WO2008019608A1 - Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde - Google Patents

Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde Download PDF

Info

Publication number
WO2008019608A1
WO2008019608A1 PCT/CN2007/070380 CN2007070380W WO2008019608A1 WO 2008019608 A1 WO2008019608 A1 WO 2008019608A1 CN 2007070380 W CN2007070380 W CN 2007070380W WO 2008019608 A1 WO2008019608 A1 WO 2008019608A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
transmission
service
transmission direction
path
Prior art date
Application number
PCT/CN2007/070380
Other languages
English (en)
French (fr)
Inventor
Hanguo Li
Ming Chen
Bin Hong
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN200780000325.8A priority Critical patent/CN101317374B/zh
Priority to ES07785383.6T priority patent/ES2439243T3/es
Priority to EP07785383.6A priority patent/EP2051442B9/en
Publication of WO2008019608A1 publication Critical patent/WO2008019608A1/zh
Priority to US12/367,339 priority patent/US20090169200A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures

Definitions

  • Wavelength division multiplexing transmission protection method system and device
  • the invention belongs to the field of communication transmission, and in particular relates to a protection method, system and device for WDM (wavelength division multiplex) transmission suitable for use in a metro access network.
  • WDM wavelength division multiplex
  • the most widely used fiber access method is the PON (Passive Optical Network) form, but the maximum rate that the fiber can provide is only 1.25 Gbps or 2.5 Gbps, but the actual single
  • the user's computer usually uses a network adapter of 100 Mbps, and the access bandwidth is only about 2 M, which cannot meet the rapid growth of customers. Therefore, higher bandwidth is required to provide fiber access.
  • WDM technology has been widely used in backbone networks and metropolitan area networks, and its bandwidth can be upgraded and expanded with increasing wavelengths. As access bandwidth continues to grow rapidly, the application of WDM technology to the access layer has become a trend. However, the traditional WDM (wavelength division multiplex) technology is point-to-point transmission.
  • the prior art generally adopts a combination of WDM technology and PON technology.
  • FIG. 1 there are n downlink transmitters and uplink receivers at the central node, respectively, for transmitting optical wavelength services and receiving uplinks on the downlink path.
  • Optical wavelength service on the path The optical wavelength service on the downlink path is first transmitted through the wavelength division multiplexing/demultiplexing device, and then transmitted from the backbone optical fiber to the wavelength division multiplexing/demultiplexing device on the distribution node, and then input to the downlink receiving on the terminal node respectively.
  • Device The transmission of the optical wavelength service on the uplink path is the same.
  • different terminal nodes in the prior art WDM-PON can use different wavelengths to provide greater bandwidth.
  • the WDM transmission system is applied in an actual network. Because it contains multiple wavelengths, and the data bandwidth of a single wavelength transmission is at least Gbps, it carries more customer data, so once a failure occurs, it will be possible for important customers. Or many customers' business has a serious impact, causing great losses to operators. Therefore, WDM transmission systems require protection technology to provide higher reliability. Usually in the network, the most prone to failure is the transmission medium - fiber, such as municipal administration Workers, new buildings, etc. will cause the optical fiber buried in the underground cable to be broken, which will cause the corresponding network connection to malfunction. Therefore, operators need a reliable protection technology to guarantee the wavelength service.
  • Commonly used network protection technologies include 1 + 1 dual-issue path-specific protection, 1 : 1 or M: N path sharing protection, multiplex section protection, etc.
  • the more common ones are 1 + 1 dual-issue selection path-specific protection.
  • 1 + 1 dual-issue selective path protection uses a working path and a backup path to transmit services that need to be protected. The two paths take different routes, and the backup path does not go to other services.
  • the monitoring point of the corresponding service connection detects the fault, and automatically switches the service from the working path to the backup path according to the fault type and protection scheme to ensure the reliability of the service.
  • the schematic diagram of the dedicated protection structure of the 1 + 1 dual-issue selection path is shown in Figure 2, which adopts the method of permanent bridging.
  • the two services have working paths and protection paths.
  • the downlink service signal on the A node firstly divides the service signal sent by the originating node A into two identical channels through a permanent bridge splitter (such as an optocoupler), and transmits and protects the two paths respectively.
  • the end B node uses a selector (such as an optical switch) to select one of the signals.
  • the uplink service signal also implements protection switching in the same way.
  • the B node detects the service of the working path and the service of the protection path at the same time. If the service of the working route is faulty, it reports and controls the point B.
  • the selection switch switches from the working path to the protection path to realize the protection of the service. Since the detection of the fault and the switching are performed at the same node, there is no need to notify another node, so there is no need to exchange messages between the two nodes through the communication protocol. Therefore, this method is also called single-ended switching. Similarly, the same mechanism is used for services from Node B to Node A.
  • the 1+1 protection is a single-ended switching using the receiving end detection and the receiving end switching, and the transmitting end adopts a permanent bridging.
  • This approach requires that the device must be selectively switched at the receiving end.
  • both nodes must provide power.
  • the application is in the metro access layer network, if the downstream path needs to be protected, it must be powered at the switching node.
  • the distribution node When only the optical fiber from the central node to the distribution node needs to complete the protection switching in FIG. 1, the distribution node must also adopt an active manner, so that the passive PON technology of the passive optical network cannot be realized.
  • the fiber In the process of fiber access, the fiber needs to be connected from a central node to multiple buildings or cells, and then to devices in the cell or in the equipment room of the building. Due to the actual network construction, the fiber is usually laid on the roadside or on the side of the building. When there is a user in the cell or building, the fiber is then connected to the already laid fiber. Since the intermediate distribution cannot use the equipment that needs to be powered, the fiber distribution node on the roadside or the side of the building is a passive distribution device. At this time, both the central node and the terminal node at both ends of the fiber can supply power.
  • Both the central node and the terminal node can provide power, but on the node where the distribution is performed, it is usually placed on the roadside or in a relatively simple environment, and there is no power supply. If you need to complete the dual-issue selection of the downlink service, you need to provide the power supply optical switch or the electric switch to perform the switching action at this node.
  • an auxiliary device such as an air conditioner is usually required to ensure that the ambient temperature and humidity of the device and the device meet the reliability requirements of the device, and thus the construction cost of the distribution node is enormous.
  • the invention provides a method, a system and a device for protecting a WDM transmission, so that the distribution node can be passiveized, thereby reducing the network construction cost.
  • the present invention provides a method for protecting a WDM transmission.
  • a first node selects one of the two transmission paths that are mutually protected, and sends a service to the second node, where the second node is based on the two And transmitting, by the second transmission direction, the second node performs two-way transmission of the service to the first node by using two transmission paths that are mutually protected, in a second transmission direction opposite to the first transmission direction, The first node selects one of the two transmission paths for reception.
  • the present invention also provides a system for implementing wavelength division multiplexing transmission protection, comprising a first node and a second node interconnected by optical fibers in a wavelength division multiplexing system, the first node comprising: a sending and receiving module, In the first transmission direction, one of the two transmission paths that are mutually protected is selected to perform service transmission to the second node; and the selection module is used to protect two in the second transmission direction Selecting, in the transmission path, a pair of services from the second node, the second transmission direction is opposite to the first transmission direction; the second node includes: a dual collection module, configured to be in the In a transmission direction, the services from the first node are dual-received based on two transmission paths that are mutually protected; the dual-issue module is configured to be in the second transmission direction.
  • the present invention also provides an apparatus for implementing wavelength division multiplexing transmission protection, comprising: a dual-receiving module, configured to perform dual-channel reception of two transmission paths that are mutually protected in a first transmission direction; And a module, configured to perform dual transmission of services by using two mutually protected transmission paths in a second transmission direction, where the second transmission direction is opposite to the first transmission direction.
  • the present invention also provides an apparatus for implementing wavelength division multiplexing transmission protection, comprising: a sending and receiving module, configured to select one of two transmission paths that are mutually protected for service transmission in a first transmission direction;
  • the receiving module is configured to select one of the two transmission paths that are mutually protected for receiving the service in the second transmission direction, where the second transmission direction is opposite to the first transmission direction.
  • the present invention also provides a system for implementing wavelength division multiplexing transmission protection, comprising a central node, a distribution node and a terminal node, wherein the distribution node and the central node are connected by a backbone optical fiber, the distribution node and the terminal The nodes are connected by a distribution fiber, and the distribution node includes two or more permanent bridges, and at least two of the permanent bridges are used for dual-receiving downlink services and dual-issue uplink services, respectively.
  • the present invention also provides a method for protecting a wavelength division multiplexing transmission, the method comprising: detecting, by a terminal node, whether a downlink service is faulty; when detecting a downlink service failure, the terminal node identifies a downlink path that fails, and generates Downlink path fault information; transmitting the downlink path fault information to the central node through the uplink path; the central node switches the downlink service from the working path to the protection path.
  • the present invention adopts an asymmetric protection mode in the opposite transmission direction: the first transmission direction is selected, the second transmission is reversed, and the second transmission is reversed, so that the distribution is performed.
  • the node does not need to be equipped with equipment equipped with power supply, air conditioner, etc., which greatly reduces the network construction cost of the WDM access network that provides protection.
  • FIG. 1 is a schematic structural diagram of a WDM-PON in the prior art
  • FIG. 3 is a schematic diagram of a WDM working path protection system according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of self-healing protection for downlink service selection and dual reception according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a WDM-PON network architecture embodiment of a passive distribution node according to the present invention
  • FIG. 7 is a schematic structural diagram of an embodiment of a system for implementing WDM transmission protection according to the present invention.
  • an asymmetric protection implementation scheme is adopted, and the downlink path (that is, the path in the first transmission direction) is used for sending and receiving, and the receiving end is dual-receiving, and the uplink path is adopted. (that is, the path in the second transmission direction opposite to the first transmission direction) adopts a scheme of transmitting dual-issue and receiving end, so that the transmission and reception are performed on the central node side, and the distribution nodes close to the user side are adopted.
  • the distribution node thus realized does not have a selection switch, so it can be implemented by using a passive device without power supply, thereby eliminating the need for an auxiliary device such as an air conditioner to ensure the ambient temperature and humidity of the device device, and achieving the purpose of reducing the cost.
  • auxiliary device such as an air conditioner to ensure the ambient temperature and humidity of the device device, and achieving the purpose of reducing the cost.
  • the permanent bridge in the specific embodiment may be a coupler.
  • the first embodiment provided by the present invention is a schematic diagram of a WDM working path protection system, as shown in Fig. 3, wherein Z1 ... Zn are respectively n terminal nodes.
  • a WDM transceiver with multiple wavelengths is used in the central node, a downlink transmitter 1 of a certain wavelength transmits a downlink service to the selection switch module 101; and two outputs of the selection switch module 101 are respectively wavelength division multiplexed/demultiplexed 1, the wavelength division multiplexing/demultiplexer 2 is connected; the wavelength division multiplexing/demultiplexer 1 is connected to the wavelength division multiplexing/demultiplexer 3 on the distribution node through a backbone fiber as a working path, the wave The sub-multiplexer/demultiplexer 2 is connected to the wavelength division multiplexing/demultiplexer 4 on the distribution node through the backbone fiber as the protection path; the downlink traffic passing through the wavelength division multiplexing/demultiplexer 1 passes the wavelength division The multiplexer/demultiplexer 3 is connected to one input of the coupler 103, and the downlink traffic passing through the wavelength division multiplexing/demultiplexer 2 passes through the wavelength division multiplexing/demultiplexer 4 and the coupler
  • the transmission direction of the uplink traffic of this wavelength is opposite to the downlink.
  • the upstream transmitter 1 transmits the uplink traffic to the summary input port of the coupler 104; then passes through the two outputs of the coupler 104.
  • the two signals of the port output are respectively input to the wavelength division multiplexing/demultiplexer 3 and the wavelength division multiplexing/demultiplexing device 4; the uplink service passing through the wavelength division multiplexing/demultiplexer 3 is subjected to wavelength division.
  • the uplink service of the wavelength division multiplexing/demultiplexer 4 passes through the wavelength division multiplexing/demultiplexer 2 and is input to the switch selection module 102.
  • Another input port; the last uplink service is output by the output port of the switch selection module and then connected to the upstream receiver 1 on the central node through the distribution fiber.
  • the transmission process of the upper and lower traffic of other wavelengths is similar to the above process.
  • the first node (such as the central node in the above embodiment) selects one of the two second transmission nodes among the two transmission paths that are mutually protected (
  • the distribution node in the above embodiment performs service transmission, and the second node performs dual reception based on the two transmission paths; in the second transmission direction opposite to the first transmission direction, the second node passes through each other Two-way transmission of traffic is performed to the first node for the two transmission paths that are protected, and the first node selects one of the two transmission paths for reception.
  • the first node is a central node
  • the second node is a distribution node.
  • the central node selects one of the two mutually protected transmission paths to the distribution node as the working path of the bearer service, and sends the service to the distribution node; the distribution node pairs the two connected to the central node
  • the transmission path performs a permanent two-way connection, and receives the service carried in the transmission path.
  • the distribution node In the second transmission direction (the direction opposite to the first transmission direction), the distribution node respectively carries the to-be-transmitted services in the two transmission paths that are mutually protected between the central node and the central node, and sends the signals to the central node;
  • the central node selects one of the two transmission paths as a working path, and transmits the service carried in the working path to the client side.
  • the case enables the second node to be passive.
  • the above wavelength multiplexing/demultiplexing device can be implemented by an OADM unit (OPTICAL ADD/DROP MUXPLEXER) or a MUX (Multiplexer Multiplexer) / DEMUX unit (Demultiplexer demultiplexer);
  • the module can be implemented with an optical switch.
  • Wavelength multiplexing/demultiplexers and couplers can be implemented in one node or distributed across different nodes.
  • Step 1 The terminal node detects whether the downlink service is faulty.
  • the fault detection point can use a part of the optical power detection method before the receiving end, or the receiver can directly detect whether the service exists or the service is correct. It can also detect the specific cost of the service and determine whether the service is correct. The way.
  • Step 2 Identify the faulty downlink path and generate downlink path fault information.
  • Step 3 The downlink path fault information is transmitted to the central node through the uplink path.
  • Step 4 The central node controls the selection switch module corresponding to the failed downlink path to switch from the working path to the protection path.
  • the central node mainly performs downlink transmission path selection switching according to the uplink path fault information fed back by the terminal node based on the downlink path.
  • the central node For the uplink service of the terminal node to the central node through the distribution node, the central node has a fault detection unit, and the selection switch module for performing protection switching is also at the central node, and the central node directly controls the corresponding fault after detecting the fault of the uplink working path.
  • the selection switch module selects the protection path to implement single-ended switching.
  • the transmission system can implement protection switching not only when the working path fails, but also implement protection switching when the transmitter or the receiver fails.
  • the present invention provides a second embodiment. : The subnet connection of the selective and dual receiving 1 + 1 protection system structure is shown in Figure 5, where Z1 ... Zn are respectively n terminal nodes.
  • the switch selection module at this time is between the client side signal and the WDM wavelength transceiver.
  • the switch selection module 11 1 that passes through a certain wavelength downlink service is taken as an example for description.
  • the switch selection module 1 11 can be implemented by using an optical switch or an electric switch.
  • the two outputs of the switch selection module 11 1 require two transmission modules, namely, the downlink transmitter 1W and the downlink transmitter 1P to select to transmit downlink traffic of a certain wavelength.
  • the downlink transmitter 1W and the downlink transmitter 1P are respectively connected to the wavelength division multiplexing/demultiplexing unit and the wavelength division multiplexing/demultiplexing unit P; the wavelength division multiplexing/demultiplexing unit W passes through the backbone optical fiber as a working path Connected to the wavelength division multiplexing/demultiplexer 3 on the distribution node, the wavelength division multiplexing/demultiplexer P is connected to the wavelength division multiplexing/demultiplexing unit 4 on the distribution node through the backbone optical fiber as the protection path.
  • the downlink service after the wavelength division multiplexing/demultiplexer W is connected to one input terminal of the coupler 115 through the wavelength division multiplexing/demultiplexer 3, and passes through the downlink of the wavelength division multiplexing/demultiplexing unit P.
  • the service is connected to the other input of the coupler 1 15 through the wavelength division multiplexing/demultiplexer 4; finally, the downlink service is outputted by the summary output port of the coupler 115 and then connected to the downlink receiving of the terminal node Z1 through the distribution fiber.
  • the downlink service is selected and doubled.
  • the transmission direction of the uplink traffic of this wavelength is opposite to the downlink.
  • the uplink transmitter 1 of the terminal node Z1 transmits the uplink service to the summary input port of the coupler 116; then outputs two identical signals through the two output ports of the coupler 16 to the wavelength division multiplexing I solution.
  • Multiplexer 3 and wavelength division multiplexing/demultiplexer 4; the uplink service passing through the wavelength division multiplexing/demultiplexer 3 is input to the uplink receiver 1W through the wavelength division multiplexing/demultiplexer W, and the wave is passed.
  • the uplink service of the sub-multiplexer/demultiplexer 4 is input to the uplink receiver 1P through the wavelength division multiplexing/demultiplexer P.
  • the uplink services output from the uplink receiver 1W and the uplink receiver 1P are respectively selected through switches.
  • the two input terminals of the module 112 are selected by the switch and output from the output port of the switch selection module 1 12, thereby realizing the dual-selection of the uplink service.
  • the transmission process of the upper and lower traffic of other wavelengths is similar to the above process.
  • the modules 1, 2, and M are respectively M distribution nodes in the WDM-PON network, and each distribution node corresponds to the Z1 to Zn terminals.
  • the node, the distribution node is connected to the central node through a backbone fiber that is a working path and a protection path.
  • the invention also discloses a system for implementing WDM transmission protection. Please refer to FIG. 7, which is a schematic structural diagram of a system embodiment for implementing WDM transmission protection according to the present invention. The internal structure and connection relationship are described in detail below in conjunction with the working principle of the system.
  • the system in this embodiment includes a first node and a second node that are interconnected by optical fibers in a wavelength division multiplexing system, where the first node specifically includes a selection module 71 and a selection module 72.
  • the second node specifically includes dual collection. Module 81 and dual-issue module 82.
  • the selection module 71 in the first node selects one of the two transmission paths that are mutually protected to perform traffic transmission to the second node. Further, the dual-receiving module 81 of the second node performs two-way reception on the two transmission paths based on mutual protection for the traffic from the first node.
  • the dual-issue module 82 in the second node passes the two transmission paths that are mutually protected to the first The node performs two-way transmission of the service. Further, the selection module 72 in the first node selects a pair of services from the second node to receive the two transmission paths that are mutually protected.
  • the dual-receiving module 81 can be a dual-receiving permanent bridge
  • the dual-issue module 82 can be a dual-transmitting permanent bridge.
  • the hair selection module 71 and the selection module 72 may be switch selection modules.
  • the second node does not need to select the transmission path, but can maintain a permanent connection, so there is no need to set the power supply device in the second node, and thus the second node can be passive, and the network comprehensive construction can be reduced. cost.
  • the first node in the above system may be a central node in the WDM system, and the second node may be a distribution node in the WDM system. Conversely, the first node in the above system is a distribution node, and the second node is a central node.
  • the embodiment of the present invention does not specifically implement which node is passive. limit.
  • the present invention also discloses an apparatus for implementing WDM transmission protection, and the node device may be the first node or the second node in the foregoing system embodiment, because the first node and the second node have been used in the foregoing system embodiment.
  • the internal structure is described in detail separately and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

一种波分复用传输的保护方法、 系统与装置
本申请要求于 2006年 8月 9日提交中国专利局、申请号为 200610110579.2、 发明名称为"一种 WDM传输系统的保护方法与装置 "的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。
技术领域
本发明属于通信传输领域,尤其涉及一种适用于城域接入网中的 WDM ( wavelength division multiplex 波分复用)传输的保护方法、 系统与装置。
背景技术
在城域接入网中, 目前采用最多的光纤接入的方式是 PON ( Passive Optical Network无源光纤网络) 的形态, 但是光纤所能够提供的最高速率 仅为 1.25Gbps或者 2.5Gbps , 而实际单个用户的计算机通常使用的网卡为 100Mbps, 接入带宽仅有 2M左右, 满足不了客户快速增长的需求。 因此需 要更高的带宽提供光纤接入。 WDM技术在骨干网、城域网已经大规模商用 , 其带宽可随着需求不断增加波长进行升级扩展。 随着接入带宽的不断快速 增长, WDM技术应用到接入层成为发展趋势。然而传统的 WDM( wavelength division multiplex 波分复用)技术是点对点传输, 应用到接入层价格过于 昂贵, 需要采用新的技术降低其应用的成本。 现有技术通常采用的是 WDM 技术和 PON技术的结合, 如图 1所示, 在中心节点分别有 n个下行发射器和 上行接收器, 分别用来发射下行路径上的光波长业务和接收上行路径上的 光波长业务。 下行路径上的光波长业务首先通过波分复用 /解复用器, 然后 再从骨干光纤传输至分发节点上的波分复用 /解复用器, 然后再分别输入终 端节点上的下行接收器。 上行路径上的的光波长业务的传输与之相同。 由 对图 1的描述可以看出, 现有技术的 WDM-PON中的不同的终端节点可采用 不同的波长, 提供了更大的带宽。
WDM传输系统应用在实际的网络中, 由于含有多个波长, 并且单个波 长的传输的数据带宽至少在 Gbps量级, 承载了较多的客户的数据, 所以一 旦发生故障, 将有可能对重要客户或者很多客户的业务造成严重影响, 给 运营商造成很大的损失。 因此 WDM传输系统需要保护技术提供更高的可靠 性。 通常在网络中, 最容易发生故障的是传输介质——光纤, 例如市政施 工、 新建楼盘等都会造成埋藏在地下的光缆中的光纤发生被挖断的情况, 从而使对应的网络连接发生故障。 因此运营商需要一种可靠的保护技术来 保障波长业务。
通常采用的网络保护技术有 1 + 1双发选收路径专用保护、 1 : 1或 M: N 路径共享保护、 复用段保护等类型, 比较常用的是 1 + 1双发选收路径专用 保护。 1 + 1双发选收路径专用保护采用一个工作路径和一个备份路径传输 需要保护的业务, 两个路径走不同的路由, 备份路径不走其他业务。 当传 输线路发生故障时, 对应业务连接的监测点会检测到故障, 根据故障类型 和保护的方案将业务从工作路径自动倒换到备份路径,保证业务的可靠性。
1 + 1双发选收路径专用保护结构示意图如图 2所示,其采用永久桥接的 方式。 发端 A节点、 收端 B节点间有下行和上行两路业务信号, 两路业务分 别都有工作路径和保护路径。 A节点上的下行业务信号, 首先通过永久桥接 分路器(如采用光耦合器)将发端 A节点发出的业务信号分为完全相同的两 路, 分别通过工作、 保护两个路径进行传输, 收端 B节点采用选择器(如采 用光开关) 进行选择其中一路信号。 上行业务信号也采用相同的方式实现 保护倒换。
以 A节点到 B节点的下行业务为例, 当工作路由发生故障时, 由于 B节 点在同时检测工作路径的业务和保护路径的业务, 一旦发现工作路由的业 务发生故障, 就上报并控制 B点的选择开关从工作路径切换到保护路径, 实 现业务的保护。 由于检测故障和进行倒换都在同一个节点进行, 无需通知 另一个节点, 因此不需要进行两个节点间通过通信协议互通消息。 因此这 种方式又称为单端倒换。 同样, 从 B节点到 A节点的业务采用同样的机制。
现有技术方案 1+1 保护是采用收端检测、 收端进行倒换的单端倒换的 方式, 发端采用的是永久桥接。 这种方式要求在收端必须有选择倒换的器 件, 当这种方案应用于一个双向传输的网络时, 两端的节点都必须提供电 源。 当应用在城域接入层网络中, 下行的路径如果需要实现保护就必须在 倒换节点进行供电。 当图 1中的只有中心节点到分发节点的光纤需要完成保 护倒换时, 分发节点也必须采用有源的方式, 因此无法实现无源化的无源 光纤网络 PON技术。 在光纤接入的过程中, 需要将光纤从中心节点连接到多个大楼或者小 区, 再接入到小区内或者楼内机房的设备上。 由于实际网络建设时, 光纤 通常是提早铺设在路边或者楼边。 当小区或者大楼有用户时, 光纤再接入 到已经铺设的光纤上。 由于中间的分发不能采用需要供电的设备, 所以需 要路边或者楼边的光纤分发节点是一个无源的配线设备, 此时光纤两端的 中心节点和终端节点都有机房可以供电。
中心节点和终端节点都可以提供电源, 但在进行分发的节点上, 通常 是放在路边或者比较简单的环境, 没有电源供应。 如果需要完成下行业务 的双发选收, 需要在此节点提供电源供光开关或者电开关实现倒换动作。 为了保证设备的可靠性, 通常还需要空调等附属设备保证设备、 器件工作 的环境温度、 湿度满足器件的可靠性要求, 因此会给分发节点的建设造成 巨大的成本。
发明内容
本发明提供了一种 WDM传输的保护方法、 系统与装置, 使分发节点能 够实现无源化, 进而降低网络综合建设成本。
本发明提供了一种 WDM传输的保护方法, 第一传输方向上, 第一节点 在互为保护的两条传输路径中选择其一向第二节点进行业务发送, 所述第 二节点基于所述两条传输路径进行双路接收; 与所述第一传输方向相反的 第二传输方向上, 所述第二节点通过互为保护的两条传输路径向所述第一 节点进行业务的双路发送, 第一节点从所述两条传输路径中选择其一进行 接收。
本发明还提供了一种实现波分复用传输保护的系统, 包括波分复用系 统中的通过光纤互连的第一节点和第二节点, 所述第一节点包括: 选发模 块, 用于在第一传输方向上, 在互为保护的两条传输路径中选择其一向所 述第二节点进行业务发送; 选收模块, 用于在第二传输方向上, 在互为保 护的两条传输路径中选择其一对来自所述第二节点的业务进行接收, 所述 第二传输方向与所述第一传输方向相反; 所述第二节点包括: 双收模块, 用于在所述第一传输方向上, 对来自所述第一节点的业务基于互为保护的 两条传输路径进行双路接收; 双发模块, 用于在所述第二传输方向上, 通 过互为保护的两条传输路径向所述第一节点进行业务的双路发送。 本发明还提供了一种实现波分复用传输保护的装置, 包括: 双收模块, 用于在第一传输方向上,对互为保护的两条传输路径进行业务的双路接收; 双发模块, 用于在第二传输方向上, 通过互为保护的两条传输路径进行业 务的双路发送, 所述第二传输方向与第一传输方向相反。
本发明还提供了一种实现波分复用传输保护的装置, 包括: 选发模块, 用于在第一传输方向上, 在互为保护的两条传输路径中选择其一进行业务 发送; 选收模块, 用于在第二传输方向上, 在互为保护的两条传输路径中 选择其一进行业务的接收, 所述第二传输方向与所述第一传输方向相反。
本发明还提供了一种实现波分复用传输保护的系统, 包括中心节点、 分发节点和终端节点,所述分发节点和所述中心节点通过骨干光纤相连接, 所述分发节点与所述终端节点通过分发光纤相连接, 所述分发节点包括两 个以上的永久桥接器, 其中至少有两个永久桥接器分别用于双收下行业务 和双发上行业务。
本发明还提供了一种波分复用传输的保护方法, 所述方法包括: 终端 节点检测下行业务是否发生故障; 当检测到下行业务发生故障时, 终端节 点标识发生故障的下行路径, 并生成下行路径故障信息; 将所述下行路径 故障信息通过上行路径传输给中心节点; 中心节点将下行业务从工作路径 切换到保护路径。
由上述本发明提供的技术方案可见, 本发明通过在相反传输方向上采 用不对称的保护方式: 第一传输方向上选发双收、 相反的第二传输反向上 双发选收, 使得在分发节点不需要专门配备电源、 空调等相配备的设备, 极大地降低了提供保护功能的 WDM接入网的网络建设成本。
附图说明
图 1为现有技术中 WDM-PON结构示意图;
图 2为现有技术方案 1+1 保护结构示意图;
图 3为本发明实施例一提供的一种 WDM的工作路径保护系统示意图; 图 4为本发明实施例一提供的下行业务选发双收的自愈保护流程图; 图 5为本发明实施例二提供的子网连接的 1 + 1保护方案; 图 6为本发明无源分发节点构成的 WDM-PON网络架构实施例示意图; 图 7为本发明实现 WDM传输保护的系统实施例结构示意图。
具体实施方式
在本发明实施例中, 针对接入网的特定场景, 采用不对称的保护实现 方案, 对下行路径 (即第一传输方向上的路径) 采用发端选发, 收端双收 的方案, 上行路径 (即与第一传输方向相反的第二传输方向上的路径) 采 用发端双发, 收端选收的方案, 这样在中心节点侧的收发都采用选择方式, 而靠近用户侧的分发节点都采用永久连接的方式, 这样实现的分发节点不 存在选择开关, 因此可以采用无源器件实现, 无需供电, 从而无需使用空 调等附属设备来保证器件设备工作的环境温度、 湿度, 达到了降低成本的 目的。 本领域技术人员可以理解, "上行 "与"下行"只是一个相对的名称, 表示两个互为相反的传输方向。 在本发明实施例中, "上行"对应于第一传 输方向, "下行 "对应于与第一传输方向相反的第二传输方向。
下面结合附图及具体实施例对本发明再作进一步详细的说明, 具体实 施例中的永久桥接器可以是耦合器。
本发明提供的第一个实施例为一种 WDM的工作路径保护系统示意图 如图 3所示, 其中 Z1...... Zn分别为 n个终端节点。
中心节点中采用多个波长的 WDM收发器, 某个波长的下行发射器 1 , 发送下行的业务至选择开关模块 101 ; 选择开关模块 101的两个输出端分别 与波分复用 /解复用器 1、 波分复用 / 解复用器 2相连; 波分复用 / 解复用器 1通过作为工作路径的骨干光纤与分发节点上的波分复用 / 解复用器 3相 连, 波分复用 / 解复用器 2通过作为保护路径的骨干光纤与分发节点上的波 分复用 /解复用器 4相连;经过波分复用 / 解复用器 1的下行业务通过波分复 用 / 解复用器 3后与耦合器 103的一个输入端相连,经过波分复用 / 解复用器 2的下行业务通过波分复用 / 解复用器 4后与耦合器 103的另一个输入端相 连; 最后, 下行业务由耦合器 103的汇总输出端口输出后通过分发光纤连接 到终端节点上的下行接收器 1上。
该波长的上行业务的传输方向与下行相反。 首先, 上行发射器 1 , 发送 上行的业务至耦合器 104的汇总输入端口; 然后通过耦合器 104的两个输出 端口输出两路相同的信号分别输入到波分复用 / 解复用器 3和波分复用 /解 复用器 4; 经过波分复用 /解复用器 3的上行业务通过波分复用 / 解复用器 1 后输入开关选择模块 102的一个输入端口, 经过波分复用 / 解复用器 4的上 行业务通过波分复用 / 解复用器 2后输入开关选择模块 102的另一个输入端 口; 最后上行业务由开关选择模块的输出端口输出后通过分发光纤连接到 中心节点上的上行接收器 1上。
相应地, 其它波长的上下业务的传输过程与上述过程相似。
从上述实施例的具体描述过程可以概括得知, 在第一传输方向上, 第 一节点 (如上述实施例中的中心节点)在互为保护的两条传输路径中选择 其一向第二节点 (如上述实施例中的分发节点)进行业务发送,而第二节点基 于所述两条传输路径进行双路接收; 在与所述第一传输方向相反的第二传 输方向上, 第二节点通过互为保护的两条传输路径向所述第一节点进行业 务的双路发送, 第一节点从所述两条传输路径中选择其一进行接收。
具体而言, 以第一节点是中心节点, 第二节点是分发节点为例。 第一 传输方向上, 中心节点在通往分发节点的互为保护的两条传输路径中选择 其一作为承载业务的工作路径, 向分发节点发送业务; 分发节点对连自中 心节点的所述两条传输路径进行永久双路连接, 接收所述传输路径中承载 的业务。 在第二传输方向 (与所述第一传输方向相反的方向) 上, 分发节 点在其与中心节点间的互为保护的两条传输路径中分别承载待传输业务, 双路发送至中心节点; 中心节点从所述两条传输路径中选择其一作为工作 路径, 将该工作路径中承载的业务传输至客户侧。 案, 使得第二节点可以实现无源化。
上述的波长复用 /解复用器可以采用 OADM单元 (OPTICAL ADD/DROP MUXPLEXER,光分插复用器)或者 MUX(Multiplexer 复用器)/ DEMUX单元 (Demultiplexer 解复用器)实现; 开关选择模块可以采用光开关实现。 波长 复用 /解复用器和耦合器可以在一个节点实现, 也可以在不同节点分布实 现。
如图 3所示, 当中心节点到分发节点的工作路径发生故障时, 由于分发 节点是无源的, 无法检测故障, 此时需要在其他节点进行检测, 并告知中 心结点进行切换。 图 3中的技术方案仅仅对中心节点到分发节点的光纤进行 保护, 也可以将中心节点到终端节点(即第三节点)的整个光纤实现保护, 扩大保护的范围。
对中心节点到分发节点的下行业务来说, 由于故障检测单元只存在于 有源节点, 因此只有终端节点可以检测下行业务的故障。 具体的下行业务 选发双收的自愈保护实施例流程图如图 4所示。
步骤 1 : 终端节点检测下行业务是否发生故障。
故障的检测点可以在收端之前采用分一部分光进行功率检测的方式, 也可以采用接收器直接检测业务是否存在或者业务是否正确的方式, 也可 以采用检测业务上的特定开销、 确定业务是否正确的方式。
步骤 2: 标识发生故障的下行路径并生成下行路径故障信息。
步骤 3 : 通过上行路径传输下行路径故障信息给中心节点。
下行路径故障信息上传到中心节点的方式有多种, 可以通过传输上行 业务波长的开销信息, 也可以通过光监控信道走带外传输的方式, 也可以 通过上行业务的特定告警字节实现。
步骤 4: 中心节点控制发生故障的下行路径对应的选择开关模块从工作 路径切换到保护路径。
从上述步骤 1至 4可以看出, 本实施例中在进行下行业务的检测时, 主 要是中心节点根据终端节点基于下行路径反馈的上行路径故障信息, 进行 下行的传输路径选择切换。
而对终端节点经过分发节点到达中心节点的上行业务来说, 中心节点 具备故障检测单元, 并且进行保护倒换的选择开关模块也在中心节点, 中 心节点检测到上行工作路径的故障后, 直接控制对应的选择开关模块选择 保护路径实现单端倒换。
为了进一步提高 WDM传输系统的可靠性,使传输系统不仅在工作路径 出现故障时可以实现保护倒换, 而且在发射器或接收器出现故障时也能够 实现保护倒换, 本发明提供了第二个实施例:实现选发双收的子网连接 1 + 1 保护系统结构图如图 5所示, 其中 Z1...... Zn分别为 n个终端节点。 此时的开关选择模块在客户侧信号与 WDM波长收发器之间。以某波长 下行业务所经过的开关选择模块 11 1为例来说明。 开关选择模块 1 11可以采 用光开关实现, 也可以采用电开关来实现。 由于开关选择模块 11 1位于发射 器之前, 开关选择模块 11 1的两个输出端需要两个发射模块, 即下行发射器 1W和下行发射器 1P来选择发送某波长的下行业务。 下行发射器 1W和下行 发射器 1P分别与波分复用 / 解复用器 、 波分复用 / 解复用器 P相连; 波分 复用 / 解复用器 W通过作为工作路径的骨干光纤与分发节点上的波分复用 / 解复用器 3相连, 波分复用 / 解复用器 P通过作为保护路径的骨干光纤与分 发节点上的波分复用 / 解复用器 4相连; 经过波分复用 / 解复用器 W的下行 业务通过波分复用 / 解复用器 3后与耦合器 115的一个输入端相连, 经过波 分复用 /解复用器 P的下行业务通过波分复用 / 解复用器 4后与耦合器 1 15的 另一个输入端相连; 最后, 下行业务由耦合器 115的汇总输出端口输出后通 过分发光纤连接到终端节点 Z1的下行接收器 1上,从而实现了下行业务的选 发双收。
该波长的上行业务的传输方向与下行相反。 首先, 终端节点 Z1的上行 发射器 1 , 发送上行的业务至耦合器 116的汇总输入端口; 然后通过耦合器 1 16的两个输出端口输出两路相同的信号分别输入到波分复用 I 解复用器 3 和波分复用 /解复用器 4;经过波分复用 /解复用器 3的上行业务通过波分复 用 / 解复用器 W后输入上行接收器 1W, 经过波分复用 /解复用器 4的上行业 务通过波分复用 / 解复用器 P后输入上行接收器 1P;最后,从上行接收器 1W 和上行接收器 1P输出的上行业务分别通过开关选择模块 112的两个输入端, 由开关选择后从开关选择模块 1 12的输出端口输出,从而实现了上行业务的 双发选收。
相应地, 其它波长的上下业务的传输过程与上述过程相似。
在本发明的第一、 二个实施例中, 分发节点只有一个, 但在实际应用 中可以为多个。 如图 6所示的无源分发节点构成的 WDM-PON网络架构中, 模块 1、 2、 M分别为 WDM-PON网络中的 M个分发节点, 每个分发节点又相 对应 Z1至 Zn个终端节点, 分发节点通过作为工作路径和保护路径的骨干光 纤与中心节点相连接。 本发明还公开了一种实现 WDM传输保护的系统。 请参阅图 7, 其为本 发明实现 WDM传输保护的系统实施例结构示意图。下面结合该系统的工作 原理详细介绍其内部结构以及连接关系。
本实施例中的系统包括波分复用系统中通过光纤互连的第一节点和第 二节点, 其中, 第一节点具体包括选发模块 71和选收模块 72; 第二节点具 体包括双收模块 81和双发模块 82。
在由第一节点到第二节点的第一传输方向上, 第一节点中的选发模块 71在互为保护的两条传输路径中选择其一向所述第二节点进行业务发送。 进而, 第二节点的双收模块 81对来自所述第一节点的业务基于互为保护的 两条传输路径进行双路接收。
在由第二节点到第一节点的第二传输方向 (即与第一传输方向相反的 方向) 上, 第二节点中的双发模块 82通过互为保护的两条传输路径向所述 第一节点进行业务的双路发送。 进而, 第一节点中的选收模块 72在互为保 护的两条传输路径中选择其一对来自所述第二节点的业务进行接收。
具体而言, 双收模块 81可以是双收永久桥接器, 双发模块 82可以是双 发永久桥接器。 选发模块 71和选收模块 72可以是开关选择模块。
通过上述结构介绍可以看出, 第二节点无需对传输路径进行选择, 而 是可以保持永久连接, 因此无需在第二节点中设置供电设备, 进而第二节 点可以实现无源化, 降低网络综合建设成本。 上述系统中的第一节点可以 是 WDM系统中的中心节点, 第二节点可以是 WDM系统中的分发节点。 反 过来也可以, 即上述系统中的第一节点是分发节点、 第二节点是中心节点。 本领域技术人员可以理解, 只要在一个系统中不同传输方向上采用不对称 的保护方式, 便可以使其中一个节点实现无源化, 因此本发明实施例对具 体是哪个节点实现无源化并没有限制。
本发明还公开了一种实现 WDM传输保护的设备,所述节点设备可以是 前述系统实施例中的第一节点或第二节点, 由于前述系统实施例中已将对 第一节点和第二节点的内部结构分别进行了详细描述, 因而此处不再赘述。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求书的保护范围为准。

Claims

权 利 要 求
1、 一种波分复用传输的保护方法, 其特征在于,
第一传输方向上, 第一节点在互为保护的两条传输路径中选择其一向 第二节点进行业务发送, 所述第二节点基于所述两条传输路径进行双路接 收;
与所述第一传输方向相反的第二传输方向上, 所述第二节点通过互为 保护的两条传输路径向所述第一节点进行业务的双路发送, 第一节点从所 述两条传输路径中选择其一进行接收。
2、 如权利 1所述的方法, 其特征在于, 所述第一节点为所述波分复用 传输系统中的中心节点 ,所述第二节点为波分复用传输系统中的分发节点。
3、 如权利 2所述的方法, 其特征在于, 所述第一传输方向上的传输过 程具体包括:
中心节点在通往分发节点的互为保护的两条传输路径中选择其一作为 承载业务的工作路径, 向分发节点发送业务;
分发节点对连自中心节点的所述两条传输路径进行永久双路连接, 接 收所述传输路径中承载的业务。
4、 如权利要求 2所述的方法, 其特征在于, 所述第二传输方向上的传 输过程具体包括:
分发节点在其与中心节点间的互为保护的两条传输路径中分别承载待 传输业务, 双路发送至中心节点;
中心节点从所述两条传输路径中选择其一作为工作路径, 将该工作路 径中承载的业务传输至客户侧。
5、 如权利要求 1至 4中任意一项所述的方法, 其特征在于, 所述方法还 包括:
第一传输方向上, 所述第二节点自第一节点接收到业务后继续向第三 节点传输所述业务;
第二传输方向上, 所述第二节点在向第一节点进行双路发送之前自所 述第三节点接收业务。
6、 如权利要求 5所述的方法, 其特征在于, 所述方法还包括: 所述第一节点根据所述第三节点基于第二传输方向路径反馈的第一传 输方向路径故障信息, 进行第一传输方向的传输路径选择切换。
7、 如权利要求 6所述的方法, 其特征在于, 所述第一节点进行第一传 输方向的传输路径选择切换的具体过程包括:
第三节点检测第一传输方向业务是否发生故障;
当检测到所述第一传输方向业务发生故障时, 第三节点将第一传输方 向路径故障信息通过第二传输方向路径传输给第一节点;
第一节点将第一传输方向业务从所述互为保护的两条传输路径中的工 作路径切换到保护路径。
8、 如权利要求 5所述的方法, 其特征在于, 所述第三节点为终端节点。
9、 如权利要求 1至 4中任意一项所述的方法, 其特征在于, 所述方法还 包括:
所述第一节点检测第二传输方向业务是否发生故障;
当检测到所述第二传输方向业务发生故障时, 所述第一节点进行第二 传输方向上接收路径的选择切换。
10、 一种实现波分复用传输保护的系统, 包括波分复用系统中的通过 光纤互连的第一节点和第二节点, 其特征在于,
所述第一节点包括:
选发模块, 用于在第一传输方向上, 在互为保护的两条传输路径中选 择其一向所述第二节点进行业务发送;
选收模块, 用于在第二传输方向上, 在互为保护的两条传输路径中选 择其一对来自所述第二节点的业务进行接收, 所述第二传输方向与所述第 一传输方向相反;
所述第二节点包括:
双收模块, 用于在所述第一传输方向上, 对来自所述第一节点的业务 基于互为保护的两条传输路径进行双路接收;
双发模块, 用于在所述第二传输方向上, 通过互为保护的两条传输路 径向所述第一节点进行业务的双路发送。
11、 根据权利要求 10所述的系统, 其特征在于, 所述第一节点具体为 中心节点, 所述第二节点具体为分发节点。
12、 一种实现波分复用传输保护的装置, 其特征在于, 包括: 双收模块, 用于在第一传输方向上, 对互为保护的两条传输路径进行 业务的双路接收;
双发模块, 用于在第二传输方向上, 通过互为保护的两条传输路径进 行业务的双路发送, 所述第二传输方向与第一传输方向相反。
13、 根据权利要求 12所述的装置, 其特征在于, 所述双收模块具体是 双收永久桥接器, 所述双发模块具体是双发永久桥接器。
14、 根据权利要求 12或 13所述的装置, 其特征在于, 所述设备具体是 波分复用系统中的分发节点。
15、 一种实现波分复用传输保护的装置, 其特征在于, 包括: 选发模块, 用于在第一传输方向上, 在互为保护的两条传输路径中选 择其一进行业务发送;
选收模块, 用于在第二传输方向上, 在互为保护的两条传输路径中选 择其一进行业务的接收, 所述第二传输方向与所述第一传输方向相反。
16、 根据权利要求 15所述的装置, 其特征在于, 所述选发模块和选收 模块具体为开关选择模块。
17、 根据权利要求 15或 16所述的装置, 其特征在于, 所述设备具体是 波分复用系统中的中心节点。
18、 一种实现波分复用传输保护的系统, 包括中心节点、 分发节点和 终端节点, 所述分发节点和所述中心节点通过骨干光纤相连接, 所述分发 节点与所述终端节点通过分发光纤相连接, 其特征在于,
所述分发节点包括两个以上的永久桥接器, 其中至少有两个永久桥接 器分别用于双收下行业务和双发上行业务。
19、 根据权利要求 18所述的系统, 其特征在于, 所述永久桥接器为耦 合器。
20、 根据权利要求 18所述的系统, 其特征在于,
所述中心节点包括下行发射器、 上行发射器、 第一开关选择模块、 第 二开关选择模块、 第一波分复用 / 解复用器和第二波分复用 /解复用器; 所述第一开关选择模块的输入端与下行发射器相连, 两个输出端分别 与所述第一波分复用 /解复用器和第二波分复用 /解复用器相连; 所述第二 开关选择模块的两个输入端分别与所述第一波分复用 /解复用器和第二波 分复用 /解复用器相连, 输出端与上行接收器相连。
21、 根据权利要求 20所述的系统, 其特征在于, 所述第一开关选择模 块与第二开关选择模块为光开关, 或为电开关。
22、 根据权利要求 18至 21中任意一项所述的系统, 其特征在于, 所述 的终端节点包括下行业务接收器和上行业务发送器, 所述的下行业务接收 器用于接收从分发节点的双收永久桥接器传来的光波长业务, 所述的上行 业务发送器用于将上行的业务通过分发节点的双发永久桥接器和所述的波 分复用 / 解复用器发送给中心节点。
23、 一种波分复用传输的保护方法, 其特征在于, 所述方法包括: 终端节点检测下行业务是否发生故障;
当检测到下行业务发生故障时, 终端节点标识发生故障的下行路径, 并生成下行路径故障信息;
将所述下行路径故障信息通过上行路径传输给中心节点;
中心节点将下行业务从工作路径切换到保护路径。
24、 根据权利要求 23所述的方法, 其特征在于, 所述终端节点检测下 行业务是否发生故障具体为: 终端节点在所述的下行业务的收端之前分一 部分光进行功率检测来检测故障, 或用接收器直接检测故障, 或用检测下 行业务上的开销来检测故障。
25、 根据权利要求 23或 24所述的方法, 其特征在于,
所述的下行路径故障信息通过传输上行业务波长的开销信息上传到中 心节点;
或者
所述的下行路径故障信息通过光监控信道上传到中心节点;
或者
所述的下行路径故障信息通过上行业务的告警字节上传到中心节点。
PCT/CN2007/070380 2006-08-09 2007-07-30 Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde WO2008019608A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780000325.8A CN101317374B (zh) 2006-08-09 2007-07-30 一种波分复用传输的保护方法、系统与装置
ES07785383.6T ES2439243T3 (es) 2006-08-09 2007-07-30 Método, sistema y aparato para proteger una transmisión de multiplexación por división en longitud de onda
EP07785383.6A EP2051442B9 (en) 2006-08-09 2007-07-30 Method, system and apparatus for protecting wavelength division multiplex transmission
US12/367,339 US20090169200A1 (en) 2006-08-09 2009-02-06 Method, system and apparatus for protecting wavelength division multiplex transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610110579.2A CN1968141B (zh) 2006-08-09 2006-08-09 一种wdm传输系统的保护方法与装置
CN200610110579.2 2006-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/367,339 Continuation US20090169200A1 (en) 2006-08-09 2009-02-06 Method, system and apparatus for protecting wavelength division multiplex transmission

Publications (1)

Publication Number Publication Date
WO2008019608A1 true WO2008019608A1 (fr) 2008-02-21

Family

ID=38076707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070380 WO2008019608A1 (fr) 2006-08-09 2007-07-30 Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde

Country Status (5)

Country Link
US (1) US20090169200A1 (zh)
EP (1) EP2051442B9 (zh)
CN (2) CN1968141B (zh)
ES (1) ES2439243T3 (zh)
WO (1) WO2008019608A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453666B (zh) * 2007-12-07 2012-07-04 华为技术有限公司 无源光网络的主备链路保护方法、环路系统及装置
US20100014858A1 (en) * 2008-07-15 2010-01-21 Giovanni Barbarossa Reduction Of Packet Loss Through Optical Layer Protection
CN101605282B (zh) * 2009-06-26 2012-07-04 中兴通讯股份有限公司 一种光网络保护系统、方法及装置
CN101909223B (zh) * 2009-10-27 2013-11-27 北京邮电大学 一种基于资源的wdm光网络通道保护p圈优化配置方法
KR101821814B1 (ko) * 2010-12-22 2018-01-26 한국전자통신연구원 Wdm-tdm 수동형 광 가입자망 원격 종단 단말 및 wdm-tdm 수동형 광 가입자망 링크 보호 시스템
JP5776330B2 (ja) * 2011-05-25 2015-09-09 富士通株式会社 波長再配置方法及びノード装置
CN103167539B (zh) * 2011-12-13 2015-12-02 华为技术有限公司 故障处理方法、设备和系统
CN102684810B (zh) * 2012-01-18 2015-07-22 徐志国 一种光网络保护方法、光链路切换控制设备及系统
WO2013133829A1 (en) * 2012-03-08 2013-09-12 Empire Technology Development Llc Multi-degree reconfigurable optical add-drop multiplexing
JP6106977B2 (ja) * 2012-07-23 2017-04-05 日本電気株式会社 光伝送システム、及び光伝送方法
WO2014047929A1 (zh) 2012-09-29 2014-04-03 华为技术有限公司 高速媒体接入控制实体的重置方法及相关装置
CN105790839B (zh) * 2016-05-25 2018-03-20 烽火通信科技股份有限公司 一种基于波分复用无光中继的光纤系统及方法
CN107018081B (zh) * 2017-03-15 2020-05-05 烽火通信科技股份有限公司 一种用于实现点对多点的1+1保护的方法
US10469921B2 (en) * 2017-11-10 2019-11-05 Juniper Networks, Inc. Data center packet optical transport failure protection
CN109120348B (zh) * 2018-10-31 2021-05-25 宁波华讯通信服务有限公司 一种城域网络系统及其网络接入系统
US11128394B2 (en) * 2019-05-23 2021-09-21 Juniper Networks, Inc. Systems and methods for optical protection switch with single-ended activation, operation, and provision of 1+1 protection over redundant bidirectional communications paths
US20220357516A1 (en) * 2019-06-21 2022-11-10 Commscope Technologies Llc Multifiber connector for concentric mutli-core fiber
WO2021181665A1 (ja) * 2020-03-13 2021-09-16 日本電信電話株式会社 光伝送装置及び光伝送方法
US11595119B2 (en) * 2021-01-11 2023-02-28 Cisco Technology, Inc. Protection switching based on exchange of protection information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361688A1 (fr) * 2002-05-06 2003-11-12 Alcatel Alsthom Compagnie Generale D'electricite Procédé de transmission protégée sur un réseau à multiplexage spectral
CN1642060A (zh) * 2004-01-05 2005-07-20 华为技术有限公司 波分复用传输系统及传输通道的保护方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1234092A (en) * 1990-12-17 1992-07-22 Aster Corporation Optical communication monitoring and control
USH2075H1 (en) * 1998-10-13 2003-08-05 At&T Corp. Restorable architectures for fiber-based broadband local access networks
CN1138358C (zh) * 2000-07-12 2004-02-11 信息产业部武汉邮电科学研究院 光缆实时监测系统
US7046619B2 (en) * 2000-11-07 2006-05-16 Ciena Corporation Method and system for bi-directional path switched network
US6567579B2 (en) * 2000-12-15 2003-05-20 Alcatel Multi-channel, multi-mode redundant optical local loop having a bus topology
DE10104704A1 (de) * 2001-02-02 2002-09-26 Siemens Ag Verfahren und elektro-optische Schaltungsanordnung zur Leitungsprotektion in einer WDM-Datenübertragungsstrecke
US7254330B2 (en) * 2001-07-20 2007-08-07 Tellabs Bedford, Inc. Single fiber passive optical network wavelength division multiplex overlay
CN1620770A (zh) * 2001-12-18 2005-05-25 鲁门蒂斯公司 保护的双向wdm网络
KR100454887B1 (ko) * 2002-01-30 2004-11-06 한국과학기술원 파장분할 다중방식 수동 광 네트워크 장치
WO2004008833A2 (en) * 2002-07-24 2004-01-29 Ciena Corporation Method and system for providing protection in an optical communication network
US7313330B2 (en) * 2002-08-13 2007-12-25 Samsung Electronics Co., Ltd. Redundant apparatus and method for gigabit ethernet passive optical network system and frame format thereof
EP1394971B1 (en) * 2002-08-30 2004-05-06 Alcatel Optical tranceivers for path-protected passive optical metro access rings
CN100452679C (zh) * 2002-12-31 2009-01-14 北京邮电大学 以太网无源光网络系统中弹性保护倒换的方法和设备
KR100547709B1 (ko) * 2003-07-07 2006-01-31 삼성전자주식회사 자기 치유 파장분할다중방식 수동형 광 가입자망
CN1212713C (zh) * 2003-09-19 2005-07-27 烽火通信科技股份有限公司 一种动态增益均衡方法以及使用该方法的光传输系统
US20050180316A1 (en) * 2004-02-12 2005-08-18 Chan Frederick Y. Protection for bi-directional optical wavelength division multiplexed communications networks
US7289728B2 (en) * 2004-03-11 2007-10-30 General Instrument Corporation Use of variable ratio couplers for network protection and recovery
KR100606029B1 (ko) * 2004-06-15 2006-07-31 삼성전자주식회사 자기 감시를 위한 수동형 광 가입자 망
KR100610245B1 (ko) * 2004-11-16 2006-08-09 한국과학기술원 파장분할다중방식 수동형 광가입자망의 통신 복구시스템
US20060115266A1 (en) * 2004-12-01 2006-06-01 Gil Levi All-optical protection signaling systems and methods in optical communication networks
KR100724936B1 (ko) * 2005-01-27 2007-06-04 삼성전자주식회사 자기 치유 수동형 광가입자망

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361688A1 (fr) * 2002-05-06 2003-11-12 Alcatel Alsthom Compagnie Generale D'electricite Procédé de transmission protégée sur un réseau à multiplexage spectral
CN1642060A (zh) * 2004-01-05 2005-07-20 华为技术有限公司 波分复用传输系统及传输通道的保护方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2051442A4 *

Also Published As

Publication number Publication date
ES2439243T3 (es) 2014-01-22
EP2051442B1 (en) 2013-09-11
CN101317374B (zh) 2011-02-02
CN101317374A (zh) 2008-12-03
EP2051442A1 (en) 2009-04-22
ES2439243T9 (es) 2014-03-17
EP2051442A4 (en) 2009-11-04
EP2051442B9 (en) 2014-02-26
US20090169200A1 (en) 2009-07-02
CN1968141A (zh) 2007-05-23
CN1968141B (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
WO2008019608A1 (fr) Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde
JP3799037B2 (ja) 切替型メディア変換器とこれを含む上下向同一波長のリング型wdmponシステム
CA2254606C (en) Ring network for sharing protection resource by working communication paths
CN1848709B (zh) 实现保护倒换的无源光网络系统及保护倒换方法
EP1161014A1 (en) Autoprotected optical communication ring network
WO2006116895A1 (en) Passive optical network system based on wavelength protection and protecting backup method thereof
CN101321031B (zh) 一种波分复用环网中的共享保护方法及系统
CN101848054B (zh) 具有自愈功能的波分复用无源光网络实现广播功能的系统和方法
JP2002510441A (ja) 異質光通信ネットワークの動作、保護、及び回復方法及び装置
JP2005033802A (ja) 自己治癒波長分割多重方式受動型光加入者網
WO2005101712A1 (fr) Appareil assurant la protection partagee d'un canal optique dans un systeme de multiplexage en longueur d'onde et procede connexe
CA2394599A1 (en) Four-fiber ring optical cross-connect system using 4x4 switch matrices
CN104868968B (zh) 用于波分接入保护环的基于监控波长的波分接入保护方法
JP2007124422A (ja) 光リングネットワーク装置
US20020105693A1 (en) Optical transmission unit and system
KR100594095B1 (ko) 양방향 파장분할 다중방식 애드/드롭 자기치유 허브형환형망
CN105049112B (zh) 基于监控波长的波分接入保护环
JP3475756B2 (ja) 通信ネットワーク、通信ネットワーク・ノード装置、及び、障害回復方式
JP2000078176A (ja) 通信ネットワ―ク及び通信ネットワ―ク・ノ―ド装置
JP3551115B2 (ja) 通信ネットワークノード
JP2004254339A (ja) 通信ネットワーク及び通信ネットワーク・ノード装置
JP3399901B2 (ja) 光伝送ネットワークシステム
JP2002009803A (ja) 通信ネットワーク、通信ネットワーク・ノード装置、及び、障害回復方式
JP3351365B2 (ja) 通信ネットワーク、通信ノード、及び、障害回復方法
JP3292178B2 (ja) 光通信ネットワーク装置と光伝送方式と光通信ネットワーク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000325.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007785383

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU