise that an ACKCH can be allocated to a UE for a plurality of TTIs.
  • data is transmitted on a DCH only during one TTI and the one-to-one mapping between ACKCHs and DCHs does not allow for allocation of an ACKCH mapped to the DCH long enough for ACK/NACK transmission.
  • SCCHs are also transmitted on a TTI basis, the one-to-one mapping between SCCHs and ACKCHs illustrated in FIG. 18 leads to the same problem.
  • An aspect of the present invention is to address at least the problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a method and apparatus for supporting ACK/NACK repetition when ACKCHs are mapped to DCHs or SCCHs in an FDMA wireless communication system.
  • Another aspect of the present invention is to provide a method and apparatus for enabling ACK/NACK repetition by allocating more ACKCHs than SCCHs or SCCHs in an FDMA wireless communication system.
  • a method for transmitting an ACK/NACK signal to support a retransmission of packet data received from a Node B in a UE in an FDMA wireless communication system in which the UE generates an ACK/NACK signal for received packet data, determines whether the UE is set to support ACK/NACK repetition, transmits the ACK/NACK signal on a basic response channel mapped to one of a DCH on which the packet data was received and an SCCH carrying scheduling information about the packet data, if the UE is not set to support ACK/NACK repetition, and selects one of supplementary response channels for- each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition and repeatedly transmits the ACK/NACK signal on the selected supplementary response channel according to a predetermined repetition factor, if the UE is set to support ACK/NACK repetition.
  • a method for receiving an ACK/NACK signal from a UE to support a retransmission of packet data in an FDMA wireless communication system in which it is determined whether the UE is set to support ACK/NACK repetition, an ACK/NACK signal for transmitted packet data is received on a basic response channel mapped to one of a DCH on which the packet data was transmitted and an SCCH on which information about the packet data was transmitted, if the UE is not set to support ACK/NACK repetition, and one of supplementary response channels is selected for each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition, and the ACK/NACK signal is received repeatedly on the selected supplementary response channel according to a predetermined repetition factor, if the UE is set to support ACK/NACK repetition.
  • an apparatus of a UE for transmitting an ACK/NACK signal to support a retransmission of packet data received from a Node B in an FDMA wireless communication system in which a response channel decider selects a response channel that will carry an ACK/NACK signal according to information about all response channels, one of information about a DCH on which packet data was received and information about an SCCH on which scheduling information about the packet data was received, and a repetition factor for the ACK/NACK signal, a response generator generates the ACK/NACK signal for the packet data, and a multiplexer maps the ACK/NACK signal to physical layer resources corresponding to the selected response channel and transmits the ACK/NACK signal repeatedly according to the repetition factor.
  • an apparatus for receiving an ACK/NACK signal from a UE to support a retransmission of packet data to the UE in an 1 FDMA wireless communication system in which a response channel decider selects a response channel on which an ACK/NACK signal will be received according to information about all response channels, one of information about a DCH on which packet data was transmitted and information about an SCCH on which scheduling information about the packet data was transmitted, and a repetition factor for the ACK/NACK signal, a demultiplexer extracts the ACK/NACK signal from signals received on physical channels according to the selected response channel, and a response decoder decodes the extracted the ACK/NACK signal and acquires ACKNACK information for the packet data transmitted to the UE.
  • FIG. 1 illustrates FDMA
  • FIG. 2 illustrates a basic HARQ operation
  • FIG. 3 illustrates one-to-one mapping between DCHs and ACKCHs
  • FIG. 4 illustrates a problem encountered with ACK/NACK repetition when DCHs are mapped to ACKCHs in a one-to-one correspondence
  • FIG. 5 illustrates ACKCH allocation according to a first exemplary embodiment of the present invention
  • FIG. 6 illustrates ACK/NACK transmission according to the first exemplary embodiment of the present invention
  • FIG. 7 is a flowchart illustrating ACK/NACK selection according to the first exemplary embodiment of the present invention.
  • FIG. 8 is a block diagram of an ACK/NACK transmitter according to the first exemplary embodiment of the present invention.
  • FIG. 9 is a block diagram of an ACK/NACK receiver according to the first exemplary embodiment of the present invention.
  • FIG. 10 illustrates ACKCH allocation according to a second exemplary embodiment of the present invention
  • FIG. 11 illustrates ACK/NACK transmission according to the second exemplary embodiment of the present invention
  • FIG. 12 is a flowchart illustrating ACK/NACK selection according to the second exemplary embodiment of the present invention.
  • FIG. 13 illustrates ACKCH allocation according to a third exemplary embodiment of the present invention
  • FIG. 14 illustrates ACK/NACK transmission according to the third exemplary embodiment of the present invention.
  • FIG. 15 illustrates ACKCH allocation according to a fourth exemplary embodiment of the present invention.
  • FIG. 16 illustrates ACK/NACK transmission according to the fourth exemplary embodiment of the present invention
  • FIG. 17 is a flowchart illustrating ACK/NACK selection according to the fourth exemplary embodiment of the present invention.
  • FIG. 18 illustrates one-to-one mapping between SCCHs and ACKCHs.
  • Exemplary embodiments of the present invention provide a method for solving a problem encountered with ACK/NACK repetition in the case where ACKCHs are mapped to DCHs or SCCHs and thus shared among UEs in an FDMA wireless communication system.
  • the present invention allocates more ACKCHs than DCHs or SCCHs to support ACK/NACK repetition. Therefore, the following description is made of a method for allocating supplementary ACKCHs, a method for selecting an ACKCH in a UE that will transmit an ACK/NACK signal repeatedly, a transmitter for transmitting an ACK/NACK signal, and a receiver for receiving an ACK/NACK signal. ' ;
  • supplementary ACKCHs are allocated, besides basic ACKCHs. If a UE is supposed to transmit an ACK/NACK signal repeatedly, the UE always transmits repeated ACK/NACK signals on a supplementary ACKCH.
  • FIG. 5 illustrates ACKCH allocation according to the first exemplary embodiment of the present invention.
  • three DCHs 501 (or SCCHs) are allocated.
  • six ACKCHs 502 and 503 are allocated to support ACK/NACK repetition in this exemplary embodiment of the present invention.
  • Three of the ACKCHs 502 and 503 are basic ones 502 and the other three are supplemental ones 503.
  • UEs transmit ACK/NACK signals in the manner illustrated in FIG. 6.
  • FIG. 6 illustrates ACK/NACK transmission according to the first exemplary embodiment of the present invention.
  • UE #1 is set to support ACK/NACK repetition, while UE #2 is not set to support ACK/NACK repetition.
  • a repetition factor R for UE #1 is 2.
  • a UE or a Node B uses a parameter that determines a repetition number in calculating a retransmission time point, to thereby secure an appropriate processing time.
  • FIG. 7 is a flowchart illustrating ACK/NACK selection in a UE according to the exemplary embodiment of the present invention.
  • the UE demodulates received packet data and generates an ACK/NACK signal depending on whether the packet data has errors in step 701.
  • the UE checks whether it is set to support ACK/NACK repetition to select an ACKCH that will carry the ACK/NACK signal. If ACK/NACK repetition setting information is set to repetition, or a repetition factor R is larger than 0, the UE is supposed to repeat the ACK/NACK signal.
  • the UE If the UE is not supposed to repeat the ACK/NACK signal, it transmits the ACK/NACK signal on a basic ACKCH in steps 703 and 704.
  • the basic ACKCH is determined according to a DCH on which the packet data has been received or an SCCH that delivers scheduling information about the packet data.
  • a Node B operates in a similar manner to the UE. In the method illustrated in FIG. 7, the Node B selects an ACKCH, receives the ACK/NACK signal from the UE on the selected ACKCH, and decodes it.
  • FIG. 8 is a block diagram of an ACK/NACK transmitter according to the first exemplary embodiment of the present invention.
  • an ACKCH decider 801 receives information about all ACKCHs 806, information about a received DCH (or information about an SCCH carrying scheduling information about the DCH) 802, and a repetition factor R 802 and selects an ACKCH 807 on which to transmit an ACK/NACK signal at a current transmission time point.
  • the total ACKCH information 806 may be preset or notified by upper-layer signaling.
  • the DCH information or the SCCH information is received from a receiver that has received packet data and the repetition factor R is received by upper-layer signaling.
  • An ACKCH generator 803 encodes or modulates an actual ACK/NACK bit 811 generated according to the reception result of the packet data in a predetermined format.
  • a Multiplexer (MUX) 804 maps the ACK/NACK signal received from the ACKCH generator 803 to predetermined physical layer resources according to ACKCH information 807 indicating the selected ACKCH received from the ACKCH decider 801.
  • An Inverse Fast Fourier Transform (IFFT) processor 805 IFFT-processes the mapped ACK/NACK signal.
  • FIG. 9 is a block diagram of an ACK/NACK receiver according to the first exemplary embodiment of the present invention.
  • an ACKCH decider 906 receives total ACKCH information 905, and information about a transmitted DCH or SCCH and a repetition factor R 901, and determines an ACKCH to receive at a current time point.
  • the total ACKCH information may be preset or informed by upper-layer signaling.
  • the DCH or SCCH information is received from a transmitter that has transmitted packet data and the repetition factor R is notified by upper-layer signaling.
  • a Demultiplexer (DEMUX) 903 is aware of physical layer resources corresponding to the determined ACKCH based on ACKCH information 907 indicating the determined ACKCH. That is, the DEMUX 903 extracts the ACKCH from all physical channel resources received from a Fast Fourier Transform (FFT) processor 902.
  • FFT Fast Fourier Transform
  • a ACKCH decoder 904 acquires an actual ACK/NACK signal 908 by decoding and demodulating the ACKCH.
  • a shortcoming of the first exemplary embodiment of the present invention is that successive allocation of the same DCH to UEs that support ACK/NACK repetition may cause an ACK/NACK collision between the UEs because the same supplementary ACKCH is used to deliver repeated ACK/NACK signals.
  • a second exemplary embodiment of the present invention provides a method for supporting ACK/NACK repetition by allocating, to each UE, a supplementary ACKCHs for each ACK/NACK repetition of the UE.
  • FIG. 10 illustrates ACKCH allocation according to the second exemplary embodiment of the present invention.
  • three DCHs 1001 are allocated.
  • nine ACKCHs 1002 and 1003 are allocated to support ACK/NACK repetition in this exemplary embodiment of the present invention.
  • Three of the ACKCHs 1002 and 1003 are basic ACKCHs 1002 and the other six are supplemental ACKCHs 1003.
  • a repetition factor R that can support ACK/NACK repetition without collision in a cell is 2.
  • an algorithm is proposed to select an ACKCH to deliver an ACK/NACK signal at a given time point from among a plurality of ACKCHs.
  • An ACKCH can be selected according to Equation (1):
  • a different ACKCH is selected for each ACK/NACK repetition according to the current number of ACK/NACK repetitions and the number of a DCH or SCCH.
  • a UE selects a different ACKCH with respect to a different packet data reception time, using a frame number instead of the current number of ACK/NACK repetitions.
  • the frame number is an absolute count of frames.
  • the frame number is a system frame number or a connection frame number in a WCDMA system.
  • FIG. 11 illustrates ACK/NACK transmission according to the second exemplary embodiment of the present invention.
  • UE #1 and UE #2 are set to support ACK/NACK repetition.
  • a repetition factor R for UE #1 and UE#2 is 2.
  • ACKCH #4 is selected by the algorithm described in Equation (1) or Equation (2).
  • UE #2 transmits ACK/NACK signals on the same ACKCHs as those of UE #1, as indicated by reference numeral 1115.
  • UE #1 and UE #2 transmit ACK/NACK signals at different times, there is no collision between them.
  • FIG. 12 is a flowchart illustrating ACK/NACK selection according to the second exemplary embodiment of the present invention.
  • a UE demodulates received packet data and generates an ACK/NACK signal depending on whether the packet data has errors in step 1201.
  • the UE checks whether the UE is set to support ACK/NACK repetition in order to select an ACKCH that will carry the ACK/NACK signal. If ACK/NACK repetition setting information is set to repetition or a repetition factor R is larger than 0, the UE will repeat the ACK/NACK signal.
  • the UE selects a basic ACKCH in a general ACKCH selection method and transmits the ACK/NACK signal on the basic ACKCH in steps 1203 and 1204.
  • the basic ACKCH is determined according to a DCH on which the packet data has been received or an SCCH that delivers scheduling information about the packet data.
  • the UE performs (R+ 1) loops because as many ACK/NACK repetitions as the repetition factor R must occur in step 1205. More specifically, the UE selects an ACKCH by Equation (1) or Equation (2) in step 1206 and transmits the ACK/NACK signal on the selected ACKCH in step 1207.
  • a Node B operates in a similar manner to the operation of the UE.
  • the Node B selects an ACKCH, receives the ACK/NACK signal from the UE on the selected ACKCH, and decodes it.
  • an ACK/NACK transmitter and a ACK/NACK receiver are configured as in the first exemplary embodiment of the present invention, except that when Equation (2) is used, an ACKCH decider further receives a frame number as an input.
  • a third exemplary embodiment of the present invention proposes a method for a limited number of ACKCHs for each repetition to increase resource use efficiency.
  • FIG. 13 illustrates ACKCH allocation according to a third exemplary embodiment of the present invention.
  • MO basic ACKCHs 1302 are allocated for as many DCHs or SCCHs. Thus, MO is the number of the DCHs or SCCHs. Ml ACKCHs 1303 are allocated for a first ACK/NACK repetition and M2 ACKCHs 1304 are allocated for a second ACK/NACK repetition. If more ACK/NACK repetitions are allowed, M3, M4 . . . ACKCHs can be additionally allocated. MO, Ml and M2 are preset, or notified by upper-layer signaling.
  • an ACKCH to be transmitted at a given time point is selected according to Equation (3)
  • Equation (3) is an algorithm for selecting a different ACKCH for a different ACK/NACK repetition using the current number of ACK/NACK transmissions, information about a DCH or an SCCH, and information about ACKCHs allocated for each repetition number.
  • the number of ACKCHs set for a repetition is less than the total number of DCHs, a collision may occur during ACK/NACK transmission.
  • This collision can be avoided by scheduling DCHs such that UEs support ACK/NACK repetition do not select the same ACKCH in a scheduler. For example, if DCH #1 (or SCCH #1) and DCH #3 (or SCCH #3) are simultaneously allocated to two UEs supporting ACK/NACK repetition, a collision occurs between them. In this case, DCH #1 (or SCCH #1) and DCH #2 (or SCCH #2) are allocated to the two UEs, while DCH #3 (or SCCH #3) is allocated to another UE that does not support ACK/NACK repetition. Then the collision does not occur.
  • FIG. 14 illustrates ACK/NACK transmission according to the third exemplary embodiment of the present invention.
  • UE #1 and UE #2 are set to support ACK/NACK repetition.
  • UE #1 selects ACKCHs by Equation (3).
  • the UE and a Node B operate in the same manner to as in the second exemplary embodiment of the present invention, except that Equation (3) is used instead of Equation (1) or Equation (2) in selecting an ACKCH in step 1206 of FIG. 12.
  • an ACK/NACK transmitter and a ACK/NACK receiver are configured as in the first exemplary embodiment of the present invention and thus their description is not provided herein.
  • a fourth exemplary embodiment of the present invention is proposed in which a dedicated ACKCH is allocated to a UE supporting ACK/NACK repetition.
  • FIG. 15 illustrates ACKCH allocation according to the fourth exemplary embodiment of the present invention.
  • basic ACKCHs 1502 are allocated in a one-to-one correspondence with DCHs or SCCHs.
  • ACKCHs 1503 and 1504 are allocated for UEs supporting ACK/NACK repetition.
  • UE #1 and UE #3 support ACK/NACK repetition. Since the basic ACKCHs 1502 are shared in a cell, information about the basic ACKCHs 1502 is provided using fixed resources defined by a specification or in system information.
  • ACK/NACK information is provided to UEs supporting ACK/NACK repetition such as UE #1 and UE #3, along with channel information about the UEs by upper-layer signaling.
  • different ACKCHs are allocated to UE #1 and UE #3, but a Node B scheduler may allocate the same ACKCH to UE #1 and UE #3 and schedule it in the manner that prevents ACK/NACK collision between them.
  • FIG. 16 illustrates ACK/NACK transmission according to the fourth exemplary embodiment of the present invention.
  • UE #1 is set to support ACK/NACK repetition, while UE #2 is set to not support ACK/NACK repetition.
  • a repetition factor R for UE #1 is 2.
  • FIG. 17 is a flowchart illustrating ACK/NACK selection in a UE according to the fourth exemplary embodiment of the present invention.
  • the UE demodulates received packet data and generates an ACK/NACK signal depending on whether the packet data has errors in step 1701.
  • the UE checks whether it is set to support ACK/NACK repetition to select an ACKCH that will carry the ACK/NACK signal. If ACK/NACK repetition setting information is set to repetition, or a repetition factor R is larger than 0, the UE will repeat the ACK/NACK signal.
  • the UE If the UE does not repeat the ACK/NACK signal, it selects a basic ACKCH in the general ACKCH selection method and transmits the ACK/NACK signal on the selected basic ACKCH in steps 1703 and 1704.
  • the basic ACKCH is determined according to a DCH on which the packet data has been received or an SCCH that delivers scheduling information about the packet data.
  • the UE If the UE repeats the ACK/NACK signal, it performs (R+ 1) loops because as many ACK/NACK repetitions as the repetition factor R have to occur in step 1705. Without selecting a basic ACKCH for each ACK/NACK transmission, the UE transmits/retransmits the ACK/NACK signal on a dedicated ACKCH allocated to the UE in step 1706.
  • a Node B operates in a similar manner to the operation of the UE.
  • the Node B selects an ACKCH, receives the ACK/NACK signal from the UE on the selected ACKCH, and decodes it.
  • the present invention supports ACK/NACK repetition when ACKCHs are mapped to DCHs or SCCHs in an FDMA wireless communication system.
  • ACK/NACK signals can be retransmitted without collision between UEs that support ACK/NACK repetition, even a UE remote from a Node B can transmit an ACK/NACK signal reliably, thereby expanding cell coverage.

Abstract

A method and apparatus for transmitting/receiving an ACK/NACK signal to support packet data retransmission in an FDMA wireless communication system are provided, in which an UE generates an ACK/NACK signal for received packet data, determines whether the UE is set to support ACK/NACK repetition, transmits the ACK/NACK signal on a basic response channel mapped to one of a DCH on which the packet data was received and an SCCH carrying scheduling information about the packet data, if the UE is not set to support ACK/NACK repetition, and selects one of supplementary response channels for each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition and repeatedly transmits the ACK/NACK signal on the selected supplementary response channel according to a predetermined repetition factor, if the UE is set to support ACK/NACK repetition.

Description

METHOD AND APPARATUS FOR TRANSMITTING/RECEIVING ACK/NACK IN A FREQUENCY DIVISION MULTIPLE ACCESS
SYSTEM
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus and method for transmitting/receiving an ACKnowledgement/Negative ACKnowledgement (ACKTNACK) signal for received packet data in order to support Hybrid Automatic Repeat reQuest (HARQ) in a Frequency Division Multiple Access (FDMA) wireless communication system.
2. Description of the Related Art
] With reference to FIG. 1, FDMA will first be described below. FIG. 1 illustrates FDMA.
Referring to FIG. 1, FDMA is a technology for distinguishing physical channels in frequency. In general, all available resources are divided in time and frequency as indicated by reference numeral 101. A minimum block is composed of one symbol in time and one subcarrier in frequency. This is called a Time- Frequency (TF) bin. A TF bin is an actual transmission unit carrying a modulation symbol on a physical channel. The total number of TF -bins depends on a total frequency bandwidth and the number of symbols transmittable in a Transmission Time interval (TTI).
In FDMA, different TF bins are allocated to different channels and different User Equipments (UEs). Basically, it is impossible to share one TF bin between different channels or different UEs. However, to achieve time diversity, frequency diversity, or spatial diversity for a low-rate channel, a TF bin can be shared by covering or spreading the TF bin with a code as with Code Division Multiplexing (CDM). For transmission of high-rate packet data, TF bins are purely allocated. Mapping between data symbols and TF bins is equivalent to subcarrier mapping 102. The mapping relationship between a channel and TF bins is signaled beforehand or determined according to a predefined rule. Since a channel carrying packet data or a channel carrying signaling data is allocated on a UE basis, TF bins are allocated to the channel and then the channel with TF bins is allocated to an intended UE. Although TF bins can be allocated on a UE basis, TF bins allocated to a specific channel form a logical channel as indicated by reference numeral 103, which is preferable in terms of signaling. One logical channel (hereinafter, "channel") is composed of a plurality of TF bins and the number of TF bins is determined, taking into account the characteristics of the channel. In determining the number of TF bins for a channel, the lowest data rate of packet data is considered if the channel is a packet data channel, and signaling overhead of information about a scheduled channel is considered if scheduling is carried out. For a control channel, the number of TF bins is determined according to the number of bits transmitted per TTI.
A channel to be allocated to a UE is scheduled every TTI or set by higher signaling. In the illustrated case of FIG. 1, if a Data CHannel (DCH) 103 is allocated to a UE, packet data symbols 105 for the UE are mapped to the DCH 103 by channel mapping 104 and then mapped to actual TF bins by subcarrier mapping 102. During the subcarrier mapping 102, the channel may be mapped to scattered TF bins (e.g. a DCH 106) or successive TF bins (e.g. the DCH 103), depending on whether frequency diversity is to be achieved or according to a TF bin 4 allocation algorithm. Since the channel is a logical channel, when only an allocated channel is transmitted as with a UE, there may not be a need for channel mapping because transmission symbols are simply mapped to predefined TF bins of the allocated channel.
HARQ is a technique for increasing a reception success rate by soft- combining initial transmission data with retransmission data without discarding the initial transmission data. A HARQ receiver determines whether a received packet has errors and transmits a HARQ ACK signal or a HARQ NACK signal to a HARQ transmitter according to the determination result. Accordingly, the HARQ transmitter retransmits the HARQ packet or transmits a new HARQ packet according to the received HARQ ACK/NACK signal.
HARQ is categorized into synchronous HARQ and asynchronous HARQ according to the timing of retransmission. In synchronous HARQ, a retransmission occurs a predetermined time after completion of a previous transmission, whereas a retransmission occurs irrespective of the time of a previous transmission in asynchronous HARQ.
With reference to FIG. 2, a synchronous HARQ operation will be described in more detail. FIG. 2 illustrates a basic HARQ operation.
Referring to FIG. 2, a HARQ transmitter transmits an initial HARQ packet on a DCH 202 by a predetermined process in step 203. A HARQ receiver decodes the initial HARQ packet and determines whether the initial HARQ packet has errors by a Cyclic Redundancy Check (CRC) check. In the presence of errors, the HARQ receiver stores the HARQ packet in a buffer and transmits an HARQ NACK to the HARQ transmitter on an ACK CHannel (ACKCH) 202 in step 205. In step 206, the HARQ transmitter retransmits the HARQ packet. The HARQ receiver soft-combines the stored HARQ packet with the retransmission HARQ packet and performs a CRC check in step 207. If the combined HARQ packet still has errors, the HARQ receiver stores the HARQ packet in the buffer and transmits an HARQ NACK to the HARQ transmitter. However, if decoding of the combined HARQ packet is successful, the HARQ receiver transmits an HARQ ACK to the HARQ transmitter in step 208.
The HARQ transmitter repeats the above operation until it receives an HARQ ACK from the HARQ receiver or the number of retransmissions for the HARQ packet reaches a predetermined retransmission number.
Now an ACK/NACK transmission method will be described.
Conventionally, a dedicated channel is allocated for a UE so that the UE can transmit an ACK/NACK signal. Under an environment where channels are non-orthogonal as with Code Division Multiple Access (CDMA), the total amount of available resources is limited by transmit power or reception interference level rather than it is directly related to the number of codes. Therefore, allocation of a code to each UE is not a significant problem in terms of resource utilization even if the UE does not use the dedicated channel. However, T-F resources are orthogonal and the amount of T-F resources directly affects that - A -
of available resources in FDM. Hence, when T-F resources allocated to an ACKCH are not used, it is a waste of resources. In other words, dedicated allocation of resources for ACK/NACK transmission on a UE-by-UE basis is inefficient in terms of resource utilization in an FDMA system.
In this context, one-to-one mapping between ACKCHs and DCHs or Shared Control CHannels (SCCHs) has been proposed and is under discussion in order to support HARQ efficiently in the FDMA system.
FIG. 3 illustrates one-to-one mapping between DCHs and ACKCHs.
Referring to FIG. 3, reference numerals 302 to 305 are DCHs and reference numerals 307 to 310 denote ACKCHs. The DCHs 302 to 305 are mapped to the ACKCHs 307 to 310 in a one-to-one correspondence and an ACK/NACK signal for a received DCH is transmitted on a predetermined ACKCH mapped to the DCH. If packet data is received on a first DCH 302 (DCH #1), an ACK/NACK signal for the packet data is transmitted on a first ACKCH 307 (ACKCH #1). If packet data is received on a second DCH 303 (DCH #2), an ACK/NACK signal for the packet data is transmitted on a second ACKCH 308 (ACKCH #2). The mapping between the ACKCHs and the DCHs enables ACK/NACK transmission without allocating dedicated frequent resources to UEs.
FIG. 18 illustrates one-to-one mapping between SCCHs and ACKCHs.
Referring to FIG. 18, reference numerals 1802 to 1805 are SCCHs and reference numerals 1807 to 1810 denote ACKCHs. The SCCHs 1802 to 1805 are mapped to the ACKCHs 1807 to 1810 in a one-to-one correspondence and an ACK/NACK signal for a received DCH is transmitted on a predetermined ACKCH mapped to an SCCH by which the DCH has been scheduled. If scheduling information about packet data is received on a first SCCH 1802 (SCCH #1), an ACK/NACK signal for the packet data is transmitted on a first ACKCH 1807 (ACKCH #1). If scheduling information about packet data is received on a second SCCH 1803 (SCCH #2), an ACK/NACK signal for the packet data is transmitted on a second ACKCH 1808 (ACKCH #2). ACK/NACK repetition will be described below.
Typically, an ACK/NACK TTI is equal in length to a TTI of a general downlink frame or an uplink frame. When a Mobile Station (MS) at a cell boundary needs a transmit power exceeding a maximum allowed power, for ACK/NACK transmission, it transmits an ACK/NACK signal with the maximum allowed power. The resulting decreased received signal level renders the ACK/NACK transmission unreliable. To avert this problem, a High Speed Downlink Packet Access (HSDPA) system repeats the same ACK/NACK signal, so that instantaneous power level requirements are decreased as much as a repetition number and thus the ACK/NACK signal can be transmitted within a maximum allowed power level. Information about whether an ACK/NACK signal is repeated (hereinafter, referred to as ACK/NACK repetition setting information) is set in an upper-layer signaling message or a Medium Access Control (MAC) message by a network. ' ■
For ACK/NACK repetition, a repetition factor should be set in order to indicate whether an ACK/NACK signal is repeated and how many times the repetition occurs. For example, if the repetition factor is a non-zero number, the ACK/NACK signal is repeated as many times as the repetition factor. If the repetition factor is 0, the ACK/NACK signal is transmitted only once.
When a system with ACKCHs mapped to DCHs or SCCHs supports ACK/NACK repetition, it faces some problems, which will be addressed with reference to FIG. 4. In the illustrated case of FIG. 4, one cell has two UEs, UE #1 and UE #2. UE #1 is located at a cell boundary and UE #2 is near to a Node B at the center of the cell.
First, one-to-one mapping between DCHs and ACKCHs will be described.
Referring to FIG. 4, three ACK/NACK repetitions are set for UE #1 so that it can transmit an ACK/NACK signal reliably. Since UE #2 has sufficient transmit power, UE #2 is supposed to transmit an ACK/NACK signal only once.
Upon receipt of packet data on a first DCH 402 (DCH #1) in step 405, UE #1 transmits an ACK/NACK signal on a first ACKCH 402 (ACKCH #1) at time k=4 in step 407 and then repeats the ACK/NACK signals on ACKCH #1 at time k=5 and k=6 in steps 408 and 409. Meanwhile, a Node B may transmit packet data to UE #2 on DCH #1 during the next TTI through scheduling in step 406. Then UE #2 transmits an ACK/NACK signal for the received packet data on ACKCH #1 at time k=5 in step 410. Thus, the ACK/NACK signals from UE #1 and UE #2 collide on ACKCH #1 at time k=5. This data collision occurs because UEs share the ACKCHs and the DCHs are mapped to the ACKCHs in a one-to- one correspondence.
ACK/NACK repetition is viable on the premise that an ACKCH can be allocated to a UE for a plurality of TTIs. However, data is transmitted on a DCH only during one TTI and the one-to-one mapping between ACKCHs and DCHs does not allow for allocation of an ACKCH mapped to the DCH long enough for ACK/NACK transmission. As SCCHs are also transmitted on a TTI basis, the one-to-one mapping between SCCHs and ACKCHs illustrated in FIG. 18 leads to the same problem.
SUMMARY OF THE INVENTION
An aspect of the present invention is to address at least the problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a method and apparatus for supporting ACK/NACK repetition when ACKCHs are mapped to DCHs or SCCHs in an FDMA wireless communication system.
Another aspect of the present invention is to provide a method and apparatus for enabling ACK/NACK repetition by allocating more ACKCHs than SCCHs or SCCHs in an FDMA wireless communication system.
A further aspect of the present invention is to provide a method and apparatus for selecting a supplementary ACKCH for ACK/NACK repetition, when basic ACKCHs are allocated for as many DCHs or SCCHs and simultaneously, supplementary ACKCHs are allocated in an FDMA wireless communication system. Still another aspect of the present invention is to provide a method and apparatus for supporting ACK/NACK repetition by allocating a supplementary ACKCH dedicatedly to a UE that will repeats an ACK/NACK signal in an FDMA wireless communication system.
In accordance with an aspect of exemplary embodiments of the present invention, there is provided a method for transmitting an ACK/NACK signal to support a retransmission of packet data received from a Node B in a UE in an FDMA wireless communication system, in which the UE generates an ACK/NACK signal for received packet data, determines whether the UE is set to support ACK/NACK repetition, transmits the ACK/NACK signal on a basic response channel mapped to one of a DCH on which the packet data was received and an SCCH carrying scheduling information about the packet data, if the UE is not set to support ACK/NACK repetition, and selects one of supplementary response channels for- each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition and repeatedly transmits the ACK/NACK signal on the selected supplementary response channel according to a predetermined repetition factor, if the UE is set to support ACK/NACK repetition.
In accordance with an aspect of exemplary embodiments of the present invention, there is provided a method for receiving an ACK/NACK signal from a UE to support a retransmission of packet data in an FDMA wireless communication system, in which it is determined whether the UE is set to support ACK/NACK repetition, an ACK/NACK signal for transmitted packet data is received on a basic response channel mapped to one of a DCH on which the packet data was transmitted and an SCCH on which information about the packet data was transmitted, if the UE is not set to support ACK/NACK repetition, and one of supplementary response channels is selected for each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition, and the ACK/NACK signal is received repeatedly on the selected supplementary response channel according to a predetermined repetition factor, if the UE is set to support ACK/NACK repetition.
In accordance with an aspect of exemplary embodiments of the present invention, there is provided an apparatus of a UE for transmitting an ACK/NACK signal to support a retransmission of packet data received from a Node B in an FDMA wireless communication system, in which a response channel decider selects a response channel that will carry an ACK/NACK signal according to information about all response channels, one of information about a DCH on which packet data was received and information about an SCCH on which scheduling information about the packet data was received, and a repetition factor for the ACK/NACK signal, a response generator generates the ACK/NACK signal for the packet data, and a multiplexer maps the ACK/NACK signal to physical layer resources corresponding to the selected response channel and transmits the ACK/NACK signal repeatedly according to the repetition factor.
In accordance with an aspect of exemplary embodiments of the present invention, there is provided an apparatus for receiving an ACK/NACK signal from a UE to support a retransmission of packet data to the UE in an 1FDMA wireless communication system, in which a response channel decider selects a response channel on which an ACK/NACK signal will be received according to information about all response channels, one of information about a DCH on which packet data was transmitted and information about an SCCH on which scheduling information about the packet data was transmitted, and a repetition factor for the ACK/NACK signal, a demultiplexer extracts the ACK/NACK signal from signals received on physical channels according to the selected response channel, and a response decoder decodes the extracted the ACK/NACK signal and acquires ACKNACK information for the packet data transmitted to the UE.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of certain exemplary embodiments of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 illustrates FDMA;
FIG. 2 illustrates a basic HARQ operation;
FIG. 3 illustrates one-to-one mapping between DCHs and ACKCHs;_
FIG. 4 illustrates a problem encountered with ACK/NACK repetition when DCHs are mapped to ACKCHs in a one-to-one correspondence;
FIG. 5 illustrates ACKCH allocation according to a first exemplary embodiment of the present invention;
FIG. 6 illustrates ACK/NACK transmission according to the first exemplary embodiment of the present invention;
FIG. 7 is a flowchart illustrating ACK/NACK selection according to the first exemplary embodiment of the present invention;
FIG. 8 is a block diagram of an ACK/NACK transmitter according to the first exemplary embodiment of the present invention;
FIG. 9 is a block diagram of an ACK/NACK receiver according to the first exemplary embodiment of the present invention;
FIG. 10 illustrates ACKCH allocation according to a second exemplary embodiment of the present invention;
FIG. 11 illustrates ACK/NACK transmission according to the second exemplary embodiment of the present invention;
FIG. 12 is a flowchart illustrating ACK/NACK selection according to the second exemplary embodiment of the present invention;
FIG. 13 illustrates ACKCH allocation according to a third exemplary embodiment of the present invention;
FIG. 14 illustrates ACK/NACK transmission according to the third exemplary embodiment of the present invention;
FIG. 15 illustrates ACKCH allocation according to a fourth exemplary embodiment of the present invention;
FIG. 16 illustrates ACK/NACK transmission according to the fourth exemplary embodiment of the present invention;
FIG. 17 is a flowchart illustrating ACK/NACK selection according to the fourth exemplary embodiment of the present invention; and
FIG. 18 illustrates one-to-one mapping between SCCHs and ACKCHs._
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of exemplary embodiments of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
Exemplary embodiments of the present invention provide a method for solving a problem encountered with ACK/NACK repetition in the case where ACKCHs are mapped to DCHs or SCCHs and thus shared among UEs in an FDMA wireless communication system.
For this purpose, the present invention allocates more ACKCHs than DCHs or SCCHs to support ACK/NACK repetition. Therefore, the following description is made of a method for allocating supplementary ACKCHs, a method for selecting an ACKCH in a UE that will transmit an ACK/NACK signal repeatedly, a transmitter for transmitting an ACK/NACK signal, and a receiver for receiving an ACK/NACK signal. ' ;
While the present invention is applicable to any ACKCH allocation for downlink HARQ and uplink HARQ, it will be described in the context of an uplink ACK/NACK allocation to support downlink HARQ.
Embodiment 1
In accordance with a first exemplary embodiment of the present invention, supplementary ACKCHs are allocated, besides basic ACKCHs. If a UE is supposed to transmit an ACK/NACK signal repeatedly, the UE always transmits repeated ACK/NACK signals on a supplementary ACKCH.
FIG. 5 illustrates ACKCH allocation according to the first exemplary embodiment of the present invention.
Referring to FIG. 5, three DCHs 501 (or SCCHs) are allocated. Compared to the conventional technology in which three ACKCHs are allocated for one-to- one mapping to the DCHs or SCCHs, six ACKCHs 502 and 503 are allocated to support ACK/NACK repetition in this exemplary embodiment of the present invention. Three of the ACKCHs 502 and 503 are basic ones 502 and the other three are supplemental ones 503. With the allocated ACKCHs, UEs transmit ACK/NACK signals in the manner illustrated in FIG. 6.
FIG. 6 illustrates ACK/NACK transmission according to the first exemplary embodiment of the present invention.
Referring to FIG. 6, UE #1 is set to support ACK/NACK repetition, while UE #2 is not set to support ACK/NACK repetition. A repetition factor R for UE #1 is 2. When receiving packet data on DCH #1 or scheduling information about the packet data on SCCH #1 in a first frame (k=l) in step 605, UE #1 transmits an ACK/NACK signal on ACKCH #1 in a fourth frame (k=4) in step 606. As UE #1 supports ACK/NACK repetition, it retransmits the same ACK/NACK signal on ACKCH #4 mapped to DCH #1 or SCCH #1, for ACK/NACK repetition in fifth and sixth frames (k=5 and 6) in steps 607 and 608. In this manner, an ACK/NACK collision is avoided between UE #1 and UE #2 in the fifth frame (k=5).
In asynchronous HARQ, because retransmission time points are not fixed, three TTIs of ACKCH transmission do not affect retransmission time points. However, the retransmission time points of UE #1 and UE #2 may be changed in synchronous HARQ. Thus, a UE or a Node B uses a parameter that determines a repetition number in calculating a retransmission time point, to thereby secure an appropriate processing time.
FIG. 7 is a flowchart illustrating ACK/NACK selection in a UE according to the exemplary embodiment of the present invention.
Referring to FIG. 7, the UE demodulates received packet data and generates an ACK/NACK signal depending on whether the packet data has errors in step 701. In step 702, the UE checks whether it is set to support ACK/NACK repetition to select an ACKCH that will carry the ACK/NACK signal. If ACK/NACK repetition setting information is set to repetition, or a repetition factor R is larger than 0, the UE is supposed to repeat the ACK/NACK signal.
If the UE is not supposed to repeat the ACK/NACK signal, it transmits the ACK/NACK signal on a basic ACKCH in steps 703 and 704. The basic ACKCH is determined according to a DCH on which the packet data has been received or an SCCH that delivers scheduling information about the packet data.
If the UE is supposed to repeat the ACK/NACK signal, it performs (R+ 1) loops because as many ACK/NACK repetitions as the repetition factor R have to occur in step 705. To be more specific, the UE determines whether a current ACK/NACK transmission is an initial transmission in step 710. In the case of the initial ACK/NACK transmission (i=0, i is a variable indicating the number of repetitions), the UE selects the basic ACKCH mapped to the DCH or the SCCH in step 706 and transmits the ACK/NACK signal on the basic ACKCH. If i is greater than or equal to 1, the UE selects a supplementary ACKCH mapped to the DCH or the SCCH in step 707. In step 708, the UE retransmits the ACK/NACK signal on the supplementary ACKCH.
A Node B operates in a similar manner to the UE. In the method illustrated in FIG. 7, the Node B selects an ACKCH, receives the ACK/NACK signal from the UE on the selected ACKCH, and decodes it.
FIG. 8 is a block diagram of an ACK/NACK transmitter according to the first exemplary embodiment of the present invention.
Referring to FIG. 8, an ACKCH decider 801 receives information about all ACKCHs 806, information about a received DCH (or information about an SCCH carrying scheduling information about the DCH) 802, and a repetition factor R 802 and selects an ACKCH 807 on which to transmit an ACK/NACK signal at a current transmission time point. The total ACKCH information 806 may be preset or notified by upper-layer signaling. The DCH information or the SCCH information is received from a receiver that has received packet data and the repetition factor R is received by upper-layer signaling.
An ACKCH generator 803 encodes or modulates an actual ACK/NACK bit 811 generated according to the reception result of the packet data in a predetermined format. A Multiplexer (MUX) 804 maps the ACK/NACK signal received from the ACKCH generator 803 to predetermined physical layer resources according to ACKCH information 807 indicating the selected ACKCH received from the ACKCH decider 801.
An Inverse Fast Fourier Transform (IFFT) processor 805 IFFT-processes the mapped ACK/NACK signal.
FIG. 9 is a block diagram of an ACK/NACK receiver according to the first exemplary embodiment of the present invention.
Referring to FIG. 9, an ACKCH decider 906 receives total ACKCH information 905, and information about a transmitted DCH or SCCH and a repetition factor R 901, and determines an ACKCH to receive at a current time point. The total ACKCH information may be preset or informed by upper-layer signaling. The DCH or SCCH information is received from a transmitter that has transmitted packet data and the repetition factor R is notified by upper-layer signaling.
A Demultiplexer (DEMUX) 903 is aware of physical layer resources corresponding to the determined ACKCH based on ACKCH information 907 indicating the determined ACKCH. That is, the DEMUX 903 extracts the ACKCH from all physical channel resources received from a Fast Fourier Transform (FFT) processor 902. A ACKCH decoder 904 acquires an actual ACK/NACK signal 908 by decoding and demodulating the ACKCH.
Embodiment 2
A shortcoming of the first exemplary embodiment of the present invention is that successive allocation of the same DCH to UEs that support ACK/NACK repetition may cause an ACK/NACK collision between the UEs because the same supplementary ACKCH is used to deliver repeated ACK/NACK signals. To overcome this problem, a Node B scheduler should allocate data channels such that UEs for which ACK/NACK repetition is set do not receive the same data channel in a successive manner. For instance, in FIG. 6, if UE #1 supports ACK/NACK repetition, scheduling is performed such that a DCH allocated to UE #1 in a current TTI is allocated to UE #2 in the next TTI. Thus both UE #1 and UE #2 can transmit ACK/NACK signals without collision at time k=6.
In this context, a second exemplary embodiment of the present invention provides a method for supporting ACK/NACK repetition by allocating, to each UE, a supplementary ACKCHs for each ACK/NACK repetition of the UE.
FIG. 10 illustrates ACKCH allocation according to the second exemplary embodiment of the present invention.
Referring to FIG. 10, three DCHs 1001 (or SCCHs) are allocated. Compared to the conventional technology in which three ACKCHs are allocated for one-to-one mapping to the DCHs or SCCHs, nine ACKCHs 1002 and 1003 are allocated to support ACK/NACK repetition in this exemplary embodiment of the present invention. Three of the ACKCHs 1002 and 1003 are basic ACKCHs 1002 and the other six are supplemental ACKCHs 1003. In this case, a repetition factor R that can support ACK/NACK repetition without collision in a cell is 2.
To implement the second exemplary embodiment of the present invention, an algorithm is proposed to select an ACKCH to deliver an ACK/NACK signal at a given time point from among a plurality of ACKCHs. An ACKCH can be selected according to Equation (1):
ACKCH for i* ACK/NACK transmissions i * (total number of DCHs or SCCHs) + (number of received DCH or SCCH (i=0, ..., R)) (1)
According to Equation (1), a different ACKCH is selected for each ACK/NACK repetition according to the current number of ACK/NACK repetitions and the number of a DCH or SCCH.
ACKCH for i* ACK/NACK transmission=
((frame number of i* (i=0) ACK/NACK transmission) modular (R+l)) * (total number of DCHs or SCCHs) + (number of received DCH or SCCH) (2) According to Equation (2), a UE selects a different ACKCH with respect to a different packet data reception time, using a frame number instead of the current number of ACK/NACK repetitions. The frame number is an absolute count of frames. For example, the frame number is a system frame number or a connection frame number in a WCDMA system. In the above equation, the number of a frame in which packet data has been received may be substituted for the frame number of the iΛ (i=0) ACK/NACK transmission.
How a UE transmits an ACK/NACK signal by selecting an ACKCH using an ACKCH selection algorithm will be described below with reference to FIG. 11.
FIG. 11 illustrates ACK/NACK transmission according to the second exemplary embodiment of the present invention.
Referring to FIG. 11, UE #1 and UE #2 are set to support ACK/NACK repetition. A repetition factor R for UE #1 and UE#2 is 2. When receiving packet data on DCH #1 in a first frame (k=l) in step 1105, UE #1 transmits an ACK/NACK signal on ACKCH #4 in a fourth frame (k=4) in step 1106. ACKCH #4 is selected by the algorithm described in Equation (1) or Equation (2).
When the ACKCH is selected by Equation (1), UE #1 selects ACKCH #1 for DCH #1 when i=0, ACKCH #4 when i=l, and ACKCH #7 when i=2, as indicated by reference numeral 1109. In the same manner, UE #2 transmits ACK/NACK signals on the same ACKCHs as those of UE #1, as indicated by reference numeral 1115. However, since UE #1 and UE #2 transmit ACK/NACK signals at different times, there is no collision between them.
When the ACKCH is selected by Equation (2), UE #1 selects ACKCH #4 irrespective of i since it performs an i (T=O) ACK/NACK transmission at k=4 as indicated by reference numeral 1100. UE #2 selects ACKCH#7 because it receives data at k=2 and transmits an initial ACK/NACK signal at k=5, as indicated by reference numeral 1116.
FIG. 12 is a flowchart illustrating ACK/NACK selection according to the second exemplary embodiment of the present invention.
Referring to FIG. 12, a UE demodulates received packet data and generates an ACK/NACK signal depending on whether the packet data has errors in step 1201. In step 1202, the UE checks whether the UE is set to support ACK/NACK repetition in order to select an ACKCH that will carry the ACK/NACK signal. If ACK/NACK repetition setting information is set to repetition or a repetition factor R is larger than 0, the UE will repeat the ACK/NACK signal.
If the UE does not repeat the ACK/NACK signal, the UE selects a basic ACKCH in a general ACKCH selection method and transmits the ACK/NACK signal on the basic ACKCH in steps 1203 and 1204. The basic ACKCH is determined according to a DCH on which the packet data has been received or an SCCH that delivers scheduling information about the packet data.
If the UE repeats the ACK/NACK signal, the UE performs (R+ 1) loops because as many ACK/NACK repetitions as the repetition factor R must occur in step 1205. More specifically, the UE selects an ACKCH by Equation (1) or Equation (2) in step 1206 and transmits the ACK/NACK signal on the selected ACKCH in step 1207.
A Node B operates in a similar manner to the operation of the UE. In the method illustrated in FIG. 12, the Node B selects an ACKCH, receives the ACK/NACK signal from the UE on the selected ACKCH, and decodes it.
To implement the secondary exemplary embodiment of the present invention, an ACK/NACK transmitter and a ACK/NACK receiver are configured as in the first exemplary embodiment of the present invention, except that when Equation (2) is used, an ACKCH decider further receives a frame number as an input.
Embodiment 3
Despite the benefit of ACK/NACK repetition without collision between UEs that use the same DCH or SCCH, the second exemplary embodiment of the present invention requires as many additional ACKCHs as a repetition factor. Since ACK/NACK repetition will most likely occur for UEs at a cell boundary in real implementation, other UEs will not frequently use supplementary ACKCHs for ACK/NACK repetition. Thus, a third exemplary embodiment of the present invention proposes a method for a limited number of ACKCHs for each repetition to increase resource use efficiency.
FIG. 13 illustrates ACKCH allocation according to a third exemplary embodiment of the present invention.
Referring to FIG. 13, MO basic ACKCHs 1302 are allocated for as many DCHs or SCCHs. Thus, MO is the number of the DCHs or SCCHs. Ml ACKCHs 1303 are allocated for a first ACK/NACK repetition and M2 ACKCHs 1304 are allocated for a second ACK/NACK repetition. If more ACK/NACK repetitions are allowed, M3, M4 . . . ACKCHs can be additionally allocated. MO, Ml and M2 are preset, or notified by upper-layer signaling.
From among the plurality of ACKCHs, an ACKCH to be transmitted at a given time point is selected according to Equation (3)
ACKCH for iΛ ACK/NACK transmission (i * M(i-l) + (number of received DCH or SCCH)) modular (Mi) (i=0, . . ., R) (3)
Equation (3) is an algorithm for selecting a different ACKCH for a different ACK/NACK repetition using the current number of ACK/NACK transmissions, information about a DCH or an SCCH, and information about ACKCHs allocated for each repetition number.
As noted from Equation (3), the number of ACKCHs set for a repetition is less than the total number of DCHs, a collision may occur during ACK/NACK transmission. This collision can be avoided by scheduling DCHs such that UEs support ACK/NACK repetition do not select the same ACKCH in a scheduler. For example, if DCH #1 (or SCCH #1) and DCH #3 (or SCCH #3) are simultaneously allocated to two UEs supporting ACK/NACK repetition, a collision occurs between them. In this case, DCH #1 (or SCCH #1) and DCH #2 (or SCCH #2) are allocated to the two UEs, while DCH #3 (or SCCH #3) is allocated to another UE that does not support ACK/NACK repetition. Then the collision does not occur.
FIG. 14 illustrates ACK/NACK transmission according to the third exemplary embodiment of the present invention.
Referring to FIG. 14, UE #1 and UE #2 are set to support ACK/NACK repetition. A repetition factor R for UE#1 and UE#2 is 2, M0=3, Ml=2, and M2=l. When receiving packet data on DCH #1 in a first frame (k=l) in step 1405, UE #1 transmits an ACK/NACK signal on ACKCH #4 in a fourth frame (k=4) in step 1406. UE #1 selects ACKCHs by Equation (3). Thus, UE #1 selects ACKCH #ϊ for DCH #1 when i=0 in step 1406, ACKCH #4 when i=l in step 1407, and ACKCH #6 when i=2 in step 1408. Meanwhile, UE #2, which receives data on DCH #2 at k=2 in step 1409,' selects ACKCH #2 corresponding to DCH #2 when i=0 in step 1410, ACKCH #5 when i=l in step 1411, and ACKCH #6 when i=2 in step 1412.
The UE and a Node B operate in the same manner to as in the second exemplary embodiment of the present invention, except that Equation (3) is used instead of Equation (1) or Equation (2) in selecting an ACKCH in step 1206 of FIG. 12.
To implement the third exemplary embodiment of the present invention, an ACK/NACK transmitter and a ACK/NACK receiver are configured as in the first exemplary embodiment of the present invention and thus their description is not provided herein.
Embodiment 4
If a very small number of UEs support ACK/NACK repetition, allocation of shared ACKCHs results in ACKCH dissipation in the first, second and third exemplary embodiments of the present invention. Therefore, a fourth exemplary embodiment of the present invention is proposed in which a dedicated ACKCH is allocated to a UE supporting ACK/NACK repetition.
FIG. 15 illustrates ACKCH allocation according to the fourth exemplary embodiment of the present invention.
Referring to FIG. 15, basic ACKCHs 1502 are allocated in a one-to-one correspondence with DCHs or SCCHs. ACKCHs 1503 and 1504 are allocated for UEs supporting ACK/NACK repetition. UE #1 and UE #3 support ACK/NACK repetition. Since the basic ACKCHs 1502 are shared in a cell, information about the basic ACKCHs 1502 is provided using fixed resources defined by a specification or in system information. ACK/NACK information is provided to UEs supporting ACK/NACK repetition such as UE #1 and UE #3, along with channel information about the UEs by upper-layer signaling. In the illustrated case of FIG. 15, different ACKCHs are allocated to UE #1 and UE #3, but a Node B scheduler may allocate the same ACKCH to UE #1 and UE #3 and schedule it in the manner that prevents ACK/NACK collision between them.
FIG. 16 illustrates ACK/NACK transmission according to the fourth exemplary embodiment of the present invention.
Referring to FIG. 16, UE #1 is set to support ACK/NACK repetition, while UE #2 is set to not support ACK/NACK repetition. A repetition factor R for UE #1 is 2. When receiving packet data on DCH #1 or scheduling information about the packet data on SCCH #1 in a first frame (k=l) in step 1605, UE #1 transmits/retransmits an ACK/NACK signal on ACKCH #4 in fourth, fifth and sixth frames (k=4, 5 and 6) in steps 1606, 1607 and 1608 because ACKCH #4 is allocated dedicatedly to UE #1 supporting ACK/NACK repetition.
However, when receiving packet data on DCH #1 or scheduling information about the packet data on SCCH #1 in a second frame (k=2) in step 1609, UE #2 transmits an ACK/NACK signal on ACKCH #1 corresponding to DCH #1 or SCCH #1 in the fifth frame (k=5) in step 1610 because UE #2 does not support ACK/NACK repetition.
FIG. 17 is a flowchart illustrating ACK/NACK selection in a UE according to the fourth exemplary embodiment of the present invention.
Referring to FIG. 17, the UE demodulates received packet data and generates an ACK/NACK signal depending on whether the packet data has errors in step 1701. In step 1702, the UE checks whether it is set to support ACK/NACK repetition to select an ACKCH that will carry the ACK/NACK signal. If ACK/NACK repetition setting information is set to repetition, or a repetition factor R is larger than 0, the UE will repeat the ACK/NACK signal.
If the UE does not repeat the ACK/NACK signal, it selects a basic ACKCH in the general ACKCH selection method and transmits the ACK/NACK signal on the selected basic ACKCH in steps 1703 and 1704. The basic ACKCH is determined according to a DCH on which the packet data has been received or an SCCH that delivers scheduling information about the packet data.
If the UE repeats the ACK/NACK signal, it performs (R+ 1) loops because as many ACK/NACK repetitions as the repetition factor R have to occur in step 1705. Without selecting a basic ACKCH for each ACK/NACK transmission, the UE transmits/retransmits the ACK/NACK signal on a dedicated ACKCH allocated to the UE in step 1706.
A Node B operates in a similar manner to the operation of the UE. In the method illustrated in FIG. 17, the Node B selects an ACKCH, receives the ACK/NACK signal from the UE on the selected ACKCH, and decodes it.
As is apparent from the above description, the present invention supports ACK/NACK repetition when ACKCHs are mapped to DCHs or SCCHs in an FDMA wireless communication system. As ACK/NACK signals can be retransmitted without collision between UEs that support ACK/NACK repetition, even a UE remote from a Node B can transmit an ACK/NACK signal reliably, thereby expanding cell coverage.
While the invention has been shown and described with reference to certain exemplary embodiments of the present invention thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims and their equivalents.

Claims

WHAT IS CLAIMED IS:
1. A method for transmitting an ACKnowledgement/Negative ACKnowledgement (ACK/NACK) signal to support a retransmission of packet data received from a Node B in a User Equipment (UE) in a Frequency Division Multiple Access (FDMA) wireless communication system, the method comprising: generating an ACK/NACK signal for received packet data; determining whether the UE is set to support ACK/NACK repetition; if the UE is not set to support ACK/NACK repetition, transmitting the ACK/NACK signal on a basic response channel mapped to one of a Data CHannel (DCH) on which the packet data was received and a Shared Control CHannel (SCCH) carrying scheduling information about the packet data; and if the UE is set to support ACK/NACK repetition, selecting one of supplementary response channels for each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition, and repeatedly transmitting the ACK/NACK signal on the selected supplementary response channel according to a predetermined repetition factor.
2. The method of claim 1, wherein the supplementary response channel selection comprises: selecting the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission; and selecting a supplementary response channel mapped to one of the DCH and the SCCH for an ACK/NACK retransmission.
3. The method of claim 1, wherein the supplementary response channel selection comprises selecting the supplementary response channel according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions, or selecting the supplementary response channel according to the information about one of the DCH and the SCCH and a transmission time of the ACK/NACK signal.
4. The method of claim 3, wherein the supplementary response channel selection comprises selecting a supplementary response channel for an ith ACK/NACK transmission according to total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
5. The method of claim 3, wherein the supplementary response channel selection comprises selecting a supplementary response channel for an ith ACK/NACK transmission according to frame number of iΛ (i=0) ACK/NACK transmission, the repetition factor, total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
6. The method of claim 1, wherein the supplementary response channel selection comprises selecting one of the supplementary response channels allocated on a repetition number basis according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions. ;
7. The method of claim 6, wherein the supplementary response channel selection comprises selecting a supplementary response channel for an 1th ACK/NACK transmission according to number of the supplementary response channels allocated for an (i-1)111 transmission, number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data and number of the supplementary response channels allocated for an ith transmission.
8. The method of claim 7, wherein the number of supplementary response channels allocated for the ith ACK/NACK transmission is less than the number of supplementary response channels allocated for the (i-1) ACK/NACK transmission.
9. The method of claim 1, wherein the supplementary response channel selection comprises selecting a dedicated supplementary response channel allocated to the UE.
10. A method for receiving an ACKnowledgement/Negative ACKnowledgement (ACK/NACK) signal from a User Equipment (UE) to support a retransmission of packet data in a Frequency Division Multiple Access (FDMA) wireless communication system, the method comprising: determining whether the UE is set to support ACK/NACK repetition; if the UE is not set to support ACK/NACK repetition, receiving an ACK/NACK signal for transmitted packet data on a basic response channel mapped to one of a Data CHannel (DCH) on which the packet data was transmitted and a Shared Control CHannel (SCCH) on which information about the packet data was transmitted; and if the UE is set to support ACK/NACK repetition, selecting one of supplementary response channels for each ACK/NACK repetition, the supplementary response channels being allocated for ACK/NACK repetition, and repeatedly receiving the ACK/NACK signal on the selected supplementary response channel according to a predetermined repetition factor.
11. The method of claim 10, wherein the supplementary response channel selection comprises: selecting the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission; and selecting a supplementary response channel mapped to one of the DCH and the SCCH for an ACK/NACK retransmission.
12. The method of claim 10, wherein the supplementary response channel selection comprises selecting the supplementary response channel according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions from the UE, or selecting the supplementary response channel according to the information about one of the DCH and the SCCH and a reception time of the ACK/NACK signal.
13. The method of claim 12, wherein the supplementary response channel selection comprises selecting a supplementary response channel for an il ACK/NACK transmission according to total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
14. The method of claim 12, wherein the supplementary response channel selection comprises selecting a supplementary response channel for an i ACK/NACK transmission according to frame number of iΛ (i=0) ACK/NACK transmission, the repetition factor, total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
15. The method of claim 10, wherein the supplementary response channel selection comprises selecting one of supplementary response channels allocated on a repetition number basis according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions.
16. The method of claim 15, wherein the supplementary response channel selection comprises selecting a supplementary response channel for an ith ACK/NACK transmission according to number of the supplementary response channels allocated for an (i-l)th transmission, number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data and number of the supplementary response channels allocated for an ith transmission.
17. The method of claim 16, wherein the number of supplementary response channels allocated for the i* ACK/NACK transmission is less than the number of supplementary response channels allocated for the (i-l)th ACKTNACK transmission.
18. The method of claim 10, wherein the supplementary response channel selection comprises selecting a dedicated supplementary response channel allocated to the UE.
19. An apparatus of a User Equipment (UE) for transmitting an ACKnowledgement/Negative ACKnowledgement (ACK/NACK) signal to support a retransmission of packet data received from a Node B in a Frequency Division Multiple Access (FDMA) wireless communication system, the method comprising: a response channel decider for selecting a response channel that will carry an ACK/NACK signal according to information about all response channels, one of information about a Data CHannel (DCH) on which packet data was received and information about a Shared Control CHannel (SCCH) on which scheduling information about the packet data was received, and a repetition factor for the ACK/NACK signal; a response generator for generating the ACK/NACK signal for the packet data; and a multiplexer for mapping the ACK/NACK signal to physical layer resources corresponding to the selected response channel and transmitting the ACK/NACK signal repeatedly according to the repetition factor.
20. The apparatus of claim 19, wherein the response channel decider selects a basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects a supplementary response channel mapped to one of the DCH and the SCCH for an ACK/NACK retransmission.
21. The apparatus of claim 19, wherein the response channel decider selects a basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects a supplementary response channel according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions, or selects the supplementary response channel according to the information about one of the DCH and the SCCH and a transmission time of the ACK/NACK signal, for an ACK/NACK retransmission.
22. The apparatus of claim 21, wherein the response channel decider selects a supplementary response channel for an ith ACK/NACK transmission according to total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
23. The apparatus of claim 21, wherein the response channel decider selects a supplementary response channel for an iΛ ACK/NACK transmission according to frame number of ith (i=0) ACK/NACK transmission, the repetition factor, total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
24. The apparatus of claim 19, wherein the response channel decider selects the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects one of supplementary response channels allocated on a repetition number basis according to information about one of the DCH and the SCCH and the number of ACKTNACK transmissions for an ACK/NACK retransmission.
25. The apparatus of claim 24, wherein the response channel decider selects a supplementary response channel for an ith ACK/NACK transmission according to number of the supplementary response channels allocated for an (i- I)* transmission, number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data and number of the supplementary response channels allocated for an ith transmission.
26. The apparatus of clainf 25, wherein the number of supplementary response channels allocated for the 1th ACK/NACK transmission is less than the number of supplementary response channels allocated for the (i-l)* ACK/NACK transmission.
27. The apparatus of claim 19, wherein the response channel decider selects the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects a dedicated supplementary response channel allocated to the UE for an ACK/NACK retransmission.
28. An apparatus for receiving an ACKnowledgement/Negative ACKnowledgement (ACK/NACK) signal from a User Equipment (UE) to support a retransmission of packet data to the UE in a Frequency Division Multiple Access (FDMA) wireless communication system, the method comprising: a response channel decider for selecting a response channel on which an ACK/NACK signal will be received according to information about all response channels, one of information about a Data CHannel (DCH) on which packet data was transmitted and information about a Shared Control CHannel (SCCH) on which scheduling information about the packet data was transmitted, and a repetition factor for the ACK/NACK signal; a demultiplexer for extracting the ACK/NACK signal from signals received on physical channels according to the selected response channel; and a response decoder for decoding the extracted the ACK/NACK signal and acquiring ACKNACK information for the packet data transmitted to the UE.
29. The apparatus of claim 28, wherein the response channel decider selects the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects a supplementary response channel mapped to one of the DCH and the SCCH for an ACK/NACK retransmission.
30. The apparatus of claim 28, wherein the response channel decider selects the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects the supplementary response channel according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions, or selects the supplementary response channel according to the information about one of the DCH and the SCCH and a reception time of the ACK/NACK signal, for an ACK/NACK retransmission.
31. The apparatus of claim 30, wherein the response channel decider selects a supplementary response channel for an i ACK/NACK transmission according to total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
32. The apparatus of claim 30, wherein the response channel decider selects a supplementary response channel for an i ACK/NACK transmission according to frame number of ith (i=0) ACK/NACK transmission, the repetition factor, total number of the DCH or the SCCH and number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data.
33. The apparatus of claim 28, wherein the response channel decider selects the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects one of supplementary response channels allocated on a repetition number basis according to information about one of the DCH and the SCCH and the number of ACK/NACK transmissions for an ACK/NACK retransmission.
34. The apparatus of claim 33, wherein the response channel decider selects a supplementary response channel for an ith ACK/NACK transmission according to number of the supplementary response channels allocated for an (i- l)th transmission, number of the DCH carrying the packet data or the SCCH carrying the scheduling information about the packet data and number of the supplementary response channels allocated for an 1th transmission.
35. The apparatus of claim 34, wherein the number of supplementary response channels allocated for the 1th ACK/NACK transmission is less than the number of supplementary response channels allocated for the (i-l)* ACK/NACK transmission.
36. The apparatus of claim 28, wherein the response channel decider selects the basic response channel mapped to one of the DCH and the SCCH for an initial ACK/NACK transmission, and selects a dedicated supplementary response channel allocated to the UE for an ACK/NACK retransmission.
PCT/KR2007/003970 2006-08-18 2007-08-20 Method and apparatus for transmitting/receiving ack/nack in a frequency division multiple access system WO2008020738A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20060078413 2006-08-18
KR10-2006-0078413 2006-08-18
KR1020070075638A KR100927877B1 (en) 2006-08-18 2007-07-27 AC / NAC transmission and reception method and transmission / reception apparatus in frequency division multiple access system
KR10-2007-0075638 2007-07-27

Publications (1)

Publication Number Publication Date
WO2008020738A1 true WO2008020738A1 (en) 2008-02-21

Family

ID=39082238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2007/003970 WO2008020738A1 (en) 2006-08-18 2007-08-20 Method and apparatus for transmitting/receiving ack/nack in a frequency division multiple access system

Country Status (2)

Country Link
US (1) US8042018B2 (en)
WO (1) WO2008020738A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120888A3 (en) * 2008-03-27 2010-07-22 Qualcomm Incorporated Uplink ack/nak resource allocation
WO2010048645A3 (en) * 2008-10-20 2010-08-05 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
EP2398176A1 (en) * 2010-06-18 2011-12-21 Alcatel Lucent Multi carrier network configuration
US8971241B2 (en) 2008-09-30 2015-03-03 Qualcolmm Incorporated Techniques for supporting relay operation in wireless communication systems
EP3599789A4 (en) * 2017-03-22 2020-04-01 Sony Corporation Terminal device, base station device, communication method, and storage medium

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8787344B2 (en) * 2006-08-30 2014-07-22 Qualcomm Incorporated Method and apparatus for ACKCH with repetition in orthogonal systems
KR101276835B1 (en) * 2006-09-28 2013-06-18 엘지전자 주식회사 Method For Transmitting ACK/NACK Signal, And Method For Setting The Same
US7924776B2 (en) * 2006-10-27 2011-04-12 Lg Electronics Inc. Auxiliary ACK channel feedback for control channels and broadcast multicast signals
TWI410074B (en) * 2006-10-31 2013-09-21 Qualcomm Inc Method and apparatus for reducing overhead based on the ack channel
WO2009005428A1 (en) * 2007-07-04 2009-01-08 Telefonaktiebolaget Lm Ericsson (Publ) User terminal power shortage indication
KR101377962B1 (en) * 2007-10-01 2014-03-25 엘지전자 주식회사 A method for transmitting/receiving ACK/NAK signal in an OFDM communication system
KR20150042299A (en) * 2007-10-25 2015-04-20 인터디지탈 패튼 홀딩스, 인크 Control and transmission of uplink feedback information from a wtru in a cell_fach state
US8254244B2 (en) * 2007-10-30 2012-08-28 Qualcomm Incorporated Arrangement and method for transmitting control information in wireless communication systems
US8194588B2 (en) * 2007-12-13 2012-06-05 Qualcomm Incorporated Coding block based HARQ combining scheme for OFDMA systems
WO2010005712A1 (en) * 2008-06-16 2010-01-14 Interdigital Patent Holdings, Inc. Enhanced hybrid automatic repeat request for long term evolution
US8199666B2 (en) * 2009-02-02 2012-06-12 Texas Instruments Incorporated Transmission of acknowledge/not-acknowledge with repetition
KR101741394B1 (en) * 2009-07-07 2017-05-29 엘지전자 주식회사 Method of transmitting and receiving an arq feedback information
US9025542B2 (en) 2009-11-23 2015-05-05 Lg Electronics Inc. ACK/NACK transmission method and apparatus therefor
US8332708B2 (en) * 2010-05-07 2012-12-11 Qualcomm Incorporated Data transmission with multi-level ACK/NACK feedback
WO2012150810A2 (en) * 2011-05-02 2012-11-08 엘지전자 주식회사 Method and apparatus for applying control information in wireless communication system
US10506468B2 (en) * 2017-09-08 2019-12-10 At&T Intellectual Property I, L.P. Reporting hybrid automatic repeat request-acknowledgements in wireless communication systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131299A1 (en) * 2002-01-05 2003-07-10 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement signals
US20050249133A1 (en) * 2004-05-07 2005-11-10 Interdigital Technology Corporation Medium access control layer architecture for supporting enhanced uplink

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713464B1 (en) 2000-02-23 2007-04-30 삼성전자주식회사 Channel assignment apparatus and method for common packet channel in cdma system
KR100985043B1 (en) * 2001-06-27 2010-10-04 노오텔 네트웍스 리미티드 Mapping information in wireless communications systems
AU2003224464B2 (en) * 2002-04-24 2005-08-25 Samsung Electronics Co., Ltd. Apparatus and method for supporting automatic repeat request in a high-speed wireless packet data communication system
US6839336B2 (en) * 2002-04-29 2005-01-04 Qualcomm, Incorporated Acknowledging broadcast transmissions
US7289766B2 (en) * 2002-05-14 2007-10-30 Nortel Networks Limited System and method to initiate reliable reception on a packet data channel in a wireless communications network
US6987780B2 (en) * 2002-06-10 2006-01-17 Qualcomm, Incorporated RLP retransmission for CDMA communication systems
US7155236B2 (en) * 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
KR20040088702A (en) * 2003-04-10 2004-10-20 삼성전자주식회사 Broadcasting service method via packet data channel in wireless telecommunication system
US7126928B2 (en) * 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
US7315527B2 (en) * 2003-08-05 2008-01-01 Qualcomm Incorporated Extended acknowledgement and rate control channel
US7292873B2 (en) * 2003-08-07 2007-11-06 Qualcomm Incorporated Method and apparatus for regulating base station ACK/NAK message transmit power in a wireless communication system
US7331008B2 (en) * 2003-08-21 2008-02-12 Lucent Technologies Inc. Erasure decoding optimization of acknowledgment/negative acknowledgment information in a wireless communication system
US7590094B2 (en) * 2003-09-25 2009-09-15 Via Telecom Co., Ltd. Tristate requests for flexible packet retransmission
KR101002814B1 (en) * 2003-10-02 2010-12-21 삼성전자주식회사 Method and apparatus for receiving forward packet data control channel in a mobile communication system supporting packet data service
KR100918759B1 (en) * 2003-10-14 2009-09-24 삼성전자주식회사 Apparatus and method for transmitting control message of pdcch in a mobile communication system supporting packet data service
KR101008623B1 (en) * 2003-12-02 2011-01-17 엘지전자 주식회사 Method of Power Control and Acknowledgement Control for F-ACKCH
KR100600673B1 (en) 2003-12-18 2006-07-18 한국전자통신연구원 A method for requesting and reporting channel quality information in wireless system and apparatus thereof
US7924776B2 (en) * 2006-10-27 2011-04-12 Lg Electronics Inc. Auxiliary ACK channel feedback for control channels and broadcast multicast signals
KR20080062886A (en) * 2006-12-29 2008-07-03 삼성전자주식회사 Method and apparatus for transmission of reverse-link control-channel acknowledgement channel for forward-link shared control channel in mobile communication systems using orthogonal frequency division multiplexing access
KR101384078B1 (en) * 2007-01-10 2014-04-09 삼성전자주식회사 Method and apparatus for allocating and signalling ack/nack channel resources in wireless communication systems
KR101381095B1 (en) * 2007-04-26 2014-04-02 삼성전자주식회사 Method and apparatus for transmitting and receiving ack/nack signal in wireless telecommunication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131299A1 (en) * 2002-01-05 2003-07-10 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement signals
US20050249133A1 (en) * 2004-05-07 2005-11-10 Interdigital Technology Corporation Medium access control layer architecture for supporting enhanced uplink

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873210B (en) * 2008-03-27 2017-07-28 高通股份有限公司 Ul ack/NAK resource allocations
KR101132335B1 (en) * 2008-03-27 2012-04-05 콸콤 인코포레이티드 Uplink ack/nak resource allocation
CN101978643A (en) * 2008-03-27 2011-02-16 高通股份有限公司 Uplink ack/nak resource allocation
JP2011519201A (en) * 2008-03-27 2011-06-30 クゥアルコム・インコーポレイテッド Uplink ACK / NAK resource allocation
CN103873210A (en) * 2008-03-27 2014-06-18 高通股份有限公司 Uplink ack/nak resource allocation
WO2009120888A3 (en) * 2008-03-27 2010-07-22 Qualcomm Incorporated Uplink ack/nak resource allocation
US8687652B2 (en) 2008-03-27 2014-04-01 Qualcomm Incorporated Uplink ACK/NAK resource allocation
US8971241B2 (en) 2008-09-30 2015-03-03 Qualcolmm Incorporated Techniques for supporting relay operation in wireless communication systems
US9294219B2 (en) 2008-09-30 2016-03-22 Qualcomm Incorporated Techniques for supporting relay operation in wireless communication systems
WO2010048645A3 (en) * 2008-10-20 2010-08-05 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
US9203564B2 (en) 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
EP2398176A1 (en) * 2010-06-18 2011-12-21 Alcatel Lucent Multi carrier network configuration
WO2011157365A1 (en) * 2010-06-18 2011-12-22 Alcatel Lucent Multi carrier network configuration
EP3599789A4 (en) * 2017-03-22 2020-04-01 Sony Corporation Terminal device, base station device, communication method, and storage medium
US11496890B2 (en) 2017-03-22 2022-11-08 Sony Corporation Terminal device, base station device, communication method, and storage medium
US11696120B2 (en) 2017-03-22 2023-07-04 Sony Group Corporation Terminal device, base station device, communication method, and storage medium

Also Published As

Publication number Publication date
US20080046793A1 (en) 2008-02-21
US8042018B2 (en) 2011-10-18

Similar Documents

Publication Publication Date Title
US8042018B2 (en) Method and apparatus for transmitting/receiving ACK/NACK in a frequency division multiple access system
US11641263B2 (en) Method and apparatus for allocating and signaling ack/nack resources in a wireless communication system
EP2587706B1 (en) Improved re-transmission capability in semi-persistent transmission
TWI533639B (en) Method and system for providing control information for supporting high speed downlink and uplink
US8861472B2 (en) Selecting between normal and virtual dual layer ACK/NACK
JP2012157047A (en) Method and apparatus in telecommunication system
CN101568153A (en) Method and device for transmitting small packet services in real time
KR100927877B1 (en) AC / NAC transmission and reception method and transmission / reception apparatus in frequency division multiple access system
KR20120001474A (en) Method and apparatus for transmitting and receiving downlink resource allocation information in wireless communication system
JP5457486B2 (en) ACK / NACK channel resource allocation and signaling method and apparatus in wireless communication system
JP2009200862A (en) Resource allocating method, wireless communication system, terminal, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07793574

Country of ref document: EP

Kind code of ref document: A1