WO2008020108A1 - Peptides which are immunogenic in relation to the genuses listeria and mycobacterium, antibodies and uses of these - Google Patents

Peptides which are immunogenic in relation to the genuses listeria and mycobacterium, antibodies and uses of these Download PDF

Info

Publication number
WO2008020108A1
WO2008020108A1 PCT/ES2007/070144 ES2007070144W WO2008020108A1 WO 2008020108 A1 WO2008020108 A1 WO 2008020108A1 ES 2007070144 W ES2007070144 W ES 2007070144W WO 2008020108 A1 WO2008020108 A1 WO 2008020108A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
listeria
gapdh
polypeptides
seq
Prior art date
Application number
PCT/ES2007/070144
Other languages
Spanish (es)
French (fr)
Inventor
Carmen ÁLVAREZ DOMÍNGUEZ
Eugenio CARRASCO MARÍN
Original Assignee
Fundación Marqués De Valdecilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Marqués De Valdecilla filed Critical Fundación Marqués De Valdecilla
Publication of WO2008020108A1 publication Critical patent/WO2008020108A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1289Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Mycobacteriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/40Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum bacterial
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/35Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1296Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Listeria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • IMMUNOGENIC PEPTIDES AGAINST LISTERIA AND MYCOBACTERIUM GENDERS, ANTIBODIES AND USES OF THE SAME.
  • the present invention relates to the field of biotechnology and more particularly, to peptides capable of immunizing against infections produced by bacteria belonging to the Listeria and Mycobacterium genera as well as those antibodies or fragments thereof specific against said peptides.
  • ADP-ribosylation involves a covalent modification limited only to a few bacterial toxins secreted by non-intracellular, gram-negative or gram-positive pathogenic bacteria, such as diphtheria toxin, Pseudomonas aeruginosa ExoS protein, pertussis toxin and cholera toxin (Infeci Immun. 2001, 69: 5329-34; PNAS USA. 2004, 101: 6182-87).
  • ADP-ribosylation inactivates cellular target proteins such as intracellular signaling proteins or regulators of intracellular traffic.
  • Virulence factors are commonly used to develop vaccines directed against those pathogens that carry them, through the complete inoculation of said factor or with fragments thereof in individuals.
  • This strategy which a priori should be simple, once a virulence factor has been detected, is not so much because (i) the inoculation of complete virulence factors is very toxic, (ii) its generation by recombinant DNA techniques gives rise to a conformational structure different from that which the factor has in its natural state and, therefore, the humoral and / or cellular response is not efficient and (iii) the post-translational modifications that the virulence factor undergoes in its natural state cause that the inoculation with the recombinant protein or peptides of this one produces an immune response incapable of acting efficiently against the pathogen.
  • the intracellular interference of the human pathogen and gram-positive bacteria was analyzed: Lister ⁇ a monocytogenes (LM), and it was observed that the intracellular target of this pathogen was the phagosomal traffic regulatory factor, GTPase Rab ⁇ a, decreasing its activation, that is, the exchange between the inactive form or GDP and the active form or GTP, thereby blocking its function.
  • LM Lister ⁇ a monocytogenes
  • GAPDH-LM LM glyceraldehyde-3-phosphate dehydrogenase
  • ADP-ribosylation decreased the interaction of Rab ⁇ a with its factor of activation, or GDP / GTP exchanger
  • the region of the GAPDH-LM being responsible for said inhibition the N-terminal region of the protein, in particular the first 22 amino acids (22-mer).
  • this amino acid end of 22 amino acids of GAPDH-LM will also be referred to as SEQ ID No. 1.
  • tuberculosis Within the genus Mycobacterium, that is, tuberculosis, avium, leprae (Ml) and bovis, if the structural study is extended to the first 30 amino acids, it can be seen that they are 100% homologous for M. tuberculosis, M. avium and M. Bovis
  • both the LM extract as a murine cell extract of macrophages infected with LM (run E1, Fig. 3), as the TB extract are capable of ADP-ribosilar Rab ⁇ a, and to a lesser extent the Ml extract, whose ADP-ribosylation capacity on Rab ⁇ a was similar to that of the 22-mer N-terminal peptide of the GAPDH-LM (run - for extract and + for peptide in Fig. 3).
  • extracts of Escherichia coli (Ec race, Fig. 3), a murine cell extract of macrophages not infected but containing murine GAPDH (run E, Fig. 3) or a murine cell extract of macrophages infected with heat-killed LM (HKLM) prior to infection (run E2 in Fig. 3) were unable to ADP-ribosilar Rab ⁇ a.
  • GAPDH-LM and GAPDH-TB are capable of performing two relevant actions not known to date.
  • the first action resides in its ADP-ribosylation capacity where, in addition, said capacity is used to inactivate the phagosomal traffic regulatory cellular protein, Rab ⁇ a.
  • said inactivation of Rab ⁇ a by Ia GAPDH is mediated by the N-terminal region of the protein, specifically by the peptide that contains the first 22 amino acids.
  • the second interesting action of GAPDH-LM and GAPDH-TB can be inferred from its location as a protein associated with the outer membrane of the bacterial wall of both pathogens. Where the N-terminal peptide would be exposed which would cause it to be easily extracted or that could be accessible for recognition by antibodies. Thus, and since LM does not induce a humoral response, this protein could be the only one capable of inducing an adequate humoral and cellular immune response.
  • the immunization with SEQ ID N 0 1 -added but without adjuvant that is, only with the adjuvant excipient, mineral oil or IFA, is capable of generating a good immune response in rabbits generating antibodies, which is synonymous of a good humoral and cellular response.
  • the versatility of the peptide in inducing a good immune response is also reflected by the antibody's own versatility to recognize several pathogens, which indicated that it could be a good candidate to test as a vaccine.
  • GAPDH-LM constitutes an interesting antigen both in the field of bacterial pathogenesis as it is the same virulence factor shared by two intracellular bacteria; but it is also a peculiar and promising antigen in the area of immunology, since the same antigen from two different bacteria would share amino acid regions large enough (15-mer) to contain epitopes recognized by B cells, epitopes recognized by CD4 + T cells (MHC-II) and by CD8 + T cells (MHC-I); which can be inferred, initially, since the rabbit antibody generated anti-SEQ ID N 0 1, obtained by exclusive immunization with the peptide without adjuvant, is capable of recognizing the protein in a complex structure such as the entire bacterium, as in protein extracts of both genera of bacteria, Listeria and Mycobacterium, where said peptide is exposed (see examples and Figure 6). The same conclusion can be drawn from the fact that the T response generated by the peptide is very good (Table 1), that CD4 / CD8 T cells have the ability to transfer immunity
  • a first aspect of the present invention refers to an isolated immunogenic polypeptide (hereinafter polypeptide of the invention) against any of the Listeria and Mycobacterium genera selected from the group comprising:
  • polypeptide of the invention has the sequence SEQ ID N 0 1.
  • polypeptide of the invention is chosen from the group:
  • polypeptide whose sequence comprises the SEQ ID N 0 2.
  • polypeptide whose sequence consists of the SEQ ID N 0 2.
  • the polypeptide is chosen from the group:
  • the polypeptide of the invention is a derived polypeptide that has undergone post-translational modifications or made by methods well known in the state of the art.
  • a second aspect of the invention relates to an isolated polynucleotide (hereinafter polynucleotide of the invention) capable of coding for any of the polypeptides of the invention.
  • a third aspect of the invention refers to an isolated antibody or fragment thereof (hereinafter antibody of the invention) capable of recognizing any of the polypeptides or polypeptides derived from the invention.
  • a fourth aspect of the invention refers to a polypeptide of the invention fused or chemically bound to an additional peptide, polypeptide or protein.
  • a fifth aspect of the invention refers to an expression vector or expression system (hereinafter vector or expression system of the invention) comprising any of the polynucleotides of the invention.
  • a sixth aspect of the invention refers to an isolated host cell, prokaryotic or eukaryotic, (hereinafter host cell of the invention), transformed, or transfected with any of the polynucleotides of the invention or with any of the vectors or expression systems of the invention.
  • a seventh aspect of the invention relates to a method for preparing the polypeptide of the invention (hereinafter method of the invention), by recombinant DNA techniques or chemical synthesis.
  • the method of the invention comprises culturing a host cell of the invention under conditions such that any of the polynucleotides of the invention is expressed, and isolating said expressed polypeptide.
  • An eighth aspect of the invention relates to a polypeptide of the invention for use as a medicine.
  • a ninth aspect of the invention relates to a vaccine comprising any of the polypeptides of the invention.
  • a preferred embodiment of the present invention comprises the use of a polypeptide of the invention for the elaboration of a vaccine capable of immunizing against an infection produced by bacteria belonging to the genus Listeria and / or Mycobacterium, more particularly Listeria monocytogenes and / or Mycobacterium tuberculosis .
  • An even more preferred embodiment of the present invention comprises the use of an antibody of the invention, for the preparation of a pharmaceutical composition for the treatment of an infection produced by bacteria belonging to the genus Listeria and / or Mycobacterium, more particularly Listeria monocytogenes and / or Mycobacterium tuberculosis.
  • a tenth aspect of the present invention relates to molecules modulating the activity of GAPDH of the genera Listeria and / or Mycobacterium, activators or inhibitors, specifically designed to interact with any of the peptides of the invention.
  • a eleventh aspect of the present invention relates to molecules specifically designed from the ADP-ribosylation domain of the GAPDH of the Listeria and / or Mycobacterium genera and capable of mimicking the activity of said domain.
  • a twelfth aspect of the invention refers to the use of the ADP-ribosylation domain of the GAPDH of the genera Listeria and / or Mycobacter ⁇ um for the rational design of drugs.
  • a thirteenth aspect of the invention refers to the use of any of the polypeptides, polypeptides derived from the invention or fragments thereof of the invention for its ability to ADP-ribosylation.
  • polypeptide or peptide is used to designate a linear sequence of amino acids connected to each other by amide bonds between the alpha-amino group of an amino acid and an alpha-carboxy group of the adjacent amino acid. From said polypeptides, smaller fragments of at least 8 amino acids can be derived, preferably at least 15 amino acids and preferably at least 22. Said polypeptides and fragments include any post-translational modification or carried out by methods well known in the state of the art. . These modified polypeptides and fragments will be referred to as "derived polypeptides or peptides.”
  • polynucleotide is used to designate a linear sequence of nucleotides or ribonucleotides. This term refers exclusively to the primary structure of the molecule including single and double stranded DNA, as well as single and double stranded RNA. Similarly, the modified forms of these molecules are also included, for example, by methylation.
  • epitope refers to an antigenic determinant of a polypeptide;
  • An epitope may comprise 3 amino acids in a spatial conformation that is exclusive to the epitope, generally consisting of at least 5 amino acids, and more usually consisting of at least 8-10 amino acids.
  • the methods for determining the spatial conformation of amino acids are known in the state of the art, and include, for example, X-ray crystallography and magnetic resonance imaging nuclear in 2 dimensions.
  • immunogenic polypeptide or peptide refers to a polypeptide capable of generating specific antibodies, as well as promoting both a humoral and cellular response.
  • vaccine refers to antigenic preparations or cells previously treated with said antigenic preparations and capable of promoting a humoral and / or cellular response or expression vectors or other forms of vaccine vectors. This response will lead to the generation of an immunological memory producing, in most cases, permanent or transient immunity against a specific pathogen.
  • antibody refers to both monoclonal and polyclonal antibodies capable of interacting with the polypeptides defined in the present invention.
  • antibody fragment refers to all those antibody fragments capable of interacting with the peptides of the invention and fragments thereof, where said fragments comprise the variable regions Vh and / or Vl, as well as their conserved regions.
  • domain of a protein refers to the three-dimensional structure that acquires a certain region or polypeptides of said protein and that can carry out purely structural or enzymatic functions. More specifically, this term will refer to the three-dimensional structure adopted by the polypeptides, derived polypeptides or fragments thereof of the invention, corresponding to the 22 amino acid end of the amino terminal region of the GAPDH of the Listeria and Mycobacterium genera.
  • Figure 1a shows the amioacidic sequence of GAPDH-TB and GAPDH-LM. Top: amino terminal end of 22 amino acids of GAPDH-TB (underlined) 99% homologous in its first 15 amino acids with the amino terminal end of 15 amino acids of GADPH-LM. Bottom: amino and carboxyl ends (underlined) of GAPDH-LM.
  • Figure 1b shows the 3D structure of the GAPDH-LM.
  • the substrate binding domain refers to the domain with ADP-ribosilant activity and the NAD binding domain corresponds to the domain that catalyzes the oxidation of glyceraldehyde-3-phosphate to glycerol-1,3-diphosphate in glycolysis.
  • Figure 2 Structural comparison between the N-terminals, 15-mer, of different GAPDH.
  • the 15-mer peptide of the N-terminal end of those bacteria in which it has more than 90% homology stands out; underlined, those bacteria of the genus Mycobacterium whose extended N-terminal (30-mer) is 100% homologous and in lowercase, the only different amino acid between Listeria and Mycobacterium.
  • Figure 3 Capacity of ADP-ribosylation on Rab ⁇ a of the different bacterial and cellular extracts.
  • ADP-ribosylation of the GST-Rab5a fusion protein wt in the presence of 30 ⁇ g of the different extracts: TB, Mycobacterium tuberculosis extract: Ml, Mycobacterium leprae extract: Ec, Escher ⁇ chia coli extract; LM, Lister ⁇ a monocytogenes extract, E1; extract of mouse macrophage-like cells infected with LM; E2, extract of mouse macrophage-like cells infected with heat-killed LM; E, extract of uninfected mouse macrophage cells.
  • Figure 4.- A Proteins recognized by the anti-SEQ ID N 0 1 antibody.
  • PNS post-nuclear fraction of cells infected with LM; Phages, purified phagosomes of the PNS fraction (LM); PNS (Nl), post-nuclear fraction of cells not infected with LM; LM-lysate, LM lysate containing wall proteins; LM-supernatant, LM supernatant containing secreted proteins; Nt-E, crude extract of LM; R5t-eluted or R5t-E, eluted from affinity column-Rab ⁇ a incubated with crude LM extract.
  • LM post-nuclear fraction of cells infected with LM
  • Phages purified phagosomes of the PNS fraction (LM)
  • PNS post-nuclear fraction of cells not infected with LM
  • LM-lysate LM lysate containing wall proteins
  • LM-supernatant LM
  • E-clone cells infected with live LM for 15 min (B) or 60 min (CD) and incubated with anti-SEQ ID N 0 1 antibodies (B, C and E) or with preimmune serum (D) from the same animal to from which the antibodies against SEQ ID N 0 1 are obtained.
  • Figure 5 Proteins recognized in different mutants of LM by the anti-SEQ antibody N 0 1 of the N-terminal of the GAPDH-LM.
  • Different used of different Lm mutants (i) mutant lacking listeriolysin O-LM- / lysate and LM- / sup- (runs 3 and 4); (ii) mutant lacking phospholipase C-pIcA / B-lysate or supernadanis of those pIcA / B-sup - (races 5 and 6); (ii) wild phenoipo - LM + / lysate and LM + / sup (runs 1 and 2).
  • Figure 6. Proieins recognized by the ani-22mer antibody of the GAPDH-LM or anti-SEQ ID N 0 1 from 30 ⁇ g of different bacterial and cellular extracts: Lm, Listeria monocytogenes; TB, M. tuberculosis; Ml, M. leprae and cel, cell extract.
  • Figure 7 Panel A. Naked phagosomes (30 ⁇ g per run) incubated with 3 ⁇ g of GST-Rab5a: wt pre-treated and pretreated with different concentrations of SEQ ID N 0 1 (N1 and N2) and SEQ ID N 0 4 (C1 and C2 ) (N1 and N2 correspond respectively with 100 and 10 ng / ml of the SEQ ID N 0 1. C1 and C2 correspond respectively with 100 and 10 ng / ml of the SEQ ID N 0 4) and the presence (runs +) or absence (runs -) of 5 ⁇ g of LM extracts (Nt-E). Panel B.
  • Naked phagosomes incubated with GST-Rab5a wt pre-stacked and ADP-ribosylated (ADP-r + runs) or not (ADP-r runs) in the presence of His-EEA1 or His-Vps9.
  • EXAMPLE 1 Immune study of the GAPDH of the genera Listeria and Mycobacter ⁇ um.
  • a concentration of the peptide of SEQ ID N 0 1 (22-mer of the GAPDH-LM) of 10 mM was used, which is oxidized after resuspension in water and vacuum drying as insoluble material.
  • This treatment produced molecular aggregates of the peptide that turned out to be highly immunogenic as it did not require its emulsion in Freund's complete adjuvant (CFA) to obtain a good immune response, but only with incomplete adjuvant containing the excipient, or mineral oil (IFA) It was enough to generate an immune response.
  • CFA complete adjuvant
  • IFA mineral oil
  • LM (i) used bacterial LM containing the wall proteins, therefore, structural proteins; (ii) growth supernatants of
  • LM containing the proteins secreted by LM ( Figures 4 and 5); (iii) crude extracts of LM, which contains most of the proteins of both the wall and the bacterial cytosol (Nt-E strokes in Fig. 4 and LM in Fig. 6); (iv) as well as an eluate from an affinity column with Rab ⁇ a, which contained all the LM proteins that bind to Rab ⁇ a (run R5t-eluted in Fig. 4).
  • the antibody recognizes both the GAPDH-LM of the structural wall, and the protein secreted to the pathogenic LM medium (LM-lysate and LM-supernatant strokes in Fig. 4 and LM + / lysate and LM + / sup strokes in Fig. 5) , as of different mutants of LM in phagosomal virulence factors: the listeriolysin O, LLO, (LM- / lysate and LM- / sup in Fig. 5) or phospholipase C (plcA / B- / lysate and plcA strokes / B- / sup in Fig.
  • the antibody also recognizes the GAPDH-LM of cells infected with LM (PNS LM race in Fig. 4), as well as phagosomes containing the live bacteria (LM phage race in Fig. 4).
  • the antibody also recognizes the GAPDH of the genus Mycobacter ⁇ um, both tuberculosis and leprosy of crude extracts of said pathogens with which it shares more than 86% structural homology (runs TB and Ml in Fig. 6). 4.
  • the antibody does not however recognize the murine GAPDH present in the post-nuclear macrophage cells not infected with LM (PNS race (Nl) in Fig. 4), nor in a total cell extract thereof (cel race in Fig. 6), with which it barely shares a 40% structural homology.
  • the antibody is capable of recognizing the entire bacterial structure of LM, once it has infected E-clone cells ( ⁇ lvarez-
  • the antibody does not recognize any band in PNS fractions of cells not infected with LM (PNS race (Nl), Figure 4) or E clone infected with HKLM (Heat killed LM) (PNS race (HKLM), Figure 4), that is, LM killed with heat by incubation for 60 minutes at 7O 0 C.
  • the antibodies generated against SEQ ID N 0 1 are structural antibodies that recognize similar sequences with more than 85% sequence homology in highly related bacteria and, by So much, and more specifically of Mycobacterium tuberculosis (SEQ ID N 0 3). This suggests that the same antigen, GAPDH-LM, would contain both B-cell and T-cell epitopes.
  • mice were immunized with SEQ ID N 0 1 in the plantar bearings and after 7 days of immunization the popliteal ganglia were isolated, where mainly T and dendritic cells specific for said antigen are collected. With the cells isolated from these ganglia their ability to generate a T response against SEQ ID N 0 1 was analyzed with a dose-response kinetics (Table 1).
  • Table 1 T response capacity generated by the 22-mer N-terminal peptide of the GAPDH-LM. After homogenization of the popliteal nodes, the cells are cultured in the presence of different concentrations of the peptide for 24 hours, after which the last 8 hours 3H-thymidine (tritiated thymidine) is added which will be incorporated into the DNA of the proliferating cells.
  • 3H-thymidine tritiated thymidine
  • mice By intraperitoneally injecting 2 x 10 6 specific dendritic peptide cells per mouse, after 7 days another similar booster dose is inoculated with the same number of specific dendritic peptide cells. As a control, the same number of dendritic cells is inoculated in another group of animals but not treated with said peptide, then not specific for it. After 14 days in total, said mice are inoculated with a sub-lethal dose of Listeria monocytogenes (in the case of CBA / J 5 x 10 4 bacteria / mouse are inoculated).
  • mice After 3 days post-infection, the mice are bled to obtain serum and are sacrificed for clinical analysis and recovery of spleens and livers where a viable count, CFU, will be performed, which will determine the number of LM recovered in each case. will indicate Ia efficiency of said vaccination protocol to confer protection against the pathogen.
  • CFU viable count
  • Table 2 Protection of specific dendritic-peptide cells against infection with sub-lethal dose of LM. After the vaccination protocol, blood is extracted, as well as LM-specific immune organs: spleen and liver, to perform the CFU count and analyze the general physical condition of the immunized animals.
  • the specific dendritic cells for the peptide were able to confer a very good protection, greater than 80% in the liver and 50% in the spleen, against a sub-lethal dose of the pathogen.
  • the recombinant protein (GST-Rab5a: wt) where said action is to be tested, was incubated with N1 in the following buffer: 25 mM Tris-CIH, pH 7.6, 15 Mm ATP, 100 mM MgCI2, 10 mM NAD, 2.5 mM ADP-ribose and 50 ⁇ M of NAD-biotin, in the presence or absence of 5 ⁇ g of cytosolic proteins (cell cytosol extract from interferon-gamma activated macrophages as a source of enzymatic co-factors), for 30 minutes at 37 0 C and the problem protein was recovered by means of the fusogenic part attached to affinity columns and / or diluting it 10X on ice with PBS to stop the reaction.
  • cytosolic proteins cell cytosol extract from interferon-gamma activated macrophages as a source of enzymatic co-factors
  • the ADP-ribosylation reaction is well observed by its apparent increase in molecular weight when running a sample of the ADP-ribosylated problem protein and comparing it with the untreated problem protein in 10% SDS-PAGE gels, or after transfer of said proteins separated in the SDS-PAGE gels to nitrocellulose membranes where western blots will be revealed with peroxidase-conjugated streptoavidin, which binds to the biotinylated NAD incorporated into the ADP-ribosylated protein as a product of the enzymatic reaction.
  • the GST-Rab5a: wt was ADP-ribosylated in the presence of an enzymatic source: Nt-E, N1 or a cell lysate obtained from E-clone cells infected with live LM (E1 and E2). Meanwhile, ADP-ribosylation was not observed in the absence of an enzymatic source, high concentrations of SEQ ID N 0 4 (C1) and a lysate of E-clone cells infected with HKLM and not infected. The single addition of N1 showed a low but significant ADP-ribosylation signal.
  • the highest ADP-ribosylation signal was detected in the Nt-E extracts after the addition of any of the concentrations of SEQ ID N 0 1 (N1 and N2). Once the ADP-ribosylation capacity of SEQ ID N 0 1 was verified, it was checked whether the ribosylated Rab ⁇ a was able to bind naked phagosomes of HKLM.
  • ribosylated Rab ⁇ a (Rab5a-ADP) using N1 is capable of more efficiently binding to the naked phagosomes of HKLM than non-ribosilar Rab ⁇ a. This suggests that ADP-ribosylation is responsible for the retention of Rab ⁇ a in phagosomes.
  • the SEQ ID N 0 1 peptide of the GAPDH-LM is responsible for: (i) recruitment of Rab ⁇ a to phagosomes while SEQ ID N 0 4 is not involved, (ii) of its ADP-ribosylation in the presence or not of the Listeria extract, (iii) its retention in these phagosomal fractions, (iv) of the blockage in the union with its His-Vps9 activator that exchanges the inactive GDP form, for the active, GTP form, and in consequence of responsible for its inactivation.
  • ss-NHS-biotin / phagosome and endosome complexes of HKLM with streptoavidin-HRP were treated with GDI (from English, guanidine-dissociation-inhibitor) to remove the different types of Rab proteins, in their molecular form GDP, which were found in the membranes of phagosomes and endosomes and thus get these naked.
  • GDI from English, guanidine-dissociation-inhibitor
  • these sub-cellular fractions were resuspended in fusion buffer supplemented with cytosolic proteins (0.5 mg / ml) and with 5 ⁇ g of GST-Rab ⁇ a: wt pre-treated and pretreated or not with different reagents.
  • the fusion reaction was performed at 37 0 C for 45 min and being stopped by immersion in homogenization buffer (HBE) and ice and washed twice before lysis of subcellular fractions with a low composition detergent lysis buffer.
  • the intact bacteria that with this low concentration detergent buffer are not lysed because they are gram-positive bacteria, were recovered by centrifugation.
  • Rab ⁇ a One of the fundamental functions of Rab ⁇ a is to be the regulator of interactions, that is, fusions between phagosomes and endosomes. A covalent modification such as ADP-ribosylation could affect this function.
  • a covalent modification such as ADP-ribosylation could affect this function.
  • Phagosomes or phagosomal fractions were obtained from E-clone cells infected with ss-NHS-biotin / LM for 15 minutes. Endosomal fractions were obtained after 10 minutes of incubation with streptoavidin-HRP ( ⁇ lvarez-Dom ⁇ nguez, C, Pe ⁇ a-Macarro, C and Prada-Delgado, A. (2003). In Intracellular pathogens in membrane interactions and vacuole biogenesis. Ed. JP ).
  • a fusion buffer 250 mM sucrose, 0.5 mM EGTA, 20 mM HEPES-KOH, pH 7.2, 1 mM dithiothreitol or DTT, 1.5 mM MgCI2, 100 mM KCI, 1 mM ATP, 8 mM creatine phosphate, 31 units / ml creatine phosphokinase, and 0.25 mg / ml avidin as a blocker
  • gel-filtered cytosol 0.5 mg / ml
  • 5 ⁇ g / ml GST-Rab5a recombinant wt pre-stacked and ADP-ribosylated or not.
  • ADP-ribosylation was carried out with GST-Rab5a: wt pre-incubated and pre-incubated with 10 ⁇ g / ml of: Nt-E, R5t-E, N1 or C1 for 30 min at 37 0 C to allow the binding of said recombinant protein to phagosomal and endosomal fractions, which will favor the union between the two that is called fusion.
  • the fusion reaction was incubated for 45 min at 37 0 C and the reaction was stopped by immersion in ice.
  • streptoavidin-HRP / biotin-bacterium complexes were recovered by centrifugation (10,000 xg, 6 min, at 4 0 C) after solubilization of phagosomal and endosomal membranes with lysis buffer solution with low detergent concentration (PBS, 0.05 % Triton X-100 containing 0.25 mg / ml avidin as a blocker.
  • the fusion was quantified by arbitrary absorbance units per protein amount (absorbance units / mg) as described in ⁇ lvarez-Dom ⁇ nguez, C, Barbieri, AM, Beron, W., Wandinger-Ness, A. and Stahl, PD (1996). J. Biol. Chem. 271: 13834-13843.
  • HTS high throughput screening
  • Protein-protein interaction assays binding assays
  • binding assay a small peptide is generally tested to verify the inhibition of the activity of a specific protein.
  • These types of tests can also be carried out using methodologies, such as real-time Bimolecular Interaction
  • the three-dimensional structure of the proteins of interest is determined by X-ray crystallography, computer modeling and more commonly by combination of both techniques.
  • the structural information obtained from these studies will allow the development of other molecules that inhibit, activate or mimic the activity of the target protein. Once these new agents are produced, they are studied by different techniques that will determine their activity.
  • the amino terminus of Listeria and Mycobacterium GAPDH has a predictable three-dimensional structure, the first portion of 1-8 amino acids being a beta-lamina structure and the next 12 to 22 amino acids an alpha-helix.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to the field of biotechnology, and more particularly to peptides which can immunise in relation to infections produced by bacteria belonging the genuses Listeria and Mycobacterium, as well as to those antibodies or fragments of them which are specific in relation to these peptides.

Description

PEPTIDOS INMUNOGENICOS FRENTE A LOS GÉNEROS LISTERIA Y MYCOBACTERIUM, ANTICUERPOS Y USOS DE LOS MISMOS. IMMUNOGENIC PEPTIDES AGAINST LISTERIA AND MYCOBACTERIUM GENDERS, ANTIBODIES AND USES OF THE SAME.
La presente invención se refiere al campo de Ia biotecnología y más particularmente, a péptidos capaces de inmunizar frente a infecciones producidas por bacterias pertenecientes a los géneros Listería y Mycobacterium así como aquellos anticuerpos o fragmentos de los mismos específicos frente a dichos péptidos.The present invention relates to the field of biotechnology and more particularly, to peptides capable of immunizing against infections produced by bacteria belonging to the Listeria and Mycobacterium genera as well as those antibodies or fragments thereof specific against said peptides.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
En Ia actualidad existen especies bacterianas que, por diferentes motivos, están cobrando cada vez una mayor relevancia dentro del ámbito médico y farmacéutico, y entre las cuales se encuentran aquéllas pertenecientes a los géneros Listería y Mycobacterium.At present there are bacterial species that, for different reasons, are becoming increasingly important within the medical and pharmaceutical field, and among which are those belonging to the genera Listería and Mycobacterium.
Tanto el género Listería como el género Mycobacterium, así como otros grupos de bacterias que presentan especies patógenas, tienen en común que, como resultado de Ia evolución, muchas de las proteínas o enzimas, que en principio estaban destinadas a Ia realización de actividades metabólicas, han evolucionado para ser capaces de interaccionar con las células hospedadoras y, así, favorecer su crecimiento en el interior celular. Una de las enzimas metabólicas cuya actividad ha evolucionado hasta convertirse en un factor de virulencia en determinadas bacterias patógenas, como Streptococus pyogenes, es Ia GAPDH (Gliceraldehido-3-fosfato) (Int J. Med. Microbiol. 293, 391-401.). Esta enzima implicada en Ia parte final de Ia glicólisis, catalizando Ia oxidación del gliceraldehido-3-fosfato a glicerol-1 ,3-difosfato, nunca ha sido implicada en procesos enzimáticos diferentes ni en Listería ni en el género Mycobacterium.Both the genus Listeria and the genus Mycobacterium, as well as other groups of bacteria that have pathogenic species, have in common that, as a result of the evolution, many of the proteins or enzymes, which in principle were destined to the realization of metabolic activities, they have evolved to be able to interact with the host cells and, thus, favor their growth inside the cell. One of the metabolic enzymes whose activity has evolved into a virulence factor in certain pathogenic bacteria, such as Streptococus pyogenes, is Ia GAPDH (Gliceraldehyde-3-phosphate) (Int J. Med. Microbiol. 293, 391-401.) . This enzyme involved in the final part of glycolysis, catalyzing the oxidation of glyceraldehyde-3-phosphate to glycerol-1,3-diphosphate, has never been implicated in different enzymatic processes either in Listeria or in the Mycobacterium genus.
Aunque los análisis proteómicos de las proteínas bacterianas han descrito que Ia GAPDH de Listería, más concretamente de Listería monocytogenes (GAPDH-LM), es una proteína asociada a Ia membrana de Ia bacteria (Proteomics 2004, 4: 2991-06) y capaz de ser secretada, se desconoce si tiene otra función enzimática diferente a su implicación en Ia glicólisis o como proteína de unión al plasminógeno (Proteomics 2005, 5: 1544-57). Las GAPDH de otras bacterias gram-positivas, patógenas pero no intracelulares sino extracelulares, poseen además de su actividad glicolítica, otras actividades enzimáticas que favorecen su actividad como factores de virulencia. Sin embargo, no se ha descrito ninguna actividad distinta a Ia oxidación del gliceraldehido-3-fosfato para las GAPDH de los géneros Listería y Mycobacteríum, ambos patógenos intracelulares.Although proteomic analyzes of bacterial proteins have described that Listeria GAPDH, more specifically of Listeria monocytogenes (GAPDH-LM), is a protein associated with the membrane of the bacterium (Proteomics 2004, 4: 2991-06) and capable of If it is secreted, it is unknown if it has another enzymatic function other than its implication in glycolysis or as a plasminogen binding protein (Proteomics 2005, 5: 1544-57). The GAPDH of other gram-positive bacteria, pathogenic but not intracellular but extracellular, have, in addition to their glycolytic activity, other enzymatic activities that favor their activity as virulence factors. However, no activity other than the oxidation of glyceraldehyde-3-phosphate has been described for the GAPDH of the genera Listería and Mycobacteríum, both intracellular pathogens.
Una de las actividades enzimáticas que en ocasiones presentan los factores de virulencia es Ia ADP-ribosilación. Esta actividad supone una modificación covalente limitada únicamente a unas pocas toxinas bacterianas secretadas por bacterias patogénicas no intracelulares, gram- negativas o gram-positivas, tales como Ia toxina diftérica, Ia proteína ExoS de Pseudomonas aeruginosa, Ia toxina pertúsica y Ia toxina colérica (Infecí. Immun. 2001 , 69: 5329-34; PNAS USA. 2004, 101 : 6182-87). En general, Ia ADP-ribosilación inactiva las proteínas diana celulares tales como proteínas de señalización intracelular ó reguladoras del tráfico intracelular.One of the enzymatic activities that sometimes show virulence factors is ADP-ribosylation. This activity involves a covalent modification limited only to a few bacterial toxins secreted by non-intracellular, gram-negative or gram-positive pathogenic bacteria, such as diphtheria toxin, Pseudomonas aeruginosa ExoS protein, pertussis toxin and cholera toxin (Infeci Immun. 2001, 69: 5329-34; PNAS USA. 2004, 101: 6182-87). In general, ADP-ribosylation inactivates cellular target proteins such as intracellular signaling proteins or regulators of intracellular traffic.
Los factores de virulencia son comúnmente empleados para desarrollar vacunas dirigidas contra aquellos patógenos que los portan, mediante Ia inoculación completa de dicho factor o con fragmentos del mismo en individuos. Esta estrategia que a priori debería resultar sencilla, una vez se ha detectado un factor de virulencia, no Io resulta tanto debido a que (i) Ia inoculación de factores de virulencia completos resulta muy tóxica, (ii) su generación por técnicas de ADN recombinante da lugar a una estructura conformacional distinta a Ia que el factor tiene en su estado natural y, por Io tanto, Ia respuesta humoral y/o celular no resulta eficiente y (iii) las modificaciones postraduccionales que sufre el factor de virulencia en su estado natural provocan que Ia inoculación con Ia proteína recombinante o péptidos de ésta produzca una respuesta inmune incapaz de actuar eficientemente contra el patógeno.Virulence factors are commonly used to develop vaccines directed against those pathogens that carry them, through the complete inoculation of said factor or with fragments thereof in individuals. This strategy, which a priori should be simple, once a virulence factor has been detected, is not so much because (i) the inoculation of complete virulence factors is very toxic, (ii) its generation by recombinant DNA techniques gives rise to a conformational structure different from that which the factor has in its natural state and, therefore, the humoral and / or cellular response is not efficient and (iii) the post-translational modifications that the virulence factor undergoes in its natural state cause that the inoculation with the recombinant protein or peptides of this one produces an immune response incapable of acting efficiently against the pathogen.
Estas circunstancias hacen necesario detectar determinadas regiones de los factores de virulencia capaces de dar lugar a una adecuada respuesta inmune y permita una inmunización eficiente frente al patógeno. Hasta el momento, no se ha detectado ninguna GAPDH de los géneros Listería y Mycobacteríum capaz de producir una buena respuesta inmune. Tampoco se conoce si estas proteínas, además de su actividad enzimática realizada en Ia glicólisis, catalizan reacciones relacionadas con Ia virulencia del patógeno, si pueden interferir con Ia función de determinadas proteínas implicadas en los procesos de fusión endosoma-endosoma y regulación del tráfico de estos elementos celulares ó si son capaces en general de dar lugar a una buena respuesta inmune. La confirmación de estas características haría posible que estas proteínas fuesen usadas con dianas terapéuticas o para el desarrollo de vacunas.These circumstances make it necessary to detect certain regions of the virulence factors capable of giving rise to an adequate immune response and allow efficient immunization against the pathogen. So far, no GAPDH of the genera Listería and Mycobacteríum capable of producing a good immune response has been detected. It is also not known if these proteins, in addition to their enzymatic activity carried out in glycolysis, catalyze reactions related to the virulence of the pathogen, if they can interfere with the function of certain proteins involved in the processes of endosome-endosome fusion and traffic regulation of these cellular elements or if they are capable in general of giving rise to a good immune response. Confirmation of these characteristics would make it possible for these proteins to be used with therapeutic targets or for vaccine development.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Para llevar a cabo Ia presente invención, se analizó Ia interferencia intracelular del patógeno humano y bacteria gram-positiva: Listería monocytogenes (LM), y se observó que Ia diana intracelular de este patógeno era el factor regulador del tráfico fagosomal, Ia GTPasa Rabδa, disminuyendo su activación, esto es, el intercambio entre Ia forma inactiva ó GDP y Ia forma activa ó GTP, con Io que se bloqueaba su función. Sorprendentemente, se observó que Ia proteína bacteriana de unión e inhibición de Rabδa era Ia GAPDH-LM (gliceraldehido-3-fosfato- deshidrogenasa de LM), Ia cuál mediante su acción enzimática de ADP- ribosilación, disminuía Ia interacción de Rabδa con su factor de activación, o intercambiador GDP/GTP, siendo Ia región de Ia GAPDH-LM responsable de dicha inhibición Ia región N-terminal de Ia proteína, en concreto los primeros 22 aminoácidos (22-mer). A Io largo de Ia descripción, este extremo amino de 22 aminoácidos de GAPDH-LM también será denominado como SEQ ID N°1.To carry out the present invention, the intracellular interference of the human pathogen and gram-positive bacteria was analyzed: Listería monocytogenes (LM), and it was observed that the intracellular target of this pathogen was the phagosomal traffic regulatory factor, GTPase Rabδa, decreasing its activation, that is, the exchange between the inactive form or GDP and the active form or GTP, thereby blocking its function. Surprisingly, it was observed that the bacterial protein of Rabδa binding and inhibition was Ia GAPDH-LM (LM glyceraldehyde-3-phosphate dehydrogenase), which, through its enzymatic action of ADP-ribosylation, decreased the interaction of Rabδa with its factor of activation, or GDP / GTP exchanger, the region of the GAPDH-LM being responsible for said inhibition the N-terminal region of the protein, in particular the first 22 amino acids (22-mer). Throughout the description, this amino acid end of 22 amino acids of GAPDH-LM will also be referred to as SEQ ID No. 1.
A partir de este análisis estructural y funcional, se realizó una búsqueda detallada en bases de datos del dominio correspondiente al péptido N- terminal de 22-mer, y se vio que éste presentaba un 86% de homología con el extremo amino terminal de 22 aminoácidos de Ia GAPDH de Mycobacteríum tuberculosis, TB, (GAPDH-TB) (Fig. 1a, extremo amino terminal subrayado); mientras que el dominio C-terminal escasamente presentaba una homología del 59% y una identidad de 27% (Fig. 1a, extremo carboxilo terminal subrayado). Cuando se analizó en más detalle el dominio homólogo de Ia GAPDH-TB se observó una secuencia aminoacídica casi exacta en los 15-primeros aminoácidos (15-mer), subiendo el porcentaje de homología hasta un 99% y difiriendo sólo en un aminoácido con igual carga (K en LM y R en TB. Ver Figura 1A). Como Ia unión de péptidos a moléculas MHC-I ó MHC-II presenta una restricción molecular de nonámeros y dodecámeros, respectivamente; es muy probable que en esos 15-mer pudiera haber tanto epítopos MHC-I como MHC-II que podrían así ser compartidos por ambos patógenos. A Io largo de Ia descripción, el extremo amino de 15 amino ácidos de GAPDH-LM y GAPDH-TB, podrán ser denominados respectivamente como SEQ ID N0 2 y SEQ ID N0 3.From this structural and functional analysis, a detailed search was carried out in databases of the domain corresponding to the 22-mer N-terminal peptide, and it was found that it had an 86% homology with the amino terminal end of 22 amino acids of the GAPDH of Mycobacteríum tuberculosis, TB, (GAPDH-TB) (Fig. 1a, underlined amino terminal end); while the C-terminal domain sparsely It had a homology of 59% and an identity of 27% (Fig. 1a, carboxyl end terminal underlined). When the homologous domain of the GAPDH-TB was analyzed in more detail, an almost exact amino acid sequence was observed in the first 15-amino acids (15-mer), raising the homology percentage up to 99% and differing only in one amino acid with the same load (K in LM and R in TB. See Figure 1A). As the binding of peptides to MHC-I or MHC-II molecules has a molecular restriction of non-reamers and dodecamers, respectively; it is very likely that in those 15-mer there could be both MHC-I and MHC-II epitopes that could thus be shared by both pathogens. Throughout the description, the amino terminus of 15 amino acids of GAPDH-LM and GAPDH-TB may be referred to respectively as SEQ ID N 0 2 and SEQ ID N 0 3.
Continuando con este estudio estructural se analizaron los diferentes N- terminales cortos (15-mer) de las GAPDH de diferentes especies dentro del género Mycobacterium, tanto patógenos humanos como patógenos de animales importantes en Ia industria ganadera/alimenticia y diferentes controles de otras bacterias tanto gram-positivas como gram-negativas, así como Ia secuencia de las GAPDH humana y murina. Este estudio que se muestra en Ia Figura 2, destaca que sólo el N-terminal de las GAPDH de Listería y del género Mycobacterium presentan Ia mayor homología posible de un 98% (aminoácidos en negrita en Ia Fig. 2); mientras que esta homología disminuye al 60% ó 40% cuando se estudian los controles negativos correspondientes a Ia GAPDH humana ó de ratón, respectivamente.Continuing with this structural study, the different short N-terminals (15-mer) of the GAPDH of different species within the Mycobacterium genus, both human pathogens and pathogens of important animals in the livestock / food industry and different controls of other bacteria were analyzed. gram-positive as gram-negative, as well as the sequence of human and murine GAPDH. This study, shown in Figure 2, highlights that only the N-terminal of the Listeria GAPDH and of the Mycobacterium genus have the highest possible homology of 98% (bold amino acids in Fig. 2); while this homology decreases to 60% or 40% when studying the negative controls corresponding to human or mouse GAPDH, respectively.
Dentro del género Mycobacterium, esto es, tuberculosis, avium, leprae (Ml) y bovis, si se extiende el estudio estructural a los primeros 30 aminoácidos, se puede apreciar que son 100% homólogos para M. tuberculosis, M. avium y M. Bovis.Within the genus Mycobacterium, that is, tuberculosis, avium, leprae (Ml) and bovis, if the structural study is extended to the first 30 amino acids, it can be seen that they are 100% homologous for M. tuberculosis, M. avium and M. Bovis
Cuando el estudio se extiende bien a otras gram-positivas cuyas GAPDH se ha descrito que tienen actividad de ADP-ribosilación, tales como Streptococcus pyogenes ó Staphylococcus aureus (Pancholi, V. AndWhen the study extends well to other gram-positives whose GAPDH has been described as having ADP-ribosylation activity, such as Streptococcus pyogenes or Staphylococcus aureus (Pancholi, V. And
Fishetti, V.A. (1993) Proc. Nati. Acad. Sci. USA 90: 8154-8158. Molinari, G., Rohde, M., Just, L, Aktorias, K. and Chatwal, G.S. (2006). Infecí. Immun. 74: 3673-36677), Ia homología del péptido 15-mer se rebaja a un 75-80%, pero cuando se analiza el de otras gram-negativas como Pseudomonas aeruginosa, que presenta una toxina específica con actividad de ADP- ribosilación denominada ExoS (Bette-Bobillo, P., Giro, D., Sainte-Marie, J. and Vidal, M. (1998). Biochem. Biophys. Res. Común. 244: 3366-341 ), Ia región N-terminal de Ia GAPDH, en concreto el péptido de 15-mer, era escasamente 60% homólogo al de Ia GAPDH-LM (ver Fig. 2).Fishetti, VA (1993) Proc. Nati Acad. Sci. USA 90: 8154-8158. Molinari, G., Rohde, M., Just, L, Aktorias, K. and Chatwal, GS (2006). I infected. Immun 74: 3673-36677), the homology of the 15-mer peptide is reduced to 75-80%, but when it is analyzed that of other gram-negatives such as Pseudomonas aeruginosa, which has a specific toxin with ADP-ribosylation activity called ExoS (Bette-Bobillo, P., Giro, D., Sainte-Marie, J. and Vidal, M. (1998). Biochem. Biophys. Common Res. 244: 3366-341), the N-terminal region of Ia GAPDH, specifically the 15-mer peptide, was barely 60% homologous to that of the GAPDH-LM (see Fig. 2).
Esto sugería que Ia GAPDH de Pseudomonas no presentaría capacidad de ADP-ribosilación sobre Rabδa y, por ello, se analizó Ia comparación funcional de distintos extractos proteicos y su capacidad de ADP-ribosilar Rabδa. Como se muestra en Ia Figura 3, tanto el extracto de LM, como un extracto celular murino de macrófagos infectados con LM (carrera E1 , Fig. 3), como el extracto de TB son capaces de ADP-ribosilar Rabδa, y en menor medida el extracto de Ml, cuya capacidad de ADP-ribosilación sobre Rabδa era similar a Ia del péptido de 22-mer N-terminal de Ia GAPDH-LM (carrera - para extracto y + para péptido en Ia Fig. 3). Mientras, los extractos de Escherichia coli (carrera Ec, Fig. 3), un extracto celular murino de macrófagos sin infectar pero conteniendo GAPDH murina (carrera E, Fig. 3) ó un extracto celular murino de macrófagos infectados con LM muerta por calor (HKLM) previo a Ia infección (carrera E2 en Ia Fig. 3) eran incapaces de ADP-ribosilar Rabδa.This suggested that the GAPDH of Pseudomonas would not have ADP-ribosylation capacity on Rabδa and, therefore, the functional comparison of different protein extracts and their capacity of ADP-ribosilar Rabδa was analyzed. As shown in Figure 3, both the LM extract, as a murine cell extract of macrophages infected with LM (run E1, Fig. 3), as the TB extract are capable of ADP-ribosilar Rabδa, and to a lesser extent the Ml extract, whose ADP-ribosylation capacity on Rabδa was similar to that of the 22-mer N-terminal peptide of the GAPDH-LM (run - for extract and + for peptide in Fig. 3). Meanwhile, extracts of Escherichia coli (Ec race, Fig. 3), a murine cell extract of macrophages not infected but containing murine GAPDH (run E, Fig. 3) or a murine cell extract of macrophages infected with heat-killed LM ( HKLM) prior to infection (run E2 in Fig. 3) were unable to ADP-ribosilar Rabδa.
Todos estos datos estructurales de alta similitud entre el género Listeria y el género Mycobacteríum indican no sólo que Ia posible interferencia con Rabδa es común a ambos géneros, sino que sorprendentemente esta similitud se extiende también a su respuesta inmune, tal y como se muestra en los ejemplos que forman parte de Ia memoria de Ia presente invención.All these high similar structural data between the genus Listeria and the genus Mycobacteríum indicate not only that the possible interference with Rabδa is common to both genders, but surprisingly this similarity also extends to their immune response, as shown in the examples that are part of the memory of the present invention.
Por tanto, los inventores de Ia presente invención han descubierto que GAPDH-LM y GAPDH-TB son capaces de realizar dos acciones relevantes no conocidas hasta Ia fecha. La primera acción reside en su capacidad de ADP-ribosilación donde, además, dicha capacidad Ie sirve para inactivar a Ia proteína celular reguladora del tráfico fagosomal, Rabδa. Tal y como mostramos en Ia presente invención, dicha inactivación de Rabδa por Ia GAPDH, es mediada por Ia región N-terminal de Ia proteína, en concreto por el péptido que contiene los primeros 22 aminoácidos.Therefore, the inventors of the present invention have discovered that GAPDH-LM and GAPDH-TB are capable of performing two relevant actions not known to date. The first action resides in its ADP-ribosylation capacity where, in addition, said capacity is used to inactivate the phagosomal traffic regulatory cellular protein, Rabδa. As we show in the present invention, said inactivation of Rabδa by Ia GAPDH, is mediated by the N-terminal region of the protein, specifically by the peptide that contains the first 22 amino acids.
Por otro lado, Ia segunda acción interesante de GAPDH-LM y GAPDH-TB se puede inferir de su localización como proteína asociada a Ia membrana externa de Ia pared bacteriana de ambos patógenos. Donde el péptido N- terminal quedaría expuesto Io que haría que se extrajese con facilidad ó que pudiera ser accesible al reconocimiento por anticuerpos. Así, y puesto que LM no induce una respuesta humoral, esta proteína podría ser Ia única capaz de inducir una adecuada respuesta inmune tanto humoral como celular. De hecho, Ia inmunización con SEQ ID N0 1 -agregado pero sin adyuvante, es decir, sólo con el excipiente del adyuvante, el aceite mineral ó IFA, es capaz de generar una buena respuesta inmune en conejos generando anticuerpos, Io que es sinónimo de una buena respuesta humoral y celular.On the other hand, the second interesting action of GAPDH-LM and GAPDH-TB can be inferred from its location as a protein associated with the outer membrane of the bacterial wall of both pathogens. Where the N-terminal peptide would be exposed which would cause it to be easily extracted or that could be accessible for recognition by antibodies. Thus, and since LM does not induce a humoral response, this protein could be the only one capable of inducing an adequate humoral and cellular immune response. In fact, the immunization with SEQ ID N 0 1 -added but without adjuvant, that is, only with the adjuvant excipient, mineral oil or IFA, is capable of generating a good immune response in rabbits generating antibodies, which is synonymous of a good humoral and cellular response.
Además, el análisis directo de Ia capacidad del péptido de SEQ ID N0 1 para inducir una buena respuesta de células T se investigó tras inmunización de ratones en los cojinetes plantares y análisis de Ia capacidad de respuesta específica a dicho péptido por las células T, aisladas de los ganglios poplíteos de dichos ratones. Este estudio indicó que tan sólo 0.1 μg/ml del péptido eran necesarios para inducir una buena respuesta inmune por dichas células T al menos 10 veces superior frente al control sin péptido.In addition, the direct analysis of the ability of the peptide of SEQ ID N 0 1 to induce a good T-cell response was investigated after immunization of mice in the plantar bearings and analysis of the capacity of specific response to said peptide by the T cells, isolated from the popliteal nodes of said mice. This study indicated that only 0.1 μg / ml of the peptide was necessary to induce a good immune response by said T cells at least 10 times higher compared to the control without peptide.
La versatilidad del péptido en inducir una buena respuesta inmune queda también reflejada por Ia propia versatilidad del anticuerpo para reconocer varios patógenos, Io que indicaba que podría ser un buen candidato a probar como vacuna.The versatility of the peptide in inducing a good immune response is also reflected by the antibody's own versatility to recognize several pathogens, which indicated that it could be a good candidate to test as a vaccine.
En definitiva, GAPDH-LM constituye un antígeno interesante tanto en el campo de Ia patogenia bacteriana al ser el mismo factor de virulencia compartido por dos bacterias intracelulares; pero también es un antígeno peculiar y prometedor en el área de Ia inmunología, puesto que un mismo antígeno de dos bacterias distintas compartirían regiones aminoácidicas suficientemente amplias (15-mer) como para contener epítopos reconocidos por células B, epítopos reconocidos por células T CD4+ (MHC- II) y por células T CD8+ (MHC-I); Io cuál se puede inferir, en un principio, ya que el anticuerpo de conejo generado anti-SEQ ID N0 1 , obtenido por inmunización exclusiva con el péptido sin adyuvante, es capaz de reconocer Ia proteína en una estructura compleja como Ia bacteria entera, como en extractos proteicos de ambos géneros de bacterias, Listería y Mycobacterium, donde dicho péptido está expuesto (ver ejemplos y Figura 6). La misma conclusión se puede extraer del hecho de que Ia respuesta T generada por el péptido sea muy buena (Tabla 1 ), que las células T CD4/CD8 tengan Ia capacidad de transferir inmunidad frente a dos patógenos distintos. (Tabla 2) y de su capacidad para ser empleado como vacuna.In short, GAPDH-LM constitutes an interesting antigen both in the field of bacterial pathogenesis as it is the same virulence factor shared by two intracellular bacteria; but it is also a peculiar and promising antigen in the area of immunology, since the same antigen from two different bacteria would share amino acid regions large enough (15-mer) to contain epitopes recognized by B cells, epitopes recognized by CD4 + T cells (MHC-II) and by CD8 + T cells (MHC-I); Which can be inferred, initially, since the rabbit antibody generated anti-SEQ ID N 0 1, obtained by exclusive immunization with the peptide without adjuvant, is capable of recognizing the protein in a complex structure such as the entire bacterium, as in protein extracts of both genera of bacteria, Listeria and Mycobacterium, where said peptide is exposed (see examples and Figure 6). The same conclusion can be drawn from the fact that the T response generated by the peptide is very good (Table 1), that CD4 / CD8 T cells have the ability to transfer immunity against two different pathogens. (Table 2) and its ability to be used as a vaccine.
Por Io tanto, un primer aspecto de Ia presente invención se refiere a un polipéptido aislado inmunogénico (de aquí en adelante polipéptido de Ia invención) frente a cualquiera de los géneros Listería y Mycobacterium seleccionado del grupo que comprende:Therefore, a first aspect of the present invention refers to an isolated immunogenic polypeptide (hereinafter polypeptide of the invention) against any of the Listeria and Mycobacterium genera selected from the group comprising:
a) Polipéptido cuya secuencia comprende Ia SEQ ID N°1 . b) Polipéptido cuya secuencia comprende fragmentos de al menos 8 aminoácidos consecutivos de Ia SEQ ID N°1 que mantengan Ia capacidad inmunogénica frente a los géneros Listería y Mycobacterium c) Polipéptido cuya secuencia tiene al menos un 85% de homología con cualquiera de los polipéptidos de a) y b) . En una realización preferida homología es de al menos el 90% y más preferentemente de al menos el 95%.a) Polypeptide whose sequence comprises SEQ ID N ° 1. b) Polypeptide whose sequence comprises fragments of at least 8 consecutive amino acids of SEQ ID N ° 1 that maintain the immunogenic capacity against the genera Listería and Mycobacterium c) Polypeptide whose sequence has at least 85% homology with any of the polypeptides of a) and b). In a preferred embodiment homology is at least 90% and more preferably at least 95%.
En una realización preferida el polipéptido de Ia invención tiene Ia secuencia SEQ ID N0 1.In a preferred embodiment, the polypeptide of the invention has the sequence SEQ ID N 0 1.
En una realización también preferida de este aspecto de Ia invención el polipéptido de Ia invención es elegido del grupo:In a preferred embodiment of this aspect of the invention, the polypeptide of the invention is chosen from the group:
a.- Polipéptido cuya secuencia comprende Ia SEQ ID N0 2. b.- Polipéptido cuya secuencia consiste en Ia SEQ ID N0 2. En una realización también preferida de Ia presente invención el polipéptido es elegido del grupo:a.- Polypeptide whose sequence comprises the SEQ ID N 0 2. b.- Polypeptide whose sequence consists of the SEQ ID N 0 2. In a preferred embodiment of the present invention, the polypeptide is chosen from the group:
a.- Polipéptido cuya secuencia comprende Ia SEQ ID N0 3. b.- Polipéptido cuya secuencia consiste en Ia SEQ ID N0 3.a.- Polypeptide whose sequence comprises SEQ ID N 0 3. b.- Polypeptide whose sequence consists of SEQ ID N 0 3.
En una realización todavía más preferida el polipéptido de Ia invención es un polipéptido derivado que ha sufrido modificaciones postraduccionales o realizadas mediante métodos sobradamente conocidos en el estado de Ia técnica.In an even more preferred embodiment, the polypeptide of the invention is a derived polypeptide that has undergone post-translational modifications or made by methods well known in the state of the art.
Un segundo aspecto de Ia invención se refiere a un polinucleótido (de aquí en adelante polinucleótido de Ia invención) aislado capaz de codificar para cualquiera de los polipéptidos de Ia invención.A second aspect of the invention relates to an isolated polynucleotide (hereinafter polynucleotide of the invention) capable of coding for any of the polypeptides of the invention.
Un tercer aspecto de Ia invención se refiere a un anticuerpo aislado o fragmento del mismo (en adelante anticuerpo de Ia invención) capaz de reconocer cualquiera de los polipéptidos o polipéptidos derivados de Ia invención.A third aspect of the invention refers to an isolated antibody or fragment thereof (hereinafter antibody of the invention) capable of recognizing any of the polypeptides or polypeptides derived from the invention.
Un cuarto aspecto de Ia invención hace referencia a un polipéptido de Ia invención fusionado o unido químicamente a un péptido, polipéptido o proteína adicional.A fourth aspect of the invention refers to a polypeptide of the invention fused or chemically bound to an additional peptide, polypeptide or protein.
Un quinto aspecto de Ia invención se refiere a un vector de expresión o sistema de expresión (en adelante vector o sistema de expresión de Ia invención) que comprende cualquiera de los polinucleótidos de Ia invención.A fifth aspect of the invention refers to an expression vector or expression system (hereinafter vector or expression system of the invention) comprising any of the polynucleotides of the invention.
Un sexto aspecto de Ia invención se refiere a una célula hospedadora aislada, procariota o eucariota, (en adelante célula hospedadora de Ia invención), transformada, o transfectada con cualquiera de los polinucleótidos de Ia invención o con cualquiera de los vectores o sistemas de expresión de Ia invención. Un séptimo aspecto de Ia invención se refiere a un método para elaborar el polipéptido de Ia invención (en adelante método de Ia invención), mediante técnicas de ADN recombinante o síntesis química.A sixth aspect of the invention refers to an isolated host cell, prokaryotic or eukaryotic, (hereinafter host cell of the invention), transformed, or transfected with any of the polynucleotides of the invention or with any of the vectors or expression systems of the invention. A seventh aspect of the invention relates to a method for preparing the polypeptide of the invention (hereinafter method of the invention), by recombinant DNA techniques or chemical synthesis.
En una realización preferida, el método de Ia invención comprende cultivar una célula hospedadora de Ia invención en condiciones tales que se exprese dicha cualquiera de los polinucleótidos de Ia invención, y aislar dicho polipéptido expresado.In a preferred embodiment, the method of the invention comprises culturing a host cell of the invention under conditions such that any of the polynucleotides of the invention is expressed, and isolating said expressed polypeptide.
Un octavo aspecto de Ia invención se refiere a un polipéptido de Ia invención para su uso como medicamento.An eighth aspect of the invention relates to a polypeptide of the invention for use as a medicine.
Un noveno aspecto de Ia invención se refiere a una vacuna que comprende cualquiera de los polipéptidos de Ia invención.A ninth aspect of the invention relates to a vaccine comprising any of the polypeptides of the invention.
Una realización preferida de Ia presente invención comprende el uso de un polipéptido de Ia invención para Ia elaboración de una vacuna capaz de inmunizar frente a una infección producida por bacterias pertenecientes al género Listeria y/o Mycobacterium, más particularmente Listeria monocytogenes y/o Mycobacterium tuberculosis.A preferred embodiment of the present invention comprises the use of a polypeptide of the invention for the elaboration of a vaccine capable of immunizing against an infection produced by bacteria belonging to the genus Listeria and / or Mycobacterium, more particularly Listeria monocytogenes and / or Mycobacterium tuberculosis .
Una realización aún más preferida de Ia presente invención comprende el uso de un anticuerpo de Ia invención, para Ia elaboración de una composición farmacéutica para el tratamiento de una infección producida por bacterias pertenecientes al género Listeria y/o Mycobacterium, más particularmente Listeria monocytogenes y/o Mycobacterium tuberculosis.An even more preferred embodiment of the present invention comprises the use of an antibody of the invention, for the preparation of a pharmaceutical composition for the treatment of an infection produced by bacteria belonging to the genus Listeria and / or Mycobacterium, more particularly Listeria monocytogenes and / or Mycobacterium tuberculosis.
Un décimo aspecto de Ia presente invención se refiere a moléculas moduladoras de Ia actividad de GAPDH de los géneros Listeria y/o Mycobacterium, activadores o inhibidores, diseñados específicamente para interaccionar con cualquiera de los péptidos de Ia invención.A tenth aspect of the present invention relates to molecules modulating the activity of GAPDH of the genera Listeria and / or Mycobacterium, activators or inhibitors, specifically designed to interact with any of the peptides of the invention.
Un décimo primer aspecto de Ia presente invención se refiere a moléculas diseñadas específicamente a partir del dominio de ADP-ribosilación de Ia GAPDH de los géneros Listeria y/o Mycobacterium y capaces de mimetizar Ia actividad de dicho dominio. Un décimo segundo aspecto de Ia invención se refiere al uso del dominio de ADP-ribosilación de Ia GAPDH de los géneros Listeria y/o Mycobacteríum para el diseño racional de drogas.A eleventh aspect of the present invention relates to molecules specifically designed from the ADP-ribosylation domain of the GAPDH of the Listeria and / or Mycobacterium genera and capable of mimicking the activity of said domain. A twelfth aspect of the invention refers to the use of the ADP-ribosylation domain of the GAPDH of the genera Listeria and / or Mycobacteríum for the rational design of drugs.
Un décimo tercer aspecto de Ia invención se refiere al uso de cualquiera de los polipéptidos, polipéptidos derivados de Ia invención o fragmentos de los mismos de Ia invención por su capacidad de ADP-ribosilación.A thirteenth aspect of the invention refers to the use of any of the polypeptides, polypeptides derived from the invention or fragments thereof of the invention for its ability to ADP-ribosylation.
A continuación se facilita Ia definición de una serie de términos que ayudan a interpretar correctamente Ia presente invención.Next, the definition of a series of terms that help to correctly interpret the present invention is facilitated.
El término "polipéptido o péptido" se usa para designar una secuencia lineal de aminoácidos conectados entre sí por enlaces amida entre el grupo alfa-amino de un aminoácido y un grupo alfa-carboxi del aminoácido adyacente. A partir de dichos polipéptidos pueden derivarse fragmentos de menor tamaño de al menos 8 aminoácidos, preferiblemente de al menos 15 aminoácidos y preferiblemente de al menos 22. Dichos polipéptidos y fragmentos incluyen cualquier modificación postraduccional o realizada mediante métodos sobradamente conocidos en el estado de Ia técnica. Estos polipéptidos y fragmentos modificados serán denominados como "polipéptidos o péptidos derivados".The term "polypeptide or peptide" is used to designate a linear sequence of amino acids connected to each other by amide bonds between the alpha-amino group of an amino acid and an alpha-carboxy group of the adjacent amino acid. From said polypeptides, smaller fragments of at least 8 amino acids can be derived, preferably at least 15 amino acids and preferably at least 22. Said polypeptides and fragments include any post-translational modification or carried out by methods well known in the state of the art. . These modified polypeptides and fragments will be referred to as "derived polypeptides or peptides."
El término "polinucleótido" se usa para designar una secuencia lineal de nucleótidos o ribonucleótidos. Este término esta referido exclusivamente a Ia estructura primaria de Ia molécula incluyendo ADN mono y bicatenario, así como ARN mono y bicatenario. Del mismo modo, también se incluyen las formas modificadas de estas moléculas, por ejemplo, por metilación.The term "polynucleotide" is used to designate a linear sequence of nucleotides or ribonucleotides. This term refers exclusively to the primary structure of the molecule including single and double stranded DNA, as well as single and double stranded RNA. Similarly, the modified forms of these molecules are also included, for example, by methylation.
El término "epítopo" hace referencia a un determinante antigénico de un polipéptido; un epítopo puede comprender 3 aminoácidos en una conformación espacial que es exclusiva del epítopo, generalmente constituido por al menos 5 aminoácidos, y más usualmente constituido por al menos 8-10 aminoácidos. Los métodos para determinar Ia conformación espacial de aminoácidos son conocidos en el estado de Ia técnica, e incluyen, por ejemplo, cristalografía de rayos X y resonancia magnética nuclear en 2 dimensiones.The term "epitope" refers to an antigenic determinant of a polypeptide; An epitope may comprise 3 amino acids in a spatial conformation that is exclusive to the epitope, generally consisting of at least 5 amino acids, and more usually consisting of at least 8-10 amino acids. The methods for determining the spatial conformation of amino acids are known in the state of the art, and include, for example, X-ray crystallography and magnetic resonance imaging nuclear in 2 dimensions.
Un "polipéptido o péptido inmunogénico" hace referencia aun polipéptido capaz de generar anticuerpos específicos, así como de promover tanto una respuesta humoral como celular.An "immunogenic polypeptide or peptide" refers to a polypeptide capable of generating specific antibodies, as well as promoting both a humoral and cellular response.
El término "vacuna" hace referencia a preparados antigénicos o células tratadas previamente con dichos preparados antigénicos y capaces de promover una respuesta humoral y/o celular o vectores de expresión u otras formas de vectores vacuna. Esta respuesta dará lugar a Ia generación de una memoria inmunológica produciendo, en Ia mayoría de los casos, inmunidad permanente o transitoria frente a un patógeno determinado.The term "vaccine" refers to antigenic preparations or cells previously treated with said antigenic preparations and capable of promoting a humoral and / or cellular response or expression vectors or other forms of vaccine vectors. This response will lead to the generation of an immunological memory producing, in most cases, permanent or transient immunity against a specific pathogen.
El término "anticuerpo" hace referencia tanto a anticuerpos monoclonales como policlonales capaces de interaccionar con los polipéptidos definidos en Ia presente invención.The term "antibody" refers to both monoclonal and polyclonal antibodies capable of interacting with the polypeptides defined in the present invention.
El término "fragmento de anticuerpo" hace referencia a todos aquellos fragmentos de anticuerpos capaces de interaccionar frente a los péptidos de Ia invención y fragmentos de los mismos, donde dichos fragmentos comprenden las regiones variables Vh y/o Vl, así como sus regiones conservadas.The term "antibody fragment" refers to all those antibody fragments capable of interacting with the peptides of the invention and fragments thereof, where said fragments comprise the variable regions Vh and / or Vl, as well as their conserved regions.
El término "dominio" de una proteína hace referencia a Ia estructura tridimensional que adquiere una determinada región o polipéptidos de dicha proteína y que puede llevar a cabo funciones meramente estructurales o enzimáticas. Más concretamente, este término hará referencia a Ia estructura tridimensional adoptada por los polipéptidos, polipéptidos derivados o fragmentos de los mismos de Ia invención, correspondientes al extremo de 22 aminoácidos de Ia región amino terminal de Ia GAPDH de los géneros Listeria y Mycobacterium.The term "domain" of a protein refers to the three-dimensional structure that acquires a certain region or polypeptides of said protein and that can carry out purely structural or enzymatic functions. More specifically, this term will refer to the three-dimensional structure adopted by the polypeptides, derived polypeptides or fragments thereof of the invention, corresponding to the 22 amino acid end of the amino terminal region of the GAPDH of the Listeria and Mycobacterium genera.
A menos que se definan de otro modo, todos los términos técnicos y científicos usados en este documento tienen el mismo significado que el entendido habitualmente por un especialista habitual en Ia técnica a Ia que pertenece esta invención. En Ia práctica de Ia presente invención pueden usarse métodos y materiales similares o equivalentes a los descritos en este documento. A Io largo de toda Ia descripción y las reivindicaciones, Ia palabra "comprende" y sus variaciones no pretenden excluir otras características técnicas, aditivos, componentes o etapas. Otros objetos, ventajas y características de Ia invención serán evidentes para los especialistas en Ia técnica tras el examen de Ia descripción o pueden aprenderse por Ia práctica de Ia invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración y no pretenden limitar Ia presente invención.Unless defined otherwise, all the technical and scientific terms used in this document have the same meaning as usually understood by a specialist in the technique to which This invention belongs. In the practice of the present invention methods and materials similar or equivalent to those described herein can be used. Throughout the entire description and the claims, the word "comprises" and its variations are not intended to exclude other technical characteristics, additives, components or stages. Other objects, advantages and characteristics of the invention will be apparent to those skilled in the art after examining the description or can be learned by the practice of the invention. The following examples and figures are provided by way of illustration and are not intended to limit the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Figura 1. En Ia figura 1a se muestra Ia secuencia amioacídica de las GAPDH-TB y GAPDH-LM. Parte superior: extremo amino terminal de 22 amino ácidos de GAPDH-TB (subrayado) homólogo al 99% en sus 15 primeros aminoácidos con el extremo amino terminal de 15 amino ácidos de GADPH-LM. Parte inferior: extremos amino y carboxilo (subrayado) de GAPDH-LM. En Ia figura 1b se muestra Ia estructura 3D de Ia GAPDH-LM. El dominio de unión a sustrato se refiere al dominio con actividad ADP- ribosilante y el dominio de unión NAD se corresponde con el dominio que cataliza Ia oxidación del gliceraldehido-3-fosfato a glicerol-1 ,3-difosfato en Ia glicólisis.Figure 1. Figure 1a shows the amioacidic sequence of GAPDH-TB and GAPDH-LM. Top: amino terminal end of 22 amino acids of GAPDH-TB (underlined) 99% homologous in its first 15 amino acids with the amino terminal end of 15 amino acids of GADPH-LM. Bottom: amino and carboxyl ends (underlined) of GAPDH-LM. Figure 1b shows the 3D structure of the GAPDH-LM. The substrate binding domain refers to the domain with ADP-ribosilant activity and the NAD binding domain corresponds to the domain that catalyzes the oxidation of glyceraldehyde-3-phosphate to glycerol-1,3-diphosphate in glycolysis.
Figura 2.- Comparación estructural entre los N-terminales, 15-mer, de diferentes GAPDH. En negrita se destaca el péptido 15-mer del extremo N- terminal de aquellas bacterias en las que presenta más de un 90% de homología; subrayado, aquellas bacterias del género Mycobacterium cuyo N-terminal extendido (30-mer) es 100% homólogo y en minúscula, el único aminoácido diferente entre Listeria y Mycobacterium.Figure 2.- Structural comparison between the N-terminals, 15-mer, of different GAPDH. In bold, the 15-mer peptide of the N-terminal end of those bacteria in which it has more than 90% homology stands out; underlined, those bacteria of the genus Mycobacterium whose extended N-terminal (30-mer) is 100% homologous and in lowercase, the only different amino acid between Listeria and Mycobacterium.
Figura 3.- Capacidad de ADP-ribosilación sobre Rabδa de los diferentes extractos bacterianos y celulares. ADP-ribosilación de Ia proteína de fusión GST-Rab5a: wt en presencia de 30 μg de los diferentes extractos: TB, extracto de Mycobacterium tuberculosis: Ml, extracto de Mycobacterium leprae: Ec, extracto de Escheríchia coli; LM, extracto de Listería monocytogenes, E1 ; extracto de células tipo macrófago de ratón infectadas con LM; E2, extracto de células tipo macrófago de ratón infectadas con LM muertas por calor; E, extracto de células tipo macrófago de ratón sin infectar.Figure 3.- Capacity of ADP-ribosylation on Rabδa of the different bacterial and cellular extracts. ADP-ribosylation of the GST-Rab5a fusion protein: wt in the presence of 30 μg of the different extracts: TB, Mycobacterium tuberculosis extract: Ml, Mycobacterium leprae extract: Ec, Escheríchia coli extract; LM, Listería monocytogenes extract, E1; extract of mouse macrophage-like cells infected with LM; E2, extract of mouse macrophage-like cells infected with heat-killed LM; E, extract of uninfected mouse macrophage cells.
Figura 4.- A. Proteínas reconocidas por el anticuerpo anti-SEQ ID N0 1. PNS (LM), fracción post-nuclear de células infectadas con LM; Fagos, fagosomas purificados de Ia fracción PNS (LM); PNS (Nl), fracción post- nuclear de células no infectadas con LM; LM-lisado, lisado de LM conteniendo proteínas de Ia pared; LM-sobrenadante, sobrenadante de LM conteniendo proteínas secretadas; Nt-E, extracto crudo de LM; R5t-eluído o R5t-E, eluído de columna-Rabδa de afinidad incubada con extracto crudo de LM. B-E. Células E-clone infectadas con LM vivas durante 15 min (B) o 60 min (C-D) e incubadas con anticuerpos anti-SEQ ID N0 1 (B, C y E) o con suero preinmune (D) procedente del mismo animal a partir del cual se obtienen los anticuerpos frente a SEQ ID N0 1.Figure 4.- A. Proteins recognized by the anti-SEQ ID N 0 1 antibody. PNS (LM), post-nuclear fraction of cells infected with LM; Phages, purified phagosomes of the PNS fraction (LM); PNS (Nl), post-nuclear fraction of cells not infected with LM; LM-lysate, LM lysate containing wall proteins; LM-supernatant, LM supernatant containing secreted proteins; Nt-E, crude extract of LM; R5t-eluted or R5t-E, eluted from affinity column-Rabδa incubated with crude LM extract. BE. E-clone cells infected with live LM for 15 min (B) or 60 min (CD) and incubated with anti-SEQ ID N 0 1 antibodies (B, C and E) or with preimmune serum (D) from the same animal to from which the antibodies against SEQ ID N 0 1 are obtained.
Figura 5.- Proteínas reconocidas en distintos mutantes de LM por el anticuerpo anti-SEQ N0 1 del N-terminal de Ia GAPDH-LM. Distintos usados de diferentes mutantes de Lm: (i) muíante carente de listeriolisina O - LM- /lisado y LM-/sup - (carreras 3 y 4) ; (ii) muíante carente de fosfolipasa C - pIcA/B-lisado ó sobrenadaníes de ésías pIcA/B- sup - (carreras 5 y 6); (ii) fenoíipo salvaje - LM+/lisado y LM+/sup (carreras 1 y 2).Figure 5.- Proteins recognized in different mutants of LM by the anti-SEQ antibody N 0 1 of the N-terminal of the GAPDH-LM. Different used of different Lm mutants: (i) mutant lacking listeriolysin O-LM- / lysate and LM- / sup- (runs 3 and 4); (ii) mutant lacking phospholipase C-pIcA / B-lysate or supernadanis of those pIcA / B-sup - (races 5 and 6); (ii) wild phenoipo - LM + / lysate and LM + / sup (runs 1 and 2).
Figura 6.- Proíeínas reconocidas por el aníicuerpo aníi-22mer de Ia GAPDH-LM o anti-SEQ ID N0 1 procedentes de 30 μg de distintos extractos bacterianos y celulares: Lm, Listeria monocytogenes; TB, M. tuberculosis; Ml, M. leprae y cel, extracto celular.Figure 6.- Proieins recognized by the ani-22mer antibody of the GAPDH-LM or anti-SEQ ID N 0 1 from 30 μg of different bacterial and cellular extracts: Lm, Listeria monocytogenes; TB, M. tuberculosis; Ml, M. leprae and cel, cell extract.
Figura 7: Panel A. Fagosomas desnudos (30μg por carrera) incubados con 3 μg de GST-Rab5a:wt prenilada y pretratada con diferentes concentraciones de SEQ ID N0 1 (N1 y N2) y SEQ ID N0 4 (C1 y C2) (N1 y N2 se corresponden respectivamente con 100 y 10 ng/ml de Ia SEQ ID N0 1. C1 y C2 se corresponden respectivamente con 100 y 10 ng/ml de Ia SEQ ID N0 4) y Ia presencia (carreras +) o ausencia (carreras -) de 5 μg de extractos de LM (Nt-E). Panel B. 5 μg de Ia proteína recombinante GST- Rabδa: wt fue ADP-ribosilada empleando 50 μM de NAD-biotinilado como sustrato en presencia o ausencia de Nt-E y en presencia de N1 , N2 y C1. Panel C. Fagosomas desnudos incubados con GST-Rab5a:wt prenilada y ADP-ribosilada (carreras ADP-r +), como sucedía en el panel B, empleando NAD en lugar de NAD-biotinilado y N1 como fuente de proteínas de ADP- ribosilación en presencia o ausencia de extractos de LM (carreras Nt-E + y Nt-E -). Panel D. Fagosomas desnudos incubados con GST-Rab5a:wt prenilada y ADP-ribosilada (carreras ADP-r +) o no (carreras ADP-r -) en presencia His-EEA1 o His-Vps9.Figure 7: Panel A. Naked phagosomes (30μg per run) incubated with 3 μg of GST-Rab5a: wt pre-treated and pretreated with different concentrations of SEQ ID N 0 1 (N1 and N2) and SEQ ID N 0 4 (C1 and C2 ) (N1 and N2 correspond respectively with 100 and 10 ng / ml of the SEQ ID N 0 1. C1 and C2 correspond respectively with 100 and 10 ng / ml of the SEQ ID N 0 4) and the presence (runs +) or absence (runs -) of 5 μg of LM extracts (Nt-E). Panel B. 5 μg of the recombinant GST-Rabδa protein: wt was ADP-ribosylated using 50 μM of NAD-biotinylated as a substrate in the presence or absence of Nt-E and in the presence of N1, N2 and C1. Panel C. Naked phagosomes incubated with GST-Rab5a: wt pre-piled and ADP-ribosylated (ADP-r + runs), as was the case in panel B, using NAD instead of NAD-biotinylated and N1 as a source of ADP-ribosylation proteins in the presence or absence of LM extracts (runs Nt-E + and Nt-E -). Panel D. Naked phagosomes incubated with GST-Rab5a: wt pre-stacked and ADP-ribosylated (ADP-r + runs) or not (ADP-r runs) in the presence of His-EEA1 or His-Vps9.
EJEMPLOS DE REALIZACIÓNEXAMPLES OF REALIZATION
EJEMPLO 1 : Estudio inmune de las GAPDH de los géneros Listeria y Mycobacteríum.EXAMPLE 1: Immune study of the GAPDH of the genera Listeria and Mycobacteríum.
Para Ia obtención de anticuerpos se utilizó una concentración del péptido de SEQ ID N0 1 (22-mer de Ia GAPDH-LM) de 10 mM que se oxida tras su resuspensión en agua y desecación por vacío como material insoluble. Este tratamiento producía agregados moleculares del péptido que resultaron ser altamente inmunogénicos al no necesitarse de su emulsión en adyuvante completo de Freund (CFA) para obtenerse una buena respuesta inmune, sino que sólo con adyuvante incompleto que contiene el excipiente, ó aceite mineral (IFA) fue suficiente para generar una respuesta inmune. El agregado insoluble se inyectó en conejos en Ia orejas ó en el peritoneo de ratones. Tras 14 días se inoculó una primera dosis de recuerdo con 10 mM del péptido perfectamente disuelto en tampón salino, y 7 días después con otra dosis de recuerdo igual a Ia anterior. Finalmente, se sangró al animal ad libitum, recogiéndose el suero con anticuerpos anti- SEQ ID N0 1 que se probó sobre el péptido pegado a placas de ELISA.To obtain antibodies, a concentration of the peptide of SEQ ID N 0 1 (22-mer of the GAPDH-LM) of 10 mM was used, which is oxidized after resuspension in water and vacuum drying as insoluble material. This treatment produced molecular aggregates of the peptide that turned out to be highly immunogenic as it did not require its emulsion in Freund's complete adjuvant (CFA) to obtain a good immune response, but only with incomplete adjuvant containing the excipient, or mineral oil (IFA) It was enough to generate an immune response. The insoluble aggregate was injected into rabbits in the ears or in the peritoneum of mice. After 14 days, a first booster dose was inoculated with 10 mM of the peptide perfectly dissolved in saline buffer, and 7 days later with another booster dose equal to the previous one. Finally, the animal ad libitum was bled, the serum was collected with anti-SEQ ID N 0 1 antibodies that were tested on the ELISA plate peptide.
Con dichos anticuerpos se analizaron los distintos extractos bacterianos deWith these antibodies the different bacterial extracts of
LM: (i) usados bacterianos de LM conteniendo las proteínas de Ia pared, por Io tanto, proteínas estructurales; (ii) sobrenadantes del crecimiento deLM: (i) used bacterial LM containing the wall proteins, therefore, structural proteins; (ii) growth supernatants of
LM que contienen las proteínas secretadas por LM (Figuras 4 y 5); (iii) extractos crudos de LM, que contiene Ia mayor parte de las proteínas tanto de Ia pared como del citosol bacteriano (carreras Nt-E en Fig. 4 y LM en Fig. 6); (iv) así como un eluído de una columna de afinidad con Rabδa, que contenía todas las proteínas de LM que se unen a Rabδa (carrera R5t- eluído en Fig. 4).LM containing the proteins secreted by LM (Figures 4 and 5); (iii) crude extracts of LM, which contains most of the proteins of both the wall and the bacterial cytosol (Nt-E strokes in Fig. 4 and LM in Fig. 6); (iv) as well as an eluate from an affinity column with Rabδa, which contained all the LM proteins that bind to Rabδa (run R5t-eluted in Fig. 4).
Por otro lado, con dichos anticuerpos se analizaron distintas fracciones celulares murinas de macrófagos infectados o no con el patógeno, distintas fracciones bacterianas de LM, tanto estructurales como usados de bacterias, ó extractos totales bacterianos ó secretadas al medio como sobrenadantes de su crecimiento, así como extractos del género Mycobacteríum y extractos de células murinas (Figuras 4-6).On the other hand, with said antibodies different murine cell fractions of macrophages infected or not with the pathogen, different bacterial fractions of LM, both structural and used of bacteria, or total bacterial extracts or secreted to the medium as supernatants of their growth were analyzed, as well as extracts of the genus Mycobacteríum and murine cell extracts (Figures 4-6).
Todo este análisis ha reflejado los siguientes resultados realizados con el anticuerpo anti-SEQ ID N0 1 del N-terminal de Ia GAPDH-LM:All this analysis has reflected the following results performed with the anti-SEQ ID N 0 1 antibody of the N-terminal of the GAPDH-LM:
1 . El anticuerpo reconoce tanto a Ia GAPDH-LM de Ia pared estructural, como Ia proteína secretada al medio de LM patogénica (carreras LM-lisado y LM-sobrenadante en Fig. 4 y carreras LM+/ lisado y LM+/sup en Fig. 5), como de distintas mutantes de LM en los factores de virulencia fagosomales: Ia listeriolisina O, LLO, (carreras LM-/lisado y LM-/sup en Fig. 5) ó las fosfolipasas C (carreras plcA/B-/ lisado y plcA/B-/sup en Fig. 5) como de un extracto crudo total de LM (carreras Nt-E en Fig. 4 y LM en Fig. 6), así como del eluído de las columnas de afinidad con Rabδa incubadas con dicho extracto crudo de LM (carrera R5t-eluído o R5t- E en Fig. 4).one . The antibody recognizes both the GAPDH-LM of the structural wall, and the protein secreted to the pathogenic LM medium (LM-lysate and LM-supernatant strokes in Fig. 4 and LM + / lysate and LM + / sup strokes in Fig. 5) , as of different mutants of LM in phagosomal virulence factors: the listeriolysin O, LLO, (LM- / lysate and LM- / sup in Fig. 5) or phospholipase C (plcA / B- / lysate and plcA strokes / B- / sup in Fig. 5) as of a total crude extract of LM (Nt-E strokes in Fig. 4 and LM in Fig. 6), as well as eluted from the affinity columns with Rabδa incubated with said extract LM crude (run R5t-eluted or R5t-E in Fig. 4).
2. El anticuerpo reconoce también Ia GAPDH-LM de células infectadas con LM (carrera PNS LM en Fig. 4), así como fagosomas conteniendo Ia bacteria viva (carrera Fago LM en Fig. 4).2. The antibody also recognizes the GAPDH-LM of cells infected with LM (PNS LM race in Fig. 4), as well as phagosomes containing the live bacteria (LM phage race in Fig. 4).
3. El anticuerpo también reconoce Ia GAPDH del género Mycobacteríum, tanto tuberculosis como leprae de extractos crudos de dichos patógenos con los que comparte más de un 86% de homología estructural (carreras TB y Ml en Fig. 6). 4. El anticuerpo no reconoce sin embargo Ia GAPDH murina presente en los post-nucleares de las células macrofágicas no infectadas con LM (carrera PNS (Nl) en Fig. 4), ni en un extracto celular total de éstas (carrera cel en Fig. 6), con Ia que escasamente comparte un 40% de homología estructural.3. The antibody also recognizes the GAPDH of the genus Mycobacteríum, both tuberculosis and leprosy of crude extracts of said pathogens with which it shares more than 86% structural homology (runs TB and Ml in Fig. 6). 4. The antibody does not however recognize the murine GAPDH present in the post-nuclear macrophage cells not infected with LM (PNS race (Nl) in Fig. 4), nor in a total cell extract thereof (cel race in Fig. 6), with which it barely shares a 40% structural homology.
5. Además, el anticuerpo es capaz de reconocer toda Ia estructura bacteriana de LM, una vez ha infectado a células E-clone (Álvarez-5. In addition, the antibody is capable of recognizing the entire bacterial structure of LM, once it has infected E-clone cells (Álvarez-
Domínguez, C, Barbieri, A. M., Beron, W., Wandinger-Ness, A. and Stahl, P. D. (1996). J. BhI. Chem. 271 : 13834-13843) durante un periodo de entre 15 y 60 minutos (Figura 4b y 4c). Sin embargo, el suero preinmune, esto es, antes de Ia infección del animal con SEQ ID N0 1 , se puede apreciar que no es especifico para LM (Figura 4d).Dominguez, C, Barbieri, AM, Beron, W., Wandinger-Ness, A. and Stahl, PD (1996). J. BhI. Chem. 271: 13834-13843) for a period of between 15 and 60 minutes (Figure 4b and 4c). However, the preimmune serum, that is, before the infection of the animal with SEQ ID N 0 1, it can be seen that it is not specific for LM (Figure 4d).
6. El anticuerpo no reconoce ninguna banda en fracciones PNS de células no infectadas con LM (carrera PNS (Nl), Figura 4) o de E clone infectada con HKLM (Heat killed LM) (carrera PNS (HKLM), Figura 4), esto es, LM matada con calor mediante su incubación durante 60 minutos a 7O0C.6. The antibody does not recognize any band in PNS fractions of cells not infected with LM (PNS race (Nl), Figure 4) or E clone infected with HKLM (Heat killed LM) (PNS race (HKLM), Figure 4), that is, LM killed with heat by incubation for 60 minutes at 7O 0 C.
Así y puesto que los estudios estructurales e inmunes son equivalentes, se puede inferir que los anticuerpos generados frente a SEQ ID N0 1 son anticuerpos estructurales que reconocen secuencias similares con más de un 85% de homología de secuencia en bacterias altamente relacionadas y, por Io tanto, y más concretamente de Mycobacterium tuberculosis (SEQ ID N0 3). Esto sugiere que un mismo antígeno, Ia GAPDH-LM, contendría tanto epítopos de células B, como de células T.Thus and since the structural and immune studies are equivalent, it can be inferred that the antibodies generated against SEQ ID N 0 1 are structural antibodies that recognize similar sequences with more than 85% sequence homology in highly related bacteria and, by So much, and more specifically of Mycobacterium tuberculosis (SEQ ID N 0 3). This suggests that the same antigen, GAPDH-LM, would contain both B-cell and T-cell epitopes.
Ejemplo 2. Análisis de Ia respuesta T generada por Ia SEQ ID N0 1Example 2. Analysis of the response T generated by SEQ ID N 0 1
Se inmunizaron ratones con Ia SEQ ID N0 1 en los cojinetes plantares y tras 7 días de inmunización se aislaron los ganglios poplíteos, donde fundamentalmente se recogen células T y dendríticas específicas para dicho antígeno. Con las células aisladas de dichos ganglios se analizó su capacidad de generar una respuesta T frente a SEQ ID N0 1 con una cinética de dosis-respuesta (Tabla 1 ).Mice were immunized with SEQ ID N 0 1 in the plantar bearings and after 7 days of immunization the popliteal ganglia were isolated, where mainly T and dendritic cells specific for said antigen are collected. With the cells isolated from these ganglia their ability to generate a T response against SEQ ID N 0 1 was analyzed with a dose-response kinetics (Table 1).
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000017_0001
Figure imgf000018_0001
Tabla 1.- Capacidad de respuesta T generada por el péptido de 22-mer N- terminal de Ia GAPDH-LM. Tras homogenización de los ganglios poplíteos, se cultivan las células en presencia de diferentes concentraciones del péptido durante 24 horas, tras las cuales las últimas 8 horas se añade 3H- timidina (timidina tritiada) que se incorporará al DNA de las células en proliferación.Table 1.- T response capacity generated by the 22-mer N-terminal peptide of the GAPDH-LM. After homogenization of the popliteal nodes, the cells are cultured in the presence of different concentrations of the peptide for 24 hours, after which the last 8 hours 3H-thymidine (tritiated thymidine) is added which will be incorporated into the DNA of the proliferating cells.
Dada Ia buena respuesta celular generada por el péptido de Ia SEQ ID N0 1 de Ia GAPDH-LM, se analizó si era capaz de conferir protección frente a una infección por Listeria monocytogenes. Para ello se diseñó un protocolo de vacunación con células dendríticas que habían sido pretratadas con el péptido in vitro (dosis de 10 μg/ml). De esta forma, las células dendríticas procesarán el péptido, y el epítopo adecuado se unirá tanto a moléculas MHC-I como MHC-II, según proceda, que tras lavar el exceso de péptido serán utilizadas como vector vacuna específico para dicho péptido e inoculadas en ratones de Ia misma cepa congénica (en nuestro caso, CBA/J).Given the good cellular response generated by the peptide of SEQ ID N 0 1 of the GAPDH-LM, it was analyzed whether it was able to confer protection against an infection by Listeria monocytogenes. To this end, a vaccination protocol was designed with dendritic cells that had been pretreated with the peptide in vitro (10 μg / ml dose). In this way, the dendritic cells will process the peptide, and the appropriate epitope will bind both MHC-I and MHC-II molecules, as appropriate, that after washing the excess peptide they will be used as a specific vaccine vector for said peptide and inoculated into mice of the same congenital strain (in our case, CBA / J).
Inyectando intraperitonealmente 2 x 106 células dendríticas-péptido específicas por ratón, tras 7 días se inocula otra dosis de recuerdo similar con el mismo número de células dendríticas-péptido específicas. Como control, en otro grupo de animales se inocula el mismo número de células dendríticas pero no tratadas con dicho péptido, luego no específicas para éste. Tras 14 días en total, se inoculan dichos ratones con una dosis sub- letal de Listeria monocytogenes (para el caso de CBA/J se inoculan 5 x 104 bacterias/ratón). Tras 3 días post-infección, se sangran los ratones para Ia obtención de suero y se sacrifican para su análisis clínico y recuperación de bazos e hígados donde se realizará un contaje de viables, CFU, que determinará el número de LM recuperadas en cada caso e indicará Ia eficiencia de dicho protocolo de vacunación para conferir protección frente al patógeno. Los datos obtenidos de este estudio se recogen en Ia Tabla 2.By intraperitoneally injecting 2 x 10 6 specific dendritic peptide cells per mouse, after 7 days another similar booster dose is inoculated with the same number of specific dendritic peptide cells. As a control, the same number of dendritic cells is inoculated in another group of animals but not treated with said peptide, then not specific for it. After 14 days in total, said mice are inoculated with a sub-lethal dose of Listeria monocytogenes (in the case of CBA / J 5 x 10 4 bacteria / mouse are inoculated). After 3 days post-infection, the mice are bled to obtain serum and are sacrificed for clinical analysis and recovery of spleens and livers where a viable count, CFU, will be performed, which will determine the number of LM recovered in each case. will indicate Ia efficiency of said vaccination protocol to confer protection against the pathogen. The data obtained from this study are collected in Table 2.
Figure imgf000019_0001
Figure imgf000019_0001
Tabla 2.- Protección de las células dendríticas-péptido específicas frente a una infección con dosis sub-letal de LM. Tras el protocolo de vacunación, se extrae sangre, así como órganos inmunes LM-específicos: bazo e hígado, para realizar el recuento de CFU y analizar Ia condición física general de los animales inmunizados.Table 2.- Protection of specific dendritic-peptide cells against infection with sub-lethal dose of LM. After the vaccination protocol, blood is extracted, as well as LM-specific immune organs: spleen and liver, to perform the CFU count and analyze the general physical condition of the immunized animals.
Como se observa en este protocolo de vacunación, las células dendríticas específicas para el péptido, fueron capaces de conferir una protección muy buena, mayor del 80% en el hígado y de un 50% en el bazo, frente a una dosis sub-letal del patógeno.As observed in this vaccination protocol, the specific dendritic cells for the peptide were able to confer a very good protection, greater than 80% in the liver and 50% in the spleen, against a sub-lethal dose of the pathogen.
Ejemplo 3. Efecto inhibitorio de GAPDH-LM sobre Rabδa.Example 3. Inhibitory effect of GAPDH-LM on Rabδa.
En primer lugar, se analizó el reclutamiento de Rabδa de fagosomas incluyendo diferentes concentraciones de los péptidos diseñados a partir de los extremos amino y carboxilo de GAPDH-LM (Figura 1a). Tal y como se muestra en Ia figura 7A, Ia preincubación de Ia proteína de fusión GST- Rabδa con 100 ng/ml de SEQ ID N0 1 (N1 ) y SEQ ID N0 4 (C1 ) y 10 ng/ml SEQ ID N0 1 (N2) y SEQ ID N0 4 (C2) reveló que N1 o N2 era capaz de competir con el extracto Nt-E (extracto crudo de LM) disminuyendo aproximadamente 10 veces el efecto de unión de Rabδa sobre fagosomas desnudos de HKLM. Esto indica que el extremo amino terminal de GAPDH- LM contiene el dominio de unión a Rabδa mientras que el extremo carboxilo terminal no participaba en esta interacción. Al entender que Ia ADP-ribosilación podía estar implicada en el proceso de inhibición de Rabδa, se investigó si el extracto Nt-E mostraba actividad ADP-ribosilante en Ia presencia o Ia ausencia de diferentes concentraciones de los péptidos de los extremos amino y carboxilo de GAPDH-LM (Fig. 1a), siguiendo el protocolo desarrollado por Zhang (Zhang J. (1997). Methods Enzymol. 280: 255-65) que emplea NAD-biotina como sustrato y Ia proteína recombinante de fusión GST-Rab5a: wt.First, Rabδa recruitment of phagosomes was analyzed including different concentrations of the peptides designed from the amino and carboxyl ends of GAPDH-LM (Figure 1a). As shown in Figure 7A, the preincubation of the GST-Rabδa fusion protein with 100 ng / ml of SEQ ID N 0 1 (N1) and SEQ ID N 0 4 (C1) and 10 ng / ml SEQ ID N 0 1 (N2) and SEQ ID N 0 4 (C2) revealed that N1 or N2 was able to compete with the Nt-E extract (LM crude extract) by decreasing approximately 10 times the effect of Rabδa binding on naked phagosomes of HKLM This indicates that the amino terminal end of GAPDH-LM contains the Rabδa binding domain while the carboxyl terminal end did not participate in this interaction. Understanding that ADP-ribosylation could be involved in the Rabδa inhibition process, it was investigated whether the Nt-E extract showed ADP-ribosylating activity in the presence or absence of different concentrations of the amino and carboxyl end peptides of GAPDH-LM (Fig. 1a), following the protocol developed by Zhang (Zhang J. (1997). Methods Enzymol. 280: 255-65) that uses NAD-biotin as a substrate and the recombinant GST-Rab5a fusion protein: wt .
Así, Ia proteína recombinante (GST-Rab5a: wt) donde se quiere probar dicha acción, se incubó con N1 en el siguiente tampón: 25 mM Tris-CIH, pH 7.6, 15 Mm ATP, 100 mM MgCI2, 10 mM NAD, 2.5 mM ADP-ribosa y 50 μM de NAD-biotina, en presencia ó ausencia de 5 μg de proteínas citosólicas (extracto de citosol celular proveniente de macrófagos activados con interferón-gamma como fuente de co-factores enzimáticos), durante 30 minutos a 370C y se recuperó Ia proteína problema mediante Ia parte fusogénica unida a columnas de afinidad y/o diluyéndola 10X en hielo con PBS para parar Ia reacción. La reacción de ADP-ribosilación se observa bien por su aumento aparente de peso molecular al correr una muestra de Ia proteína problema ADP-ribosilada y compararla con Ia proteína problema no tratada en geles 10% SDS-PAGE, o bien tras transferencia de dichas proteínas separadas en los geles de SDS-PAGE a membranas de nitrocelulosa donde los western-blots se revelarán con estreptoavidina conjugada a peroxidasa, que se une al NAD-biotinilado incorporado a Ia proteína ADP-ribosilada como producto de Ia reacción enzimática.Thus, the recombinant protein (GST-Rab5a: wt) where said action is to be tested, was incubated with N1 in the following buffer: 25 mM Tris-CIH, pH 7.6, 15 Mm ATP, 100 mM MgCI2, 10 mM NAD, 2.5 mM ADP-ribose and 50 μM of NAD-biotin, in the presence or absence of 5 μg of cytosolic proteins (cell cytosol extract from interferon-gamma activated macrophages as a source of enzymatic co-factors), for 30 minutes at 37 0 C and the problem protein was recovered by means of the fusogenic part attached to affinity columns and / or diluting it 10X on ice with PBS to stop the reaction. The ADP-ribosylation reaction is well observed by its apparent increase in molecular weight when running a sample of the ADP-ribosylated problem protein and comparing it with the untreated problem protein in 10% SDS-PAGE gels, or after transfer of said proteins separated in the SDS-PAGE gels to nitrocellulose membranes where western blots will be revealed with peroxidase-conjugated streptoavidin, which binds to the biotinylated NAD incorporated into the ADP-ribosylated protein as a product of the enzymatic reaction.
Tal y como se muestra en Ia figura 7B, Ia GST-Rab5a: wt era ADP- ribosilada en presencia de una fuente enzimática: Nt-E, N1 o un lisado celular obtenido a partir de células E-clone infectadas con LM vivas (E1 y E2). Mientras, Ia ADP-ribosilación no fue observada en ausencia de una fuente enzimática, altas concentraciones de SEQ ID N0 4 (C1 ) y un lisado de células E-clone infectadas con HKLM y no infectadas. La sola adición de N1 mostró una baja pero significativa señal de ADP-ribosilación. La señal de ADP-ribosilación más elevada fue detectada en los extractos Nt-E tras Ia adición de cualquiera de las concentraciones de SEQ ID N0 1 (N1 y N2). Una vez comprobada Ia capacidad de ADP-ribosilación de SEQ ID N0 1 se pasó a comprobar si Ia Rabδa ribosilada era capaz de unirse a fagosomas desnudos de HKLM.As shown in Figure 7B, the GST-Rab5a: wt was ADP-ribosylated in the presence of an enzymatic source: Nt-E, N1 or a cell lysate obtained from E-clone cells infected with live LM (E1 and E2). Meanwhile, ADP-ribosylation was not observed in the absence of an enzymatic source, high concentrations of SEQ ID N 0 4 (C1) and a lysate of E-clone cells infected with HKLM and not infected. The single addition of N1 showed a low but significant ADP-ribosylation signal. The highest ADP-ribosylation signal was detected in the Nt-E extracts after the addition of any of the concentrations of SEQ ID N 0 1 (N1 and N2). Once the ADP-ribosylation capacity of SEQ ID N 0 1 was verified, it was checked whether the ribosylated Rabδa was able to bind naked phagosomes of HKLM.
Tal y como se muestra en Ia figura 7C, Rabδa ribosilada (Rab5a-ADP) empleando N1 es capaz de unirse más eficientemente a los fagosomas desnudos de HKLM que Ia Rabδa sin ribosilar. Esto sugiere que Ia ADP- ribosilación es responsable de Ia retención de Rabδa en los fagosomas.As shown in Figure 7C, ribosylated Rabδa (Rab5a-ADP) using N1 is capable of more efficiently binding to the naked phagosomes of HKLM than non-ribosilar Rabδa. This suggests that ADP-ribosylation is responsible for the retention of Rabδa in phagosomes.
Para comprobar como Ia ADP-ribosilación era capaz también de afectar a Ia activación de Rabδa, se examinó el efecto de esta modificación sobre las interacciones con dos diferentes efectores involucrados en Ia activación de Rabδa: el factor Vps9 y Ia proteína de unión a GTP (EEA1 ).To verify how ADP-ribosylation was also capable of affecting the activation of Rabδa, the effect of this modification on the interactions with two different effectors involved in the activation of Rabδa was examined: the Vps9 factor and the GTP binding protein ( EEA1).
Empleando las proteínas recombinantes His-Vps9 e His-EEA1 , se planteó un ensayo de unión en presencia de Ia proteína recombinante GST-Rab5a: wt ribosilada y sin ribosilar. Seguidamente se realizó un ensayo de reclutamiento de fagosomas desnudos de HKLM seguido de una inmunoprecipitación de las proteínas His-Vps9 e His-EEA1. El resultado de este ensayo se muestra en Ia figura 7D, donde se puede observar que Ia ADP-ribosilación no afecta a Ia unión His-EEA1/Rab5a, aunque reduce significativamente Ia interacción con His-Vps9/Rab5a. Implicando esto una menor interacción con efectores de Ia fusión endosoma-endosoma y, consecuentemente, una posible disminución en esta actividad.Using the His-Vps9 and His-EEA1 recombinant proteins, a binding assay was proposed in the presence of the GST-Rab5a: wt ribosylated and ribosylated recombinant protein. Next, a HKLM naked phagosome recruitment trial was performed followed by immunoprecipitation of His-Vps9 and His-EEA1 proteins. The result of this test is shown in Figure 7D, where it can be seen that ADP-ribosylation does not affect the His-EEA1 / Rab5a junction, although it significantly reduces the interaction with His-Vps9 / Rab5a. This implies a lower interaction with effectors of the endosome-endosome fusion and, consequently, a possible decrease in this activity.
De estos ensayos se deduce que el péptido SEQ ID N0 1 de Ia GAPDH-LM es responsable: (i) reclutamiento de Rabδa a los fagosomas mientras que Ia SEQ ID N0 4 no está implicado, (ii) de su ADP-ribosilación en presencia o no del extracto de Listeria, (iii) su retención en éstas fracciones fagosómicas, (iv) del bloqueo en Ia unión a su activador His-Vps9 que intercambia Ia forma GDP, inactiva, por Ia forma GTP, activa, y en consecuencia de responsable su de su inactivación.From these tests it can be deduced that the SEQ ID N 0 1 peptide of the GAPDH-LM is responsible for: (i) recruitment of Rabδa to phagosomes while SEQ ID N 0 4 is not involved, (ii) of its ADP-ribosylation in the presence or not of the Listeria extract, (iii) its retention in these phagosomal fractions, (iv) of the blockage in the union with its His-Vps9 activator that exchanges the inactive GDP form, for the active, GTP form, and in consequence of responsible for its inactivation.
Al ser Ia activación de Rabδa necesaria para Ia fusión endosoma- endosoma, se realizó un ensayo en el que se pudiese comprobar como afectaba a Ia fusión de fagosomas desnudos de HKLM Ia presencia de GST-Rab5a: wt pretratada o no con Nt-E, R5t-E, N1 y C1 (ver ejemplo 4). Tal y como se muestra en Ia tabla 3 GST-Rab5a: wt pretratada con Nt-E o N1 bloquea Ia reacción de fusión, mientras que el pretratamiento R5t-E o C2 no afectan en absoluto a este proceso. De esta forma, se demuestra que Ia ADP-ribosilación llevada a cabo por el extremo amino de GAPDH- LM afecta a Ia activación de Rabδa inactivando Ia fusión endosoma- endosoma y favoreciendo Ia supervivencia de LM en el interior celular.Since the activation of Rabδa is necessary for endosome-endosome fusion, an assay was carried out in which it was possible to verify how the presence of HKLM's phagosomes affected the presence of GST-Rab5a: wt pretreated or not with Nt-E, R5t-E, N1 and C1 (see example 4). As shown in Table 3 GST-Rab5a: wt pretreated with Nt-E or N1 blocks the fusion reaction, while pretreatment R5t-E or C2 does not affect this process at all. In this way, it is demonstrated that ADP-ribosylation carried out by the amino end of GAPDH-LM affects the activation of Rabδa by inactivating the endosome-endosome fusion and favoring the survival of LM inside the cell.
Tabla 3. Fusión de fagosomas conteniendo HKLM y endosomas no conteniendo ninguna Rab y dependiente de Rabδa.Table 3. Fusion of phagosomes containing HKLM and endosomes containing no Rab and Rabδa dependent.
Figure imgf000022_0001
Figure imgf000022_0001
Los complejos ss-NHS-biotina/fagosomas y endosomas de HKLM con estreptoavidina-HRP fueron tratados con GDI (del inglés, guanidin- dissociation-inhibitor) para retirar los diferentes tipos de proteínas Rab, en su forma molecular GDP, que se encontraban en las membranas de los fagosomas y endosomas y así obtener éstos desnudos. Seguidamente, estas fracciones sub-celulares fueron resuspendidas en tampón de fusión suplementado con proteínas citosólicas (0.5 mg/ml) y con 5 μg de GST- Rabδa: wt prenilada y pretratada o no con diferentes reactivos.The ss-NHS-biotin / phagosome and endosome complexes of HKLM with streptoavidin-HRP were treated with GDI (from English, guanidine-dissociation-inhibitor) to remove the different types of Rab proteins, in their molecular form GDP, which were found in the membranes of phagosomes and endosomes and thus get these naked. Next, these sub-cellular fractions were resuspended in fusion buffer supplemented with cytosolic proteins (0.5 mg / ml) and with 5 μg of GST-Rabδa: wt pre-treated and pretreated or not with different reagents.
La reacción de fusión fue realizada a 370C durante 45 min y siendo detenida mediante su inmersión en tampón de homogeneización (HBE) y hielo y lavada dos veces antes de Ia lisis de las fracciones sub-celulares con un tampón de lisis de baja composición en detergente. Las bacterias intactas que con este tampón de baja concentración de detergente no se lisan al ser bacterias gram-positivas, se recuperaron por centrifugación.The fusion reaction was performed at 37 0 C for 45 min and being stopped by immersion in homogenization buffer (HBE) and ice and washed twice before lysis of subcellular fractions with a low composition detergent lysis buffer. The intact bacteria that with this low concentration detergent buffer are not lysed because they are gram-positive bacteria, were recovered by centrifugation.
Una de las funciones fundamentales de Rabδa es ser el regulador de las interacciones, esto es, fusiones entre fagosomas y endosomas. Una modificación covalente como Ia ADP-ribosilación podría afectar a esta función. Para establecer un sistema de fusión entre fagosomas y endosomas que sólo dependa de Rabδa, se eliminan de éstos todas las posibles Rabs, mediante tratamiento con GDI y posterior incubación con Rabδa pre-tratada o no con distintos reactivos que pudieran o no ADP- ribosilarla, como el extracto de Listería, extracto de Listería carente de proteínas de unión a Rabδa, luego carente de GAPDH-LM, el péptido N- terminal N1 de Ia GAPDH-LM o el péptido C-terminal C1 de Ia GAPDH-LM. Aquellos tratamientos para los que se ha comprobado que son capaces de ADP-ribosilar a Rabδa, tales como con el extracto de Listería que contiene Ia GAPDH-LM ó el péptido N1 de Ia GAPDH-LM bloquean esta reacción de fusión entre fracciones fagosómicas y endosómicas; por Io que se puede concluir que Ia ADP-ribosilación de Rabδa también afecta a las interacciones entre fagosomas y endosomas dependientes de dicha GTPasa.One of the fundamental functions of Rabδa is to be the regulator of interactions, that is, fusions between phagosomes and endosomes. A covalent modification such as ADP-ribosylation could affect this function. To establish a fusion system between phagosomes and endosomes that only depends on Rabδa, all possible Rabs are eliminated from them, by treatment with GDI and subsequent incubation with Rabδa pre-treated or not with different reagents that may or may not ADP-ribosylate it, as the Listeria extract, Listeria extract lacking Rabδa binding proteins, then lacking GAPDH-LM, the N1-terminal peptide N1 of the GAPDH-LM or the C-terminal C1 peptide of the GAPDH-LM. Those treatments for which it has been proven that they are capable of ADP-ribosilar to Rabδa, such as with the Listeria extract containing the GAPDH-LM or the N1 peptide of the GAPDH-LM block this fusion reaction between phagosomal and endosomal fractions ; Therefore, it can be concluded that Rabδa ADP-ribosylation also affects the interactions between phagosomes and endosomes dependent on said GTPase.
Ejemplo 4. Ensayo de fusión fagosoma-endosoma.Example 4. Phagosome-endosome fusion assay.
Los fagosomas o fracciones fagosómicas fueron obtenidas de células E- clone infectadas con ss-NHS-biotina/LM durante 15 minutos. Las fracciones endosómicas fueron obtenidas tras 10 minutos de incubación con estreptoavidina-HRP (Álvarez-Domínguez, C, Peña-Macarro, C and Prada- Delgado, A. (2003). In Intracellular pathogens in membrane interactions and vacuole biogénesis. Ed. J-P).Phagosomes or phagosomal fractions were obtained from E-clone cells infected with ss-NHS-biotin / LM for 15 minutes. Endosomal fractions were obtained after 10 minutes of incubation with streptoavidin-HRP (Álvarez-Domínguez, C, Peña-Macarro, C and Prada-Delgado, A. (2003). In Intracellular pathogens in membrane interactions and vacuole biogenesis. Ed. JP ).
Las fracciones fagosómicas y endosómicas desnudas, esto es, libres de proteínas Rab (Yang C, Slepnev Vl, Goud B. (1994). J Biol Chem. 269(50): 31891-9. Rubino M, Miaczynska, M, Lippe, R and Zerial, M. (2000). J. Biol. Chem. 275:3745-3748) fueron puestas en contacto con un tampón de fusión (250 mM sucrosa, 0.5 mM EGTA, 20 mM HEPES-KOH, pH 7.2, 1 mM ditiotreitol o DTT, 1.5 mM MgCI2, 100 mM KCI, 1 mM ATP, 8 mM creatina fosfato, 31 unidades/ml creatina fosfokinasa, y 0.25 mg/ml avidina como bloqueante) suplementado con citosol filtrado en gel (0.5 mg/ml) y 5 μg/ml de GST-Rab5a: wt recombinante prenilada y ADP-ribosilada o no. La ADP-ribosilación fue llevada a cabo con GST-Rab5a: wt prenilada y preincubada con 10 μg/ml de: Nt-E, R5t-E, N1 o C1 durante 30 min a 370C para permitir Ia unión de dicha proteína recombinante a las fracciones fagosómicas y endosómicas, Io que favorecerá Ia unión entre ambas que se denomina fusión. La reacción de fusión fue incubada durante 45 min a 370C y Ia reacción fue detenida mediante su inmersión en hielo. Los complejos estreptoavidina-HRP/biotina-bacteria fueron recuperados por centrifugación (10,000 x g, 6 min, a 40C) tras Ia solubilización de las membranas fagosómicas y endosómicas con solución tampón de lisis con baja concentración de detergente (PBS, 0,05% Tritón X-100 conteniendo 0,25 mg/ml de avidina como bloqueante.Nude phagosomal and endosomal fractions, that is, free of Rab proteins (Yang C, Slepnev Vl, Goud B. (1994). J Biol Chem. 269 (50): 31891-9. Rubino M, Miaczynska, M, Lippe, R and Zerial, M. (2000). J. Biol. Chem. 275: 3745-3748) were contacted with a fusion buffer (250 mM sucrose, 0.5 mM EGTA, 20 mM HEPES-KOH, pH 7.2, 1 mM dithiothreitol or DTT, 1.5 mM MgCI2, 100 mM KCI, 1 mM ATP, 8 mM creatine phosphate, 31 units / ml creatine phosphokinase, and 0.25 mg / ml avidin as a blocker) supplemented with gel-filtered cytosol (0.5 mg / ml) and 5 μg / ml GST-Rab5a: recombinant wt pre-stacked and ADP-ribosylated or not. ADP-ribosylation was carried out with GST-Rab5a: wt pre-incubated and pre-incubated with 10 μg / ml of: Nt-E, R5t-E, N1 or C1 for 30 min at 37 0 C to allow the binding of said recombinant protein to phagosomal and endosomal fractions, which will favor the union between the two that is called fusion. The fusion reaction was incubated for 45 min at 37 0 C and the reaction was stopped by immersion in ice. The streptoavidin-HRP / biotin-bacterium complexes were recovered by centrifugation (10,000 xg, 6 min, at 4 0 C) after solubilization of phagosomal and endosomal membranes with lysis buffer solution with low detergent concentration (PBS, 0.05 % Triton X-100 containing 0.25 mg / ml avidin as a blocker.
Finalmente, Ia fusión fue cuantificada por unidades arbitrarias de absorbancia por cantidad de proteína (unidades de absorbancia/mg) tal y como se describe en Álvarez-Domínguez, C, Barbieri, A.M., Beron, W., Wandinger-Ness, A. and Stahl, P. D. (1996). J. Biol. Chem. 271 : 13834- 13843.Finally, the fusion was quantified by arbitrary absorbance units per protein amount (absorbance units / mg) as described in Álvarez-Domínguez, C, Barbieri, AM, Beron, W., Wandinger-Ness, A. and Stahl, PD (1996). J. Biol. Chem. 271: 13834-13843.
Ejemplo 5. Búsqueda de compuestos con actividad moduladoraExample 5. Search for compounds with modulating activity
Gran cantidad de moléculas que afecten a Ia actividad GAPDHde los géneros Listeria y Mycobacterium para PSAPS pueden ser creadas aleatoria mente por química combinatoria, o diseñadas específicamente para, posteriormente, ser analizadas por técnicas de high throughput screening (HTS). El empleo de HTS permite que muchos compuestos puedan ser analizados simultáneamente en paralelo, de modo que el análisis puede realizarse muy rápidamente (Houston J. G., Manks M., The chemical-biological interface: Developments in automated and miniaturised screening technology. Current Opinión in Biotechnology, VoI. 8, 1997). Generalmente, este tipo de técnicas suelen emplear las conocidas platos de 96 pocilios, del ingles 96-well microtiter plates que suelen requerir de unos volúmenes de muestra de entre 50 y 500 μl por pocilio para llevar a cabo los experimentos. Adicionalmente, el resto de instrumentos, aparatos para mecanizar el procedimiento de cargado y lectura de placas, etc. están ampliamente difundidos y están disponibles comercialmente.A large number of molecules that affect the GAPDH activity of the Listeria and Mycobacterium genera for PSAPS can be created randomly by combinatorial chemistry, or specifically designed to subsequently be analyzed by high throughput screening (HTS) techniques. The use of HTS allows many compounds to be analyzed simultaneously in parallel, so that the analysis can be performed very quickly (Houston JG, Manks M., The chemical-biological interface: Developments in automated and miniaturized screening technology. Current Opinion in Biotechnology , VoI. 8, 1997). Generally, these types of techniques usually use the well-known 96-well plates, from English 96-well microtiter plates that usually require sample volumes of between 50 and 500 μl per well to carry Out experiments. Additionally, the rest of instruments, devices to mechanize the procedure of loading and reading of plates, etc. They are widely disseminated and commercially available.
En el estado de Ia técnica podemos encontrar gran cantidad de ensayos para Ia detección de interacciones proteína-proteína, que nos permitan Ia detección de compuestos que interaccionen con GAPDH y que puedan afectar a su actividad. Algunos ejemplos de estos estudios pueden ser encontrados en Beutel et al. U.S. Patent 5,976,813, Jayawickreme et al., Proc. Nati. Acad. Sci. U. S. A.19, 1614-18 (1994), entre otros. Algunos de los ensayos más comúnmente empleados son mencionados a continuación:In the state of the art we can find a large number of assays for the detection of protein-protein interactions, which allow us to detect compounds that interact with GAPDH and that may affect their activity. Some examples of these studies can be found in Beutel et al. U.S. Patent 5,976,813, Jayawickreme et al., Proc. Nati Acad. Sci. U. S. A.19, 1614-18 (1994), among others. Some of the most commonly used trials are mentioned below:
Ensayos de interacción proteína-proteína (binding assay). En este tipo de ensayos, generalmente un péptido de pequeño tamaño es testado para comprobar Ia inhibición de Ia actividad de una proteína concreta. Este tipo de ensayos también pueden ser llevados a cabo mediante metodologías, tales como real-time Bimolecular InteractionProtein-protein interaction assays (binding assay). In this type of assay, a small peptide is generally tested to verify the inhibition of the activity of a specific protein. These types of tests can also be carried out using methodologies, such as real-time Bimolecular Interaction
Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63,2338-2345, 1991 , and Szabo et al., Curr. Opin. Struct. Biol.5, 699-705,1995).Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63,2338-2345, 1991, and Szabo et al., Curr. Opin. Struct. Biol. 5, 699-705,1995).
- Ensayo de doble-hibrido (Two-hybrid screening). Este tipo de técnicas también son empleadas para Ia identificación de interacciones proteína-proteína (Szabo et al., (1995); Zervos et al. (1993); Madura et al.1993). - Ensayo de unión competitiva a ligando (competitive ligand binding assay) (Timothy Zacharewski, Dept. of Biochemistry, Michigan State University, Lansing, Ml, USA. October 2002. Protocol for the competitive Ligand Binding Assay).- Double-hybrid screening (Two-hybrid screening). These types of techniques are also used for the identification of protein-protein interactions (Szabo et al., (1995); Zervos et al. (1993); Madura et al. 1993). - Competitive ligand binding assay (Timothy Zacharewski, Dept. of Biochemistry, Michigan State University, Lansing, Ml, USA. October 2002. Protocol for the competitive Ligand Binding Assay).
Ejemplo 6. Diseño racional de fármacosExample 6. Rational drug design
Uno de los mayores éxitos del diseño racional de drogas consiste en el hecho poder conseguir análogos estructurales biológicamente activos, tales como polipéptidos o pequeñas moléculas que mimetizan a éstos, que pueden actuar como agonista, antagonistas, o inhibidores de determinadas moléculas o proteínas diana. Un ejemplo de estas técnicas Ia podemos encontrar en Zhaowen Lao et al. J. Chem. Inf. Comput. Sci.1996. 36, 1187- 1194, "A new method for structure-based drug design").One of the greatest successes of the rational design of drugs consists in being able to achieve biologically active structural analogues, such as polypeptides or small molecules that mimic them, which can act as agonist, antagonists, or inhibitors of certain target molecules or proteins. An example of these techniques Ia can be found in Zhaowen Lao et al. J. Chem. Inf. Comput. Sci. 1996. 36, 1187-1194, "A new method for structure-based drug design").
En una primera aproximación, Ia estructura tridimensional de las proteínas de interés es determinada mediante cristalografía de rayos X, modelado por ordenador y más comúnmente por combinación de ambas técnicas. La información estructural que se obtiene de estos estudios va a permitir el desarrollo otras moléculas que inhiban, activen o mimeticen a Ia actividad de Ia proteína diana. Una vez producidos estos nuevos agentes son estudiados por diferentes técnicas que van a determinar Ia actividad de los mismos.In a first approach, the three-dimensional structure of the proteins of interest is determined by X-ray crystallography, computer modeling and more commonly by combination of both techniques. The structural information obtained from these studies will allow the development of other molecules that inhibit, activate or mimic the activity of the target protein. Once these new agents are produced, they are studied by different techniques that will determine their activity.
En concreto el extremo amino de GAPDH de Listería y Mycobacteríum tiene una estructura tridimensional predecible, siendo Ia primera porción de 1-8 aminoácidos una estructura en lamina-beta y los siguientes 12 a 22 aminoácidos una alfa-hélice. Estos datos unidos al hecho de que en esta región de Ia enzima reside Ia actividad ADP-ribosilante puede ser de gran ayuda para el diseño de fármacos o sustancias moduladoras de esta actividad, tal y como se realiza en Suresh,S., Bressi,J.C, Kennedy, K. J., Verlinde,C.L, GeIb, M. H. and HoI1W. G, "Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed", inhibitorsJ. Mol. Biol. 309 (2), 423-435 (2001 ) y Kim,H., FeilJ.K., Verlinde,C.L, Petra, P. H. and Hol,W.G, "Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site", Biochemistry 34 (46), 14975- 14986 (1995) para el dominión NAD de GAPDH de Leishmania mexicana. Specifically, the amino terminus of Listeria and Mycobacterium GAPDH has a predictable three-dimensional structure, the first portion of 1-8 amino acids being a beta-lamina structure and the next 12 to 22 amino acids an alpha-helix. These data together with the fact that ADP-ribosilant activity resides in this region of the enzyme can be of great help for the design of drugs or substances modulating this activity, as is done in Suresh, S., Bressi, JC , Kennedy, KJ, Verlinde, CL, GeIb, MH and HoI 1 W. G, "Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed", inhibitorsJ. Mol. Biol. 309 (2), 423-435 (2001) and Kim, H., FeilJ.K., Verlinde, CL, Petra, PH and Hol, WG, "Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana : implications for structure-based drug design and a new position for the inorganic phosphate binding site ", Biochemistry 34 (46), 14975-14986 (1995) for the NAD domain of GAPDH of Mexican Leishmania.

Claims

REIVINDICACIONES
1. Polipéptido aislado inmunogénico frente a los géneros Listería y Mycobacterium seleccionado del grupo que comprende: a) Polipéptido cuya secuencia comprende Ia SEQ ID N0 1. b) Polipéptido cuya secuencia comprende fragmentos de al menos 8 aminoácidos consecutivos de Ia SEQ ID N0 1. c) Polipéptido cuya secuencia tiene al menos un 85% de homología con cualquiera de las polipéptidos descritos en a) o b).1. Isolated immunogenic polypeptide against the Listeria and Mycobacterium genera selected from the group comprising: a) Polypeptide whose sequence comprises SEQ ID N 0 1. b) Polypeptide whose sequence comprises fragments of at least 8 consecutive amino acids of SEQ ID N 0 1. c) Polypeptide whose sequence has at least 85% homology with any of the polypeptides described in a) or b).
2. Polipéptido inmunogénico aislado según Ia reivindicación anterior cuya secuencia presenta al menos un 90% de homología con cualquiera de los polipéptidos de Ia reivindicación 1.2. Isolated immunogenic polypeptide according to the preceding claim whose sequence has at least 90% homology with any of the polypeptides of claim 1.
3. Polipéptido inmunogénico aislado según Ia reivindicación cuya secuencia presenta al menos un 95% de homología con cualquiera de los polipéptidos de Ia reivindicación 2.3. Isolated immunogenic polypeptide according to the claim whose sequence has at least 95% homology with any of the polypeptides of claim 2.
4. Polipéptido inmunogénico según cualquiera de las reivindicaciones 1 a 3 cuya secuencia es Ia SEQ ID N0 1.4. Immunogenic polypeptide according to any of claims 1 to 3 whose sequence is SEQ ID N 0 1.
5. Polipéptido inmunogénico aislado según cualquiera de las reivindicaciones 1 a 3 cuya secuencia es Ia SEQ ID N0 2.5. Isolated immunogenic polypeptide according to any of claims 1 to 3 whose sequence is SEQ ID N 0 2.
6. Polipéptido inmunogénico según cualquiera de las reivindicaciones 1-3 cuya secuencia es Ia SEQ ID N0 3.6. Immunogenic polypeptide according to any of claims 1-3 whose sequence is SEQ ID N 0 3.
7. Polipéptido derivado de cualquiera de los polipéptidos de las reivindicaciones 1-6.7. Polypeptide derived from any of the polypeptides of claims 1-6.
8. Polinucleótido aislado capaz de codificar para cualquiera de los polipéptidos de cualquiera de las reivindicaciones 1-6.8. Isolated polynucleotide capable of encoding any of the polypeptides of any of claims 1-6.
9. Un anticuerpo aislado o fragmentos del mismo capaces de reconocer cualquiera de los polipéptidos de las reivindicaciones 1 -7.9. An isolated antibody or fragments thereof capable of recognizing any of the polypeptides of claims 1-7.
10. Polipéptido de acuerdo con cualquiera de las reivindicaciones 1 -7, fusionado o unido químicamente a un péptido, polipéptido o proteína adicional.10. Polypeptide according to any one of claims 1-7, fused or chemically bound to an additional peptide, polypeptide or protein.
1 1 . Un vector de expresión o sistema de expresión que comprende una polinucleótido de acuerdo con Ia reivindicación 8.eleven . An expression vector or expression system comprising a polynucleotide according to claim 8.
12. Una célula hospedadora aislada, procariota o eucariota, transformada, o transfectada con un polinucleótido de Ia reivindicación 8 o con un vector o sistema de expresión de Ia reivindicación 1 1 .12. An isolated, prokaryotic or eukaryotic host cell, transformed, or transfected with a polynucleotide of claim 8 or with an expression vector or system of claim 1.
13. Método para elaborar un polipéptido según cualquiera de las reivindicaciones 1 -7 mediante técnicas de ADN recombinante o síntesis química13. Method for making a polypeptide according to any one of claims 1-7 by recombinant DNA techniques or chemical synthesis
14. Método para elaborar un polipéptido según cualquiera de las reivindicaciones 1 -7 que comprende: a. Cultivar una célula hospedadora según Ia reivindicación 12 en condiciones tales que: b. Se exprese cualquiera de los polinucleótidos según Ia reivindicación 8. c. Aislar el polipéptido obtenido en el paso a anterior.14. Method for making a polypeptide according to any one of claims 1-7 comprising: a. Cultivate a host cell according to claim 12 under conditions such that: b. Any of the polynucleotides according to claim 8 is expressed. C. Isolate the polypeptide obtained in the previous step.
15. Un polipéptido o fragmento del mismo según cualquiera de las reivindicaciones 1 -7 para su uso como medicamento.15. A polypeptide or fragment thereof according to any one of claims 1-7 for use as a medicament.
16. Vacuna que comprende un polipéptido o fragmento del mismo según cualquiera de las reivindicaciones 1 -7.16. Vaccine comprising a polypeptide or fragment thereof according to any one of claims 1-7.
17. Molécula moduladora de Ia actividad de Ia GAPDH de cualquiera de los géneros Listería o Mycobacterium diseñados específicamente para interaccionar con cualquiera de los polipéptidos según cualquiera de las reivindicaciones 1 -7. 17. Modulating molecule of the activity of the GAPDH of any of the Listeria or Mycobacterium genera specifically designed to interact with any of the polypeptides according to any of claims 1-7.
18. Molécula diseñada específicamente a partir del dominio de ADP- ribosilación de Ia GAPDH de cualquiera de los géneros Listeria y Mycobacteríum, definido según cualquiera de los polipéptidos de las reivindicaciones 1-7, y capaz de mimetizar Ia actividad de dicho dominio.18. A molecule specifically designed from the ADP-ribosylation domain of the GAPDH of any of the Listeria and Mycobacteríum genera, defined according to any of the polypeptides of claims 1-7, and capable of mimicking the activity of said domain.
19. Uso de un polipéptido o fragmento del mismo según cualquiera de las reivindicaciones 1-7 para Ia elaboración de una vacuna capaz de inmunizar frente bacterias pertenecientes al género Listeria.19. Use of a polypeptide or fragment thereof according to any of claims 1-7 for the preparation of a vaccine capable of immunizing against bacteria belonging to the genus Listeria.
20. Uso de un polipéptido o fragmento del mismo según Ia reivindicación anterior para Ia elaboración de una vacuna capaz de inmunizar frente a Listeria Monocitogenes.20. Use of a polypeptide or fragment thereof according to the preceding claim for the preparation of a vaccine capable of immunizing against Listeria Monocytogenes.
21 . Uso de un polipéptido o fragmento del mismo según Ia reivindicación 21 para Ia elaboración de una vacuna capaz de inmunizar frente bacterias pertenecientes al género Mycobacteríum.twenty-one . Use of a polypeptide or fragment thereof according to claim 21 for the preparation of a vaccine capable of immunizing against bacteria belonging to the Mycobacteríum genus.
22. Uso de un polipéptido o fragmento del mismo según cualquiera de las reivindicaciones 1 -7 para Ia elaboración de una vacuna capaz de inmunizar frente a Mycobacteríum Tuberculosis.22. Use of a polypeptide or fragment thereof according to any one of claims 1-7 for the preparation of a vaccine capable of immunizing against Mycobacterium Tuberculosis.
23. Uso del dominio de ADP-ribosilación de Ia GAPDH de cualquiera de los géneros Listeria y Mycobacteríum, definido según cualquiera de los polipéptidos de las reivindicaciones 1 -7, para el diseño racional de drogas.23. Use of the ADP-ribosylation domain of GAPDH of any of the genera Listeria and Mycobacteríum, defined according to any of the polypeptides of claims 1-7, for the rational design of drugs.
24. Uso de un anticuerpo aislado o fragmento del mismo según Ia reivindicación 8 para Ia elaboración de una composición farmacéutica para el tratamiento de una infección producida por bacterias pertenecientes a cualquiera de los géneros Listeria y Mycobacteríum.24. Use of an isolated antibody or fragment thereof according to claim 8 for the preparation of a pharmaceutical composition for the treatment of an infection caused by bacteria belonging to any of the genera Listeria and Mycobacteríum.
25. Uso de un polipéptido o fragmento del mismo según cualquiera de las reivindicaciones 1 -7 por su capacidad de ADP-ribosilación. 25. Use of a polypeptide or fragment thereof according to any of claims 1-7 for its ability to ADP-ribosylation.
PCT/ES2007/070144 2006-08-09 2007-07-31 Peptides which are immunogenic in relation to the genuses listeria and mycobacterium, antibodies and uses of these WO2008020108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200602175 2006-08-09
ES200602175A ES2298055A1 (en) 2006-08-09 2006-08-09 Peptides which are immunogenic in relation to the genuses listeria and mycobacterium, antibodies and uses of these

Publications (1)

Publication Number Publication Date
WO2008020108A1 true WO2008020108A1 (en) 2008-02-21

Family

ID=39081986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070144 WO2008020108A1 (en) 2006-08-09 2007-07-31 Peptides which are immunogenic in relation to the genuses listeria and mycobacterium, antibodies and uses of these

Country Status (2)

Country Link
ES (1) ES2298055A1 (en)
WO (1) WO2008020108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955194A1 (en) * 2014-06-12 2015-12-16 Universidade do Porto - Reitoria Neonatal vaccine
WO2015189422A1 (en) * 2014-06-12 2015-12-17 Universidade Do Porto - Reitoria Vaccine for immunocompromised hosts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078901A1 (en) * 2000-04-11 2006-04-13 Carmen Buchrieser Listeria monocytogenes genome, polypeptides and uses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060078901A1 (en) * 2000-04-11 2006-04-13 Carmen Buchrieser Listeria monocytogenes genome, polypeptides and uses

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"PUBLICATION DEL GENOMA", 27 December 2003 (2003-12-27), Retrieved from the Internet <URL:http://www.bioinformatica.uab.es/biocomputacio/treballs02-3/B_Rilova/Copia%20de%20proyectoBIO/SECUENCIACION/secuenciacion.htm> *
ALVAREZ HERRERA A.H.: "Mono-ADP-ribosilacon: Implicacion in the Fisiologia of los Organismos", REVISTA OF EDUCACION BIOQUIMICA, vol. 23, no. 4, 2004, pages 149 - 156 *
LI L. ET AL.: "The complete genome sequence of Mycobacterium avium subspecies paratuberculosis", PROC. NATL. ACAD. SCI. USA, vol. 102, no. 35, 2005, pages 12344 - 12349 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955194A1 (en) * 2014-06-12 2015-12-16 Universidade do Porto - Reitoria Neonatal vaccine
WO2015189422A1 (en) * 2014-06-12 2015-12-17 Universidade Do Porto - Reitoria Vaccine for immunocompromised hosts
CN106795502A (en) * 2014-06-12 2017-05-31 波尔图大学 For the vaccine of immunocompromised host
US11066652B2 (en) 2014-06-12 2021-07-20 Universidade do Porto—Reitoria Vaccine for immunocompromised hosts
US11834684B2 (en) 2014-06-12 2023-12-05 Universidade do Porto—Reitoria Vaccine for immunocompromised hosts

Also Published As

Publication number Publication date
ES2298055A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
Widjaja et al. Elongation factor Tu is a multifunctional and processed moonlighting protein
Bartolini et al. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro
Dallo et al. Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae
Cullen et al. Surfaceome of Leptospira spp
Fritzer et al. Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine
US20210170012A1 (en) STREPTOCOCCAL GlcNAc-LACKING GLYCOPOLYPEPTIDES, CELL WALL CARBOHYDRATES, STREPTOCOCCUS VACCINES, AND METHODS FOR MAKING AND USING THEM
Zhou et al. An immunogenicity study of a newly fusion protein Cna-FnBP vaccinated against Staphylococcus aureus infections in a mice model
Huertas et al. Serum antibody profile during colonization of the mouse gut by Candida albicans: relevance for protection during systemic infection
US20240139302A1 (en) Propionibacterium acnes prophylactic and therapeutic immune treatment
Pratt et al. Structural, functional, and immunogenic insights on Cu, Zn superoxide dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus
Yin et al. A novel recombinant multi-epitope protein against Brucella melitensis infection
Gómez-Arreaza et al. Leishmania mexicana: LACK (Leishmania homolog of receptors for activated C-kinase) is a plasminogen binding protein
Nordström et al. Enhancing vaccine efficacy by engineering a complex synthetic peptide to become a super immunogen
Jarząb et al. Shigella flexneri 3a outer membrane protein C epitope is recognized by human umbilical cord sera and associated with protective activity
Almonacid-Mendoza et al. Structure of the recombinant Neisseria gonorrhoeae adhesin complex protein (rNg-ACP) and generation of murine antibodies with bactericidal activity against gonococci
Afshari et al. In-silico design and evaluation of an epitope-based serotype-independent promising vaccine candidate for highly cross-reactive regions of pneumococcal surface protein A
WO2008020108A1 (en) Peptides which are immunogenic in relation to the genuses listeria and mycobacterium, antibodies and uses of these
Urosev et al. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold
Burnie et al. Genetically recombinant antibodies: new therapeutics against candidiasis
Lagousi et al. Discovery of immunodominant B cell epitopes within surface pneumococcal virulence proteins in pediatric patients with invasive pneumococcal disease
Guzmán-Brambila et al. LKTA and PlpE small fragments fusion protein protect against Mannheimia haemolytica challenge
CN106692963B (en) Combined vaccine for preventing staphylococcus aureus infection and tetanus
Ramirez et al. Engineering Protein Nanoparticles Functionalized with an Immunodominant Coxiella burnetii Antigen to Generate a Q Fever Vaccine
CN114126644A (en) Clostridium difficile vaccine composition
Yousief et al. Immunization with the basic membrane protein (BMP) family ABC transporter elicits protection against Enterococcus faecium in a murine infection model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07803671

Country of ref document: EP

Kind code of ref document: A1