WO2008018129A1 - Method of detecting protein and fluorescent dye to be used therefor - Google Patents

Method of detecting protein and fluorescent dye to be used therefor Download PDF

Info

Publication number
WO2008018129A1
WO2008018129A1 PCT/JP2006/315751 JP2006315751W WO2008018129A1 WO 2008018129 A1 WO2008018129 A1 WO 2008018129A1 JP 2006315751 W JP2006315751 W JP 2006315751W WO 2008018129 A1 WO2008018129 A1 WO 2008018129A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
protein
fluorescent dye
derivative
fluorescence
Prior art date
Application number
PCT/JP2006/315751
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichiro Isobe
Michinori Waki
Original Assignee
Shinichiro Isobe
Michinori Waki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39032675&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008018129(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shinichiro Isobe, Michinori Waki filed Critical Shinichiro Isobe
Priority to PCT/JP2006/315751 priority Critical patent/WO2008018129A1/en
Priority to JP2008528681A priority patent/JP5244596B2/en
Publication of WO2008018129A1 publication Critical patent/WO2008018129A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Definitions

  • the present invention relates to a method for detecting a protein and a fluorescent dye used therefor.
  • proteome analysis which comprehensively analyzes the properties and expression dynamics of all proteins contained in one organism or cell using genomic information, is produced by gene expression. It is necessary to detect and identify small amounts of proteins with high sensitivity.
  • diseases such as cancer and infections caused by viruses generate special proteins, these special proteins can be treated as markers of diseases, and can be applied to diagnosis and treatment of diseases.
  • it is necessary to detect and identify these special proteins with high sensitivity.
  • a sample protein is labeled with a fluorescent dye (Non-patent Document 1), separated by electrophoresis, and then mass spectrometer such as MALDI-TOF MS is used. The molecular weight of the fractionated protein is measured, and database search is performed to identify the protein.
  • protein chips using DNA chip technology are used for blotting methods such as Western blotting and further for expression analysis and analysis of protein-protein interactions (for example, Non-patent Document 2).
  • a protein chip simultaneous analysis of expression dynamics and interaction of many types of proteins can be performed easily and quickly.
  • separation of proteins using electrophoresis is carried out by placing proteins on a gel and conducting electricity on the electrodes set at both ends to move on the chromatograph, and separation is performed according to differences in molecular weight and the like. Do. After this, fluorescent labeling is performed by immersing the gel in a fluorescent dye solution (for example, Permitted documents 1 and 2). However, since the fluorescence quenching occurs when the gel is dried, the quantitative determination can not be accurately performed because of the thickness of the swollen gel although the quantitative measurement is performed in the wet state.
  • a fluorescent dye solution for example, Permitted documents 1 and 2
  • Patent Document 1 Japanese Published Patent Application No. 2003-531946
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-317297
  • Non Patent Literature 1 Michael Brinkley, Bioconjugate Chem “1992, 3, 2-13
  • Non Patent Literature 2 Paul Cutler, Proteomics, 2003, 3, 3-18
  • the object of the present invention is to solve the above-mentioned problems, and to provide a method for detecting a protein with high sensitivity and easy operation, and a fluorescent dye used therefor.
  • the present inventors have made earnest efforts to solve the above problems, and as a result, they have found that it is possible to detect a completely new protein different from conventional detection methods based on changes in fluorescence intensity, and completed the present invention. It is a thing.
  • the method for detecting a protein of the present invention is a method for detecting a protein labeled with a fluorescent dye, which has a shorter wavelength than the first fluorescence wavelength observed in the free state, and binds to the protein. And detecting the fluorescence by measuring the fluorescence based on the second fluorescence wavelength observed in the According to the present invention, even when the fluorescence intensity in the bound state is weak, the fluorescence wavelength is shorter than the first fluorescence wavelength observed in the free state, and is observed in the protein bound state.
  • the fluorescence of the second fluorescence wavelength may be measured, for example, the second fluorescence wavelength value or the fluorescence intensity thereof may be measured, so that detection with higher sensitivity can be performed compared to the conventional detection method.
  • the second fluorescence wavelength shifts to a short wavelength as well as the amount of binding to the protein increases, so the relationship between the shift value from the first fluorescence wavelength and the amount of protein The protein can be quantified from
  • the second step is performed before the protein is provided to the separation means.
  • the protein can be labeled with a first fluorescent dye that generates a fluorescence wavelength of Furthermore, prior to or simultaneously with the labeling of the protein with the first fluorescent dye, the protein is labeled with the second fluorescent dye in which the first fluorescent wavelength is not shifted to a short wavelength while bound to the protein, and then the separation means is used. It can also be provided.
  • a protein and a first fluorescent dye that generates the second fluorescence wavelength are reacted in a solution, and the solution is spotted on a measurement substrate.
  • the fluorescence image based on the second fluorescence wavelength from the measurement substrate can be measured.
  • the second fluorescent dye which does not shift the first fluorescent wavelength to a short wavelength when bound to the protein is a protein. And in solution.
  • the first fluorescent dye have an anionic group that electrostatically bonds to a protein.
  • the second fluorescent dye have a covalent bond group that covalently bonds to a protein. Examples of the covalent bond include an amide bond, an imide bond, a urethane bond, an ester bond or a guanidine bond.
  • an anionic fluorescent dye in which an anionic group binding to a protein is bound to an organic EL dye directly or via a linking moiety may be used.
  • the above-mentioned anion group is a carboxyl group, sulfonyl group, sulfur Any of acid groups, phosphate groups and combinations thereof can be used.
  • H-0)-(n is an integer from 1 to 10),-CH CH--C ⁇ C--Ar_ and-CO-Ar_NR-
  • At least one functional group selected from the group consisting of
  • organic EL dye a fused polycyclic compound composed of a 5-membered ring compound containing one or more kinds of heteroatoms, selenium atoms or boron atoms and a 6-membered ring compound having a conjugated system is used. That ability S can.
  • an azole derivative represented by any one of the following general formulas (1), (2) or (3) can be used.
  • R R R R independently represents a hydrogen atom, a halogen atom, or an alkyl group
  • aromatic hydrocarbon group which may have a substituent such as a group, a hydrocarbon group, a heterocyclic group or an aromatic group containing a hetero atom in the ring
  • X may have a substituent Good nitrogen atom or sulfur atom or oxygen atom or selenium atom or boron atom
  • R ′ represents an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring or an aromatic hydrocarbon group
  • An — represents a halide ion such as CI—, Br— or I—, CF 2 SO—, BF—, or PF—.
  • R and R one selected from the group consisting of thiophen derivatives, furan derivatives, pyrrol derivatives, imidazol derivatives, oxazole derivatives, thiazole derivatives, pyrazole derivatives and pyrazine derivatives is used.
  • a phenyl group having a sulfonyl group can be used.
  • an imidazole derivative represented by the following general formula (4), (5), (6), (7) or (8) can also be used.
  • R, R, R, R and R are each independently a hydrogen atom, a halogen atom,
  • Aromatic hydrocarbon group or hydrocarbon group or heterocyclic group which may have a group Represents an aromatic group containing a group or a heteroatom in the ring, and R, R, R, R and R are the same or different
  • R ⁇ R is an aliphatic hydrocarbon group or an aromatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring,
  • An- is a halogen such as Cl-, Br-, or. Indicating fluoride ion, CF2SO-, BF-, PF-.
  • One selected from the group consisting of toluene derivatives, oxazole derivatives, thiazole derivatives, pyrazole derivatives and pyrazine derivatives can be used.
  • a phenyl group having a sulfonyl group can also be used.
  • the anion fluorescent dye of the present invention does not quench even when the sample is dried, high sensitivity detection is possible even in the dry state. For example, it is possible to react an anion fluorescent dye and a protein in a solution, spot the solution on a substrate of a protein chip, and image it for detection with an image scanner or the like. Further, the anion fluorescent dye used in the present invention can be used also in the recently developed dry assay, and is a reagent of which method of use is not selected. In addition, it is stable to heat and can withstand long-term storage at room temperature, so it is easy to handle.
  • the above-mentioned anion fluorescent dye can be suitably used in the detection method of the present invention. According to the findings of the inventor of the present invention, no shift of the fluorescence wavelength was observed even when using conventional fluorescent dyes having an anionic group such as methyl orange and orange G. On the other hand, when the above-mentioned anion fluorescent dye was used, the fluorescence wavelength was shifted to a shorter wavelength (blue shift), and the fluorescence intensity increased. In addition, the absorption wavelength shifted to a longer wavelength (red shift) and the intensity decreased.
  • Anion fluorescent dye electrostatically bonds to a positively charged group of a protein, for example, an amino group, but when an organic EL dye is used for the color forming part, the energy of the organic EL dye is easily released due to the interaction with the adjacent protein. Possibly due.
  • an organic EL dye is used for the color forming part, the energy of the organic EL dye is easily released due to the interaction with the adjacent protein. Possibly due.
  • neither blue shift of the fluorescence wavelength nor a fluorescence increase was observed even when using a dye whose coloring part is an organic EL dye.
  • the fluorescent dye is considered to react with only the functional group on the surface of the protein to form a covalent bond.
  • a fluorescent dye having a binding site comprising an anionic group Since it has a small molecular weight and low steric hindrance, it bonds not only to the amino group on the surface of the protein but also to the amino group in the deep part by electrostatic bonding, so it is positioned in the deep part (hydrophobic field) of the protein as described above. This is considered to have caused a blue shift and an increase in fluorescence intensity.
  • the detection method of the present invention has the following effects.
  • the fluorescent dye used in the present invention is easier to handle and cheaper than Cy3 and Cy5, since no thermal fading is observed, which is higher in thermal stability than Cy3, Cy5, and Alexa dyes. Protein can be detected at lower cost. Further, since the fluorescent dye of the present invention exhibits the largest quantum yield when dried, when the protein is separated by electrophoresis, the thickness can be made as thin as possible by drying the gel as compared to the conventional method. Accurate quantification can be performed Brief description of the drawings
  • FIG. 1 is a photograph showing an example of the change in color tone of the fluorescent dye in the present invention.
  • FIG. 2 shows changes in UV spectrum tone of the fluorescent dye in Example 1 of the present invention.
  • FIG. 3 is a view showing a change in fluorescence spectrum of the fluorescent dye in Example 1 of the present invention.
  • FIG. 4 is a view showing the change in UV spectrum tone of the fluorescent dye in Example 1 of the present invention.
  • FIG. 5 is a graph showing changes in the fluorescence spectrum of the fluorescent dye in Example 2 of the present invention.
  • FIG. 6 is a graph showing the relationship between the insulin concentration and the fluorescence peak wavelength in Example 2 of the present invention.
  • FIG. 7 is a graph showing the relationship between insulin concentration and fluorescence intensity in Example 2 of the present invention. Ru.
  • FIG. 8 is a view showing the change of the fluorescence spectrum of the fluorescent dye in Example 3 of the present invention.
  • the detection method of the present invention is a method for detecting a protein labeled with a fluorescent dye, which has a shorter wavelength than the first fluorescence wavelength observed in the free state, and is in a state bound to the protein.
  • the protein is detected by measuring the fluorescence based on the second fluorescence wavelength observed in.
  • the fluorescence wavelength of the anionic fluorescent dye used in the present invention gradually shifts from the free fluorescence wavelength to a shorter wavelength with an increase in the amount of binding to the protein, and further does not shift the fluorescence wavelength force S and the fluorescence intensity Also leads to saturation that does not increase. Therefore, the presence or absence of the protein in the sample can be confirmed and quantified by using the fluorescence wavelength value in the intermediate state from the free state to the saturated state and the fluorescence intensity thereof.
  • proteins may be added stepwise to an anionic fluorescent dye, and proteins may be quantified from the relationship between the amount of added protein and the shift value from the fluorescence wavelength in the free state.
  • the sample targeted by the present invention is not particularly limited as long as it contains a protein. It is possible to label collagen, which is a simple protein, and to label it after electrophoresis. In addition, it can be used for detection of sugar chains and peptides having an amino group. In addition, it is also possible to use for the antigen-antibody reaction which is good in handling as in the past in the labeling of antibodies. For example, antibody response can be observed by any method such as an antibody / antigen chip or an evanescent wave fluorescence immunoassay.
  • the detection method of the present invention can be applied to either a solution state sample or a solid state sample.
  • a sample in a solution state for example, a sample solution containing a protein is added to a solution in which an anionic fluorescent dye having a predetermined concentration is dissolved, and the fluorescence vector of the solution is measured using a fluorescence spectrophotometer or the like.
  • the presence or absence of the fluorescence wavelength of 2 and the fluorescence intensity or shift value of the fluorescence wavelength The sample concentration is detected.
  • the measurement wavelength is fixed to the second fluorescence wavelength, and the sample concentration is detected from the fluorescence intensity.
  • a method in which an anion fluorescent dye is dissolved in a sample solution containing proteins can also be used.
  • the following method can be used.
  • the protein is reacted with an anionic fluorescent dye in a solution state, then the solution is spotted and spotted on a measurement substrate, for example, a protein chip, and the chip is imaged using an image scanner or the like to determine the sample concentration.
  • a measurement substrate for example, a protein chip
  • the chip is imaged using an image scanner or the like to determine the sample concentration.
  • the first fluorescence wavelength observed in the free state refers to the fluorescence wavelength observed when an anionic fluorochrome is present alone in a solution or solid.
  • the second fluorescence wavelength observed in the bound state to the protein is a fluorescence wavelength based on the anionic fluorescent dye bound to the protein, and is a shorter wavelength than the first fluorescence wavelength.
  • the shift value of the second fluorescence wavelength from the first fluorescence wavelength depends on the type of anionic fluorescent dye bound to the protein, and is at least 2 nm or more, more preferably 10 nm or more.
  • anion fluorescent dye to be used in the detection method of the present invention
  • a substance in which an anionic group capable of binding to a protein is directly bonded to an organic EL dye, and an anionic group capable of binding to an organic EL dye via a linking part Included are those that are combined.
  • the anion group any one of a carboxyl group, a sulfonyl group, a sulfate base, a phosphate group and a combination thereof can be used which is electrostatically bonded to a positively charged group such as an amino group of a protein. It is preferable to use a group.
  • the fluorescent dye having a covalent bond group used as the second fluorescent dye includes one in which a covalent bond group to be bound to a protein is bound to an organic EL dye directly or via a linkage.
  • the covalent bond may, for example, be an amide bond, an imide bond, a urethane bond, an ethenole bond or a guanidine bond.
  • covalent bond group examples include isothiocyanate group, isocyanato group, epoxy group, sulfonyl halide group, sulfonyl chloride group, acinole group, halogenated alkyl group, glyoxal group, anoredide group, triazine group, carbodiimide group and active esterification And the like can be used.
  • isothiocyanate group, isocyanato group, epoxy group, halogenated alkyl group It is preferable to use any one kind selected from a riadine group, a carppositimide group and an activated esterified carbonyl group.
  • an isocyanate group an epoxy group, a halogen alkyl group, a triazine group, a carppositimide group and an active ester group.
  • they are a triazine group, a carpodiimide group or an activated esterified carbonyl group.
  • these organic EL dyes have a carboxylic acid group, it is also possible to directly modify the amino group and imino group present in the target molecule in the presence of a carbidoimide derivative or triazine derivative.
  • the anionic fluorescent dye can also contain a covalent bonding group. Thereby, stronger binding can be formed between target molecules.
  • the combination of the covalent bond group and the anion group is not particularly limited, and a combination of the above functional group and the above anion group such as a sulfonyl group or a carboxyl group may be mentioned.
  • the linking part used in the fluorescent dye of the present invention is a constituent part linking a chromogenic moiety and an anion group or a covalent bonding group, and is a moiety containing a covalent bond or an atomic chain,-(CH 2) )-(
  • n n is an integer of 1 to 4
  • _NHC _ _, _ C NH NH-, _C _ _ _, _ C _ _ _, _ SO NH _, _ HN _ C ( NH) _ NH _
  • the linking portion may be composed of only one type of functional group selected from the above group, or may be configured to include two or more types of functional groups. In addition, it may be configured to include two or more selected one functional groups.
  • XI and X2 are each independently-(CH 2)-(n is an integer of 1 to 4), -NHCOO-, _C
  • One type of functional group selected from the group consisting of NR— can be used. Preferred combinations are CONH-COO-, -CH- 0-, -CH-NR-, _CCNH- (CH 2)-, CCNH- (C
  • H) at least one functional group selected from the group consisting of -NH-, -0-, -S-, -NR-, -CH CH-, -C ⁇ C-, -Ar- and -C0_Ar-NR-
  • R1 and R2 each independently represent a hydrogen atom, or an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, or an aromatic hydrocarbon group, and if necessary, a sulfonyl group, Any one selected from the group consisting of a hydroxyl group, a quaternary amino group and a carboxyl group and substituted by one type of charged group can be used.
  • Ar is a aryl group, preferably a phenyl group or a naphthylene group, which may be optionally substituted with a sulfonyl group.
  • p and q are each independently an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and p + q l l.
  • this linkage part are: _ (CH2) p-CONH- (CH2) q-,-(CH2) p-COO- (CH2) q-, _ (CH2) p-CH (-R1-S03H )-(CH2) q-, _ (CH2) p-CH (-Rl_N + H3)-(CH2) q-,-(CH 2) p-CH (-Rl-COOH)-(CH2) q-,- (CH2) p_CH (-Rl-OH)-(CH2) q-, _ (CH2) p- (0_CH-) n- (CH2) q-, _ (CH2) p-CONH (-Rl_S03H)-(CH2) q-, _ (CH2) p-CONH (-Rl-S03H) _ (CH 2) q-, _ (CH 2) p-C0 NH (-Rl-N + H3) _ (CH 2) q-, _ (CH2)
  • X4 and X5 are each independently -NHCOO-, -CONH-, -COO_, -SO NH-
  • R 3 is a hydrogen atom, or an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, or an aromatic hydrocarbon group, and if necessary, a sulfonyl group, a hydroxyl group, a quaternary amine Any one selected from the group consisting of a group and a carboxyl group and substituted by one type of charged group can be used.
  • Ar is a aryl group, preferably a phenylene group or a naphthylene group, which may be optionally substituted with a sulfonyl group.
  • r is an integer of 0 to 20, preferably an integer of 0 to 10, and more preferably an integer of 0 to 5. Specific examples of this spacer include -CONH- (CH2) r-COO-, -CONH-CH (-R3-OH) -COO-, -CONH-CH (-R3-COOH)- COO-,-CONH-CH (R3-S03H) -COO-,-COO- (CH2) r-COO-, etc. can be mentioned.
  • a peptide linker which also forms an amino acid or an amino acid power of 2 to 20 at the junction.
  • amino acids natural or synthetic amino acids can be used.
  • natural amino acids include glycine, analanin, norin, leucine, isoleucine, 4-amino-2-butyric acid, homoserine, serine, threonine, aspartic acid, gnoletamic acid, aspartic acid, gnoletamine, lysine, hydroxylysine, Anoreginin, cystine, cystic acid, 2-amino-3-sulfosulfanipropanoic acid, 2-amino-3-sulfoxypropanoic acid, cystine, methionine, ferricyanin, tyrosine, tryptophan, histidine, proline and 4- Hid Roxyproline etc. are included.
  • Synthetic amino acids include the D-form of the above-mentioned naturally occurring amino acids, and modified amino acids having at least an amino group and a carboxyl group in the molecule.
  • Modified amino acids can be represented by the general formula: H—N (R1) — (R2—C ⁇ ) — OH.
  • R1 and R2 each independently consist of a sulfonyl group, a hydroxyl group, a quaternary amine group, and a carboxyl group with or without an ester, ethanol, thioester, thioether, amide, carbamide or thiocarbamide. Any of the groups selected from the group represents a hydrocarbon group or an aromatic group or a heterocyclic group substituted by four charged groups.
  • each of the hydrocarbon group, the aromatic group or the heterocyclic group may be substituted with at least one of a halogen atom, an anolequinole group, an alkenyl group, an alkynyl group or an alkoxy group.
  • amino acids having a sulfonyl group such as cysteine acid, 2-amino-3-sulfosulfanipropanoic acid, 2-amino-3-sulfopropanoic acid, And any one member selected from the group consisting of tyrosine having a hydroxyl group, threonine, 4-amino-2-hydroxybutanoic acid, homoserine and serine. More preferably, cystic acid, homoserine or serine.
  • peptide linkers -C (-Rl) -CONH-C (-R2)-, -C (-Rl) -CONH-C (-R2) -CONH-C (-R3)-, respectively. It is preferable to use a dipeptide, tripeptide or tetrapeptide represented by _C (-Rl) -CONH_C (-R2) -CONH_C (-R3) -CONH_C (-R4)-.
  • R 1, R 2, R 3 and R 4 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alcohol group, an alcohol group, an indolate group, a hydroxyphenyl group, a benzyl group, a guanidine group, a thioether group, an alkyl thiol group, an imidazole Represents a substituent such as a group or an alkylamine group.
  • These peptides may be homo or hetero peptides.
  • Ala_Ser, Glu_Ala, Glu-Ala-Leu, Gly_Pro, Gly-Pro-Asn, lie-Val, Ile-Va ⁇ Met, etc. can be used.
  • peptide linker one having at least one type of charged group selected from the group consisting of sulfonyl group and carboxyl group, if necessary, as a part of the peptide linker.
  • a peptide linker one containing one or more of these amino acids having four or more charged groups can be used. By this, it is impossible to introduce an anion group at the connecting part. Anions can be attached to the fluorescent dye.
  • cysteine acids having sulfonyl groups 2-amino-3-sulfosulfanipropanoic acid, 2-amino-3-sulfoxypropanoic acids, tyrosines having hydroxyl groups, threonine, 4-amino-2- A peptide linker comprising at least one amino acid selected from the group comprising hydroxybutanoic acid, homoserine and serine can be used.
  • the fluorescent dye of the present invention can be synthesized, for example, by using any of triazine group, carpimidimide group and activated esterified carbonyl group, more preferably activated esterified carboxyl group.
  • activated esterified carbonyl group N-hydroxy-succinimide ester or maleimide ester can be used.
  • N-hydroxy-succinimide ester is used.
  • N-hydroxy monosuccinimide as shown in the reaction formula I of the following scheme 1, by using DCC as a condensing agent, by using an amide bond via an N-hydroxy mono succinimidate ester, an EL dye And the target molecule bind.
  • a triazine derivative can also be used for the activated esterified carbonyl group.
  • carbidoimide group carbimidoimide reagents such as ⁇ , ⁇ '-dicyclohexylcarbodiimide (DCC) and 1-cyclohexyl-3- (2_morpholinoethyl) carbimide can be used.
  • the EL dye can be linked to the target molecule via an amide bond via a carbidoimide (Scheme III).
  • an EL dye in which a carpodiimide group and a triazine group are introduced in advance in the molecule can be directly bonded to the amino group and imino group in the biological molecule (Scheme IV).
  • R represents an aromatic hydrocarbon group containing an anionic group as a substituent, a hydrocarbon group, a heterocyclic group or an aromatic group containing a hetero atom in the ring.
  • the method of reaction formula V can be used.
  • the fluorescent dyes of the present invention also include those containing a reactive group that forms a covalent bond, in addition to the anionic group. It is preferable to use an activated esterified carbonyl group as a reactive group which forms a covalent bond. It can form stronger bonds with proteins.
  • the functional group other than the functional group directly bonded to the color forming part secures the physical distance between the color forming part and the anion group, and the color forming part and the anion While ensuring the freedom of selection of the molecular skeleton of the sex group, it has the effect of making it easier for the anion group to bond to the deep positive charge group of the protein. This also makes it possible to selectively label only specific proteins.
  • a nitrogen atom or the like as a functional group directly bonded to the color forming portion When the hetero atom of is used, the whole molecule can be made into a more rigid structure, so that the sticking between the colored portions can be suppressed.
  • an oxygen atom or the like it becomes a flexible molecular structure, and it is possible to control the sta- turing strength.
  • the organic EL dye for use in the present invention is held in a solid state between the pair of anode and cathode when the holes injected from the anode recombine with the electrons injected from the cathode. It is not particularly limited as long as it is a dye that can emit light by the energy of.
  • polycyclic aromatic compounds such as tetraphenyl butadiene and perylene, cyclopentadiene derivatives, oxadiazole derivatives, coumarin derivatives, distyrylvirazine derivatives, ataridon derivatives, quinacdoline derivatives, stilbene derivatives, futonothiazine derivatives, pyrazinoviridines Derivative, amino group derivative, imidazole derivative, force rubazole derivative, thiophen derivative and the like can be used.
  • organic EL dye examples include, as polycyclic aromatic compounds, rubrene, anthracene, tetracene, pyrene, perylene, thalicene, decacyclene, coronene, tetraphenyl butadiene, tetraphenynorecyclobutadiene, pentaphenynore Force S to mention cyclobutadiene.
  • cyclopentadiene derivatives include 1,2,3,4-tetraphenylidene 1,3 cyclopentadiene, 1,2,3,4,5 pentaphenynore 1,3 cyclopentadiene.
  • oxadiazole derivative 2 (4 't butyl phenyl) -one 5- (4'-biphenyl) 1, 3, 4- oxadiazole, 2, 5- bis (4- jetylamino fenyl) 1, 3, 4- oxadiazole
  • coumarin derivatives include coumarin 1, coumarin 6, coumarin 7, and coumarin 30.
  • distyrylbirazin derivatives include 2,5 bis (2- (4-biphenyl) ethenyl) pyrazine, 2,5 bis (4-ethysteryl) pyrazine, 2,9_bis_ (4-methoxysteryl ) Pyrazine can be mentioned.
  • Atalidone and its derivatives can be mentioned as the atalidone derivatives.
  • quinacdoline derivatives include quinacdoline and its derivatives.
  • stilbene derivatives include 1,1,4,4-tetraphenyl-2-1,1,3-butadiene and 4,4'-bis (2,2-diphenylvinyl) biphenyl.
  • Asorenol derivatives, imidazole derivatives, force rubazole derivatives and thophen derivatives, those described in the general formula herein can be used.
  • a preferred organic EL dye used in the detection method of the present invention is a compound containing a five-membered ring compound having a conjugated system, and the five-membered ring compound is one or more kinds of heteroatoms, selenium atoms or boron. Those containing atoms can be mentioned. Further, specifically, there can be mentioned a monocyclic compound consisting of a 5-membered ring compound having a conjugated system and a condensed polycyclic compound consisting of a 5-membered ring compound and a 6-membered cyclic compound having a conjugated system. This is because even in the solid state, the quantum yield exhibits a strong fluorescence.
  • azole derivatives or imidazole derivatives are preferred. Furthermore, it is preferable that the azole derivative or imidazole derivative has one or more quaternary ammonium groups. It is because it can improve the water solubility.
  • condensed polycyclic compound described below is used as an anion fluorescent dye by binding to an anion group via the above-mentioned linking part.
  • condensed polycyclic compounds in which an anionic group is directly bonded can be used as an anionic fluorescent dye itself.
  • fused polycyclic compounds can be bound to a covalent bond group directly or via a linkage to be used as a second fluorescent dye.
  • fused polycyclic compounds are all preferably used in the detection method of the present invention: preferably diazole derivative 3, imidazole derivative 2, thiadiazole derivative, force rubazole derivative, thiazole derivative, Preferred are oxazolopyridine derivatives (oxazazolopyridine derivatives).
  • each of R, R, R, R, R and R independently has a substituent such as a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a cyano group or a sulfonyl group. Or an aromatic group containing an aromatic hydrocarbon group, a hydrocarbon group, a heterocyclic group or a hetero atom in the ring.
  • R, R, R, R, R and R may be the same or different.
  • R ′ is an aliphatic hydrocarbon group or an aromatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring,
  • An— is a halide ion such as Cl—, Br— or ⁇ , CF 2 SO— , BF-,
  • R and R each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a cyano group, an amino group, an aromatic hydrocarbon group which may have a substituent such as a sulfonyl group, or a hydrogen hydrocarbon.
  • the aromatic group which contains a group or a heterocyclic group or a hetero atom in a ring is shown.
  • R and R may be the same or different. The same applies to the following general formulas unless otherwise stated.
  • n is an integer of 1 or more, preferably:! To 5, and the same applies to the following general formulae.
  • R, R, R and R each independently represent a hydrogen atom, a halogen atom or a hydride
  • An aromatic hydrocarbon group which may have a substituent such as an oral xyl group, an amino group, a cyano group or a sulfonyl group, an aromatic hydrocarbon group containing an aromatic hydrocarbon group or a hydrocarbon group or a heterocyclic group or a hetero atom in the ring Show.
  • R, R, R, R, R may be the same or different.
  • R, R is
  • X is a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom or a boron atom which may have a substituent, and the same applies to the following general formulas unless otherwise specified.
  • R 1 and R 2 each represent a hydrogen atom, a halogen atom, a hydroxyl group,
  • R may be the same or different.
  • R 1 is an orephine group which may have a substituent
  • n is an integer of 1 to 3, preferably 1. The same applies to the following general formulas unless otherwise stated.
  • the above diazole derivative which is not particularly limited as long as it is the diazole derivative, can be suitably used an oxadiazo-open pyridine derivative represented by the following general formula.
  • oxazolopyridine derivative is used, for example, by using ⁇ , ⁇ '-dicyclohexylcarbodimide (DCC) as a condensing agent by the reaction shown in the following scheme 2. It is preferable to use one derived into an active ester containing a ⁇ ⁇ ⁇ ⁇ ⁇ -hydroxy-succinimide ester.
  • DCC dicyclohexylcarbodimide
  • R 2 R 3 and R 4 are each independently a hydrogen atom, linear, branched or cyclic
  • Ar and Ar each represent a substituted or unsubstituted aryl group; May form a nitrogen-containing heterocycle with the nitrogen atom to which it is attached.
  • Y and Y are
  • Ar to Ar each independently represent a substituted or unsubstituted aryl group
  • imidazole may be used as the 5-membered ring compound, and an imidazole derivative represented by the following general formula may be used.
  • the imidazole skeleton is plural at any position on the central benzene ring R 1, R 2, R 3, R 4
  • R 2 is an orephine group which may have a substituent or
  • n is an integer of 1 to 3, preferably 1.
  • a 5-membered ring compound having a conjugated system which is a single ring compound containing one or more kinds of heteroatoms, selenium atoms or boron atoms.
  • an azole derivative represented by the following general formula can be used.
  • R, R and R each independently represent a hydrogen atom, a halogen atom or a hydroxyl group
  • R, R and R may be the same or different.
  • the organic EL dye used for the fluorescent dye of the present invention is not particularly limited as long as it is the fused polycyclic compound and the monocyclic compound described above, and a diazole derivative or an imidazole derivative represented by the following general formula Can be suitably used.
  • diazothiopyridine derivatives or imidazolopyridine derivatives can be suitably used.
  • Particularly preferred fluorescent dyes of the present invention are those containing the above-mentioned diazophoric pyridine derivative or imidazolo pyridine derivative in the color forming part, and can be represented by the following general formula.
  • R and R it is preferable to use an aromatic hydrocarbon group or a hydrocarbon group which may have a substituent.
  • a green fluorescent dye corresponding to Cy3 can be obtained.
  • the aromatic hydrocarbon group is preferably a phenyl group, a tolyl group, a xylyl group or a naphthyl group, more preferably a phenyl group or a tolyl group.
  • R and R described above are selected from the group consisting of optionally substituted thiophen group, furan group, pyrrolic group, imidazole group, imidazole group, oxazole group, thiazole group, pyrazole group and pyridine group. It is also possible to use one of them, more preferably a thiophen group, an imidazole group or a furan group. A red fluorescent dye corresponding to Cy5 can be obtained.
  • the detection method of the present invention can be applied to any detection method as long as it is a detection method for measuring the fluorescence of a solution, solid or semi-solid state protein.
  • a protein in a sample is labeled with an anionic fluorescent dye, the labeled protein is subjected to separation means, the molecular weight of the fraction is measured by a mass spectrometer such as MALDI-TOF MS, and a database search is performed to obtain a protein.
  • a mass spectrometer such as MALDI-TOF MS
  • a database search is performed to obtain a protein.
  • the separation means ion exchange column HPLC, reverse phase partition HPLC, gel filtration HPLC, or electrophoresis can be used.
  • electrophoresis primary and secondary electrophoresis can be used, and after electrophoresis, the gel can be dried and quantified.
  • the following detection method can be achieved by using a covalent fluorescent dye and an anionic fluorescent dye into which an anionic group is introduced.
  • the covalent fluorochrome is one that does not change its fluorescence wavelength even when the protein is labeled accordingly.
  • label with a covalent fluorescent dye Thereafter, electrophoresis is performed to perform separation. Furthermore after migration
  • the fluorescence wavelength changes. Since the anionic fluorescent dye can label an amino residue located deep in a protein, the change in fluorescence wavelength is due to the difference in protein structure. Therefore, it is also possible to predict protein structure from changes in fluorescence wavelength.
  • the fluorescent dye used has the same structure except for the anionic group, the performance such as the quantum yield of the fluorescent dye is the same. Therefore, highly accurate quantification is possible.
  • the present invention can be applied as follows to a detection method using a protein chip.
  • a protein and an anionic fluorescent dye are reacted in a solution, the solution is spotted on a measurement substrate, and a fluorescence image based on a second fluorescence wavelength from the measurement substrate can be measured.
  • the protein can be immobilized on the substrate by leaving it at a predetermined temperature, and incubation can be carried out if necessary.
  • fluorescence quenching does not occur even in the dry state, stable observation is possible even in the dry state.
  • the detection method using the above-mentioned covalent fluorescent dye and the anionic fluorescent dye into which an anionic group is introduced can also be used.
  • the chromophore (3) was synthesized according to scheme 2 below.
  • the active ester (3) was reacted with taurine in DMF to induce sulfonation (4) (scheme 3).
  • an organic EL dye As an organic EL dye, a synthetic pyridine derivative used in Synthesis Example 1 is used as a synthetic organic dye, and a cystenic acid is used as a linking part, and a reactive group is both an activated esterified carbonyl group and a sulfonium group which is an anion group. Introduced. Oxadiazo-open pyridine active ester (3) was reacted with cystine acid to synthesize a carboxylic acid (5) into which a linkage was introduced. Thereafter, the carboxylic acid (5) was reacted with N-hydroxysuccinimide in dioxane to synthesize an oxadiazo-opening pyridine active ester (6) having a linkage introduced. An example of the reaction is shown below.
  • the organic EL dye used in Synthesis Example 1 is used as a synthetic organic light-emitting dye, and is used as a coupling moiety Used serine.
  • Oxadiazo-open pyridine active ester (3) was reacted with serine to synthesize a carboxylic acid (7) into which a linkage was introduced.
  • An example of the reaction is shown below.
  • the color tone of Buffer solution containing sulfonyls changed from yellow to yellowish green when BSA was added (Fig. 1).
  • the UV spectrum of sulfonyl 4 is shown in FIG. From this result, sulfonyl
  • the maximum absorption wavelength of body (4) was found to be 397 nm.
  • the fluorescence spectrum was measured using 397 nm as the excitation wavelength. The results are shown in Figure 3.
  • BSA is added to a concentration of 1.6 ⁇ M.
  • the fluorescence spectrum showed a blue shift of 18 nm by addition of BSA, and the fluorescence intensity increased about 5 times.
  • the active ester (3) binds to a protein through an amide bond formed by the nucleophilic substitution reaction between an active ester group and an amino group, but an amino acid located in the deep part of BSA due to steric hindrance such as a succinimide molecule. It is thought that it does not bond to a group, but bonds to only the surface amino group.
  • the sulfonyl compound 4 is bonded not only to the amino group on the surface of BSA but also to the amino group in the deep part by electrostatic bonding, it is located in the deep part (hydrophobic field) of BSA as described above. This is considered to have caused a blue shift and an increase in fluorescence intensity.
  • Example 2 the procedure was performed in the same manner as in Example 1 except that insulin (Inslin) was used as the protein.
  • Sulfonyl compound (4) 26.7 ⁇ was prepared in a fluorescent cell in 2000 ⁇ l, and 0 to 232 ⁇ of insulin was added thereto in six divided doses.
  • the fluorescence spectrum when insulin is added is shown in FIG. As in the case of BSA, a blue shift of 19 nm and an increase in fluorescence intensity were observed.
  • the relationship between the insulin concentration in the cell when added and the peak wavelength FLmax at each concentration is shown in Figure 6, where the insulin concentration and peak wave
  • the relationship with the fluorescence intensity ⁇ Int. (Value obtained by subtracting the fluorescence intensity of only the sulfonyl form) in the length is shown in FIG.
  • the peak wavelength FLmax linearly shifted to a lower wavelength.
  • Example 2 the procedure was carried out in the same manner as in Example 1 except that lysozyme was used as the protein.
  • a 26.7 ⁇ of sulfonyl group (4) was prepared in a fluorescent cell to 2000 ⁇ l, and 0 to 4 6.6 ⁇ of lysozyme was added thereto in four portions.
  • the fluorescence spectrum when lysozyme is added is shown in FIG. Even when lysozyme was added, neither increase in fluorescence intensity nor blue shift of peak wavelength was observed. This indicates that the sulfonate form (4) does not bind to lysozyme. This is considered to mean that the sulfonyl group does not bind to the amino group of lysozyme since the amino group located on the surface of the protein has a different conformation depending on the type of protein. . However, since sulfonyl form (4) binds to BSA and insulin, it is considered possible to use sulfonyl form (4) as a fluorescent reagent capable of selectively labeling proteins.
  • the active ester (6) of Synthesis Example 2 was used as a gel, and the change in color tone when BSA was added was observed in the spectrum by the same method as in Example 1.
  • the fluorescence spectrum was blue-shifted by 18 nm by addition of BSA, and the fluorescence intensity was increased about 5 times.
  • the carboxylic acid (7) of Synthesis Example 3 was used as a gel, and the change in color tone when BSA was added was observed in the spectrum by the same method as in Example 1.
  • the fluorescence specknore is shifted by 19 nm by the addition of BSA and the fluorescence intensity is about 4.5. It has doubled.
  • the detection method of the present invention it is possible to perform simple and highly accurate quantification of protein detection. Furthermore, since the anionic fluorescent dye used in the present invention is not observed to have a higher thermal stability than Cy3 or Cy5 or Alexa dye, it is easy to handle and is cheaper than Cy3 or Cy5. Can detect protein at lower cost

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

It is intended to provide a method of detecting protein at a high sensitivity with the use of a convenient procedure and a fluorescent dye to be used therefor. Namely, a detection method whereby a protein is detected by measuring a fluorescence based on a second fluorescence wavelength observed in the state of binding to the protein which is shorter than a first fluorescence wavelength observed in a free state. The fluorescent dye as described above is superior in heat stability to Cy3, Cy5 and Alexa dyes and shows no fluorescence elimination. Thus, it can be handled more easily and less expensively than Cy3 and Cy5 and, therefore, makes it possible to detect a protein at a lower cost.

Description

明 細 書  Specification
タンパク質の検出方法及びそれに用いる蛍光色素 技術分野  Method for detecting protein and fluorescent dye used therefor
[0001] 本発明は、タンパク質の検出方法及びそれに用いる蛍光色素に関する。  The present invention relates to a method for detecting a protein and a fluorescent dye used therefor.
背景技術  Background art
[0002] 近年、ヒトゲノムの全容が明らかにされ、遺伝子治療や遺伝子診断等を目的とした ポストゲノム研究が盛んに行われている。特に、ゲノム情報を利用して、一つの生物 や細胞に含まれるすべてのタンパク質について網羅的'系統的に性質や発現動態を 解析するプロテオーム解析にぉレ、ては、遺伝子の発現により産生される微量タンパク 質を高感度に検出'同定する必要がある。また、ガンやウィルスによる感染症などの 疾病は、それぞれ特殊なタンパク質を生成させるため、これら特殊なタンパク質を疾 病のマーカーとして取り扱レ、、疾病の診断や治療に応用することが可能であるが、こ れら特殊なタンパク質を高感度に検出 ·同定する必要がある。  [0002] In recent years, the full size of the human genome has been clarified, and post-genome research for gene therapy, gene diagnosis and the like has been actively conducted. In particular, proteome analysis, which comprehensively analyzes the properties and expression dynamics of all proteins contained in one organism or cell using genomic information, is produced by gene expression. It is necessary to detect and identify small amounts of proteins with high sensitivity. In addition, since diseases such as cancer and infections caused by viruses generate special proteins, these special proteins can be treated as markers of diseases, and can be applied to diagnosis and treatment of diseases. However, it is necessary to detect and identify these special proteins with high sensitivity.
[0003] タンパク質の高感度分析法としては、例えば、試料タンパク質を蛍光色素により標 識し (非特許文献 1)、電気泳動による分離を行った後、 MALDI-TOF MS等の質量分 析計を用いて分画されたタンパク質の分子量を測定し、データベース検索を行って タンパク質の同定を行う方法が用いられている。また、ウェスタンブロッテイングなどの ブロッテイング法、更に発現解析やタンパク質間の相互作用の解析には、 DNAチップ の技術を利用したプロテインチップが使用されている(例えば、非特許文献 2)。プロ ティンチップは、蛍光色素により標識されたタンパク質を用レ、、疎水性物質やイオン 交換体や金属イオン等を貼り付けてタンパク質の発現解析に使用し、あるいは抗体 等を貼り付けてタンパク質間の相互作用の解析に使用する。プロテインチップを用い ることにより、多種類のタンパク質の発現動態や相互作用の同時解析を簡便かつ迅 速に行うことができる。  [0003] As a high sensitivity analysis method of protein, for example, a sample protein is labeled with a fluorescent dye (Non-patent Document 1), separated by electrophoresis, and then mass spectrometer such as MALDI-TOF MS is used. The molecular weight of the fractionated protein is measured, and database search is performed to identify the protein. In addition, protein chips using DNA chip technology are used for blotting methods such as Western blotting and further for expression analysis and analysis of protein-protein interactions (for example, Non-patent Document 2). For protein chips, use a protein labeled with a fluorescent dye for labeling, a hydrophobic substance, ion exchanger or metal ion, etc., for protein expression analysis, or an antibody, etc., for protein interproteins. Used for analysis of interaction. By using a protein chip, simultaneous analysis of expression dynamics and interaction of many types of proteins can be performed easily and quickly.
[0004] また、電気泳動を用いたタンパクの分割は、ゲルにタンパク質を乗せた後、両末端 にセットした電極に電気を通じることでクロマト上を移動させ、分子量等の違いによつ て分割する。この後、ゲルを蛍光色素溶液に浸すことで蛍光標識を行う(例えば、特 許文献 1及び 2)。しかし、ゲルを乾燥させると蛍光消光が生じるため、湿潤状態で定 量を行っているが膨潤したゲルの厚みなどから正確な定量が行えないのが現状であ る。 [0004] In addition, separation of proteins using electrophoresis is carried out by placing proteins on a gel and conducting electricity on the electrodes set at both ends to move on the chromatograph, and separation is performed according to differences in molecular weight and the like. Do. After this, fluorescent labeling is performed by immersing the gel in a fluorescent dye solution (for example, Permitted documents 1 and 2). However, since the fluorescence quenching occurs when the gel is dried, the quantitative determination can not be accurately performed because of the thickness of the swollen gel although the quantitative measurement is performed in the wet state.
特許文献 1 :特表 2003— 531946号公報  Patent Document 1: Japanese Published Patent Application No. 2003-531946
特許文献 2:特開 2004— 317297号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-317297
非特許文献 1 : Michael Brinkley, Bioconjugate Chem" 1992, 3, 2-13  Non Patent Literature 1: Michael Brinkley, Bioconjugate Chem "1992, 3, 2-13
非特許文献 2 : Paul Cutler, Proteomics, 2003, 3, 3-18  Non Patent Literature 2: Paul Cutler, Proteomics, 2003, 3, 3-18
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] しかしながら、蛍光強度の変化を測定する場合、蛍光強度の増大幅に再現性がな ぐまた蛍光強度が微弱で遊離状態との差異が小さい場合、タンパク質の高感度の 検出が困難であるという問題がある。微弱な蛍光強度を測定しょうとすると、励起光の 強度を増加せざるを得ず、光源が大型化したり、試料のダメージが大きくなるという問 題もある。さらに、プロテインチップを用いて測定を行う場合、チップ上の試料が乾燥 することにより、タンパク質に結合している蛍光色素の蛍光が消光するという問題もあ る。特に、 πから といった微量試料の場合、試料が乾燥しやすいため、非常に大き な問題となる。また、蛍光色素によっては温度安定性が低ぐ測定に時間を要すれば 、定量性に問題が生じる事も考えられる。  However, in the case of measuring the change in fluorescence intensity, it is difficult to detect a protein at high sensitivity if the increase in fluorescence intensity is not reproducible and the fluorescence intensity is weak and the difference from the free state is small. There is a problem of If weak fluorescence intensity is to be measured, the intensity of excitation light has to be increased, and there is also the problem that the light source becomes large and damage to the sample becomes large. Furthermore, when the measurement is performed using a protein chip, there is a problem that the fluorescence of the fluorescent dye bound to the protein is quenched by drying the sample on the chip. In particular, in the case of a trace amount sample such as π, it is a very serious problem because the sample is easily dried. In addition, depending on the fluorescent dye, if it takes time to measure the temperature stability is low, it may be considered that a problem may occur in the quantitativity.
[0006] そこで、本発明は、上記の課題を解決し、高感度の検出が可能で操作の簡便なタ ンパク質の検出方法及びそれに用いる蛍光色素を提供することを目的とした。  [0006] Therefore, the object of the present invention is to solve the above-mentioned problems, and to provide a method for detecting a protein with high sensitivity and easy operation, and a fluorescent dye used therefor.
課題を解決するための手段  Means to solve the problem
[0007] 本発明者は、上記課題を解決すべく鋭意努力した結果、従来の蛍光強度の変化 に基づく検出方法と異なる全く新しいタンパク質の検出方法が可能なことを見出して 本発明を完成させたものである。 The present inventors have made earnest efforts to solve the above problems, and as a result, they have found that it is possible to detect a completely new protein different from conventional detection methods based on changes in fluorescence intensity, and completed the present invention. It is a thing.
すなわち、本発明のタンパク質の検出方法は、蛍光色素で標識したタンパク質を検 出するタンパク質の検出方法であって、遊離状態で観測される第 1の蛍光波長より短 波長であって、タンパク質に結合した状態で観測される第 2の蛍光波長に基づく蛍光 を計測してタンパク質を検出することを特徴とする。 [0008] 本発明によれば、結合状態における蛍光強度が弱い場合であっても、遊離状態で 観測される第 1の蛍光波長より短波長であって、タンパク質に結合した状態で観測さ れる第 2の蛍光波長の蛍光を測定する、例えば、第 2の蛍光波長値やその蛍光強度 を測定すれば良いので、従来の検出方法に比べより高感度の検出が可能となる。ま た、微弱な蛍光強度を測定するため、励起光の強度を上げる必要もない。また、熟練 していない検査員でも容易に判別することが可能となる。また、タンパク質を段階的に 添加すると、タンパク質との結合量の増加と供に、第 2の蛍光波長は短波長にシフト するので、第 1の蛍光波長からのシフト値とタンパク質の量との関係からタンパク質を 定量することちできる。 That is, the method for detecting a protein of the present invention is a method for detecting a protein labeled with a fluorescent dye, which has a shorter wavelength than the first fluorescence wavelength observed in the free state, and binds to the protein. And detecting the fluorescence by measuring the fluorescence based on the second fluorescence wavelength observed in the According to the present invention, even when the fluorescence intensity in the bound state is weak, the fluorescence wavelength is shorter than the first fluorescence wavelength observed in the free state, and is observed in the protein bound state. The fluorescence of the second fluorescence wavelength may be measured, for example, the second fluorescence wavelength value or the fluorescence intensity thereof may be measured, so that detection with higher sensitivity can be performed compared to the conventional detection method. In addition, it is not necessary to increase the intensity of the excitation light in order to measure the weak fluorescence intensity. In addition, even unskilled inspectors can easily distinguish. In addition, when the protein is added stepwise, the second fluorescence wavelength shifts to a short wavelength as well as the amount of binding to the protein increases, so the relationship between the shift value from the first fluorescence wavelength and the amount of protein The protein can be quantified from
[0009] また、本発明の検出方法の一態様として、試料中のタンパク質を分離手段に供し、 分離した画分を質量分析に供する検出方法の場合、タンパク質を分離手段に供する 前に、第 2の蛍光波長を発生する第 1の蛍光色素によりタンパク質を標識することが できる。さらに、第 1の蛍光色素によりタンパク質を標識するに先立って又は同時に、 タンパク質に結合した状態で第 1の蛍光波長が短波長にシフトしない第 2の蛍光色素 によりタンパク質を標識し、次いで分離手段に供することもできる。  In one embodiment of the detection method of the present invention, in the case of a detection method in which the protein in the sample is subjected to separation means and the separated fraction is subjected to mass spectrometry, the second step is performed before the protein is provided to the separation means. The protein can be labeled with a first fluorescent dye that generates a fluorescence wavelength of Furthermore, prior to or simultaneously with the labeling of the protein with the first fluorescent dye, the protein is labeled with the second fluorescent dye in which the first fluorescent wavelength is not shifted to a short wavelength while bound to the protein, and then the separation means is used. It can also be provided.
[0010] また、本発明の検出方法の別の態様として、タンパク質と上記第 2の蛍光波長を発 生する第 1の蛍光色素とを溶液中で反応させ、その溶液を測定基板に点着し、その 測定基板からの第 2の蛍光波長に基づく蛍光画像を計測することができる。さらに、 タンパク質と第 1の蛍光色素とを溶液中で反応させるに先立って又は同時に、タンパ ク質に結合した状態で第 1の蛍光波長が短波長にシフトしない第 2の蛍光色素をタン パク質と溶液中で反応させることもできる。  Further, as another embodiment of the detection method of the present invention, a protein and a first fluorescent dye that generates the second fluorescence wavelength are reacted in a solution, and the solution is spotted on a measurement substrate. The fluorescence image based on the second fluorescence wavelength from the measurement substrate can be measured. Furthermore, prior to or simultaneously with the reaction of the protein with the first fluorescent dye in the solution, the second fluorescent dye which does not shift the first fluorescent wavelength to a short wavelength when bound to the protein is a protein. And in solution.
[0011] また、第 1の蛍光色素はタンパク質と静電結合するァニオン性基を有することが好ま しい。また、第 2の蛍光色素はタンパク質と共有結合する共有結合性基を有すること が好ましい。その共有結合には、アミド結合、イミド結合、ウレタン結合、エステル結合 又はグァニジン結合等を挙げることができる。  In addition, it is preferable that the first fluorescent dye have an anionic group that electrostatically bonds to a protein. In addition, it is preferable that the second fluorescent dye have a covalent bond group that covalently bonds to a protein. Examples of the covalent bond include an amide bond, an imide bond, a urethane bond, an ester bond or a guanidine bond.
[0012] 本発明の検出方法には、第 1の蛍光色素として、タンパク質と結合するァニオン性 基が直接あるいは連結部を介して有機 EL色素に結合したァニオン性蛍光色素を用 レ、ることができる。ここで、上記ァニオン性基は、カルボキシル基、スルホニル基、硫 酸塩基、リン酸塩基及びそれらの組み合わせのいずれかを用いることができる。 In the detection method of the present invention, as the first fluorescent dye, an anionic fluorescent dye in which an anionic group binding to a protein is bound to an organic EL dye directly or via a linking moiety may be used. it can. Here, the above-mentioned anion group is a carboxyl group, sulfonyl group, sulfur Any of acid groups, phosphate groups and combinations thereof can be used.
[0013] また、上記連結部には、 -CH - - NHCOO- - CONH - - CH NH - - CH NR - - C In addition, in the above-mentioned connection part, -CH--NHCOO--CONH--CH NH--CH NR--C
2 2 2 2 2 2
00- -SO NH - - HN-C(=NH)_NH - _0_ -S - -NR- (Rはアルキル基)、 - (CH - C 00--SO NH--HN-C (= NH) _NH-_0 _ -S--NR- (R is an alkyl group),-(CH-C
2 2 twenty two
H - 0) - (nは 1から 10の整数)、- CH=CH - - C≡C - - Ar_及び- CO- Ar_NR-からなH-0)-(n is an integer from 1 to 10),-CH = CH--C≡C--Ar_ and-CO-Ar_NR-
2 n 2 n
る群から選択される官能基を少なくとも 1種用いることができる。  At least one functional group selected from the group consisting of
[0014] また、上記有機 EL色素には、 1種以上のへテロ原子、セレン原子又はボロン原子を 含む 5員環化合物と共役系を有する 6員環化合物とから成る縮合多環化合物を用い ること力 Sできる。 Further, as the organic EL dye, a fused polycyclic compound composed of a 5-membered ring compound containing one or more kinds of heteroatoms, selenium atoms or boron atoms and a 6-membered ring compound having a conjugated system is used. That ability S can.
[0015] また、上記縮合多環化合物には、以下の一般式(1)、(2)又は(3)のいずれか 1種 で示されるァゾール誘導体を用いることができる。  In addition, as the above-mentioned fused polycyclic compound, an azole derivative represented by any one of the following general formulas (1), (2) or (3) can be used.
[0016] [化 1] [Formula 1]
Figure imgf000006_0001
Figure imgf000006_0001
(3)  (3)
ここで、式中、 R R R Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキ  Here, in the formula, R R R R independently represents a hydrogen atom, a halogen atom, or an alkyl group
1 2 3 4  1 2 3 4
ル基、アルケニル基、アルキニル基、アミノ基、アルコキシ基、ヒドロキシル基、シァノ 基、スルホニル基、芳香族炭化水素基、複素環基、ヘテロ原子を環内に含む芳香族 基などの置換基を有してもよい芳香族炭化水素基又は炭化水素基又は複素環基又 はへテロ原子を環内に含む芳香族基を示し、 Xは置換基を有していてもよい窒素原 子又は硫黄原子又は酸素原子又はセレン原子、ボロン原子を示し、 R'は芳香環を含 んでも良いアルキル基又はアルケニル基等の脂肪族炭化水素基あるいは芳香族炭 化水素基、 An—は、 CI—、 Br―、 I—等のハロゲン化物イオン、 CF SO―、 BF―、 PF—を示す。 Group, alkenyl group, alkynyl group, amino group, alkoxy group, hydroxyl group, cyano group, sulfonyl group, aromatic hydrocarbon group, heterocyclic group, aromatic group containing a hetero atom in the ring An aromatic hydrocarbon group which may have a substituent such as a group, a hydrocarbon group, a heterocyclic group or an aromatic group containing a hetero atom in the ring, and X may have a substituent Good nitrogen atom or sulfur atom or oxygen atom or selenium atom or boron atom, and R ′ represents an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring or an aromatic hydrocarbon group, An — Represents a halide ion such as CI—, Br— or I—, CF 2 SO—, BF—, or PF—.
[0018] また、上記の Rと Rに、チオフヱン誘導体、フラン誘導体、ピロール誘導体、イミダゾ ール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘導体及びピリ ジン誘導体からなる群から選択された 1種を用いることができる。  [0018] In addition, as R and R, one selected from the group consisting of thiophen derivatives, furan derivatives, pyrrol derivatives, imidazol derivatives, oxazole derivatives, thiazole derivatives, pyrazole derivatives and pyrazine derivatives is used. Can.
[0019] また、上記の Rと Rに、スルホ二ル基を有するフエ二ル基を用いることができる。 In addition, as R and R described above, a phenyl group having a sulfonyl group can be used.
[0020] また、上記縮合多環化合物に、以下の一般式 (4)、(5)、(6)、(7)又は (8)で示さ れるイミダゾール誘導体を用いることもできる。  Further, as the above-mentioned fused polycyclic compound, an imidazole derivative represented by the following general formula (4), (5), (6), (7) or (8) can also be used.
[0021] [化 2] [Formula 2]
Figure imgf000008_0001
Figure imgf000008_0001
(7) (8) ここで、式中、 R、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、ァ  (7) (8) Here, in the formula, R, R, R, R and R are each independently a hydrogen atom, a halogen atom,
1 2 3 4 5  1 2 3 4 5
ノレキル基、アルケニル基、アルキニル基、アミノ基、アルコキシ基、ヒドロキシル基、シ ァノ基、スルホニル基、芳香族炭化水素基、複素環基、ヘテロ原子を環内に含む芳 香族基などの置換基を有しても良い芳香族炭化水素基又は炭化水素基又は複素環 基又はへテロ原子を環内に含む芳香族基を示し、 R、 R、 R、 R、 Rは同じでも異な Norelyl group, alkenyl group, alkynyl group, amino group, alkoxy group, hydroxyl group, cyano group, sulfonyl group, sulfonyl group, aromatic hydrocarbon group, heterocyclic group, aromatic group containing hetero atom in ring, etc. Aromatic hydrocarbon group or hydrocarbon group or heterocyclic group which may have a group Represents an aromatic group containing a group or a heteroatom in the ring, and R, R, R, R and R are the same or different
1 2 3 4 5  1 2 3 4 5
つていても良ぐ R\ R"は芳香環を含んでも良いアルキル基又はアルケニル基等の 脂肪族炭化水素基あるいは芳香族炭化水素基、 An—は、 Cl—、 Br―、 Γ等のハロゲンィ匕 物イオン、 CF SO―、 BF―、 PF—を示す。  R \ R "is an aliphatic hydrocarbon group or an aromatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, An- is a halogen such as Cl-, Br-, or. Indicating fluoride ion, CF2SO-, BF-, PF-.
3 3 4 6  3 3 4 6
[0023] また、上記の Rと Rに、チオフヱン誘導体、フラン誘導体、ピロール誘導体、イミダゾ  In the above R and R, thiophen derivative, furan derivative, pyrrole derivative, imidazo
2 3  twenty three
ール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘導体及びピリ ジン誘導体からなる群から選択された 1種を用いることができる。  One selected from the group consisting of toluene derivatives, oxazole derivatives, thiazole derivatives, pyrazole derivatives and pyrazine derivatives can be used.
[0024] また、上記の Rと Rに、スルホ二ル基を有するフヱニル基を用いることもできる。 In addition, as R and R described above, a phenyl group having a sulfonyl group can also be used.
2 3  twenty three
[0025] 本発明のァニオン性蛍光色素は、試料が乾燥しても消光することがないので、乾燥 状態でも高感度の検出が可能となる。例えば、溶液中でァニオン性蛍光色素とタン パク質とを反応させ、その溶液をプロテインチップの基板上に点着させて、イメージス キヤナなどで画像化して検出することもできる。また、本発明に用いるァニオン性蛍光 色素は最近開発されたドライアッセィにも用いることが可能であり、使用方法を選ばな い試薬である。また、熱に対して安定であり、常温での長期保存に耐えることができる ので、取り扱いが容易である。  Since the anion fluorescent dye of the present invention does not quench even when the sample is dried, high sensitivity detection is possible even in the dry state. For example, it is possible to react an anion fluorescent dye and a protein in a solution, spot the solution on a substrate of a protein chip, and image it for detection with an image scanner or the like. Further, the anion fluorescent dye used in the present invention can be used also in the recently developed dry assay, and is a reagent of which method of use is not selected. In addition, it is stable to heat and can withstand long-term storage at room temperature, so it is easy to handle.
[0026] 上記のァニオン性蛍光色素が本発明の検出方法に好適に使用できる理由につい ては、以下の理由が考えられる。本発明者の知見によれば、ァニオン性基を有する 従来の蛍光色素、例えば、メチルオレンジ、オレンジ G等を用いても、蛍光波長のシ フトは全く観測されなかった。これに対し、上記のァニオン性蛍光色素を用いると、蛍 光波長がより短波長にシフトし (ブルーシフトし)、蛍光強度が増加した。また、吸収波 長がより長波長にシフトし (レッドシフトし)、その強度は低下した。ァニオン性蛍光色 素はタンパク質の正荷電基、例えばァミノ基と静電結合するが、有機 EL色素を発色 部に用いると、有機 EL色素は近接したタンパク質との相互作用によりエネルギーが 流出し易くなることによると考えられる。また、ァニオン性基から成る結合部を有しない 場合、発色部が有機 EL色素から成る色素を用いても、蛍光波長のブルーシフトも蛍 光強度の増カロも観測されなかった。ァニオン性基から成る結合部を有しなレ、蛍光色 素を用いる場合、蛍光色素はタンパク質の表面の官能基のみと反応して共有結合を 形成すると考えられる。これに対し、ァニオン性基から成る結合部を有する蛍光色素 は、分子量も小さく立体障害も少ないため静電結合によりタンパク質の表面のァミノ 基のみならず深部のアミノ基とも結合するため、前述のようにタンパク質の深部(疎水 場)にも位置することとなり、これにより、ブルーシフトと蛍光強度の増加が起きたもの と考えられる。 The following reasons can be considered as to the reason why the above-mentioned anion fluorescent dye can be suitably used in the detection method of the present invention. According to the findings of the inventor of the present invention, no shift of the fluorescence wavelength was observed even when using conventional fluorescent dyes having an anionic group such as methyl orange and orange G. On the other hand, when the above-mentioned anion fluorescent dye was used, the fluorescence wavelength was shifted to a shorter wavelength (blue shift), and the fluorescence intensity increased. In addition, the absorption wavelength shifted to a longer wavelength (red shift) and the intensity decreased. Anion fluorescent dye electrostatically bonds to a positively charged group of a protein, for example, an amino group, but when an organic EL dye is used for the color forming part, the energy of the organic EL dye is easily released due to the interaction with the adjacent protein. Possibly due. In addition, in the case of not having a binding moiety consisting of an anionic group, neither blue shift of the fluorescence wavelength nor a fluorescence increase was observed even when using a dye whose coloring part is an organic EL dye. When a fluorescent dye is used which does not have a binding site composed of an anionic group, the fluorescent dye is considered to react with only the functional group on the surface of the protein to form a covalent bond. On the other hand, a fluorescent dye having a binding site comprising an anionic group Since it has a small molecular weight and low steric hindrance, it bonds not only to the amino group on the surface of the protein but also to the amino group in the deep part by electrostatic bonding, so it is positioned in the deep part (hydrophobic field) of the protein as described above. This is considered to have caused a blue shift and an increase in fluorescence intensity.
発明の効果  Effect of the invention
[0027] 本発明の検出方法は、以下のような効果を有する。  [0027] The detection method of the present invention has the following effects.
すなわち、遊離状態で観測される第 1の蛍光波長より短波長であって、タンパク質 に結合した状態で観測される第 2の蛍光波長値及びその蛍光強度を測定することに より、従来に比べ、より高感度の検出が可能となる。また、タンパク質との結合量の増 加に伴い第 2の蛍光波長はより短波長にシフトするので、蛍光色素に段階的にタン パク質を添加し、第 1の蛍光波長からの蛍光波長のシフト値からタンパク質を定量す ることもできる。また、試料が乾燥状態でも蛍光を発することができるので、タンパク質 の検出を簡便且つ高精度な定量を行うことができる。更に、本発明に用いる蛍光色 素は、 Cy3や Cy5、 Alexa色素よりも熱安定性が高ぐ退光性も観測されないので、取り 扱いは容易で、さらに Cy3や Cy5に比べ安価であるので、より低コストでタンパク質の 検出を行うことができる。また、本発明の蛍光色素は乾燥したときに最大の量子収率 を示すことから、電気泳動によりタンパク質を分割する場合に、ゲルを乾燥させること で極力厚みを薄くすることができるため従来よりも精度の高い定量を行うことができる 図面の簡単な説明  That is, by measuring the second fluorescence wavelength value observed in the bound state to the protein, which is shorter than the first fluorescence wavelength observed in the free state, and the fluorescence intensity thereof, compared to the conventional case, More sensitive detection is possible. In addition, since the second fluorescence wavelength shifts to a shorter wavelength as the amount of binding to protein increases, a protein is added stepwise to the fluorescent dye to shift the fluorescence wavelength from the first fluorescence wavelength. Protein can also be quantified from the value. In addition, since fluorescence can be emitted even when the sample is in a dry state, protein detection can be performed easily and accurately. Furthermore, the fluorescent dye used in the present invention is easier to handle and cheaper than Cy3 and Cy5, since no thermal fading is observed, which is higher in thermal stability than Cy3, Cy5, and Alexa dyes. Protein can be detected at lower cost. Further, since the fluorescent dye of the present invention exhibits the largest quantum yield when dried, when the protein is separated by electrophoresis, the thickness can be made as thin as possible by drying the gel as compared to the conventional method. Accurate quantification can be performed Brief description of the drawings
[0028] [図 1]本発明における蛍光色素の色調の変化の一例を示す写真である。  FIG. 1 is a photograph showing an example of the change in color tone of the fluorescent dye in the present invention.
[図 2]本発明の実施例 1における蛍光色素の UVスぺタトノレの変化を示す図である。  FIG. 2 shows changes in UV spectrum tone of the fluorescent dye in Example 1 of the present invention.
[図 3]本発明の実施例 1における蛍光色素の蛍光スペクトルの変化を示す図である。  FIG. 3 is a view showing a change in fluorescence spectrum of the fluorescent dye in Example 1 of the present invention.
[図 4]本発明の実施例 1における蛍光色素の UVスぺタトノレの変化を示す図である。  FIG. 4 is a view showing the change in UV spectrum tone of the fluorescent dye in Example 1 of the present invention.
[図 5]本発明の実施例 2における蛍光色素の蛍光スペクトルの変化を示す図である。  FIG. 5 is a graph showing changes in the fluorescence spectrum of the fluorescent dye in Example 2 of the present invention.
[図 6]本発明の実施例 2におけるインスリン濃度と蛍光ピーク波長との関係を示すダラ フである。  FIG. 6 is a graph showing the relationship between the insulin concentration and the fluorescence peak wavelength in Example 2 of the present invention.
[図 7]本発明の実施例 2におけるインスリン濃度と蛍光強度との関係を示すグラフであ る。 FIG. 7 is a graph showing the relationship between insulin concentration and fluorescence intensity in Example 2 of the present invention. Ru.
[図 8]本発明の実施例 3における蛍光色素の蛍光スペクトルの変化を示す図である。 発明を実施するための最良の形態  FIG. 8 is a view showing the change of the fluorescence spectrum of the fluorescent dye in Example 3 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明の検出方法は、蛍光色素で標識したタンパク質を検出するタンパク質の検 出方法であって、遊離状態で観測される第 1の蛍光波長より短波長であって、タンパ ク質に結合した状態で観測される第 2の蛍光波長に基づく蛍光を計測してタンパク質 を検出する。  The detection method of the present invention is a method for detecting a protein labeled with a fluorescent dye, which has a shorter wavelength than the first fluorescence wavelength observed in the free state, and is in a state bound to the protein. The protein is detected by measuring the fluorescence based on the second fluorescence wavelength observed in.
本発明に用いるァニオン性蛍光色素の蛍光波長は、タンパク質との結合量の増加 とともに、遊離状態の蛍光波長からより短波長に徐々にシフトし、それ以上蛍光波長 力 Sシフトせず、かつ蛍光強度も増加しない飽和状態に至る。従って、遊離状態から飽 和状態に至る間の中間状態の蛍光波長値及びその蛍光強度を用いて、試料中のタ ンパク質の存在の有無の確認そしてその定量を行うことができる。また、ァニオン性 蛍光色素にタンパク質を段階的に添加し、添加したタンパク質の量と遊離状態の蛍 光波長からのシフト値との関係から、タンパク質を定量することもできる。  The fluorescence wavelength of the anionic fluorescent dye used in the present invention gradually shifts from the free fluorescence wavelength to a shorter wavelength with an increase in the amount of binding to the protein, and further does not shift the fluorescence wavelength force S and the fluorescence intensity Also leads to saturation that does not increase. Therefore, the presence or absence of the protein in the sample can be confirmed and quantified by using the fluorescence wavelength value in the intermediate state from the free state to the saturated state and the fluorescence intensity thereof. Alternatively, proteins may be added stepwise to an anionic fluorescent dye, and proteins may be quantified from the relationship between the amount of added protein and the shift value from the fluorescence wavelength in the free state.
[0030] 本発明の対象とする試料は、タンパク質を含むものであれば特に限定されなレ、。単 純タンパクであるコラーゲンも標識することが可能であり、電気泳動後、標識すること が可能である。また、アミノ基を有する糖鎖及びペプチドの検出に用いることが可能 である。また、抗体の標識においてもこれまでと同様の取り扱いで良ぐ抗原抗体反 応にも用いることが可能である。例えば、抗体抗原チップをはじめ、エバネセント波蛍 光免疫測定法など、あらゆる手法で抗体反応を観察することが可能である。  [0030] The sample targeted by the present invention is not particularly limited as long as it contains a protein. It is possible to label collagen, which is a simple protein, and to label it after electrophoresis. In addition, it can be used for detection of sugar chains and peptides having an amino group. In addition, it is also possible to use for the antigen-antibody reaction which is good in handling as in the past in the labeling of antibodies. For example, antibody response can be observed by any method such as an antibody / antigen chip or an evanescent wave fluorescence immunoassay.
[0031] 本発明の検出方法は、溶液状態の試料であっても、固体状態の試料であっても適 用が可能である。  [0031] The detection method of the present invention can be applied to either a solution state sample or a solid state sample.
溶液状態の試料の場合、例えば、所定濃度のァニオン性蛍光色素を溶解させた溶 液にタンパク質を含む試料溶液を添加し、蛍光分光光度計等を用い、溶液の蛍光ス ベクトルを測定し、第 2の蛍光波長の有無及びその蛍光強度もしくは蛍光波長のシフ ト値力 試料濃度を検出する。あるいは、第 2の蛍光波長が予めわかっている場合に は、測定波長を第 2の蛍光波長に固定し、蛍光強度から試料濃度を検出することもで きる。また、タンパク質を含む試料溶液にァニオン性蛍光色素を溶解させた溶液を添 加する方法を用いることもできる。 In the case of a sample in a solution state, for example, a sample solution containing a protein is added to a solution in which an anionic fluorescent dye having a predetermined concentration is dissolved, and the fluorescence vector of the solution is measured using a fluorescence spectrophotometer or the like. The presence or absence of the fluorescence wavelength of 2 and the fluorescence intensity or shift value of the fluorescence wavelength The sample concentration is detected. Alternatively, if the second fluorescence wavelength is known in advance, the measurement wavelength is fixed to the second fluorescence wavelength, and the sample concentration is detected from the fluorescence intensity. Can. Alternatively, a method in which an anion fluorescent dye is dissolved in a sample solution containing proteins can also be used.
[0032] また、固体状態の試料の場合、例えば、以下の方法を用いることができる。タンパク 質とァニオン性蛍光色素とを溶液状態で反応させ、次いでその溶液を測定基板、例 えばプロテインチップ上にスポットして点着し、そのチップをイメージスキャナ等を用い て画像化して試料濃度を検出する。あるいは、上に予めァニオン性蛍光色素を固定 し、次いでその測定基板にタンパク質を含む試料溶液を点着させることもできる。  In the case of a solid state sample, for example, the following method can be used. The protein is reacted with an anionic fluorescent dye in a solution state, then the solution is spotted and spotted on a measurement substrate, for example, a protein chip, and the chip is imaged using an image scanner or the like to determine the sample concentration. To detect. Alternatively, it is possible to previously fix an anionic fluorescent dye on top and then spot a sample solution containing protein on the measurement substrate.
[0033] ここで、遊離状態で観測される第 1の蛍光波長とは、溶液中あるいは固体中で、ァ 二オン性蛍光色素が単独で存在する場合に観測される蛍光波長をいう。一方、タン パク質に結合した状態で観測される第 2の蛍光波長とは、タンパク質に結合したァニ オン性蛍光色素に基づく蛍光波長であり、第 1の蛍光波長よりも短波長である。ここ で、第 2の蛍光波長の第 1の蛍光波長からのシフト値は、タンパク質に結合したァニ オン性蛍光色素の種類に依存し、少なくとも 2nm以上、より好ましくは 10 nm以上であ る。  Here, the first fluorescence wavelength observed in the free state refers to the fluorescence wavelength observed when an anionic fluorochrome is present alone in a solution or solid. On the other hand, the second fluorescence wavelength observed in the bound state to the protein is a fluorescence wavelength based on the anionic fluorescent dye bound to the protein, and is a shorter wavelength than the first fluorescence wavelength. Here, the shift value of the second fluorescence wavelength from the first fluorescence wavelength depends on the type of anionic fluorescent dye bound to the protein, and is at least 2 nm or more, more preferably 10 nm or more.
[0034] 本発明の検出方法に用いるァニオン性蛍光色素には、タンパク質と結合するァニ オン性基が有機 EL色素に直接結合したものと、ァニオン性基が連結部を介して有機 EL色素に結合したものが含まれる。ここで、ァニオン性基は、タンパク質のアミノ基等 の正荷電基と静電結合する、カルボキシル基、スルホニル基、硫酸塩基、リン酸塩基 及びそれらの組み合わせのいずれかを用いることができる力 スルホ二ル基を用いる ことが好ましい。  In the anion fluorescent dye to be used in the detection method of the present invention, a substance in which an anionic group capable of binding to a protein is directly bonded to an organic EL dye, and an anionic group capable of binding to an organic EL dye via a linking part Included are those that are combined. Here, as the anion group, any one of a carboxyl group, a sulfonyl group, a sulfate base, a phosphate group and a combination thereof can be used which is electrostatically bonded to a positively charged group such as an amino group of a protein. It is preferable to use a group.
[0035] また、第 2の蛍光色素として用いる共有結合性基を有する蛍光色素には、タンパク 質と結合する共有結合性基が有機 EL色素に直接あるいは連結部を介して結合した ものが含まれる。その共有結合には、アミド結合、イミド結合、ウレタン結合、エステノレ 結合又はグァニジン結合等を挙げることができる。共有結合性基には、例えば、イソ チオシァネート基、イソシァネート基、エポキシ基、ハロゲン化スルホニル基、塩化ァ シノレ基、ハロゲン化アルキル基、グリオキザル基、ァノレデヒド基、トリアジン基、カルボ ジイミド基そして活性エステル化したカルボ二ル基等を用いることができる。好ましく は、イソチオシァネート基、イソシァネート基、エポキシ基、ハロゲン化アルキル基、ト リアジン基、カルポジイミド基そして活性エステル化したカルボニル基から選択された いずれ力 1種を用いることが好ましい。より好ましくは、イソシァネート基、エポキシ基、 ハロゲンィ匕アルキル基、トリアジン基、カルポジイミド基そして活性エステルイ匕した力 ルポニル基から選択されたいずれ力、 1種を用いることが好ましい。タンパク質のァミノ 基とアミド結合を形成することができ、またタンパク質内のイミノ基に直接結合する事 ができるからである。さらに好ましくはトリアジン基、カルポジイミド基又は活性エステ ル化したカルボニル基である。また、これらの有機 EL色素がカルボン酸基を有する場 合、カルポジイミド誘導体、トリァジン誘導体の存在下で、標的分子中に存在するアミ ノ基およびイミノ基を直接修飾する事も可能である。 In addition, the fluorescent dye having a covalent bond group used as the second fluorescent dye includes one in which a covalent bond group to be bound to a protein is bound to an organic EL dye directly or via a linkage. . The covalent bond may, for example, be an amide bond, an imide bond, a urethane bond, an ethenole bond or a guanidine bond. Examples of the covalent bond group include isothiocyanate group, isocyanato group, epoxy group, sulfonyl halide group, sulfonyl chloride group, acinole group, halogenated alkyl group, glyoxal group, anoredide group, triazine group, carbodiimide group and active esterification And the like can be used. Preferably, isothiocyanate group, isocyanato group, epoxy group, halogenated alkyl group, It is preferable to use any one kind selected from a riadine group, a carppositimide group and an activated esterified carbonyl group. More preferably, it is preferable to use any one kind selected from an isocyanate group, an epoxy group, a halogen alkyl group, a triazine group, a carppositimide group and an active ester group. This is because it can form an amide bond with an amino group of a protein and can directly bond to an imino group in the protein. More preferably, they are a triazine group, a carpodiimide group or an activated esterified carbonyl group. When these organic EL dyes have a carboxylic acid group, it is also possible to directly modify the amino group and imino group present in the target molecule in the presence of a carbidoimide derivative or triazine derivative.
[0036] また、ァニオン性蛍光色素は、ァニオン性基に加え、共有結合性基を含むこともで きる。これにより、標的分子の間にさらに強い結合を形成することができる。共有結合 性基とァニオン性基の組合せは特に限定されず、上記の官能基と上記のスルホニル 基やカルボキシノレ基等のァニオン性基の組合せを挙げることができる。  In addition to the anionic group, the anionic fluorescent dye can also contain a covalent bonding group. Thereby, stronger binding can be formed between target molecules. The combination of the covalent bond group and the anion group is not particularly limited, and a combination of the above functional group and the above anion group such as a sulfonyl group or a carboxyl group may be mentioned.
[0037] 本発明の蛍光色素に用いる連結部は、発色部と、ァニオン性基又は共有結合性基 とを連結する構成部分であって、共有結合又は原子鎖を含む部分であり、 -(CH ) - (  [0037] The linking part used in the fluorescent dye of the present invention is a constituent part linking a chromogenic moiety and an anion group or a covalent bonding group, and is a moiety containing a covalent bond or an atomic chain,-(CH 2) )-(
2 n nは 1力ら 4の整数)、 _NHC〇〇_、 _C〇NH―、 _C〇〇_、 -SO NH―、 _HN_C(=NH)_NH_  2 n n is an integer of 1 to 4), _NHC _ _, _ C NH NH-, _C _ _ _, _ C _ _ _, _ SO NH _, _ HN _ C (= NH) _ NH _
2  2
、 -〇_、― S―、 -NR- (Rはアルキル基)、 -(CH― CH -〇) _ (nは 1から 10の整数)、 -CH=  , -O_, -S-, -NR- (R is an alkyl group),-(CH-CH-O) _ (n is an integer of 1 to 10), -CH =
2 2 η  2 2 η
CH -、 _C≡C -、 _Ar-及び- CO_Ar-NR-からなる群から選択される官能基を 1種以上 含むものを用いることができる。  It is possible to use one containing one or more functional groups selected from the group consisting of CH 2 —, _C≡C 2-, ArAr— and —CO_Ar—NR—.
すなわち、連結部は、上記の群から選択された 1種の官能基のみで構成しても良く 、 2種以上の官能基を含む構成とすることもできる。また、選択した一の官能基を 2個 以上含む構成とすることもできる。  That is, the linking portion may be composed of only one type of functional group selected from the above group, or may be configured to include two or more types of functional groups. In addition, it may be configured to include two or more selected one functional groups.
[0038] 例えば、 1種の官能基のみで構成する場合、 -CONH -、 _COO-、 _0_、 -NR-等が 好ましレ、。また、 2種以上の官能基で構成する場合、以下の態様とすることができる。 [0038] For example, when composed of only one type of functional group, -CONH-, _COO-, _0_, -NR-, etc. are preferred. Moreover, when comprising with two or more types of functional groups, it can be set as the following aspects.
(1) 2種の官能基で構成する場合  (1) When consisting of two functional groups
以下の一般式 (I)で表されるものを用いることができる。  What is represented by the following general formula (I) can be used.
-X1-X2- (I)  -X1-X2- (I)
ここで、 XIと X2は、それぞれ独立に、 -(CH ) - (nは 1から 4の整数)、 -NHCOO-、 _C  Here, XI and X2 are each independently-(CH 2)-(n is an integer of 1 to 4), -NHCOO-, _C
2 n ONH -、 - COO-、 -SO NH -、 - HN- C(=NH)_NH -、 - 0_、 _S -、 - NR- (Rはアルキル基)2 n ONH-,-COO-, -SO NH-,-HN-C (= NH) _NH-,-0 _, _S-,-NR-(R is an alkyl group)
2 2
、 - (CH - CH - O) - (nは 1から 10の整数)、- CH=CH -、 - C≡C -、 - Ar-及び- CO- Ar- ,-(CH-CH-O)-(n is an integer of 1 to 10),-CH = CH-,-C≡C-,-Ar-and-CO-Ar-
2 2 η 2 2 η
NR-からなる群から選択される 1種の官能基を用いることができる。好ましい組み合わ せとしては、 CONH-COO—、 -CH— 0—、 -CH— NR―、 _C〇NH— (CH ) -、 _C〇NH— (C  One type of functional group selected from the group consisting of NR— can be used. Preferred combinations are CONH-COO-, -CH- 0-, -CH-NR-, _CCNH- (CH 2)-, CCNH- (C
2 2 2 n  2 2 2 n
H - CH -〇) -である。  H-CH-))-.
2 2 η  2 2 η
(2) 3種以上の官能基で構成する場合  (2) When consisting of three or more functional groups
(i)以下の一般式 (Π)で表されるものを用いることが好ましい。  (i) It is preferable to use what is represented by the following general formula (Π).
-(CHRl)p-X3-(CHR2)q- (II)  -(CHRl) p-X3- (CHR2) q- (II)
式中、 X3は直接結合又は、 _NHCOO-、 -C0NH -、 - C00_、 -SO NH -、 -HN-C(=N  In the formula, X3 is a direct bond or _NHCOO-, -C0NH-, -C00_, -SO NH-, -HN-C (= N
2  2
H)-NH -、 - 0-、 -S -、 - NR -、 -CH=CH -、 _C≡C -、 - Ar-及び- C0_Ar- NR-からなる群 から選択された少なくとも 1種の官能基を用いることができ、好ましくは- C〇〇_、 -co NH -、 - 0_、 -CH=CH -、 -C三 C-又は- Ar -、より好ましくは- C〇〇_、 - CONH -、 - 0-又 は- Ar-を用いることができる。また、 R1と R2はそれぞれ独立に、水素原子、あるいは 芳香環を含んでも良いアルキル基又はアルケニル基等の脂肪族炭化水素基、ある いは芳香族炭化水素基であって、必要によりスルホニル基、ヒドロキシル基、 4級アミ ン基及びカルボキシル基からなる群から選択されたいずれ力 1種の荷電基により置 換されたものを用いることができる。また、 Arはァリール基、好ましくは、フエ二レン基 又はナフチレンで基あり、必要に応じてスルホニル基で置換されたものを用いること ができる。 pと qはそれぞれ独立に 0から 20の整数、好ましくは 0から 10の整数、より好 ましくは 0から 5の整数であり、 p+q≥lである。  H) at least one functional group selected from the group consisting of -NH-, -0-, -S-, -NR-, -CH = CH-, -C≡C-, -Ar- and -C0_Ar-NR- A group can be used, preferably -C__, -co NH-,-0_, -CH = CH-, -C3 C- or -Ar-, more preferably -C〇_,-CONH -,-0-or-Ar-can be used. R1 and R2 each independently represent a hydrogen atom, or an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, or an aromatic hydrocarbon group, and if necessary, a sulfonyl group, Any one selected from the group consisting of a hydroxyl group, a quaternary amino group and a carboxyl group and substituted by one type of charged group can be used. In addition, Ar is a aryl group, preferably a phenyl group or a naphthylene group, which may be optionally substituted with a sulfonyl group. p and q are each independently an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and p + q l l.
この連結部の具体例を挙げると、 _(CH2)p-CONH-(CH2)q -、 -(CH2)p-COO-(CH2 )q -、 _(CH2)p- CH(-R1-S03H)- (CH2)q -、 _(CH2)p-CH(-Rl_N+H3)-(CH2)q -、 -(CH 2)p-CH(- Rl- COOH)-(CH2)q -、 -(CH2)p_CH(- Rl- OH)-(CH2)q -、 _(CH2)p-(0_CH -) n-(CH2)q -、 _(CH2)p-CONH(-Rl_S03H)- (CH2)q -、 _(CH2)p- CONH(- Rl- S03H) _(CH2)q―、 _(CH2)p-C0NH(— Rl— N+H3)_(CH2)q -、 _(CH2)p_C0NH(— Rl— OH)-(CH2 )q -、 _(CH2)p- CONH(- Rl- COOH)-(CH2)q -、 _(CH2)p- C00_R1(_S03H)- (CH2)q- 、 _(CH2)p- COO-Rl(_OH)-(CH2)q -、 _(CH2)p_C00_Rl(- N+H3)- (CH2)q -、 -(CH2) p-C00_Rl(- COOH)- (CH2)q -、 _(CH2)p- Ar_(CH2)q -、 _(CH2)p-(Ar- COO)- (CH2) q -、 _(CH2)p- (Ar- S03H)- (CH2)q -、 _(CH2)p- (Ar- N+H3)_(CH2)q -、 _(CH2)p- (Ar- O H)- (CH2)q -、 _(CH2)p- (Ar- COOH)- (CH2)q -、 _(CH2)p- C≡C_(CH2)q -、 -(CH2)p- C=C_(CH2)q -、 _(CH2)p-NR-(CH2)q -、 -(CH2)p-0_(CH2)q -、 -(CH2)p-S-(CH2)q- 、 -(CH2)p-HN-C(=NH)-NH- (CH2)q -、 _(CH2)p-CO_Ar-NR-(CH2)q-等を挙げるこ とができる。より好ましくは、 _(CH2)p- CONH_(CH2)q -、 - (CH2)p_C〇〇- (CH2)q- で ある。 Specific examples of this linkage part are: _ (CH2) p-CONH- (CH2) q-,-(CH2) p-COO- (CH2) q-, _ (CH2) p-CH (-R1-S03H )-(CH2) q-, _ (CH2) p-CH (-Rl_N + H3)-(CH2) q-,-(CH 2) p-CH (-Rl-COOH)-(CH2) q-,- (CH2) p_CH (-Rl-OH)-(CH2) q-, _ (CH2) p- (0_CH-) n- (CH2) q-, _ (CH2) p-CONH (-Rl_S03H)-(CH2) q-, _ (CH2) p-CONH (-Rl-S03H) _ (CH 2) q-, _ (CH 2) p-C0 NH (-Rl-N + H3) _ (CH 2) q-, _ (CH 2) p C0 NH (-Rl-OH)-(CH2) q-, _ (CH2) p-CONH (-Rl-COOH)-(CH2) q-, _ (CH2) p-C00_R1 (_S03H)-(CH2) q-, _ (CH2) p-COO-Rl (_OH)-(CH2) q-, _ (CH2) p_C00_Rl (-N + H3)-(CH2) q-,-(CH2) p-C00_Rl (-COOH)-( CH2) q-, _ (CH 2) p-Ar_ (CH 2) q-, _ (CH 2) p-(Ar-COO)-(CH 2) q-, _ (CH2) p- (Ar-S03H)-(CH2) q-, _ (CH2) p- (Ar-N + H3) _ (CH2) q-, _ (CH2) p- (Ar- OH)-(CH2) q-, _ (CH2) p- (Ar-COOH)-(CH2) q-, _ (CH2) p-C≡C_ (CH2) q-,-(CH2) p-C = C_ (CH2) q-, _ (CH2) p-NR- (CH2) q-,-(CH2) p-0_ (CH2) q-,-(CH2) pS- (CH2) q-,-(CH2) p-HN-C (= NH) -NH- (CH2) q-, _ (CH2) p-CO_Ar-NR- (CH2) q- and the like can be mentioned. More preferably, they are _ (CH2) p-CONH_ (CH2) q-,-(CH2) p_COO- (CH2) q-.
(ii)以下の一般式 (III)で表されるものを用いることが好ましい。  (ii) It is preferable to use what is represented by the following general formula (III).
-X4-(CHR3)r-X5- (III)  -X4- (CHR3) r-X5- (III)
ここで、 X4及び X5は、それぞれ独立に、 -NHCOO-、 -CONH -、 - COO_、 -SO NH- Here, X4 and X5 are each independently -NHCOO-, -CONH-, -COO_, -SO NH-
22
、 -HN_C(=NH)-NH―、 -CH NH―、 _CH NR―、 _〇-、 _S―、 _NR―、 _CH二 CH -、 _C≡C_ -HN_C (= NH) -NH-, -CH NH-, _CH NR-, _〇-, _S-, _NR-, _CH2 CH-, _C≡C_
2 2  twenty two
、 -Ar -及び _CO-Ar_NR -からなる群から選択された 1種の官能基であり、好ましくは、 -C〇NH-と- COO-、 -C〇0-と- CO〇-、 - COO-と- NR-等の組み合わせである。また 、 R3は、水素原子、あるいは芳香環を含んでも良いアルキル基又はアルケニル基等 の脂肪族炭化水素基、あるいは芳香族炭化水素基であって、必要によりスルホニル 基、ヒドロキシノレ基、 4級ァミン基及びカルボキシル基からなる群から選択されたいず れカ 1種の荷電基により置換されたものを用いることができる。また、 Arはァリール基、 好ましくは、フエ二レン基又はナフチレンで基あり、必要に応じてスルホニル基で置換 されたものを用いることができる。 rは 0から 20の整数、好ましくは 0から 10の整数、より 好ましくは 0から 5の整数である。このスぺーサ一部の具体例を挙げると、 -CONH-(C H2)r- COO-、 -CONH-CH(- R3- OH)- COO-、 -CONH-CH(-R3- COOH)- COO-、 - CONH- CH(R3-S03H)-COO-、 - COO-(CH2)r-COO- 等を挙げることができる。 また、連結部に、アミノ酸又は 2〜20のアミノ酸力も成るペプチドリンカ一を用いるこ ともできる。アミノ酸には天然又は合成のアミノ酸を用いることができる。ここで、天然 アミノ酸には、グリシン、ァラニン、ノ リン、ロイシン、イソロイシン、 4 -ァミノ _2 -ヒドロキ シブタン酸、ホモセリン、セリン、トレオニン、ァスパラギン酸、グノレタミン酸、ァスパラギ ン、グノレタミン、リシン、ヒドロキシリシン、ァノレギニン、システィン、システィン酸、 2-アミ ノ -3-スルホサルファニルプロパン酸、 2 -ァミノ- 3-スルホキシプロパン酸、シスチン、メ チォニン、フエ二ルァラニン、チロシン、トリプトファン、ヒスチジン、プロリン及び 4 -ヒド ロキシプロリン等が含まれる。 It is one kind of functional group selected from the group consisting of -Ar-and _CO-Ar_NR-, preferably -CCNH- and -COO-, -C〇0- and -CO〇-, -COO It is a combination of-and-NR-etc. R 3 is a hydrogen atom, or an aliphatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, or an aromatic hydrocarbon group, and if necessary, a sulfonyl group, a hydroxyl group, a quaternary amine Any one selected from the group consisting of a group and a carboxyl group and substituted by one type of charged group can be used. In addition, Ar is a aryl group, preferably a phenylene group or a naphthylene group, which may be optionally substituted with a sulfonyl group. r is an integer of 0 to 20, preferably an integer of 0 to 10, and more preferably an integer of 0 to 5. Specific examples of this spacer include -CONH- (CH2) r-COO-, -CONH-CH (-R3-OH) -COO-, -CONH-CH (-R3-COOH)- COO-,-CONH-CH (R3-S03H) -COO-,-COO- (CH2) r-COO-, etc. can be mentioned. In addition, it is possible to use a peptide linker which also forms an amino acid or an amino acid power of 2 to 20 at the junction. As amino acids, natural or synthetic amino acids can be used. Here, natural amino acids include glycine, analanin, norin, leucine, isoleucine, 4-amino-2-butyric acid, homoserine, serine, threonine, aspartic acid, gnoletamic acid, aspartic acid, gnoletamine, lysine, hydroxylysine, Anoreginin, cystine, cystic acid, 2-amino-3-sulfosulfanipropanoic acid, 2-amino-3-sulfoxypropanoic acid, cystine, methionine, ferricyanin, tyrosine, tryptophan, histidine, proline and 4- Hid Roxyproline etc. are included.
[0040] 合成アミノ酸には、上記天然アミノ酸の D体や、分子内に少なくともァミノ基とカルボ キシル基とを有する修飾アミノ酸が含まれる。修飾アミノ酸は、一般式: H-N(R1)_(R2- C〇)_OHで表すことができる。ここで、 R1と R2は、それぞれ独立に、エステル、エーテ ノレ、チォエステル、チォエーテル、アミド、カルバミド又はチォカルバミドを介して又は 介さずに、スルホニル基、ヒドロキシル基、 4級ァミン基、及びカルボキシル基からなる 群から選択されたいずれ力 4種の荷電基により置換された炭化水素基又は芳香族基 又はへテロ環基を表す。さらに炭化水素基又は芳香族基又はへテロ環基は、それぞ れ、ハロゲン原子、ァノレキノレ基、アルケニル基、アルキニル基又はアルコキシ基の少 なくとも 1種で置換されていても良い。  Synthetic amino acids include the D-form of the above-mentioned naturally occurring amino acids, and modified amino acids having at least an amino group and a carboxyl group in the molecule. Modified amino acids can be represented by the general formula: H—N (R1) — (R2—C〇) — OH. Here, R1 and R2 each independently consist of a sulfonyl group, a hydroxyl group, a quaternary amine group, and a carboxyl group with or without an ester, ethanol, thioester, thioether, amide, carbamide or thiocarbamide. Any of the groups selected from the group represents a hydrocarbon group or an aromatic group or a heterocyclic group substituted by four charged groups. Further, each of the hydrocarbon group, the aromatic group or the heterocyclic group may be substituted with at least one of a halogen atom, an anolequinole group, an alkenyl group, an alkynyl group or an alkoxy group.
[0041] 本発明の連結部に用いるより好ましいアミノ酸は、スルホ二ル基を有するアミノ酸で ある、システィン酸、 2-ァミノ- 3-スルホサルファニルプロパン酸、 2-ァミノ- 3-スルホキ シプロパン酸、そしてヒドロキシル基を有するチロシン、スレオニン、 4-ァミノ- 2-ヒドロ キシブタン酸、ホモセリン、セリンからなる群から選択されたいずれ力 1種である。さら に好ましくは、システィン酸、ホモセリン又はセリンである。  [0041] More preferred amino acids for use in the linking part of the present invention are amino acids having a sulfonyl group, such as cysteine acid, 2-amino-3-sulfosulfanipropanoic acid, 2-amino-3-sulfopropanoic acid, And any one member selected from the group consisting of tyrosine having a hydroxyl group, threonine, 4-amino-2-hydroxybutanoic acid, homoserine and serine. More preferably, cystic acid, homoserine or serine.
[0042] ペプチドリンカ一としては、それぞれ、 -C(-Rl)-CONH-C(-R2)-、 -C(-Rl)-CONH- C(- R2)- CONH-C(- R3)-、 _C(- Rl)- CONH_C(- R2)- CONH_C(- R3)- CONH_C(- R4) - 、で表されるジペプチド、トリペプチド、テトラペプチドを用いることが好ましい。ここ で、 Rl、 R2、 R3、 R4は、水素原子、炭素数 1から 6のアルキル基、アルコール基、イン ドーノレ基、ヒドロキシフエニル基、ベンジル基、グァニジン基、チォエーテル基、アル キルチオール基、イミダゾール基又はアルキルアミン基等の置換基を表す。これらべ プチドは、ホモ又はへテロペプチドであって良い。具体例を挙げると、 Ala_Ser、 Glu_ Ala, Glu- Ala- Leu、 Gly_Pro、 Gly-Pro- Asn、 lie- Val、 Ile-Va卜 Met等を用いることがで きる。  [0042] As peptide linkers, -C (-Rl) -CONH-C (-R2)-, -C (-Rl) -CONH-C (-R2) -CONH-C (-R3)-, respectively. It is preferable to use a dipeptide, tripeptide or tetrapeptide represented by _C (-Rl) -CONH_C (-R2) -CONH_C (-R3) -CONH_C (-R4)-. Here, R 1, R 2, R 3 and R 4 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alcohol group, an alcohol group, an indolate group, a hydroxyphenyl group, a benzyl group, a guanidine group, a thioether group, an alkyl thiol group, an imidazole Represents a substituent such as a group or an alkylamine group. These peptides may be homo or hetero peptides. As a specific example, Ala_Ser, Glu_Ala, Glu-Ala-Leu, Gly_Pro, Gly-Pro-Asn, lie-Val, Ile-Va 卜 Met, etc. can be used.
[0043] また、ペプチドリンカ一の一部を必要によりスルホニル基及びカルボキシル基力、らな る群から選択された少なくとも 1種の荷電基を有するものを用いることができる。例え ば、これらのレ、ずれ力 4個の荷電基を有するアミノ酸を 1種以上含むペプチドリンカ一 を用いることができる。これにより、連結部に新たにァニオン性基を導入することなぐ 蛍光色素にァニオン性基を付与することができる。例えば、スルホ二ル基を有するシ スティン酸、 2-ァミノ- 3-スルホサルファニルプロパン酸、 2-ァミノ- 3-スルホキシプロパ ン酸、ヒドロキシル基を有するチロシン、スレオニン、 4-ァミノ- 2-ヒドロキシブタン酸、 ホモセリン、セリンを含む群から選択された少なくとも 1種のアミノ酸を含むペプチドリ ンカーを用いることができる。 In addition, it is possible to use one having at least one type of charged group selected from the group consisting of sulfonyl group and carboxyl group, if necessary, as a part of the peptide linker. For example, a peptide linker one containing one or more of these amino acids having four or more charged groups can be used. By this, it is impossible to introduce an anion group at the connecting part. Anions can be attached to the fluorescent dye. For example, cysteine acids having sulfonyl groups, 2-amino-3-sulfosulfanipropanoic acid, 2-amino-3-sulfoxypropanoic acids, tyrosines having hydroxyl groups, threonine, 4-amino-2- A peptide linker comprising at least one amino acid selected from the group comprising hydroxybutanoic acid, homoserine and serine can be used.
[0044] 本発明の蛍光色素は、例えば、トリアジン基、カルポジイミド基及び活性エステル化 したカルボニル基のいずれ力、、より好ましくは活性エステル化したカルボ二ル基を用 いて合成することができる。活性エステル化したカルボニル基には、 N—ヒドロキシ— スクシンイミドエステルやマレイミドエステルを用いることができる力 N—ヒドロキシ一 スクシンイミドエステルを用レ、ることが好ましレ、。 N—ヒドロキシ一スクシンイミドを用レ、る ことにより、以下のスキーム 1の反応式 Iに示すように、縮合剤として DCCを用いること により N—ヒドロキシ一スクシンイミドエステル体を経由してアミド結合により EL色素と 標的分子が結合する。また、スキーム 1の反応式 IIに示すように、活性エステル化した カルボニル基には、トリァジン誘導体を用いることもできる。また、カルポジイミド基に は、 Ν,Ν'-ジシクロへキシルカルボジイミド(DCC)や 1-シクロへキシル -3-(2_モルホリ ノエチル)カルポジイミド等のカルポジイミド試薬を用いることができる。カルポジイミド 体を経由してアミド結合により EL色素と標的分子を結合させることができる(反応式 III )。また、分子内に予めカルポジイミド基、トリアジン基を導入した EL色素を、生体分 子内のアミノ基、イミノ基に対して直接結合させる事もできる(反応式 IV)。ここで、 Rは ァニオン性基を置換基として含む芳香族炭化水素基又は炭化水素基又は複素環基 又はへテロ原子を環内に含む芳香族基を示す。なお、活性エステルにスルホニル基 を導入するには、例えば、反応式 Vの方法を用いることができる。  The fluorescent dye of the present invention can be synthesized, for example, by using any of triazine group, carpimidimide group and activated esterified carbonyl group, more preferably activated esterified carboxyl group. As the activated esterified carbonyl group, N-hydroxy-succinimide ester or maleimide ester can be used. Preferably, N-hydroxy-succinimide ester is used. By using N-hydroxy monosuccinimide, as shown in the reaction formula I of the following scheme 1, by using DCC as a condensing agent, by using an amide bond via an N-hydroxy mono succinimidate ester, an EL dye And the target molecule bind. Further, as shown in the reaction formula II of Scheme 1, a triazine derivative can also be used for the activated esterified carbonyl group. In addition, as the carbidoimide group, carbimidoimide reagents such as Ν, Ν'-dicyclohexylcarbodiimide (DCC) and 1-cyclohexyl-3- (2_morpholinoethyl) carbimide can be used. The EL dye can be linked to the target molecule via an amide bond via a carbidoimide (Scheme III). In addition, an EL dye in which a carpodiimide group and a triazine group are introduced in advance in the molecule can be directly bonded to the amino group and imino group in the biological molecule (Scheme IV). Here, R represents an aromatic hydrocarbon group containing an anionic group as a substituent, a hydrocarbon group, a heterocyclic group or an aromatic group containing a hetero atom in the ring. In order to introduce a sulfonyl group into the active ester, for example, the method of reaction formula V can be used.
[0045] [化 3]
Figure imgf000018_0001
[Formula 3]
Figure imgf000018_0001
R * R *
Bye— N= C =N― Rs H Bye-N = C = N-R s H
E  E
Figure imgf000018_0002
Figure imgf000018_0002
[0046] また、本発明の蛍光色素には、ァニオン性基に加え、共有結合を形成する反応性 基を含むものも含まれる。共有結合を形成する反応性基には、活性エステル化した カルボ二ル基を用いることが好ましい。タンパク質との間により強い結合を形成するこ とができる。 The fluorescent dyes of the present invention also include those containing a reactive group that forms a covalent bond, in addition to the anionic group. It is preferable to use an activated esterified carbonyl group as a reactive group which forms a covalent bond. It can form stronger bonds with proteins.
[0047] 2種以上の官能基を含む連結部においては、発色部に直接結合する官能基以外 の官能基は、発色部とァニオン性基との物理的距離を確保して、発色部とァニオン 性基の分子骨格の選択の自由度を確保する一方、ァニオン性基がタンパク質の深 部の正荷電基と結合し易くする効果を有する。これにより、特定のタンパク質のみを 選択的に標識することも可能となる。発色部に直接結合する官能基に窒素原子など のへテロ原子を用いると、分子全体をより剛直な構造とすることができるので、発色部 同士のスタツキングを抑制することができる。また、酸素原子などを導入することで柔 軟な分子構造となり、スタツキング強度をコントロールすることが可能である。 In the linking part containing two or more types of functional groups, the functional group other than the functional group directly bonded to the color forming part secures the physical distance between the color forming part and the anion group, and the color forming part and the anion While ensuring the freedom of selection of the molecular skeleton of the sex group, it has the effect of making it easier for the anion group to bond to the deep positive charge group of the protein. This also makes it possible to selectively label only specific proteins. A nitrogen atom or the like as a functional group directly bonded to the color forming portion When the hetero atom of is used, the whole molecule can be made into a more rigid structure, so that the sticking between the colored portions can be suppressed. In addition, by introducing an oxygen atom or the like, it becomes a flexible molecular structure, and it is possible to control the sta- turing strength.
[0048] 本発明に用レ、る有機 EL色素は、一対の陽極と陰極との間に固体状態で挟持され、 陽極から注入された正孔と陰極から注入された電子とが再結合する際のエネルギー により発光可能な色素であれば特に限定されなレ、。例えば、テトラフエニルブタジェ ンゃペリレン等の多環芳香族化合物、シクロペンタジェン誘導体、ォキサジァゾール 誘導体、クマリン誘導体、ジスチリルビラジン誘導体、アタリドン誘導体、キナクドリン 誘導体、スチルベン誘導体、フヱノチアジン誘導体、ピラジノビリジン誘導体、ァゾー ノレ誘導体、イミダゾール誘導体、力ルバゾール誘導体そしてチォフェン誘導体等を 用いることができる。 The organic EL dye for use in the present invention is held in a solid state between the pair of anode and cathode when the holes injected from the anode recombine with the electrons injected from the cathode. It is not particularly limited as long as it is a dye that can emit light by the energy of. For example, polycyclic aromatic compounds such as tetraphenyl butadiene and perylene, cyclopentadiene derivatives, oxadiazole derivatives, coumarin derivatives, distyrylvirazine derivatives, ataridon derivatives, quinacdoline derivatives, stilbene derivatives, futonothiazine derivatives, pyrazinoviridines Derivative, amino group derivative, imidazole derivative, force rubazole derivative, thiophen derivative and the like can be used.
[0049] 上記有機 EL色素の具体例としては、多環芳香族化合物として、ルブレン、アントラ セン、テトラセン、ピレン、ペリレン、タリセン、デカサイクレン、コロネン、テトラフェニル ブタジエン、テトラフエニノレシクロブタジエン、ペンタフェニノレシクロブタジエンを挙げ ること力 Sできる。シクロペンタジェン誘導体としては、 1 , 2, 3, 4—テトラフエ二ルー 1 , 3 シクロペンタジェン、 1 , 2, 3, 4, 5 ペンタフェニノレー 1 , 3 シクロペンタジェン を挙げることができる。ォキサジァゾール誘導体としては、 2 (4' t ブチルフエ二 ノレ)一 5— (4'—ビフエニル) 1 , 3, 4—ォキサジァゾール、 2, 5—ビス(4—ジェチル ァミノフエニル) 1 , 3, 4—ォキサジァゾールを挙げることができる。クマリン誘導体とし ては、クマリン 1 ,クマリン 6,クマリン 7,クマリン 30を挙げることができる。ジスチリルビ ラジン誘導体としては、 2, 5 ビス一(2— (4—ビフエ二ル)ェテニル)ピラジン、 2, 5 —ビス _ (4—ェチルステリル)ピラジン、 2, 9 _ビス _ (4—メトキシステリル)ピラジン を挙げることができる。アタリドン誘導体としてはアタリドンおよびその誘導体を挙げる こと力 Sできる。キナクドリン誘導体としてはキナクドリンおよびその誘導体を挙げること ができる。スチルベン誘導体としては、 1 , 1 , 4, 4—テトラフエ二ノレ一1 , 3—ブタジェ ン、 4, 4 '—ビス(2, 2—ジフエ二ルビニル)ビフエニルを挙げることができる。ァゾー ノレ誘導体、イミダゾール誘導体、力ルバゾール誘導体、チォフェン誘導体は本明細 書中に一般式で記載したもの使用することができる。 [0050] 本発明の検出方法に用いる好ましい有機 EL色素は、共役系を有する 5員環化合物 を含む化合物であって、その 5員環化合物が 1種以上のへテロ原子、セレン原子又 はボロン原子を含むものを挙げることができる。さらに、詳しくは共役系を有する 5員 環化合物から成る単環化合物と、その 5員環化合物と共役系を有する 6員環化合物 力 成る縮合多環化合物を挙げることができる。固体状態であっても、量子収率が大 きぐ強い蛍光を示すからである。 5員環化合物には、ァゾール誘導体あるいはイミダ ゾール誘導体が好ましい。さらに、ァゾール誘導体あるいはイミダゾール誘導体は 1 以上の 4級アンモニゥム基を有することが好ましい。水溶性を向上させことができるか らである。 Specific examples of the organic EL dye include, as polycyclic aromatic compounds, rubrene, anthracene, tetracene, pyrene, perylene, thalicene, decacyclene, coronene, tetraphenyl butadiene, tetraphenynorecyclobutadiene, pentaphenynore Force S to mention cyclobutadiene. Examples of cyclopentadiene derivatives include 1,2,3,4-tetraphenylidene 1,3 cyclopentadiene, 1,2,3,4,5 pentaphenynore 1,3 cyclopentadiene. As the oxadiazole derivative, 2 (4 't butyl phenyl) -one 5- (4'-biphenyl) 1, 3, 4- oxadiazole, 2, 5- bis (4- jetylamino fenyl) 1, 3, 4- oxadiazole It can be mentioned. Examples of coumarin derivatives include coumarin 1, coumarin 6, coumarin 7, and coumarin 30. Examples of distyrylbirazin derivatives include 2,5 bis (2- (4-biphenyl) ethenyl) pyrazine, 2,5 bis (4-ethysteryl) pyrazine, 2,9_bis_ (4-methoxysteryl ) Pyrazine can be mentioned. Atalidone and its derivatives can be mentioned as the atalidone derivatives. Examples of quinacdoline derivatives include quinacdoline and its derivatives. Examples of stilbene derivatives include 1,1,4,4-tetraphenyl-2-1,1,3-butadiene and 4,4'-bis (2,2-diphenylvinyl) biphenyl. Asorenol derivatives, imidazole derivatives, force rubazole derivatives and thophen derivatives, those described in the general formula herein can be used. A preferred organic EL dye used in the detection method of the present invention is a compound containing a five-membered ring compound having a conjugated system, and the five-membered ring compound is one or more kinds of heteroatoms, selenium atoms or boron. Those containing atoms can be mentioned. Further, specifically, there can be mentioned a monocyclic compound consisting of a 5-membered ring compound having a conjugated system and a condensed polycyclic compound consisting of a 5-membered ring compound and a 6-membered cyclic compound having a conjugated system. This is because even in the solid state, the quantum yield exhibits a strong fluorescence. For 5-membered ring compounds, azole derivatives or imidazole derivatives are preferred. Furthermore, it is preferable that the azole derivative or imidazole derivative has one or more quaternary ammonium groups. It is because it can improve the water solubility.
[0051] なお、以下に説明する縮合多環化合物は前述の連結部を介してァニオン性基と結 合させてァニオン性蛍光色素として用いる。特に、ァニオン性基が直接結合した縮合 多環化合物は、それ自身をァニオン性蛍光色素として用いることができる。また、以 下の縮合多環化合物に直接又は連結部を介して共有結合性基と結合させ、第 2の 蛍光色素として用いることもできる。  The condensed polycyclic compound described below is used as an anion fluorescent dye by binding to an anion group via the above-mentioned linking part. In particular, condensed polycyclic compounds in which an anionic group is directly bonded can be used as an anionic fluorescent dye itself. In addition, the following fused polycyclic compounds can be bound to a covalent bond group directly or via a linkage to be used as a second fluorescent dye.
以下の縮合多環化合物は、すべて本発明の検出方法に好適に使用することができ る力 好ましくは、ジァゾール誘導体 3,イミダゾール誘導体 2、チアジアゾール誘導 体、力ルバゾール誘導体、チアゾール誘導体、であり、さらに好ましくは、ォキサゾロ ピリジン誘導体 (ォキサジァゾロピリジン誘導体)である。  The following fused polycyclic compounds are all preferably used in the detection method of the present invention: preferably diazole derivative 3, imidazole derivative 2, thiadiazole derivative, force rubazole derivative, thiazole derivative, Preferred are oxazolopyridine derivatives (oxazazolopyridine derivatives).
[0052] 以下に、縮合多環化合物の具体例について説明する。  Hereinafter, specific examples of the fused polycyclic compound will be described.
(モノアゾール誘導体 1)  (Monoazole derivative 1)
[化 4] [Formula 4]
Figure imgf000021_0001
ここで、式中、 R、 R、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原 子、ヒドロキシノレ基、アミノ基、シァノ基、あるいはスルホニル基などの置換基を有して も良い芳香族炭化水素基又は炭化水素基又は複素環基又はへテロ原子を環内に 含む芳香族基を示す。 R、 R、 R、 R、 R、 Rは同じでも異なっていてもよい。 R'は 芳香環を含んでも良いアルキル基又はアルケニル基等の脂肪族炭化水素基あるい は芳香族炭化水素基、 An—は、 Cl—、 Br―、 Γ等のハロゲン化物イオン、 CF SO―、 BF―、
Figure imgf000021_0001
Here, in the formula, each of R, R, R, R, R and R independently has a substituent such as a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a cyano group or a sulfonyl group. Or an aromatic group containing an aromatic hydrocarbon group, a hydrocarbon group, a heterocyclic group or a hetero atom in the ring. R, R, R, R, R and R may be the same or different. R ′ is an aliphatic hydrocarbon group or an aromatic hydrocarbon group such as an alkyl group or an alkenyl group which may contain an aromatic ring, An— is a halide ion such as Cl—, Br— or Γ, CF 2 SO— , BF-,
PF—を示す。なお、以下の一般式においても、特に断らない限り同様である。 Indicates PF—. The same applies to the following general formulas unless otherwise stated.
(モノアゾール誘導体 2) (Monoazole derivative 2)
[化 5] [Chem. 5]
Figure imgf000022_0001
Figure imgf000022_0001
ここで、式中、 R、 Rは、それぞれ、水素原子、ハロゲン原子、ヒドロキシル基、シァ ノ基、アミノ基、スルホニル基などの置換基を有しても良い芳香族炭化水素基又は炭 化水素基又は複素環基又はへテロ原子を環内に含む芳香族基を示す。 R、 Rは同 じでも異なっていてもよい。なお、以下の一般式においても、特に断らない限り同様 である。また、 nは 1以上の整数、好ましくは:!〜 5であり、以下の一般式中でも同様で ある。 Here, in the formula, R and R each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a cyano group, an amino group, an aromatic hydrocarbon group which may have a substituent such as a sulfonyl group, or a hydrogen hydrocarbon. The aromatic group which contains a group or a heterocyclic group or a hetero atom in a ring is shown. R and R may be the same or different. The same applies to the following general formulas unless otherwise stated. In addition, n is an integer of 1 or more, preferably:! To 5, and the same applies to the following general formulae.
(ジァゾール誘導体 1)  (Diazole derivative 1)
[化 6] [Chemical 6]
Figure imgf000023_0001
(ジァゾール誘導体 2) [化 7]
Figure imgf000023_0001
(Diazole derivative 2) [Formula 7]
Figure imgf000024_0001
ここで、式中、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、ヒド
Figure imgf000024_0001
Here, in the formula, R, R, R and R each independently represent a hydrogen atom, a halogen atom or a hydride
1 2 3 4 1 2 3 4
口キシル基、アミノ基、シァノ基、あるいはスルホニル基などの置換基を有しても良い 芳香族炭化水素基又は炭化水素基又は複素環基又はへテロ原子を環内に含む芳 香族基を示す。 R、 R、 R、 R、 R、 Rは同じでも異なっていてもよレ、。 R、 Rは、 An aromatic hydrocarbon group which may have a substituent such as an oral xyl group, an amino group, a cyano group or a sulfonyl group, an aromatic hydrocarbon group containing an aromatic hydrocarbon group or a hydrocarbon group or a heterocyclic group or a hetero atom in the ring Show. R, R, R, R, R, R may be the same or different. R, R is
1 2 3 4 6 7 2 3 置換基を有しても良い芳香族炭化水素基を用いることが好ましい。また、 Xは、置換 基を有しても良い窒素原子、硫黄原子、酸素原子、セレン原子又はボロン原子であり 、特に断らない限り以下の一般式中でも同様である。  It is preferable to use an aromatic hydrocarbon group which may have 1 2 3 4 6 7 2 3 substituents. Further, X is a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom or a boron atom which may have a substituent, and the same applies to the following general formulas unless otherwise specified.
(ジァゾール誘導体 4)  (Diazole derivative 4)
[化 9][Chem. 9]
Figure imgf000025_0001
Figure imgf000025_0001
(ジァゾール誘導体 5) (Diazole derivative 5)
[化 10] [Chemical 10]
Figure imgf000026_0001
(ジァゾール誘導体 7) [化 12]
Figure imgf000026_0001
(Diazole derivative 7) [Chemical formula 12]
Figure imgf000027_0001
(ジァゾール誘導体 8) [化 13- 1]
Figure imgf000027_0001
(Diazole derivative 8) [Chemical formula 13-1]
Figure imgf000028_0001
Figure imgf000028_0001
[0062] [化 13- 2] [Formula 13-2]
Figure imgf000029_0001
Figure imgf000029_0001
Figure imgf000029_0002
ここで、式中、 R 、 R は、それぞれ、水素原子、ハロゲン原子、ヒドロキシル基、アミ
Figure imgf000029_0002
Here, in the formula, R 1 and R 2 each represent a hydrogen atom, a halogen atom, a hydroxyl group,
10 11  10 11
ノ基、シァノ基、あるいはスルホニル基などの置換基を有しても良い芳香族炭化水素 基又は炭化水素基又は複素環基又はへテロ原子を環内に含む芳香族基を示す。 R It is an aromatic hydrocarbon group which may have a substituent such as an aromatic group, a cyano group or a sulfonyl group, or an aromatic group containing a hydrocarbon group, a heterocyclic group or a hetero atom in the ring. R
1 1
、 R は同じでも異なっていてもょレ、。また、 R は、置換基を有してもよいォレフィン基, R may be the same or different. And R 1 is an orephine group which may have a substituent
0 11 12 0 11 12
又はパラフィン基であり、 nは 1から 3の整数、好ましくは 1である。なお、以下の一般式 においても、特に断らない限り同様である。 Or paraffin group, n is an integer of 1 to 3, preferably 1. The same applies to the following general formulas unless otherwise stated.
(ジァゾール誘導体 9) (Diazole derivative 9)
[化 14-1] [Chemical 14-1]
[z-m^ [ goo] [z-m ^ [goo]
Figure imgf000030_0001
Figure imgf000030_0001
TS .SlC/900Zdf/X3d 82 6ΖΪ8Ϊ0/800Ζ OAV TS .SlC / 900Zdf / X3d 82 6ΖΪ8Ϊ0 / 800Ζ OAV
Figure imgf000031_0001
Figure imgf000031_0001
[0065] 上記のジァゾール誘導体ではあれば特に限定されなレ、が、以下の一般式で表され るォキサジァゾ口ピリジン誘導体を好適に用いることができる。 [0065] The above diazole derivative which is not particularly limited as long as it is the diazole derivative, can be suitably used an oxadiazo-open pyridine derivative represented by the following general formula.
[0066] [化 15] [Formula 15]
Figure imgf000032_0001
Figure imgf000032_0001
[0067] ォキサゾロピリジン誘導体は、そのカルボン酸誘導体を合成後、例えば、以下のス キーム 2に示す反応により、 Ν,Ν'-ジシクロへキシルカルポジイミド(DCC)を縮合剤と して用い、 Ν—ヒドロキシースクシンイミドエステルを含む活性エステル体へ誘導したも のを用いることが好ましい。 [0067] After the synthesis of the carboxylic acid derivative, oxazolopyridine derivative is used, for example, by using Ν, ジ '-dicyclohexylcarbodimide (DCC) as a condensing agent by the reaction shown in the following scheme 2. It is preferable to use one derived into an active ester containing a ヒ ド ロ キ シ -hydroxy-succinimide ester.
[0068] [化 16]  [Chem. 16]
Figure imgf000032_0002
bcneme 1
Figure imgf000032_0002
bcneme 1
[0069] (トリアゾール誘導体 1)  (Triazole Derivative 1)
[化 17] [Chemical formula 17]
Figure imgf000033_0001
(トリアソール誘導体 2)
Figure imgf000033_0001
(Triasole derivative 2)
[化 18] [Equation 18]
Figure imgf000034_0001
(トリアゾール誘導体 3)
Figure imgf000034_0001
(Triazole derivative 3)
[化 19] [Chem. 19]
Figure imgf000035_0001
Figure imgf000035_0001
Figure imgf000035_0002
(トリアゾール誘導体 4) [化 20]
Figure imgf000035_0002
(Triazole derivative 4) [Chemical formula 20]
Figure imgf000036_0001
5員環化合物として、チォフェン基を含む以下の誘導体を用いることもできる。 (チォフェン誘導体 1)
Figure imgf000036_0001
As a 5-membered ring compound, the following derivatives containing a thiophen group can also be used. (Thiophen derivative 1)
[化 21] [Chemical formula 21]
Figure imgf000037_0001
(チォフェン誘導体 2) [化 22]
Figure imgf000037_0001
(Thiophen derivative 2) [Formula 22]
Figure imgf000038_0001
Figure imgf000038_0001
(チォフェン誘導体 3) (Thiophen derivative 3)
また、チォフェン誘導体の場合、非縮合系の化合物であり、以下の一般式で示され る 2,3,4,5-テトラフヱ二ルチオフェン誘導体を用いることもできる。  In the case of thiophen derivatives, 2,3,4,5-tetraphenyldithiophene derivatives represented by the following general formula can also be used.
[化 23][Formula 23]
Figure imgf000038_0002
二で、式中、 R ,R ,R はそれぞれ独立に、水素原子、直鎖、分岐または環状のァ
Figure imgf000038_0002
And R 2, R 3 and R 4 are each independently a hydrogen atom, linear, branched or cyclic
12 13  12 13
ルキル基、置換または未置換のァリール基、あるいは置換または未置換のァラルキ ル基を表し、 Arおよび Arは置換または未置換のァリール基を表し、さらに、 Arと ΑΓ は結合している窒素原子と共に含窒素複素環を形成してもよい。また、 Yおよび Yは Represents a substituted or unsubstituted aryl group or a substituted or unsubstituted aryl group; Ar and Ar each represent a substituted or unsubstituted aryl group; May form a nitrogen-containing heterocycle with the nitrogen atom to which it is attached. Also, Y and Y are
1 2 水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環 状のアルコキシ基、置換または未置換のァリール基、置換または未置換のァラルキ ル基、あるいは置換または未置換のアミノ基を表す。  12 hydrogen atom, halogen atom, linear, branched or cyclic alkyl group, linear, branched or cyclic alkoxy group, substituted or unsubstituted aryl group, substituted or unsubstituted aryl group, substituted or unsubstituted group It represents a substituted amino group.
[0076] (チォフェン誘導体 4) [0076] (Thiophen derivative 4)
また、以下の一般式で示される 2,3,4,5 -テトラフヱ二ルチオフェン誘導体を用いるこ ともできる。  In addition, 2,3,4,5-tetraphenyldithiophene derivatives represented by the following general formula can also be used.
[化 24]  [Formula 24]
Figure imgf000039_0001
ここで、式中、 Ar〜Arはそれぞれ独立に、置換または未置換のァリール基を表し、
Figure imgf000039_0001
Here, in the formula, Ar to Ar each independently represent a substituted or unsubstituted aryl group,
1 6  1 6
さらに、 Arと Ar、 Arと Arおよび Arと Arは結合している窒素原子と共に含窒素複素  Furthermore, Ar and Ar, Ar and Ar, and Ar and Ar together with the nitrogen atom to which they are bound
1 2 3 4 5 6  1 2 3 4 5 6
環を形成していても良い。  It may form a ring.
[0077] また、 5員環化合物にイミダゾールを用い、以下の一般式で示すイミダゾール誘導 体を用いることもできる。  Alternatively, imidazole may be used as the 5-membered ring compound, and an imidazole derivative represented by the following general formula may be used.
[0078] (イミダゾール誘導体 1) (Imidazole Derivative 1)
[化 25]  [Formula 25]
Figure imgf000039_0002
Figure imgf000039_0002
[0079] (イミダゾール誘導体 2) (Imidazole Derivative 2)
[化 26] [Chemical formula 26]
Figure imgf000040_0001
イミダノール誘導体 3
Figure imgf000040_0001
Imidanol derivatives 3
[化 27] [Formula 27]
Figure imgf000041_0001
(イミダゾール誘導体 5)
Figure imgf000041_0001
(Imidazole derivative 5)
[化 28- 1] [Chemical 28-1]
Figure imgf000042_0001
Figure imgf000042_0001
Figure imgf000042_0002
Figure imgf000042_0002
[0082] [化 28- 2] [Formula 28-2]
Figure imgf000043_0001
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0002
Figure imgf000043_0003
ここで、イミダゾール骨格は中央のベンゼン環 R , R , R , R の任意の位置に複数
Figure imgf000043_0003
Here, the imidazole skeleton is plural at any position on the central benzene ring R 1, R 2, R 3, R 4
8 9 10 11  8 9 10 11
ユニットが結合していても良レ、。また、 R は、置換基を有してもよいォレフィン基又は Good, even if the units are combined. Also, R 2 is an orephine group which may have a substituent or
12  12
パラフィン基であり、 nは 1から 3の整数、好ましくは 1である。 Paraffin group, n is an integer of 1 to 3, preferably 1.
(力ルバゾール誘導体) (Force rubazole derivative)
また、以下の一般式で示される力ルバゾール誘導体を用いることもできる。 [化 29] In addition, force rubazole derivatives represented by the following general formula can also be used. [Chem. 29]
Figure imgf000044_0001
Figure imgf000044_0001
[0084] また、共役系を有する 5員環化合物であって、 1種以上のへテロ原子、セレン原子 又はボロン原子を含む単環化合物を用いることもできる。特に限定されないが、例え ば、以下の一般式で表されるァゾール誘導体を用いることができる。 Further, it is also possible to use a 5-membered ring compound having a conjugated system, which is a single ring compound containing one or more kinds of heteroatoms, selenium atoms or boron atoms. Although not particularly limited, for example, an azole derivative represented by the following general formula can be used.
[0085] [化 30]  [Chemical Formula 30]
Figure imgf000044_0002
ここで、式中、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキ
Figure imgf000044_0002
Here, in the formula, R, R and R each independently represent a hydrogen atom, a halogen atom or a hydroxyl group
1 4 5  1 4 5
シノレ基、アミノ基、シァノ基、あるいはスルホニル基などの置換基を有しても良い芳香 族炭化水素基又は炭化水素基又は複素環基又はへテロ原子を環内に含む芳香族 基を示す。 R、 R、 Rは同じでも異なっていてもよい。  It represents an aromatic hydrocarbon group which may have a substituent such as a cinole group, an amino group, a cyano group or a sulfonyl group, an aromatic group containing a hydrocarbon group or a heterocyclic group or a hetero atom in the ring. R, R and R may be the same or different.
1 4 5  1 4 5
[0086] 本発明の蛍光色素に用いる有機 EL色素には、以上、説明した縮合多環化合物及 び単環化合物であれば特に限定されないが、以下の一般式で表されるジァゾール 誘導体又はイミダゾール誘導体を好適に用いることができる。  The organic EL dye used for the fluorescent dye of the present invention is not particularly limited as long as it is the fused polycyclic compound and the monocyclic compound described above, and a diazole derivative or an imidazole derivative represented by the following general formula Can be suitably used.
[0087] [化 31] [Chemical Formula 31]
Figure imgf000045_0001
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0002
(3) (3)
[0088] [化 32] [Formula 32]
Figure imgf000046_0001
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0002
[0089] さらに、上記のジァゾール誘導体及びイミダゾール誘導体の中で、ジァゾ口ピリジン 誘導体又はイミダゾロピリジン誘導体を好適に用いることができる。  Further, among the diazole derivatives and the imidazole derivatives described above, diazothiopyridine derivatives or imidazolopyridine derivatives can be suitably used.
[0090] 本発明の特に好ましい蛍光色素は、上記のジァゾ口ピリジン誘導体又はイミダゾロ ピリジン誘導体を発色部に含むものであり、以下の一般式で表すことができる。  Particularly preferred fluorescent dyes of the present invention are those containing the above-mentioned diazophoric pyridine derivative or imidazolo pyridine derivative in the color forming part, and can be represented by the following general formula.
[0091] [化 33][Formula 33]
)p-X3-(CHR")q-Z  ) p-X3- (CHR ") q-Z
Figure imgf000046_0003
[0092] [化 34]
Figure imgf000046_0003
[Chemical Formula 34]
Figure imgf000047_0001
Figure imgf000047_0001
[0093] -(CHR')p-X3-(CHR")q-は前述の連結部を表す。また、 Zはァニオン性基を表す。  [0093]-(CHR ') p-X3- (CHR ") q- represents the above-mentioned linkage, and Z represents an anion group.
ここで、上記の Rと Rに、置換基を有しても良い芳香族炭化水素基又は炭化水素 基を用いることが好ましい。 Cy3に対応する緑色蛍光色素を得ることができる。芳香族 炭化水素基としてはフエニル基、トリル基、キシリル基又はナフチル基、より好ましくは フエニル基又はトリル基である。  Here, as R and R, it is preferable to use an aromatic hydrocarbon group or a hydrocarbon group which may have a substituent. A green fluorescent dye corresponding to Cy3 can be obtained. The aromatic hydrocarbon group is preferably a phenyl group, a tolyl group, a xylyl group or a naphthyl group, more preferably a phenyl group or a tolyl group.
[0094] あるいは、上記の Rと Rに、置換基を有しても良いチォフェン基、フラン基、ピロ一 ル基、イミダゾール基、ォキサゾール基、チアゾール基、ピラゾール基及びピリジン基 からなる群から選択された 1種、より好ましくはチォフェン基、イミダゾール基又はフラ ン基を用いることもできる。 Cy5に対応する赤色蛍光色素を得ることができる。  Alternatively, R and R described above are selected from the group consisting of optionally substituted thiophen group, furan group, pyrrolic group, imidazole group, imidazole group, oxazole group, thiazole group, pyrazole group and pyridine group. It is also possible to use one of them, more preferably a thiophen group, an imidazole group or a furan group. A red fluorescent dye corresponding to Cy5 can be obtained.
[0095] 本発明の検出方法は、溶液、固体あるいは半固体状態のタンパク質の蛍光を測定 する検出方法であれば、あらゆる検出方法に適用することができる。また、ペプチド、 抗体、アミノ基を有する糖などに関しても同様である。例えば、試料中のタンパク質を ァニオン性蛍光色素で標識し、この標識したタンパク質を分離手段に供し、 MALDI- TOF MS等の質量分析計により画分の分子量を測定し、データベース検索を行いタ ンパク質を同定することができる。ここで、分離手段には、イオン交換カラム HPLC、逆 相分配 HPLC、ゲル濾過 HPLC、又は電気泳動を用いることができる。電気泳動には 、一次及び二次泳動の用いることが可能であり、泳動後、ゲルを乾燥して定量が可能 である。 [0095] The detection method of the present invention can be applied to any detection method as long as it is a detection method for measuring the fluorescence of a solution, solid or semi-solid state protein. The same applies to peptides, antibodies, and sugars having an amino group. For example, a protein in a sample is labeled with an anionic fluorescent dye, the labeled protein is subjected to separation means, the molecular weight of the fraction is measured by a mass spectrometer such as MALDI-TOF MS, and a database search is performed to obtain a protein. Can be identified. Here, as the separation means, ion exchange column HPLC, reverse phase partition HPLC, gel filtration HPLC, or electrophoresis can be used. For electrophoresis, primary and secondary electrophoresis can be used, and after electrophoresis, the gel can be dried and quantified.
[0096] また、共有結合性蛍光色素と、それにァニオン性基を導入したァニオン性蛍光色 素とを用いることにより以下の検出方法が可能となる。ここで、共有結合性蛍光色素 は、それによりタンパク質を標識しても蛍光波長が変化しなレ、ものである。最初に、共 有結合性蛍光色素で標識する。その後、電気泳動を行い分割する。更に泳動後の ゲル基板をァニオン性蛍光色素で標識すると蛍光波長は変化する。ァニオン性蛍光 色素は、タンパクの深部に位置するァミノ残基を標識可能なので、蛍光波長の変化 はタンパクの構造の違いによるものである。したがって、蛍光波長の変化からタンパク の構造を予測することも可能である。この際、用いる蛍光色素は、ァニオン性基以外 は構造が同じなので、蛍光色素の量子収率などの性能は全く同じである。従って、精 度の高い定量が可能となる。 Further, the following detection method can be achieved by using a covalent fluorescent dye and an anionic fluorescent dye into which an anionic group is introduced. Here, the covalent fluorochrome is one that does not change its fluorescence wavelength even when the protein is labeled accordingly. First, label with a covalent fluorescent dye. Thereafter, electrophoresis is performed to perform separation. Furthermore after migration When the gel substrate is labeled with an anionic fluorescent dye, the fluorescence wavelength changes. Since the anionic fluorescent dye can label an amino residue located deep in a protein, the change in fluorescence wavelength is due to the difference in protein structure. Therefore, it is also possible to predict protein structure from changes in fluorescence wavelength. At this time, since the fluorescent dye used has the same structure except for the anionic group, the performance such as the quantum yield of the fluorescent dye is the same. Therefore, highly accurate quantification is possible.
[0097] また、プロテインチップを用いる検出方法には、本発明を以下のように適用すること ができる。タンパク質とァニオン性蛍光色素とを溶液中で反応させ、その溶液を測定 基板に点着し、その測定基板からの第 2の蛍光波長に基づく蛍光画像を計測するこ とができる。点着後は、所定温度で放置することによりタンパク質は基板上に固定さ れる力 必要によりインキュベーションを行うこともできる。また、プロテインチップ上で は、この蛍光色素で標識されたタンパクを捕捉する際、どのような状況下でも安定し た蛍光を発するため、これまでのように神経質に取り扱わなくてもよい。また、乾燥状 態でも蛍光消光を起こさないので乾燥状態でも安定な観測が可能である。また、前 述の、共有結合性蛍光色素と、それにァニオン性基を導入したァニオン性蛍光色素 とを用いる検出方法を用いることもできる。  Further, the present invention can be applied as follows to a detection method using a protein chip. A protein and an anionic fluorescent dye are reacted in a solution, the solution is spotted on a measurement substrate, and a fluorescence image based on a second fluorescence wavelength from the measurement substrate can be measured. After spotting, the protein can be immobilized on the substrate by leaving it at a predetermined temperature, and incubation can be carried out if necessary. In addition, when capturing a protein labeled with this fluorescent dye on a protein chip, since it emits stable fluorescence under any circumstances, it may not be handled as nervous as in the past. In addition, since fluorescence quenching does not occur even in the dry state, stable observation is possible even in the dry state. In addition, the detection method using the above-mentioned covalent fluorescent dye and the anionic fluorescent dye into which an anionic group is introduced can also be used.
実施例  Example
[0098] 以下、実施例を用いてさらに詳細に本発明について説明する。  Hereinafter, the present invention will be described in more detail using examples.
合成例 1.  Synthesis example 1.
活性エステル系ァニオン性蛍光色素の合成例を示す。  An example of synthesis of an active ester type anionic fluorescent dye is shown.
(1)発色部 (3)の合成  (1) Synthesis of chromophore (3)
発色部 (3)は、以下のスキーム 2に従い合成した。  The chromophore (3) was synthesized according to scheme 2 below.
[0099] [化 35] [Formula 35]
Figure imgf000048_0001
Figure imgf000048_0001
Sch me 2 [0100] 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸 (1) 1.0 g (0.0026 moL)と N-ヒドロキシスクシンイミド (2) 0.30 g (0.0026 moL)を DMF 20mLに溶解した。これに N, Ν'-ジシクロへキシルカルボジイミド 0.54 g (0.0026 moUを 30分かけて滴下した。 滴下後、室温で 30時間撹拌した。減圧下、 DMFを留去した。残渣をシリカゲルカラム クロマトグラフィー(クロ口ホルム)で単離精製し、ォキサジァゾ口ピリジン活性エステル 体 (3)を 0.76 g、収率 62%で得た。 Sch me 2 [0100] In a 50 mL three-necked flask, 1.0 g (0.0026 moL) of oxadiazo-opening pyridinecarboxylic acid (1) and 0.30 g (0.0026 moL) of N-hydroxysuccinimide (2) were dissolved in 20 mL of DMF. To this was added 0.54 g (0.0026 moU of N, Ν'-dicyclohexylcarbodiimide dropwise over 30 minutes. After dropwise addition, stirring was carried out at room temperature for 30 hours. DMF was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography ( The resultant product was isolated and purified in a form of black) to obtain 0.76 g of Oxadiazo oral pyridine active ester (3) in a yield of 62%.
[0101] (2)スルホニル基の導入 (2) Introduction of sulfonyl group
活性エステル体 (3)を DMF中、タウリンを反応させ、スルホンィ匕された (4)へ誘導した ( scheme 3)。  The active ester (3) was reacted with taurine in DMF to induce sulfonation (4) (scheme 3).
[化 36]  [Chemical 36]
Figure imgf000049_0001
Figure imgf000049_0001
Scheme 3  Scheme 3
[0102] 合成例 2. Synthesis Example 2.
有機 EL色素として合成例 1で用レ、たォキサジァゾ口ピリジン誘導体を用レ、、連結部 にシスティン酸を用い、反応性基には活性エステル化したカルボニル基とァニオン性 基であるスルホニゥム基の両方を導入した。ォキサジァゾ口ピリジン活性エステル体 (3 )をシスティン酸と反応させ、連結部を導入したカルボン酸体 (5)を合成した。その後、 カルボン酸体 (5)をジォキサン中、 N-ヒドロキシスクシンイミドと反応させ、連結部を導 入したォキサジァゾ口ピリジン活性エステル体 (6)を合成した。以下に反応例を示す。  As an organic EL dye, a synthetic pyridine derivative used in Synthesis Example 1 is used as a synthetic organic dye, and a cystenic acid is used as a linking part, and a reactive group is both an activated esterified carbonyl group and a sulfonium group which is an anion group. Introduced. Oxadiazo-open pyridine active ester (3) was reacted with cystine acid to synthesize a carboxylic acid (5) into which a linkage was introduced. Thereafter, the carboxylic acid (5) was reacted with N-hydroxysuccinimide in dioxane to synthesize an oxadiazo-opening pyridine active ester (6) having a linkage introduced. An example of the reaction is shown below.
[0103] [化 37] [Formula 37]
Figure imgf000050_0001
Figure imgf000050_0001
scheme 4.  scheme 4.
[0104] 以下に、合成例 1と異なる部分のみの合成手順を示す。  The following shows a synthesis procedure of only a portion different from Synthesis Example 1.
(1)カルボン酸体 (5)の合成  (1) Synthesis of carboxylic acid (5)
50 mL三口フラスコでォキサジァゾ口ピリジン活性エステル体(3) 100 mg (0.21 mm ol)とシスティン酸 39 mg (0.23 mmol)を DMF 20mLに溶解した。その後、室温で 12時 間撹拌した。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマト グラフィー(クロ口ホルム一メタノール = 7 : 3)で単離精製し、カルボン酸体 (5)を 98 mg ( 収率 88%)得た。  In a 50 mL three-necked flask, 100 mg (0.21 mmol) of Oxadiazo-open pyridine active ester (3) and 39 mg (0.23 mmol) of cystic acid were dissolved in 20 mL of DMF. Then, it stirred at room temperature for 12 hours. After completion of the reaction, DMF was distilled off under reduced pressure. The residue was isolated and purified by silica gel column chromatography (chloroform: methanol = 7: 3) to obtain 98 mg (yield 88%) of a carboxylic acid (5).
[0105] (2)活性エステル体 (6)の合成 (2) Synthesis of Active Ester Form (6)
次いで、 50 mL三口フラスコでォキサジァゾ口ピリジンカルボン酸体 (5) 80 mg (0.15 mmol)と N-ヒドロキシスクシンイミド 19 mg (0.17 mmol)を DMF 20mLに溶解した。これ に DMF 5 mLに溶解した N, Ν'-ジシクロへキシルカルボジイミド 35 mg (0.17 mmol)を 30分かけて滴下した。滴下後、室温で 30時間撹拌した。減圧下、 DMFを留去した。 残渣をシリカゲルカラムクロマトグラフィー(クロ口ホルム:メタノール = 10: 1)で単離精 製し、活性エステル体 (6)を 73 mg (収率 78%)得た。  Then, 80 mg (0.15 mmol) of oxadiazo-open pyridinecarboxylic acid (5) and 19 mg (0.17 mmol) of N-hydroxysuccinimide were dissolved in 20 mL of DMF in a 50 mL three-necked flask. To this was added dropwise 35 mg (0.17 mmol) of N, Ν'-dicyclohexylcarbodiimide dissolved in 5 mL of DMF over 30 minutes. After dropping, the mixture was stirred at room temperature for 30 hours. The DMF was distilled off under reduced pressure. The residue was isolated and purified by silica gel column chromatography (chloroform: methanol = 10: 1) to obtain 73 mg (yield 78%) of an active ester (6).
[0106] 合成例 3. Synthesis Example 3.
合成例 4.  Synthesis example 4.
有機 EL色素として合成例 1で用レ、たォキサジァゾ口ピリジン誘導体を用レ、、連結部 にセリンを用いた。ォキサジァゾ口ピリジン活性エステル体 (3)をセリンと反応させ、連 結部を導入したカルボン酸体 (7)を合成した。以下に反応例を示す。 The organic EL dye used in Synthesis Example 1 is used as a synthetic organic light-emitting dye, and is used as a coupling moiety Used serine. Oxadiazo-open pyridine active ester (3) was reacted with serine to synthesize a carboxylic acid (7) into which a linkage was introduced. An example of the reaction is shown below.
[化 38]  [Formula 38]
Figure imgf000051_0001
Figure imgf000051_0001
scheme 5.  scheme 5.
[0108] 以下に、合成例 1と異なる部分のみの合成手順を示す。  The following shows the synthesis procedure of only the portion different from Synthesis Example 1.
(1)カルボン酸体 (7)の合成  (1) Synthesis of carboxylic acid (7)
50 mL三口フラスコでォキサジァゾ口ピリジン活性エステル体(3) 100 mg (0.21 mm ol)とセリン 26 mg (0.25 mmol)を DMF 20mLに溶解した。その後、室温で 12時間撹拌し た。反応終了後、減圧下、 DMFを留去した。残渣をシリカゲルカラムクロマトグラフィ 一(クロ口ホルム—メタノール =7 : 3)で単離精製し、カルボン酸体 (7)を 79 mg (収率 8 1%)得た。  In a 50 mL three-necked flask, 100 mg (0.21 mmol) of Oxadiazo-opened pyridine active ester (3) and 26 mg (0.25 mmol) of serine were dissolved in 20 mL of DMF. Then, it stirred at room temperature for 12 hours. After completion of the reaction, DMF was distilled off under reduced pressure. The residue was isolated and purified by silica gel column chromatography mono (chromatography-methanol = 7: 3) to obtain 79 mg (yield 81%) of carboxylic acid (7).
[0109] 実施例 1. Example 1
(実験方法)  (experimental method)
活性エステルのスルホニル体 (4)を純水に溶解し、 0.1 M HEPES Buffer (2-[4-(2-Hydroxyethyl)-l-piperazinyl]ethanesulfonic acid) ( H 7.3)を混合した後、 BSA(Bovine Serum Albumin)を添加し、色調の変化をスペクトルで観察するため、ス ルホニル体 の UVスペクトルを測定し、次いで、蛍光スペクトルを測定してスルホニル 体 (4)と BSAの相互作用を観察した。 UVスぺクトノレは、 2000 しのセルに蛍光試薬 13 μ Μ、 26 /i Μを調製して測定した。また、蛍光スペクトルは、セル中で 26 μ Μの溶液 30 00 / Lを調製し、これに所定濃度となるように BSAを添加して測定した。  After dissolving the sulfonyl form (4) of the active ester in pure water and mixing 0.1 M HEPES Buffer (2- [4- (2-Hydroxyethyl) -l-piperazinyl] ethanesulfonic acid) (H 7.3), BSA (Bovine) Serum Albumin was added, and in order to observe changes in color tone in the spectrum, the UV spectrum of the sulfonyl compound was measured, and then the fluorescence spectrum was measured to observe the interaction between the sulfonyl compound (4) and BSA. The UV spectrum was measured by preparing fluorescence reagents of 13 μΜ and 26 / iΜ in 2000 cells. In addition, the fluorescence spectrum was measured by preparing a solution of 300 μg / mL in a cell and adding BSA to a predetermined concentration.
[0110] (結果) (Result)
スルホニル体 を含む Buffer液の色調は、 BSAを添加すると、黄色から黄緑色へ変 化した(図 1)。図 2にスルホニル体 4の UVスペクトルを示す。この結果より、スルホニル 体 (4)の最大吸収波長は 397 nmであることが分かった。次に、励起波長に 397 nmを用 いて蛍光スペクトルを測定した。結果を図 3に示す。ここで、 BSAは 1.6 μ Μの濃度に なるよう添加している。蛍光スペクトルは、 BSAの添カロにより 18 nmのブルーシフトを示 し、かつ蛍光強度は約 5倍に増大した。これは、スルホニル体 (4)が BSAのァミノ基と静 電結合し、 BSA表面とスルホニル体 との相互作用により、ブルーシフトが観測された と考えられる。また、スルホニル体 (4)が BSAの疎水場に位置することから、水との相互 作用がある程度解消されて蛍光強度の増大を示したと考えられる。 The color tone of Buffer solution containing sulfonyls changed from yellow to yellowish green when BSA was added (Fig. 1). The UV spectrum of sulfonyl 4 is shown in FIG. From this result, sulfonyl The maximum absorption wavelength of body (4) was found to be 397 nm. Next, the fluorescence spectrum was measured using 397 nm as the excitation wavelength. The results are shown in Figure 3. Here, BSA is added to a concentration of 1.6 μM. The fluorescence spectrum showed a blue shift of 18 nm by addition of BSA, and the fluorescence intensity increased about 5 times. This is considered to be due to the fact that the sulfonyl form (4) is electrostatically bonded to the amino group of BSA and the blue shift is observed due to the interaction between the BSA surface and the sulfonyl form. In addition, since the sulfonyl compound (4) is located in the hydrophobic field of BSA, it is considered that the interaction with water is eliminated to some extent and the fluorescence intensity is increased.
[0111] 次に、スルホニル体 26 μ Μ水溶液 2000 μ Lを調製し、そこへ BSA 0〜15 ηΜを 8 回に分割して添加した。その時の UVスペクトルを図 4に示す。 BSAの添加により淡色 効果を示すとともに、ピーク波長はレッドシフトした(15 ηΜで 7 nmのレッドシフト)。こ れより、スルホニル体 (4)は、 BSAの深部(疎水場)に位置しているものと考えられる。  Next, 2000 μl of a 26 μl aqueous solution of a sulfonyl compound was prepared, and BSA 0 to 15 Μ was added thereto in eight divided portions. The UV spectrum at that time is shown in FIG. While the addition of BSA shows a light color effect, the peak wavelength is red-shifted (15 nm red shift at 7 nm). From this, the sulfonyl form (4) is considered to be located in the deep part (hydrophobic field) of BSA.
[0112] なお、比較のため、スルホニル体 (4)に代えて活性エステル体 (3)を用いた力 BSAの ピーク波長の変化及び蛍光強度の増加は観測されなかった。活性エステル体 (3)は、 活性エステル基とアミノ基との求核置換反応によって生成するアミド結合を介してタン パク質と結合するが、スクシンイミド分子などの立体障害により BSA深部に位置するァ ミノ基とは結合せず、表面のアミノ基のみと結合すると考えられる。一方、スルホニル 体 4は、静電結合により BSA表面のアミノ基のみならず深部のアミノ基とも結合するた め、前述のように BSAの深部(疎水場)にも位置する。これにより、ブルーシフトと蛍光 強度の増加が起きたものと考えられる。  Note that, for comparison, a change in peak wavelength of the force BSA and an increase in fluorescence intensity were not observed using the active ester body (3) instead of the sulfonyl body (4). The active ester (3) binds to a protein through an amide bond formed by the nucleophilic substitution reaction between an active ester group and an amino group, but an amino acid located in the deep part of BSA due to steric hindrance such as a succinimide molecule. It is thought that it does not bond to a group, but bonds to only the surface amino group. On the other hand, since the sulfonyl compound 4 is bonded not only to the amino group on the surface of BSA but also to the amino group in the deep part by electrostatic bonding, it is located in the deep part (hydrophobic field) of BSA as described above. This is considered to have caused a blue shift and an increase in fluorescence intensity.
[0113] 実施例 2.  Example 2
(実験方法)  (experimental method)
次に、タンパク質にインスリン (Inslin)を用いた以外は、実施例 1と同様の方法で行つ た。スルホニル体 (4) 26.7 μ Μを蛍光セル中で 2000 μ L調製し、そこへ、インスリン 0 〜 232 μ Μを 6回に分けて添加した。  Next, the procedure was performed in the same manner as in Example 1 except that insulin (Inslin) was used as the protein. Sulfonyl compound (4) 26.7 μΜ was prepared in a fluorescent cell in 2000 μl, and 0 to 232 μΜ of insulin was added thereto in six divided doses.
[0114] (結果) (Result)
インスリンを添加した時の蛍光スペクトルを図 5に示す。 BSAの場合と同様に 19 nm のブルーシフトと、蛍光強度の増大が観測された。添加した際のセル中のインスリン 濃度と各濃度におけるピーク波長 FLmaxとの関係を図 6に、インスリン濃度とピーク波 長における蛍光強度 Δ Int. (スルホニル体 のみの蛍光強度を差し引いた値)との関 係を図 7に示す。インスリン濃度の増加とともに、ピーク波長 FLmaxが直線的に低波 長にシフトした。また、インスリン濃度の増加とともに、蛍光強度 Δ Int.が直線的に増 加するという結果が得られた。これより、蛍光強度の変化から、あるいはピーク波長の 変化からインスリンの濃度を算出することが可能であることがわかる。 The fluorescence spectrum when insulin is added is shown in FIG. As in the case of BSA, a blue shift of 19 nm and an increase in fluorescence intensity were observed. The relationship between the insulin concentration in the cell when added and the peak wavelength FLmax at each concentration is shown in Figure 6, where the insulin concentration and peak wave The relationship with the fluorescence intensity Δ Int. (Value obtained by subtracting the fluorescence intensity of only the sulfonyl form) in the length is shown in FIG. As the insulin concentration increased, the peak wavelength FLmax linearly shifted to a lower wavelength. In addition, as the insulin concentration increased, the result was obtained that the fluorescence intensity Δ Int. Increased linearly. From this, it is understood that the concentration of insulin can be calculated from the change in fluorescence intensity or from the change in peak wavelength.
[0115] 実施例 3. Example 3
(実験方法)  (experimental method)
次に、タンパク質にリゾチームを用いた以外は、実施例 1と同様の方法で行った。ス ルホニル体 (4) 26.7 μ Μを蛍光セル中で 2000 μ L調製し、そこへ、リゾチーム 0〜 4 6.6 μ Μを 4回に分けて添加した。  Next, the procedure was carried out in the same manner as in Example 1 except that lysozyme was used as the protein. A 26.7 μΜ of sulfonyl group (4) was prepared in a fluorescent cell to 2000 μl, and 0 to 4 6.6 μΜ of lysozyme was added thereto in four portions.
[0116] (結果) (Result)
リゾチームを添カ卩した時の蛍光スペクトルを図 8に示す。リゾチームを添カ卩しても、蛍 光強度の増加も、ピーク波長のブルーシフトも観測されなかった。このことは、スルホ ニル体 (4)が、リゾチームと結合しないことを示している。これは、タンパク質の表面に 位置するアミノ基はタンパク質の種類によって異なる配座を取っていることから、スル ホニル体 が、リゾチームのァミノ基とは結合しないことを意味しているものと考えられ る。し力 ながら、スルホニル体 (4)は BSAやインスリンと結合することから、選択的にタ ンパク質を標識可能な蛍光試薬としてスルホニル体 (4)を用いることが可能であると考 えられる。  The fluorescence spectrum when lysozyme is added is shown in FIG. Even when lysozyme was added, neither increase in fluorescence intensity nor blue shift of peak wavelength was observed. This indicates that the sulfonate form (4) does not bind to lysozyme. This is considered to mean that the sulfonyl group does not bind to the amino group of lysozyme since the amino group located on the surface of the protein has a different conformation depending on the type of protein. . However, since sulfonyl form (4) binds to BSA and insulin, it is considered possible to use sulfonyl form (4) as a fluorescent reagent capable of selectively labeling proteins.
[0117] 実施例 4. Example 4
合成例 2の活性エステル体 (6)を用レ、、実施例 1と同様の方法により、 BSAを添加し た時の色調の変化をスペクトルで観察した。  The active ester (6) of Synthesis Example 2 was used as a gel, and the change in color tone when BSA was added was observed in the spectrum by the same method as in Example 1.
[0118] 蛍光スペクトルは、 BSAの添カロにより 18 nmブルーシフトし、かつ蛍光強度は約 5倍 に増大した。 The fluorescence spectrum was blue-shifted by 18 nm by addition of BSA, and the fluorescence intensity was increased about 5 times.
[0119] 実施例 5. Example 5
合成例 3のカルボン酸体 (7)を用レ、、実施例 1と同様の方法により、 BSAを添加した 時の色調の変化をスペクトルで観察した。  The carboxylic acid (7) of Synthesis Example 3 was used as a gel, and the change in color tone when BSA was added was observed in the spectrum by the same method as in Example 1.
[0120] 蛍光スぺクトノレは、 BSAの添カロにより 19 nmブノレーシフトし、かつ蛍光強度は約 4.5 倍に増大した。 [0120] The fluorescence specknore is shifted by 19 nm by the addition of BSA and the fluorescence intensity is about 4.5. It has doubled.
[0121] 比較例 1.  Comparative Example 1.
従来使用されているメチルオレンジを用いた以外は、実施例 1と同様の方法で行つ た。し力、し、メチルオレンジを添加しても、蛍光強度の増加も、ピーク波長のブルーシ フトも観測されなかった。  The procedure was carried out in the same manner as in Example 1 except that conventionally used methyl orange was used. Even when methyl orange was added, neither increase in fluorescence intensity nor blue shift of peak wavelength was observed.
[0122] 以上説明したように、本発明の検出方法によれば、タンパク質の検出を簡便且つ高 精度な定量を行うことができる。更に、本発明に用いるァニオン性蛍光色素は、 Cy3 や Cy5、 Alexa色素よりも熱安定性が高ぐ退光性も観測されないので、取り扱いは容 易で、さらに Cy3や Cy5に比べ安価であるので、より低コストでタンパク質の検出を行う ことができる As described above, according to the detection method of the present invention, it is possible to perform simple and highly accurate quantification of protein detection. Furthermore, since the anionic fluorescent dye used in the present invention is not observed to have a higher thermal stability than Cy3 or Cy5 or Alexa dye, it is easy to handle and is cheaper than Cy3 or Cy5. Can detect protein at lower cost

Claims

請求の範囲 The scope of the claims
[1] 蛍光色素で標識したタンパク質を検出するタンパク質の検出方法であって、  [1] A method for detecting a protein labeled with a fluorescent dye, the method comprising:
遊離状態で観測される第 1の蛍光波長より短波長であって、タンパク質に結合した 状態で観測される第 2の蛍光波長に基づく蛍光を計測してタンパク質を検出するタン パク質の検出方法。  A method for detecting a protein, which comprises detecting a protein by measuring fluorescence based on a second fluorescence wavelength which is shorter than a first fluorescence wavelength observed in a free state and is observed in a state of being bound to a protein.
[2] 上記検出方法が、試料中のタンパク質を分離手段に供し、分離した画分を質量分 析に供する検出方法であって、  [2] The above detection method is a detection method in which the proteins in the sample are subjected to separation means, and the separated fractions are subjected to mass analysis,
タンパク質を分離手段に供する前に、上記第 2の蛍光波長を発生する第 1の蛍光 色素によりタンパク質を標識する請求項 1記載の検出方法。  The method according to claim 1, wherein the protein is labeled with a first fluorescent dye that generates the second fluorescence wavelength before the protein is subjected to separation means.
[3] 上記第 1の蛍光色素によりタンパク質を標識するに先立って又は同時に、タンパク 質に結合した状態で第 1の蛍光波長が短波長にシフトしない第 2の蛍光色素によりタ ンパク質を標識し、次いで分離手段に供する請求項 2記載の検出方法。 [3] Prior to, or simultaneously with, labeling the protein with the first fluorescent dye, the protein is labeled with the second fluorescent dye in which the first fluorescent wavelength is not shifted to a short wavelength while bound to the protein. The detection method according to claim 2, which is then subjected to separation means.
[4] 上記タンパク質と上記第 2の蛍光波長を発生する第 1の蛍光色素とを溶液中で反 応させ、該溶液を測定基板に点着し、該測定基板からの第 2の蛍光波長に基づく蛍 光画像を計測する請求項 1記載の検出方法。 [4] The above-mentioned protein and the first fluorescent dye that generates the second fluorescence wavelength are reacted in a solution, the solution is spotted on the measurement substrate, and the second fluorescence wavelength from the measurement substrate is used. The detection method according to claim 1, wherein the fluorescence image is measured on the basis.
[5] 上記タンパク質と上記第 1の蛍光色素とを溶液中で反応させるに先立って又は同 時に、タンパク質に結合した状態で第 1の蛍光波長が短波長にシフトしない第 2の蛍 光色素をタンパク質と溶液中で反応させる請求項 4記載の検出方法。 [5] Prior to or at the same time as the reaction of the above-mentioned protein with the above-mentioned first fluorescent dye in a solution, a second fluorescent dye in which the first fluorescence wavelength is not shifted to a short wavelength while bound to the protein The detection method according to claim 4, wherein the protein is reacted in solution.
[6] 上記第 1の蛍光色素はタンパク質と結合するァニオン性基を有する請求項 2から 5 のいずれか一つに記載の検出方法。 [6] The detection method according to any one of claims 2 to 5, wherein the first fluorescent dye has an anionic group that binds to a protein.
[7] 上記第 2の蛍光色素はタンパク質と結合する共有結合性基を有する請求項 3又は 4 に記載の検出方法。 [7] The detection method according to claim 4 or 5, wherein the second fluorescent dye has a covalent bond group that binds to a protein.
[8] タンパク質と結合するァニオン性基が直接あるいは連結部を介して結合した有機 E L色素を含むァニオン性蛍光色素から成るタンパク質検出用の蛍光色素。  [8] A fluorescent dye for protein detection comprising an anionic fluorescent dye comprising an organic EL dye to which an anionic group binding to a protein is directly or via a linking moiety.
[9] 上記ァニオン性基が、カルボキシル基、スルホニル基、硫酸塩基、リン酸塩基及び それらの組み合わせのいずれかである請求項 8記載の蛍光色素。  [9] The fluorescent dye according to claim 8, wherein the anion group is any of a carboxyl group, a sulfonyl group, a sulfate base, a phosphate group and a combination thereof.
[10] 上記連結部が、 -CH -、 - NHCOO-、 - CONH -、 - CH NH -、 - CH NR -、 - COO-、—S  [10] The above linked part is -CH-,-NHCOO-,-CONH-,-CH NH-,-CH NR-,-COO-,-S
2 2 2  2 2 2
0 NH -、 _HN-C(=NH)-NH -、 _0_、 -S -、 -NR- (Rはアルキル基)、 _(CH -CH _0) - ( 0 NH-, _HN-C (= NH) -NH-, _0 _, -S-, -NR-(R is an alkyl group), _ (CH -CH _0)-(
2 2 2 η nは 1から 10の整数)、 _CH=CH -、 _C≡C -、 _Ar -及び _CO_Ar_NR-からなる群から 選択される官能基を少なくとも 1種含む請求項 8記載の蛍光色素。 2 2 2 η The fluorescent dye according to claim 8, comprising at least one functional group selected from the group consisting of n is an integer of 1 to 10), _CH = CH 2-, ≡C≡C 2-, ArAr- and COCO_Ar_NR-.
[11] 上記有機 EL色素が、 1種以上のへテロ原子、セレン原子又はボロン原子を含む 5 員環化合物と共役系を有する 6員環化合物とから成る縮合多環化合物である請求項 8記載の蛍光色素。 [11] The above-mentioned organic EL dye is a condensed polycyclic compound consisting of a 5-membered ring compound containing one or more kinds of heteroatoms, selenium atoms or boron atoms and a 6-membered ring compound having a conjugated system. Fluorescent dye.
[12] 上記縮合多環化合物が、以下の一般式(1)、(2)又は(3)のいずれか 1種で示され るァゾール誘導体である請求項 11記載の蛍光色素。  12. The fluorescent dye according to claim 11, wherein the fused polycyclic compound is an azole derivative represented by any one of the following general formulas (1), (2) or (3).
Figure imgf000056_0001
Figure imgf000056_0001
Figure imgf000056_0002
Figure imgf000056_0002
(3)  (3)
(式中、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、 (Wherein, R, R, R and R are each independently a hydrogen atom, a halogen atom, an alkyl group,
1 2 3 4  1 2 3 4
アルケニル基、アルキニル基、アミノ基、アルコキシ基、ヒドロキシノレ基、シァノ基、アミ ノ基、スルホニル基、芳香族炭化水素基、複素環基などの置換基を有してもよい芳 香族炭化水素基又は炭化水素基又は複素環基を示し、 Xは置換基を有してレ、てもよ い窒素原子又は硫黄原子又は酸素原子又はセレン原子、ボロン原子を示し、 R'は芳 香環を含んでも良いアルキル基又はアルケニル基等の脂肪族炭化水素基あるいは 芳香族炭化水素基、 An—は、 CI—、 Br―、 I—等のハロゲン化物イオン、 CF SO―、 BF―、 PF —を示す。 ) Aromatic hydrocarbon which may have a substituent such as alkenyl group, alkynyl group, amino group, alkoxy group, hydroxyl group, cyano group, amino group, sulfonyl group, aromatic hydrocarbon group, heterocyclic group, etc. Group or a hydrocarbon group or a heterocyclic group, X is a substituent, X is a nitrogen atom or a sulfur atom, or an oxygen atom or a selenium atom, or a boron atom, and R 'is a aromatic ring Aliphatic hydrocarbon group or aromatic hydrocarbon group such as alkyl group or alkenyl group which may contain, An-is a halide ion such as CI-, Br-or I-, CF 2 SO-, BF-, PF- Indicates —. )
[13] 上記の Rと R 、それぞれ独立に、チォフェン誘導体、フラン誘導体、ピロール誘  [13] The above R and R each independently represent a thiophen derivative, a furan derivative or a pyrrole derivative
2 3  twenty three
導体、イミダゾール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘 導体及びピリジン誘導体からなる群から選択された 1種である請求項 12記載の蛍光 色素。  The fluorescent dye according to claim 12, which is one selected from the group consisting of a conductor, an imidazole derivative, an oxazole derivative, a thiazole derivative, a pyrazole derivative and a pyridine derivative.
[14] 上記の Rと R力 スルホ二ル基を有するフエニル基である請求項 12記載の蛍光色  [14] The fluorescent color according to claim 12, wherein R and R are each a phenyl group having a sulfonyl group.
2 3  twenty three
素。  Raw.
[15] 上記縮合多環化合物が、以下の一般式 (4)、 (5)、 (6)、 (7)又は (8)で示されるィ ミダゾール誘導体である請求項 11記載の蛍光色素。 [15] The fluorescent dye according to claim 11, wherein the fused polycyclic compound is an idazole derivative represented by the following general formula (4), (5), (6), (7) or (8).
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000058_0003
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000058_0003
Figure imgf000058_0004
Figure imgf000058_0004
(式中、 R、 R、 R、 R、 Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル (Wherein, R, R, R, R and R are each independently a hydrogen atom, a halogen atom, an alkyl
1 2 3 4 5  1 2 3 4 5
基、アルケニル基、アルキニル基、アミノ基、アルコキシ基、ヒドロキシル基、シァノ基 、アミノ基、スルホニル基、芳香族炭化水素基、複素環基などの置換基を有しても良 い芳香族炭化水素基又は炭化水素基又は複素環基を示し、 R、 R、 R、 R、 Rは同 Aromatic hydrocarbon which may have a substituent such as alkenyl group, alkynyl group, amino group, alkoxy group, hydroxyl group, cyano group, amino group, sulfonyl group, aromatic hydrocarbon group and heterocyclic group Group, a hydrocarbon group or a heterocyclic group, and R, R, R, R, R are the same
1 2 3 4 5 じでも異なっていても良ぐ R R"は芳香環を含んでも良いアルキル基又はアルケニ ル基等の脂肪族炭化水素基あるいは芳香族炭化水素基、 An—は、 Cl—、 Br", Γ等のハ ロゲン化物イオン、 CF SO―、 BF―、 PF—を示す。 ) 1 RR 2 RR 4 may be an alkyl group or an alkenyl group which may contain an aromatic ring. Aliphatic hydrocarbon group or aromatic hydrocarbon group such as alkyl group, An— represents Cl—, Br ′ ′, halogenide ion such as Γ, CF 2 SO 4 −, BF −, PF 4 −).
3 3 4 6  3 3 4 6
[16] 上記の Rと R 、それぞれ独立に、チォフェン誘導体、フラン誘導体、ピロール誘  [16] The above R and R each independently represent a thiophen derivative, a furan derivative or a pyrrole derivative
2 3  twenty three
導体、イミダゾール誘導体、ォキサゾール誘導体、チアゾール誘導体、ピラゾール誘 導体及びピリジン誘導体からなる群から選択された 1種である請求項 15記載の蛍光 色素。  The fluorescent dye according to claim 15, which is one selected from the group consisting of a conductor, an imidazole derivative, an oxazole derivative, a thiazole derivative, a pyrazole derivative and a pyridine derivative.
[17] 上記の Rと R力 スルホ二ル基を有するフエニル基である請求項 15記載の蛍光色  [17] The fluorescent color according to claim 15, wherein R and R are each a phenyl group having a sulfonyl group.
2 3  twenty three
素。  Raw.
PCT/JP2006/315751 2006-08-09 2006-08-09 Method of detecting protein and fluorescent dye to be used therefor WO2008018129A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/315751 WO2008018129A1 (en) 2006-08-09 2006-08-09 Method of detecting protein and fluorescent dye to be used therefor
JP2008528681A JP5244596B2 (en) 2006-08-09 2006-08-09 Protein detection method and fluorescent dye used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315751 WO2008018129A1 (en) 2006-08-09 2006-08-09 Method of detecting protein and fluorescent dye to be used therefor

Publications (1)

Publication Number Publication Date
WO2008018129A1 true WO2008018129A1 (en) 2008-02-14

Family

ID=39032675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315751 WO2008018129A1 (en) 2006-08-09 2006-08-09 Method of detecting protein and fluorescent dye to be used therefor

Country Status (2)

Country Link
JP (1) JP5244596B2 (en)
WO (1) WO2008018129A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861562B (en) * 2006-09-06 2016-05-25 苹果公司 Determine touch panel device, method and the graphic user interface of order by application heuristics
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
US11834441B2 (en) 2019-12-06 2023-12-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272042B2 (en) * 2011-05-12 2013-08-28 富士重工業株式会社 Environment recognition apparatus and environment recognition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208026A (en) * 2003-12-24 2005-08-04 Shinichiro Isobe Biomolecule detecting method, labeling coloring matter used therein and labeling kit
JP2006180835A (en) * 2004-12-28 2006-07-13 Shinichiro Isobe Method for detecting gene
JP2006234772A (en) * 2005-02-28 2006-09-07 Shinichiro Isobe Method of detecting protein and fluorescent dye used for same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254909A (en) * 2002-03-06 2003-09-10 Japan Science & Technology Corp Fluorescent sensor for detecting anion
JP4801445B2 (en) * 2003-12-24 2011-10-26 信一郎 礒部 Biomolecule detection method and labeling dye and labeling kit used therefor
US7625758B2 (en) * 2005-01-26 2009-12-01 Berkelman Thomas R Coumarin-based cyanine dyes for non-specific protein binding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208026A (en) * 2003-12-24 2005-08-04 Shinichiro Isobe Biomolecule detecting method, labeling coloring matter used therein and labeling kit
JP2006180835A (en) * 2004-12-28 2006-07-13 Shinichiro Isobe Method for detecting gene
JP2006234772A (en) * 2005-02-28 2006-09-07 Shinichiro Isobe Method of detecting protein and fluorescent dye used for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU Z. ET AL.: "Determination of human serum albumin using an intramolecular charge transfer fluorescence probe: 4'-dimethylamino-2,5-dihydroxychalcone", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 15, no. 18, 29 June 2005 (2005-06-29), pages 4091 - 4096, XP005021104 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861562B (en) * 2006-09-06 2016-05-25 苹果公司 Determine touch panel device, method and the graphic user interface of order by application heuristics
US11834441B2 (en) 2019-12-06 2023-12-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
US11919887B2 (en) 2019-12-06 2024-03-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels

Also Published As

Publication number Publication date
JP5244596B2 (en) 2013-07-24
JPWO2008018129A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5638734B2 (en) Labeling dye for biomolecule, labeling kit, and method for detecting biomolecule
US9006459B2 (en) Fluorescent markers and use thereof for labeling specific protein targets
JP2008530063A (en) Unsaturated dipyrromethene-boron boron carbon
US20060240455A1 (en) Oxazine derivatives
JP3881667B2 (en) Biomolecule detection method and labeling dye and labeling kit used therefor
JP4801445B2 (en) Biomolecule detection method and labeling dye and labeling kit used therefor
JP5881624B2 (en) Fluorescent dye
US7381572B2 (en) Reagents and procedures for multi-label high-specificity labeling
JP5503836B2 (en) Fluorescent dye and method for producing the same
JP4860352B2 (en) Diagnostic agent and measuring method using the same
JP2010037511A (en) Fluorescent dye
WO2008018129A1 (en) Method of detecting protein and fluorescent dye to be used therefor
Nagy et al. An acrylated isocyanonaphthalene based solvatochromic click reagent: Optical and biolabeling properties and quantum chemical modeling
Wallisch et al. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross‐Linking Proteins
Fedorowicz et al. Synthesis and evaluation of dihydro-[1, 2, 4] triazolo [4, 3-a] pyridin-2-ium carboxylates as fixed charge fluorescent derivatization reagents for MEKC and MS proteomic analyses
WO2015166491A2 (en) Fluorescent molecular sensor for targeting changes in protein surfaces, and methods of use thereof
Clavé et al. A universal and ready-to-use heterotrifunctional cross-linking reagent for facile synthetic access to sophisticated bioconjugates
JP5189096B2 (en) Diagnostic agent and measuring method using the same
JP2006234772A (en) Method of detecting protein and fluorescent dye used for same
JP5219144B2 (en) Novel affinity labeling method and screening method using the labeling method
JP5539920B2 (en) Diagnostic agent and measuring method using the same
EP1506402A2 (en) Bis-transition-metal-chelate-probes
Söveges et al. Tracking down protein–protein interactions via a FRET-system using site-specific thiol-labeling
WO2004051270A2 (en) Labeling methodology comprising oligopeptides
JP2006500588A (en) Fluorescent labeling reagent with multiple donors and acceptors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06782567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, OUR COMMUNICATION (EPO FORM 1205A) OF 15.07.09

122 Ep: pct application non-entry in european phase

Ref document number: 06782567

Country of ref document: EP

Kind code of ref document: A1