WO2008018431A1 - Burner - Google Patents

Burner Download PDF

Info

Publication number
WO2008018431A1
WO2008018431A1 PCT/JP2007/065402 JP2007065402W WO2008018431A1 WO 2008018431 A1 WO2008018431 A1 WO 2008018431A1 JP 2007065402 W JP2007065402 W JP 2007065402W WO 2008018431 A1 WO2008018431 A1 WO 2008018431A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fuel
fluid
combustion air
combustion
plate
Prior art date
Application number
PCT/JP2007/065402
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Nakagawa
Naohiko Matsuda
Katsuki Yagi
Shigeru Nojima
Akira Goto
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd., Nippon Oil Corporation filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA002656194A priority Critical patent/CA2656194A1/en
Priority to US12/373,008 priority patent/US20090291401A1/en
Publication of WO2008018431A1 publication Critical patent/WO2008018431A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/106Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet
    • F23D11/107Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet at least one of both being subjected to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/12Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour characterised by the shape or arrangement of the outlets from the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • B05B7/28Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid
    • B05B7/30Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device in which one liquid or other fluent material is fed or drawn through an orifice into a stream of a carrying fluid the first liquid or other fluent material being fed by gravity, or sucked into the carrying fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/404Flame tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel

Definitions

  • the present invention relates to a burner and is useful when applied to, for example, a two-fluid spray burner that burns liquid fuel in a state of being atomized with an atomizing gas.
  • a two-fluid spray panner burns liquid fuel in an atomized state with an atomizing gas, and is used, for example, as a heat source for a reformer of a fuel cell power generation system.
  • the reformer uses the heat of the flue gas generated by the combustion of the two-fluid spray panner to reform the reforming fuel such as methane gas or kerosene by steam reforming, thereby improving the reformed gas (hydrogen-rich gas).
  • the reformed gas is supplied to the fuel cell as a power generation fuel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-224592
  • the present invention can generate a large amount of combustion exhaust gas with a simple configuration, and there is no risk of generating unburned gas or misfire, and further shortening the flame. It is an object to provide a burner such as a two-fluid spraying burner that can make the flow distribution of combustion exhaust gas uniform.
  • the first aspect of the invention to solve the above problem is that a fuel (gaseous fuel, liquid fuel, or liquid fuel and atomized fuel) from a fuel injection nozzle of a fuel injector to a combustion space below the fuel injection nozzle.
  • a fuel gaseous fuel, liquid fuel, or liquid fuel and atomized fuel
  • a shielding plate that partitions the combustion air flow path and the combustion space portion
  • a combustion air circulation hole provided on the outer peripheral side of the shielding plate
  • Combustion air that has flowed downward through the combustion air flow path is blocked by the shielding plate and guided to the outer peripheral side of the shielding plate, thereby being moved away from the fuel injection nozzle, and the combustion air flow It is characterized by being configured to flow through the hole and flow into the combustion space.
  • the burner of the second invention is the burner of the first invention
  • a combustion air supply delay cylinder extending downward from the lower surface of the shielding plate is provided, and the other combustion air flow in the cylinder that communicates with the combustion air circulation hole between the cylinder and the outer Pana cylinder.
  • the combustion air that has passed through the combustion air circulation hole flows downward into the other combustion air flow path, and then flows into the combustion space from the lower end of the other combustion air flow path. It is characterized by having a configuration.
  • the burner of the third invention is a burner of the second invention
  • One or a plurality of stagnation prevention cylinders extending downward from the lower surface of the shielding plate are provided inside the combustion air supply delay cylinder.
  • the burner of the fourth invention is any one of the first to third inventions, A plurality of other combustion air circulation holes are formed in the shielding plate inside the combustion air circulation holes! /.
  • the burner of the fifth invention is the burner of any of the first to fourth inventions.
  • the fuel injector is for injecting liquid fuel from the fuel injection nozzle, and a cylindrical gaseous fuel flow path is formed between the fuel injector and a gaseous fuel supply pipe surrounding the fuel injector.
  • the gaseous fuel flows through the gaseous fuel flow path downward, and is injected from the lower end of the gaseous fuel flow path into the combustion space and burned.
  • the burner of the sixth invention is any one of the first to fifth inventions.
  • a diaphragm plate having a through hole in the center is provided in the combustion space,
  • Combustion air that has flowed downward through the combustion space is guided to the center of the combustion space by the throttle plate and passes through the flow hole of the throttle plate.
  • the burner of the seventh invention is the burner of the sixth invention.
  • a swirl spring is provided on the upper side of the diaphragm plate,
  • the flow of the combustion air passing through the flow hole of the throttle plate is configured to be a swirl flow by the swirl spring.
  • the eighth aspect of the invention is the same as the sixth or seventh aspect of the invention.
  • a perforated plate having a through hole in the center is provided in the combustion space above the throttle plate, and a part of the combustion air that has flowed downward through the combustion space is transferred by the perforated plate. It is characterized in that it is guided to the central part of the combustion space part and passes through the flow hole of the perforated plate.
  • any of the first to eighth inventions is a two-fluid spray panner
  • the configuration of the two-fluid spray panner may be as follows.
  • the first configuration is a two-fluid spraying panner in which any of the first to eighth inventions causes the liquid fuel to be atomized and burned with the atomizing gas.
  • a cylindrical side portion and a bottom portion provided at the lower end of the side portion, and stores the liquid fuel supplied from the liquid fuel supply pipe and is positioned below the liquid level of the stored liquid fuel.
  • the A liquid fuel tank configured to discharge the stored liquid fuel from one or a plurality of liquid fuel outflow holes opened in the side portion or the bottom portion;
  • the liquid fuel that has flowed out of the liquid fuel outflow hole of the liquid fuel tank is atomized with the atomizing gas and burned.
  • the two-fluid spraying panner of the second configuration is the two-fluid spraying panner of the first configuration.
  • the liquid fuel outflow hole is formed at the bottom of the liquid fuel tank, and is a cylindrical atomizing gas flow path formed between a side portion of the liquid fuel tank and an outer cylinder surrounding the side portion.
  • the nozzle body includes a two-fluid merging space portion provided at a lower end portion of the outer cylinder, having a lower nozzle main body portion and an upper atomizing gas introduction portion, and located below the liquid fuel outflow hole. Formed in the central part of the gas atomizing part and the atomizing gas introduction part, one or a plurality of spray holes communicating with the two-fluid merging space part are formed in the nozzle body part, and the atomizing gas flow path And a two-fluid spray nozzle having a configuration in which one or a plurality of grooves communicating with the two-fluid merging space portion are formed in the atomizing gas introduction portion,
  • the liquid fuel tank is installed on the atomizing gas introduction part
  • the two-fluid spray burner having the third configuration is the two-fluid spray burner having the second configuration
  • a tapered surface portion is formed on the lower surface of the bottom portion of the liquid fuel tank, and a tapered surface portion is also formed on the upper surface of the atomizing gas introduction portion, and the liquid fuel tank includes the liquid fuel tank.
  • the upper surface of the atomizing gas introducing portion is It is characterized by being installed in
  • the four-fluid spray burner of the fourth configuration is the two-fluid spray burner of the first configuration.
  • the liquid fuel outflow hole is formed at the bottom of the liquid fuel tank, and is a cylindrical atomizing gas flow path formed between a side portion of the liquid fuel tank and an outer cylinder surrounding the side portion.
  • One or a plurality of spray holes that are provided at the lower end of the outer cylinder and that form a two-fluid merge space portion located below the liquid fuel outflow hole in the center and communicate with the two-fluid merge space portion
  • a two-fluid spray nozzle configured to form
  • a tapered surface portion is formed on the lower surface of the bottom portion of the liquid fuel tank, and a tapered surface portion is also formed on the upper surface of the two-fluid spray nozzle, and the liquid fuel tank is the same as the liquid fuel tank.
  • the tapered surface portion is installed on the two-fluid spray nozzle in a state where the tapered surface portion is in contact with the tapered surface portion of the two-fluid spray nozzle.
  • the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space flows downward through the atomizing gas flow path and then flows through the groove at the bottom of the liquid fuel tank.
  • the atomizing gas guided to the fluid merging space and the two fluid merging space are merged and then sprayed from the spray hole together with the atomizing gas.
  • the two-fluid spray burner of the fifth configuration is the two-fluid spray burner of any of the second to fourth configurations
  • the two-fluid merging space is circular when viewed from above.
  • the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is formed so as to be along the tangential direction of the circumference of the two-fluid merge space part in a top view.
  • the two-fluid spraying panner of the sixth configuration is the two-fluid spraying panner of any of the second to fourth configurations.
  • the two-fluid merging space is circular when viewed from above.
  • the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is formed so as to be along the radial direction of the two-fluid merging space part in a top view.
  • the two-fluid spraying burner of the seventh configuration is the same as the groove of the atomizing gas introduction section or the liquid fuel tank in the two-fluid spraying burner of the fifth or sixth configuration.
  • a plurality of grooves at the bottom of the two-fluid merging space are formed so as to have a rotationally symmetrical positional relationship around the central axis of the two-fluid merging space.
  • the two-fluid spraying panner of the eighth configuration is the two-fluid spraying panner of the second to seventh inventions, comprising a pressing member that presses the liquid fuel tank downward. The bottom part of the tank was pressed against the atomizing air introducing part of the two-fluid spray nozzle,
  • the bottom of the liquid fuel tank may be pressed against the two-fluid spray nozzle so as to be in close contact with each other,
  • the nine-component two-fluid spray burner is the first-structure two-fluid spray burner
  • the liquid fuel outflow hole is opened at the bottom of the liquid fuel tank, and is a cylindrical first atomization formed between a side portion of the liquid fuel tank and an outer cylinder surrounding the side portion.
  • One or a plurality of spray holes that are provided at the lower end of the outer cylinder and that form a two-fluid merge space portion located below the liquid fuel outflow hole in the center and communicate with the two-fluid merge space portion
  • a two-fluid spray nozzle configured to form
  • a tapered surface portion is formed on the upper surface of the two-fluid spray nozzle
  • a tapered surface portion is also formed on the lower surface of the bottom portion of the liquid fuel tank,
  • a plurality of support portions project from the side portion of the liquid fuel tank, and A tapered surface is also formed on the bottom surface,
  • the liquid fuel tank is installed on the two-fluid spray nozzle in a state in which the tapered surface portion of the support portion is in contact with the taper surface portion of the two-fluid spray nozzle.
  • a gap secured by the support portion between the tapered surface portion of the liquid fuel tank and the tapered surface portion of the two-fluid spray nozzle is used as a second atomizing gas flow path.
  • the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space portion flows downward through the first atomizing gas flow path, and then the atomizing gas flow between the support portions Passing through the second atomizing gas flow path and flowing into the two-fluid merging space portion and the two-fluid merging space portion and then joining the atomizing gas. It is characterized in that the gas is sprayed from the spray hole together with the gas.
  • the two-fluid spray burner of the tenth configuration is the two-fluid spray burner of any of the second to ninth configurations,
  • the two-fluid merging space portion has an inverted conical shape, and the spray hole is formed at the apex position of the inverted conical space portion.
  • the two-fluid spray burner of the eleventh configuration is the two-fluid spray burner of any of the first to tenth configurations
  • a tip portion of the liquid fuel supply pipe is in contact with an inner peripheral surface of a side portion of the liquid fuel tank.
  • the combustion aerodynamic force flowing downward in the combustion air flow path is blocked by the shielding plate and guided to the outer peripheral side of the shielding plate. Since it is configured to flow away from the fuel injection nozzle and pass through the combustion air circulation hole and flow into the combustion space portion, only a part of the combustion air is injected from the fuel injection nozzle in the combustion space portion.
  • the fuel is mixed with fuel and used for combustion of the fuel, and the remainder of the combustion air flows further downward and is mixed with the combustion exhaust gas generated by the combustion.
  • the power to make it S it is possible to realize a pan such as a two-fluid spraying panner that can generate a large amount of combustion exhaust gas with a simple configuration and that does not cause unburned gas generation or misfire.
  • the combustion air supply delay cylinder extending downward from the lower surface of the shielding plate is provided, and the combustion air flow is provided between the cylinder and the outer casing cylinder.
  • the other combustion air flow path in the form of a cylinder communicating with the hole is formed, and after the combustion air that has passed through the combustion air flow hole flows downward through the other combustion air flow path, the other combustion air flow path is formed. Since it is configured to flow into the combustion space from the lower end of the combustion air flow path, a part of the combustion air can be delayed from being supplied to the fuel injected from the fuel injection nozzle. That is, the position where a part of the combustion air is supplied to the fuel can be moved downward from the shielding plate.
  • the position of the flame also moves away from the shielding plate, and the force S can be prevented from adhering to the lower surface of the shielding plate.
  • the effect of moving the position where a part of the combustion air is supplied to the fuel away from the shielding plate is the force that can be obtained only by providing the shielding plate as described above.
  • the shield plate cannot be made too large, and the distance from the fuel injection nozzle to the combustion air circulation hole is sufficient. If this is not possible, the amount of combustion air supplied to the fuel may be too large and the flame may be overcooled.
  • a cylinder for delaying the supply of combustion air is provided as in the second aspect of the invention, the position where a part of the combustion air is supplied to the fuel can be determined. At this time, it is possible to reduce the amount of a part of the combustion air supplied to the fuel to an appropriate amount as long as it can be kept away from the shielding plate. Therefore, from this point of view, it is effective to provide the cylinder as in the second invention. By providing the cylinder, the shielding plate can be made small and the size of the panner can be reduced.
  • the third aspect of the invention by providing one or a plurality of stagnation prevention cylinders extending downward from the lower surface of the shielding plate inside the combustion air supply delay cylinder, It is possible to prevent stagnation (convection) of fuel near the lower surface of the shielding plate with the stagnation prevention cylinder. For this reason, it is possible to prevent the fuel stagnating near the lower surface of the shielding plate from igniting and soot from adhering to the lower surface of the shielding plate.
  • a part of the combustion air is formed in the shielding plate by forming a plurality of other combustion air circulation holes inside the combustion air circulation hole. Since these other combustion air circulation holes also pass, it is possible to suppress the occurrence of a stagnation flow of combustion air near the bottom surface of the shielding plate due to the flow of the combustion air. It is possible to suppress the adhesion of soot.
  • the fuel injection nozzle can be cooled by being easily overheated by the radiant heat of the flame. If you can, you will get a good effect.
  • the fuel injector injects liquid fuel from the fuel injection nozzle, a gaseous fuel supply pipe surrounding the fuel injector, the fuel injector, A cylindrical gaseous fuel channel is formed between the gas fuel channel, the gaseous fuel flows downward in the gaseous fuel channel, and is injected from the lower end of the gaseous fuel channel into the combustion space and burned.
  • the gaseous fuel injected from the cylindrical gaseous fuel flow path becomes uniform in the circumferential direction, so that the combustibility is improved. For example, the amount of liquid fuel supplied is small! Demonstrate the flame holding effect of fuel.
  • a throttle plate having a through hole in the center is provided in the combustion space, and the combustion air that has flowed downward through the combustion space is supplied to the throttle plate. Therefore, mixing with the combustion air and unburned gas is promoted because it is characterized in that it is guided to the center of the combustion space and passed through the flow hole of the throttle plate. as a result, Since combustion of unburned gas is promoted, the fuel can be burned completely and the flame can be shortened. In addition, since fluid such as combustion air is once squeezed by the flow hole of the squeezing plate, the fluid flow distribution is made uniform in the circumferential direction. For this reason, the furnace and the like can be uniformly heated in the circumferential direction by the combustion exhaust gas.
  • the swirl spring is provided above the throttle plate, and the flow of the combustion air passing through the flow hole of the throttle plate is swirled by the swirl spring. Therefore, the combustion air that has passed through the flow hole of the throttle plate spreads in the horizontal direction by swirling. As a result, the pressure in the center of the flow of combustion air decreases below the flow hole, and thus a circulation flow of combustion air that flows into the center from the outside is generated. Accordingly, the mixing of the combustion air and the unburned gas is further promoted, and the combustion of the unburned gas is further promoted, so that the fuel is more easily burned and the flame is further shortened.
  • a perforated plate having a flow hole in the center is provided in the combustion space above the throttle plate, and the combustion that has flowed downward through the combustion space Since a part of the air for use is guided to the central part of the combustion space by the perforated plate and passes through the through holes of the perforated plate, the combustion air and the unburned gas Since the mixing is further promoted and the combustion of the unburned gas is further promoted, the fuel is more easily combusted and the flame is further shortened.
  • the two-fluid spraying panner of the first configuration has a cylindrical side portion and a bottom portion provided at the lower end of this side portion, and stores the liquid fuel supplied from the liquid fuel supply pipe.
  • a liquid body configured to cause the stored liquid fuel to flow out from one or a plurality of liquid fuel outflow holes which are located below the liquid level of the stored liquid fuel and opened in the side portion or the bottom portion.
  • a fuel tank is provided, and the liquid fuel flowing out from the liquid fuel outflow hole of the liquid fuel tank is atomized with the atomizing gas and burned, so that the liquid fuel is transferred from the liquid fuel supply pipe to the liquid fuel tank.
  • the liquid fuel stored in the liquid fuel tank continuously flows out from the liquid fuel outflow hole of the liquid fuel tank. That is, even when liquid fuel is intermittently supplied from the liquid fuel supply pipe to the liquid fuel tank due to a decrease in the supply flow rate of the pump of the liquid fuel supply system, The liquid level of the liquid fuel stored in the tank slightly fluctuates up and down, and the outflow rate of the liquid fuel from the outflow hole of the liquid fuel slightly fluctuates. . For this reason, even when the liquid fuel supply flow rate is low, stable supply of liquid fuel becomes possible, and it becomes easy to establish stable combustion, and there is no possibility of causing unburned exhaust gas and misfire.
  • the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space flows downward in the atomizing gas flow path.
  • the gas is introduced together with the atomizing gas.
  • the liquid fuel is sprayed from the spray hole, so the liquid fuel is well mixed in the two-fluid merging space with the atomizing gas whose flow velocity is increased in the groove (the velocity component in the horizontal direction has increased), and the two-fluid spray nozzle It will be injected from the spray hole. For this reason, compared with the case where the two-fluid merging space and the groove are not provided, the spread angle of the liquid fuel spray is increased and the liquid fuel is surely atomized, so that the combustibility of the liquid fuel is improved.
  • the liquid fuel tank is in a state where the tapered surface portion of the liquid fuel tank is in contact with the tapered surface portion of the atomizing gas introduction portion. Since it is installed on the atomizing gas introduction section, it is easy to align the central axes of the liquid fuel tank and the two-fluid spray nozzle. Therefore, the width of the atomizing gas flow path where the liquid fuel tank is offset is made uniform in the circumferential direction, and the flow of the atomizing gas in the atomizing gas flow path is made uniform in the circumferential direction. Therefore, the symmetry of the spray of the liquid fuel from the spray hole of the two-fluid spray nozzle (that is, the symmetry of the flame) can be ensured.
  • the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space flows downward in the atomizing gas flow path.
  • the atomizing gas is combined with the atomizing gas.
  • the liquid fuel tank is installed on the two-fluid spray nozzle in a state where the tapered surface portion of the liquid fuel tank is in contact with the tapered surface portion of the two-fluid spray nozzle. Therefore, it is easy to align the central axis of the liquid fuel tank and the two-fluid spray nozzle. Therefore, it is possible to make the width of the atomizing gas flow path that the liquid fuel tank is offset uniform in the circumferential direction, and make the flow of the atomizing gas in the atomizing gas flow path uniform in the circumferential direction. Therefore, it is possible to secure the symmetry of the spray of liquid fuel from the spray hole of the two-fluid spray nozzle (ie, the symmetry of the flame).
  • the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank has a bottom surface and the groove of the two-fluid merge space part.
  • the atomizing gas is swirled in the two-fluid merge space and mixed with the liquid fuel. Ensure that they are mixed. For this reason, the liquid fuel injected from the spray hole of the two-fluid spray nozzle can be atomized more reliably, and the combustibility of the liquid fuel can be further improved.
  • the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is along the radial direction of the two-fluid merge space part in a top view.
  • the atomizing gas collides with the liquid fuel and is mixed with the liquid fuel, so that the liquid fuel and the atomizing gas are more reliably mixed. .
  • the liquid fuel injected from the spray hole of the two-fluid spray nozzle can be atomized more reliably, and the combustibility of the liquid fuel can be further improved.
  • the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is rotationally symmetric about the central axis of the two-fluid merge space part.
  • the liquid fuel sprayed from the spray holes of the two-fluid spray nozzle is uniformly distributed in the circumferential direction to improve the combustibility of the liquid fuel. That's the power S.
  • the liquid fuel tank is pressed downward.
  • the bottom portion of the liquid fuel tank is pressed against the atomizing air introducing portion of the two-fluid spray nozzle, or the bottom portion of the liquid fuel tank is Since it is configured to be pressed against and in close contact with the fluid spray nozzle, the bottom surface of the bottom of the fuel tank and the top surface of the atomizing gas introduction section are in close contact, and the tapered surface of the bottom of the fuel tank and the atomizing surface It is possible to prevent a gap from being formed between these contact surfaces by closely contacting the tapered surface portion of the gas introduction portion or by closely contacting the tapered surface portion of the liquid fuel tank and the tapered surface portion of the two-fluid spray nozzle. . For this reason, the atomizing gas is prevented from flowing through the portion other than the groove, and the force S that sufficiently exerts the effect of wide-area spraying by the groove is used.
  • the liquid fuel that has flowed out of the liquid fuel outflow hole and flowed into the two-fluid merging space portion moves down the first atomizing gas flow path.
  • the liquid fuel is mixed with the atomizing gas in the two-fluid merging space portion by being configured to be sprayed from the spray hole together with the atomizing gas, It will be sprayed from the spray hole of the two-fluid spray nozzle. For this reason, compared with the case where the two-fluid merging space portion is not provided, the spread angle of the spray of the liquid fuel is increased and the liquid fuel is surely atomized, so that the combustibility of the liquid fuel is improved.
  • the two-fluid merging space portion has an inverted conical shape, and the spray hole is formed at the apex position of the inverted conical space portion.
  • the mixing of the liquid fuel and the atomizing gas in the two-fluid merging space can be performed more reliably. For this reason, the liquid fuel sprayed from the spray hole can be atomized more reliably and the combustibility of the liquid fuel can be further improved.
  • the tip of the liquid fuel supply pipe is in contact with the inner peripheral surface of the side part of the liquid fuel tank! Even when the amount of liquid fuel flowing out from the pipe is small, the liquid fuel flows down along the inner peripheral surface, so that the outflow of liquid fuel from the liquid fuel outflow hole can be further stabilized.
  • the liquid fuel drops in a granular form, the liquid level of the liquid fuel stored in the liquid fuel tank
  • the liquid fuel outflow hole may be temporarily exposed and the liquid fuel outflow may be interrupted.
  • the liquid fuel travels along the inner surface of the liquid fuel tank. If it flows down, generation
  • FIG. 1 is a longitudinal sectional view showing a configuration of a two-fluid spray panner according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 (a) is an enlarged longitudinal sectional view showing a two-fluid sprayer provided in the two-fluid spraying panner of FIG. 1, and (b) is a transverse sectional view taken along the line CC in (a). is there.
  • (a) is an enlarged longitudinal sectional view showing the lower part of the two-fluid sprayer, and (b) is a top view showing the two-fluid spray nozzle extracted from the two-fluid sprayer ((a) In the D direction arrow view)
  • (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 2 of the present invention
  • (b) is a diagram of the two-fluid sprayer provided in the two-fluid sprayer.
  • FIG. 4 is a top view (a view in the arrow direction of (a)) showing a fluid spray nozzle extracted.
  • (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 3 of the present invention, and (b) is the two-part sprayer provided in the two-fluid sprayer. It is a top view (F direction arrow view of (a)) which extracts and shows a fluid spray nozzle.
  • FIG. 8 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spraying pan according to Embodiment 4 of the present invention (longitudinal view taken along line G-G in (b))
  • (B) is a bottom view of the liquid fuel tank provided in the two-fluid sprayer.
  • (C) is a view from the direction of arrow in (a)
  • (c) is a view from the direction of arrow I in (b).
  • Figure (d) is a cross-sectional view taken along line JJ in (a).
  • (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 5 of the present invention (cross-sectional view taken along line KK in (b)),
  • (b) is a bottom view extracted from the liquid fuel tank provided in the two-fluid sprayer (a view in the direction of the arrow L in (a)), and
  • (c) is a cross-sectional view in the direction of the arrow ⁇ - ⁇ in FIG.
  • FIG. 10 (a) is a two-fluid jet in a two-fluid spray pan according to Embodiment 6 of the present invention.
  • FIG. 9B is a longitudinal sectional view showing the configuration of the lower part of the atomizer, and
  • FIG. 11B is a transverse sectional view taken along line N—N in FIG. 11A.
  • Two-fluid spray according to Embodiment 7 of the present invention It is a longitudinal cross-sectional view which shows the structure of a panner.
  • FIG. 12 is a cross-sectional view taken along line OO in FIG.
  • FIG. 13 (a) is a diagram showing a state in which liquid fuel intermittently flows out from the tip of a liquid fuel supply pipe in a conventional two-fluid spraying panner, and (b) is a diagram of liquid fuel in a conventional two-fluid spraying panner. It is a figure which shows a mode that a supply flow volume is fluctuate
  • FIG. 14 (a) is a longitudinal sectional view showing a configuration of a two-fluid spraying pan according to Embodiment 8 of the present invention
  • FIG. 14 (b) is a cross-sectional view taken along the line PP in FIG. 14 (a).
  • FIG. 16 (a) is a longitudinal sectional view showing a configuration of a two-fluid spraying pan according to Embodiment 9 of the present invention, (b) is a cross-sectional view taken along line Q-Q in (a), (c ) Is a cross-sectional view corresponding to (b), and is a view showing another structural example of the swing spring.
  • FIG. 17] (a) is a longitudinal sectional view showing the configuration of a two-fluid spraying pan according to Embodiment 10 of the present invention
  • FIG. 17 (b) is a cross-sectional view taken along line RR in FIG. 17 (a). Surface.
  • FIG. 18 is a system diagram showing an overview of a fuel cell power generation system according to Embodiment 11 of the present invention.
  • Two-fluid spray panner 12 Two-fluid sprayer, 13 Combustion space, 14 Gas fuel flow path, 15 Combustion air flow path, 16 1st cylinder, 17 2nd cylinder, 18 plate, 19 Liquid fuel tank, 20 side Part, 20a inner peripheral surface, 20b outer peripheral surface, 21 bottom, 21a inner surface (upper surface), 21b outer surface (lower surface), 21b-1 outer part, 21b-2 inner part,
  • FIG. 1 is a longitudinal sectional view showing the configuration of a two-fluid spraying panner according to Embodiment 1 of the present invention
  • FIG. 2 is a transverse sectional view taken along line A—A in FIG. 1
  • FIG. 3 is B in FIG. It is a cross-sectional view taken along line B.
  • Fig. 4 (a) is an enlarged vertical cross-sectional view of the two-fluid sprayer provided in the two-fluid spray panner of Fig. 1
  • Fig. 4 (b) is a cross-sectional view taken along the CC line in Fig. 4 (a).
  • FIG. 5 (a) is an enlarged longitudinal sectional view showing a lower part of the two-fluid sprayer
  • FIG. 5 (b) is a top view showing the two-fluid spray nozzle provided in the two-fluid sprayer.
  • Fig. 5 (a) arrow D direction).
  • the two-fluid spray panner 11 has a panner outer cylinder 48.
  • a two-fluid sprayer 12 is disposed in the upper central portion of the PANA outer cylinder 48, and the lower side of the two-fluid sprayer 12 is a combustion space 13.
  • a gaseous fuel supply passage 14 is formed around the two-fluid sprayer 12, and a combustion air supply passage 15 is formed around the gaseous fuel supply passage 14.
  • the combustion air supply passage 15 and the combustion space 13 are partitioned by a plate 18 as a shield, and a first cylinder as a cylinder for delaying supply of combustion air is formed on the lower surface of the plate 18. 16 and a second cylinder 17 as a cylinder for preventing stagnation are provided.
  • the configuration of the two-fluid sprayer 12 will be described in detail based on FIG. 4 and FIG. Two fluids
  • the atomizer 12 injects two fluids, ie, liquid fuel and atomizing gas (atomizing air), that is, the liquid fuel is atomized with the atomizing gas and injected.
  • the two-fluid sprayer 12 includes a liquid fuel tank 19 therein.
  • the liquid fuel tank 19 has a structure having a cylindrical side portion (body portion) 20 and a bottom portion 21 provided at the lower end of the side portion 20.
  • Liquid fuel 24 for burner combustion is stored inside the liquid fuel tank 19, and a fine liquid fuel outflow hole 22 is opened at the center of the bottom 21 of the liquid fuel tank 19! / RU
  • the liquid fuel outflow hole 22 is located below the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19.
  • the liquid fuel 24 supplied from the liquid fuel supply pipe 25 is temporarily stored in the liquid fuel tank 19, and the stored liquid fuel 24 is supplied from the lower liquid fuel outflow hole 22 to the liquid fuel. It flows out of the tank 19.
  • the level of the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19 (the height from the inner surface 21a of the bottom 21 to the level 23) is such that the liquid fuel 24 passes through the liquid fuel outflow hole 22. This is the height at which a liquid column head (detailed later) corresponding to the pressure loss during distribution can be obtained.
  • the liquid fuel 24 for burning PANA for example, kerosene, heavy oil, alcohol, ether or the like can be used.
  • the liquid fuel supply pipe 25 has a tip end (lower end) 25 A inserted into the liquid fuel tank 19 from the upper end of the liquid fuel tank 19 downward and into the liquid fuel tank 19. V, placed above the liquid level 23 and in the middle!
  • the base end side of the liquid fuel supply pipe 25 is connected to a liquid fuel supply pump of a liquid fuel supply system (not shown).
  • the tip end portion 25 A of the liquid fuel supply pipe 25 may be brought into contact with the inner peripheral surface 20 a of the side portion 20 of the liquid fuel tank 19 as shown by a one-dot chain line in FIG.
  • the tip 25A of the liquid fuel supply pipe 25 is separated from the inner peripheral surface 20a of the liquid fuel tank 19 by force.
  • the tip 25A of the liquid fuel supply pipe 25 is in contact with the inner peripheral surface 20a of the liquid fuel tank 19, the liquid fuel 24 will flow down along the inner peripheral surface 20a. .
  • the liquid fuel tank 19 is disposed concentrically with the atomizer outer cylinder 27 in a cylindrical atomizer outer cylinder 27, and is formed between the side 20 of the liquid fuel tank 19 and the atomizer outer cylinder 27.
  • Space The portion is an atomizing air passage 28 as an atomizing gas passage.
  • An air inflow hole 29 is formed in the sprayer outer cylinder 27, and a tip portion 30 A of an atomizing air supply pipe 30 is connected to the air inflow hole 29.
  • the proximal end side of the atomizing air supply pipe 30 is connected to an air supply blower of an atomizing air supply system (not shown).
  • the two-fluid spray nozzle 38 is attached to the lower end 27A of the sprayer outer cylinder 27, and is a liquid fuel tank.
  • the two-fluid sprayer 12 has a configuration in which the liquid fuel tank 19 is interposed between the liquid fuel supply pipe 25 and the two-fluid spray nozzle 38 as a buffer unit for reducing fluctuations in the liquid fuel supply flow rate. ing.
  • the two-fluid spray nozzle 38 has a disk-like nozzle body 39 and an atomizing air introduction part 37 as an atomizing gas introduction part formed on the nozzle body 39.
  • the peripheral edge of the upper surface of the nozzle body 39 is brought into contact with the lower end surface of the atomizer outer cylinder 27, and the atomizing air introduction part 37 is fitted inside the lower end 27A of the atomizer outer cylinder 27. In the state, it is fixed to the lower end portion 27A of the sprayer outer cylinder 27 by fixing means such as welding.
  • the atomizing air introducing portion 37 is formed in an annular shape, and has a space portion 41 having a circular shape in plan view (top view) at the center thereof.
  • the nozzle body 39 has an inverted conical space (recess) 42 formed at the center thereof, and a fine spray hole 44 is formed at the center (vertical position of the inverted conical space 42). It has been.
  • the space part 41 of the atomizing air introduction part 37 and the space part 42 of the nozzle body part 39 are continuous, and these space parts 41, 42 constitute a two-fluid merge space part 43.
  • the two-fluid merging space 43 has a circular shape when viewed from above, and has a tapered structure that gradually decreases as the directional force is applied to the diameter 1S spray hole 44.
  • the atomizing air introduction section 37 has grooves (slits) 40 formed at two locations in the circumferential direction. These grooves 40 are of a swivel type, are along the tangential direction of the circumference of the two-fluid merge space 43 in the top view, and are the central axis of the two-fluid merge space 43 (in the illustrated example, the spray hole 44). (Center axis) is rotationally symmetrical (equally spaced in the circumferential direction).
  • the upper end portion 27B of the sprayer outer cylinder 27 is closed by a cap 31 as a closing member for preventing leakage of the atomizing air from the inside of the sprayer outer cylinder 27 to the outside.
  • the cap 31 is formed by screwing the screw portion 33 formed on the outer peripheral surface of the lower portion 31A with the screw portion 32 formed on the inner peripheral surface of the upper end portion 27B of the sprayer outer tube 27, thereby Up It is attached to the end 27B.
  • An O-ring 34 is interposed between the step portion 31B of the cap 31 and the upper end portion 27B of the sprayer outer cylinder 27 in order to reliably prevent the atomizing air from leaking.
  • the tip 25A of the liquid fuel supply pipe 25 passes through the cap 31, passes through the sprayer outer cylinder 27 (inside the coil spring 36), and is inserted into the liquid fuel tank 19 from the upper end of the liquid fuel tank 19. Yes.
  • a coil spring 36 as a pressing member is interposed between a washer 35 provided on the lower surface side of the cap 31 and a washer 26 provided on the upper end side of the liquid fuel tank 19.
  • the outer surface (lower surface) 21 b of the bottom portion 21 of the liquid fuel tank 19 is pressed against the upper surface 37 a of the atomizing air introducing portion 37.
  • the outer surface (lower surface) 21b of the bottom 21 that is in contact with the upper surface 37a of the two-fluid spray nozzle 38 (the atomizing air introducing portion 37) is in close contact, and the contact surfaces 21b and 37a are in close contact with each other. The gap is prevented from occurring.
  • a gap 45 is provided between the washer 26 and the liquid fuel supply pipe 25, and the inner space of the liquid fuel tank 19 and the sprayer outer cylinder outside the liquid fuel tank 19 are provided via the gap 45. It is in communication with 27 internal spaces. That is, the upper end of the liquid fuel tank 19 is open to the inner space of the sprayer outer cylinder 27, and the inner space of the liquid fuel tank 19 and the upper end (upstream portion) of the atomizing air flow path 28 are in communication. . For this reason, the pressure of the atomizing air 46 flowing into the atomizer outer cylinder 27 from the air inflow hole 29 and flowing into the atomizing air flow path 28 is the liquid fuel 24 stored in the liquid fuel tank 19. It also acts on the liquid level 23.
  • the liquid level 23 rises when the liquid fuel 24 flows out of the tip 25A of the liquid fuel supply pipe 25.
  • the phenomenon that the liquid level 23 decreases is repeated, and the flow rate of the liquid fuel 24 flowing out of the liquid fuel outflow hole 22 slightly changes in response to this liquid level fluctuation. Is slightly smaller than the conventional flow rate fluctuation.
  • the atomizing air 46 flows into the sprayer outer cylinder 27 from the air inflow hole 29 and flows downward in the atomizing air flow path 28 between the liquid fuel tank 19 and the sprayer outer cylinder 27. Thereafter, the atomizing air 46 is introduced into the two-fluid merging space 43 by increasing the flow velocity by flowing through the groove 40 of the atomizing air introducing portion 37 in the two-fluid spray nozzle 38. It turns in the space 43 and merges (mixes) with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19. As a result, the liquid fuel 24 and the atomizing air 46 are mixed well, and the liquid fuel 24 is atomized by the atomizing air 46 and the atomizing air 46 together with the atomizing air 46. Then, it is injected into the combustion space 13 (flame) and burned. The initial ignition of the atomized liquid fuel 24 is performed by the spark plug 54.
  • the liquid column head H of the liquid fuel 24 stored in the liquid fuel tank 19 will be described in detail.
  • the liquid column head ⁇ has the liquid fuel 24 flowing through the liquid fuel outflow hole 22.
  • Pressure loss ⁇ P (hole) (hole)
  • kinetic energy E of liquid fuel 24 flowing out from liquid fuel outflow hole 22 and pressure loss ⁇ Pair of atomizing air 49 in groove 40 etc. Find the power S you want.
  • Liquid column head ⁇ Pressure loss ⁇ ⁇ (hole) + Kinetic energy ⁇ —Pressure loss ⁇ Pair Kinetic energy E is obtained by the following formula: Flow velocity V of liquid fuel 24, density p and force of liquid fuel 24, etc. Can do.
  • the height of the liquid level 23 of the stored liquid fuel 24 in the liquid fuel tank 19 varies depending on the flow rate of the liquid fuel 24 supplied to the liquid fuel tank 19 through the liquid fuel supply pipe 25. That is, when the output of the fuel supply pump is adjusted to increase the supply flow rate of the liquid fuel 24, the liquid level 23 becomes higher, and when the supply flow rate of the liquid fuel 24 is reduced, the liquid level 23 becomes lower. Therefore, the height of the liquid fuel tank 19 is set to a height corresponding to the change in the height of the liquid level 23 according to the predetermined range of the supply flow rate of the liquid fuel 24. [0069]
  • the liquid fuel 24 is sprayed in a conical shape from the spray hole 44 as illustrated in FIG. 5 (a).
  • the spread (spray angle) of the spray at this time is the cross-sectional area of the groove 40 (that is, the groove). This is determined by the flow velocity of the atomizing air 46 when passing through 40) and the size of the spray hole 44 (ie, hole diameter).
  • a cylindrical gaseous fuel supply pipe 47 is provided so as to surround the periphery of the sprayer outer cylinder 27.
  • the gaseous fuel supply pipe 47 is provided concentrically with the nebulizer outer cylinder 27, and a cylindrical space between the gaseous fuel supply pipe 47 and the atomizer outer cylinder 27 serves as the gaseous fuel flow path 14.
  • the gas fuel 49 for burner supplied from the gaseous fuel supply system flows downward through the gaseous fuel flow path 14, and is injected from the lower end of the gaseous fuel flow path 14 into the combustion space 13 and burned.
  • the liquid fuel 24 and the gaseous fuel 49 may be burned separately or simultaneously.
  • methane, ethane, propane, butane, dimethyl ether, hydrogen, etc. can be used as the gaseous fuel 49 for burner combustion.
  • the remaining reformed gas that is not used for power generation but returned to the two-fluid spray burner 11 can also be used (see Figure 13).
  • the Panna outer cylinder 48 has a cylindrical shape and surrounds the periphery of the gaseous fuel supply pipe 47.
  • the Pana outer cylinder 48 and the gaseous fuel supply pipe 47 are concentrically provided, and a cylindrical space between the Pana outer cylinder 48 and the gaseous fuel supply pipe 47 is connected to the first combustion air flow path 15. It has become. Therefore, the combustion air 50 supplied from the air supply blower of the combustion air supply system flows downward in the combustion air flow path 15.
  • a plate 18 is provided between the lower end portion of the combustion air flow path 15, that is, between the lower end portion of the gaseous fuel supply pipe 47 and the lower end portion of the PANA outer cylinder 48.
  • the plate 18 is an annular plate and partitions the combustion air flow path 15 and the combustion space 13.
  • the force S in which the plate 18 is installed at substantially the same height as the two-fluid spray nozzle 38 is not limited thereto, and may be provided at a position higher than the two-fluid spray nozzle 38, for example. .
  • the first cylinder 16 and the second cylinder 17 need to be longer than the illustrated example, so that the plate 18 is as high as the two-fluid spray nozzle 38 as illustrated. 1S Most reasonable and reasonable.
  • the inner peripheral surface of the plate 18 is fixed to the outer peripheral surface of the gaseous fuel supply pipe 47 by a fixing means such as welding.
  • a plurality of projections 51 (four in the illustrated example) 51 are formed on the outer peripheral surface of the plate 18, and the tip surfaces of these projections 51 are fixed to the inner peripheral surface of the PANA outer cylinder 48 by welding or the like. It is fixed by means. For this reason, the force that is blocked by the plate 18 from the gaseous fuel supply pipe 47 to the vicinity of the Panna outer cylinder 48 is formed on the outer periphery of the plate 18 by the protrusion 51 and the inner surface of the burner outer cylinder 48 by the projection 51. Clearances are formed between the peripheral surface 48a, and these clearances serve as combustion air circulation holes 52. That is, the combustion air flow path 15 and the combustion space portion 13 are communicated with each other through these combustion air circulation holes 52.
  • the combustion air 50 flows downward through the combustion air flow path 15, and then is blocked by the plate 18 and guided to the outer peripheral side of the plate 18, whereby the two-fluid spray nozzle 38 (spray hole 4 4), the air flows into the combustion space 13 through the combustion air circulation hole 52.
  • an outer first cylinder 16 extending downward and an inner second cylinder 17 extending downward are fixed to the lower surface of the plate 18 by fixing means such as welding.
  • the first cylinder 16 is located inside the combustion air circulation hole 52 and is arranged concentrically with the PANA outer cylinder 48.
  • a cylindrical space force between the PANA outer cylinder 48 and the first cylinder 16 is a second combustion air flow path 53.
  • the combustion air 50 that has flowed downward through the first combustion air passage 15 and passed through the combustion air circulation hole 52 further flows downward through the second combustion air passage 53. .
  • the combustion air 50 flows out from the lower end of the combustion air passage 53 and spreads throughout the combustion space 13. Therefore, a part of the combustion air 50 flowing out from the combustion air flow channel 53 (for example, about 30% of the whole) is transferred to the liquid fuel 24 sprayed from the two-fluid sprayer 12 (two-fluid spray nozzle 38).
  • the liquid fuel 24 is supplied (mixed) at a position away from the plate 18 and used for combustion of the liquid fuel 24.
  • the amount of the combustion air 50 mixed with the liquid fuel 24 is set so that, for example, the average air ratio is 1.5 or less.
  • the remainder of the combustion air 50 (for example, about 70% of the whole) from which the combustion air flow path 53 has also flowed flows further downward and is mixed with the combustion exhaust gas generated by the combustion. A large amount of combustion exhaust gas is generated.
  • the purpose of installing the first cylinder 16 is to delay the partial force S of the combustion air 50 and the supply to the atomized liquid fuel 24, that is, atomize at a position away from the plate 18 downward.
  • Liquid fuel It is possible to prevent the flame from coming into contact with the plate 18 and soot from adhering to the plate 18. Therefore, the length of the first cylinder 16, that is, the tip position (lower end position) of the first cylinder 16 is the size of the plate 18 (distance from the spray hole 44 of the two-fluid spray nozzle 38 to the combustion air circulation hole 52. ) To set as appropriate.
  • the first air cylinder 16 is not provided, and the combustion air circulation hole 51 is separated from the spray hole 44 just by providing the plate 18 and the combustion air flow hole 52 on the outer periphery of the plate 18.
  • a part of the combustion air 50 that has passed through the combustion air circulation hole 51 is supplied to the atomized liquid fuel 24 at a position away from the plate 18 downward.
  • the position where a part of the combustion air 50 is supplied to the atomized liquid fuel 24 is further away from the plate 18. Note that the larger the plate 18 is and the longer the distance from the spray hole 44 to the combustion air circulation hole 52 is, the larger the diameter of the two-fluid spray pan 11 is.
  • the tip (lower end) of the first cylinder 16 is positioned outside (upper) of the outer portion 24A of the sprayed liquid fuel 24. There is a need to. In other words, the leading end (lower end) of the first cylinder 16 cannot be extended to the outer portion 24A of the sprayed liquid fuel 24.
  • the installation position of the first cylinder 16 also approaches the spray hole 44, so the plate 18 to the outer portion 24A of the atomized liquid fuel 24
  • the first cylinder 16 cannot be lengthened too much because the distance of is also shortened. Therefore, taking these restrictions into consideration, the distance from the spray hole 44 to the combustion air circulation hole 52 and the length of the first cylinder 16 (including the necessity of the first cylinder 16) are appropriately determined. do it.
  • the second cylinder 17 is located inside the first cylinder 16 and is disposed concentrically with the first cylinder 16.
  • the purpose of installing the second cylinder 17 is to prevent the stagnation (convection) of the atomized liquid fuel 24 in the vicinity of the plate 18, so that the flame contacts the plate 18 and sticks to the plate 18. Is to prevent. For this purpose, it is better to extend the second cylinder 17 downward as much as possible.
  • the tip (lower end) of the second cylinder 17 is positioned outside (upper) the outer portion 24A of the atomized liquid fuel 24. There is a need. That is, the tip (lower end) of the second cylinder 17 can only extend to the outer portion 24 A of the atomized liquid fuel 24! /.
  • the distance from the spray hole 44 of the two-fluid spray nozzle 38 to the second cylinder 17 is L1
  • the angle with the horizontal line of the outer portion 24A of the sprayed liquid fuel 24 is ⁇ .
  • the length L2 from the tip (lower end) of the two-fluid spray nozzle 38 (spray hole 44) to the tip (lower end) of the second cylinder 17 needs to satisfy 0 ⁇ L2 ⁇ Lltan ⁇ .
  • the total length of the second cylinder 17 is the length obtained by adding the length from the lower surface of the plate 18 to the tip (lower end) of the two-fluid spray nozzle 38 (spray hole 44).
  • Such conditions are the length from the tip (lower end) of the two-fluid spray nozzle 38 (spray hole 44) to the tip (lower end) of the first cylinder 16 and the entire length of the first cylinder 16! The same goes for /.
  • the distance from the spray hole 44 of the two-fluid spray nozzle 38 to the second cylinder 16 is, for example, 50 or more times or 60 or more times the hole diameter (for example, about 1 mm) of the spray hole 44.
  • a liquid fuel tank 19 configured to discharge the stored liquid fuel 24 from a liquid fuel outflow hole 22 opened in the bottom 21 is provided, and the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19 is With the configuration in which the atomized air 46 is atomized and burned, even when the liquid fuel 24 is intermittently supplied from the liquid fuel supply pipe 24 to the liquid fuel tank 19, the liquid fuel outflow hole of the liquid fuel tank 19 From 22, the liquid fuel stored in the liquid fuel tank 19 flows out continuously.
  • the supply flow rate of the pump of the liquid fuel supply system decreases, and the liquid fuel 24 flows from the liquid fuel supply pipe 25 to the liquid fuel tank 19.
  • the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19 slightly fluctuates up and down, and the outflow rate of the liquid fuel 24 from the liquid fuel outflow hole 22 slightly fluctuates. Therefore, the liquid fuel supply flow rate does not fluctuate as shown in Fig. 13. For this reason, even when the liquid fuel supply flow rate is low, the stable supply of the liquid fuel 24 becomes possible, and it becomes easy to establish stable combustion, and there is no possibility of causing unburned exhaust gas and misfire.
  • the liquid fuel 22 flowing out from the liquid fuel outflow hole 22 and flowing into the two-fluid merging space 43 becomes the atomizing air flow.
  • the liquid fuel 24 has a flow velocity increased in the groove 40 (the velocity component in the horizontal direction has increased) and the atomizing air 46 and the two-fluid merge.
  • the groove 40 of the atomizing air introduction section 37 is along the tangential direction of the circumference of the two-fluid merge space section 43 in a top view.
  • the atomizing air 46 is swirled and mixed with the liquid fuel 24, so that the liquid fuel 24 and the atomizing air 46 are more reliable. To be mixed.
  • the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
  • the groove 40 of the atomizing air introduction section 37 has a rotationally symmetrical positional relationship around the central axis of the two-fluid merge space section 43. Therefore, the distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the spray holes 44 of the two-fluid spray nozzle 38 is made uniform to improve the combustibility of the liquid fuel 24. be able to.
  • the liquid fuel tank 19 is moved down.
  • the bottom 21 of the fuel tank 19 is structured such that the bottom 21 of the liquid fuel tank 19 is pressed against and closely adhered to the atomizing air introduction part 37 of the two-fluid spray nozzle 38.
  • the atomizing air 46 can be prevented from flowing through portions other than the groove 40, and the effect of wide-area spraying by the groove 40 can be sufficiently exhibited.
  • the two-fluid merge space portion 43 has an inverted conical shape, and the spray hole 44 is formed at the apex position of the inverse-conical space portion 43. Because of this, it is possible to more reliably perform the mixing S of the liquid fuel 24 and the atomizing air 46 in the two-fluid merge space 43. For this reason, the liquid fuel 24 sprayed from the spray hole 44 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
  • the gas fuel flow path 14 is provided, and the gas fuel 49 flows downward through the gas fuel flow path 14 and is injected from the lower end of the gas fuel flow path 14 to be burned. Since the gaseous fuel 49 injected from 14 becomes uniform in the circumferential direction, the combustibility is improved. For example, when the supply amount of the liquid fuel 24 is small, the flame holding effect by the gaseous fuel 49 is exhibited.
  • the two-fluid spraying pan 11 is! /, In contact with the inner peripheral surface 20a of the side portion 20 of the liquid fuel tank 19 and the tip portion 25A force of the liquid fuel supply pipe 25.
  • the liquid fuel 24 flows down along the inner peripheral surface 20a, so that the liquid fuel 24 flows out of the liquid fuel outflow hole 22.
  • the combustion air flow path 15 The combustion air 50 that has flowed downward is blocked by the plate 18 and guided to the outer peripheral side of the plate 18, away from the two-fluid spray nozzle 38, and passes through the combustion air circulation hole 52 for combustion. Since it is configured to flow into the space 13, the combustion space 13 is mixed with the liquid fuel 24 sprayed from the two-fluid spray nozzle 38 and used for combustion of the liquid fuel 24. The remainder of the combustion air 50 flows further downward and is mixed with the combustion exhaust gas generated by the combustion.
  • the combustion air 50 and the liquid fuel 24 can be appropriately mixed by supplying the combustion air once (1 stage), and a large amount of combustion exhaust gas that does not overcool the flame is generated. It can be made. That is, it is possible to realize a two-fluid spray panner that can generate a large amount of combustion exhaust gas with a simple configuration and that does not cause unburned gas generation or misfire.
  • the position of the flame also moves downward from the plate 18, and it is possible to prevent soot from adhering to the lower surface of the plate 18. If the amount of soot adhering to the lower surface of the plate 18 increases, problems such as clogging of the two-fluid spray nozzle 38 caused by soot and abnormal heating of the two-fluid sprayer 12 caused by soot absorbing the radiant heat of the flame may occur. By preventing the possibility of flaws from adhering to the lower surface of the plate 18 as described above, the force S can be prevented from occurring.
  • the first cylinder 16 for delaying the supply of combustion air that extends downward from the lower surface of the plate 18 is provided.
  • a cylindrical combustion air flow path 53 that communicates with the combustion air circulation hole 52 is formed between the combustion air flow hole 52 and the combustion air 50 passing through the combustion air circulation hole 52. After flowing downward in the flow path 53, the combustion air flow path 53 flows into the combustion space 13 from the lower end of the combustion air flow path 53, so that a part of the combustion air 50 was sprayed from the two-fluid spray nozzle 38.
  • the supply to the liquid fuel 24 can be delayed. That is, the position where a part of the combustion air 50 is supplied to the liquid fuel 24 can be moved downward from the plate 18.
  • the position of the flame also moves away from the plate 18, and it is possible to prevent the soot from adhering to the lower surface of the plate 18. It should be noted that the effect of moving the position where a part of the combustion air 50 is supplied to the liquid fuel 24 downward from the plate 18 can be obtained only by providing the plate 18 as described above. If the first cylinder 16 for delaying the supply of combustion air as in Example 1 is provided, the position where a part of the combustion air 50 is supplied to the liquid fuel 24 is more reliably moved downward from the plate 18. Can do.
  • the plate 18 cannot be made too large, and a sufficient distance from the two-fluid spray nozzle 38 to the combustion air circulation hole 52 can be secured. If this is not possible, the amount of combustion air 50 supplied to the liquid fuel 24 may be too large and the flame may be overcooled.
  • the first cylinder 16 for delaying the supply of combustion air as in the first embodiment is provided, the position where a part of the combustion air 50 is supplied to the liquid fuel 24 is lowered from the plate 18. At this time, it is possible to reduce the amount of a part of the combustion air 50 supplied to the liquid fuel 24 to an appropriate amount. Therefore, from this point of view, it is effective to provide the first cylinder 16 as in the first embodiment.
  • the plate 18 can be made smaller, and the two-fluid spray partner 11 can be downsized. You can also.
  • the second cylinder 17 for preventing stagnation extending downward from the lower surface of the plate 18 is used as the first cylinder for delaying the supply of combustion air.
  • stagnation (convection) of the liquid fuel 24 near the lower surface of the plate 18 can be prevented by the second cylinder 17 for preventing stagnation. Therefore, it is possible to prevent the liquid fuel 24 stagnating in the vicinity of the lower surface of the plate 18 from being ignited and soot from adhering to the lower surface of the plate 18.
  • the flame (sprayed liquid fuel 24) and the combustion air 50 in the combustion space 13 are obtained by surrounding the flame with the burner outer cylinder 48. Can be mixed well, and the combustibility is improved.
  • FIG. 6 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 2 of the present invention, and FIG. 6 (b) is provided in the two-fluid sprayer.
  • FIG. 9 is a top view (a view in the direction of arrow E in FIG. 6 (a)) showing a two-fluid spray nozzle extracted.
  • grooves (slits) 61 are formed at four locations in the circumferential direction of the atomizing air introduction section 37. Is formed.
  • These grooves 61 are of a collision type, are along the radial direction of the two-fluid merge space 43 having a circular shape when viewed from the top, and the central axis of the two-fluid merge space 43 (in the illustrated example, the spray hole 44 4 Center axis) and a rotationally symmetrical positional relationship (equally spaced in the circumferential direction).
  • the atomizing air 46 that has flowed downward through the atomizing air flow path 28 46 flows through the groove 61 of the atomizing air introduction section 37 in the two-fluid spray nozzle 38.
  • the two-fluid merging space 43 merges with the liquid fuel 24 flowing out from the liquid fuel outlet hole 22 of the liquid fuel tank 19.
  • Mat the liquid fuel 24 and the atomizing air 46 are mixed well, and the liquid fuel 24 is atomized by the atomizing air 46 and the atomizing air 46 together with the two-fluid spray nozzle 38.
  • the fuel is injected from the spray hole 44 into the combustion space 13.
  • the configuration of the other parts of the two-fluid sprayer 12 of Fig. 6 is the same as that of the two-fluid sprayer 12 of the first embodiment (Fig. 4).
  • the configuration of the parts other than the two-fluid sprayer 11 in the two-fluid spray partner 11 of the second embodiment is also the same as that of the two-fluid spray partner 11 of the first embodiment (FIGS. 1 to 3).
  • the groove 61 of the atomizing gas introduction part 37 is formed so as to be along the radial direction of the two-fluid merging space part 43 in a top view.
  • the atomizing air 46 collides with the liquid fuel 24 and is mixed with the liquid fuel 24, so that the liquid fuel 24 and the atomizing air 46 are more reliably connected.
  • the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
  • the groove 61 of the atomizing gas introduction part 37 is formed in plural so as to be rotationally symmetrical about the central axis of the two-fluid merge space part 43, the two-fluid spray nozzle 38 Fountain
  • the distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the fog hole 44 can be made uniform, and the combustibility of the liquid fuel 24 can be improved.
  • FIG. 7 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 3 of the present invention, and FIG. 7 (b) is provided in the two-fluid sprayer.
  • FIG. 9 is a top view (a view in the direction of arrow F in FIG. 7 (a)) showing a two-fluid spray nozzle.
  • the inner surface (upper surface) 21 a of the bottom 21 of the liquid fuel tank 19 becomes a tapered surface (tapered conical shape).
  • a fine liquid fuel outflow hole 22 is formed at the center (the apex position of the inverted conical tapered surface).
  • the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 has a tapered surface in which the outer portion 21b-1 is tapered (inverted truncated cone), and the inner portion 21b-2 is a circular horizontal surface. It is becoming.
  • the atomizing air introducing portion 37 of the two-fluid spray nozzle 38 is formed in an annular shape, and the inner peripheral surface 37b is tapered (inverted truncated cone shape).
  • the liquid fuel tank 19 abuts so that the outer portion 21b-1 (tapered surface portion) of the lower surface 21b of the bottom portion 21 fits into the inner peripheral surface 37b (tapered surface portion) of the atomizing air introduction portion 37.
  • it is installed on the atomizing air introduction section 37.
  • the outer portion 21b-1 (taper surface portion) of the bottom surface 21b of the bottom 21 of the liquid fuel tank 19 is fogged. It is pressed against and closely adheres to the inner peripheral surface 37b (taper surface portion) of the chemical air introducing portion 37 to prevent a gap from being formed between these contact surfaces 21b-1 and 37b.
  • the nozzle body portion 39 of the two-fluid spray nozzle 38 has an inverted conical space portion (concave portion) 42 formed at the center thereof, and the center thereof (the apex position of the inverted conical space portion 42).
  • a fine spray hole 44 is formed.
  • the space part 41 of the atomizing air introduction part 37 and the space part 42 of the nozzle body part 39 are continuous, and these space parts 41, 42 constitute a two-fluid merge space part 43.
  • the two-fluid merging space 43 has a circular shape in plan view (top view), and has a tapered structure in which the diameter gradually decreases as the directional force is applied to the spray hole 44.
  • the atomizing air introduction section 37 has grooves (slits) 40 formed at two locations in the circumferential direction. These
  • the groove 40 of FIG. 5 is of a swivel type similar to the groove 40 of FIG. 5, and is along the tangential direction of the circumference of the two-fluid merge space 43 in the top view and is the central axis of the two-fluid merge space 43 with respect to each other. It has a rotationally symmetrical positional relationship (equal intervals in the circumferential direction).
  • the groove formed in the atomizing air introduction part 37 is not limited to the swivel type but may be a collision type similar to that shown in FIG.
  • the configuration of the other parts of the two-fluid sprayer 12 of Fig. 7 is the same as that of the two-fluid sprayer 12 of the first embodiment (Fig. 4).
  • the configuration of the portion other than the two-fluid sprayer in the two-fluid spraying pan 11 of the third embodiment is the same as that of the two-fluid spraying pan 11 of the first embodiment (FIGS. 1 to 3). is there.
  • the liquid fuel tank 19 has a tapered surface portion of the liquid fuel tank 19 (the outer portion 21b-1 of the lower surface 21b of the bottom portion 21) is fogged. Since it is installed on the atomizing gas introduction part 37 in a state of being fitted into and abutted with the tapered surface part (inner peripheral surface 37b) of the gas introduction part 37, the liquid fuel tank 19 and the two-fluid spray nozzle It is easy to align the center axis of ZUNORE 38.
  • the width of the atomizing air passage 28 where the liquid fuel tank 19 is not displaced is made uniform in the circumferential direction, and the flow of the atomizing air 46 in the atomizing air passage 28 is made uniform in the circumferential direction. Therefore, it is possible to secure the symmetry of the spray of the liquid fuel 24 from the spray hole 44 of the two-fluid spray nozzle 38 (that is, the symmetry of the flame) with the force S.
  • the liquid fuel tank 19 is pressed downward by the coil spring 36 (see Fig. 4), so that the bottom 21 of the liquid fuel tank 19 is pressed.
  • Pressing against the atomizing air introduction part 37 of the two-fluid spray nozzle 38, the tapered surface part (outer part 21b-1) of the bottom part 21 of the fuel tank 19 and the taper surface part (inner peripheral surface 3) of the atomizing air introduction part 37 By adhering to 7b), it is possible to prevent force S from forming a gap between these contact surfaces 21b-1 and 37b. For this reason, it is possible to prevent the atomizing air 46 from flowing through the portion other than the groove 40 and to sufficiently exhibit the effect of wide area spraying by the groove 40.
  • FIG. 8 (a) is a two-fluid spray in the two-fluid spray pan according to Embodiment 4 of the present invention.
  • Fig. 8 (b) is a vertical cross-sectional view showing the structure of the lower part of the vessel (Fig. 8 (b) is a vertical cross-sectional view taken along the line G-G).
  • Fig. 8 (c) is a view from the direction of the arrow I in Fig. 8 (b)
  • Fig. 8 (d) is a JJ line in Fig. 8 (a).
  • FIG. 8 (b) is a vertical cross-sectional view showing the structure of the lower part of the vessel
  • Fig. 8 (b) is a vertical cross-sectional view taken along the line G-G).
  • Fig. 8 (c) is a view from the direction of the arrow I in Fig. 8 (b)
  • Fig. 8 (d) is a JJ line in Fig. 8 (a).
  • the inner surface (upper surface) 21 a of the bottom 21 of the liquid fuel tank 19 has a tapered (reverse conical) tapered surface.
  • a fine liquid fuel outflow hole 22 is formed at the center (the apex position of the inverted conical tapered surface).
  • the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 has a tapered surface with an outer portion 21b-1 tapered (inverted truncated cone), and an inner portion 21b-2 with a circular horizontal surface. It is.
  • the two-fluid spray nozzle 38 does not have an atomizing air introducing portion (see Fig. 7), and is formed integrally with the sprayer outer cylinder 27 at the lower end of the sprayer outer cylinder 27! /, (A separate object may be fixed by welding, etc.).
  • the two-fluid spray nozzle 38 has a tapered surface whose inner surface (upper surface) 38a is tapered (inverted conical shape). For this reason, the liquid fuel tank 19 is in a state where the outer portion 21b-1 (tapered surface portion) of the lower surface 21b of the bottom portion 21 is in contact with the inner surface 38a (tapered surface portion) of the two-fluid spray nozzle 38. It is installed on the fluid spray nozzle 38.
  • the outer portion 21b-1 (taper surface portion) of the bottom surface 21b of the bottom portion 21 of the liquid fuel tank 19 becomes a two-fluid spray nozzle.
  • the inner surface 38a (tapered surface portion) of 38 is pressed against and closely contacts to prevent a gap between these contact surfaces 21b-1 and 38b.
  • an inverted conical space formed at the center of the two-fluid spray nozzle 38 by the inner surface 38a of the tapered structure is a two-fluid merge space 43.
  • the fine spray hole 44 is formed at the center of the two-fluid merge space 43 (the apex position of the inverted conical space 43) and communicates with the two-fluid merge space 43. That is, the two-fluid merging space 43 has a circular shape in plan view (top view), and has a tapered structure in which the diameter gradually decreases as the directional force is applied to the spray hole 44.
  • the two fluid merging space portion 43 has a rotationally symmetrical positional relationship (equally spaced in the circumferential direction) along the tangential direction of the circumference of the two fluid merging space portion 43 and around the central axis of the two fluid merging space portion 43.
  • the atomizing air 46 that has flowed downward through the atomizing air flow path 28 flows through the groove 71 in the bottom portion 21 of the liquid fuel tank 19 so as to increase the flow velocity. It is introduced into the merge space 43 and turns into the two-fluid merge space 43 and merges (mixes) with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19. As a result, the liquid fuel 24 and the atomizing air 46 are well mixed, and the liquid fuel 24 is atomized by the atomizing air 46 and the atomizing hole 46 together with the atomizing air 46. 44 is injected into the combustion space 13.
  • the liquid fuel 24 flowing out from the liquid fuel outflow hole 44 and flowing into the two-fluid merging space portion 43 is converted into the atomizing air flow.
  • the liquid fuel 24 After flowing down the passage 28 and flowing in the groove 71 at the bottom 21 of the liquid fuel tank 19 and joining the atomizing air 46 led to the two-fluid merge space 43 and the two-fluid merge space 43
  • the liquid fuel 24 has increased the flow velocity in the groove 71 (the velocity component in the horizontal direction has increased) and the atomizing air 46.
  • the fluid is mixed well in the fluid merge space 43 and sprayed from the spray hole 44. For this reason, compared with the case where the two-fluid merge space 43 and the groove 71 are not provided, the spread angle of the spray of the liquid fuel 24 is increased and the liquid fuel 24 is reliably atomized. Will improve.
  • the liquid fuel tank 19 is configured so that the tapered surface portion of the liquid fuel tank 19 (the outer portion 21b-1 of the lower surface 21b of the bottom portion 21) fits into the tapered surface portion (the inner surface 38a) of the two-fluid spray nozzle 38.
  • the liquid fuel tank 19 and the two-fluid spray nozzle 38 can be easily aligned with the central axis. Therefore, liquid fuel
  • the width of the atomizing air flow path 28 where the side of the material tank 19 moves can be made uniform in the circumferential direction, and the flow of the atomizing air 46 in the atomizing air flow path 28 can be made uniform in the circumferential direction. Therefore, it is possible to ensure the symmetry of the spray of the liquid fuel 24 from the spray hole 44 of the two-fluid spray nozzle 38 (that is, the symmetry of the flame).
  • the groove 71 of the bottom 21 of the liquid fuel tank 19 is formed so as to be along the tangential direction of the circumference of the two-fluid merge space 43 in a top view, so that the two-fluid merge space 43 is atomized. Since the working air 46 is swirled and mixed with the liquid fuel 24, the liquid fuel 24 and the atomizing air 46 are more reliably mixed by force. Therefore, the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
  • the two-fluid spray nozzle 38 has The distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the spray holes 44 can be made uniform, and the combustibility of the liquid fuel 24 can be improved.
  • the bottom 21 of the liquid fuel tank 19 is removed by pressing the liquid fuel tank 19 downward by the coil spring 36 (see Fig. 4).
  • the fluid spray nozzle 38 against the tapered surface portion (outer portion 21b-1) of the bottom 21 of the fuel tank 19 and the tapered surface portion (inner surface 38a) of the two-fluid spray nozzle 38, these contact surfaces are brought into close contact with each other. It is possible to prevent a gap from being formed between 21b-1 and 38a. For this reason, the atomizing air 46 can be prevented from flowing through portions other than the groove 71, and the effect of wide-area spraying by the groove 71 can be sufficiently exhibited.
  • FIG. 9 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 5 of the present invention (cross-sectional view taken along line KK in FIG. 9 (b)).
  • Fig. 9 (b) is a bottom view of the liquid fuel tank provided in the two-fluid sprayer.
  • Fig. 9 (c) is a bottom view of Fig. 9 (a). It is a cross-sectional view taken along line M—M.
  • the inner surface (upper surface) 21 a of the bottom portion 21 of the liquid fuel tank 19 is a tapered surface (tapered conical shape). And center (reverse A fine liquid fuel outflow hole 22 is formed at the apex position of the conical tapered surface.
  • the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 has a tapered surface with an outer portion 21b-1 tapered (inverted truncated cone), and an inner portion 21b-2 with a circular horizontal surface. It is.
  • the two-fluid spray nozzle 38 does not have an atomizing air introducing portion (see FIG. 7), and is formed integrally with the sprayer outer cylinder 27 at the lower end of the sprayer outer cylinder 27! /, (A separate object may be fixed by welding, etc.).
  • the two-fluid spray nozzle 38 has a tapered surface whose inner surface (upper surface) 38a is tapered (inverted conical shape).
  • the liquid fuel tank 19 has a two-fluid spray in a state where the outer portion 21b-1 (tapered surface) of the bottom surface 21b of the bottom 21 is in contact with the inner surface 38a (tapered surface) of the two-fluid spray nozzle 38. It is installed on the nozzle 38.
  • the outer portion 21b-1 (taper surface portion) of the bottom surface 21b of the bottom portion 21 of the liquid fuel tank 19 becomes a two-fluid spray nozzle.
  • the inner surface 38a (tapered surface portion) of 38 is pressed against and closely contacts to prevent a gap between the contact surfaces 21b-1 and 38b.
  • an inverted conical space formed at the center of the two-fluid spray nozzle 38 by the tapered inner surface 38a is a two-fluid merge space 43.
  • the fine spray hole 44 is formed at the center of the two-fluid merge space 43 (the apex position of the inverted conical space 43) and communicates with the two-fluid merge space 43. That is, the two-fluid merging space 43 has a circular shape in plan view (top view), and has a tapered structure in which the diameter gradually decreases as the directional force is applied to the spray hole 44.
  • (Slit) 81 is formed. These grooves 81 are of a collision type, and have a rotationally symmetrical positional relationship (circumferential direction) along the radial direction of the two-fluid merge space 43 in the top view and around the central axis of the two-fluid merge space 43. At equal intervals).
  • the atomizing air 46 that has flowed downward through the atomizing air flow path 28 flows into the two fluids in a state where the flow velocity is increased by flowing through the groove 81 at the bottom 21 of the liquid fuel tank 19. It is introduced into the merge space 43 and merges (mixes) so as to collide with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19 in the two-fluid merge space 43.
  • the liquid fuel 24 and the atomizing air 46 are mixed well, and the liquid fuel 24 is atomized by the atomizing air 46, and the atomizing air 46 and the spray hole 44 of the two-fluid spray nozzle 38 are used. Then, it is injected into the combustion space 13.
  • the liquid fuel 24 flowing out from the liquid fuel outflow hole 44 and flowing into the two-fluid merge space 43 flows into the atomizing air flow.
  • the liquid fuel 24 After flowing down the passage 28 and flowing in the groove 81 at the bottom 21 of the liquid fuel tank 19 to the two-fluid merging space portion 43 and the merging air 46 after merging in the two-fluid merging space portion 43
  • the liquid fuel 24 has increased the flow velocity in the groove 81 (the velocity component in the horizontal direction has increased).
  • the fluid is mixed well in the fluid merge space 43 and sprayed from the spray hole 44. For this reason, compared with the case where the two-fluid merge space 43 and the groove 81 are not provided, the spread angle of the spray of the liquid fuel 24 is increased, and the liquid fuel 24 is surely atomized. Will improve.
  • the liquid fuel tank 19 is configured so that the tapered surface portion of the liquid fuel tank 19 (the outer portion 21b-1 of the lower surface 21b of the bottom portion 21) fits into the tapered surface portion (the inner surface 38a) of the two-fluid spray nozzle 38.
  • the liquid fuel tank 19 and the two-fluid spray nozzle 38 can be easily aligned with the central axis. Therefore, the width of the atomizing air passage 28 where the liquid fuel tank 19 is offset is made uniform in the circumferential direction, and the flow of the atomizing air 46 in the atomizing air passage 28 is made uniform in the circumferential direction. Therefore, it is possible to secure the symmetry of the spray of the liquid fuel 24 from the spray hole 44 of the two-fluid spray nozzle 38 (that is, the symmetry of the flame).
  • the groove 81 of the bottom 21 of the liquid fuel tank 19 has a two-fluid merge space portion in a top view.
  • the atomizing air 46 is swirled in the two-fluid merge space 43 and mixed with the liquid fuel 24. Air 46 and force are more reliably mixed. Therefore, the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
  • the two-fluid spray nozzle 38 has The distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the spray holes 44 can be made uniform, and the combustibility of the liquid fuel 24 can be improved.
  • the bottom 21 of the liquid fuel tank 19 is removed by pressing the liquid fuel tank 19 downward by the coil spring 36 (see Fig. 4).
  • the fluid spray nozzle 38 against the tapered surface portion (outer portion 21b-1) of the bottom 21 of the fuel tank 19 and the tapered surface portion (inner surface 38a) of the two-fluid spray nozzle 38, these contact surfaces are brought into close contact with each other. It is possible to prevent a gap from being formed between 21b-1 and 38a. For this reason, the atomizing air 46 can be prevented from flowing through portions other than the groove 81, and the effect of wide-area spraying by the groove 81 can be sufficiently exhibited.
  • Fig. 10 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid atomizer in the two-fluid atomizing pan according to Embodiment 6 of the present invention
  • Fig. 10 (b) is a diagram of Fig. 10 (a).
  • FIG. 6 is a transverse sectional view taken along the line N—N.
  • the inner surface (upper surface) 21 a of the bottom 21 of the liquid fuel tank 19 becomes a tapered surface (inverted conical shape).
  • a fine liquid fuel outflow hole 22 is formed at the center (the apex position of the inverted conical tapered surface).
  • the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 is also a tapered (inverted truncated cone) taper surface.
  • the two-fluid spray nozzle 38 does not have an atomizing air introduction portion (see FIG.
  • the two-fluid spray nozzle 38 has an inner surface (upper surface) 38a having a tapered surface (tapered shape).
  • a plurality (four in the illustrated example) of support portions 91 project from the lower end portion of the outer peripheral surface 20b of the side portion 20 of the liquid fuel tank 19. These support portions 91 are provided at equal intervals in the circumferential direction of the side portion 20, and the outer portion 91a-1 of the lower surface 91a has a tapered surface inclined inward along the inner surface 38a of the two-fluid spray nozzle 38. It has become.
  • the liquid fuel tank 19 is supported in a state where the outer portion 91a-1 of the lower surface 91a of the support portion 91 is in contact with the inner surface 38a of the two-fluid spray nozzle 38, and as a result, A tapered (inverted truncated cone) gap is secured between the outer surface 21 a of the bottom 21 of the liquid fuel tank 19 and the inner surface 38 a of the two-fluid spray nozzle 38, and this gap is connected to the atomizing air flow path 92. It has become. That is, the outer first atomizing air flow path 28 and the inner two-fluid merging space 43 are communicated via the second atomizing air flow path 92.
  • the two-fluid merge space 43 is an inverted conical space formed at the center of the two-fluid spray nozzle 38 by the inner surface 38a of the tapered structure.
  • the fine spray hole 44 is formed at the center of the two-fluid merge space 43 (the apex position of the inverted conical space 43) and communicates with the two-fluid merge space 43. That is, the two-fluid merging space 43 is located below the liquid fuel outflow hole 22 and has a circular shape in plan view (top view), and its diameter gradually decreases as it goes toward the spray hole 44. It becomes a structure!
  • the atomizing air 46 that has flowed downward through the atomizing air flow path 28 passes through the atomizing air flow part 93 between the support parts 91 and flows through the atomizing air flow path 92.
  • the two-fluid merging space portion 43 is introduced into the two-fluid merging space portion 43 and merged (mixed) so as to collide with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19 in the two-fluid merging space portion 43. To do.
  • the liquid fuel 24 is sprayed into the combustion space portion 13 from the spray hole 44 of the two-fluid spray nozzle 38 together with the atomizing air 46 while being atomized by the atomizing air 46.
  • the configuration of other parts of the two-fluid sprayer 12 in Fig. 10 is the same as that of the two-fluid sprayer 12 in the first embodiment (Fig. 4).
  • the configuration of the portion other than the two-fluid sprayer in the two-fluid spraying panner 11 of the sixth embodiment is the same as that of the two-fluid spraying panner 11 of the first embodiment (FIGS. 1 to 3).
  • the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 and flowing into the two-fluid merging space 43 is first atomized. After flowing down the gas flow path 28 for use, it passes through the atomizing air flow section 93 between the support sections 91 and flows through the second atomizing air flow path 92 to the two-fluid merge space section 43.
  • the liquid atomizing hole 46 of the liquid fuel tank 19 is configured such that the atomized air 46 and the atomized air 46 are sprayed from the atomizing hole 44 after being merged in the two-fluid merging space 43.
  • the liquid fuel 24 flowing out of 22 is mixed in the atomizing air 46 and the two-fluid merge space 43 and then injected from the spray hole 44 of the two-fluid spray nozzle 38. For this reason, compared with the case where the two-fluid merge space 43 is not provided, the spread angle of the spray of the liquid fuel 24 is increased, and the liquid fuel 24 is reliably atomized, so that the combustibility of the liquid fuel is improved. .
  • FIG. 11 is a longitudinal sectional view showing a configuration of a two-fluid spraying pan according to Embodiment 7 of the present invention
  • FIG. 12 is a transverse sectional view taken along line OO in FIG.
  • the plate 18 is a perforated plate. That is, a plurality of combustion air circulation holes 101 are formed in the annular plate 18. Each of these combustion air circulation holes 101 is provided inside the combustion air circulation hole 52 (first cylinder 16). Accordingly, the combustion air 50 that has flowed downward through the combustion air flow path 15 mainly passes through the combustion air circulation holes 52 on the outer peripheral side of the plate 19 and then the combustion air on the outside of the first cylinder 16. After flowing through the flow path 53, it flows into the combustion space portion 13, but a part flows into the combustion space portion 13 through the combustion air flow hole 101 inside the first cylinder 16.
  • a plurality of other combustion air circulation holes 101 are formed in the plate 18 inside the combustion air circulation holes 52.
  • a part of the combustion air 50 also passes through the combustion air circulation holes 101. It is possible to suppress the generation of a stagnation flow of combustion air in the vicinity of the lower surface of the plate 18 due to the flow of the working air 50, and to suppress soot from adhering to the lower surface of the plate 18.
  • the low-temperature combustion air flows in the vicinity of the two-fluid spray nozzle 38 through the other combustion air circulation holes 101, the Reny fluid spray nozzle 38 that is overheated by the radiant heat of the flame is provided by this combustion air. If it can be cooled!
  • FIG. 14 (a) is a longitudinal sectional view showing the configuration of a two-fluid spraying pan according to Embodiment 8 of the present invention
  • FIG. 14 (b) is a cross-sectional view taken along the line PP in FIG. 14 (a)
  • Fig. 15 is a graph showing the relationship between the distance from the spray hole of the two-fluid sprayer to the throttle plate (the ratio (L / D) of U to the diameter (D) of the combustion space and the optimum position of the throttle plate) .
  • a throttle plate 121 is provided in the combustion space portion 13 in the burner outer cylinder 48. It has been.
  • the diaphragm plate 121 has an annular shape with a circular flow hole (diaphragm hole) 122 formed in the center.
  • the diaphragm plate 121 is horizontally disposed at the lower end of the extended PANA cylinder 48 and is positioned below the plate 18 and the first cylinder 16 and fixed to the inner surface of the PANA cylinder 48 by welding or the like. Fixed by means.
  • the flow hole 122 of the throttle plate 121 is located in the center of the combustion space 13 in plan view.
  • the diaphragm plate 121 is not necessarily limited to a horizontal plate as shown by a solid line in FIG. 14 (a), but is an inclined plate (inverted truncated cone shape) as virtually shown by a one-dot chain line in FIG. 14 (a). )
  • the throttle plate 121 having the flow hole 121 in the center is provided in the combustion space 13, and the combustion space 13 is directed downward. Flowing Since the combustion air 50 is guided to the central portion of the combustion space 13 by the throttle plate 121 and passes through the flow hole 122 of the throttle plate 121, the combustion air 50 and the unburned gas ( The sprayed liquid fuel is heated and vaporized and is still burned! As a result, combustion of unburned gas is promoted, so that the fuel can be completely burned and the flame 123 can be shortened.
  • combustion air 50 that flows through the combustion air passage 53 and flows into the combustion space 13 from the lower end of the combustion air passage 53 (combustion when the first cylinder 16 is not provided)
  • Combustion air 50) that has flowed into the combustion space 13 through the air flow hole 52 and flows into the combustion space 13 is spread downward to the center of the combustion space 13 and uncombusted. It is mixed with gas to burn the unburned gas.
  • the combustion air 50 does not readily reach the center of the combustion space 13, and a part of the combustion air 50 flows further downward without being mixed with the unburned gas. For this reason, when there is no throttle plate 12 in the combustion space 13, the mixing of the combustion air 50 and the unburned gas is delayed, so that unburned fuel (unburned gas) tends to remain, and the flame 123 also become longer.
  • the fluid such as combustion air is once squeezed by the flow hole 122 of the throttle plate 121, so that the fluid flow rate distribution is circumferential. Uniformized. For this reason, the furnace and the like can be uniformly heated in the circumferential direction by the combustion exhaust gas.
  • L / D should be in the range of 2 to 10 (region I in Fig. 15).
  • L / D is less than 2 (area II in Fig. 15)
  • a relatively large amount of air is supplied at a time to cool the flame, causing the fuel to vaporize and produce droplets. It becomes easy.
  • L / D is greater than 10 (Fig. 1 In area 5)
  • the rate of unburned gas combustion is less likely to be promoted because the supply of air becomes slower and the proportion of unburned gas mixed with the temperature increases. .
  • d / D is preferably in the range of 0.2 ⁇ 0.6. If it is smaller than 0.2, the pressure increase in the combustion space 12 becomes large, and if it is larger than 0.6, the mixing effect of air and unburned gas is weakened.
  • FIG. 16 (a) is a longitudinal sectional view showing the configuration of the two-fluid spraying pan according to Embodiment 9 of the present invention
  • FIG. 16 (b) is a cross-sectional view taken along the line Q-Q in FIG. 16 (a). is there.
  • FIG. 16 (c) is a cross-sectional view corresponding to FIG. 16 (b), and is a view showing another structural example of the swing spring.
  • a swirling spring 124 is provided above the throttle plate 121.
  • a plurality of (six) swirling springs 124 are arranged around the circulation hole 122 of the diaphragm plate 12 at regular intervals along the circumferential direction of the circulation hole 122. It is fixed to the inner surface by fixing means such as welding.
  • Each of the swirl springs 124 is provided along a substantially tangential direction of the circular flow hole 122 in plan view. Accordingly, the flow of the combustion air 50 passing through the flow hole 122 of the throttle plate 121 becomes a swirl flow by the swirl spring 124 as shown by the arrows in FIGS. 16 (b) and 16 (c).
  • the revolving spring 124 is not limited to the tangential direction of the flow hole 122, and the side surface may be inclined with respect to the radial direction of the flow hole 122 in plan view. Further, the swing spring 124 may be curved as shown in FIG. 16 (c) which may be a flat plate as shown in FIG. 16 (b).
  • the rotation spring 124 is provided on the upper side of the throttle plate 121, and the flow of the combustion air 50 passing through the flow hole 122 of the throttle plate 121.
  • the combustion air 55 that has passed through the flow hole 122 of the throttle plate 121 is swirled as shown by the arrow in FIG. 16 (a). It spreads horizontally.
  • the pressure at the center of the flow of the combustion air 50 decreases below the flow hole 122, so that the combustion air flows from the outside into the center as shown by the arrow in FIG. 50 circulating flows are generated. Therefore, the mixing of the combustion air 50 and the unburned gas is further promoted, and the combustion of the unburned gas is further promoted. Therefore, the fuel is more easily burned, and the flame 123 is further shortened.
  • FIG. 17 (a) is a longitudinal sectional view showing the configuration of a two-fluid spraying pan according to Embodiment 10 of the present invention
  • FIG. 17 (b) is a transverse section taken along the line RR in FIG. 17 (a). is there.
  • a plurality of (two in the illustrated example) perforated plates are provided in the combustion space portion 13.
  • 125 is provided.
  • the number of perforated plates 125 is not limited to a plurality, and may be one.
  • the perforated plate 125 is located above the diaphragm plate 121, that is, between the plate 18 (first cylinder 16) and the diaphragm plate 121.
  • the perforated plate 125 is an annular plate in which one relatively large-diameter circulation hole 127 is formed in the central portion, and many relatively small-diameter holes 126 are formed in the peripheral portion.
  • the perforated plate 125 is disposed horizontally in the combustion space 13 and is fixed to the inner surface of the PANA outer cylinder 48 by a fixing step such as welding. As shown in FIG. 17B, the flow hole 127 of the perforated plate 125 is located at the center of the combustion space 13 in plan view.
  • the perforated plate 125 a part of the combustion air 50 that has flowed downward through the combustion space 13 is guided to the central circulation hole 127 (ie, the center of the combustion space 13) by the perforated plate 125.
  • the other combustion air 50 passes through the hole 126 and flows downward through the hole 126.
  • 20% of the directional force of the perforated plate 125, that is, the combustion air 50 flowing downward is led to the center, and 80% flows further downward through the hole 126.
  • 40% of the combustion air 50 that has flowed downward toward the perforated plate 125 is led to the center, and 60% passes through the hole 126 and further down.
  • the perforated plate 125 having the circulation hole 127 formed in the center is provided in the combustion space 13 above the throttle plate 121, and the combustion is performed.
  • a part of the combustion air 50 that has flowed downward through the space 13 is guided to the center of the combustion space 13 by the perforated plate 125 and passed through the circulation hole 127 of the perforated plate 125.
  • the mixing of the combustion air 50 and the unburned gas is further promoted, and the combustion of the unburned gas is further promoted, so that the fuel is more easily burned and the flame 123 is further increased.
  • the flame is shortened.
  • FIG. 18 is a system diagram showing an outline of a fuel cell power generation system according to Embodiment 11 of the present invention.
  • FIG. 18 shows an example in which the two-fluid spraying pan 11 of any of the above-described embodiments 1 to 10 is used as a heat source of a reformer in a fuel cell power generation system.
  • a reforming furnace 111 is provided with a combustion furnace 112 above the reformer 111, and the two fluids according to any one of the first to tenth embodiments described above from above the combustion furnace 112.
  • Spray pan 11 is inserted.
  • a liquid fuel supply system, an atomizing air supply system, and a combustion air supply system (not shown) are connected to the two-fluid spray pan 11. The details of the two-fluid spray panner 11 are as described above.
  • a raw material supply system (not shown) is connected to the reformer 111, and reforming fuel such as methane gas and kerosene and water are supplied from the raw material supply system as reforming raw materials.
  • the reformed fuel hydrogen
  • the reformed fuel is reformed by steam reforming the reforming fuel using the heat of a large amount of combustion exhaust gas generated by the combustion in the two-fluid spraying pan 11. (Rich gas).
  • the reformed gas generated by the reformer 11 is supplied to the anode side of the fuel cell 113 as a power generation fuel.
  • the fuel cell 113 power is generated by causing an electrochemical reaction between the reformed gas (hydrogen) supplied to the anode side and air (oxygen) supplied to the force sword side.
  • the remaining reformed gas that was not used for power generation in the fuel cell 113 is returned to the two-fluid spray burner 11 where it is used as gaseous fuel for burner combustion.
  • the two-fluid spraying burner 11 of any of the above embodiments;! To 10 is used as a heat source of the reformer 1 1 1. Therefore, when the two-fluid spraying pan 11 exhibits the above-described excellent effects, the performance of the reformer 11 1 1 can be improved and the cost can be reduced.
  • liquid fuel outflow hole 22 is provided in the liquid fuel tank 19 in the above description, a plurality of liquid fuel outflow holes 22 may be provided, which is not limited to this.
  • the force S provided with the liquid fuel outflow hole at the bottom of the liquid fuel tank is not necessarily limited to this, but the liquid fuel outflow hole may be provided at the side of the liquid fuel tank. . That is, the liquid fuel tank has a cylindrical side portion and a bottom portion provided at the lower end of the side portion, and stores the liquid fuel supplied from the liquid fuel supply pipe and is more than the liquid level of the stored liquid fuel.
  • the stored liquid fuel may be discharged from one or a plurality of liquid fuel outflow holes that are located below and opened in the side or bottom.
  • the liquid fuel tank is provided in the outer cylinder of the sprayer.
  • the liquid fuel tank is not necessarily limited to this.
  • the liquid fuel tank is provided outside the outer cylinder of the sprayer, and the liquid fuel tank liquid is provided.
  • the liquid fuel that has flowed out of the fuel outflow hole may be supplied to the confluence space with the atomizing gas via a pipe or the like.
  • the pressure of the atomizing air flowing into the atomizing air flow path by opening the upper end side of the liquid fuel tank also acts on the liquid level of the liquid fuel stored in the liquid fuel tank.
  • the upper limit side of the liquid fuel tank may be opened to the atmosphere. That is, due to the pressure balance between the inside and outside of the liquid fuel tank (the two-fluid merge space), the liquid fuel that has flowed out of the liquid fuel supply pipe is temporarily stored in the liquid fuel tank, and the liquid column head of the liquid fuel is As a result, the stored liquid fuel should be configured to continuously flow out of the liquid fuel outflow hole.
  • the present invention is not limited to this, and the force can be an appropriate number.
  • the swivel type has two or more grooves and the collision type has three or more grooves. ! / [0185]
  • the configuration (invention) in which the plate (shielding plate), the first cylinder for delaying the supply of combustion air, the second cylinder for preventing stagnation, etc. are provided (invention).
  • a two-fluid spray panner equipped with a two-fluid sprayer that injects a gas for conversion as a fuel injector, but also a burner equipped with a fuel injector that injects only liquid fuel or a fuel injector that injects gaseous fuel Can be applied.
  • a force that provides a combustion air circulation hole on the outer peripheral side of the plate (shielding plate) by forming protrusions on the outer periphery of the plate (shielding plate) is not limited to this. It is only necessary to provide a combustion air circulation hole on the outer peripheral side of the (shield). For example, a combustion air circulation hole is provided on the outer peripheral side of the plate by making a hole in the peripheral edge of the plate (shielding plate) itself. You may do it.
  • the force S that makes the plate (shielding plate) a horizontal plate the plate (shielding plate) that is not limited to this may be inclined obliquely downward from the inside toward the outside.
  • the plate 18 may be formed in a truncated cone shape as virtually shown in FIG.
  • this inclined plate the function similar to that of the first cylinder, which delays the supply of combustion air just by keeping the combustion air away from the fuel injection nozzle (two-fluid spray nozzle 38), should also be exhibited. become.
  • the present invention relates to a panner, and is useful when applied to, for example, a case where a large amount of combustion exhaust gas needs to be generated in order to heat a reformer or the like of a large-capacity fuel cell power generation system. is there.

Abstract

A burner, such as a twin-fluid atomizing burner, which can generate a large amount of combustion exhaust gas with a simple structure, does not cause unburnt gas nor misfire, and can make flame shorter and a combustion exhaust gas flow rate distribution more uniform. The burner comprises a twin-fluid atomizer (12), a tubular combustion air flow path (15) formed between the atomizer and a burner outer tube (48) surrounding the atomizer, a plate (a blocking plate) (18) partitioning between this combustion air flow path and a combustion space (13), and a combustion air flowing hole (52) provided on the outer peripheral side of this plate, wherein combustion air (50) flowing downward through the combustion air flow path is intercepted by the plate and guided to the outer peripheral side of the plate to be thereby moved away from a twin-fluid atomizing nozzle (38), and then passes through the combustion air flowing hole to be introduced into the combustion space. In addition, a combustion air supply/storage/delay first cylinder (16) and a stagnation preventing second cylinder (17) are provided at the bottom of the plate. A throttle plate having a flowing hole opened in the center is provided in the combustion space.

Description

明 細 書  Specification
ノくーナ  Nokuna
技術分野  Technical field
[0001] 本発明はパーナに関し、例えば液体燃料を霧化用気体で霧化した状態で燃焼さ せる二流体噴霧パーナなどに適用して有用なものである。  [0001] The present invention relates to a burner and is useful when applied to, for example, a two-fluid spray burner that burns liquid fuel in a state of being atomized with an atomizing gas.
背景技術  Background art
[0002] 二流体噴霧パーナは液体燃料を霧化用気体で霧化した状態で燃焼させるもので あり、例えば燃料電池発電システムの改質器の熱源として用いられる。この場合、改 質器では二流体噴霧パーナの燃焼によって発生する燃焼排ガスの熱を利用して、メ タンガスや灯油などの改質用燃料を水蒸気改質することにより、改質ガス(水素リッチ ガス)を生成し、この改質ガスを発電用の燃料として燃料電池に供給する。  [0002] A two-fluid spray panner burns liquid fuel in an atomized state with an atomizing gas, and is used, for example, as a heat source for a reformer of a fuel cell power generation system. In this case, the reformer uses the heat of the flue gas generated by the combustion of the two-fluid spray panner to reform the reforming fuel such as methane gas or kerosene by steam reforming, thereby improving the reformed gas (hydrogen-rich gas). And the reformed gas is supplied to the fuel cell as a power generation fuel.
[0003] そして、従来の二流体噴霧パーナでは、大容量の改質器等を加熱する目的で大量 の燃焼排ガスを発生させる場合、空気の供給を 2段に分けて行う方式が採用されて いた。この場合、 1段目では、二流体噴霧パーナのノズルから噴霧された灯油などの 液体燃料に空気供給源からの供給空気を混合して燃焼させ、 2段目では、前記 1段 目の燃焼で発生した燃焼排ガスに対して、前記 1段目の空気供給場所とは別の場所 で別の空気供給源から空気を供給することにより、大量の燃焼排ガスを発生させる。  [0003] And, in the conventional two-fluid spray panner, when a large amount of combustion exhaust gas is generated for the purpose of heating a large-capacity reformer or the like, a method of supplying air in two stages has been adopted. . In this case, in the first stage, liquid fuel such as kerosene sprayed from the nozzle of the two-fluid spray panner is mixed with the supply air from the air supply source and burned, and in the second stage, the combustion in the first stage is performed. A large amount of combustion exhaust gas is generated by supplying air from a different air supply source to the generated combustion exhaust gas at a location different from the first stage air supply location.
[0004] 特許文献 1:特開 2002— 224592号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-224592
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、上記従来の二流体噴霧パーナでは、 1段目の空気供給による燃焼に 加えて、 2段目では 1段目とは別の場所で空気を供給するため、空気供給構造が複 雑化し、装置全体が大型化する。なお、 1段目と 2段目に分けて空気を供給する構成 とはせずに一度に大量の空気を供給して大量の燃焼排ガスを発生させようとすると、 当該大量の空気によって火炎が冷却され過ぎることより、液体燃料の蒸発速度の低 下や燃料と酸素の反応速度の低下を招くため、火炎が長くなり、未燃ガスや未燃液 体燃料 (ミスト)が発生し易くなり、失火を招くおそれもある。 [0006] 従って本発明は上記の事情に鑑み、簡易な構成で大量の燃焼排ガスを発生させる ことができ、且つ、未燃ガスなどの発生や失火を招くおそれもなぐ更には火炎の短 炎化や燃焼排ガスの流量分布の均一化などが可能な二流体噴霧パーナ等のバー ナを提供することを課題とする。 [0005] However, in the conventional two-fluid spraying pan, in addition to combustion by air supply at the first stage, air is supplied at a location different from the first stage at the second stage. As a result, the entire device becomes larger. Note that if a large amount of air is supplied at a time to generate a large amount of combustion exhaust gas, instead of supplying air separately in the first and second stages, the flame is cooled by the large amount of air. Too much heat leads to a decrease in the evaporation rate of the liquid fuel and a decrease in the reaction rate of the fuel and oxygen, resulting in a longer flame, easier generation of unburned gas and unburned liquid fuel (mist), and misfire. There is also a risk of incurring. [0006] Therefore, in view of the above circumstances, the present invention can generate a large amount of combustion exhaust gas with a simple configuration, and there is no risk of generating unburned gas or misfire, and further shortening the flame. It is an object to provide a burner such as a two-fluid spraying burner that can make the flow distribution of combustion exhaust gas uniform.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決する第 1発明のパーナは、燃料噴射器の燃料噴射ノズルから、こ の燃料噴射ノズルの下方の燃焼空間部へ燃料 (気体燃料、液体燃料、或いは液体 燃料と霧化用気体の二流体)を噴射して燃焼させるパーナにお!/、て、 [0007] The first aspect of the invention to solve the above problem is that a fuel (gaseous fuel, liquid fuel, or liquid fuel and atomized fuel) from a fuel injection nozzle of a fuel injector to a combustion space below the fuel injection nozzle. To a burner that injects and burns two fluids! /,
前記燃料噴射器と、前記燃料噴射器の周囲を囲むパーナ外筒との間に形成した 筒状の燃焼用空気流路と、  A cylindrical combustion air flow path formed between the fuel injector and a PANA outer cylinder surrounding the fuel injector;
この燃焼用空気流路と前記燃焼空間部とを仕切る遮板と、  A shielding plate that partitions the combustion air flow path and the combustion space portion;
この遮板の外周側に設けた燃焼用空気流通穴と、  A combustion air circulation hole provided on the outer peripheral side of the shielding plate;
を備え、  With
前記燃焼用空気流路を下方へと流れてきた燃焼用空気が、前記遮板で遮られて 前記遮板の外周側へと導かれることにより前記燃料噴射ノズルから遠ざけられ、前記 燃焼用空気流通穴を通過して前記燃焼空間部に流入する構成としたことを特徴とす  Combustion air that has flowed downward through the combustion air flow path is blocked by the shielding plate and guided to the outer peripheral side of the shielding plate, thereby being moved away from the fuel injection nozzle, and the combustion air flow It is characterized by being configured to flow through the hole and flow into the combustion space.
[0008] また、第 2発明のバーナは、第 1発明のパーナにおいて、 [0008] The burner of the second invention is the burner of the first invention,
前記遮板の下面から下方に延びた燃焼用空気供給遅延用の筒を設けて、この筒と 前記パーナ外筒との間に前記燃焼用空気流通穴に通じる筒状の他の燃焼用空気 流路を形成し、  A combustion air supply delay cylinder extending downward from the lower surface of the shielding plate is provided, and the other combustion air flow in the cylinder that communicates with the combustion air circulation hole between the cylinder and the outer Pana cylinder. Form a road,
前記燃焼用空気流通穴を通過した燃焼用空気が、前記他の燃焼用空気流路を下 方へと流れた後に前記他の燃焼用空気流路の下端から、前記燃焼空間部に流入す る構成としたことを特徴とする。  The combustion air that has passed through the combustion air circulation hole flows downward into the other combustion air flow path, and then flows into the combustion space from the lower end of the other combustion air flow path. It is characterized by having a configuration.
[0009] また、第 3発明のバーナは、第 2発明のパーナにおいて、 [0009] The burner of the third invention is a burner of the second invention,
前記遮板の下面から下方に延びたよどみ防止用の筒を、前記燃焼用空気供給遅 延用の筒の内側に 1つ又は複数設けたことを特徴とする。  One or a plurality of stagnation prevention cylinders extending downward from the lower surface of the shielding plate are provided inside the combustion air supply delay cylinder.
[0010] また、第 4発明のバーナは、第 1〜第 3発明の何れかのパーナにおいて、 前記遮板には、前記燃焼用空気流通穴よりも内側に他の複数の燃焼用空気流通 穴が形成されて!/、ることを特徴とする。 [0010] Further, the burner of the fourth invention is any one of the first to third inventions, A plurality of other combustion air circulation holes are formed in the shielding plate inside the combustion air circulation holes! /.
[0011] また、第 5は発明のバーナは、第 1〜第 4発明の何れかのパーナにおいて、 [0011] Further, the burner of the fifth invention is the burner of any of the first to fourth inventions,
前記燃料噴射器は前記燃料噴射ノズルから液体燃料を噴射するものであり、 前記燃料噴射器の周囲を囲む気体燃料供給管と、前記燃料噴射器との間に筒状 の気体燃料流路を形成し、  The fuel injector is for injecting liquid fuel from the fuel injection nozzle, and a cylindrical gaseous fuel flow path is formed between the fuel injector and a gaseous fuel supply pipe surrounding the fuel injector. And
気体燃料は、前記気体燃料流路を下方へと流れ、前記気体燃料流路の下端から 前記燃焼空間部へ噴射されて燃焼される構成としたことを特徴とする。  The gaseous fuel flows through the gaseous fuel flow path downward, and is injected from the lower end of the gaseous fuel flow path into the combustion space and burned.
[0012] また、第 6発明のバーナは、第 1〜第 5発明の何れかのパーナにおいて、 [0012] Further, the burner of the sixth invention is any one of the first to fifth inventions,
中央部に流通穴が開けられた絞り板を前記燃焼空間部に設け、  A diaphragm plate having a through hole in the center is provided in the combustion space,
前記燃焼空間部を下方へと流れてきた燃焼用空気を、前記絞り板により前記燃焼 空間部の中央部へと導いて前記絞り板の流通穴を通過させる構成としたことを特徴と する。  Combustion air that has flowed downward through the combustion space is guided to the center of the combustion space by the throttle plate and passes through the flow hole of the throttle plate.
[0013] また、第 7発明のバーナは、第 6発明のパーナにおいて、  [0013] Further, the burner of the seventh invention is the burner of the sixth invention,
前記絞り板の上側に旋回ばねを設け、  A swirl spring is provided on the upper side of the diaphragm plate,
前記絞り板の流通穴を通過する前記燃焼用空気の流れを前記旋回ばねによって 旋回流とする構成としたことを特徴とする。  The flow of the combustion air passing through the flow hole of the throttle plate is configured to be a swirl flow by the swirl spring.
[0014] また、第 8発明のパーナは、第 6又は第 7発明のパーナにおいて、 [0014] Further, the eighth aspect of the invention is the same as the sixth or seventh aspect of the invention.
中央部に流通穴が開けられた多孔板を、絞り板の上方で前記燃焼空間部に設け、 前記燃焼空間部を下方へと流れてきた燃焼用空気の一部を、前記多孔板により前 記燃焼空間部の中央部へと導いて前記多孔板の流通穴を通過させる構成としたこと を特徴とする。  A perforated plate having a through hole in the center is provided in the combustion space above the throttle plate, and a part of the combustion air that has flowed downward through the combustion space is transferred by the perforated plate. It is characterized in that it is guided to the central part of the combustion space part and passes through the flow hole of the perforated plate.
[0015] なお、上記第 1〜第 8発明の何れかのパーナが二流体噴霧パーナである場合、二 流体噴霧パーナの構成を次のようにしてもよい。  [0015] When any of the first to eighth inventions is a two-fluid spray panner, the configuration of the two-fluid spray panner may be as follows.
[0016] 即ち、第 1の構成は、第 1〜第 8発明の何れかのパーナが、液体燃料を霧化用気体 で霧化して燃焼させる二流体噴霧パーナであり、この二流体噴霧パーナにおいて、 筒状の側部とこの側部の下端に設けた底部とを有し、液体燃料供給管から供給さ れた液体燃料を貯留するとともにこの貯留した液体燃料の液面よりも下方に位置して 前記側部又は前記底部に開けた 1つ又は複数の液体燃料流出穴から、前記貯留し た液体燃料を流出させる構成の液体燃料タンクを備え、 [0016] That is, the first configuration is a two-fluid spraying panner in which any of the first to eighth inventions causes the liquid fuel to be atomized and burned with the atomizing gas. A cylindrical side portion and a bottom portion provided at the lower end of the side portion, and stores the liquid fuel supplied from the liquid fuel supply pipe and is positioned below the liquid level of the stored liquid fuel. The A liquid fuel tank configured to discharge the stored liquid fuel from one or a plurality of liquid fuel outflow holes opened in the side portion or the bottom portion;
この液体燃料タンクの前記液体燃料流出穴から流出した液体燃料を前記霧化用気 体で霧化して燃焼させる構成としたことを特徴とする。  The liquid fuel that has flowed out of the liquid fuel outflow hole of the liquid fuel tank is atomized with the atomizing gas and burned.
[0017] また、第 2の構成の二流体噴霧パーナは、第 1の構成の二流体噴霧パーナにおい て、  [0017] Further, the two-fluid spraying panner of the second configuration is the two-fluid spraying panner of the first configuration.
前記液体燃料流出穴は前記液体燃料タンクの底部に開けられており、 前記液体燃料タンクの側部とこの側部の周囲を囲む外筒との間に形成した筒状の 霧化用気体流路と、  The liquid fuel outflow hole is formed at the bottom of the liquid fuel tank, and is a cylindrical atomizing gas flow path formed between a side portion of the liquid fuel tank and an outer cylinder surrounding the side portion. When,
前記外筒の下端部に設けられ、下側のノズル本体部と上側の霧化用気体導入部と を有し、前記液体燃料流出穴の下方に位置する二流体合流空間部を前記ノズル本 体部及び前記霧化用気体導入部の中央部に形成し、この二流体合流空間部に通じ る 1つ又は複数の噴霧穴を前記ノズル本体部に形成し、且つ、前記霧化用気体流路 と前記二流体合流空間部とを連通する 1つ又は複数の溝を前記霧化用気体導入部 に形成した構成の二流体噴霧ノズルと、  The nozzle body includes a two-fluid merging space portion provided at a lower end portion of the outer cylinder, having a lower nozzle main body portion and an upper atomizing gas introduction portion, and located below the liquid fuel outflow hole. Formed in the central part of the gas atomizing part and the atomizing gas introduction part, one or a plurality of spray holes communicating with the two-fluid merging space part are formed in the nozzle body part, and the atomizing gas flow path And a two-fluid spray nozzle having a configuration in which one or a plurality of grooves communicating with the two-fluid merging space portion are formed in the atomizing gas introduction portion,
を備え、  With
前記液体燃料タンクは前記霧化用気体導入部上に設置し、  The liquid fuel tank is installed on the atomizing gas introduction part,
前記液体燃料流出穴から流出して前記二流体合流空間部に流入した液体燃料が 、前記霧化用気体流路を下方へと流れた後に前記霧化用気体導入部で前記溝を流 れて前記二流体合流空間部へと導かれた霧化用気体と、前記二流体合流空間部で 合流した後、この霧化用気体とともに前記噴霧穴から噴霧される構成としたことを特 徴とする。  After the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space portion flows downward through the atomizing gas flow path, it flows through the groove at the atomizing gas introduction portion. The atomizing gas guided to the two-fluid merging space is merged with the two-fluid merging space, and then sprayed from the spray hole together with the atomizing gas. .
[0018] また、第 3の構成の二流体噴霧バーナは、第 2の構成の二流体噴霧パーナにおい て、  [0018] Further, the two-fluid spray burner having the third configuration is the two-fluid spray burner having the second configuration,
前記液体燃料タンクの底部の下面には先細りのテーパ面部を形成し、 且つ、前記霧化用気体導入部の上面にも先細りのテーパ面部を形成しており、 前記液体燃料タンクは、前記液体燃料タンクのテーパ面部が前記霧化用気体導入 部のテーパ面部に嵌まり込むようにして当接した状態で、前記霧化用気体導入部上 に設置されてレ、ることを特徴とする。 A tapered surface portion is formed on the lower surface of the bottom portion of the liquid fuel tank, and a tapered surface portion is also formed on the upper surface of the atomizing gas introduction portion, and the liquid fuel tank includes the liquid fuel tank. In the state where the tapered surface portion of the tank is in contact with the tapered surface portion of the atomizing gas introducing portion, the upper surface of the atomizing gas introducing portion is It is characterized by being installed in
[0019] また、第 4の構成の二流体噴霧バーナは、第 1の構成の二流体噴霧パーナにおい て、 [0019] Further, the four-fluid spray burner of the fourth configuration is the two-fluid spray burner of the first configuration.
前記液体燃料流出穴は前記液体燃料タンクの底部に開けられており、 前記液体燃料タンクの側部とこの側部の周囲を囲む外筒との間に形成した筒状の 霧化用気体流路と、  The liquid fuel outflow hole is formed at the bottom of the liquid fuel tank, and is a cylindrical atomizing gas flow path formed between a side portion of the liquid fuel tank and an outer cylinder surrounding the side portion. When,
前記外筒の下端部に設けられ、前記液体燃料流出穴の下方に位置する二流体合 流空間部を中央部に形成し、且つ、この二流体合流空間部に通じる 1つ又は複数の 噴霧穴を形成した構成の二流体噴霧ノズルと、  One or a plurality of spray holes that are provided at the lower end of the outer cylinder and that form a two-fluid merge space portion located below the liquid fuel outflow hole in the center and communicate with the two-fluid merge space portion A two-fluid spray nozzle configured to form
を備え、  With
前記液体燃料タンクの底部の下面には先細りのテーパ面部を形成し、 且つ、前記二流体噴霧ノズルの上面にも先細りのテーパ面部を形成しており、 前記液体燃料タンクは、前記液体燃料タンクのテーパ面部が前記二流体噴霧ノズ ルのテーパ面部に嵌まり込むようして当接した状態で、前記二流体噴霧ノズル上に 設置され、  A tapered surface portion is formed on the lower surface of the bottom portion of the liquid fuel tank, and a tapered surface portion is also formed on the upper surface of the two-fluid spray nozzle, and the liquid fuel tank is the same as the liquid fuel tank. The tapered surface portion is installed on the two-fluid spray nozzle in a state where the tapered surface portion is in contact with the tapered surface portion of the two-fluid spray nozzle.
前記液体燃料タンクの底部には、前記霧化用気体流路と前記二流体合流空間部 とを連通する 1つ又は複数の溝を形成し、  At the bottom of the liquid fuel tank, one or a plurality of grooves that communicate the atomizing gas flow path and the two-fluid merging space are formed,
前記液体燃料流出穴から流出して前記二流体合流空間部に流入した液体燃料が 、前記霧化用気体流路を下方へと流れた後に前記液体燃料タンクの底部で前記溝 を流れて前記二流体合流空間部へと導かれた霧化用気体と、前記二流体合流空間 部で合流した後、この霧化用気体とともに前記噴霧穴から噴霧される構成としたこと を特徴とする。  The liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space flows downward through the atomizing gas flow path and then flows through the groove at the bottom of the liquid fuel tank. The atomizing gas guided to the fluid merging space and the two fluid merging space are merged and then sprayed from the spray hole together with the atomizing gas.
[0020] また、第 5の構成の二流体噴霧バーナは、第 2〜第 4の構成の何れかの二流体噴 霧パーナにおいて、  [0020] Also, the two-fluid spray burner of the fifth configuration is the two-fluid spray burner of any of the second to fourth configurations,
前記二流体合流空間部は上面視が円形状であり、  The two-fluid merging space is circular when viewed from above.
前記霧化用気体導入部の溝又は前記液体燃料タンクの底部の溝は、上面視にお いて前記二流体合流空間部の円周の接線方向に沿うように形成したことを特徴とす [0021] また、第 6の構成の二流体噴霧パーナは、第 2〜第 4の構成の何れかの二流体噴 霧パーナにおいて、 The groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is formed so as to be along the tangential direction of the circumference of the two-fluid merge space part in a top view. [0021] Further, the two-fluid spraying panner of the sixth configuration is the two-fluid spraying panner of any of the second to fourth configurations.
前記二流体合流空間部は上面視が円形状であり、  The two-fluid merging space is circular when viewed from above.
前記霧化用気体導入部の溝又は前記液体燃料タンクの底部の溝は、上面視にお いて前記二流体合流空間部の径方向に沿うように形成したことを特徴とする。  The groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is formed so as to be along the radial direction of the two-fluid merging space part in a top view.
[0022] また、第 7の構成の二流体噴霧パーナは、第 5又は第 6の構成の二流体噴霧バー ナにお!/、て、前記霧化用気体導入部の溝又は前記液体燃料タンクの底部の溝は、 前記二流体合流空間部の中心軸回りに回転対称の位置関係となるように複数形成 されていることを特徴とする。 [0022] Further, the two-fluid spraying burner of the seventh configuration is the same as the groove of the atomizing gas introduction section or the liquid fuel tank in the two-fluid spraying burner of the fifth or sixth configuration. A plurality of grooves at the bottom of the two-fluid merging space are formed so as to have a rotationally symmetrical positional relationship around the central axis of the two-fluid merging space.
[0023] また、第 8の構成の二流体噴霧パーナは、第 2〜第 7発明の二流体噴霧パーナに おいて、前記液体燃料タンクを下方に押圧する押圧部材を備えることにより、 前記液体燃料タンクの底部を、前記二流体噴霧ノズルの霧化用空気導入部に押し 付けて密着させた構成としたこと、 [0023] Further, the two-fluid spraying panner of the eighth configuration is the two-fluid spraying panner of the second to seventh inventions, comprising a pressing member that presses the liquid fuel tank downward. The bottom part of the tank was pressed against the atomizing air introducing part of the two-fluid spray nozzle,
又は、前記液体燃料タンクの底部を、前記二流体噴霧ノズルに押し付けて密着さ せた構成としたこと、  Alternatively, the bottom of the liquid fuel tank may be pressed against the two-fluid spray nozzle so as to be in close contact with each other,
を特徴とする。  It is characterized by.
[0024] また、第 9の構成の二流体噴霧バーナは、第 1の構成の二流体噴霧パーナにおい て、  [0024] Further, the nine-component two-fluid spray burner is the first-structure two-fluid spray burner,
前記液体燃料流出穴は前記液体燃料タンクの底部に開けられており、 前記液体燃料タンクの側部とこの側部の周囲を囲む外筒との間に形成した筒状の 第 1の霧化用気体流路と、  The liquid fuel outflow hole is opened at the bottom of the liquid fuel tank, and is a cylindrical first atomization formed between a side portion of the liquid fuel tank and an outer cylinder surrounding the side portion. A gas flow path;
前記外筒の下端部に設けられ、前記液体燃料流出穴の下方に位置する二流体合 流空間部を中央部に形成し、且つ、この二流体合流空間部に通じる 1つ又は複数の 噴霧穴を形成した構成の二流体噴霧ノズルと、  One or a plurality of spray holes that are provided at the lower end of the outer cylinder and that form a two-fluid merge space portion located below the liquid fuel outflow hole in the center and communicate with the two-fluid merge space portion A two-fluid spray nozzle configured to form
を備え、  With
前記二流体噴霧ノズルの上面には先細りのテーパ面部を形成し、  A tapered surface portion is formed on the upper surface of the two-fluid spray nozzle,
前記液体燃料タンクの底部の下面にも先細りのテーパ面部を形成し、  A tapered surface portion is also formed on the lower surface of the bottom portion of the liquid fuel tank,
前記液体燃料タンクの側部には複数の支持部を突設し、且つ、これらの支持部の 下面にもテーパ面部を形成しており、 A plurality of support portions project from the side portion of the liquid fuel tank, and A tapered surface is also formed on the bottom surface,
前記液体燃料タンクは、前記支持部のテーパ面部が前記二流体噴霧ノズルのテー パ面部に嵌まり込むようにして当接した状態で、前記二流体噴霧ノズル上に設置さ れ、  The liquid fuel tank is installed on the two-fluid spray nozzle in a state in which the tapered surface portion of the support portion is in contact with the taper surface portion of the two-fluid spray nozzle.
前記支持部によって、前記液体燃料タンクのテーパ面部と前記二流体噴霧ノズノレ のテーパ面部との間に確保した隙間を、第 2の霧化用気体流路とし、  A gap secured by the support portion between the tapered surface portion of the liquid fuel tank and the tapered surface portion of the two-fluid spray nozzle is used as a second atomizing gas flow path.
前記液体燃料流出穴から流出して前記二流体合流空間部に流入した液体燃料が 、前記第 1の霧化用気体流路を下方へと流れた後に前記支持部の間の霧化用気体 流通部を通過し、前記第 2の霧化用気体流路を流れて前記二流体合流空間部へと 導かれた霧化用気体と、前記二流体合流空間部で合流した後、この霧化用気体とと もに前記噴霧穴から噴霧される構成としたことを特徴とする。  The liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space portion flows downward through the first atomizing gas flow path, and then the atomizing gas flow between the support portions Passing through the second atomizing gas flow path and flowing into the two-fluid merging space portion and the two-fluid merging space portion and then joining the atomizing gas. It is characterized in that the gas is sprayed from the spray hole together with the gas.
[0025] また、第 10の構成の二流体噴霧バーナは、第 2〜第 9の構成の何れかの二流体噴 霧パーナにおいて、 [0025] Further, the two-fluid spray burner of the tenth configuration is the two-fluid spray burner of any of the second to ninth configurations,
前記二流体合流空間部は逆円錐状であり、この逆円錐状の空間部の頂点位置に 前記噴霧穴が形成されてレ、ることを特徴とする。  The two-fluid merging space portion has an inverted conical shape, and the spray hole is formed at the apex position of the inverted conical space portion.
[0026] また、第 11の構成の二流体噴霧バーナは、第 1〜第 10の構成の何れかの二流体 噴霧パーナにおいて、 [0026] Further, the two-fluid spray burner of the eleventh configuration is the two-fluid spray burner of any of the first to tenth configurations,
前記液体燃料供給管の先端部が、前記液体燃料タンクの側部の内周面に接して いることを特徴とする。  A tip portion of the liquid fuel supply pipe is in contact with an inner peripheral surface of a side portion of the liquid fuel tank.
発明の効果  The invention's effect
[0027] 第 1発明のパーナによれば、前記燃焼用空気流路を下方へと流れてきた燃焼用空 気力、前記遮板で遮られて前記遮板の外周側へと導かれることにより前記燃料噴射 ノズルから遠ざけられ、前記燃焼用空気流通穴を通過して前記燃焼空間部に流入 する構成としたため、燃焼空間部では前記燃焼用空気の一部だけが、燃料噴射ノズ ノレから噴射された燃料と混合されて当該燃料の燃焼に利用され、前記燃焼用空気の 残りは、更に下方へと流れ、前記燃焼によって発生した燃焼排ガスと混合されること になる。このため、 1度(1段)の燃焼用空気供給により、燃焼用空気と燃料との適度 な混合を達成することができて、火炎を冷却し過ぎることなぐ大量の燃焼排ガスを発 生させること力 Sできる。従って、簡易な構成で大量の燃焼排ガスを発生させることがで き、且つ、未燃ガスの発生や失火を招くおそれもない二流体噴霧パーナ等のパーナ を実現すること力できる。 According to the first aspect of the invention, the combustion aerodynamic force flowing downward in the combustion air flow path is blocked by the shielding plate and guided to the outer peripheral side of the shielding plate. Since it is configured to flow away from the fuel injection nozzle and pass through the combustion air circulation hole and flow into the combustion space portion, only a part of the combustion air is injected from the fuel injection nozzle in the combustion space portion. The fuel is mixed with fuel and used for combustion of the fuel, and the remainder of the combustion air flows further downward and is mixed with the combustion exhaust gas generated by the combustion. For this reason, by supplying combustion air once (1 stage), it is possible to achieve a proper mixing of combustion air and fuel, and a large amount of combustion exhaust gas that does not overcool the flame is generated. The power to make it S Therefore, it is possible to realize a pan such as a two-fluid spraying panner that can generate a large amount of combustion exhaust gas with a simple configuration and that does not cause unburned gas generation or misfire.
[0028] 更には、遮板によって燃焼用空気を燃料噴射ノズルから離れた位置で燃焼空間部 に流入させるため、燃焼用空気の一部が燃料に供給される位置を、遮板から下方に 遠ざけること力 Sできる。従って、火炎の位置も遮板から下方に遠ざ力、ることなり、遮板 の下面に煤が付着するのを防止することができる。遮板の下面に付着する煤の量が 多くなると、煤による燃料噴射ノズルの目詰まりや、火炎の輻射熱を煤が吸収すること による燃料噴射器の異常な加熱などの不具合を生じる可能性があるが、上記の如く 遮板の下面に煤が付着するのを防止することにより、力、かる不具合の発生を未然に 防ぐこと力 Sできる。 [0028] Further, since the combustion air is caused to flow into the combustion space by the shielding plate at a position away from the fuel injection nozzle, the position where a part of the combustion air is supplied to the fuel is moved downward from the shielding plate. That power S. Therefore, the position of the flame also moves away from the shielding plate, and it is possible to prevent the soot from adhering to the lower surface of the shielding plate. If the amount of soot adhering to the lower surface of the shielding plate increases, problems such as clogging of the fuel injection nozzle due to soot and abnormal heating of the fuel injector caused by soot absorbing the radiant heat of the flame may occur. However, by preventing wrinkles from adhering to the lower surface of the shield as described above, it is possible to prevent the occurrence of force and troubles.
[0029] 第 2発明のパーナによれば、前記遮板の下面から下方に延びた燃焼用空気供給 遅延用の筒を設けて、この筒と前記パーナ外筒との間に前記燃焼用空気流通穴に 通じる筒状の他の燃焼用空気流路を形成し、前記燃焼用空気流通穴を通過した燃 焼用空気が、前記他の燃焼用空気流路を下方へと流れた後に前記他の燃焼用空気 流路の下端から、前記燃焼空間部に流入する構成としたため、燃焼用空気の一部が 、燃料噴射ノズルから噴射された燃料に供給されるのを遅らせてことができる。即ち、 燃焼用空気の一部が燃料に供給される位置を、遮板から下方に遠ざけることができ る。従って、火炎の位置も遮板から下方に遠ざ力、ることなり、遮板の下面に煤が付着 するのを防止すること力 Sできる。なお、この燃焼用空気の一部が燃料に供給される位 置を遮板から下方に遠ざけるという作用効果は上記の如く遮板を設けるだけでも得ら れる力 本第 2発明の如ぐ燃焼用空気供給遅延用の筒を設ければ、より確実に燃 焼用空気の一部が燃料に供給される位置を、遮板から下方に遠ざけることができる。  [0029] According to the second aspect of the invention, the combustion air supply delay cylinder extending downward from the lower surface of the shielding plate is provided, and the combustion air flow is provided between the cylinder and the outer casing cylinder. The other combustion air flow path in the form of a cylinder communicating with the hole is formed, and after the combustion air that has passed through the combustion air flow hole flows downward through the other combustion air flow path, the other combustion air flow path is formed. Since it is configured to flow into the combustion space from the lower end of the combustion air flow path, a part of the combustion air can be delayed from being supplied to the fuel injected from the fuel injection nozzle. That is, the position where a part of the combustion air is supplied to the fuel can be moved downward from the shielding plate. Therefore, the position of the flame also moves away from the shielding plate, and the force S can be prevented from adhering to the lower surface of the shielding plate. Note that the effect of moving the position where a part of the combustion air is supplied to the fuel away from the shielding plate is the force that can be obtained only by providing the shielding plate as described above. By providing an air supply delay cylinder, the position where a part of the combustion air is supplied to the fuel can be moved away from the shield more reliably.
[0030] また、上記第 1発明にお!/、て、パーナの大きさの制約などから、遮板をあまり大きく することができずに燃料噴射ノズルから燃焼用空気流通穴までの距離を充分にとるこ とができない場合には、燃料に供給される燃焼用空気の一部の量が多くなり過ぎて、 火炎が過度に冷却されてしまうおそれがある。これに対して本第 2発明の如ぐ燃焼 用空気供給遅延用の筒を設ければ、燃焼用空気の一部が燃料に供給される位置を 遮板から下方に遠ざけることができるだけでなぐこのときに燃料に供給される燃焼用 空気の一部の量を低減して適切な量とすることもできる。従って、かかる観点からも本 第 2発明の如く筒を設けることは有効であり、筒を設けることによって遮板を小さくし、 パーナの小型化を図ることもできる。 [0030] In addition, in the first invention! /, Because of the size limitation of the spanner, the shield plate cannot be made too large, and the distance from the fuel injection nozzle to the combustion air circulation hole is sufficient. If this is not possible, the amount of combustion air supplied to the fuel may be too large and the flame may be overcooled. In contrast, if a cylinder for delaying the supply of combustion air is provided as in the second aspect of the invention, the position where a part of the combustion air is supplied to the fuel can be determined. At this time, it is possible to reduce the amount of a part of the combustion air supplied to the fuel to an appropriate amount as long as it can be kept away from the shielding plate. Therefore, from this point of view, it is effective to provide the cylinder as in the second invention. By providing the cylinder, the shielding plate can be made small and the size of the panner can be reduced.
[0031] 第 3発明のパーナによれば、前記遮板の下面から下方に延びたよどみ防止用の筒 を、前記燃焼用空気供給遅延用の筒の内側に 1つ又は複数設けたことにより、遮板 の下面近傍で燃料のよどみ(対流)が生じるのをよどみ防止用の筒によって防ぐこと ができる。このため、遮板の下面近傍でよどむ燃料にも引火して遮板の下面に煤が 付着するのを、防止すること力 Sできる。  [0031] According to the third aspect of the invention, by providing one or a plurality of stagnation prevention cylinders extending downward from the lower surface of the shielding plate inside the combustion air supply delay cylinder, It is possible to prevent stagnation (convection) of fuel near the lower surface of the shielding plate with the stagnation prevention cylinder. For this reason, it is possible to prevent the fuel stagnating near the lower surface of the shielding plate from igniting and soot from adhering to the lower surface of the shielding plate.
[0032] 第 4発明のパーナによれば、前記遮板には、前記燃焼用空気流通穴よりも内側に 他の複数の燃焼用空気流通穴を形成したことにより、燃焼用空気の一部が、これらの 他の燃焼用空気流通穴も通るため、当該燃焼用空気の流れによって遮板の下面近 傍に燃焼用空気のよどみ流が発生するのを抑制することができ、遮板の下面に煤が 付着するのを抑制することができる。また、前記他の燃焼用空気流通穴を介して燃料 噴射ノズルの近傍を低温の燃焼用空気が流れるため、この燃焼用空気によって火炎 の輻射熱で過熱されやすレ、燃料噴射ノズルを冷却することができるとレ、う効果も得ら れる。  [0032] According to the panner of the fourth aspect of the present invention, a part of the combustion air is formed in the shielding plate by forming a plurality of other combustion air circulation holes inside the combustion air circulation hole. Since these other combustion air circulation holes also pass, it is possible to suppress the occurrence of a stagnation flow of combustion air near the bottom surface of the shielding plate due to the flow of the combustion air. It is possible to suppress the adhesion of soot. In addition, since the low-temperature combustion air flows in the vicinity of the fuel injection nozzle through the other combustion air circulation holes, the fuel injection nozzle can be cooled by being easily overheated by the radiant heat of the flame. If you can, you will get a good effect.
[0033] 第 5発明のパーナによれば、前記燃料噴射器は前記燃料噴射ノズルから液体燃料 を噴射するものであり、前記燃料噴射器の周囲を囲む気体燃料供給管と、前記燃料 噴射器との間に筒状の気体燃料流路を形成し、気体燃料は、前記気体燃料流路を 下方へと流れ、前記気体燃料流路の下端から前記燃焼空間部へ噴射されて燃焼さ れる構成としたことにより、筒状の気体燃料流路から噴射される気体燃料は周方向に 均一なものとなるため、燃焼性が向上し、例えば液体燃料の供給量が少な!/、ときなど には気体燃料による保炎効果を発揮する。  [0033] According to the fifth aspect of the invention, the fuel injector injects liquid fuel from the fuel injection nozzle, a gaseous fuel supply pipe surrounding the fuel injector, the fuel injector, A cylindrical gaseous fuel channel is formed between the gas fuel channel, the gaseous fuel flows downward in the gaseous fuel channel, and is injected from the lower end of the gaseous fuel channel into the combustion space and burned. As a result, the gaseous fuel injected from the cylindrical gaseous fuel flow path becomes uniform in the circumferential direction, so that the combustibility is improved. For example, the amount of liquid fuel supplied is small! Demonstrate the flame holding effect of fuel.
[0034] 第 6発明のパーナによれば、中央部に流通穴が開けられた絞り板を前記燃焼空間 部に設け、前記燃焼空間部を下方へと流れてきた燃焼用空気を、前記絞り板により 前記燃焼空間部の中央部へと導いて前記絞り板の流通穴を通過させる構成としたこ とを特徴としているため、燃焼用空気と未燃ガスとの混合が促進される。その結果、 未燃ガスの燃焼が促進されるため、燃料を完全燃焼させることができ、火炎を短炎化 することもできる。しかも、燃焼用空気などの流体が絞り板の流通穴で一旦絞られるた め、流体の流量分布が周方向に均一化される。このため、燃焼排ガスによって炉など を周方向に均一に加熱することもできる。 [0034] According to the panner of the sixth aspect of the present invention, a throttle plate having a through hole in the center is provided in the combustion space, and the combustion air that has flowed downward through the combustion space is supplied to the throttle plate. Therefore, mixing with the combustion air and unburned gas is promoted because it is characterized in that it is guided to the center of the combustion space and passed through the flow hole of the throttle plate. as a result, Since combustion of unburned gas is promoted, the fuel can be burned completely and the flame can be shortened. In addition, since fluid such as combustion air is once squeezed by the flow hole of the squeezing plate, the fluid flow distribution is made uniform in the circumferential direction. For this reason, the furnace and the like can be uniformly heated in the circumferential direction by the combustion exhaust gas.
[0035] 第 7発明のパーナによれば、前記絞り板の上側に旋回ばねを設け、前記絞り板の 流通穴を通過する前記燃焼用空気の流れを前記旋回ばねによって旋回流とする構 成としたことを特徴としているため、絞り板の流通穴を通過した燃焼用空気は旋回す ることよって水平方向に広がる。その結果、流通穴の下方で燃焼用空気の流れの中 心部の圧力が低下するため、外側から前記中心部に流れ込むような燃焼用空気の 循環流が生じる。従って、燃焼用空気と未燃ガスとの混合が更に促進されて、未燃ガ スの燃焼が更に促進されるため、燃料がより完全燃焼し易くなり、火炎も更に短炎化 される。 [0035] According to the seventh aspect of the invention, the swirl spring is provided above the throttle plate, and the flow of the combustion air passing through the flow hole of the throttle plate is swirled by the swirl spring. Therefore, the combustion air that has passed through the flow hole of the throttle plate spreads in the horizontal direction by swirling. As a result, the pressure in the center of the flow of combustion air decreases below the flow hole, and thus a circulation flow of combustion air that flows into the center from the outside is generated. Accordingly, the mixing of the combustion air and the unburned gas is further promoted, and the combustion of the unburned gas is further promoted, so that the fuel is more easily burned and the flame is further shortened.
[0036] 第 8発明のパーナによれば、中央部に流通穴が開けられた多孔板を、絞り板の上 方で前記燃焼空間部に設け、前記燃焼空間部を下方へと流れてきた燃焼用空気の 一部を、前記多孔板により前記燃焼空間部の中央部へと導いて前記多孔板の流通 穴を通過させる構成としたことを特徴としているため、燃焼用空気と未燃ガスとの混合 が更に促進されて、未燃ガスの燃焼が更に促進されるため、燃料がより完全燃焼し 易くなり、火炎も更に短炎化される。  [0036] According to the panner of the eighth invention, a perforated plate having a flow hole in the center is provided in the combustion space above the throttle plate, and the combustion that has flowed downward through the combustion space Since a part of the air for use is guided to the central part of the combustion space by the perforated plate and passes through the through holes of the perforated plate, the combustion air and the unburned gas Since the mixing is further promoted and the combustion of the unburned gas is further promoted, the fuel is more easily combusted and the flame is further shortened.
[0037] また、第 1の構成の二流体噴霧パーナによれば、筒状の側部とこの側部の下端に 設けた底部とを有し、液体燃料供給管から供給された液体燃料を貯留するとともにこ の貯留した液体燃料の液面よりも下方に位置して前記側部又は前記底部に開けた 1 つ又は複数の液体燃料流出穴から、前記貯留した液体燃料を流出させる構成の液 体燃料タンクを備え、この液体燃料タンクの前記液体燃料流出穴から流出した液体 燃料を前記霧化用気体で霧化して燃焼させる構成としたことにより、液体燃料が液体 燃料供給管から液体燃料タンクに間欠的に供給されるときでも、液体燃料タンクの液 体燃料流出穴からは、液体燃料タンクに貯留された液体燃料が連続的に流出するこ とになる。即ち、液体燃料供給系統のポンプの供給流量が低下して、液体燃料供給 管から液体燃料タンクへ液体燃料が間欠的に供給されるときでも、液体燃料タンク内 に貯留される液体燃料の液面が多少上下に変動して液体燃料流出穴からの液体燃 料の流出流量が多少変動する程度であり、従来のような大きな液体燃料供給流量の 変動にはならない。このため、液体燃料供給流量が低いときにも、液体燃料の安定 供給が可能になって、安定燃焼を確立することが容易になり、未燃排ガスの発生や 失火を招くおそれがない。 [0037] Also, according to the two-fluid spraying panner of the first configuration, it has a cylindrical side portion and a bottom portion provided at the lower end of this side portion, and stores the liquid fuel supplied from the liquid fuel supply pipe. In addition, a liquid body configured to cause the stored liquid fuel to flow out from one or a plurality of liquid fuel outflow holes which are located below the liquid level of the stored liquid fuel and opened in the side portion or the bottom portion. A fuel tank is provided, and the liquid fuel flowing out from the liquid fuel outflow hole of the liquid fuel tank is atomized with the atomizing gas and burned, so that the liquid fuel is transferred from the liquid fuel supply pipe to the liquid fuel tank. Even when intermittently supplied, the liquid fuel stored in the liquid fuel tank continuously flows out from the liquid fuel outflow hole of the liquid fuel tank. That is, even when liquid fuel is intermittently supplied from the liquid fuel supply pipe to the liquid fuel tank due to a decrease in the supply flow rate of the pump of the liquid fuel supply system, The liquid level of the liquid fuel stored in the tank slightly fluctuates up and down, and the outflow rate of the liquid fuel from the outflow hole of the liquid fuel slightly fluctuates. . For this reason, even when the liquid fuel supply flow rate is low, stable supply of liquid fuel becomes possible, and it becomes easy to establish stable combustion, and there is no possibility of causing unburned exhaust gas and misfire.
[0038] 第 2の構成の二流体噴霧パーナによれば、前記液体燃料流出穴から流出して前記 二流体合流空間部に流入した液体燃料が、前記霧化用気体流路を下方へと流れた 後に前記霧化用気体導入部で前記溝を流れて前記二流体合流空間部へと導かれ た霧化用気体と、前記二流体合流空間部で合流した後、この霧化用気体とともに前 記噴霧穴から噴霧される構成としたため、液体燃料は溝で流速を速めた (水平方向 の速度成分が増加した)霧化用気体と二流体合流空間部でよく混合されから、二流 体噴霧ノズルの噴霧穴から噴射されることになる。このため、二流体合流空間部や溝 を設けない場合に比べて、液体燃料の噴霧の広がり角が大きくなり、液体燃料が確 実に霧化されるため、当該液体燃料の燃焼性が向上する。  [0038] According to the two-fluid spray panner of the second configuration, the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space flows downward in the atomizing gas flow path. After the atomizing gas introduced into the two-fluid merging space portion through the groove at the atomizing gas introducing portion and the two-fluid merging space portion, the gas is introduced together with the atomizing gas. The liquid fuel is sprayed from the spray hole, so the liquid fuel is well mixed in the two-fluid merging space with the atomizing gas whose flow velocity is increased in the groove (the velocity component in the horizontal direction has increased), and the two-fluid spray nozzle It will be injected from the spray hole. For this reason, compared with the case where the two-fluid merging space and the groove are not provided, the spread angle of the liquid fuel spray is increased and the liquid fuel is surely atomized, so that the combustibility of the liquid fuel is improved.
[0039] 第 3の構成の二流体噴霧パーナによれば、前記液体燃料タンクは、前記液体燃料 タンクのテーパ面部が前記霧化用気体導入部のテーパ面部に嵌まり込むようにして 当接した状態で、前記霧化用気体導入部上に設置されているため、液体燃料タンク と二流体噴霧ノズルの中心軸を合せることが容易である。従って、液体燃料タンクの 片寄りがなぐ霧化用気体流路の幅を周方向に均一にして、霧化用気体流路におけ る霧化用気体の流れを前記周方向に均一にすることができるため、二流体噴霧ノズ ルの噴霧穴からの液体燃料の噴霧の対称性(即ち火炎の対称性)を確保することが できる。  [0039] According to the two-fluid spray panner of the third configuration, the liquid fuel tank is in a state where the tapered surface portion of the liquid fuel tank is in contact with the tapered surface portion of the atomizing gas introduction portion. Since it is installed on the atomizing gas introduction section, it is easy to align the central axes of the liquid fuel tank and the two-fluid spray nozzle. Therefore, the width of the atomizing gas flow path where the liquid fuel tank is offset is made uniform in the circumferential direction, and the flow of the atomizing gas in the atomizing gas flow path is made uniform in the circumferential direction. Therefore, the symmetry of the spray of the liquid fuel from the spray hole of the two-fluid spray nozzle (that is, the symmetry of the flame) can be ensured.
[0040] 第 4の構成の二流体噴霧パーナによれば、前記液体燃料流出穴から流出して前記 二流体合流空間部に流入した液体燃料が、前記霧化用気体流路を下方へと流れた 後に前記液体燃料タンクの底部で前記溝を流れて前記二流体合流空間部へと導か れた霧化用気体と、前記二流体合流空間部で合流した後、この霧化用気体とともに 前記噴霧穴から噴霧される構成としたことにより、液体燃料が、前記溝で流速を速め た (水平方向の速度成分が増加した)霧化用気体と二流体合流空間部でよく混合さ れて、噴霧穴から噴霧される。このため、二流体合流空間部や溝を設けない場合に 比べて、液体燃料の噴霧の広がり角が大きくなり、液体燃料が確実に霧化されるため 、液体燃料の燃焼性が向上する。 [0040] According to the two-fluid spray panner of the fourth configuration, the liquid fuel flowing out from the liquid fuel outflow hole and flowing into the two-fluid merging space flows downward in the atomizing gas flow path. After the atomizing gas that has flowed through the groove at the bottom of the liquid fuel tank and led to the two-fluid merging space, and merged in the two-fluid merging space, the atomizing gas is combined with the atomizing gas. By adopting a configuration in which the fuel is sprayed from the hole, the liquid fuel is well mixed in the two-fluid confluence space with the atomizing gas whose flow velocity has been increased in the groove (the velocity component in the horizontal direction has increased). And sprayed from the spray hole. For this reason, compared with the case where the two-fluid merging space portion and the groove are not provided, the spread angle of the spray of the liquid fuel is increased and the liquid fuel is surely atomized, so that the combustibility of the liquid fuel is improved.
[0041] 更に、前記液体燃料タンクは、前記液体燃料タンクのテーパ面部が前記二流体噴 霧ノズルのテーパ面部に嵌まり込むようして当接した状態で、前記二流体噴霧ノズル 上に設置されているため、液体燃料タンクと二流体噴霧ノズルの中心軸を合せること が容易である。従って、液体燃料タンクの片寄りがなぐ霧化用気体流路の幅を周方 向に均一にして、霧化用気体流路における霧化用気体の流れを前記周方向に均一 にすることができるため、二流体噴霧ノズルの噴霧穴からの液体燃料の噴霧の対称 性(即ち火炎の対称性)を確保すること力 Sできる。 [0041] Further, the liquid fuel tank is installed on the two-fluid spray nozzle in a state where the tapered surface portion of the liquid fuel tank is in contact with the tapered surface portion of the two-fluid spray nozzle. Therefore, it is easy to align the central axis of the liquid fuel tank and the two-fluid spray nozzle. Therefore, it is possible to make the width of the atomizing gas flow path that the liquid fuel tank is offset uniform in the circumferential direction, and make the flow of the atomizing gas in the atomizing gas flow path uniform in the circumferential direction. Therefore, it is possible to secure the symmetry of the spray of liquid fuel from the spray hole of the two-fluid spray nozzle (ie, the symmetry of the flame).
[0042] 第 5の構成の二流体噴霧パーナによれば、前記霧化用気体導入部の溝又は前記 液体燃料タンクの底部の溝は、上面視におレ、て前記二流体合流空間部の円周の接 線方向に沿うように形成したことにより、二流体合流空間部では霧化用気体が旋回流 となって液体燃料と混合されるため、液体燃料と霧化用気体とが、より確実に混合さ れる。このため、二流体噴霧ノズルの噴霧穴から噴射される液体燃料を、より確実に 霧化することができて当該液体燃料の燃焼性をより向上させることができる。  [0042] According to the two-fluid spray panner of the fifth configuration, the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank has a bottom surface and the groove of the two-fluid merge space part. By forming along the circumferential tangential direction, the atomizing gas is swirled in the two-fluid merge space and mixed with the liquid fuel. Ensure that they are mixed. For this reason, the liquid fuel injected from the spray hole of the two-fluid spray nozzle can be atomized more reliably, and the combustibility of the liquid fuel can be further improved.
[0043] 第 6の構成の二流体噴霧パーナによれば、前記霧化用気体導入部の溝又は前記 液体燃料タンクの底部の溝は、上面視において前記二流体合流空間部の径方向に 沿うように形成したことにより、二流体合流空間部では霧化用気体が液体燃料に衝突 するようにして液体燃料に混合されるため、液体燃料と霧化用気体とが、より確実に 混合される。このため、二流体噴霧ノズルの噴霧穴から噴射される液体燃料を、より 確実に霧化することができて当該液体燃料の燃焼性をより向上させることができる。  [0043] According to the two-fluid spray panner of the sixth configuration, the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is along the radial direction of the two-fluid merge space part in a top view. In this way, in the two-fluid merge space, the atomizing gas collides with the liquid fuel and is mixed with the liquid fuel, so that the liquid fuel and the atomizing gas are more reliably mixed. . For this reason, the liquid fuel injected from the spray hole of the two-fluid spray nozzle can be atomized more reliably, and the combustibility of the liquid fuel can be further improved.
[0044] 第 7の構成の二流体噴霧パーナによれば、前記霧化用気体導入部の溝又は前記 液体燃料タンクの底部の溝は、前記二流体合流空間部の中心軸回りに回転対称の 位置関係となるように複数形成されて!/、るため、二流体噴霧ノズルの噴霧穴から噴霧 された液体燃料の周方向の分布量を均一にして、当該液体燃料の燃焼性を向上さ せること力 Sでさる。  [0044] According to the two-fluid spray panner of the seventh configuration, the groove of the atomizing gas introduction part or the groove of the bottom part of the liquid fuel tank is rotationally symmetric about the central axis of the two-fluid merge space part. As a result, the liquid fuel sprayed from the spray holes of the two-fluid spray nozzle is uniformly distributed in the circumferential direction to improve the combustibility of the liquid fuel. That's the power S.
[0045] 第 8の構成の二流体噴霧パーナによれば、前記液体燃料タンクを下方に押圧する 押圧部材を備えることにより、前記液体燃料タンクの底部を、前記二流体噴霧ノズノレ の霧化用空気導入部に押し付けて密着させた構成としたこと、又は、前記液体燃料 タンクの底部を、前記二流体噴霧ノズルに押し付けて密着させた構成としたことを特 徴とするため、燃料タンクの底部の下面と霧化用気体導入部の上面とが密着、燃料 タンクの底部のテーパ面部と霧化用気体導入部のテーパ面部とが密着、或いは、液 体燃料タンクのテーパ面部と二流体噴霧ノズルのテーパ面部とが密着することにより 、これらの接触面間に隙間ができるのを防止することができる。このため、霧化用気体 が溝以外の部分を流れることを防止して、溝による広域噴霧の効果を充分に発揮す ること力 Sでさる。 [0045] According to the two-fluid spraying panner of the eighth configuration, the liquid fuel tank is pressed downward. By providing a pressing member, the bottom portion of the liquid fuel tank is pressed against the atomizing air introducing portion of the two-fluid spray nozzle, or the bottom portion of the liquid fuel tank is Since it is configured to be pressed against and in close contact with the fluid spray nozzle, the bottom surface of the bottom of the fuel tank and the top surface of the atomizing gas introduction section are in close contact, and the tapered surface of the bottom of the fuel tank and the atomizing surface It is possible to prevent a gap from being formed between these contact surfaces by closely contacting the tapered surface portion of the gas introduction portion or by closely contacting the tapered surface portion of the liquid fuel tank and the tapered surface portion of the two-fluid spray nozzle. . For this reason, the atomizing gas is prevented from flowing through the portion other than the groove, and the force S that sufficiently exerts the effect of wide-area spraying by the groove is used.
[0046] 第 9の構成の二流体噴霧パーナによれば、前記液体燃料流出穴から流出して前記 二流体合流空間部に流入した液体燃料が、前記第 1の霧化用気体流路を下方へと 流れた後に前記支持部の間の霧化用気体流通部を通過し、前記第 2の霧化用気体 流路を流れて前記二流体合流空間部へと導かれた霧化用気体と、前記二流体合流 空間部で合流した後、この霧化用気体とともに前記噴霧穴から噴霧される構成とした ことにより、液体燃料は二流体合流空間部で霧化用気体と混合されてから、二流体 噴霧ノズルの噴霧穴から噴霧されることになる。このため、二流体合流空間部を設け ない場合に比べて、液体燃料の噴霧の広がり角が大きくなり、液体燃料が確実に霧 化されるため、当該液体燃料の燃焼性が向上する。  [0046] According to the two-fluid spray panner of the ninth configuration, the liquid fuel that has flowed out of the liquid fuel outflow hole and flowed into the two-fluid merging space portion moves down the first atomizing gas flow path. And the atomizing gas that has passed through the atomizing gas flow part between the support parts and flowed through the second atomizing gas flow path and led to the two-fluid merging space part. After the merging in the two-fluid merging space portion, the liquid fuel is mixed with the atomizing gas in the two-fluid merging space portion by being configured to be sprayed from the spray hole together with the atomizing gas, It will be sprayed from the spray hole of the two-fluid spray nozzle. For this reason, compared with the case where the two-fluid merging space portion is not provided, the spread angle of the spray of the liquid fuel is increased and the liquid fuel is surely atomized, so that the combustibility of the liquid fuel is improved.
[0047] 第 10の構成の二流体噴霧パーナによれば、前記二流体合流空間部は逆円錐状 であり、この逆円錐状の空間部の頂点位置に前記噴霧穴が形成されているため、二 流体合流空間部における液体燃料と霧化用気体との混合を、より確実に行うことがで きる。このため、噴霧穴から噴霧する液体燃料を、より確実に霧化して液体燃料の燃 焼性を更に向上させることができる。  [0047] According to the two-fluid spray panner of the tenth configuration, the two-fluid merging space portion has an inverted conical shape, and the spray hole is formed at the apex position of the inverted conical space portion. The mixing of the liquid fuel and the atomizing gas in the two-fluid merging space can be performed more reliably. For this reason, the liquid fuel sprayed from the spray hole can be atomized more reliably and the combustibility of the liquid fuel can be further improved.
[0048] 第 11の構成の二流体噴霧パーナによれば、前記液体燃料供給管の先端部が、前 記液体燃料タンクの側部の内周面に接して!/、るため、液体燃料供給管からの液体燃 料の流出量が少ないときにも、液体燃料は前記内周面を伝って流れ落ちるため、液 体燃料流出穴からの液体燃料の流出を、より安定させること力できる。即ち、液体燃 料が粒状になって落下すると、液体燃料タンク内に貯留されている液体燃料の液面 が大きく変動し、液面が非常に低い場合には一時的に液体燃料流出穴が露出して 液体燃料の流出が途絶えることも考えられる力、液体燃料が液体燃料タンクの内周 面を伝って流れ落ちるようにすれば、力、かる不具合の発生を防止することができる。 図面の簡単な説明 [0048] According to the two-fluid spraying panner of the eleventh configuration, the tip of the liquid fuel supply pipe is in contact with the inner peripheral surface of the side part of the liquid fuel tank! Even when the amount of liquid fuel flowing out from the pipe is small, the liquid fuel flows down along the inner peripheral surface, so that the outflow of liquid fuel from the liquid fuel outflow hole can be further stabilized. In other words, if the liquid fuel drops in a granular form, the liquid level of the liquid fuel stored in the liquid fuel tank When the liquid level fluctuates greatly and the liquid level is very low, the liquid fuel outflow hole may be temporarily exposed and the liquid fuel outflow may be interrupted. The liquid fuel travels along the inner surface of the liquid fuel tank. If it flows down, generation | occurrence | production of a force and a trouble can be prevented. Brief Description of Drawings
園 1]本発明の実施の形態例 1に係る二流体噴霧パーナの構成を示す縦断面図で ある。 FIG. 1 is a longitudinal sectional view showing a configuration of a two-fluid spray panner according to Embodiment 1 of the present invention.
[図 2]図 1の A— A線矢視の横断面図である。  2 is a cross-sectional view taken along line AA in FIG.
[図 3]図 1の B— B線矢視の横断面図である。 FIG. 3 is a cross-sectional view taken along line BB in FIG.
[図 4] (a)は図 1の二流体噴霧パーナに備えた二流体噴霧器を抽出して示す拡大縦 断面図、(b)は(a)の C— C線矢視の横断面図である。  [Fig. 4] (a) is an enlarged longitudinal sectional view showing a two-fluid sprayer provided in the two-fluid spraying panner of FIG. 1, and (b) is a transverse sectional view taken along the line CC in (a). is there.
園 5] (a)は前記二流体噴霧器の下側部分を拡大して示す縦断面図、(b)は前記二 流体噴霧器に備えた二流体噴霧ノズルを抽出して示す上面図((a)の D方向矢視図 )でめる。 5] (a) is an enlarged longitudinal sectional view showing the lower part of the two-fluid sprayer, and (b) is a top view showing the two-fluid spray nozzle extracted from the two-fluid sprayer ((a) In the D direction arrow view)
園 6] (a)は本発明の実施の形態例 2に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図、(b)は前記二流体噴霧器に備えた二流体噴 霧ノズルを抽出して示す上面図((a)の Ε方向矢視図)である。 6] (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 2 of the present invention, and (b) is a diagram of the two-fluid sprayer provided in the two-fluid sprayer. FIG. 4 is a top view (a view in the arrow direction of (a)) showing a fluid spray nozzle extracted.
園 7] (a)は本発明の実施の形態例 3に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図、(b)は前記二流体噴霧器に備えた二流体噴 霧ノズルを抽出して示す上面図((a)の F方向矢視図)である。 7] (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 3 of the present invention, and (b) is the two-part sprayer provided in the two-fluid sprayer. It is a top view (F direction arrow view of (a)) which extracts and shows a fluid spray nozzle.
園 8] (a)は本発明の実施の形態例 4に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図( (b)の G— G線矢視の縦断面図)、 (b)は前 記二流体噴霧器に備えた液体燃料タンクを抽出して示す下面図( (a)の Η方向矢視 図)、(c)は (b)の I方向矢視図、(d)は(a)の J J線矢視の横断面図である。 Fig. 8] (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spraying pan according to Embodiment 4 of the present invention (longitudinal view taken along line G-G in (b)) (B) is a bottom view of the liquid fuel tank provided in the two-fluid sprayer. (C) is a view from the direction of arrow in (a), and (c) is a view from the direction of arrow I in (b). Figure (d) is a cross-sectional view taken along line JJ in (a).
園 9] (a)は本発明の実施の形態例 5に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図( (b)の K K線矢視断面図)、 (b)は前記二 流体噴霧器に備えた液体燃料タンクを抽出して示す下面図( (a)の L方向矢視図)、 (c)は(a)の Μ— Μ線矢視の横断面図である。 9] (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 5 of the present invention (cross-sectional view taken along line KK in (b)), (b) is a bottom view extracted from the liquid fuel tank provided in the two-fluid sprayer (a view in the direction of the arrow L in (a)), and (c) is a cross-sectional view in the direction of the arrow Μ-Μ in FIG. FIG.
[図 10] (a)は本発明の実施の形態例 6に係る二流体噴霧パーナにおける二流体噴 霧器の下側部分の構成を示す縦断面図、(b)は(a)の N— N線矢視の横断面図であ 園 11]本発明の実施の形態例 7に係る二流体噴霧パーナの構成を示す縦断面図で ある。 FIG. 10 (a) is a two-fluid jet in a two-fluid spray pan according to Embodiment 6 of the present invention. FIG. 9B is a longitudinal sectional view showing the configuration of the lower part of the atomizer, and FIG. 11B is a transverse sectional view taken along line N—N in FIG. 11A. 11] Two-fluid spray according to Embodiment 7 of the present invention It is a longitudinal cross-sectional view which shows the structure of a panner.
[図 12]図 11の O— O線矢視の横断面図である。  FIG. 12 is a cross-sectional view taken along line OO in FIG.
[図 13] (a)は従来の二流体噴霧パーナにおいて液体燃料供給管の先端部から液体 燃料が間欠的に流出する様子を示す図、(b)は従来の二流体噴霧パーナにおいて 液体燃料の供給流量が大きく変動する様子を示す図である。  [FIG. 13] (a) is a diagram showing a state in which liquid fuel intermittently flows out from the tip of a liquid fuel supply pipe in a conventional two-fluid spraying panner, and (b) is a diagram of liquid fuel in a conventional two-fluid spraying panner. It is a figure which shows a mode that a supply flow volume is fluctuate | varied largely.
[図 14] (a)は本発明の実施の形態例 8に係る二流体噴霧パーナの構成を示す縦断 面図、(b)は(a)の P— P線矢視の横断面である。  FIG. 14 (a) is a longitudinal sectional view showing a configuration of a two-fluid spraying pan according to Embodiment 8 of the present invention, and FIG. 14 (b) is a cross-sectional view taken along the line PP in FIG. 14 (a).
園 15]二流体噴霧器の噴霧穴から絞り板までの距離 (L)と燃焼空間部の直径 (D)と の比(L/D)と絞り板の最適な設置位置との関係を示す図である。 15] A diagram showing the relationship between the ratio (L / D) of the distance (L) from the spray hole to the diaphragm plate of the two-fluid sprayer and the diameter (D) of the combustion space and the optimum position of the diaphragm plate. is there.
[図 16] (a)は本発明の実施の形態例 9に係る二流体噴霧パーナの構成を示す縦断 面図、(b)は(a)の Q— Q線矢視の横断面、(c)は(b)に相当する横断面図であって 旋回ばねの他の構造例を示す図である。 [FIG. 16] (a) is a longitudinal sectional view showing a configuration of a two-fluid spraying pan according to Embodiment 9 of the present invention, (b) is a cross-sectional view taken along line Q-Q in (a), (c ) Is a cross-sectional view corresponding to (b), and is a view showing another structural example of the swing spring.
[図 17] (a)は本発明の実施の形態例 10に係る二流体噴霧パーナの構成を示す縦断 面図、図 17 (b)は図 17 (a)の R—R線矢視の横断面である。  [FIG. 17] (a) is a longitudinal sectional view showing the configuration of a two-fluid spraying pan according to Embodiment 10 of the present invention, and FIG. 17 (b) is a cross-sectional view taken along line RR in FIG. 17 (a). Surface.
[図 18]本発明の実施の形態例 11に係る燃料電池発電システムの概要を示す系統図 である。  FIG. 18 is a system diagram showing an overview of a fuel cell power generation system according to Embodiment 11 of the present invention.
符号の説明 Explanation of symbols
11 二流体噴霧パーナ、 12 二流体噴霧器、 13 燃焼空間部、 14 気体燃 料流路、 15 燃焼用空気流路、 16 第 1円筒、 17 第 2円筒、 18 プレート、 19 液体燃料タンク、 20 側部、 20a 内周面、 20b 外周面、 21 底部、 21 a 内面(上面)、 21b 外面(下面)、 21b— 1 外側部分、 21b— 2 内側部分、 11 Two-fluid spray panner, 12 Two-fluid sprayer, 13 Combustion space, 14 Gas fuel flow path, 15 Combustion air flow path, 16 1st cylinder, 17 2nd cylinder, 18 plate, 19 Liquid fuel tank, 20 side Part, 20a inner peripheral surface, 20b outer peripheral surface, 21 bottom, 21a inner surface (upper surface), 21b outer surface (lower surface), 21b-1 outer part, 21b-2 inner part,
22 液体燃料流出穴、 23 液面、 24 液体燃料、 24A 外形部、 25 液体 燃料供給管、 25A 先端部(下端部)、 26 ヮッシャ、 27 噴霧器外筒、 27A 下端部、 27B 上端部、 28 霧化用空気流路、 29 空気流入穴、 30 霧化用 空気供給管、 30A 先端部、 31 キャップ、 32, 33 ネジ部、 31A 下部、 3 IB 段部、 34 Oリング、 35 ヮッシャ、 36 コイルばね、 37 霧化用気体導入 部、 37a 上面、 37b 内周面、 38 二流体噴霧ノズル、 38a 内面(上面)、 39 ノズル本体部、 40 溝、 41 空間部、 42 空間部(凹部)、 43 二流体合 流空間部、 44 噴霧穴、 45 隙間、 46 霧化用空気、 47 気体燃料供給管、 48 バーナ外筒、 48a 内周面、 49 気体燃料、 50 燃焼用空気、 51 突 起、 52 燃焼用空気流通穴、 53 燃焼用空気流路、 54 点火プラグ、 61 溝 、 81 溝、 91 支持部、 91a 下面、 91a— 1 外側部分、 92 霧化用空気流 路、 93 霧化用空気流通部、 101 燃焼用空気流通穴、 111 改質器、 112 燃焼炉、 113 燃料電池、 121 絞り板、 122 流通穴、 123 火炎、 124 旋 回ばね、 125 多孔板、 126 孔、 127 流通穴 22 Liquid fuel outflow hole, 23 liquid level, 24 liquid fuel, 24A outer shape, 25 liquid fuel supply pipe, 25A tip (lower end), 26 washer, 27 sprayer outer cylinder, 27A lower end, 27B upper end, 28 fog Air flow path for atomization, 29 Air inflow hole, 30 Air supply pipe for atomization, 30A tip, 31 Cap, 32, 33 Screw part, Lower part of 31A, 3 IB step, 34 O-ring, 35 washer, 36 coil spring, 37 atomizing gas inlet, 37a upper surface, 37b inner peripheral surface, 38 two-fluid spray nozzle, 38a inner surface (upper surface), 39 nozzle body, 40 groove , 41 Space, 42 Space (concave), 43 Two-fluid merge space, 44 Spray hole, 45 Clearance, 46 Atomizing air, 47 Gaseous fuel supply pipe, 48 Burner outer cylinder, 48a Inner peripheral surface, 49 Gas fuel, 50 Combustion air, 51 Protrusion, 52 Combustion air flow hole, 53 Combustion air flow path, 54 Spark plug, 61 groove, 81 groove, 91 Support, 91a bottom surface, 91a-1 outer part, 92 Atomization air flow path, 93 Atomization air flow section, 101 Combustion air flow hole, 111 Reformer, 112 Combustion furnace, 113 Fuel cell, 121 Throttle plate, 122 Flow hole, 123 Flame, 124 Rotating spring , 125 perforated plate, 126 holes, 127 through holes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 以下、本発明の実施の形態例を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0052] <実施の形態例 1〉  <Embodiment 1>
図 1は本発明の実施の形態例 1に係る二流体噴霧パーナの構成を示す縦断面図、 図 2は図 1の A— A線矢視の横断面図、図 3は図 1の B— B線矢視の横断面図である 。また、図 4 (a)は図 1の二流体噴霧パーナに備えた二流体噴霧器を抽出して示す 拡大縦断面図、図 4 (b)は図 4 (a)の C C線矢視の横断面図、図 5 (a)は前記二流 体噴霧器の下側部分を拡大して示す縦断面図、図 5 (b)は前記二流体噴霧器に備 えた二流体噴霧ノズルを抽出して示す上面図(図 5 (a)の D方向矢視図)である。  1 is a longitudinal sectional view showing the configuration of a two-fluid spraying panner according to Embodiment 1 of the present invention, FIG. 2 is a transverse sectional view taken along line A—A in FIG. 1, and FIG. 3 is B in FIG. It is a cross-sectional view taken along line B. Fig. 4 (a) is an enlarged vertical cross-sectional view of the two-fluid sprayer provided in the two-fluid spray panner of Fig. 1, and Fig. 4 (b) is a cross-sectional view taken along the CC line in Fig. 4 (a). FIG. 5 (a) is an enlarged longitudinal sectional view showing a lower part of the two-fluid sprayer, and FIG. 5 (b) is a top view showing the two-fluid spray nozzle provided in the two-fluid sprayer. Fig. 5 (a) arrow D direction).
[0053] 図 1、図 2及び図 3に基づき、本実施の形態例 1の二流体噴霧パーナ 11の概要を 説明すると、本二流体噴霧パーナ 11はパーナ外筒 48を有しており、このパーナ外 筒 48内において上側の中央部には二流体噴霧器 12が配置され、この二流体噴霧 器 12の下側が燃焼空間部 13となっている。二流体噴霧器 12の周囲には気体燃料 供給路 14が形成され、更に気体燃料供給路 14の周囲には燃焼用空気供給路 15が 形成されている。また、燃焼用空気供給路 15と燃焼空間部 13との間は、遮板として のプレート 18で仕切られており、プレート 18の下面には、燃焼用空気供給遅延用の 筒としての第 1円筒 16と、よどみ防止用の筒としての第 2円筒 17とが設けられている。  [0053] Based on Figs. 1, 2 and 3, the outline of the two-fluid spray panner 11 of the first embodiment will be described. The two-fluid spray panner 11 has a panner outer cylinder 48. A two-fluid sprayer 12 is disposed in the upper central portion of the PANA outer cylinder 48, and the lower side of the two-fluid sprayer 12 is a combustion space 13. A gaseous fuel supply passage 14 is formed around the two-fluid sprayer 12, and a combustion air supply passage 15 is formed around the gaseous fuel supply passage 14. The combustion air supply passage 15 and the combustion space 13 are partitioned by a plate 18 as a shield, and a first cylinder as a cylinder for delaying supply of combustion air is formed on the lower surface of the plate 18. 16 and a second cylinder 17 as a cylinder for preventing stagnation are provided.
[0054] 図 4及び図 5に基づき、二流体噴霧器 12の構成について詳述する。なお、二流体 噴霧器 12は液体燃料と霧化用気体 (霧化用空気)の二流体を噴射するもの、即ち前 記液体燃料を前記霧化用気体で霧化して噴射するものである。 The configuration of the two-fluid sprayer 12 will be described in detail based on FIG. 4 and FIG. Two fluids The atomizer 12 injects two fluids, ie, liquid fuel and atomizing gas (atomizing air), that is, the liquid fuel is atomized with the atomizing gas and injected.
[0055] 図 4及び図 5に示すように、二流体噴霧器 12には液体燃料タンク 19が内蔵されて いる。液体燃料タンク 19は円筒状の側部 (胴体部) 20と、この側部 20の下端に設け られた底部 21とを有する構造となっている。そして、液体燃料タンク 19の内部にはバ ーナ燃焼用の液体燃料 24が貯留されており、液体燃料タンク 19の底部 21の中央部 には微細な液体燃料流出穴 22が開けられて!/、る。液体燃料流出穴 22は、液体燃料 タンク 19内に貯留された液体燃料 24の液面 23よりも下方に位置している。  As shown in FIGS. 4 and 5, the two-fluid sprayer 12 includes a liquid fuel tank 19 therein. The liquid fuel tank 19 has a structure having a cylindrical side portion (body portion) 20 and a bottom portion 21 provided at the lower end of the side portion 20. Liquid fuel 24 for burner combustion is stored inside the liquid fuel tank 19, and a fine liquid fuel outflow hole 22 is opened at the center of the bottom 21 of the liquid fuel tank 19! / RU The liquid fuel outflow hole 22 is located below the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19.
[0056] 即ち、液体燃料供給管 25から供給された液体燃料 24が、一旦、液体燃料タンク 1 9内に貯留され、この貯留された液体燃料 24が、下の液体燃料流出穴 22から液体 燃料タンク 19の外への流出するようになっている。このとき液体燃料タンク 19内に貯 留されている液体燃料 24の液面 23の高さ(底部 21の内面 21aから液面 23までの高 さ)は、液体燃料 24が液体燃料流出穴 22を流通するときの圧力損失分に対応した 液柱ヘッド (詳細後述)が得られる高さとなる。パーナ燃焼用の液体燃料 24としては 例えば灯油、重油、アルコール、エーテルなどを使用することができる。  That is, the liquid fuel 24 supplied from the liquid fuel supply pipe 25 is temporarily stored in the liquid fuel tank 19, and the stored liquid fuel 24 is supplied from the lower liquid fuel outflow hole 22 to the liquid fuel. It flows out of the tank 19. At this time, the level of the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19 (the height from the inner surface 21a of the bottom 21 to the level 23) is such that the liquid fuel 24 passes through the liquid fuel outflow hole 22. This is the height at which a liquid column head (detailed later) corresponding to the pressure loss during distribution can be obtained. As the liquid fuel 24 for burning PANA, for example, kerosene, heavy oil, alcohol, ether or the like can be used.
[0057] 液体燃料供給管 25は、その先端部(下端部) 25Aが、液体燃料タンク 19の上端か ら下方に向かつて液体燃料タンク 19内に揷入されており、液体燃料タンク 19内にお V、て液面 23の上方で且つ中央部に位置するように配設されて!/、る。液体燃料供給 管 25の基端側は図示しない液体燃料供給系統の液体燃料供給ポンプに接続され ている。  The liquid fuel supply pipe 25 has a tip end (lower end) 25 A inserted into the liquid fuel tank 19 from the upper end of the liquid fuel tank 19 downward and into the liquid fuel tank 19. V, placed above the liquid level 23 and in the middle! The base end side of the liquid fuel supply pipe 25 is connected to a liquid fuel supply pump of a liquid fuel supply system (not shown).
[0058] なお、図 5 (a)に一点鎖線で示すように液体燃料供給管 25の先端部 25Aは、液体 燃料タンク 19の側部 20の内周面 20aに接触させてもよい。液体燃料 24の供給流量 が少ないとき、液体燃料供給管 25の先端部 25Aが液体燃料タンク 19の内周面 20a 力、ら離れている場合には液体燃料 24が、図示例のように粒状になって落下するが、 液体燃料供給管 25の先端部 25Aが液体燃料タンク 19の内周面 20aに接触している 場合には液体燃料 24が、当該内周面 20aを伝って流れ落ちることになる。  It should be noted that the tip end portion 25 A of the liquid fuel supply pipe 25 may be brought into contact with the inner peripheral surface 20 a of the side portion 20 of the liquid fuel tank 19 as shown by a one-dot chain line in FIG. When the supply flow rate of the liquid fuel 24 is small, the tip 25A of the liquid fuel supply pipe 25 is separated from the inner peripheral surface 20a of the liquid fuel tank 19 by force. However, if the tip 25A of the liquid fuel supply pipe 25 is in contact with the inner peripheral surface 20a of the liquid fuel tank 19, the liquid fuel 24 will flow down along the inner peripheral surface 20a. .
[0059] 液体燃料タンク 19は円筒状の噴霧器外筒 27内に噴霧器外筒 27と同心円状に設 けられており、液体燃料タンク 19の側部 20と噴霧器外筒 27との間の円筒状の空間 部が、霧化用気体流路としての霧化用空気流路 28となっている。噴霧器外筒 27に は空気流入穴 29が開けられており、この空気流入穴 29には霧化用空気供給管 30 の先端部 30Aが接続されている。霧化用空気供給管 30の基端側は図示しない霧化 用空気供給系統の空気供給ブロアに接続されている。 [0059] The liquid fuel tank 19 is disposed concentrically with the atomizer outer cylinder 27 in a cylindrical atomizer outer cylinder 27, and is formed between the side 20 of the liquid fuel tank 19 and the atomizer outer cylinder 27. Space The portion is an atomizing air passage 28 as an atomizing gas passage. An air inflow hole 29 is formed in the sprayer outer cylinder 27, and a tip portion 30 A of an atomizing air supply pipe 30 is connected to the air inflow hole 29. The proximal end side of the atomizing air supply pipe 30 is connected to an air supply blower of an atomizing air supply system (not shown).
[0060] 二流体噴霧ノズル 38は噴霧器外筒 27の下端部 27Aに装着され、液体燃料タンク  [0060] The two-fluid spray nozzle 38 is attached to the lower end 27A of the sprayer outer cylinder 27, and is a liquid fuel tank.
19の下側に位置している。即ち、二流体噴霧器 12は液体燃料供給流量の変動を緩 和するためのバッファ部として液体燃料タンク 19を、液体燃料供給管 25と二流体噴 霧ノズル 38との間に介在させた構成となっている。二流体噴霧ノズル 38は円板状の ノズル本体部 39と、ノズル本体部 39の上に形成された霧化用気体導入部としての霧 化用空気導入部 37とを有してなるものであり、ノズル本体部 39の上面の周縁部を噴 霧器外筒 27の下端面に当接させ、且つ、霧化用空気導入部 37を噴霧器外筒 27の 下端部 27Aの内側に嵌合させた状態で溶接などの固定手段により、噴霧器外筒 27 の下端部 27Aに固定されている。  Located on the lower side of 19. That is, the two-fluid sprayer 12 has a configuration in which the liquid fuel tank 19 is interposed between the liquid fuel supply pipe 25 and the two-fluid spray nozzle 38 as a buffer unit for reducing fluctuations in the liquid fuel supply flow rate. ing. The two-fluid spray nozzle 38 has a disk-like nozzle body 39 and an atomizing air introduction part 37 as an atomizing gas introduction part formed on the nozzle body 39. The peripheral edge of the upper surface of the nozzle body 39 is brought into contact with the lower end surface of the atomizer outer cylinder 27, and the atomizing air introduction part 37 is fitted inside the lower end 27A of the atomizer outer cylinder 27. In the state, it is fixed to the lower end portion 27A of the sprayer outer cylinder 27 by fixing means such as welding.
[0061] 霧化用空気導入部 37は円環状に形成され、その中央部に平面視(上面視)が円 形状の空間部 41を有している。ノズル本体部 39は、その中央部に逆円錐状の空間 部(凹部) 42が形成されており、且つ、中心(逆円錐状の空間部 42の頂点位置)に微 細な噴霧穴 44が開けられている。霧化用空気導入部 37の空間部 41とノズル本体部 39の空間部 42は連続しており、これらの空間部 41 , 42が二流体合流空間部 43を 構成している。即ち、二流体合流空間部 43は上面視が円形状となっており、その径 1S 噴霧穴 44に向力、うにしたがって徐々に小さくなる先細り構造となっている。霧化 用空気導入部 37には、その周方向の 2箇所に溝 (スリット) 40が形成されている。これ らの溝 40は旋回型のものであり、上面視において二流体合流空間部 43の円周の接 線方向に沿い、且つ、二流体合流空間部 43の中心軸(図示例では噴霧穴 44の中 心軸)回りに回転対称 (周方向に等間隔)の位置関係となっている。  [0061] The atomizing air introducing portion 37 is formed in an annular shape, and has a space portion 41 having a circular shape in plan view (top view) at the center thereof. The nozzle body 39 has an inverted conical space (recess) 42 formed at the center thereof, and a fine spray hole 44 is formed at the center (vertical position of the inverted conical space 42). It has been. The space part 41 of the atomizing air introduction part 37 and the space part 42 of the nozzle body part 39 are continuous, and these space parts 41, 42 constitute a two-fluid merge space part 43. In other words, the two-fluid merging space 43 has a circular shape when viewed from above, and has a tapered structure that gradually decreases as the directional force is applied to the diameter 1S spray hole 44. The atomizing air introduction section 37 has grooves (slits) 40 formed at two locations in the circumferential direction. These grooves 40 are of a swivel type, are along the tangential direction of the circumference of the two-fluid merge space 43 in the top view, and are the central axis of the two-fluid merge space 43 (in the illustrated example, the spray hole 44). (Center axis) is rotationally symmetrical (equally spaced in the circumferential direction).
[0062] 一方、噴霧器外筒 27の上端部 27Bは、噴霧器外筒 27内から外への霧化用空気も 漏れを防止するための閉塞部材としてのキャップ 31によって閉じられている。キヤッ プ 31は、その下部 31Aの外周面に形成されたネジ部 33を噴霧器外筒 27の上端部 27Bの内周面に形成されたネジ部 32に螺合させることによって、噴霧器外筒 27の上 端部 27Bに装着されている。キャップ 31の段部 31Bと噴霧器外筒 27の上端部 27B との間には、霧化用空気の漏れを確実に防止するために Oリング 34が介設されてい る。液体燃料供給管 25の先端部 25Aはキャップ 31を貫通し、噴霧器外筒 27内(コィ ルばね 36内)を経て、液体燃料タンク 19の上端から液体燃料タンク 19内へと揷入さ れている。 [0062] On the other hand, the upper end portion 27B of the sprayer outer cylinder 27 is closed by a cap 31 as a closing member for preventing leakage of the atomizing air from the inside of the sprayer outer cylinder 27 to the outside. The cap 31 is formed by screwing the screw portion 33 formed on the outer peripheral surface of the lower portion 31A with the screw portion 32 formed on the inner peripheral surface of the upper end portion 27B of the sprayer outer tube 27, thereby Up It is attached to the end 27B. An O-ring 34 is interposed between the step portion 31B of the cap 31 and the upper end portion 27B of the sprayer outer cylinder 27 in order to reliably prevent the atomizing air from leaking. The tip 25A of the liquid fuel supply pipe 25 passes through the cap 31, passes through the sprayer outer cylinder 27 (inside the coil spring 36), and is inserted into the liquid fuel tank 19 from the upper end of the liquid fuel tank 19. Yes.
[0063] キャップ 31の下面側に設けられたヮッシャ 35と、液体燃料タンク 19の上端側に設 けられたヮッシャ 26との間には、押圧部材としてのコイルばね 36が介設されている。 このコイルばね 36によって液体燃料タンク 19を下方に押圧することにより、液体燃料 タンク 19の底部 21の外面(下面) 21bを、霧化用空気導入部 37の上面 37aに押し付 けている。このことにより、互いに接触する底部 21の外面(下面) 21bと、二流体噴霧 ノズル 38 (霧化用空気導入部 37)の上面 37aとが密着して、これらの接触面 21b, 37 a間に隙間が生じるのを防止している。  A coil spring 36 as a pressing member is interposed between a washer 35 provided on the lower surface side of the cap 31 and a washer 26 provided on the upper end side of the liquid fuel tank 19. By pressing the liquid fuel tank 19 downward by this coil spring 36, the outer surface (lower surface) 21 b of the bottom portion 21 of the liquid fuel tank 19 is pressed against the upper surface 37 a of the atomizing air introducing portion 37. As a result, the outer surface (lower surface) 21b of the bottom 21 that is in contact with the upper surface 37a of the two-fluid spray nozzle 38 (the atomizing air introducing portion 37) is in close contact, and the contact surfaces 21b and 37a are in close contact with each other. The gap is prevented from occurring.
[0064] ヮッシャ 26と液体燃料供給管 25との間には隙間 45を有しており、この隙間 45を介 して液体燃料タンク 19の内部空間と、液体燃料タンク 19の外側における噴霧器外筒 27の内部空間とが連通している。即ち、液体燃料タンク 19の上端は噴霧器外筒 27 の内部空間に対して開放され、液体燃料タンク 19の内部空間と霧化用空気流路 28 の上端部(上流部)とが連通している。このため、空気流入穴 29から噴霧器外筒 27 内に流入して霧化用空気流路 28に流入する霧化用空気 46の圧力が、液体燃料タ ンク 19内に貯留されている液体燃料 24の液面 23にも作用する。  [0064] A gap 45 is provided between the washer 26 and the liquid fuel supply pipe 25, and the inner space of the liquid fuel tank 19 and the sprayer outer cylinder outside the liquid fuel tank 19 are provided via the gap 45. It is in communication with 27 internal spaces. That is, the upper end of the liquid fuel tank 19 is open to the inner space of the sprayer outer cylinder 27, and the inner space of the liquid fuel tank 19 and the upper end (upstream portion) of the atomizing air flow path 28 are in communication. . For this reason, the pressure of the atomizing air 46 flowing into the atomizer outer cylinder 27 from the air inflow hole 29 and flowing into the atomizing air flow path 28 is the liquid fuel 24 stored in the liquid fuel tank 19. It also acts on the liquid level 23.
[0065] この二流体噴霧器 12では、液体燃料供給ポンプ力も液体燃料供給管 25を介して 送られてくるパーナ燃焼用の液体燃料 24が、液体燃料供給管 25の先端部 25Aから 流出すると(比較的高流量の場合には連続的に流出し、比較的低流量の場合には 図 5 (a)に例示するように間欠的に流出すると)、一旦、液体燃料タンク 19内に貯留さ れる。そして、この液体燃料タンク 19内に貯留された液体燃料 24が、液体燃料タンク 19の底部 21の液体燃料流出穴 22から二流体合流空間部 43へと連続的に流出す る。なお、液体燃料供給管 25の先端部 25Aからの液体燃料の流出が間欠的である 場合には、液体燃料 24が液体燃料供給管 25の先端部 25Aから流出したときに液面 23が上昇し、次に液体燃料 24が液体燃料供給管 25の先端部 25Aから流出するま での間は液面 23が低下するという現象を繰り返し、この液位変動に応じて多少は液 体燃料流出穴 22から流出する液体燃料 24の流量も変動することにはなる力 この流 量変動は従来の流量変動に比べて僅かなものである。 [0065] In this two-fluid sprayer 12, when the liquid fuel for pumping the liquid fuel 24 also sent through the liquid fuel supply pipe 25 flows out from the tip 25A of the liquid fuel supply pipe 25 (comparison) In the case of a relatively high flow rate, it flows out continuously, and in the case of a relatively low flow rate, if it flows out intermittently as illustrated in FIG. 5 (a)), it is temporarily stored in the liquid fuel tank 19. Then, the liquid fuel 24 stored in the liquid fuel tank 19 continuously flows out from the liquid fuel outflow hole 22 at the bottom 21 of the liquid fuel tank 19 to the two-fluid merge space 43. If the liquid fuel flows out from the tip 25A of the liquid fuel supply pipe 25 intermittently, the liquid level 23 rises when the liquid fuel 24 flows out of the tip 25A of the liquid fuel supply pipe 25. Next, until the liquid fuel 24 flows out from the tip 25A of the liquid fuel supply pipe 25, During this period, the phenomenon that the liquid level 23 decreases is repeated, and the flow rate of the liquid fuel 24 flowing out of the liquid fuel outflow hole 22 slightly changes in response to this liquid level fluctuation. Is slightly smaller than the conventional flow rate fluctuation.
[0066] 一方、空気供給ポンプから霧化用空気供給管 30を介して送られてくる霧化用空気  [0066] On the other hand, the atomizing air sent from the air supply pump through the atomizing air supply pipe 30
46は、空気流入穴 29から噴霧器外筒 27内に流入し、液体燃料タンク 19と噴霧器外 筒 27との間の霧化用空気流路 28を下方へと流れる。その後、霧化用空気 46は二流 体噴霧ノズル 38において霧化用空気導入部 37の溝 40を流通することにより流速を 速めた状態で二流体合流空間部 43へと導入され、この二流体合流空間部 43で旋 回流となって、液体燃料タンク 19の液体燃料流出穴 22から流出した液体燃料 24と 合流 (混合)する。その結果、液体燃料 24と霧化用空気 46とがよく混合され、液体燃 料 24は霧化用空気 46によって霧化された状態で霧化用空気 46とともに二流体噴霧 ノズル 38の噴霧穴 44から、燃焼空間部 13 (火炎)へと噴射されて燃焼する。なお、 霧化した液体燃料 24への初期の点火は点火プラグ 54によって行われる。  46 flows into the sprayer outer cylinder 27 from the air inflow hole 29 and flows downward in the atomizing air flow path 28 between the liquid fuel tank 19 and the sprayer outer cylinder 27. Thereafter, the atomizing air 46 is introduced into the two-fluid merging space 43 by increasing the flow velocity by flowing through the groove 40 of the atomizing air introducing portion 37 in the two-fluid spray nozzle 38. It turns in the space 43 and merges (mixes) with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19. As a result, the liquid fuel 24 and the atomizing air 46 are mixed well, and the liquid fuel 24 is atomized by the atomizing air 46 and the atomizing air 46 together with the atomizing air 46. Then, it is injected into the combustion space 13 (flame) and burned. The initial ignition of the atomized liquid fuel 24 is performed by the spark plug 54.
[0067] ここで、液体燃料タンク 19に貯留された液体燃料 24の液柱ヘッド Hにつ!/、て詳述 すると、当該液柱ヘッド Ήは、液体燃料 24が液体燃料流出穴 22を流通するときの圧 力損失 Δ P (穴)と、液体燃料流出穴 22から流出した液体燃料 24の運動エネルギー Eと、溝 40などにおける霧化用空気 49の圧力損失 Δ Pairとから、次式によって求め ること力 Sでさる。  Here, the liquid column head H of the liquid fuel 24 stored in the liquid fuel tank 19 will be described in detail. The liquid column head Ή has the liquid fuel 24 flowing through the liquid fuel outflow hole 22. Pressure loss Δ P (hole), kinetic energy E of liquid fuel 24 flowing out from liquid fuel outflow hole 22, and pressure loss Δ Pair of atomizing air 49 in groove 40 etc. Find the power S you want.
液柱ヘッド Ή=圧力損失 Δ Ρ (穴) +運動エネルギー Ε—圧力損失 Δ Pair 運動エネルギー Eは液体燃料 24の流速 Vと、液体燃料 24の密度 pと力、ら、次式に よって求めることができる。 Liquid column head Ή = Pressure loss Δ Ρ (hole) + Kinetic energy Ε—Pressure loss Δ Pair Kinetic energy E is obtained by the following formula: Flow velocity V of liquid fuel 24, density p and force of liquid fuel 24, etc. Can do.
Figure imgf000022_0001
Figure imgf000022_0001
また、液体燃料タンク 19における貯留液体燃料 24の液面 23の高さは、液体燃料 供給管 25を介して液体燃料タンク 19に供給される液体燃料 24の流量によって変化 する。即ち、燃料供給ポンプの出力を調整して、液体燃料 24の供給流量を多くした ときには液面 23が高くなり、液体燃料 24の供給流量を少なくしたときには液面 23が 低くなる。従って、液体燃料タンク 19の高さは、所定の液体燃料 24の供給流量の言/ 整範囲に応じた液面 23の高さの変化に対応した高さとする。 [0069] また、液体燃料 24は図 5 (a)に例示するように噴霧穴 44から円錐状に噴霧されるが 、このときの噴霧の広がり(噴霧角)は溝 40の断面積(即ち溝 40を流通するときの霧 化用空気 46の流速)や、噴霧穴 44の大きさ(即ち穴径)などによって決まる。 Further, the height of the liquid level 23 of the stored liquid fuel 24 in the liquid fuel tank 19 varies depending on the flow rate of the liquid fuel 24 supplied to the liquid fuel tank 19 through the liquid fuel supply pipe 25. That is, when the output of the fuel supply pump is adjusted to increase the supply flow rate of the liquid fuel 24, the liquid level 23 becomes higher, and when the supply flow rate of the liquid fuel 24 is reduced, the liquid level 23 becomes lower. Therefore, the height of the liquid fuel tank 19 is set to a height corresponding to the change in the height of the liquid level 23 according to the predetermined range of the supply flow rate of the liquid fuel 24. [0069] The liquid fuel 24 is sprayed in a conical shape from the spray hole 44 as illustrated in FIG. 5 (a). The spread (spray angle) of the spray at this time is the cross-sectional area of the groove 40 (that is, the groove). This is determined by the flow velocity of the atomizing air 46 when passing through 40) and the size of the spray hole 44 (ie, hole diameter).
[0070] 次に、二流体噴霧器 12以外の構成について詳述する。図 1、図 2及び図 3に示す ように、噴霧器外筒 27の周囲を囲むようにして円筒状の気体燃料供給管 47が設けら れている。気体燃料供給管 47は噴霧器外筒 27と同心円状に設けられており、気体 燃料供給管 47と噴霧器外筒 27との間の円筒状の空間が、気体燃料流路 14となって いる。気体燃料供給系統から供給されるパーナ燃焼用の気体燃料 49は、気体燃料 流路 14を下方へと流れ、気体燃料流路 14の下端から燃焼空間部 13へと噴射されて 燃焼される。液体燃料 24と気体燃料 49は別々に燃焼させても、同時に燃焼させても よい。パーナ燃焼用の気体燃料 49としては例えばメタン、ェタン、プロパン、ブタン、 ジメチルエーテル、水素などを使用することができ、更に二流体噴霧パーナ 11を改 質器の熱源として使用する場合には燃料電池で発電に使用されずに二流体噴霧バ ーナ 11へと戻される残余の改質ガスを使用することもできる(図 13参照)。  [0070] Next, the configuration other than the two-fluid sprayer 12 will be described in detail. As shown in FIGS. 1, 2, and 3, a cylindrical gaseous fuel supply pipe 47 is provided so as to surround the periphery of the sprayer outer cylinder 27. The gaseous fuel supply pipe 47 is provided concentrically with the nebulizer outer cylinder 27, and a cylindrical space between the gaseous fuel supply pipe 47 and the atomizer outer cylinder 27 serves as the gaseous fuel flow path 14. The gas fuel 49 for burner supplied from the gaseous fuel supply system flows downward through the gaseous fuel flow path 14, and is injected from the lower end of the gaseous fuel flow path 14 into the combustion space 13 and burned. The liquid fuel 24 and the gaseous fuel 49 may be burned separately or simultaneously. For example, methane, ethane, propane, butane, dimethyl ether, hydrogen, etc. can be used as the gaseous fuel 49 for burner combustion. The remaining reformed gas that is not used for power generation but returned to the two-fluid spray burner 11 can also be used (see Figure 13).
[0071] パーナ外筒 48は円筒状であり、気体燃料供給管 47の周囲を囲んでいる。パーナ 外筒 48と気体燃料供給管 47は同心円状に設けられており、パーナ外筒 48と気体燃 料供給管 47との間の円筒状の空間が、第 1の燃焼用空気流路 15となっている。従つ て、燃焼用空気供給系統の空気供給ブロアから供給される燃焼用空気 50は、燃焼 用空気流路 15を下方へと流れる。  The Panna outer cylinder 48 has a cylindrical shape and surrounds the periphery of the gaseous fuel supply pipe 47. The Pana outer cylinder 48 and the gaseous fuel supply pipe 47 are concentrically provided, and a cylindrical space between the Pana outer cylinder 48 and the gaseous fuel supply pipe 47 is connected to the first combustion air flow path 15. It has become. Therefore, the combustion air 50 supplied from the air supply blower of the combustion air supply system flows downward in the combustion air flow path 15.
[0072] そして、燃焼用空気流路 15の下端部、即ち気体燃料供給管 47の下端部とパーナ 外筒 48の下端部との間にはプレート 18が設けられている。プレート 18は円環状の板 であり、燃焼用空気流路 15と燃焼空間部 13とを仕切っている。なお、この場合、図 示例ではプレート 18が二流体噴霧ノズル 38とほぼ同じ高さに設置されている力 S、こ れに限らず、例えば二流体噴霧ノズル 38よりも高い位置に設けてもよい。但し、プレ ートの 18の位置を高くすると、第 1円筒 16及び第 2円筒 17を図示例よりも長くする必 要があるため、図示例の如くプレート 18を二流体噴霧ノズル 38と同じ高さとすること 1S 最もコストがかからず合理的である。  Then, a plate 18 is provided between the lower end portion of the combustion air flow path 15, that is, between the lower end portion of the gaseous fuel supply pipe 47 and the lower end portion of the PANA outer cylinder 48. The plate 18 is an annular plate and partitions the combustion air flow path 15 and the combustion space 13. In this case, in the illustrated example, the force S in which the plate 18 is installed at substantially the same height as the two-fluid spray nozzle 38 is not limited thereto, and may be provided at a position higher than the two-fluid spray nozzle 38, for example. . However, if the position of the plate 18 is increased, the first cylinder 16 and the second cylinder 17 need to be longer than the illustrated example, so that the plate 18 is as high as the two-fluid spray nozzle 38 as illustrated. 1S Most reasonable and reasonable.
[0073] プレート 18の内周面は気体燃料供給管 47の外周面に溶接などの固定手段により 固定される一方、プレート 18の外周面には複数(図示例では 4個)の突起 51が形成 されており、これらの突起 51の先端面がパーナ外筒 48の内周面に溶接などの固定 手段によって固定されている。このため、気体燃料供給管 47からパーナ外筒 48の近 傍まではプレート 18によって塞がれている力 プレート 18の外周側では突起 51によ つてプレート 18の外周面とバーナ外筒 48の内周面 48aとの間に隙間が形成されて おり、これらの隙間が燃焼用空気流通穴 52となっている。即ち、燃焼用空気流路 15 と燃焼空間部 13は、これらの燃焼用空気流通穴 52によって連通されている。 [0073] The inner peripheral surface of the plate 18 is fixed to the outer peripheral surface of the gaseous fuel supply pipe 47 by a fixing means such as welding. On the other hand, a plurality of projections 51 (four in the illustrated example) 51 are formed on the outer peripheral surface of the plate 18, and the tip surfaces of these projections 51 are fixed to the inner peripheral surface of the PANA outer cylinder 48 by welding or the like. It is fixed by means. For this reason, the force that is blocked by the plate 18 from the gaseous fuel supply pipe 47 to the vicinity of the Panna outer cylinder 48 is formed on the outer periphery of the plate 18 by the protrusion 51 and the inner surface of the burner outer cylinder 48 by the projection 51. Clearances are formed between the peripheral surface 48a, and these clearances serve as combustion air circulation holes 52. That is, the combustion air flow path 15 and the combustion space portion 13 are communicated with each other through these combustion air circulation holes 52.
[0074] 従って、燃焼用空気 50は燃焼用空気流路 15を下方へと流れた後、プレート 18に 遮られてプレート 18の外周側へと導かれることにより二流体噴霧ノズル 38 (噴霧穴 4 4)から遠ざけられ、燃焼用空気流通穴 52を流通して燃焼空間部 13に流入する。  Accordingly, the combustion air 50 flows downward through the combustion air flow path 15, and then is blocked by the plate 18 and guided to the outer peripheral side of the plate 18, whereby the two-fluid spray nozzle 38 (spray hole 4 4), the air flows into the combustion space 13 through the combustion air circulation hole 52.
[0075] また、プレート 18の下面には下方へと延びた外側の第 1円筒 16と、下方へと延びた 内側の第 2円筒 17とが、溶接などの固定手段により固定されている。第 1円筒 16は 燃焼用空気流通穴 52よりも内側に位置し、パーナ外筒 48と同心円状に配置されて いる。そして、パーナ外筒 48と第 1円筒 16との間の円筒状の空間力 第 2の燃焼用 空気流路 53となっている。  [0075] Further, an outer first cylinder 16 extending downward and an inner second cylinder 17 extending downward are fixed to the lower surface of the plate 18 by fixing means such as welding. The first cylinder 16 is located inside the combustion air circulation hole 52 and is arranged concentrically with the PANA outer cylinder 48. A cylindrical space force between the PANA outer cylinder 48 and the first cylinder 16 is a second combustion air flow path 53.
[0076] 従って、第 1の燃焼用空気流路 15を下方へと流れて燃焼用空気流通穴 52を通過 した燃焼用空気 50は、更に第 2の燃焼用空気流路 53を下方へと流れる。そして、燃 焼用空気 50は、燃焼用空気流路 53の下端から流出して燃焼空間部 13全体に広が つていく。このため、燃焼用空気流路 53から流出した燃焼用空気 50の一部(例えば 全体の約 3割程度)が、二流体噴霧器 12 (二流体噴霧ノズル 38)から噴霧された液 体燃料 24へ、プレート 18から下方へ離れた位置で供給 (混合)されて当該液体燃料 24の燃焼に利用される。このとき液体燃料 24に混合される燃焼用空気 50の量は、 例えば空気比の平均が 1. 5以下となるように設定する。そして、燃焼用空気流路 53 力も流出した燃焼用空気 50の残り(例えば全体の約 7割程度)は、更に下方へと流れ 、前記燃焼によって生じた燃焼排ガスと混合される。力、くして、大量の燃焼排ガスが 生成される。  Accordingly, the combustion air 50 that has flowed downward through the first combustion air passage 15 and passed through the combustion air circulation hole 52 further flows downward through the second combustion air passage 53. . Then, the combustion air 50 flows out from the lower end of the combustion air passage 53 and spreads throughout the combustion space 13. Therefore, a part of the combustion air 50 flowing out from the combustion air flow channel 53 (for example, about 30% of the whole) is transferred to the liquid fuel 24 sprayed from the two-fluid sprayer 12 (two-fluid spray nozzle 38). The liquid fuel 24 is supplied (mixed) at a position away from the plate 18 and used for combustion of the liquid fuel 24. At this time, the amount of the combustion air 50 mixed with the liquid fuel 24 is set so that, for example, the average air ratio is 1.5 or less. The remainder of the combustion air 50 (for example, about 70% of the whole) from which the combustion air flow path 53 has also flowed flows further downward and is mixed with the combustion exhaust gas generated by the combustion. A large amount of combustion exhaust gas is generated.
[0077] なお、第 1円筒 16を設置する目的は燃焼用空気 50の一部力 S、霧化液体燃料 24に 供給されるのを遅らせること、即ちプレート 18から下方へ離れた位置で霧化液体燃 料 24に供給されるようにすることであり、このことによって火炎がプレート 18に接して プレート 18に煤が付着するのを防止することができる。このため、第 1円筒 16の長さ、 即ち第 1円筒 16の先端位置(下端位置)は、プレート 18の大きさ(二流体噴霧ノズノレ 38の噴霧穴 44から燃焼用空気流通穴 52までの距離)との関係で適宜設定すれば よい。 [0077] The purpose of installing the first cylinder 16 is to delay the partial force S of the combustion air 50 and the supply to the atomized liquid fuel 24, that is, atomize at a position away from the plate 18 downward. Liquid fuel It is possible to prevent the flame from coming into contact with the plate 18 and soot from adhering to the plate 18. Therefore, the length of the first cylinder 16, that is, the tip position (lower end position) of the first cylinder 16 is the size of the plate 18 (distance from the spray hole 44 of the two-fluid spray nozzle 38 to the combustion air circulation hole 52. ) To set as appropriate.
[0078] つまり、第 1円筒 16は設けず、プレート 18とプレート 18の外周部の燃焼用空気流 通穴 52とを設けるだけでも、燃焼用空気流通穴 51が噴霧穴 44から離れているため 、燃焼用空気流通穴 51を通過した燃焼用空気 50の一部は、プレート 18から下方へ 離れた位置で霧化液体燃料 24に供給される。そして、噴霧穴 44から燃焼用空気流 通穴 52までの距離が長くなる程、燃焼用空気 50の一部が霧化液体燃料 24に供給 される位置が、プレート 18から離れることなる。なお、プレート 18を大きくして噴霧穴 4 4から燃焼用空気流通穴 52までの距離を長くする程、二流体噴霧パーナ 11の径は 大きくなる。  That is, the first air cylinder 16 is not provided, and the combustion air circulation hole 51 is separated from the spray hole 44 just by providing the plate 18 and the combustion air flow hole 52 on the outer periphery of the plate 18. A part of the combustion air 50 that has passed through the combustion air circulation hole 51 is supplied to the atomized liquid fuel 24 at a position away from the plate 18 downward. As the distance from the spray hole 44 to the combustion air flow hole 52 becomes longer, the position where a part of the combustion air 50 is supplied to the atomized liquid fuel 24 is further away from the plate 18. Note that the larger the plate 18 is and the longer the distance from the spray hole 44 to the combustion air circulation hole 52 is, the larger the diameter of the two-fluid spray pan 11 is.
[0079] 一方、二流体噴霧パーナ 11の大きさの制約などよつて噴霧穴 44から燃焼用空気 流通穴 52までの距離が制約される場合、プレート 18と燃焼用空気流通穴 51を設け るだけでは、燃焼用空気 50の一部が霧化液体燃料 24に供給されるのを充分に遅ら せることができないことがあり、このときには図示例の如く第 1円筒 16を設けることが非 常に有効である。この場合、噴霧穴 44から燃焼用空気流通穴 52までの距離が短く なる程、第 1円筒 16を下方へ延長すればよい。但し、第 1円筒 16と噴霧された液体 燃料 24との干渉を避けるためには、第 1円筒 16の先端(下端)が、噴霧された液体 燃料 24の外形部 24Aの外側(上側)に位置する必要がある。即ち、第 1円筒 16の先 端(下端)は、噴霧された液体燃料 24の外形部 24Aまでし力、延長することができない  [0079] On the other hand, when the distance from the spray hole 44 to the combustion air circulation hole 52 is restricted due to the size restriction of the two-fluid spray pan 11 or the like, only the plate 18 and the combustion air circulation hole 51 are provided. In this case, it may not be possible to sufficiently delay the supply of a part of the combustion air 50 to the atomized liquid fuel 24.In this case, it is very effective to provide the first cylinder 16 as shown in the figure. It is. In this case, the first cylinder 16 may be extended downward as the distance from the spray hole 44 to the combustion air circulation hole 52 becomes shorter. However, in order to avoid interference between the first cylinder 16 and the sprayed liquid fuel 24, the tip (lower end) of the first cylinder 16 is positioned outside (upper) of the outer portion 24A of the sprayed liquid fuel 24. There is a need to. In other words, the leading end (lower end) of the first cylinder 16 cannot be extended to the outer portion 24A of the sprayed liquid fuel 24.
[0080] なお、噴霧穴 44から燃焼用空気流通穴 52までの距離を短くすると、第 1円筒 16の 設置位置も噴霧穴 44に近づくため、プレート 18から霧化液体燃料 24の外形部 24A までの距離も短くなるため、第 1円筒 16をあまり長くすることはできない。従って、この ような制約も考慮して、噴霧穴 44から燃焼用空気流通穴 52までの距離と、第 1円筒 1 6の長さとを (第 1円筒 16の要否も含めて)、適宜決定すればよい。 [0081] 第 2円筒 17は第 1円筒 16の内側に位置し、第 1円筒 16と同心円状に配設されてい る。なお、第 2円筒 17を設置する目的はプレート 18の近傍に霧化液体燃料 24のよど み(対流)が生じるのを防ぐことにより、火炎がプレート 18に接してプレート 18に煤が 付着するのを防止することである。そのためには第 2円筒 17はできるだけ下方に延長 させたほうがよい。しかし、第 2円筒 17と霧化液体燃料 24との干渉を避けるためには 、第 2円筒 17の先端(下端)が、霧化液体燃料 24の外形部 24Aの外側(上側)に位 置する必要がある。即ち、第 2円筒 17の先端(下端)も、霧化液体燃料 24の外形部 2 4Aまでしか延長することができな!/、。 [0080] If the distance from the spray hole 44 to the combustion air circulation hole 52 is shortened, the installation position of the first cylinder 16 also approaches the spray hole 44, so the plate 18 to the outer portion 24A of the atomized liquid fuel 24 The first cylinder 16 cannot be lengthened too much because the distance of is also shortened. Therefore, taking these restrictions into consideration, the distance from the spray hole 44 to the combustion air circulation hole 52 and the length of the first cylinder 16 (including the necessity of the first cylinder 16) are appropriately determined. do it. The second cylinder 17 is located inside the first cylinder 16 and is disposed concentrically with the first cylinder 16. The purpose of installing the second cylinder 17 is to prevent the stagnation (convection) of the atomized liquid fuel 24 in the vicinity of the plate 18, so that the flame contacts the plate 18 and sticks to the plate 18. Is to prevent. For this purpose, it is better to extend the second cylinder 17 downward as much as possible. However, in order to avoid interference between the second cylinder 17 and the atomized liquid fuel 24, the tip (lower end) of the second cylinder 17 is positioned outside (upper) the outer portion 24A of the atomized liquid fuel 24. There is a need. That is, the tip (lower end) of the second cylinder 17 can only extend to the outer portion 24 A of the atomized liquid fuel 24! /.
[0082] 例えば図 1に記載するように二流体噴霧ノズル 38の噴霧穴 44から第 2円筒 17まで の距離を L1とし、噴霧された液体燃料 24の外形部 24Aの水平線との角度を Θとす ると、二流体噴霧ノズル 38 (噴霧穴 44)の先端(下端)から第 2円筒 17の先端(下端) までの長さ L2は、 0< L2≤Lltan Θを満たす必要がある。なお、第 2円筒 17の全体 の長さは、 L2にプレート 18の下面から二流体噴霧ノズル 38 (噴霧穴 44)の先端(下 端)までの長さを加えた長さとなる。なお、このような条件は二流体噴霧ノズル 38 (噴 霧穴 44)の先端(下端)から第 1円筒 16の先端(下端)までの長さや、第 1円筒 16の 全体の長さにつ!/、ても同様である。二流体噴霧ノズル 38の噴霧穴 44から第 2円筒 1 6までの距離は、例えば噴霧穴 44の穴径(例えば lmm程度)の 50倍以上や 60倍以 上の距離とする。  For example, as shown in FIG. 1, the distance from the spray hole 44 of the two-fluid spray nozzle 38 to the second cylinder 17 is L1, and the angle with the horizontal line of the outer portion 24A of the sprayed liquid fuel 24 is Θ. In this case, the length L2 from the tip (lower end) of the two-fluid spray nozzle 38 (spray hole 44) to the tip (lower end) of the second cylinder 17 needs to satisfy 0 <L2≤Lltan Θ. The total length of the second cylinder 17 is the length obtained by adding the length from the lower surface of the plate 18 to the tip (lower end) of the two-fluid spray nozzle 38 (spray hole 44). Such conditions are the length from the tip (lower end) of the two-fluid spray nozzle 38 (spray hole 44) to the tip (lower end) of the first cylinder 16 and the entire length of the first cylinder 16! The same goes for /. The distance from the spray hole 44 of the two-fluid spray nozzle 38 to the second cylinder 16 is, for example, 50 or more times or 60 or more times the hole diameter (for example, about 1 mm) of the spray hole 44.
[0083] 以上のように、本実施の形態例 1の二流体噴霧パーナ 11によれば、円筒状の側部  [0083] As described above, according to the two-fluid spraying pan 11 of the first embodiment, the cylindrical side portion
20とこの側部 20の下端に設けた底部 21とを有し、液体燃料供給管 25から供給され た液体燃料 24を貯留するとともにこの貯留した液体燃料 24の液面よりも下方に位置 して底部 21に開けた液体燃料流出穴 22から、前記貯留した液体燃料 24を流出させ る構成の液体燃料タンク 19を備え、この液体燃料タンク 19の液体燃料流出穴 22か ら流出した液体燃料 24を霧化用空気 46で霧化して燃焼させる構成としたことにより、 液体燃料 24が液体燃料供給管 24から液体燃料タンク 19に間欠的に供給されるとき でも、液体燃料タンク 19の液体燃料流出穴 22からは、液体燃料タンク 19に貯留され た液体燃料が連続的に流出することになる。即ち、液体燃料供給系統のポンプの供 給流量が低下して、液体燃料供給管 25から液体燃料タンク 19へ液体燃料 24が間 欠的に供給されるときでも、液体燃料タンク 19内に貯留される液体燃料 24の液面 23 が多少上下に変動して、液体燃料流出穴 22からの液体燃料 24の流出流量が多少 変動する程度であり、図 13に示す従来のような大きな液体燃料供給流量の変動には ならない。このため、液体燃料供給流量が低いときにも、液体燃料 24の安定供給が 可能になって、安定燃焼を確立することが容易になり、未燃排ガスの発生や失火を 招くおそれがない。 20 and a bottom portion 21 provided at the lower end of the side portion 20, and stores the liquid fuel 24 supplied from the liquid fuel supply pipe 25, and is positioned below the liquid level of the stored liquid fuel 24. A liquid fuel tank 19 configured to discharge the stored liquid fuel 24 from a liquid fuel outflow hole 22 opened in the bottom 21 is provided, and the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19 is With the configuration in which the atomized air 46 is atomized and burned, even when the liquid fuel 24 is intermittently supplied from the liquid fuel supply pipe 24 to the liquid fuel tank 19, the liquid fuel outflow hole of the liquid fuel tank 19 From 22, the liquid fuel stored in the liquid fuel tank 19 flows out continuously. In other words, the supply flow rate of the pump of the liquid fuel supply system decreases, and the liquid fuel 24 flows from the liquid fuel supply pipe 25 to the liquid fuel tank 19. Even when it is supplied in short, the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19 slightly fluctuates up and down, and the outflow rate of the liquid fuel 24 from the liquid fuel outflow hole 22 slightly fluctuates. Therefore, the liquid fuel supply flow rate does not fluctuate as shown in Fig. 13. For this reason, even when the liquid fuel supply flow rate is low, the stable supply of the liquid fuel 24 becomes possible, and it becomes easy to establish stable combustion, and there is no possibility of causing unburned exhaust gas and misfire.
[0084] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、液体燃料流出穴 22か ら流出して二流体合流空間部 43に流入した液体燃料 22が、霧化用空気流路 28を 下方へと流れた後に霧化用空気導入部 37で溝 40を流れて二流体合流空間部 43へ と導かれた霧化用空気と、二流体合流空間部 43で合流した後、この霧化用空気とと もに噴霧穴 44から噴霧される構成としたため、液体燃料 24は溝 40で流速を速めた( 水平方向の速度成分が増加した)霧化用空気 46と二流体合流空間部 43でよく混合 されてから、二流体噴霧ノズル 38の噴霧穴 44から噴射されることになる。このため、 二流体合流空間部 43や溝 40を設けな!/、場合に比べて、液体燃料 24の噴霧の広が り角が大きくなり、液体燃料 24が確実に霧化されるため、液体燃料 24の燃焼性が向 上する。  [0084] In addition, according to the two-fluid spraying pan 11 of the first embodiment, the liquid fuel 22 flowing out from the liquid fuel outflow hole 22 and flowing into the two-fluid merging space 43 becomes the atomizing air flow. After flowing down the channel 28 and flowing in the groove 40 in the atomizing air introduction section 37 and joining the atomizing air led to the two-fluid merge space section 43 and the two-fluid merge space section 43, Since the atomizing air is sprayed from the atomizing hole 44, the liquid fuel 24 has a flow velocity increased in the groove 40 (the velocity component in the horizontal direction has increased) and the atomizing air 46 and the two-fluid merge. After being well mixed in the space 43, it is sprayed from the spray hole 44 of the two-fluid spray nozzle 38. For this reason, the two-fluid merge space 43 and the groove 40 are not provided! /, Compared to the case, the spread angle of the spray of the liquid fuel 24 is increased, and the liquid fuel 24 is surely atomized. The flammability of fuel 24 is improved.
[0085] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、霧化用空気導入部 37 の溝 40は、上面視において二流体合流空間部 43の円周の接線方向に沿うように形 成したことにより、二流体合流空間部 43では霧化用空気 46が旋回流となって液体燃 料 24と混合されるため、液体燃料 24と霧化用空気 46とが、より確実に混合される。こ のため、二流体噴霧ノズル 38の噴霧穴 44から噴射される液体燃料 24を、より確実に 霧化することができて当該液体燃料 24の燃焼性をより向上させることができる。  [0085] Further, according to the two-fluid spray pan 11 of the first embodiment, the groove 40 of the atomizing air introduction section 37 is along the tangential direction of the circumference of the two-fluid merge space section 43 in a top view. In this way, in the two-fluid merge space 43, the atomizing air 46 is swirled and mixed with the liquid fuel 24, so that the liquid fuel 24 and the atomizing air 46 are more reliable. To be mixed. For this reason, the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
[0086] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、霧化用空気導入部 37 の溝 40は、二流体合流空間部 43の中心軸回りに回転対称の位置関係となるように 複数形成されてレ、るため、二流体噴霧ノズル 38の噴霧穴 44から噴霧された液体燃 料 24の周方向の分布量を均一にして、当該液体燃料 24の燃焼性を向上させること ができる。  [0086] Further, according to the two-fluid spray pan 11 of Embodiment 1, the groove 40 of the atomizing air introduction section 37 has a rotationally symmetrical positional relationship around the central axis of the two-fluid merge space section 43. Therefore, the distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the spray holes 44 of the two-fluid spray nozzle 38 is made uniform to improve the combustibility of the liquid fuel 24. be able to.
[0087] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、液体燃料タンク 19を下 方に押圧するコイルばね 36を備えることにより、液体燃料タンク 19の底部 21を、二流 体噴霧ノズル 38の霧化用空気導入部 37に押し付けて密着させた構成としたため、 燃料タンク 19の底部 21の下面 21bと霧化用空気導入部 37の上面 37aとが密着する ことにより、これらの接触面 21b, 37a間に隙間ができるのを防止することができる。こ のため、霧化用空気 46が溝 40以外の部分を流れることを防止して、溝 40による広域 噴霧の効果を充分に発揮することができる。 [0087] Further, according to the two-fluid spraying pan 11 of Embodiment 1, the liquid fuel tank 19 is moved down. The bottom 21 of the fuel tank 19 is structured such that the bottom 21 of the liquid fuel tank 19 is pressed against and closely adhered to the atomizing air introduction part 37 of the two-fluid spray nozzle 38. When the lower surface 21b of the liquid crystal and the upper surface 37a of the atomizing air introducing portion 37 are in close contact with each other, it is possible to prevent a gap from being formed between the contact surfaces 21b and 37a. For this reason, the atomizing air 46 can be prevented from flowing through portions other than the groove 40, and the effect of wide-area spraying by the groove 40 can be sufficiently exhibited.
[0088] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、二流体合流空間部 43 は逆円錐状であり、この逆円錐状の空間部 43の頂点位置に噴霧穴 44が形成されて いるため、二流体合流空間部 43における液体燃料 24と霧化用空気 46との混合を、 より確実に行うこと力 Sできる。このため、噴霧穴 44から噴霧する液体燃料 24を、より確 実に霧化して液体燃料 24の燃焼性を更に向上させることができる。  [0088] Further, according to the two-fluid spray partner 11 of the first embodiment, the two-fluid merge space portion 43 has an inverted conical shape, and the spray hole 44 is formed at the apex position of the inverse-conical space portion 43. Because of this, it is possible to more reliably perform the mixing S of the liquid fuel 24 and the atomizing air 46 in the two-fluid merge space 43. For this reason, the liquid fuel 24 sprayed from the spray hole 44 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
[0089] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、噴霧器外筒 27と、噴霧 器外筒 27の周囲を囲む気体燃料供給管 47との間に形成した円筒状の気体燃料流 路 14を備え、気体燃料 49は気体燃料流路 14を下方へと流れ、気体燃料流路 14の 下端から噴射されて燃焼される構成としたことにより、円筒状の気体燃料流路 14から 噴射される気体燃料 49は周方向に均一なものとなるため、燃焼性が向上し、例えば 液体燃料 24の供給量が少ないときなどには気体燃料 49による保炎効果を発揮する  [0089] Further, according to the two-fluid spraying pan 11 of the first embodiment, the cylindrical shape formed between the sprayer outer cylinder 27 and the gaseous fuel supply pipe 47 surrounding the periphery of the sprayer outer cylinder 27. The gas fuel flow path 14 is provided, and the gas fuel 49 flows downward through the gas fuel flow path 14 and is injected from the lower end of the gas fuel flow path 14 to be burned. Since the gaseous fuel 49 injected from 14 becomes uniform in the circumferential direction, the combustibility is improved. For example, when the supply amount of the liquid fuel 24 is small, the flame holding effect by the gaseous fuel 49 is exhibited.
[0090] また、本実施の形態例 1の二流体噴霧パーナ 11にお!/、て、液体燃料供給管 25の 先端部 25A力 液体燃料タンク 19の側部 20の内周面 20aに接している場合には液 体燃料供給管 25からの液体燃料 24の流出量が少ないときにも、液体燃料 24は内 周面 20aを伝って流れ落ちるため、液体燃料流出穴 22からの液体燃料 24の流出を 、より安定させること力 Sできる。即ち、液体燃料 24が粒状になって落下すると、液体燃 料タンク 19内に貯留されている液体燃料 24の液面 23が大きく変動し、液面 23が非 常に低い場合には一時的に液体燃料流出穴 22が露出して液体燃料 24の流出が途 絶えることも考えられる力 液体燃料 24が液体燃料タンク 19の内周面 20aを伝って 流れ落ちるようにすれば、かかる不具合の発生を防止することができる。 [0090] Further, the two-fluid spraying pan 11 according to the first embodiment is! /, In contact with the inner peripheral surface 20a of the side portion 20 of the liquid fuel tank 19 and the tip portion 25A force of the liquid fuel supply pipe 25. In this case, even when the amount of liquid fuel 24 flowing out from the liquid fuel supply pipe 25 is small, the liquid fuel 24 flows down along the inner peripheral surface 20a, so that the liquid fuel 24 flows out of the liquid fuel outflow hole 22. Can be made more stable. That is, when the liquid fuel 24 falls in a granular form, the liquid level 23 of the liquid fuel 24 stored in the liquid fuel tank 19 fluctuates greatly, and if the liquid level 23 is very low, the liquid fuel 24 temporarily becomes liquid. Force that may cause the outflow of the liquid fuel 24 due to the exposure of the fuel outflow hole 22 If the liquid fuel 24 flows down along the inner peripheral surface 20a of the liquid fuel tank 19, such troubles can be prevented. be able to.
[0091] 更には、本実施の形態例 1の二流体噴霧パーナ 11によれば、燃焼用空気流路 15 を下方へと流れてきた燃焼用空気 50が、プレート 18で遮られてプレート 18の外周側 へと導かれることにより二流体噴霧ノズル 38から遠ざけられ、燃焼用空気流通穴 52 を通過して燃焼空間部 13に流入する構成としたため、燃焼空間部 13では燃焼用空 気 50の一部だけ力 二流体噴霧ノズル 38から噴霧された液体燃料 24と混合されて 当該液体燃料 24の燃焼に利用され、燃焼用空気 50の残りは、更に下方へと流れ、 前記燃焼によって発生した燃焼排ガスと混合されることになる。このため、 1度(1段) の燃焼用空気供給により、燃焼用空気 50と液体燃料 24との適度な混合を達成する ことができて、火炎を冷却し過ぎることなぐ大量の燃焼排ガスを発生させることができ る。即ち、簡易な構成で大量の燃焼排ガスを発生させることができ、且つ、未燃ガス の発生や失火を招くおそれもない二流体噴霧パーナを実現することができる。 [0091] Furthermore, according to the two-fluid spray pan 11 of the first embodiment, the combustion air flow path 15 The combustion air 50 that has flowed downward is blocked by the plate 18 and guided to the outer peripheral side of the plate 18, away from the two-fluid spray nozzle 38, and passes through the combustion air circulation hole 52 for combustion. Since it is configured to flow into the space 13, the combustion space 13 is mixed with the liquid fuel 24 sprayed from the two-fluid spray nozzle 38 and used for combustion of the liquid fuel 24. The remainder of the combustion air 50 flows further downward and is mixed with the combustion exhaust gas generated by the combustion. For this reason, the combustion air 50 and the liquid fuel 24 can be appropriately mixed by supplying the combustion air once (1 stage), and a large amount of combustion exhaust gas that does not overcool the flame is generated. It can be made. That is, it is possible to realize a two-fluid spray panner that can generate a large amount of combustion exhaust gas with a simple configuration and that does not cause unburned gas generation or misfire.
[0092] また、プレート 18によって燃焼用空気 50を二流体噴霧ノズル 38から離れた位置で 燃焼空間部 13に流入させるため、燃焼用空気 50の一部が燃料に供給される位置を 、プレート 18から下方に遠ざけることができる。従って、火炎の位置もプレート 18から 下方に遠ざ力、ることなり、プレート 18の下面に煤が付着するのを防止することができ る。プレート 18の下面に付着する煤の量が多くなると、煤による二流体噴霧ノズル 38 の目詰まりや、火炎の輻射熱を煤が吸収することによる二流体噴霧器 12の異常な加 熱などの不具合を生じる可能性がある力 S、上記の如くプレート 18の下面に煤が付着 するのを防止することにより、力、かる不具合の発生を未然に防ぐことができる。  In addition, since the combustion air 50 is caused to flow into the combustion space 13 at a position away from the two-fluid spray nozzle 38 by the plate 18, the position where a part of the combustion air 50 is supplied to the fuel Can be moved away from Therefore, the position of the flame also moves downward from the plate 18, and it is possible to prevent soot from adhering to the lower surface of the plate 18. If the amount of soot adhering to the lower surface of the plate 18 increases, problems such as clogging of the two-fluid spray nozzle 38 caused by soot and abnormal heating of the two-fluid sprayer 12 caused by soot absorbing the radiant heat of the flame may occur. By preventing the possibility of flaws from adhering to the lower surface of the plate 18 as described above, the force S can be prevented from occurring.
[0093] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、プレート 18の下面から 下方に延びた燃焼用空気供給遅延用の第 1円筒 16を設けて、この第 1円筒 16とバ 一ナ外筒 48との間に燃焼用空気流通穴 52に通じる円筒状の燃焼用空気流路 53を 形成し、燃焼用空気流通穴 52を通過した燃焼用空気 50が、燃焼用空気流路 53を 下方へと流れた後に燃焼用空気流路 53の下端から、燃焼空間部 13に流入する構 成としたため、燃焼用空気 50の一部が、二流体噴霧ノズル 38から噴霧された液体燃 料 24に供給されるのを遅らせてことができる。即ち、燃焼用空気 50の一部が液体燃 料 24に供給される位置を、プレート 18から下方に遠ざけることができる。従って、火 炎の位置もプレート 18から下方に遠ざ力、ることなり、プレート 18の下面に煤が付着す るのを防止することができる。 [0094] なお、この燃焼用空気 50の一部が液体燃料 24に供給される位置をプレート 18か ら下方に遠ざけるという作用効果は上記の如くプレート 18を設けるだけでも得られる 、本実施の形態例 1の如ぐ燃焼用空気供給遅延用の第 1円筒 16を設ければ、よ り確実に燃焼用空気 50の一部が液体燃料 24に供給される位置を、プレート 18から 下方に遠ざけることができる。 In addition, according to the two-fluid spraying pan 11 of the first embodiment, the first cylinder 16 for delaying the supply of combustion air that extends downward from the lower surface of the plate 18 is provided. A cylindrical combustion air flow path 53 that communicates with the combustion air circulation hole 52 is formed between the combustion air flow hole 52 and the combustion air 50 passing through the combustion air circulation hole 52. After flowing downward in the flow path 53, the combustion air flow path 53 flows into the combustion space 13 from the lower end of the combustion air flow path 53, so that a part of the combustion air 50 was sprayed from the two-fluid spray nozzle 38. The supply to the liquid fuel 24 can be delayed. That is, the position where a part of the combustion air 50 is supplied to the liquid fuel 24 can be moved downward from the plate 18. Therefore, the position of the flame also moves away from the plate 18, and it is possible to prevent the soot from adhering to the lower surface of the plate 18. It should be noted that the effect of moving the position where a part of the combustion air 50 is supplied to the liquid fuel 24 downward from the plate 18 can be obtained only by providing the plate 18 as described above. If the first cylinder 16 for delaying the supply of combustion air as in Example 1 is provided, the position where a part of the combustion air 50 is supplied to the liquid fuel 24 is more reliably moved downward from the plate 18. Can do.
[0095] また、二流体噴霧パーナ 11の大きさの制約などから、プレート 18をあまり大きくする ことができずに二流体噴霧ノズル 38から燃焼用空気流通穴 52までの距離を充分に とることができない場合には、液体燃料 24に供給される燃焼用空気 50の一部の量が 多くなり過ぎて、火炎が過度に冷却されてしまうおそれがある。これに対して本実施の 形態例 1の如ぐ燃焼用空気供給遅延用の第 1円筒 16を設ければ、燃焼用空気 50 の一部が液体燃料 24に供給される位置をプレート 18から下方に遠ざけることができ るだけでなぐこのときに液体燃料 24に供給される燃焼用空気 50の一部の量を低減 して適切な量とすることもできる。従って、かかる観点からも本実施の形態例 1の如く 第 1円筒 16を設けることは有効であり、第 1円筒 16を設けることによってプレート 18を 小さくし、二流体噴霧パーナ 11の小型化を図ることもできる。  [0095] In addition, due to the size limitation of the two-fluid spray pan 11 and the like, the plate 18 cannot be made too large, and a sufficient distance from the two-fluid spray nozzle 38 to the combustion air circulation hole 52 can be secured. If this is not possible, the amount of combustion air 50 supplied to the liquid fuel 24 may be too large and the flame may be overcooled. On the other hand, if the first cylinder 16 for delaying the supply of combustion air as in the first embodiment is provided, the position where a part of the combustion air 50 is supplied to the liquid fuel 24 is lowered from the plate 18. At this time, it is possible to reduce the amount of a part of the combustion air 50 supplied to the liquid fuel 24 to an appropriate amount. Therefore, from this point of view, it is effective to provide the first cylinder 16 as in the first embodiment. By providing the first cylinder 16, the plate 18 can be made smaller, and the two-fluid spray partner 11 can be downsized. You can also.
[0096] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、プレート 18の下面から 下方に延びたよどみ防止用の第 2円筒 17を、燃焼用空気供給遅延用の第 1円筒 16 の内側に設けたことにより、プレート 18の下面近傍で液体燃料 24のよどみ(対流)が 生じるのをよどみ防止用の第 2円筒 17によって防ぐことができる。このため、プレート 1 8の下面近傍でよどむ液体燃料 24にも引火してプレート 18の下面に煤が付着する のを、防止することができる。  Further, according to the two-fluid spraying pan 11 of Embodiment 1, the second cylinder 17 for preventing stagnation extending downward from the lower surface of the plate 18 is used as the first cylinder for delaying the supply of combustion air. By being provided inside 16, stagnation (convection) of the liquid fuel 24 near the lower surface of the plate 18 can be prevented by the second cylinder 17 for preventing stagnation. Therefore, it is possible to prevent the liquid fuel 24 stagnating in the vicinity of the lower surface of the plate 18 from being ignited and soot from adhering to the lower surface of the plate 18.
[0097] また、本実施の形態例 1の二流体噴霧パーナ 11によれば、パーナ外筒 48によって 火炎を囲うことにより、燃焼空間部 13において火炎(噴霧した液体燃料 24)と燃焼用 空気 50とをよく混合することができるため、燃焼性が向上する。  Further, according to the two-fluid spray burner 11 of the first embodiment, the flame (sprayed liquid fuel 24) and the combustion air 50 in the combustion space 13 are obtained by surrounding the flame with the burner outer cylinder 48. Can be mixed well, and the combustibility is improved.
[0098] <実施の形態例 2〉  <Embodiment 2>
図 6 (a)は本発明の実施の形態例 2に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図、図 6 (b)は前記二流体噴霧器に備えた二流 体噴霧ノズルを抽出して示す上面図(図 6 (a)の E方向矢視図)である。 [0099] 図 6に示すように、本実施の形態例 2における二流体噴霧器 12の二流体噴霧ノズ ル 38では、霧化用空気導入部 37の周方向の 4箇所に溝 (スリット) 61が形成されて いる。これらの溝 61は衝突型のものであり、上面視が円形状である二流体合流空間 部 43の径方向に沿い、且つ、二流体合流空間部 43の中心軸(図示例では噴霧穴 4 4の中心軸)回りに回転対称の位置関係(周方向に等間隔)となるように形成されてい FIG. 6 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 2 of the present invention, and FIG. 6 (b) is provided in the two-fluid sprayer. FIG. 9 is a top view (a view in the direction of arrow E in FIG. 6 (a)) showing a two-fluid spray nozzle extracted. [0099] As shown in FIG. 6, in the two-fluid spray nozzle 38 of the two-fluid sprayer 12 in the second embodiment, grooves (slits) 61 are formed at four locations in the circumferential direction of the atomizing air introduction section 37. Is formed. These grooves 61 are of a collision type, are along the radial direction of the two-fluid merge space 43 having a circular shape when viewed from the top, and the central axis of the two-fluid merge space 43 (in the illustrated example, the spray hole 44 4 Center axis) and a rotationally symmetrical positional relationship (equally spaced in the circumferential direction).
[0100] この二流体噴霧器 21では、霧化用空気流路 28を下方へと流れてきた霧化用空気 46力 二流体噴霧ノズル 38において霧化用空気導入部 37の溝 61を流通すること により流速を速めた状態で二流体合流空間部 43へと導入され、この二流体合流空 間部 43で液体燃料タンク 19の液体燃料流出穴 22から流出した液体燃料 24と衝突 するようにして合流 (混合)する。その結果、液体燃料 24と霧化用空気 46とがよく混 合され、液体燃料 24は霧化用空気 46によって霧化された状態で霧化用空気 46とと もに二流体噴霧ノズル 38の噴霧穴 44から、燃焼空間部 13へと噴射される。 [0100] In this two-fluid sprayer 21, the atomizing air 46 that has flowed downward through the atomizing air flow path 28 46 flows through the groove 61 of the atomizing air introduction section 37 in the two-fluid spray nozzle 38. Is introduced into the two-fluid merging space 43 in a state where the flow velocity is increased, and the two-fluid merging space 43 merges with the liquid fuel 24 flowing out from the liquid fuel outlet hole 22 of the liquid fuel tank 19. (Mix). As a result, the liquid fuel 24 and the atomizing air 46 are mixed well, and the liquid fuel 24 is atomized by the atomizing air 46 and the atomizing air 46 together with the two-fluid spray nozzle 38. The fuel is injected from the spray hole 44 into the combustion space 13.
[0101] なお、図 6の二流体噴霧器 12におけるその他の部分の構成は、上記実施の形態 例 1 (図 4)の二流体噴霧器 12と同様である。また、本実施の形態例 2の二流体噴霧 パーナ 11における二流体噴霧器以外の部分の構成についても、上記実施の形態例 1 (図 1〜図 3)の二流体噴霧パーナ 11と同様である。  [0101] The configuration of the other parts of the two-fluid sprayer 12 of Fig. 6 is the same as that of the two-fluid sprayer 12 of the first embodiment (Fig. 4). In addition, the configuration of the parts other than the two-fluid sprayer 11 in the two-fluid spray partner 11 of the second embodiment is also the same as that of the two-fluid spray partner 11 of the first embodiment (FIGS. 1 to 3).
[0102] 本実施の形態例 2の二流体噴霧パーナ 11によれば、次のような作用効果が得られ 、また、その他、上記実施の形態例 1と同様の作用効果も得られる。  [0102] According to the two-fluid spray burner 11 of the second embodiment, the following operational effects can be obtained. In addition, the same operational effects as the first embodiment can be obtained.
[0103] 即ち、本実施の形態例 2の二流体噴霧パーナ 11によれば、霧化用気体導入部 37 の溝 61は、上面視において二流体合流空間部 43の径方向に沿うように形成したこと により、二流体合流空間部 43では霧化用空気 46が液体燃料 24に衝突するようにし て液体燃料 24に混合されるため、液体燃料 24と霧化用空気 46とが、より確実に混 合される。このため、二流体噴霧ノズル 38の噴霧穴 44から噴射される液体燃料 24を 、より確実に霧化することができて当該液体燃料 24の燃焼性をより向上させることが できる。  That is, according to the two-fluid spraying pan 11 of the second embodiment, the groove 61 of the atomizing gas introduction part 37 is formed so as to be along the radial direction of the two-fluid merging space part 43 in a top view. As a result, in the two-fluid merge space 43, the atomizing air 46 collides with the liquid fuel 24 and is mixed with the liquid fuel 24, so that the liquid fuel 24 and the atomizing air 46 are more reliably connected. Mixed. Therefore, the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
[0104] しかも、霧化用気体導入部 37の溝 61は、二流体合流空間部 43の中心軸回りに回 転対称の位置関係となるように複数形成されているため、二流体噴霧ノズル 38の噴 霧穴 44から噴霧された液体燃料 24の周方向の分布量を均一にして、当該液体燃料 24の燃焼性を向上させることができる。 [0104] Moreover, since the groove 61 of the atomizing gas introduction part 37 is formed in plural so as to be rotationally symmetrical about the central axis of the two-fluid merge space part 43, the two-fluid spray nozzle 38 Fountain The distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the fog hole 44 can be made uniform, and the combustibility of the liquid fuel 24 can be improved.
[0105] <実施の形態例 3〉  <Embodiment 3>
図 7 (a)は本発明の実施の形態例 3に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図、図 7 (b)は前記二流体噴霧器に備えた二流 体噴霧ノズルを抽出して示す上面図(図 7 (a)の F方向矢視図)である。  FIG. 7 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 3 of the present invention, and FIG. 7 (b) is provided in the two-fluid sprayer. FIG. 9 is a top view (a view in the direction of arrow F in FIG. 7 (a)) showing a two-fluid spray nozzle.
[0106] 図 7に示すように、本実施の形態例 3の二流体噴霧器 12では、液体燃料タンク 19 の底部 21の内面(上面) 21 aが先細り(逆円錐状)のテーパ面となっており、中心(逆 円錐状のテーパ面の頂点位置)に微細な液体燃料流出穴 22が形成されている。そ して、液体燃料タンク 19の底部 21の外面(下面) 21bは、外側部分 21b— 1が先細り (逆円錐台状)のテーパ面となっており、内側部分 21b— 2が円形状の水平面となつ ている。  As shown in FIG. 7, in the two-fluid sprayer 12 of the third embodiment, the inner surface (upper surface) 21 a of the bottom 21 of the liquid fuel tank 19 becomes a tapered surface (tapered conical shape). In addition, a fine liquid fuel outflow hole 22 is formed at the center (the apex position of the inverted conical tapered surface). The outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 has a tapered surface in which the outer portion 21b-1 is tapered (inverted truncated cone), and the inner portion 21b-2 is a circular horizontal surface. It is becoming.
[0107] 一方、二流体噴霧ノズル 38の霧化用空気導入部 37は円環状に形成されており、 且つ、内周面 37bが先細り(逆円錐台状)のテーパ面となっている。そして、液体燃料 タンク 19は、その底部 21の下面 21bの外側部分 21b— 1 (テーパ面部)が霧化用空 気導入部 37の内周面 37b (テーパ面部)に嵌まり込むようにして当接した状態で、霧 化用空気導入部 37上に設置されている。この場合、コイルばね 36 (図 4参照)によつ て液体燃料タンク 19を下方に押圧することにより、液体燃料タンク 19の底部 21の下 面 21bの外側部分 21b— 1 (テーパ面部)が霧化用空気導入部 37の内周面 37b (テ ーパ面部)に押し付けられて密着し、これらの接触面 21b— 1 , 37b間に隙間が生じ るのを防止する。  On the other hand, the atomizing air introducing portion 37 of the two-fluid spray nozzle 38 is formed in an annular shape, and the inner peripheral surface 37b is tapered (inverted truncated cone shape). The liquid fuel tank 19 abuts so that the outer portion 21b-1 (tapered surface portion) of the lower surface 21b of the bottom portion 21 fits into the inner peripheral surface 37b (tapered surface portion) of the atomizing air introduction portion 37. In the state, it is installed on the atomizing air introduction section 37. In this case, when the liquid fuel tank 19 is pressed downward by the coil spring 36 (see FIG. 4), the outer portion 21b-1 (taper surface portion) of the bottom surface 21b of the bottom 21 of the liquid fuel tank 19 is fogged. It is pressed against and closely adheres to the inner peripheral surface 37b (taper surface portion) of the chemical air introducing portion 37 to prevent a gap from being formed between these contact surfaces 21b-1 and 37b.
[0108] 二流体噴霧ノズル 38のノズル本体部 39は、その中央部に逆円錐状の空間部(凹 部) 42が形成され、且つ、その中心(逆円錐状の空間部 42の頂点位置)に微細な噴 霧穴 44が形成されている。霧化用空気導入部 37の空間部 41とノズル本体部 39の 空間部 42は連続しており、これらの空間部 41 , 42が二流体合流空間部 43を構成し ている。即ち、二流体合流空間部 43は平面視(上面視)が円形となっており、その径 が噴霧穴 44に向力、うにしたがって徐々に小さくなる先細り構造となっている。霧化用 空気導入部 37には、その周方向の 2箇所に溝 (スリット) 40が形成されている。これら の溝 40は図 5の溝 40と同様の旋回型のものであり、上面視において二流体合流空 間部 43の円周の接線方向に沿い、且つ、互いに二流体合流空間部 43の中心軸周 りに回転対称の位置関係(周方向に等間隔)となっている。なお、霧化用空気導入部 37に形成する溝は旋回型に限らず、図 6と同様の衝突型のものであってもよい。 [0108] The nozzle body portion 39 of the two-fluid spray nozzle 38 has an inverted conical space portion (concave portion) 42 formed at the center thereof, and the center thereof (the apex position of the inverted conical space portion 42). A fine spray hole 44 is formed. The space part 41 of the atomizing air introduction part 37 and the space part 42 of the nozzle body part 39 are continuous, and these space parts 41, 42 constitute a two-fluid merge space part 43. In other words, the two-fluid merging space 43 has a circular shape in plan view (top view), and has a tapered structure in which the diameter gradually decreases as the directional force is applied to the spray hole 44. The atomizing air introduction section 37 has grooves (slits) 40 formed at two locations in the circumferential direction. these The groove 40 of FIG. 5 is of a swivel type similar to the groove 40 of FIG. 5, and is along the tangential direction of the circumference of the two-fluid merge space 43 in the top view and is the central axis of the two-fluid merge space 43 with respect to each other. It has a rotationally symmetrical positional relationship (equal intervals in the circumferential direction). The groove formed in the atomizing air introduction part 37 is not limited to the swivel type but may be a collision type similar to that shown in FIG.
[0109] 図 7の二流体噴霧器 12におけるその他の部分の構成は、上記実施の形態例 1 (図 4)の二流体噴霧器 12と同様である。また、本実施の形態例 3の二流体噴霧パーナ 1 1における二流体噴霧器以外の部分の構成についても、上記実施の形態例 1 (図 1 〜図 3)の二流体噴霧パーナ 1 1と同様である。  [0109] The configuration of the other parts of the two-fluid sprayer 12 of Fig. 7 is the same as that of the two-fluid sprayer 12 of the first embodiment (Fig. 4). In addition, the configuration of the portion other than the two-fluid sprayer in the two-fluid spraying pan 11 of the third embodiment is the same as that of the two-fluid spraying pan 11 of the first embodiment (FIGS. 1 to 3). is there.
[0110] 本実施の形態例 3の二流体噴霧パーナ 1 1によれば、次のような作用効果が得られ 、また、その他、上記実施の形態例 1 , 2と同様の作用効果も得られる。  [0110] According to the two-fluid spray burner 11 of the third embodiment, the following functions and effects can be obtained. In addition, the same functions and effects as the first and second embodiments can be obtained. .
[0111] 即ち、本実施の形態例 3の二流体噴霧パーナ 1 1によれば、液体燃料タンク 19は、 液体燃料タンク 19のテーパ面部(底部 21の下面 21bの外側部分 21b— 1 )が霧化用 気体導入部 37のテーパ面部(内周面 37b)に嵌まり込むようにして当接した状態で、 霧化用気体導入部 37上に設置されているため、液体燃料タンク 19と二流体噴霧ノ ズノレ 38の中心軸を合せることが容易である。従って、液体燃料タンク 19の片寄りがな ぐ霧化用空気流路 28の幅を周方向に均一にして、霧化用空気流路 28における霧 化用空気 46の流れを前記周方向に均一にすることができるため、二流体噴霧ノズル 38の噴霧穴 44からの液体燃料 24の噴霧の対称性(即ち火炎の対称性)を確保する こと力 Sでさる。  That is, according to the two-fluid spraying pan 11 of Embodiment 3, the liquid fuel tank 19 has a tapered surface portion of the liquid fuel tank 19 (the outer portion 21b-1 of the lower surface 21b of the bottom portion 21) is fogged. Since it is installed on the atomizing gas introduction part 37 in a state of being fitted into and abutted with the tapered surface part (inner peripheral surface 37b) of the gas introduction part 37, the liquid fuel tank 19 and the two-fluid spray nozzle It is easy to align the center axis of ZUNORE 38. Accordingly, the width of the atomizing air passage 28 where the liquid fuel tank 19 is not displaced is made uniform in the circumferential direction, and the flow of the atomizing air 46 in the atomizing air passage 28 is made uniform in the circumferential direction. Therefore, it is possible to secure the symmetry of the spray of the liquid fuel 24 from the spray hole 44 of the two-fluid spray nozzle 38 (that is, the symmetry of the flame) with the force S.
[0112] また、本実施の形態例 3の二流体噴霧パーナ 1 1では、コイルばね 36 (図 4参照)に よって液体燃料タンク 19を下方に押圧することにより、液体燃料タンク 19の底部 21を 二流体噴霧ノズル 38の霧化用空気導入部 37に押し付けて、燃料タンク 19の底部 2 1のテーパ面部(外側部分 21b— 1 )と霧化用空気導入部 37のテーパ面部(内周面 3 7b)とが密着することにより、これらの接触面 21b— 1 , 37b間に隙間ができるのを防 止すること力 Sできる。このため、霧化用空気 46が溝 40以外の部分を流れることを防止 して、溝 40による広域噴霧の効果を充分に発揮することができる。  [0112] In the two-fluid spraying pan 11 of the third embodiment, the liquid fuel tank 19 is pressed downward by the coil spring 36 (see Fig. 4), so that the bottom 21 of the liquid fuel tank 19 is pressed. Pressing against the atomizing air introduction part 37 of the two-fluid spray nozzle 38, the tapered surface part (outer part 21b-1) of the bottom part 21 of the fuel tank 19 and the taper surface part (inner peripheral surface 3) of the atomizing air introduction part 37 By adhering to 7b), it is possible to prevent force S from forming a gap between these contact surfaces 21b-1 and 37b. For this reason, it is possible to prevent the atomizing air 46 from flowing through the portion other than the groove 40 and to sufficiently exhibit the effect of wide area spraying by the groove 40.
[0113] <実施の形態例 4〉  <Embodiment 4>
図 8 (a)は本発明の実施の形態例 4に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図(図 8 (b)の G— G線矢視の縦断面図)、図 8 (b )は前記二流体噴霧器に備えた液体燃料タンクを抽出して示す下面図(図 8 (a)の H 方向矢視図)、図 8 (c)は図 8 (b)の I方向矢視図、図 8 (d)は図 8 (a)の J J線矢視の 横断面図である。 FIG. 8 (a) is a two-fluid spray in the two-fluid spray pan according to Embodiment 4 of the present invention. Fig. 8 (b) is a vertical cross-sectional view showing the structure of the lower part of the vessel (Fig. 8 (b) is a vertical cross-sectional view taken along the line G-G). Fig. 8 (c) is a view from the direction of the arrow I in Fig. 8 (b), Fig. 8 (d) is a JJ line in Fig. 8 (a). FIG.
[0114] 図 8に示すように、本実施の形態例 4の二流体噴霧器 12では、液体燃料タンク 19 の底部 21の内面(上面) 21 aが先細り(逆円錐状)のテーパ面となっており、中心(逆 円錐状のテーパ面の頂点位置)に微細な液体燃料流出穴 22が形成されている。ま た、液体燃料タンク 19の底部 21の外面(下面) 21bは、外側部分 21b— 1が先細り( 逆円錐台状)のテーパ面となっており、内側部分 21b— 2が円形状の水平面となって いる。  As shown in FIG. 8, in the two-fluid sprayer 12 of the fourth embodiment, the inner surface (upper surface) 21 a of the bottom 21 of the liquid fuel tank 19 has a tapered (reverse conical) tapered surface. In addition, a fine liquid fuel outflow hole 22 is formed at the center (the apex position of the inverted conical tapered surface). In addition, the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 has a tapered surface with an outer portion 21b-1 tapered (inverted truncated cone), and an inner portion 21b-2 with a circular horizontal surface. It is.
[0115] 一方、二流体噴霧ノズル 38は霧化用空気導入部(図 7参照)を有しておらず、噴霧 器外筒 27の下端に噴霧器外筒 27と一体に形成されて!/、る(別体ものを溶接などで 固定してもよい)。二流体噴霧ノズル 38は、内面(上面) 38aが先細り(逆円錐状)の テーパ面となっている。このため、液体燃料タンク 19は、その底部 21の下面 21bの 外側部分 21b— 1 (テーパ面部)が、二流体噴霧ノズル 38の内面 38a (テーパ面部) に嵌まり込むようにして当接した状態で二流体噴霧ノズル 38上に設置されている。こ の場合、コイルばね 36 (図 4参照)によって液体燃料タンク 19を下方に押圧すること により、液体燃料タンク 19の底部 21の下面 21bの外側部分 21b— 1 (テーパ面部)が 二流体噴霧ノズル 38の内面 38a (テーパ面部)に押し付けられて密着し、これらの接 触面 21b— 1 , 38b間に隙間が生じるのを防止する。  [0115] On the other hand, the two-fluid spray nozzle 38 does not have an atomizing air introducing portion (see Fig. 7), and is formed integrally with the sprayer outer cylinder 27 at the lower end of the sprayer outer cylinder 27! /, (A separate object may be fixed by welding, etc.). The two-fluid spray nozzle 38 has a tapered surface whose inner surface (upper surface) 38a is tapered (inverted conical shape). For this reason, the liquid fuel tank 19 is in a state where the outer portion 21b-1 (tapered surface portion) of the lower surface 21b of the bottom portion 21 is in contact with the inner surface 38a (tapered surface portion) of the two-fluid spray nozzle 38. It is installed on the fluid spray nozzle 38. In this case, when the liquid fuel tank 19 is pressed downward by the coil spring 36 (see FIG. 4), the outer portion 21b-1 (taper surface portion) of the bottom surface 21b of the bottom portion 21 of the liquid fuel tank 19 becomes a two-fluid spray nozzle. The inner surface 38a (tapered surface portion) of 38 is pressed against and closely contacts to prevent a gap between these contact surfaces 21b-1 and 38b.
[0116] また、テーパ構造の内面 38aによって二流体噴霧ノズル 38の中央部に形成される 逆円錐状の空間部が、二流体合流空間部 43となっている。微細な噴霧穴 44は、こ の二流体合流空間部 43の中心(逆円錐状の空間部 43の頂点位置)に形成されてお り、二流体合流空間部 43に通じている。即ち、二流体合流空間部 43は平面視(上面 視)が円形となっており、その径が噴霧穴 44に向力、うにしたがって徐々に小さくなる 先細り構造となっている。  [0116] In addition, an inverted conical space formed at the center of the two-fluid spray nozzle 38 by the inner surface 38a of the tapered structure is a two-fluid merge space 43. The fine spray hole 44 is formed at the center of the two-fluid merge space 43 (the apex position of the inverted conical space 43) and communicates with the two-fluid merge space 43. That is, the two-fluid merging space 43 has a circular shape in plan view (top view), and has a tapered structure in which the diameter gradually decreases as the directional force is applied to the spray hole 44.
[0117] そして、液体燃料タンク 19の底部 21の下面 21b側には、その周方向の 2箇所に溝  [0117] Then, on the bottom surface 21b side of the bottom 21 of the liquid fuel tank 19, grooves are formed at two locations in the circumferential direction.
(スリット) 71が形成されている。これらの溝 71は旋回型のものであり、上面視におい て二流体合流空間部 43の円周の接線方向に沿い、且つ、互いに二流体合流空間 部 43の中心軸周りに回転対称の位置関係(周方向に等間隔)となっている。 (Slit) 71 is formed. These grooves 71 are of a swivel type and have a top view. The two fluid merging space portion 43 has a rotationally symmetrical positional relationship (equally spaced in the circumferential direction) along the tangential direction of the circumference of the two fluid merging space portion 43 and around the central axis of the two fluid merging space portion 43.
[0118] 従って、霧化用空気流路 28を下方へと流れてきた霧化用空気 46は、液体燃料タ ンク 19の底部 21において溝 71を流通することにより流速を速めた状態で二流体合 流空間部 43へと導入され、この二流体合流空間部 43で旋回流となって、液体燃料 タンク 19の液体燃料流出穴 22から流出した液体燃料 24と合流(混合)する。その結 果、液体燃料 24と霧化用空気 46とがよく混合され、液体燃料 24は霧化用空気 46に より霧化された状態で霧化用空気 46とともに二流体噴霧ノズル 38の噴霧穴 44から、 燃焼空間部 13へと噴射される。  Accordingly, the atomizing air 46 that has flowed downward through the atomizing air flow path 28 flows through the groove 71 in the bottom portion 21 of the liquid fuel tank 19 so as to increase the flow velocity. It is introduced into the merge space 43 and turns into the two-fluid merge space 43 and merges (mixes) with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19. As a result, the liquid fuel 24 and the atomizing air 46 are well mixed, and the liquid fuel 24 is atomized by the atomizing air 46 and the atomizing hole 46 together with the atomizing air 46. 44 is injected into the combustion space 13.
[0119] なお、図 8の二流体噴霧器 12におけるその他の部分の構成は、上記実施の形態 例 1 (図 4)の二流体噴霧器 12と同様である。また、本実施の形態例 4の二流体噴霧 パーナ 11における二流体噴霧器以外の部分の構成についても、上記実施の形態例 1 (図 1〜図 3)の二流体噴霧パーナ 11と同様である。  [0119] The configuration of other parts of the two-fluid sprayer 12 in Fig. 8 is the same as that of the two-fluid sprayer 12 in the first embodiment (Fig. 4). In addition, the configuration of the parts other than the two-fluid sprayer in the two-fluid spray partner 11 of Embodiment 4 is the same as that of the two-fluid spray partner 11 of Embodiment 1 (FIGS. 1 to 3).
[0120] 本実施の形態例 3の二流体噴霧パーナ 11によれば、次のような作用効果が得られ 、また、その他、上記実施の形態例 1と同様の作用効果も得られる。  [0120] According to the two-fluid spraying pan 11 of the third embodiment, the following operational effects can be obtained. In addition, the same operational effects as the first embodiment can be obtained.
[0121] 即ち、本実施の形態例 4の二流体噴霧パーナ 11によれば、液体燃料流出穴 44か ら流出して二流体合流空間部 43に流入した液体燃料 24が、霧化用空気流路 28を 下方へと流れた後に液体燃料タンク 19の底部 21で溝 71を流れて二流体合流空間 部 43へと導かれた霧化用空気 46と、二流体合流空間部 43で合流した後、この霧化 用空気 46とともに噴霧穴 44から噴霧される構成としたことにより、液体燃料 24が、溝 71で流速を速めた (水平方向の速度成分が増加した)霧化用空気 46と二流体合流 空間部 43でよく混合されて、噴霧穴 44から噴霧される。このため、二流体合流空間 部 43や溝 71を設けない場合に比べて、液体燃料 24の噴霧の広がり角が大きくなり、 液体燃料 24が確実に霧化されるため、液体燃料 24の燃焼性が向上する。  [0121] That is, according to the two-fluid spray partner 11 of the fourth embodiment, the liquid fuel 24 flowing out from the liquid fuel outflow hole 44 and flowing into the two-fluid merging space portion 43 is converted into the atomizing air flow. After flowing down the passage 28 and flowing in the groove 71 at the bottom 21 of the liquid fuel tank 19 and joining the atomizing air 46 led to the two-fluid merge space 43 and the two-fluid merge space 43 As a result of spraying from the spray hole 44 together with the atomizing air 46, the liquid fuel 24 has increased the flow velocity in the groove 71 (the velocity component in the horizontal direction has increased) and the atomizing air 46. The fluid is mixed well in the fluid merge space 43 and sprayed from the spray hole 44. For this reason, compared with the case where the two-fluid merge space 43 and the groove 71 are not provided, the spread angle of the spray of the liquid fuel 24 is increased and the liquid fuel 24 is reliably atomized. Will improve.
[0122] 更に、液体燃料タンク 19は、液体燃料タンク 19のテーパ面部(底部 21の下面 21b の外側部分 21b— 1)が二流体噴霧ノズル 38のテーパ面部(内面 38a)に嵌まり込む ようして当接した状態で、二流体噴霧ノズル 38上に設置されているため、液体燃料タ ンク 19と二流体噴霧ノズル 38の中心軸を合せることが容易である。従って、液体燃 料タンク 19の片寄りがなぐ霧化用空気流路 28の幅を周方向に均一にして、霧化用 空気流路 28における霧化用空気 46の流れを前記周方向に均一にすることができる ため、二流体噴霧ノズル 38の噴霧穴 44からの液体燃料 24の噴霧の対称性(即ち火 炎の対称性)を確保すること力 Sできる。 [0122] Further, the liquid fuel tank 19 is configured so that the tapered surface portion of the liquid fuel tank 19 (the outer portion 21b-1 of the lower surface 21b of the bottom portion 21) fits into the tapered surface portion (the inner surface 38a) of the two-fluid spray nozzle 38. In this state, the liquid fuel tank 19 and the two-fluid spray nozzle 38 can be easily aligned with the central axis. Therefore, liquid fuel The width of the atomizing air flow path 28 where the side of the material tank 19 moves can be made uniform in the circumferential direction, and the flow of the atomizing air 46 in the atomizing air flow path 28 can be made uniform in the circumferential direction. Therefore, it is possible to ensure the symmetry of the spray of the liquid fuel 24 from the spray hole 44 of the two-fluid spray nozzle 38 (that is, the symmetry of the flame).
[0123] また、液体燃料タンク 19の底部 21の溝 71は、上面視において二流体合流空間部 43の円周の接線方向に沿うように形成したことにより、二流体合流空間部 43では霧 化用空気 46が旋回流となって液体燃料 24と混合されるため、液体燃料 24と霧化用 空気 46と力 より確実に混合される。このため、二流体噴霧ノズル 38の噴霧穴 44か ら噴射される液体燃料 24を、より確実に霧化することができて当該液体燃料 24の燃 焼性をより向上させることができる。  [0123] Further, the groove 71 of the bottom 21 of the liquid fuel tank 19 is formed so as to be along the tangential direction of the circumference of the two-fluid merge space 43 in a top view, so that the two-fluid merge space 43 is atomized. Since the working air 46 is swirled and mixed with the liquid fuel 24, the liquid fuel 24 and the atomizing air 46 are more reliably mixed by force. Therefore, the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
[0124] また、液体燃料タンク 19の底部 21の溝 71は、二流体合流空間部 43の中心軸回り に回転対称の位置関係となるように複数形成されているため、二流体噴霧ノズル 38 の噴霧穴 44から噴霧された液体燃料 24の周方向の分布量を均一にして、当該液体 燃料 24の燃焼性を向上させることができる。  [0124] Further, since the groove 71 of the bottom 21 of the liquid fuel tank 19 is formed in a plurality so as to have a rotationally symmetrical positional relationship around the central axis of the two-fluid merge space 43, the two-fluid spray nozzle 38 has The distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the spray holes 44 can be made uniform, and the combustibility of the liquid fuel 24 can be improved.
[0125] また、本実施の形態例 4の二流体噴霧パーナ 11では、コイルばね 36 (図 4参照)に よって液体燃料タンク 19を下方に押圧することにより、液体燃料タンク 19の底部 21を 二流体噴霧ノズル 38に押し付けて、燃料タンク 19の底部 21のテーパ面部(外側部 分 21b— 1)と二流体噴霧ノズル 38のテーパ面部(内面 38a)と力 S密着することにより 、これらの接触面 21b— 1 , 38a間に隙間ができるのを防止することができる。このた め、霧化用空気 46が溝 71以外の部分を流れることを防止して、溝 71による広域噴 霧の効果を充分に発揮することができる。  [0125] Further, in the two-fluid spraying pan 11 of the fourth embodiment, the bottom 21 of the liquid fuel tank 19 is removed by pressing the liquid fuel tank 19 downward by the coil spring 36 (see Fig. 4). By pressing the fluid spray nozzle 38 against the tapered surface portion (outer portion 21b-1) of the bottom 21 of the fuel tank 19 and the tapered surface portion (inner surface 38a) of the two-fluid spray nozzle 38, these contact surfaces are brought into close contact with each other. It is possible to prevent a gap from being formed between 21b-1 and 38a. For this reason, the atomizing air 46 can be prevented from flowing through portions other than the groove 71, and the effect of wide-area spraying by the groove 71 can be sufficiently exhibited.
[0126] <実施の形態例 5〉  <Embodiment 5>
図 9 (a)は本発明の実施の形態例 5に係る二流体噴霧パーナにおける二流体噴霧 器の下側部分の構成を示す縦断面図(図 9 (b)の K K線矢視断面図)、図 9 (b)は 前記二流体噴霧器に備えた液体燃料タンクを抽出して示す下面図(図 9 (a)の L方向 矢視図)、図 9 (c)は図 9 (a)の M— M線矢視の横断面図である。  FIG. 9 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid sprayer in the two-fluid spray panner according to Embodiment 5 of the present invention (cross-sectional view taken along line KK in FIG. 9 (b)). Fig. 9 (b) is a bottom view of the liquid fuel tank provided in the two-fluid sprayer. Fig. 9 (c) is a bottom view of Fig. 9 (a). It is a cross-sectional view taken along line M—M.
[0127] 図 9に示すように、本実施の形態例 5の二流体噴霧器 12では、液体燃料タンク 19 の底部 21の内面(上面) 21 aが先細り(逆円錐状)のテーパ面となっており、中心(逆 円錐状のテーパ面の頂点位置)に微細な液体燃料流出穴 22が形成されている。ま た、液体燃料タンク 19の底部 21の外面(下面) 21bは、外側部分 21b— 1が先細り( 逆円錐台状)のテーパ面となっており、内側部分 21b— 2が円形状の水平面となって いる。 As shown in FIG. 9, in the two-fluid sprayer 12 of the fifth embodiment, the inner surface (upper surface) 21 a of the bottom portion 21 of the liquid fuel tank 19 is a tapered surface (tapered conical shape). And center (reverse A fine liquid fuel outflow hole 22 is formed at the apex position of the conical tapered surface. In addition, the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 has a tapered surface with an outer portion 21b-1 tapered (inverted truncated cone), and an inner portion 21b-2 with a circular horizontal surface. It is.
[0128] 一方、二流体噴霧ノズル 38は霧化用空気導入部(図 7参照)を有しておらず、噴霧 器外筒 27の下端に噴霧器外筒 27と一体に形成されて!/、る(別体のものを溶接など で固定してもよい)。二流体噴霧ノズル 38は、内面(上面) 38aが先細り(逆円錐状) のテーパ面となっている。このため、液体燃料タンク 19は底部 21の下面 21bの外側 部分 21b— 1 (テーパ面部)が、二流体噴霧ノズル 38の内面 38a (テーパ面部)に嵌 まり込むようにして当接した状態で二流体噴霧ノズル 38の上に設置されている。この 場合、コイルばね 36 (図 4参照)によって液体燃料タンク 19を下方に押圧することに より、液体燃料タンク 19の底部 21の下面 21bの外側部分 21b— 1 (テーパ面部)が二 流体噴霧ノズル 38の内面 38a (テーパ面部)に押し付けられて密着し、これらの接触 面 21b— 1 , 38b間に隙間が生じるのを防止する。  On the other hand, the two-fluid spray nozzle 38 does not have an atomizing air introducing portion (see FIG. 7), and is formed integrally with the sprayer outer cylinder 27 at the lower end of the sprayer outer cylinder 27! /, (A separate object may be fixed by welding, etc.). The two-fluid spray nozzle 38 has a tapered surface whose inner surface (upper surface) 38a is tapered (inverted conical shape). For this reason, the liquid fuel tank 19 has a two-fluid spray in a state where the outer portion 21b-1 (tapered surface) of the bottom surface 21b of the bottom 21 is in contact with the inner surface 38a (tapered surface) of the two-fluid spray nozzle 38. It is installed on the nozzle 38. In this case, by pressing the liquid fuel tank 19 downward by the coil spring 36 (see FIG. 4), the outer portion 21b-1 (taper surface portion) of the bottom surface 21b of the bottom portion 21 of the liquid fuel tank 19 becomes a two-fluid spray nozzle. The inner surface 38a (tapered surface portion) of 38 is pressed against and closely contacts to prevent a gap between the contact surfaces 21b-1 and 38b.
[0129] また、テーパ構造の内面 38aによって二流体噴霧ノズル 38の中央部に形成される 逆円錐状の空間が、二流体合流空間部 43となっている。微細な噴霧穴 44は、この 二流体合流空間部 43の中心(逆円錐状の空間部 43の頂点位置)に形成されており 、二流体合流空間部 43に通じている。即ち、二流体合流空間部 43は平面視(上面 視)が円形となっており、その径が噴霧穴 44に向力、うにしたがって徐々に小さくなる 先細り構造となっている。  In addition, an inverted conical space formed at the center of the two-fluid spray nozzle 38 by the tapered inner surface 38a is a two-fluid merge space 43. The fine spray hole 44 is formed at the center of the two-fluid merge space 43 (the apex position of the inverted conical space 43) and communicates with the two-fluid merge space 43. That is, the two-fluid merging space 43 has a circular shape in plan view (top view), and has a tapered structure in which the diameter gradually decreases as the directional force is applied to the spray hole 44.
[0130] そして、液体燃料タンク 19の底部 21の下面 21b側には、その周方向の 4箇所に溝  [0130] Then, on the bottom surface 21b side of the bottom 21 of the liquid fuel tank 19, grooves are formed at four locations in the circumferential direction thereof.
(スリット) 81が形成されている。これらの溝 81は衝突型のものであり、上面視におい て二流体合流空間部 43の径方向に沿い、且つ、二流体合流空間部 43の中心軸回 りに回転対称の位置関係(周方向に等間隔)となるように形成されている。  (Slit) 81 is formed. These grooves 81 are of a collision type, and have a rotationally symmetrical positional relationship (circumferential direction) along the radial direction of the two-fluid merge space 43 in the top view and around the central axis of the two-fluid merge space 43. At equal intervals).
[0131] 従って、霧化用空気流路 28を下方へと流れてきた霧化用空気 46は、液体燃料タ ンク 19の底部 21において溝 81を流通することにより流速を速めた状態で二流体合 流空間部 43へと導入され、この二流体合流空間部 43で液体燃料タンク 19の液体燃 料流出穴 22から流出した液体燃料 24と衝突するようにして合流(混合)する。その結 果、液体燃料 24と霧化用空気 46とがよく混合され、液体燃料 24は霧化用空気 46に よって霧化された状態で霧化用空気 46とともに二流体噴霧ノズル 38の噴霧穴 44か ら、燃焼空間部 13へと噴射される。 Accordingly, the atomizing air 46 that has flowed downward through the atomizing air flow path 28 flows into the two fluids in a state where the flow velocity is increased by flowing through the groove 81 at the bottom 21 of the liquid fuel tank 19. It is introduced into the merge space 43 and merges (mixes) so as to collide with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19 in the two-fluid merge space 43. The result As a result, the liquid fuel 24 and the atomizing air 46 are mixed well, and the liquid fuel 24 is atomized by the atomizing air 46, and the atomizing air 46 and the spray hole 44 of the two-fluid spray nozzle 38 are used. Then, it is injected into the combustion space 13.
[0132] なお、図 9の二流体噴霧器 12におけるその他の部分の構成は、上記実施の形態 例 1 (図 4)の二流体噴霧器 12と同様である。また、本実施の形態例 5の二流体噴霧 パーナ 11における二流体噴霧器以外の部分の構成についても、上記実施の形態例[0132] The configuration of the other parts of the two-fluid sprayer 12 in Fig. 9 is the same as that of the two-fluid sprayer 12 in the first embodiment (Fig. 4). In addition, the configuration of the portion other than the two-fluid sprayer in the two-fluid spray pan 11 of the fifth embodiment is also described in the above embodiment.
1 (図 1〜図 3)の二流体噴霧パーナ 11と同様である。 This is the same as the two-fluid spraying pan 11 of FIG.
[0133] 本実施の形態例 5の二流体噴霧パーナ 11によれば、次のような上記実施の形態例[0133] According to the two-fluid spraying pan 11 of the fifth embodiment, the following embodiment is described as follows.
4と同様の作用効果が得られ、また、その他、上記実施の形態例 1と同様の作用効果 あ得られる。 The same operational effects as those of the fourth embodiment can be obtained, and the same operational effects as those of the first embodiment can be obtained.
[0134] 即ち、本実施の形態例 5の二流体噴霧パーナ 11によれば、液体燃料流出穴 44か ら流出して二流体合流空間部 43に流入した液体燃料 24が、霧化用空気流路 28を 下方へと流れた後に液体燃料タンク 19の底部 21で溝 81を流れて二流体合流空間 部 43へと導かれた霧化用空気 46と、二流体合流空間部 43で合流した後、この霧化 用空気 46とともに噴霧穴 44から噴霧される構成としたことにより、液体燃料 24が、溝 81で流速を速めた (水平方向の速度成分が増加した)霧化用空気 46と二流体合流 空間部 43でよく混合されて、噴霧穴 44から噴霧される。このため、二流体合流空間 部 43や溝 81を設けない場合に比べて、液体燃料 24の噴霧の広がり角が大きくなり、 液体燃料 24が確実に霧化されるため、液体燃料 24の燃焼性が向上する。  That is, according to the two-fluid spray partner 11 of the fifth embodiment, the liquid fuel 24 flowing out from the liquid fuel outflow hole 44 and flowing into the two-fluid merge space 43 flows into the atomizing air flow. After flowing down the passage 28 and flowing in the groove 81 at the bottom 21 of the liquid fuel tank 19 to the two-fluid merging space portion 43 and the merging air 46 after merging in the two-fluid merging space portion 43 As a result of spraying from the spray hole 44 together with the atomizing air 46, the liquid fuel 24 has increased the flow velocity in the groove 81 (the velocity component in the horizontal direction has increased). The fluid is mixed well in the fluid merge space 43 and sprayed from the spray hole 44. For this reason, compared with the case where the two-fluid merge space 43 and the groove 81 are not provided, the spread angle of the spray of the liquid fuel 24 is increased, and the liquid fuel 24 is surely atomized. Will improve.
[0135] 更に、液体燃料タンク 19は、液体燃料タンク 19のテーパ面部(底部 21の下面 21b の外側部分 21b— 1)が二流体噴霧ノズル 38のテーパ面部(内面 38a)に嵌まり込む ようして当接した状態で、二流体噴霧ノズル 38上に設置されているため、液体燃料タ ンク 19と二流体噴霧ノズル 38の中心軸を合せることが容易である。従って、液体燃 料タンク 19の片寄りがなぐ霧化用空気流路 28の幅を周方向に均一にして、霧化用 空気流路 28における霧化用空気 46の流れを前記周方向に均一にすることができる ため、二流体噴霧ノズル 38の噴霧穴 44からの液体燃料 24の噴霧の対称性(即ち火 炎の対称性)を確保すること力 Sできる。  Furthermore, the liquid fuel tank 19 is configured so that the tapered surface portion of the liquid fuel tank 19 (the outer portion 21b-1 of the lower surface 21b of the bottom portion 21) fits into the tapered surface portion (the inner surface 38a) of the two-fluid spray nozzle 38. In this state, the liquid fuel tank 19 and the two-fluid spray nozzle 38 can be easily aligned with the central axis. Therefore, the width of the atomizing air passage 28 where the liquid fuel tank 19 is offset is made uniform in the circumferential direction, and the flow of the atomizing air 46 in the atomizing air passage 28 is made uniform in the circumferential direction. Therefore, it is possible to secure the symmetry of the spray of the liquid fuel 24 from the spray hole 44 of the two-fluid spray nozzle 38 (that is, the symmetry of the flame).
[0136] また、液体燃料タンク 19の底部 21の溝 81は、上面視において二流体合流空間部 43の円周の接線方向に沿うように形成したことにより、二流体合流空間部 43では霧 化用空気 46が旋回流となって液体燃料 24と混合されるため、液体燃料 24と霧化用 空気 46と力 より確実に混合される。このため、二流体噴霧ノズル 38の噴霧穴 44か ら噴射される液体燃料 24を、より確実に霧化することができて当該液体燃料 24の燃 焼性をより向上させることができる。 [0136] Further, the groove 81 of the bottom 21 of the liquid fuel tank 19 has a two-fluid merge space portion in a top view. By forming it along the tangential direction of the circumference of 43, the atomizing air 46 is swirled in the two-fluid merge space 43 and mixed with the liquid fuel 24. Air 46 and force are more reliably mixed. Therefore, the liquid fuel 24 injected from the spray hole 44 of the two-fluid spray nozzle 38 can be atomized more reliably, and the combustibility of the liquid fuel 24 can be further improved.
[0137] また、液体燃料タンク 19の底部 21の溝 81は、二流体合流空間部 43の中心軸回り に回転対称の位置関係となるように複数形成されているため、二流体噴霧ノズル 38 の噴霧穴 44から噴霧された液体燃料 24の周方向の分布量を均一にして、当該液体 燃料 24の燃焼性を向上させることができる。  [0137] In addition, since the groove 81 of the bottom 21 of the liquid fuel tank 19 is formed in a plurality of rotationally symmetrical positions around the central axis of the two-fluid merge space 43, the two-fluid spray nozzle 38 has The distribution amount in the circumferential direction of the liquid fuel 24 sprayed from the spray holes 44 can be made uniform, and the combustibility of the liquid fuel 24 can be improved.
[0138] また、本実施の形態例 4の二流体噴霧パーナ 11では、コイルばね 36 (図 4参照)に よって液体燃料タンク 19を下方に押圧することにより、液体燃料タンク 19の底部 21を 二流体噴霧ノズル 38に押し付けて、燃料タンク 19の底部 21のテーパ面部(外側部 分 21b— 1)と二流体噴霧ノズル 38のテーパ面部(内面 38a)と力 S密着することにより 、これらの接触面 21b— 1 , 38a間に隙間ができるのを防止することができる。このた め、霧化用空気 46が溝 81以外の部分を流れることを防止して、溝 81による広域噴 霧の効果を充分に発揮することができる。  [0138] Further, in the two-fluid spraying pan 11 of the fourth embodiment, the bottom 21 of the liquid fuel tank 19 is removed by pressing the liquid fuel tank 19 downward by the coil spring 36 (see Fig. 4). By pressing the fluid spray nozzle 38 against the tapered surface portion (outer portion 21b-1) of the bottom 21 of the fuel tank 19 and the tapered surface portion (inner surface 38a) of the two-fluid spray nozzle 38, these contact surfaces are brought into close contact with each other. It is possible to prevent a gap from being formed between 21b-1 and 38a. For this reason, the atomizing air 46 can be prevented from flowing through portions other than the groove 81, and the effect of wide-area spraying by the groove 81 can be sufficiently exhibited.
[0139] <実施の形態例 6〉  <Embodiment 6>
図 10 (a)は本発明の実施の形態例 6に係る二流体噴霧パーナにおける二流体噴 霧器の下側部分の構成を示す縦断面図、図 10 (b)は図 10 (a)の N— N線矢視の横 断面図である。  Fig. 10 (a) is a longitudinal sectional view showing the configuration of the lower part of the two-fluid atomizer in the two-fluid atomizing pan according to Embodiment 6 of the present invention, and Fig. 10 (b) is a diagram of Fig. 10 (a). FIG. 6 is a transverse sectional view taken along the line N—N.
[0140] 図 10に示すように、本実施の形態例 6の二流体噴霧器 12では、液体燃料タンク 19 の底部 21の内面(上面) 21 aが先細り(逆円錐状)のテーパ面となっており、中心(逆 円錐状のテーパ面の頂点位置)に微細な液体燃料流出穴 22が形成されている。ま た、液体燃料タンク 19の底部 21の外面(下面) 21bも、先細り(逆円錐台状)のテー パ面となっている。一方、二流体噴霧ノズル 38は霧化用空気導入部(図 7参照)を有 しておらず、噴霧器外筒 27の下端に噴霧器外筒 27と一体に形成されている(別体も のを溶接などで固定してもよい)。二流体噴霧ノズル 38は、内面(上面) 38aが先細り (逆円錐状)のテーパ面となっている。 [0141] 液体燃料タンク 19の側部 20の外周面 20bの下端部には、複数(図示例では 4つ) の支持部 91が突設されている。これらの支持部 91は側部 20の周方向に等間隔で設 けられており、下面 91aの外側部分 91a— 1が、二流体噴霧ノズノレ 38の内面 38aに 沿って内側に傾斜したテーパ面となっている。従って、液体燃料タンク 19は支持部 9 1の下面 91aの外側部分 91a— 1が、二流体噴霧ノズル 38の内面 38aに嵌まり込む ようにして当接した状態で支持されており、その結果、液体燃料タンク 19の底部 21の 外面 21 aと、二流体噴霧ノズル 38の内面 38aとの間には先細り(逆円錐台状)の隙間 が確保され、この隙間が霧化用空気流路 92となっている。即ち、外側の第 1の霧化 用空気流路 28と内側の二流体合流空間部 43は、第 2の霧化用空気流路 92を介し て連通されている。 As shown in FIG. 10, in the two-fluid sprayer 12 of the sixth embodiment, the inner surface (upper surface) 21 a of the bottom 21 of the liquid fuel tank 19 becomes a tapered surface (inverted conical shape). In addition, a fine liquid fuel outflow hole 22 is formed at the center (the apex position of the inverted conical tapered surface). Further, the outer surface (lower surface) 21b of the bottom 21 of the liquid fuel tank 19 is also a tapered (inverted truncated cone) taper surface. On the other hand, the two-fluid spray nozzle 38 does not have an atomizing air introduction portion (see FIG. 7), and is formed integrally with the sprayer outer cylinder 27 at the lower end of the sprayer outer cylinder 27 (separately provided). It may be fixed by welding). The two-fluid spray nozzle 38 has an inner surface (upper surface) 38a having a tapered surface (tapered shape). [0141] A plurality (four in the illustrated example) of support portions 91 project from the lower end portion of the outer peripheral surface 20b of the side portion 20 of the liquid fuel tank 19. These support portions 91 are provided at equal intervals in the circumferential direction of the side portion 20, and the outer portion 91a-1 of the lower surface 91a has a tapered surface inclined inward along the inner surface 38a of the two-fluid spray nozzle 38. It has become. Accordingly, the liquid fuel tank 19 is supported in a state where the outer portion 91a-1 of the lower surface 91a of the support portion 91 is in contact with the inner surface 38a of the two-fluid spray nozzle 38, and as a result, A tapered (inverted truncated cone) gap is secured between the outer surface 21 a of the bottom 21 of the liquid fuel tank 19 and the inner surface 38 a of the two-fluid spray nozzle 38, and this gap is connected to the atomizing air flow path 92. It has become. That is, the outer first atomizing air flow path 28 and the inner two-fluid merging space 43 are communicated via the second atomizing air flow path 92.
[0142] 二流体合流空間部 43は、テーパ構造の内面 38aによって二流体噴霧ノズル 38の 中央部に形成された逆円錐状の空間である。微細な噴霧穴 44は、この二流体合流 空間部 43の中心(逆円錐状の空間部 43の頂点位置)に形成されており、二流体合 流空間部 43に通じている。即ち、二流体合流空間部 43は液体燃料流出穴 22の下 方に位置し、平面視(上面視)が円形となっており、その径が噴霧穴 44に向かうにし たがって徐々に小さくなる先細り構造となって!/、る。  [0142] The two-fluid merge space 43 is an inverted conical space formed at the center of the two-fluid spray nozzle 38 by the inner surface 38a of the tapered structure. The fine spray hole 44 is formed at the center of the two-fluid merge space 43 (the apex position of the inverted conical space 43) and communicates with the two-fluid merge space 43. That is, the two-fluid merging space 43 is located below the liquid fuel outflow hole 22 and has a circular shape in plan view (top view), and its diameter gradually decreases as it goes toward the spray hole 44. It becomes a structure!
[0143] 霧化用空気流路 28を下方へと流れてきた霧化用空気 46は、支持部 91の間の霧 化用空気流通部 93を通過し、霧化用空気流路 92を流通して、二流体合流空間部 4 3へと導入され、この二流体合流空間部 43で液体燃料タンク 19の液体燃料流出穴 2 2から流出した液体燃料 24と衝突するようにして合流(混合)する。その結果、液体燃 料 24は霧化用空気 46により霧化された状態で霧化用空気 46とともに二流体噴霧ノ ズル 38の噴霧穴 44から、燃焼空間部 13へと噴射される。  [0143] The atomizing air 46 that has flowed downward through the atomizing air flow path 28 passes through the atomizing air flow part 93 between the support parts 91 and flows through the atomizing air flow path 92. The two-fluid merging space portion 43 is introduced into the two-fluid merging space portion 43 and merged (mixed) so as to collide with the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 of the liquid fuel tank 19 in the two-fluid merging space portion 43. To do. As a result, the liquid fuel 24 is sprayed into the combustion space portion 13 from the spray hole 44 of the two-fluid spray nozzle 38 together with the atomizing air 46 while being atomized by the atomizing air 46.
[0144] なお、図 10の二流体噴霧器 12におけるその他の部分の構成は、上記実施の形態 例 1 (図 4)の二流体噴霧器 12と同様である。また、本実施の形態例 6の二流体噴霧 パーナ 11における二流体噴霧器以外の部分の構成についても、上記実施の形態例 1 (図 1〜図 3)の二流体噴霧パーナ 11と同様である。  [0144] The configuration of other parts of the two-fluid sprayer 12 in Fig. 10 is the same as that of the two-fluid sprayer 12 in the first embodiment (Fig. 4). In addition, the configuration of the portion other than the two-fluid sprayer in the two-fluid spraying panner 11 of the sixth embodiment is the same as that of the two-fluid spraying panner 11 of the first embodiment (FIGS. 1 to 3).
[0145] 本実施の形態例 6の二流体噴霧パーナ 11によれば、次のような作用効果が得られ 、また、その他、上記実施の形態例 1と同様の作用効果も得られる。 [0146] 即ち、本実施の形態例 6の二流体噴霧パーナ 11によれば、液体燃料流出穴 22か ら流出して二流体合流空間部 43に流入した液体燃料 24が、第 1の霧化用気体流路 28を下方へと流れた後に支持部 91の間の霧化用空気流通部 93を通過し、第 2の霧 化用空気流路 92を流れて二流体合流空間部 43へと導かれた霧化用空気 46と、二 流体合流空間部 43で合流した後、この霧化用空気 46とともに噴霧穴 44から噴霧さ れる構成としたことにより、液体燃料タンク 19の液体燃料流出穴 22から流出した液体 燃料 24が、霧化用空気 46と二流体合流空間部 43で混合された後に二流体噴霧ノ ズル 38の噴霧穴 44から噴射される。このため、二流体合流空間部 43を設けない場 合に比べて、液体燃料 24の噴霧の広がり角が大きくなり、液体燃料 24が確実に霧 化されるため、液体燃料の燃焼性が向上する。 [0145] According to the two-fluid spraying pan 11 of the sixth embodiment, the following operational effects can be obtained, and, in addition, the same operational effects as the first embodiment can be obtained. That is, according to the two-fluid spraying pan 11 of the sixth embodiment, the liquid fuel 24 flowing out from the liquid fuel outflow hole 22 and flowing into the two-fluid merging space 43 is first atomized. After flowing down the gas flow path 28 for use, it passes through the atomizing air flow section 93 between the support sections 91 and flows through the second atomizing air flow path 92 to the two-fluid merge space section 43. The liquid atomizing hole 46 of the liquid fuel tank 19 is configured such that the atomized air 46 and the atomized air 46 are sprayed from the atomizing hole 44 after being merged in the two-fluid merging space 43. The liquid fuel 24 flowing out of 22 is mixed in the atomizing air 46 and the two-fluid merge space 43 and then injected from the spray hole 44 of the two-fluid spray nozzle 38. For this reason, compared with the case where the two-fluid merge space 43 is not provided, the spread angle of the spray of the liquid fuel 24 is increased, and the liquid fuel 24 is reliably atomized, so that the combustibility of the liquid fuel is improved. .
[0147] <実施の形態例 7〉  <Embodiment 7>
図 11は本発明の実施の形態例 7に係る二流体噴霧パーナの構成を示す縦断面図 、図 12は図 11の O— O線矢視の横断面図である。  FIG. 11 is a longitudinal sectional view showing a configuration of a two-fluid spraying pan according to Embodiment 7 of the present invention, and FIG. 12 is a transverse sectional view taken along line OO in FIG.
[0148] 図 11及び図 12に示すように、本実施の形態例 7の二流体噴霧パーナ 11ではプレ ート 18を多孔板としている。即ち、円環状のプレート 18には複数の燃焼用空気流通 穴 101が形成されている。これらの燃焼用空気流通穴 101は何れも、燃焼用空気流 通穴 52 (第 1円筒 16)よりも内側に設けられている。従って、燃焼用空気流路 15を下 方へと流れてきた燃焼用空気 50は、主にプレート 19の外周側の燃焼用空気流通穴 52を通過して第 1円筒 16の外側の燃焼用空気流路 53を流通した後に燃焼空間部 1 3へ流入するが、一部が第 1円筒 16の内側で燃焼用空気流通穴 101を通って燃焼 空間部 13に流入する。  As shown in FIGS. 11 and 12, in the two-fluid spray pan 11 of the seventh embodiment, the plate 18 is a perforated plate. That is, a plurality of combustion air circulation holes 101 are formed in the annular plate 18. Each of these combustion air circulation holes 101 is provided inside the combustion air circulation hole 52 (first cylinder 16). Accordingly, the combustion air 50 that has flowed downward through the combustion air flow path 15 mainly passes through the combustion air circulation holes 52 on the outer peripheral side of the plate 19 and then the combustion air on the outside of the first cylinder 16. After flowing through the flow path 53, it flows into the combustion space portion 13, but a part flows into the combustion space portion 13 through the combustion air flow hole 101 inside the first cylinder 16.
[0149] なお、図 11及び図 12の二流体噴霧パーナ 11におけるその他の部分の構成は、上 記実施の形態例 1 (図 1〜図 3)の二流体噴霧パーナ 11と同様である。  [0149] It should be noted that the configuration of the other parts of the two-fluid spray partner 11 in FIGS. 11 and 12 is the same as that of the two-fluid spray partner 11 in the first embodiment (FIGS. 1 to 3).
[0150] 本実施の形態例 7の二流体噴霧パーナ 11によれば、次のような作用効果が得られ 、また、その他、上記実施の形態例 1と同様の作用効果も得られる。  [0150] According to the two-fluid spray pan 11 of the seventh embodiment, the following operational effects can be obtained, and, in addition, the same operational effects as the first embodiment can be obtained.
[0151] 即ち、本実施の形態例 7の二流体噴霧パーナ 11によれば、プレート 18には、燃焼 用空気流通穴 52よりも内側に他の複数の燃焼用空気流通穴 101を形成したことによ り、燃焼用空気 50の一部が、これらの燃焼用空気流通穴 101も通るため、当該燃焼 用空気 50の流れによってプレート 18の下面近傍に燃焼用空気のよどみ流が発生す るのを抑制することができ、プレート 18の下面に煤が付着するのを抑制することがで きる。また、他の燃焼用空気流通穴 101を介して二流体噴霧ノズル 38の近傍を低温 の燃焼用空気が流れるため、この燃焼用空気によって火炎の輻射熱で過熱されや すレヽニ流体噴霧ノズル 38を冷却することができると!/、う効果も得られる。 [0151] That is, according to the two-fluid spraying pan 11 of the seventh embodiment, a plurality of other combustion air circulation holes 101 are formed in the plate 18 inside the combustion air circulation holes 52. As a result, a part of the combustion air 50 also passes through the combustion air circulation holes 101. It is possible to suppress the generation of a stagnation flow of combustion air in the vicinity of the lower surface of the plate 18 due to the flow of the working air 50, and to suppress soot from adhering to the lower surface of the plate 18. In addition, since the low-temperature combustion air flows in the vicinity of the two-fluid spray nozzle 38 through the other combustion air circulation holes 101, the Reny fluid spray nozzle 38 that is overheated by the radiant heat of the flame is provided by this combustion air. If it can be cooled!
[0152] <実施の形態例 8〉  [0152] <Embodiment 8>
図 14 (a)は本発明の実施の形態例 8に係る二流体噴霧パーナの構成を示す縦断 面図、図 14 (b)は図 14 (a)の P— P線矢視の横断面、図 15は二流体噴霧器の噴霧 穴から絞り板までの距離 (Uと燃焼空間部の直径 (D)との比(L/D)と絞り板の最適 な設置位置との関係を示す図である。  FIG. 14 (a) is a longitudinal sectional view showing the configuration of a two-fluid spraying pan according to Embodiment 8 of the present invention, FIG. 14 (b) is a cross-sectional view taken along the line PP in FIG. 14 (a), Fig. 15 is a graph showing the relationship between the distance from the spray hole of the two-fluid sprayer to the throttle plate (the ratio (L / D) of U to the diameter (D) of the combustion space and the optimum position of the throttle plate) .
[0153] 図 14 (a)及び図 14 (b)に示すように、本実施の形態例 8の二流体噴霧パーナ 11で は、バーナ外筒 48内の燃焼空間部 13に絞り板 121が設けられている。絞り板 121は 中央部に円形の流通穴(絞り穴) 122が開けられた円環状のものである。そして、絞り 板 121は、延長されたパーナ外筒 48の下端部に水平に配置されてプレート 18や第 1円筒 16などの下方に位置しており、パーナ外筒 48の内面に溶接などの固定手段 によって固定されている。図 14 (b)に示す如く平面視において、絞り板 121の流通穴 122は燃焼空間部 13の中央部に位置している。  As shown in FIGS. 14 (a) and 14 (b), in the two-fluid spray burner 11 of the present eighth embodiment, a throttle plate 121 is provided in the combustion space portion 13 in the burner outer cylinder 48. It has been. The diaphragm plate 121 has an annular shape with a circular flow hole (diaphragm hole) 122 formed in the center. The diaphragm plate 121 is horizontally disposed at the lower end of the extended PANA cylinder 48 and is positioned below the plate 18 and the first cylinder 16 and fixed to the inner surface of the PANA cylinder 48 by welding or the like. Fixed by means. As shown in FIG. 14 (b), the flow hole 122 of the throttle plate 121 is located in the center of the combustion space 13 in plan view.
[0154] 従って、燃焼空間部 13を下方へと流れてきた燃焼用空気 50は、図 14 (a)に矢印 で示す如く絞り板 121により、燃焼空間部 13の中央部へと導かれて、絞り板 121の 流通穴 122を通過することになる。なお、絞り板 121は必ずしも図 14 (a)中に実線で 示すような水平板に限定するものではなぐ図 14 (a)中に一点鎖線で仮想的に示す ような傾斜板 (逆円錐台状の板)でもよレ、。  Accordingly, the combustion air 50 that has flowed downward through the combustion space 13 is guided to the center of the combustion space 13 by the throttle plate 121 as shown by the arrow in FIG. It passes through the flow hole 122 of the diaphragm plate 121. The diaphragm plate 121 is not necessarily limited to a horizontal plate as shown by a solid line in FIG. 14 (a), but is an inclined plate (inverted truncated cone shape) as virtually shown by a one-dot chain line in FIG. 14 (a). )
[0155] 図 14の二流体噴霧パーナ 11におけるその他の部分の構成は、上記実施の形態 例 1 (図 1〜図 3)の二流体噴霧パーナ 11と同様である。  [0155] The configuration of the other parts of the two-fluid spray pan 11 of Fig. 14 is the same as that of the two-fluid spray pan 11 of the first embodiment (Figs. 1 to 3).
[0156] 従って、本実施の形態例 8の二流体噴霧パーナ 11によれば、上記実施の形態例 1 と同様の作用効果が得られ、しかも、次のような作用効果も得られる。  [0156] Therefore, according to the two-fluid spray pan 11 of the eighth embodiment, the same operation and effect as the first embodiment can be obtained, and the following operation and effect can also be obtained.
[0157] 即ち、本実施の形態例 8の二流体噴霧パーナ 11によれば、中央部に流通穴 121 が開けられた絞り板 121を燃焼空間部 13に設け、燃焼空間部 13を下方へと流れる 燃焼用空気 50を、絞り板 121により燃焼空間部 13の中央部へと導いて絞り板 121の 流通穴 122を通過させる構成としたことを特徴としているため、燃焼用空気 50と未燃 ガス(噴霧された液体燃料が加熱されて気化されたもので且つ未だ燃焼して!/、なレ、も の)との混合が促進される。その結果、未燃ガスの燃焼が促進されるため、燃料を完 全燃焼させることができ、火炎 123を短炎化することもできる。 That is, according to the two-fluid spraying pan 11 of the eighth embodiment, the throttle plate 121 having the flow hole 121 in the center is provided in the combustion space 13, and the combustion space 13 is directed downward. Flowing Since the combustion air 50 is guided to the central portion of the combustion space 13 by the throttle plate 121 and passes through the flow hole 122 of the throttle plate 121, the combustion air 50 and the unburned gas ( The sprayed liquid fuel is heated and vaporized and is still burned! As a result, combustion of unburned gas is promoted, so that the fuel can be completely burned and the flame 123 can be shortened.
[0158] 詳述すると、燃焼用空気流路 53を流通して燃焼用空気流路 53の下端から燃焼空 間部 13に流入した燃焼用空気 50 (第 1円筒 16を設けない場合には燃焼用空気流 通穴 52を通過して燃焼空間部 13に流入した燃焼用空気 50)は、燃焼空間部 13を 下方へと流れながら、燃焼空間部 13の中央部へと広がることにより、未燃ガスと混合 されて当該未燃ガスを燃焼させる。しかし、燃焼空間部 13の中央部まではなかなか 燃焼用空気 50が行き渡らず、一部の燃焼用空気 50は未燃ガスと混合されずに更に 下方へと流れる。このため、燃焼空間部 13に絞り板 12がない場合には燃焼用空気 5 0と未燃ガスとの混合が遅れて、燃料の未燃分 (未燃ガス)が残り易くなり、火炎 123 も長くなる。 More specifically, the combustion air 50 that flows through the combustion air passage 53 and flows into the combustion space 13 from the lower end of the combustion air passage 53 (combustion when the first cylinder 16 is not provided) Combustion air 50) that has flowed into the combustion space 13 through the air flow hole 52 and flows into the combustion space 13 is spread downward to the center of the combustion space 13 and uncombusted. It is mixed with gas to burn the unburned gas. However, the combustion air 50 does not readily reach the center of the combustion space 13, and a part of the combustion air 50 flows further downward without being mixed with the unburned gas. For this reason, when there is no throttle plate 12 in the combustion space 13, the mixing of the combustion air 50 and the unburned gas is delayed, so that unburned fuel (unburned gas) tends to remain, and the flame 123 also become longer.
[0159] これに対して、上記の如く燃焼空間部 13に絞り板 121を設けた場合には、下方へと 流れてきた燃焼用空気 50が絞り板 121に遮られて中央部の流通穴 122 (即ち燃焼 空間部 13の中央部)へと導かれるため、燃焼用空気 50と未燃ガスとの混合が促進さ れて、未燃ガスの燃焼が促進されることになる。このため、燃料が完全燃焼し易くなつ て COが低減し、火炎 123も短炎化される。  On the other hand, when the throttle plate 121 is provided in the combustion space portion 13 as described above, the combustion air 50 that has flowed downward is blocked by the throttle plate 121 and the central circulation hole 122. In other words, since the gas is guided to the center of the combustion space 13, the mixing of the combustion air 50 and the unburned gas is promoted, and the combustion of the unburned gas is promoted. For this reason, CO is reduced as the fuel easily burns, and the flame 123 is shortened.
[0160] しかも、本実施の形態例 8の二流体噴霧パーナ 11によれば、燃焼用空気などの流 体が絞り板 121の流通穴 122で一旦絞られるため、流体の流量分布が周方向に均 一化される。このため、燃焼排ガスによって炉などを周方向に均一に加熱することも できる。  [0160] Moreover, according to the two-fluid spraying pan 11 of the eighth embodiment, the fluid such as combustion air is once squeezed by the flow hole 122 of the throttle plate 121, so that the fluid flow rate distribution is circumferential. Uniformized. For this reason, the furnace and the like can be uniformly heated in the circumferential direction by the combustion exhaust gas.
[0161] なお、図 14に示すように二流体噴霧器 12の噴霧穴 44から絞り板 121までの距離 を L、バーナ外筒 48の内径 (燃焼空間部 13の直径)を Dとすると、 L/Dは 2〜; 10の 範囲内(図 15の領域 I)とすることが望ましい。 L/Dが 2よりも小さい場合(図 15の領 域 II)には、一度に比較的多量の空気が供給されて火炎が冷やされるため、燃料が 気化されに《なって液滴が発生し易くなる。一方、 L/Dが 10よりも大きい場合(図 1 5の領域 m)には、空気の供給が遅くなり、温度が低下した未燃ガスと混合される割合 が多くなるため、未燃ガスの燃焼(空気中の oとの反応)が促進されにくい。 [0161] As shown in Fig. 14, if the distance from the spray hole 44 of the two-fluid sprayer 12 to the throttle plate 121 is L, and the inner diameter of the burner outer cylinder 48 (the diameter of the combustion space 13) is D, L / D should be in the range of 2 to 10 (region I in Fig. 15). When L / D is less than 2 (area II in Fig. 15), a relatively large amount of air is supplied at a time to cool the flame, causing the fuel to vaporize and produce droplets. It becomes easy. On the other hand, when L / D is greater than 10 (Fig. 1 In area 5), the rate of unburned gas combustion (reaction with o in the air) is less likely to be promoted because the supply of air becomes slower and the proportion of unburned gas mixed with the temperature increases. .
[0162] また、図 14に示すように絞り板 121の流通穴 122の直径を dとすると、 d/Dは 0· 2 〜0. 6の範囲内とすることが望ましい。 0. 2よりも小さくなると燃焼空間部 12の圧力 上昇が大きくなり、 0. 6よりも大きいと空気と未燃ガスの混合効果が薄れる。  Further, as shown in FIG. 14, when the diameter of the flow hole 122 of the diaphragm plate 121 is d, d / D is preferably in the range of 0.2 · 0.6. If it is smaller than 0.2, the pressure increase in the combustion space 12 becomes large, and if it is larger than 0.6, the mixing effect of air and unburned gas is weakened.
[0163] <実施の形態例 9〉  <Example 9>
図 16 (a)は本発明の実施の形態例 9に係る二流体噴霧パーナの構成を示す縦断 面図、図 16 (b)は図 16 (a)の Q— Q線矢視の横断面である。また、図 16 (c)は図 16 ( b)に相当する横断面図であって旋回ばねの他の構造例を示す図である。  FIG. 16 (a) is a longitudinal sectional view showing the configuration of the two-fluid spraying pan according to Embodiment 9 of the present invention, and FIG. 16 (b) is a cross-sectional view taken along the line Q-Q in FIG. 16 (a). is there. FIG. 16 (c) is a cross-sectional view corresponding to FIG. 16 (b), and is a view showing another structural example of the swing spring.
[0164] 図 16 (a)〜図 16 (c)に示すように、本実施の形態例 9の二流体噴霧パーナ 11では 、絞り板 121の上側に旋回ばね 124が設けられている。旋回ばね 124は絞り板 12の 流通穴 122の周辺に流通穴 122の周方向に沿って一定の間隔で複数枚(6枚)配設 されており、絞り板 121の上面やパーナ外筒 48の内面に溶接などの固定手段によつ て固定されている。旋回ばね 124は何れも平面視において円形の流通穴 122の略 接線方向に沿って設けられている。従って、図 16 (b)及び図 16 (c)に矢印で示す如 く旋回ばね 124により、絞り板 121の流通穴 122を通過する燃焼用空気 50の流れが 旋回流となる。  As shown in FIGS. 16 (a) to 16 (c), in the two-fluid spray pan 11 of the ninth embodiment, a swirling spring 124 is provided above the throttle plate 121. A plurality of (six) swirling springs 124 are arranged around the circulation hole 122 of the diaphragm plate 12 at regular intervals along the circumferential direction of the circulation hole 122. It is fixed to the inner surface by fixing means such as welding. Each of the swirl springs 124 is provided along a substantially tangential direction of the circular flow hole 122 in plan view. Accordingly, the flow of the combustion air 50 passing through the flow hole 122 of the throttle plate 121 becomes a swirl flow by the swirl spring 124 as shown by the arrows in FIGS. 16 (b) and 16 (c).
[0165] なお、旋回ばね 124は流通穴 122の接線方向に限らず、平面視において流通穴 1 22の径方向に対して側面が傾斜していればよい。また、旋回ばね 124は図 16 (b)の ような平板状のものでもよぐ図 16 (c)のように湾曲していてもよい。  [0165] It should be noted that the revolving spring 124 is not limited to the tangential direction of the flow hole 122, and the side surface may be inclined with respect to the radial direction of the flow hole 122 in plan view. Further, the swing spring 124 may be curved as shown in FIG. 16 (c) which may be a flat plate as shown in FIG. 16 (b).
[0166] 図 16の二流体噴霧パーナ 11におけるその他の部分の構成は、上記実施の形態 例 1 , 8 (図1〜図3,図 14)の二流体噴霧パーナ 11と同様である。  [0166] The configuration of the other parts of the two-fluid spraying panner 11 of Fig. 16 is the same as that of the two-fluid spraying panner 11 of the first and eighth embodiments (Figs. 1 to 3 and 14).
[0167] 従って、本実施の形態例 9の二流体噴霧パーナ 11によれば、上記実施の形態例 1 , 8と同様の作用効果が得られ、しかも、次のような作用効果も得られる。  [0167] Therefore, according to the two-fluid spray partner 11 of the ninth embodiment, the same operational effects as those of the first and eighth embodiments can be obtained, and the following operational effects can also be obtained.
[0168] 即ち、本実施の形態例 9の二流体噴霧パーナ 11によれば、絞り板 121の上側に旋 回ばね 124を設け、絞り板 121の流通穴 122を通過する燃焼用空気 50の流れを旋 回ばね 124によって旋回流(とする構成としたことを特徴としているため、図 16 (a)に 矢印で示す如く絞り板 121の流通穴 122を通過した燃焼用空気 55は旋回することよ つて水平方向に広がる。その結果、流通穴 122の下方で燃焼用空気 50の流れの中 心部の圧力が低下するため、図 16 (a)に矢印で示す如く外側から前記中心部に流 れ込むような燃焼用空気 50の循環流が生じる。従って、燃焼用空気 50と未燃ガスと の混合が更に促進されて、未燃ガスの燃焼が更に促進されるため、燃料がより完全 燃焼し易くなり、火炎 123も更に短炎化される。 That is, according to the two-fluid spraying pan 11 of the ninth embodiment, the rotation spring 124 is provided on the upper side of the throttle plate 121, and the flow of the combustion air 50 passing through the flow hole 122 of the throttle plate 121. The combustion air 55 that has passed through the flow hole 122 of the throttle plate 121 is swirled as shown by the arrow in FIG. 16 (a). It spreads horizontally. As a result, the pressure at the center of the flow of the combustion air 50 decreases below the flow hole 122, so that the combustion air flows from the outside into the center as shown by the arrow in FIG. 50 circulating flows are generated. Therefore, the mixing of the combustion air 50 and the unburned gas is further promoted, and the combustion of the unburned gas is further promoted. Therefore, the fuel is more easily burned, and the flame 123 is further shortened.
[0169] <実施の形態例 10〉  <Embodiment 10>
図 17 (a)は本発明の実施の形態例 10に係る二流体噴霧パーナの構成を示す縦 断面図、図 17 (b)は図 17 (a)の R— R線矢視の横断面である。  FIG. 17 (a) is a longitudinal sectional view showing the configuration of a two-fluid spraying pan according to Embodiment 10 of the present invention, and FIG. 17 (b) is a transverse section taken along the line RR in FIG. 17 (a). is there.
[0170] 図 17 (a)及び図 17 (c)に示すように、本実施の形態例 10の二流体噴霧パーナ 1 1 では、燃焼空間部 13に複数(図示例では 2枚)の多孔板 125が設けられている。なお 、多孔板 125は複数に限らず、 1枚でもよい。多孔板 125は絞り板 121の上方、即ち プレート 18 (第 1円筒 16)と絞り板 121との間に位置している。  [0170] As shown in Figs. 17 (a) and 17 (c), in the two-fluid spray pan 11 of the tenth embodiment, a plurality of (two in the illustrated example) perforated plates are provided in the combustion space portion 13. 125 is provided. The number of perforated plates 125 is not limited to a plurality, and may be one. The perforated plate 125 is located above the diaphragm plate 121, that is, between the plate 18 (first cylinder 16) and the diaphragm plate 121.
[0171] 多孔板 125は中央部に比較的大径の流通穴 127が 1つ開けられ、且つ、その周辺 部に比較的小径の孔 126が多数開けられた円環状の板である。そして、多孔板 125 は燃焼空間部 13に水平に配置されてパーナ外筒 48の内面に溶接などの固定出段 によって固定されている。図 17 (b)に示す如く平面視において、多孔板 125の流通 穴 127は燃焼空間部 13の中央部に位置している。  [0171] The perforated plate 125 is an annular plate in which one relatively large-diameter circulation hole 127 is formed in the central portion, and many relatively small-diameter holes 126 are formed in the peripheral portion. The perforated plate 125 is disposed horizontally in the combustion space 13 and is fixed to the inner surface of the PANA outer cylinder 48 by a fixing step such as welding. As shown in FIG. 17B, the flow hole 127 of the perforated plate 125 is located at the center of the combustion space 13 in plan view.
[0172] 従って、燃焼空間部 13を下方へと流れてきた燃焼用空気 50の一部は、多孔板 12 5により中央部の流通穴 127 (即ち燃焼空間部 13の中央部)へと導かれて流通穴 12 7を通過し、その他の燃焼用空気 50は孔 126を通過して下方へと流れる。例えば上 側の多孔板 125では当該多孔板 125 向力、つて下方へと流れてきた燃焼用空気 50 のうちの 20%を中央部へ導き、 80%が孔 126を通過して更に下方へ流れ、下側の 多孔板 125では当該多孔板 125へ向力、つて下方へと流れてきた燃焼用空気 50のう ちの 40%を中央部へ導き、 60%が孔 126を通過して更に下方へと流れるようにする  Therefore, a part of the combustion air 50 that has flowed downward through the combustion space 13 is guided to the central circulation hole 127 (ie, the center of the combustion space 13) by the perforated plate 125. The other combustion air 50 passes through the hole 126 and flows downward through the hole 126. For example, in the upper perforated plate 125, 20% of the directional force of the perforated plate 125, that is, the combustion air 50 flowing downward, is led to the center, and 80% flows further downward through the hole 126. In the lower perforated plate 125, 40% of the combustion air 50 that has flowed downward toward the perforated plate 125 is led to the center, and 60% passes through the hole 126 and further down. To flow with
[0173] 図 17の二流体噴霧パーナ 11におけるその他の部分の構成は、上記実施の形態 例 1 , 8, 9 (図 1〜図 3,図 14)の二流体噴霧パーナ 11と同様である。 [0173] The configuration of the other parts of the two-fluid spraying panner 11 of Fig. 17 is the same as that of the two-fluid spraying panner 11 of the above-described embodiments 1, 8, and 9 (Figs. 1 to 3 and 14).
[0174] 従って、本実施の形態例 10の二流体噴霧パーナ 11によれば、上記実施の形態例 1 , 8, 9と同様の作用効果が得られ、しかも、次のような作用効果も得られる。 [0174] Therefore, according to the two-fluid spray pan 11 of the tenth embodiment, the above-described embodiment is provided. The same effects as 1, 8 and 9 can be obtained, and the following effects can also be obtained.
[0175] 即ち、本実施の形態例 10の二流体噴霧パーナ 11によれば、中央部に流通穴 127 が開けられた多孔板 125を、絞り板 121の上方で燃焼空間部 13に設け、燃焼空間 部 13を下方へと流れてきた燃焼用空気 50の一部を、多孔板 125により燃焼空間部 1 3の中央部へと導いて多孔板 125の流通穴 127を通過させる構成としたことを特徴と しているため、燃焼用空気 50と未燃ガスとの混合が更に促進されて、未燃ガスの燃 焼が更に促進されるため、燃料がより完全燃焼し易くなり、火炎 123も更に短炎化さ れる。 That is, according to the two-fluid spraying pan 11 of the tenth embodiment, the perforated plate 125 having the circulation hole 127 formed in the center is provided in the combustion space 13 above the throttle plate 121, and the combustion is performed. A part of the combustion air 50 that has flowed downward through the space 13 is guided to the center of the combustion space 13 by the perforated plate 125 and passed through the circulation hole 127 of the perforated plate 125. As a result, the mixing of the combustion air 50 and the unburned gas is further promoted, and the combustion of the unburned gas is further promoted, so that the fuel is more easily burned and the flame 123 is further increased. The flame is shortened.
[0176] <実施の形態例 11 >  <Embodiment 11>
図 18は本発明の実施の形態例 11に係る燃料電池発電システムの概要を示す系 統図である。図 18には上記実施の形態例 1〜 10の何れかの二流体噴霧パーナ 11 を、燃料電池発電システムにおける改質器の熱源として用いた場合の例を示してレ、  FIG. 18 is a system diagram showing an outline of a fuel cell power generation system according to Embodiment 11 of the present invention. FIG. 18 shows an example in which the two-fluid spraying pan 11 of any of the above-described embodiments 1 to 10 is used as a heat source of a reformer in a fuel cell power generation system.
[0177] 図 18に示すように、改質器 111の上部には燃焼炉 112が設けられており、この燃 焼炉 112の上から上記実施の形態例 1〜; 10の何れかの二流体噴霧パーナ 11が揷 入されている。二流体噴霧パーナ 11には図示しない液体燃料供給系、霧化用空気 供給系、燃焼用空気供給系が接続されている。なお、二流体噴霧パーナ 11の詳細 につ!/、ては上記のとおりである。 As shown in FIG. 18, a reforming furnace 111 is provided with a combustion furnace 112 above the reformer 111, and the two fluids according to any one of the first to tenth embodiments described above from above the combustion furnace 112. Spray pan 11 is inserted. A liquid fuel supply system, an atomizing air supply system, and a combustion air supply system (not shown) are connected to the two-fluid spray pan 11. The details of the two-fluid spray panner 11 are as described above.
[0178] 改質器 111には図示しない原料供給系が接続されており、この原料供給系から改 質用の原料としてメタンガスや灯油などの改質用燃料と、水とが供給される。そして、 改質器 111では、二流体噴霧パーナ 11での燃焼によって発生する大量の燃焼排ガ スの熱を利用して、前記改質用燃料を水蒸気改質することにより、改質ガス (水素リツ チガス)を生成する。改質器 11で生成された改質ガスは、発電用の燃料として燃料 電池 113のアノード側に供給される。燃料電池 113では、このアノード側に供給され た改質ガス(水素)と、力ソード側に供給された空気(酸素)とを電気化学的に反応さ せることより、発電を行う。燃料電池 113で発電に使用されなかった残余の改質ガス は、二流体噴霧パーナ 11へ戻され、ここでパーナ燃焼用の気体燃料として利用され [0179] 本実施の形態例 1 1の燃料電池発電システムによれば、上記実施の形態例;!〜 10 の何れかの二流体噴霧パーナ 1 1を、改質器 1 1 1の熱源として用いたため、二流体 噴霧パーナ 1 1が上記のような優れた効果を発揮することにより、改質器 1 1 1の性能 向上やコスト低減などを図ることができる。 [0178] A raw material supply system (not shown) is connected to the reformer 111, and reforming fuel such as methane gas and kerosene and water are supplied from the raw material supply system as reforming raw materials. In the reformer 111, the reformed fuel (hydrogen) is reformed by steam reforming the reforming fuel using the heat of a large amount of combustion exhaust gas generated by the combustion in the two-fluid spraying pan 11. (Rich gas). The reformed gas generated by the reformer 11 is supplied to the anode side of the fuel cell 113 as a power generation fuel. In the fuel cell 113, power is generated by causing an electrochemical reaction between the reformed gas (hydrogen) supplied to the anode side and air (oxygen) supplied to the force sword side. The remaining reformed gas that was not used for power generation in the fuel cell 113 is returned to the two-fluid spray burner 11 where it is used as gaseous fuel for burner combustion. [0179] According to the fuel cell power generation system of Embodiment 1 1 of the present invention, the two-fluid spraying burner 11 of any of the above embodiments;! To 10 is used as a heat source of the reformer 1 1 1. Therefore, when the two-fluid spraying pan 11 exhibits the above-described excellent effects, the performance of the reformer 11 1 1 can be improved and the cost can be reduced.
[0180] なお、上記では液体燃料タンク 19に液体燃料流出穴 22を 1つだけ設けているが、 これに限定するものではなぐ複数の液体燃料流出穴 22を設けてもよい。  Although only one liquid fuel outflow hole 22 is provided in the liquid fuel tank 19 in the above description, a plurality of liquid fuel outflow holes 22 may be provided, which is not limited to this.
[0181] また、上記では液体燃料タンクの底部に液体燃料流出穴を設けた力 S、必ずしもこれ に限定するものではなく、液体燃料タンクの側部に液体燃料流出穴を設けてもょレ、。 即ち、液体燃料タンクは筒状の側部とこの側部の下端に設けた底部とを有し、液体 燃料供給管から供給された液体燃料を貯留するとともにこの貯留した液体燃料の液 面よりも下方に位置して側部又は底部に開けた 1つ又は複数の液体燃料流出穴から 、前記貯留した液体燃料を流出させる構成であればよ!/、。  [0181] Further, in the above, the force S provided with the liquid fuel outflow hole at the bottom of the liquid fuel tank is not necessarily limited to this, but the liquid fuel outflow hole may be provided at the side of the liquid fuel tank. . That is, the liquid fuel tank has a cylindrical side portion and a bottom portion provided at the lower end of the side portion, and stores the liquid fuel supplied from the liquid fuel supply pipe and is more than the liquid level of the stored liquid fuel. The stored liquid fuel may be discharged from one or a plurality of liquid fuel outflow holes that are located below and opened in the side or bottom.
[0182] また、上記では液体燃料タンクを噴霧器外筒内に設けているが、必ずしもこれに限 定するものではなぐ例えば噴霧器外筒の外に液体燃料タンクを設けて、液体燃料タ ンクの液体燃料流出穴から流出した液体燃料を、配管などを介して霧化用気体との 合流空間部に供給するような構成としてもよい。  [0182] In the above, the liquid fuel tank is provided in the outer cylinder of the sprayer. However, the liquid fuel tank is not necessarily limited to this. For example, the liquid fuel tank is provided outside the outer cylinder of the sprayer, and the liquid fuel tank liquid is provided. The liquid fuel that has flowed out of the fuel outflow hole may be supplied to the confluence space with the atomizing gas via a pipe or the like.
[0183] また、上記では液体燃料タンクの上端側を開放して霧化用空気流路に流入する霧 化用空気の圧力が液体燃料タンク内に貯留されている液体燃料の液面にも作用す る構成としている力 S、必ずしもこれに限定するものではなぐ例えば液体燃料タンクの 上端側を大気開放するようにしてもよい。即ち、液体燃料タンクの内部と外部(二流体 合流空間部)との圧力バランスにより、液体燃料供給管から流出した液体燃料が一旦 、液体燃料タンク内に貯留されて当該液体燃料の液柱ヘッドが生じることより、この貯 留された液体燃料が液体燃料流出穴から連続的に流出する構成となっていればよ い。  [0183] In the above, the pressure of the atomizing air flowing into the atomizing air flow path by opening the upper end side of the liquid fuel tank also acts on the liquid level of the liquid fuel stored in the liquid fuel tank. For example, the upper limit side of the liquid fuel tank may be opened to the atmosphere. That is, due to the pressure balance between the inside and outside of the liquid fuel tank (the two-fluid merge space), the liquid fuel that has flowed out of the liquid fuel supply pipe is temporarily stored in the liquid fuel tank, and the liquid column head of the liquid fuel is As a result, the stored liquid fuel should be configured to continuously flow out of the liquid fuel outflow hole.
[0184] また、上記では溝を旋回型では 2つ、衝突型では 4つ設けている力 これに限定す るものでなく適宜の数とすること力できる。但し、液体燃料の噴霧量の周方向の分布 の均一性を確保するためには、旋回型では溝の数を 2つ以上とし、衝突型では溝の 数を 3つ以上とすることが望まし!/、。 [0185] また、上記の如くプレート (遮板)、燃焼用空気供給遅延用の第 1円筒、よどみ防止 用の第 2円筒などを設けるという構成 (発明)は、上記のような液体燃料と霧化用気体 を噴射する二流体噴霧器を燃料噴射器として備えた二流体噴霧パーナに限らず、 液体燃料のみを噴射する燃料噴射器や気体燃料を噴射する燃料噴射器を備えたバ ーナにも適用することができる。 [0184] Further, in the above, two grooves are provided for the swivel type, and four are provided for the collision type, but the present invention is not limited to this, and the force can be an appropriate number. However, in order to ensure the uniformity in the circumferential distribution of the spray amount of liquid fuel, it is desirable that the swivel type has two or more grooves and the collision type has three or more grooves. ! / [0185] Further, as described above, the configuration (invention) in which the plate (shielding plate), the first cylinder for delaying the supply of combustion air, the second cylinder for preventing stagnation, etc. are provided (invention). Not only a two-fluid spray panner equipped with a two-fluid sprayer that injects a gas for conversion as a fuel injector, but also a burner equipped with a fuel injector that injects only liquid fuel or a fuel injector that injects gaseous fuel Can be applied.
[0186] また、上記ではプレート (遮板)の外周に突起を形成することよってプレート(遮板) の外周側に燃焼用空気流通穴を設けている力 これに限定するものではなぐプレ ート(遮板)の外周側に燃焼用空気流通穴が設けられていればよぐ例えばプレート( 遮板)自体の周縁部に穴を開けることによって、プレートの外周側に燃焼用空気流通 穴を設けるようにしてもよい。  [0186] Further, in the above, a force that provides a combustion air circulation hole on the outer peripheral side of the plate (shielding plate) by forming protrusions on the outer periphery of the plate (shielding plate) is not limited to this. It is only necessary to provide a combustion air circulation hole on the outer peripheral side of the (shield). For example, a combustion air circulation hole is provided on the outer peripheral side of the plate by making a hole in the peripheral edge of the plate (shielding plate) itself. You may do it.
[0187] また、上記ではプレート (遮板)を水平な板としている力 S、これに限定するものではな ぐプレート (遮板)は内側から外側に向かって斜め下方に傾斜していてもよい。例え ば、図 11に一点鎖線で仮想的に図示するようにプレート 18を円錐台状にしてもよい 。この傾斜したプレートの場合には、燃焼用空気を燃料噴射ノズル (二流体噴霧ノズ ノレ 38)力 遠ざけるだけでなぐ燃焼用空気の供給を遅延させるという第 1円筒と同 様の機能も発揮することになる。  [0187] Further, in the above, the force S that makes the plate (shielding plate) a horizontal plate, the plate (shielding plate) that is not limited to this may be inclined obliquely downward from the inside toward the outside. . For example, the plate 18 may be formed in a truncated cone shape as virtually shown in FIG. In the case of this inclined plate, the function similar to that of the first cylinder, which delays the supply of combustion air just by keeping the combustion air away from the fuel injection nozzle (two-fluid spray nozzle 38), should also be exhibited. become.
産業上の利用可能性  Industrial applicability
[0188] 本発明はパーナに関するものであり、例えば大容量の燃料電池発電システムの改 質器等を加熱するために大量の燃焼排ガスを発生させる必要がある場合などに適用 して有用なものである。  [0188] The present invention relates to a panner, and is useful when applied to, for example, a case where a large amount of combustion exhaust gas needs to be generated in order to heat a reformer or the like of a large-capacity fuel cell power generation system. is there.

Claims

請求の範囲 The scope of the claims
[1] 燃料噴射器の燃料噴射ノズルから、この燃料噴射ノズルの下方の燃焼空間部へ燃 料を噴射して燃焼させるパーナにおいて、  [1] In a burner that injects and burns fuel from the fuel injection nozzle of the fuel injector to the combustion space below the fuel injection nozzle.
前記燃料噴射器と、前記燃料噴射器の周囲を囲むパーナ外筒との間に形成した 筒状の燃焼用空気流路と、  A cylindrical combustion air flow path formed between the fuel injector and a PANA outer cylinder surrounding the fuel injector;
この燃焼用空気流路と前記燃焼空間部とを仕切る遮板と、  A shielding plate that partitions the combustion air flow path and the combustion space portion;
この遮板の外周側に設けた燃焼用空気流通穴と、  A combustion air circulation hole provided on the outer peripheral side of the shielding plate;
を備え、  With
前記燃焼用空気流路を下方へと流れてきた燃焼用空気が、前記遮板で遮られて 前記遮板の外周側へと導かれることにより前記燃料噴射ノズルから遠ざけられ、前記 燃焼用空気流通穴を通過して前記燃焼空間部に流入する構成としたことを特徴とす るパーナ。  Combustion air that has flowed downward through the combustion air flow path is blocked by the shielding plate and guided to the outer peripheral side of the shielding plate, thereby being moved away from the fuel injection nozzle, and the combustion air flow A panner that is configured to flow through the hole and flow into the combustion space.
[2] 請求項 1に記載のパーナにおいて、  [2] In the panner according to claim 1,
前記遮板の下面から下方に延びた燃焼用空気供給遅延用の筒を設けて、この筒と 前記パーナ外筒との間に前記燃焼用空気流通穴に通じる筒状の他の燃焼用空気 流路を形成し、  A combustion air supply delay cylinder extending downward from the lower surface of the shielding plate is provided, and the other combustion air flow in the cylinder that communicates with the combustion air circulation hole between the cylinder and the outer Pana cylinder. Form a road,
前記燃焼用空気流通穴を通過した燃焼用空気が、前記他の燃焼用空気流路を下 方へと流れた後に前記他の燃焼用空気流路の下端から、前記燃焼空間部に流入す る構成としたことを特徴とするパーナ。  The combustion air that has passed through the combustion air circulation hole flows downward into the other combustion air flow path, and then flows into the combustion space from the lower end of the other combustion air flow path. Pana is characterized by its configuration.
[3] 請求項 2に記載のパーナにおいて、 [3] In the panner according to claim 2,
前記遮板の下面から下方に延びたよどみ防止用の筒を、前記燃焼用空気供給遅 延用の筒の内側に 1つ又は複数設けたことを特徴とするパーナ。  A panner characterized in that one or a plurality of stagnation prevention cylinders extending downward from the lower surface of the shielding plate are provided inside the combustion air supply delay cylinder.
[4] 請求項;!〜 3の何れか 1項に記載のパーナにおいて、 [4] Claim; In the parner according to any one of! To 3,
前記遮板には、前記燃焼用空気流通穴よりも内側に他の複数の燃焼用空気流通 穴を形成したことを特徴とするパーナ。  A burner characterized in that a plurality of other combustion air circulation holes are formed in the shielding plate inside the combustion air circulation holes.
[5] 請求項;!〜 4の何れか 1項に記載のパーナにおいて、 [5] Claim; In the parner according to any one of! To 4,
前記燃料噴射器は前記燃料噴射ノズルから液体燃料を噴射するものであり、 前記燃料噴射器の周囲を囲む気体燃料供給管と、前記燃料噴射器との間に筒状 の気体燃料流路を形成し、 The fuel injector is for injecting liquid fuel from the fuel injection nozzle, and is tubular between the fuel injector and a gaseous fuel supply pipe surrounding the fuel injector. Forming a gaseous fuel flow path,
気体燃料は、前記気体燃料流路を下方へと流れ、前記気体燃料流路の下端から 前記燃焼空間部へ噴射されて燃焼される構成としたことを特徴とするパーナ。  The gas fuel is configured so that the gaseous fuel flows downward in the gaseous fuel flow path and is injected and burned from the lower end of the gaseous fuel flow path to the combustion space portion.
[6] 請求項;!〜 5の何れか 1項に記載のパーナにおいて、 [6] Claim; In the parner according to any one of! To 5,
中央部に流通穴が開けられた絞り板を前記燃焼空間部に設け、  A diaphragm plate having a through hole in the center is provided in the combustion space,
前記燃焼空間部を下方へと流れてきた燃焼用空気を、前記絞り板により前記燃焼 空間部の中央部へと導いて前記絞り板の流通穴を通過させる構成としたことを特徴と するパーナ。  A burner characterized in that combustion air that has flowed downward through the combustion space is guided to the center of the combustion space by the throttle plate and passes through the flow hole of the throttle plate.
[7] 請求項 6に記載のパーナにおいて、 [7] In the panner according to claim 6,
前記絞り板の上側に旋回ばねを設け、  A swirl spring is provided on the upper side of the diaphragm plate,
前記絞り板の流通穴を通過する前記燃焼用空気の流れを前記旋回ばねによって 旋回流とする構成としたことを特徴とするパーナ。  A structure in which the flow of the combustion air passing through the flow hole of the throttle plate is swirled by the swirl spring.
[8] 請求項 6又は 7に記載のパーナにおいて、 [8] In the panner according to claim 6 or 7,
中央部に流通穴が開けられた多孔板を、絞り板の上方で前記燃焼空間部に設け、 前記燃焼空間部を下方へと流れてきた燃焼用空気の一部を、前記多孔板により前 記燃焼空間部の中央部へと導いて前記多孔板の流通穴を通過させる構成としたこと を特徴とするパーナ。  A perforated plate having a through hole in the center is provided in the combustion space above the throttle plate, and a part of the combustion air that has flowed downward through the combustion space is transferred by the perforated plate. A panner characterized in that it is guided to the central part of the combustion space and passes through the flow hole of the perforated plate.
PCT/JP2007/065402 2006-08-11 2007-08-07 Burner WO2008018431A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002656194A CA2656194A1 (en) 2006-08-11 2007-08-07 Burner
US12/373,008 US20090291401A1 (en) 2006-08-11 2007-08-07 Burner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006219575 2006-08-11
JP2006-219575 2006-08-11
JP2007-118087 2007-04-27
JP2007118087A JP4739275B2 (en) 2006-08-11 2007-04-27 Burner

Publications (1)

Publication Number Publication Date
WO2008018431A1 true WO2008018431A1 (en) 2008-02-14

Family

ID=39032961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065402 WO2008018431A1 (en) 2006-08-11 2007-08-07 Burner

Country Status (6)

Country Link
US (1) US20090291401A1 (en)
JP (1) JP4739275B2 (en)
KR (1) KR20090034964A (en)
CA (1) CA2656194A1 (en)
TW (1) TW200821505A (en)
WO (1) WO2008018431A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230257A (en) * 2009-03-27 2010-10-14 Dainichi Co Ltd Combustion apparatus
KR101096632B1 (en) * 2009-12-10 2011-12-21 에스케이이노베이션 주식회사 Top feeding dual swirling gasifier
JP5730024B2 (en) * 2011-01-12 2015-06-03 三菱日立パワーシステムズ株式会社 Spray nozzle and combustion apparatus having spray nozzle
US11255540B2 (en) * 2019-06-20 2022-02-22 Catherine J. Chagnot Crude and waste oil burner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500482A (en) * 1982-02-17 1984-03-22 コルテング・ハノバ− アクチエン・ゲゼルシヤフト burner
JPS59191008U (en) * 1978-06-19 1984-12-18 ジヨン・ジンク・カンパニ− Fluid fuel combustion burner
JPS6229510U (en) * 1985-07-30 1987-02-23
JPH02143002A (en) * 1988-11-25 1990-06-01 Ngk Insulators Ltd Burner for furnace
JP2000018516A (en) * 1998-06-23 2000-01-18 Orion Mach Co Ltd Combustion device and hot air generating device

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2167183A (en) * 1936-11-14 1939-07-25 North American Mfg Gas burner
US2473347A (en) * 1943-04-08 1949-06-14 Cleaver Brooks Co Air directing means in gun type burners
US2882843A (en) * 1954-02-24 1959-04-21 Ricardo & Company Combustion apparatus
US2986206A (en) * 1957-02-28 1961-05-30 Shell Oil Co Combustion device for liquid fuel
US3070150A (en) * 1958-05-21 1962-12-25 Hunter Liquid fuel heater
US3223136A (en) * 1962-07-13 1965-12-14 Nu Way Corp Fluid fuel combustion apparatus
US3414362A (en) * 1966-04-15 1968-12-03 F Schoppe Dr Ing Burner for firing a combustion chamber
US3545902A (en) * 1968-09-23 1970-12-08 Frank W Bailey Blue-flame gun burner process and apparatus for liquid hydrocarbon fuel
US3570242A (en) * 1970-04-20 1971-03-16 United Aircraft Corp Fuel premixing for smokeless jet engine main burner
US3777983A (en) * 1971-12-16 1973-12-11 Gen Electric Gas cooled dual fuel air atomized fuel nozzle
US3729285A (en) * 1972-05-22 1973-04-24 G Schwedersky Burner and method of operating it to control the production of nitrogen oxides
FR2203289A5 (en) * 1972-10-14 1974-05-10 Zieren Chemiebau Gmbh Dr A
US4102651A (en) * 1972-10-14 1978-07-25 Davy Powergas Gmbh Ultrasonic atomizer for waste sulfuric acid and use thereof in acid cracking furnaces
US3846062A (en) * 1973-11-05 1974-11-05 Gen Motors Corp External recirculation burner
JPS5439142Y2 (en) * 1976-04-09 1979-11-20
US4098255A (en) * 1976-09-07 1978-07-04 Thermo Electron Corporation Dual fuel radiant tube burner
US4364725A (en) * 1977-01-08 1982-12-21 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Blue-flame oil burner
US4171199A (en) * 1977-09-27 1979-10-16 Joseph Henriques Frustoconical burner can assembly
US4240784A (en) * 1978-09-25 1980-12-23 Dauvergne Hector A Three-stage liquid fuel burner
JPS6026927B2 (en) * 1980-05-09 1985-06-26 日産自動車株式会社 Spray combustion device
DE3035707A1 (en) * 1980-09-22 1982-04-08 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln OIL AND GAS BURNERS FOR INSTALLATION IN HEATING AND STEAM GENERATING BOILERS
JPS58200911A (en) * 1982-05-17 1983-11-22 Inax Corp Combustion method for liquid fuel and device therefor
DE3241730A1 (en) * 1982-11-11 1984-05-17 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn GASIFICATION OIL BURNER WITH AN OIL SPRAYING DEVICE
DE3243398C2 (en) * 1982-11-24 1985-03-28 Danfoss A/S, Nordborg Evaporation burners for liquid fuel
JPS59191008A (en) * 1983-04-14 1984-10-30 Seiko Epson Corp Liquid crystal display body
JPS6011617A (en) * 1983-06-30 1985-01-21 Mitsubishi Electric Corp Combustion apparatus for vehicle
DE3430010A1 (en) * 1984-08-16 1986-02-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn BURNER FOR HOT GAS GENERATION
US4629413A (en) * 1984-09-10 1986-12-16 Exxon Research & Engineering Co. Low NOx premix burner
US5180300A (en) * 1988-03-16 1993-01-19 Bloom Engineering Company, Inc. Low NOx regenerative burner
US4983118A (en) * 1988-03-16 1991-01-08 Bloom Engineering Company, Inc. Low NOx regenerative burner
US4878480A (en) * 1988-07-26 1989-11-07 Gas Research Institute Radiant tube fired with two bidirectional burners
ES2094512T3 (en) * 1992-02-28 1997-01-16 Fuellemann Patent Ag BURNER, ESPECIALLY GASOLEO BURNER OR COMBINED GASOLEO / GAS BURNER.
DE4209220A1 (en) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt DEPOSITION-FREE BURNER
US5251823A (en) * 1992-08-10 1993-10-12 Combustion Tec, Inc. Adjustable atomizing orifice liquid fuel burner
JPH11108308A (en) * 1997-09-30 1999-04-23 Miura Co Ltd Water tube boiler and burner
EP0931979A1 (en) * 1998-01-23 1999-07-28 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Method and apparatus for supressing flame and pressure fluctuations in a furnace
US6872070B2 (en) * 2001-05-10 2005-03-29 Hauck Manufacturing Company U-tube diffusion flame burner assembly having unique flame stabilization
DE10140422C1 (en) * 2001-08-17 2002-11-28 Eisenmann Kg Maschbau Thermal post-combustion device for cleaning waste gases comprises a burner having a second flame tube surrounding the end of a first flame tube with a greater radius to form an annular gap
US20070054227A1 (en) * 2003-02-25 2007-03-08 Takeshi Tada Alternate combustion type regenerative radiant tube burner apparatus
US7163392B2 (en) * 2003-09-05 2007-01-16 Feese James J Three stage low NOx burner and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191008U (en) * 1978-06-19 1984-12-18 ジヨン・ジンク・カンパニ− Fluid fuel combustion burner
JPS59500482A (en) * 1982-02-17 1984-03-22 コルテング・ハノバ− アクチエン・ゲゼルシヤフト burner
JPS6229510U (en) * 1985-07-30 1987-02-23
JPH02143002A (en) * 1988-11-25 1990-06-01 Ngk Insulators Ltd Burner for furnace
JP2000018516A (en) * 1998-06-23 2000-01-18 Orion Mach Co Ltd Combustion device and hot air generating device

Also Published As

Publication number Publication date
JP2008064445A (en) 2008-03-21
JP4739275B2 (en) 2011-08-03
CA2656194A1 (en) 2008-02-14
TW200821505A (en) 2008-05-16
US20090291401A1 (en) 2009-11-26
KR20090034964A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4697090B2 (en) Two-fluid spray burner
CA2584270C (en) Burner for gas turbine
CN1965197B (en) Premix burner with staged liquid fuel supply and also method for operating a premix burner
KR100836261B1 (en) Burner for regeneration of dpf and diesel particulate filter using it
CN102905795A (en) Multi-physics fuel atomizer and methods
JPH04136603A (en) Burner and combustion equipment
WO2008018431A1 (en) Burner
JP2007308312A (en) Multiple-fuel combustor
CN101501397A (en) Burner
US4850195A (en) Fuel spray combustion device
US20060144966A1 (en) Atomising nozzle
RU2040731C1 (en) Fuel gasification burner
JP2005056636A (en) Burner for fuel reformer
JP2003054905A (en) Reforming apparatus for fuel cell
JP2006105534A (en) Gas turbine combustor
JPS6026248Y2 (en) liquid fuel combustion equipment
CN217082557U (en) Water spray NOx reduction burner
JP2002295811A (en) Multistage combustion device
JP3107713B2 (en) Burner for oil water heater
JP2605322B2 (en) Combustor structure
KR101836773B1 (en) The burner without a nozzle
JPH01306709A (en) Catalyst combustion device
JPH0232978Y2 (en)
JPH0335944Y2 (en)
JPS61208415A (en) Burner tip device of burner specially designed for use of atomization medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029871.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2656194

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12373008

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07792071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097002748

Country of ref document: KR