WO2008016889A1 - Curable epoxy resin-based adhesive compositions - Google Patents

Curable epoxy resin-based adhesive compositions Download PDF

Info

Publication number
WO2008016889A1
WO2008016889A1 PCT/US2007/074785 US2007074785W WO2008016889A1 WO 2008016889 A1 WO2008016889 A1 WO 2008016889A1 US 2007074785 W US2007074785 W US 2007074785W WO 2008016889 A1 WO2008016889 A1 WO 2008016889A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
rubber particles
core
epoxy resin
epoxy
Prior art date
Application number
PCT/US2007/074785
Other languages
French (fr)
Inventor
Jeng-Li Liang
Rajat K. Agarwal
Gregory A. Ferguson
Olaf Lammerschop
Frank Dittrich
Rainer Schoenfeld
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to JP2009522999A priority Critical patent/JP5307714B2/en
Priority to KR1020097004324A priority patent/KR101352811B1/en
Priority to CN2007800360908A priority patent/CN101517029B/en
Priority to EP07813567.0A priority patent/EP2049611B1/en
Priority to PL07813567T priority patent/PL2049611T3/en
Priority to ES07813567.0T priority patent/ES2691528T3/en
Publication of WO2008016889A1 publication Critical patent/WO2008016889A1/en
Priority to US12/363,830 priority patent/US8673108B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/04Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C09J151/085Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • This invention relates to compositions useful as adhesives and more particularly to the preparation of epoxy-based adhesive compositions with improved impact resistance and/or improved adhesion to oily metal substrates.
  • compositions and processes are described in the art for making and using a wide variety of epoxy-based compositions and other resins and additives in an effort to improve the expansion, impact resistance and other key properties of adhesives useful in adhering, filling and making composite structures.
  • patents which describe components for the formulation of adhesive compositions and the use of such compositions to adhere various substrates to each other and to provide structural reinforcement include U.S. Patent Nos . 5,290,857, 5,686,509, 5,334,654, 6,015,865, 5,278,257, 6,884,854, and 6,776,869 and U.S. Patent Application Publication No. 2005-0022929.
  • core-shell rubber particles that are stably dispersed in an epoxy resin matrix and that are nano-sized (e.g., about 25 to about 200 ran) are capable of improving the impact properties of epoxy-based adhesives.
  • nano-sized e.g., about 25 to about 200 ran
  • adhesive formulations can be prepared by admixing epoxy resin, rubber particles (preferably having a core-shell structure and/or an average particle size of less than 500 run) , at least one additive selected from the group consisting of polyurethanes, platy fillers, and anti-oxidants, at least one plasticizer (e.g., sulfonate plasticizers, phosphate ester plasticizers) , and at least one latent curing agent capable of being activated by heating.
  • plasticizer e.g., sulfonate plasticizers, phosphate ester plasticizers
  • latent curing agent capable of being activated by heating.
  • compositions also contain chelate-modified epoxy resin, auxiliary impact modifiers/toughening agents, fillers other than mica (e.g., calcium oxide), thixotropic agents (e.g., fumed silica, mixed mineral thixotropes) , or other adjuvants.
  • auxiliary impact modifiers/toughening agents e.g., calcium oxide
  • thixotropic agents e.g., fumed silica, mixed mineral thixotropes
  • the adhesive results in a product capable of forming strong bonds to oil-contaminated metal surfaces while simultaneously exhibiting good impact toughness and/or impact resistance.
  • the adhesive composition is comprised of at least one epoxy resin ⁇ especially a diglycidyl ether of a polyphenol such as bisphenol A) , at least one type of core-shell rubber particles, at least one plasticizer (especially a phosphate ester plasticizer) , at least one polyurethane (especially a reaction product of an isocyanate-terminated prepolymer and a compound having one or more active hydrogen-containing groups such as hydroxy1 and amino groups, e.g., phenolic, benzyl alcohol, aminophenyl or benzylamino groups, as described for example in U.S. Pat. No. 5,278,257), at least one epoxy-based prepolymer obtained by reacting one or more amine-terminated polymers such as an amine-terminated polyether with one or more epoxy resins, and at least one heat-activated latent curing agent.
  • at least one epoxy resin ⁇ especially a diglycidyl ether of a polyphenol such as bisphenol A
  • plasticizer especially
  • the adhesive composition is comprised of at least one epoxy resin (especially a diglycidyl ether of a polyphenol such as bisphenol A) , at least one type of core-shell rubber particles, plasticizer (especially a sulfonate plasticizer), at least one epoxy-based prepolymer obtained by reacting one or more amine-terminated polymers such as an amine-terminated polyether with one or more epoxy resins, mica and/or talc, at least one anti-oxidant (especially a hindered phenol antioxidant) and at least one heat-activated latent curing agent .
  • at least one epoxy resin especially a diglycidyl ether of a polyphenol such as bisphenol A
  • plasticizer especially a sulfonate plasticizer
  • at least one epoxy-based prepolymer obtained by reacting one or more amine-terminated polymers such as an amine-terminated polyether with one or more epoxy resins, mica and/or talc
  • at least one anti-oxidant especially a hindered
  • the adhesive composition is comprised of at least one epoxy resin (especially a diglycidyl ether of a polyphenol such as bisphenol A) , at least one type of core-shell rubber particles, plasticizer (especially a phosphate ester plasticizer) , at least one polyurethane (especially an acrylate-functionalized polyurethane) , at least one epoxy- based prepolymer obtained by reacting one or more amine- terminated polymers such as an amine-terminated polyether with one or more epoxy resins, at least one anti-oxidant (especially a hindered phenol anti-oxidant) and at least one heat-activated latent curing agent.
  • at least one epoxy resin especially a diglycidyl ether of a polyphenol such as bisphenol A
  • plasticizer especially a phosphate ester plasticizer
  • polyurethane especially an acrylate-functionalized polyurethane
  • epoxy- based prepolymer obtained by reacting one or more amine- terminated polymers such as an amine-termin
  • the adhesive composition is comprised of at least one epoxy resin (especially a diglycidyl ether of a polyphenol such as bisphenol A) , core- shell rubber particles having an average particle size of from 50 to 250 nm and stably dispersed in a liquid epoxy resin matrix, at least one polyurethane, at least one phosphate ester plasticizer, and at least one platy filler (in particular, mica and/or talc ⁇ .
  • epoxy resin especially a diglycidyl ether of a polyphenol such as bisphenol A
  • core- shell rubber particles having an average particle size of from 50 to 250 nm and stably dispersed in a liquid epoxy resin matrix
  • at least one polyurethane at least one phosphate ester plasticizer
  • at least one platy filler in particular, mica and/or talc ⁇ .
  • polyepoxides having at least about two 1,2-epoxy groups per molecule are suitable as epoxy resins for the compositions of this invention.
  • the polyepoxides may be saturated, unsaturated, cyclic or acyclic, aliphatic, alicyclic, aromatic or heterocyclic polyepoxide compounds .
  • suitable polyepoxides include the polyglycidyl ethers, which are prepared by reaction of epichlorohydrin or epibromohydrin with a polyphenol in the presence of alkali .
  • Suitable polyphenols therefor are, for example, resorcinol, pyrocatechol , hydroquinone , bisphenol A (bis (4-hydroxyphenyl) -2, 2-propane) , bisphenol F (bis (4-hydroxyphenyl) methane) , bis (4- hydroxyphenyl) -1, 1-isobutane, 4,4' -dihydroxybenzophenone, bis (4-hydroxyphenyl ⁇ -1 , 1-ethane , and 1,5-hydroxynaphthalene .
  • Other suitable polyphenols as the basis for the polyglycidyl ethers are the known condensation products of phenol and formaldehyde or acetaldehyde of the novolak resin-type.
  • polyglycidyl ethers of polyalcohols or diamines.
  • Such polyglycidyl ethers are derived from polyalcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2- propylene glycol, 1,4 -butylene glycol, triethylene glycol, 1, 5-pentanediol, 1, 6-hexanediol or trimethylolpropane .
  • polyepoxides are polyglycidyl esters of polycarboxylic acids, for example, reaction products of glycidol or epichlorohydrin with aliphatic or aromatic polycarboxylic acids, such as oxalic acid, succinic acid, glutaric acid, terephthalic acid or a dimeric fatty acid.
  • Other epoxides are derived from the epoxidation products of olefinically- unsaturated cycloaliphatic compounds or from natural oils and fats .
  • liquid epoxy resins derived by reaction of bisphenol A or bisphenol F and epichlorohydrin.
  • the epoxy resins that are liquid at room temperature generally have epoxy equivalent weights of from 150 to about 480.
  • the epoxy resins that are solid at room temperature may also or alternatively be used and are likewise obtainable from polyphenols and epichlorohydrin; particular preference is given to those based on bisphenol A or bisphenol F having a melting point of from 45 to 130 0 C, preferably from 50 to 80 0 C. They differ from the liquid epoxy resins substantially by the higher molecular weight thereof, as a result of which they become solid at room temperature.
  • the solid epoxy resins generally have an epoxy equivalent weight of _> 400.
  • the composition may contain from about 25 to about 55 weight percent (in one embodiment, from about 30 to about 50 weight percent) of epoxy resin.
  • the adhesive composition contains one or more polyurethanes .
  • the polyurethane may be any oligomeric or polymeric substance containing a plurality of urethane and/or urea
  • the urethane and urea linkages are typically formed by reaction of an active hydrogen-containing material such as a polyol (e.g., polyether polyol, polyester polyol, monomeric polyalcohol, polybutadiene polyol) or polyamine with an isocyanate (in particular, compounds containing two or more isocyanate groups per molecule) .
  • an active hydrogen-containing material such as a polyol (e.g., polyether polyol, polyester polyol, monomeric polyalcohol, polybutadiene polyol) or polyamine with an isocyanate (in particular, compounds containing two or more isocyanate groups per molecule) .
  • the polyurethane selected for used is an isocyanate-functionalized polyurethane prepolymer in which at least a portion of the isocyanate groups have been reacted or blocked.
  • the isocyanate groups of the prepolymer may be blocked or reacted with any suitable reactant such as an alcohol (e.g., a phenol), oxime, amine, lactam (e.g., caprolactam) , acetoacetate, malonate or the like.
  • the blocking groups remain on the polyurethane prepolymer when the adhesive composition is cured, but in other embodiments "de-blocking" takes place such that the polyurethane prepolymer is capable of reacting with other components of the adhesive composition when the composition is cured.
  • the polyurethane may be a acrylate- functionalized polyurethane such as those described in U.S. Pat. Nos. 3,297,745; 4,360,653; 4,390,662; 4,719,268; 4,486,582; 4,618,658; 5,334,654; and 5,700,891 which are hereby incorporated by reference in their entirety.
  • (Meth) acrylate-functionalized polyurethanes may comprise the reaction product of an isocyanate-terminated urethane prepolymer and an isocyanate-reactive acrylate and/or methacrylate .
  • Isocyanate terminated prepolymers are prepared by reacting a polyfunctional isocyanate, typically an aromatic diisocyanate, with a polyol, preferably a long chain hydroxyl-terminated polyether or polyester polyol, such as the ethylene and propylene oxide adducts of C 2 to C 4 polyalcohols, polytetramethylene glycol (polyTHF) , and polycaprolactone .
  • the molecular number average weight of the polyol should range from about 400 to 4000, preferably 700 to 2000.
  • Acrylate terminated urethane resins utilizing a polyol having a number average molecular weight of less than 1000 generally are extremely viscous.
  • the preferred isocyanate-terminated urethane prepolymer is prepared by any known means, for example, a 2000 raw polypropylene glycol may be reacted with an 80/20 2,4/2,6- toluenediisocyanate mixture. Any other polyisocyanate such as methylenediphenyldii ⁇ ocyanate (MDI) , isophoronediisocyanate, (IPDI) or paraphenylenediisocyanate (PPDI) is also suitable.
  • MDI methylenediphenyldii ⁇ ocyanate
  • IPDI isophoronediisocyanate
  • PPDI paraphenylenediisocyanate
  • (meth) acrylate-functionalized polyurethanes are hydroxy alkylacrylates and methacrylates and these include: hydroxyacrylates such as hydroxyethyl acrylate or methacrylate, hydroxypropyl acrylate or methacrylate, hydroxypentyl acrylate or methacrylate, 2 -hydroxyethyl acrylate, 2 -hydroxyethyl hexyl methacrylate, hydroxybutyl methacrylate and the like.
  • the ester portion of the acrylate or methacrylate is from a C 2 -C 8 alcohol. Mixtures of different (meth) acrylates may be used.
  • prepolymers having number average molecular weights of 250- 10,000, preferably 700-4000, and having glass transition temperatures below about 10 degrees C, preferably below about minus 10 degrees C.
  • the average functionality of these prepolymers is at least 2, preferably 2 to 6 and particularly preferably 2 to 3.
  • the terminal functional groups of the prepolymer are isocyanate-reactive and may be amino or hydroxyl or carboxyl or mercapto, preferably, hydroxyl .
  • Particularly preferred prepolymers include linear and branched polypropylene glycols having number average molecular weights about 700 to about 4000; linear and branched polytetrahydrofurans having number average molecular weights between about 700 and about 4000; linear and branched poly ⁇ 1, 2-buyleneoxide) having number average molecular weights between about 700 and about 4000; and hydroxyl- terminated polyesters having number average molecular weights between about 700 and about 4000;
  • polyisocyanates preferably diisocyanates or triisocyanates such as isophonoronediisocyanate, methylenediphenyldiisocyanate, toluenediisocyanate, hexamethylenediisocyanate, tetramethylxyly-lenediisocyanate, and the 1ike ; and
  • isocyanate-reactive acrylates or methacrylates preferably hydroxyacrylates or -methacrylates such as hydroxyethyl- acrylate, hydroxypropylacrylate, hydroxyethyImeth-aerylate, hydroxypropylmethacrylate , and the like.
  • Chain lengtheners such as diols and triols like 1,4 butanediol, 1, 1, 1-tritnethylolpropane, glycerol, 1,2,6- hexanetriol, pentaerythritol and the like optionally may be employed in combination with the polyol(s), preferably, from 0.01 to about 5% by weight.
  • triol chain lengtheners as described above, are added during this reaction and a suitable amount of polyisocyanate is used, branched NCO- tipped prepolymers are produced.
  • Diol chain lengtheners can be used to control the molecular weight of the resulting prepolymer.
  • This NCO- functional polymer is then reacted with the NCO-reactive acrylate or methacrylate to yield materials which are described for the purposes of this invention as (meth) acrylate-functionalized polyurethanes .
  • (Meth) acrylate-functionalized polyurethanes are also available from commercial sources such as, for example, the acrylate-functionalized polyurethanes sold under the tradename ANCAREZ by Air Products .
  • Polyurethanes suitable for use in the adhesive compositions of the present invention include the reaction products of isocyanate-terminated prepolymers and compounds having one or more active hydrogen-containing groups (e.g., hydroxyl, thiol and amino groups such as primary aliphatic, cycloaliphatic, heteroaromatic and araliphatic amino, secondary aliphatic, cycloaliphatic, heteroaromatic and araliphatic amino, alkyl amido, phenolic, benzyl alcohol, aminophenyl or benzylamino groups or the like, such as those described in U.S. Pat. Nos. 3,525,779; 3,636,133; 5,278,257; and 6,776,869; published U.S.
  • active hydrogen-containing groups e.g., hydroxyl, thiol and amino groups such as primary aliphatic, cycloaliphatic, heteroaromatic and araliphatic amino, secondary aliphatic, cycloaliphatic, heteroar
  • polyurethanes may or may not contain isocyanate-reactive end groups (e.g., active hydrogen-containing end groups) .
  • Polyurethanes of this type are also available commercially from Huntsman Advanced Materials (formerly Vantico) under the tradename RAM.
  • branched aromatic urethane polymers containing ether groups such as the products sold under the tradenames DESMOCAP HA and DESMOCAP 12A by Bayer Material Science (which have been described as 4-nonylphenol blocked isocyanate prepolymers or polypropyleneglycol/toluene diisocyanate prepolymers blocked with 4-nonylphenol ⁇ .
  • the polyurethane may also be an epoxy-functionalized polyurethane of the type disclosed in published U.S. applications US 2007-0066721 and US 2007-0105983, each of which is incorporated herein by reference in its entirety.
  • epoxy-functionalized polyurethanes may, for example, be prepared by reacting an isocyanate-functionalized polyurethane prepolymer with a hydroxy-functional!zed glycidyl ether.
  • the adhesive compositions of the present invention may contain up to about 20 weight % (e.g., about 0.1 to about 10 or about 2 to about S weight %) of polyurethane .
  • the weight ratio of plasticizer : polyurethane is typically from about 0.1:1 to about 10:1 or, in other embodiments, from about 0.3:1 to about 3:1.
  • the polyurethane selected for use has plasticizer and/or flexibilizing properties.
  • the polyurethane sold under the tradename DESMOCAP 2540 (which is described as a linear prepolymer based on TDI and polyalkylene glycol prepared using double metal cyanide catalysts, with the isocyanate groups being blocked) by Bayer Material Science could be suitable for such purposes.
  • Suitable plasticizers for use in the present invention include, for example, sulfonate plasticizers, phosphate ester plasticizers, sulfonamide plasticizers, glycerin triester plasticizers, dialkyl esters of aliphatic dicarboxylic acids, glycol esters of benzoic acid and the like.
  • the plasticizer is not a phthalate- containing plasticizer.
  • Illustrative sulfonate plasticizers include alkyl sulfonic acid esters of phenolic compounds such as the phenyl cresyl esters of pentadecyl sulfonic acid.
  • Suitable commercially available sulfonate plasticizers include the plasticizer sold by Bayer under the tradename MESAMOLL.
  • Phosphate ester plasticizers include the organic esters of phosphoric acid, such as, for example, phenolic esters of phosphoric acid, e.g., tricresyl phosphate, cresyl diphenyl phosphate, isopropylated triphenyl phosphate, 2-ethylhexyl diphenyl phosphate, isodecyl diphenyl phosphate, and triphenyl phosphate, as well as other triaryl phosphates and alkyl diaryl phosphates .
  • Other suitable phosphate plasticizers include, but are not limited to, tributoxyethyl phosphate, tributyl phosphate, and the like.
  • Suitable glycerin triester plasticizers include the compounds described in U.S. Pat. No. 6,652,774, incorporated herein by reference in its entirety.
  • Sulfonamide plasticizers may also be utilized, including, for example, aromatic sulfonamides such as N- (2 - hydroxypropyl) benzene sulfonamide (sold under the tradename UNIPLEX 225 by Unitex Chemical Co.), N-ethyl toluene sulfonamides, N- (n-butyl) benzene sulfonamide, N-cyclohexyl- p-toluenesulfonamide, and the like.
  • aromatic sulfonamides such as N- (2 - hydroxypropyl) benzene sulfonamide (sold under the tradename UNIPLEX 225 by Unitex Chemical Co.), N-ethyl toluene sulfonamides, N- (n-butyl) benzene sulfonamide, N-cyclohexyl- p-toluenesulfonamide, and the like.
  • plasticizers suitable for use in the present invention include C3-C20 dialkyl esters of aliphatic dicarboxylic acids such as adipic acid, e.g., dioctyl adipate, dibutyl adipate, di (2-ethylhexyl ⁇ adipate, diisononyl adipate, diisodecyl adipate, and di(heptyl, nonyl) adipate as well as glycol esters of benzoic acid such as dipropylene glycol dibenzoate and dipropylene glycol monobenzoate .
  • adipic acid e.g., dioctyl adipate, dibutyl adipate, di (2-ethylhexyl ⁇ adipate, diisononyl adipate, diisodecyl adipate, and di(heptyl, nonyl) adipate
  • the adhesive compositions of the present invention may contain, for example, up to about 20 weight percent total of plasticizer (e.g., about 0.1 to 10 or about 1 to about 8 weight percent)
  • the adhesive composition additionally contains one or more anti-oxidants .
  • anti-oxidants for purposes of this invention include phenolic (especially hindered phenolic) anti-oxidants such as, for example, the alkylated reaction products of phenols and dienes, such as the butylated reaction product of p-cresol and dicyclopentadiene sold by Eliokem under the tradename WINGSTAY L, and well as stearyl 3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate (sold under the tradename ANTIOXIDANT 1076 by Akrochem Corp.) .
  • phenolic (especially hindered phenolic) anti-oxidants such as, for example, the alkylated reaction products of phenols and dienes, such as the butylated reaction product of p-cresol and dicyclopentadiene sold by Eliokem under the tradename WINGSTAY L, and well as stearyl 3- (3 , 5-di-tert-but
  • the anti-oxidant (s) may be present in the adhesive composition at concentrations up to about 3 weight percent (e.g., from about 0.1 to about 2 weight %) .
  • the adhesive composition additionally contains one or more platy fillers such as mica, glass flakes, metal flakes, delaminated graphite, talc or clay ⁇ e.g., kaolin).
  • the mica is muscovite mica such as 4K mica in powder or ground form.
  • the mica particles may, for example, have a relatively high aspect ratio (e.g., from about 5 to about 15), a bulk density of from about 10 to about 20 lb/ft 3 , and/or a median particle diameter [D (V, 0.5), the size value of particles at which 50% of the sample is smaller and 50% is larger than this value, also known as the mass median diameter] of from about 10 to about 100 microns.
  • the composition may contain up to about 10 weight percent (e.g., from about 0.1 to about 3 weight percent ⁇ platy filler.
  • the surface of the platy filler may optionally be treated, for example, by reaction with a coupling agent such as a silane.
  • compositions of the present invention are preferably one-part or single-component compositions and are to be cured at elevated temperature, they also contain one or more curing agents (hardeners) capable of accomplishing cross-linking or curing of certain of the adhesive components when the adhesive is heated to a temperature well in excess of room temperature. That is, the hardener is activated by heating.
  • the hardener may function in a catalytic manner or, in preferred embodiments of the invention, participate directly in the curing process by reaction with one or more of the adhesive components.
  • thermally-activatable or latent hardeners for the adhesive compositions of the present invention, for example, guanidines, substituted guanidines, substituted ureas, melamine resins, guanamine derivatives, cyclic tertiary amines, aromatic amines and/or mixtures thereof.
  • the hardeners may be involved stoichiometrically in the hardening reaction; they may, however, also be catalyti- cally active.
  • substituted guanidines are methylguanidine, dimethylguanidine, trimethylguanidine, tetramethylguanidine , methylisobiguanidine, dimethylisobiguanidine, tetramethylisobiguanidine, hexamethylisobiguanidine, heptamethylisobiguanidine and, more especially, cyanoguanidine (dicyandiamide) .
  • suitable guanamine derivatives which may be mentioned are alkylated benzoguanamine resins, benzoguanamine resins or methoxymethylethoxymethylbenzoguanamine .
  • the selection criterion is, of course, the low solubility of those substances at room temperature in the resin system, so that solid, finely ground hardeners are preferred; dicyandiamide is especially suitable. Good storage stability of the composition is thereby ensured.
  • catalytically-active substituted ureas may be used. They are especially p-chlorophenyl-N, N-dimethylurea (monuron) , 3- phenyl-1, 1-dimethylurea ⁇ fenuron) or 3 , 4-dichlorophenyl-N,N- dimethylurea (diuron) .
  • catalytically active tertiary acryl- or alkyl-amines such as benzyldimethylamine , tris ⁇ dimethylamino) phenol, piperidine or piperidine derivatives
  • tertiary acryl- or alkyl-amines such as benzyldimethylamine , tris ⁇ dimethylamino) phenol, piperidine or piperidine derivatives
  • Various imidazole derivatives preferably solid imidazole derivatives, may also be used as catalytically-active accelerators.
  • Examples which may be mentioned are 2-ethyl-2- methylimidazole, N-butylimidazole, benzimidazole and N-C 1 to C 12 -alkylimidazoles or N-arylimidazoles .
  • Particular preference is given to the use of a combination of hardener and accelerator in the form of so-called accelerated dicyandiatnides in finely ground form. The separate addition of catalytically-active accelerators to the epoxy hardening system is thus not necessary.
  • the amount of curing agent utilized will depend upon a number of factors, including whether the curing agent acts as a catalyst or participates directly in crosslinking of the composition, the concentration of epoxy groups and other reactive groups in the composition, the desired curing rate and so forth.
  • the composition contains from about 0.5 to about 8 weight percent curing agent (s) .
  • Rubbpr particles especially rubber particles that have a core- shell structure and/or a relatively small average particle size (e.g., less than about 500 nm or less than about 200 nm) , are an additional component of the compositions of the present invention.
  • the rubber particles have a core-shell structure and an average particle size less than about 500 nm.
  • the rubber particles do not have a shell, but have an average particle size less than about 500 nm.
  • the rubber particles have a core- shell structure and an average particle size greater than about 500 nm .
  • the rubber particles are relatively small in size.
  • the average particle size may be from about 0.03 to about 2 microns or from about 0.05 to about 1 micron.
  • the rubber particles have an average diameter of less than about 500 nm.
  • the average particle size is less than about 200 nm.
  • the rubber particles may have an average diameter within the range of from about 25 to about 200 nm or from about 50 to about 150 nm.
  • Core-shell rubber particles generally have a core comprised of a polymeric material having elastomeric or rubbery properties (i.e., a glass transition temperature less than about 0 0 C, e.g., less than about -3O 0 C) surrounded by a shell comprised of a non-elastomeric polymeric material (i.e., a thermoplastic or thermoset/crosslinked polymer having a glass transition temperature greater than ambient temperatures, e.g., greater than about 50 0 C).
  • a polymeric material having elastomeric or rubbery properties i.e., a glass transition temperature less than about 0 0 C, e.g., less than about -3O 0 C
  • a non-elastomeric polymeric material i.e., a thermoplastic or thermoset/crosslinked polymer having a glass transition temperature greater than ambient temperatures, e.g., greater than about 50 0 C.
  • the core may be comprised of a diene homopolymer or copolymer (for example, a homopolymer of butadiene or isoprene, a copolymer of butadiene or isoprene with one or more ethylenically unsaturated monomers such as vinyl aromatic monomers, (meth) acrylonitrile, (meth) acrylates, or the like) while the shell may be comprised of a polymer or copolymer of one or more monomers such as (meth) acrylates (e.g., methyl methacrylate) , vinyl aromatic monomers (e.g., styrene) , vinyl cyanides (e.g., acrylonitrile), unsaturated acids and anhydrides (e.g., acrylic acid), (meth)acrylamides, and the like having a suitably high glass transition temperature.
  • a diene homopolymer or copolymer for example, a homopolymer of butad
  • the polymer or copolymer used in the shell may have acid groups that are crosslinked ionically through metal carboxylate formation (e.g., by forming salts of divalent metal cations) .
  • the shell polymer or copolymer could also be covalently crosslinked through the use of monomers having two or more double bonds per molecule.
  • the outer surface of the shell may be functionalized with groups such as carboxylic acid groups .
  • Other rubbery polymers may also be suitably be used for the core, including polybutylacrylate or polysiloxane elastomer (e.g., polydimethylsiloxane, particularly crosslinked polydimethylsiloxane) .
  • the rubber particle may be comprised of more than two layers (e.g., a central core of one rubbery material may be surrounded by a second core of a different rubbery material or the rubbery core may be surrounded by two shells of different composition or the rubber particle may have the structure soft core, hard shell, soft shell, hard shell) .
  • the rubber particles used are comprised of a core and at least two concentric shells having different chemical compositions and/or properties. Either the core or the shell or both the core and the shell may be crosslinked (e.g., ionically or covalently), as described, for example, in U.S. Pat. No. 5,686,509 (incorporated herein by reference in its entirety) .
  • the shell may be grafted onto the core.
  • the polymer comprising the shell may bear one or more different types of functional groups (e.g., epoxy groups) that are capable of interacting with other components of the compositions of the present invention.
  • the core will comprise from about 50 to about 95 percent by weight of the rubber particles while the shell will comprise from about 5 to about 50 percent by weight of the rubber particles.
  • core-shell rubbers are suitable for use in the present invention, for example: the core- shell particles available in powder form from Wacker Chemie under the tradename GENIOPERL, including GENIOPERL P22, P23, P52 and P53, which are described by the supplier as having crosslinked polysiloxane cores, epoxy- functionalized polymethylmethacrylate shells, polysiloxane content of about 65 weight percent, softening points as measured by DSC/DMTA of about 120 degrees C, and a primary particle size of about 100 nm, the core-shell rubber particles available from Rohm & Haas under the tradename PARALOID, in particular the PARALOID EXL 2600/3600 series of products, which are grafted polymers containing a polybutadiene core upon which is grafted a styrene/methylmethacrylate copolymer and having an average particle size of ca.
  • GENIOPERL including GENIOPERL P22, P23, P52 and P53, which are
  • the core-shell rubber particles sold under the tradename DEGALAN by Roehm GmbH or Roehm America, Inc. e.g., DEGALAN 4899F, which is reported to have a glass transition temperature of about 95 0 C
  • the core-shell rubber particles sold by Nippon Zeon under the tradename F351 e.g., Nippon Zeon under the tradename F351
  • the core-shell rubber particles sold by General Electric under the tradename BLENDEX e.g., General Electric under the tradename BLENDEX .
  • Rubber particles having a core-shell structure may be prepared as a raasterbatch where the rubber particles are dispersed in one or more epoxy resins such as a diglycidyl ether of bisphenol A.
  • the rubber particles typically are prepared as aqueous dispersions or emulsions.
  • Such dispersions or emulsions may be combined with the desired epoxy resin or mixture of epoxy resins and the water and other volatile substances removed by distillation or the like.
  • One method of preparing such masterbatches is described in more detail in European Patent Application EP 1632533, incorporated herein by reference in its entirety.
  • an aqueous latex of rubber particles may be brought into contact with an organic medium having partial solubility in water and then with another organic medium having lower partial solubility in water than the first organic medium to separate the water and to provide a dispersion of the rubber particles in the second organic medium.
  • This dispersion may then be mixed with the desired epoxy resin (s) and volatile substances removed by distillation or the like to provide the masterbatch.
  • Other methods for preparing masterbatches of rubber particles having a core- shell structure stably dispersed in an epoxy resin matrix are described in U.S. Pat. Nos . 4,778,851 and 6,111,015, each incorporated herein by reference in its entirety.
  • the rubber particles are stably dispersed in the epoxy resin matrix (i.e., the core- shell rubber particles remain as separated individual particles with little or no agglomeration of the particles or precipitation (settling) of the particles from the masterbatch as the masterbatch is aged by standing at room temperature.
  • the shell of the rubber particles may advantageously be functionalized to improve the stability of the masterbatch, although in certain embodiments the shell is non-functional!zed (contains no functional groups that react with any of the other components of the adhesive composition when that composition is cured) .
  • Particularly suitable dispersions of rubber particles having a core-shell structure in an epoxy resin matrix are available from Kaneka Corporation under the tradename "ACE MX" .
  • the core may be formed predominantly from feed stocks of dienes such as butadiene, (meth) acrylates, ethylenically unsaturated nitriles such as acrylonitrile, and/or any other monomers that when polymerised or copolymer!zed yield a polymer or copolymer having a low glass transition temperature.
  • the outer shells may be formed predominantly from feed stocks of (meth) acrylates such as methylmethacrylate, vinyl aromatic monomers such as styrene and/or ethylenically unsaturated halocarbons such as vinyl chloride and/or any other monomers that when polymerized or copolymerized yield a polymer having a higher glass transition temperature.
  • the core shell rubbers may have a particle size in the range of 0.07 to 10 microns, such as 0.1 to 5 microns.
  • the core shell rubber made in this way may be dispersed in an epoxy matrix or a phenolic matrix.
  • the matrix material preferably is liquid at room temperature.
  • epoxy matrices include the diglycidyl ethers of bisphenol A, F or S, or bisphenol, novalac epoxies, and cycloaliphatic epoxies .
  • phenolic resins include bisphenol-A based phenoxies .
  • the core- shell rubber particles may be present in the epoxy or phenolic matrix in an amount in the range of about 5 to about 50% by weight (about 15 to about 40% by weight) .
  • use of these core shell rubbers allows for toughening to occur in the formulation, irrespective of the temperature or temperatures used to cure the formulation. That is, because of the two phase separation inherent in the formulation due to the core shell rubber - as contrasted for instance with a liquid rubber that is miscible or partially miscible or even immiscible in the formulation and can solidify at temperatures different than those used to cure the formulation - there is a minimum disruption of the matrix properties, as the phase separation in the formulation is often observed to be substantially uniform in nature.
  • silicone elastomer core 100 nm and contain a crosslinked silicone elastomer core onto which an epoxy- functional acrylate copolymer has been grafted; the silicone elastomer core represents about 65 weight percent of the core- shell particle) , available from Wacker Chemie GmbH.
  • the composition may contain from about 5 to about 35 weight percent (in one embodiment, from about 15 to about 30 weight percent) rubber particles having a core-shell structure.
  • the core- shell rubber particles may differ, for example, in particle size, the glass transition temperatures of their respective cores and/or shells, the compositions of the polymers used in their respective cores and/or shells, the functionalization of their respective shells, and so forth.
  • a portion of the core- shell particles may be supplied to the adhesive composition in the form of a masterbatch wherein the particles are stably dispersed in an epoxy resin matrix and another portion may be supplied to the adhesive composition in the form of a dry powder (i.e., without any epoxy resin or other matrix material ⁇ .
  • the adhesive composition may be prepared using both a first type of core-shell particles in dry powder form having an average particle diameter of from about 0.1 to about 0.5 microns and a second type of core-shell particles stably dispersed in a matrix of liquid bisphenol A diglycidyl ether at a concentration of from about 5 to about 50 weight % having an average particle diameter of from about 25 to about 200 nm.
  • the weight ratio of first type: second type core-shell rubber particles may be from about 1.5:1 to about 0.3:1, for example.
  • the rubber particles do not have shells that encapsulate a central core.
  • the chemical composition of the rubber particles is essentially uniform throughout each particle.
  • the outer surface of the particle may be modified by reaction with a coupling agent, oxidizing agent or the like so as to enhance the ability to disperse the rubber particles in the adhesive composition (e.g., reduce agglomeration of the rubber particles, reduce the tendency of the rubber particles to settle out of the adhesive composition) . Modification of the rubber particle surface may also enhance the adhesion of the epoxy resin matrix to the rubber particles when the adhesive is cured.
  • the rubber particles may alternatively be irradiated so as to change the extent of cros ⁇ linking of the polymer (s) constituting the rubber particles in different regions of the particle.
  • the rubber particles may be treated with gamma radiation such that the rubber is more highly crosslinked near the surface of the particle than in the center of the particle.
  • the polymers suitable for use in preparing rubber particles that do not have shells may be selected from any of the types of polymers previously described as suitable for use as the core of core-shell rubber particles.
  • the rubber particles thus may be comprised of a polymeric material having elastomeric or rubbery properties (i.e., a glass transition temperature less than about O 0 C, e.g., less than about -30 0 C) .
  • Illustrative suitable polymers include, but are not limited to, diene homopolymers and copolymers and polysiloxanes .
  • the polymer may contain functional groups such as carboxylate groups, hydroxyl groups or the like and may have a linear, branched, crosslinked, random copolymer or block copolymer structure.
  • Rubber particles that do not have core-shell structures but are nonetheless suitable for use in the present invention are available from commercial sources.
  • the following rubber particles supplied by Eliokem, Inc. may be used: NEP R0401 and NEP R401S (both based on acrylonitrile/butadiene copolymer) ; NEP R0501 (based on carboxylated acrylonitrile/butadiene copolymer; CAS 9010-81- 5) ; NEP RO60IA (based on hydroxy-terminated polydimethylsiloxane; CAS 70131-67-8) ; and NEP R0701 and NEP 0701S (based on butadiene/styrene/2-vinylpyridine copolymer,- CAS 25053-48-9 ⁇ .
  • Rubber particles that have been treated with a reactive gas or other reagent to modify the outer surfaces of the particles by, for instance, creating polar groups ⁇ e.g., hydroxyl groups, carboxylic acid groups) on the particle surface, are also suitable for use in the present invention.
  • Illustrative reactive gases include, for example, ozone, C 12 , F 2 , O 2 , SO 3 , and oxidative gases.
  • Suitable surface modified rubber particles are also available from commercial sources, such as the rubbers sold under the tradename "Vistamer” by Exousia Corporation.
  • the particles do not have a core-shell structure, it will generally be preferred that the particles have a relatively small average particle size.
  • the rubber particles have an average diameter of less than about 500 nm, In other embodiments, the average particle size is less than about 200 nm.
  • the rubber particles may have an average diameter within the range of from about 25 to about 200 nm or from about 50 to about 150 nm.
  • the rubber particles are initially provided in dry form, it may be advantageous to ensure that such particles are well dispersed in the adhesive composition prior to curing the adhesive composition. That is, agglomerates of the rubber particles are preferably broken up so as to provide discrete individual rubber particles, which may be accomplished by intimate and thorough mixing of the dry rubber particles with other components of the adhesive composition.
  • dry rubber particles may be blended with epoxy resin and milled or melt compounded for a length of time effective to essentially completely disperse the rubber particles and break up any agglomerations of the rubber particles .
  • the weight ratio of epoxy resin: combined weight of auxiliary impact modifier/toughening agent (e.g., epoxy-based prepolymer) and rubber particles having a core-shell structure is from about 0.25:1 to about 2.5:1 or from about 0.5:1 to about 1.5:1.
  • the weight ratio of auxiliary impact modifier/toughening agent e.g., epoxy-based prepolymer: rubber particles is typically from about 3 : 1 to about 0.2:1 or from about 2 : 1 to about 0.5:1.
  • auxiliary impact modifier/toughening agent contains one or more functional groups capable of participating in the reaction of the epoxy resin component when the adhesive composition is cured. Suitable reactive functional groups include epoxy groups, carboxylic acid groups, and the like.
  • the epoxy-based prepolymers obtained by reacting one or more amine-terminated polymers such as amine-terminated polyethers or amino silane capped polymers with one or more epoxy resins represent a particularly preferred class of auxiliary impact modifiers/toughening agents.
  • the epoxy resins useful for such purpose may be selected from among the epoxy resins described hereinabove, with particular preference being given to the diglycidyl ethers of polyphenols such as bisphenol A and bisphenol F (for example, having epoxy equivalent weights of from about 150 to about 1000) . Mixtures of solid and liquid epoxy resins may be suitably employed.
  • linear amine-terminated polyoxyethylene ethers having the formula :
  • n preferably is 17 to 27.
  • n preferably is 5 to 100. They are obtainable from Huntsman Chemical under the trade name JEFFAMINE ® (D- series) .
  • the number average molecular weight of such amine- terminated polyoxypropylene ethers may vary, for example, from about 300 to about 5000.
  • x, y and z independently of each other are 1 to 40 and x+y+z is preferably >6.
  • Representative examples of these trifunctional compounds are available commercially from Huntsman Chemical under the tradename Jeffamine ® (T- ⁇ eries) Such substances typically have number average molecular weights of from about 300 to about 6000.
  • amino silane capped polymers such as those that may be embraced by the general formula: R 1 R 3 R 5 HN —Si —X-Si -NHR 6
  • R 1 , R 2 , R 3 and R 4 may be the same or different and are selected from hydrogen, hydroxyl, alkyl, alkoxy, alkenyl, alkenyloxy, aryl , and aryloxy; R 5 and R 6 may be the same or different and are selected from hydrogen, alkyl and aryl; and X is selected from alkylene, alkenylene, arylene, with or without interruption by a heteroatom; polyurethanes ; polyethers,- polyesters; polyacrylates ; polyamides,- polydienes; polysiloxanes ; and polyimides .
  • amine-terminated siloxanes may be used, such as diamino siloxanes embraced by:
  • R 7 PIN R 1 where R 11 and R 12 may be the same or different and are selected from alkylene, arylene, alkylene oxide, arylene oxide, alkylene esters, arlyene esters, alkylene amides or arylene amides; R 9 and R 10 may be the same or different and are selected from alkyl or aryl; R 7 and R 8 are as defined above and n is 1-1,200.
  • Wacker Silicones offers commercially a line of amino-functional silicone fluids designated as L650, L651, L653, L654, L655 and L656, and an amino- functional polydimethylsiloxane under the tradename WACKER FINISH WR 1600 that may be useful herein.
  • amino-functionaIized silanes or siloxanes useful in forming the adduct include materials available for purchase from Degussa's Sivento division, such as a proprietary aminofunctional silane composition (called DYNASYLAN ® 1126) , an oligomeric diaminosilane system (called DYNASYLAN ® 1146) , N-vinylbenzyl-N ⁇ -aminoethyl -e-aminopropylpolysiloxane (DYNASYLAN ® 1175), N- (n-butyl) -3 -aminopropyltrimethoxysilane (DYNASYLAN ® 1189) , a proprietary aminofunctional silane composition (called DYNASYLAN ® 1204), N- (2 -aminoethyl) -3- aminopropylmethyldimethoxysilane (DYNASYLAN ® 1411) , 3- aminopropylmthyldiethoxysilane ⁇ DY
  • the epoxy-based prepolymer component preferably is initially prepared in a first stage. To this end, preferably, the epoxy resins are reacted with the amine-terminated polyether c) in the desired ratio. The reaction preferably is carried out at high temperature, preferably at 90 to 130 0 C, for example at approximately 12O 0 C, for a duration of, e.g., three hours.
  • tougheners or impact modifiers known in the epoxy adhesive art may be used in addition to, or as a substitute for, the aforementioned epoxy-based prepolymers derived by reaction of amine-terminated polyethers with epoxy resins.
  • such tougheners and impact modifiers are characterized by having glass transition temperatures below about 0 0 C, preferably below about -30 0 C, even more preferably below about -50 0 C.
  • Examples of such tougheners and impact modifiers include, but are not limited to:
  • epoxy-reactive copolymers of conjugated dieres such as butadiene (especially epoxy-reactive copolymers of butadiene with relatively polar comonomers such as (meth) acrylonitrile, (meth) acrylic acid, or alkyl acrylates, e.g., carboxyl -terminated butadiene-nitrile rubbers, such as the products available commercially from Noveon under the trade name HYCAR) with epoxy resins (as described, for example, in U.S. Patent Application Publication Nos . US 2003/0196753 and US 2005-0070634 and U.S. Pat. No.
  • adducts of anhydrides e.g., unsaturated anhydrides such as maleic anhydride
  • diene polymers e.g., liquid 1,4-cis polybutadienes
  • number average molecular weights between about 1000 and about 5000, including for example, the adducts sold under the tradename POLYVEST by Degussa Corporation, as well as further reaction products of such adducts with epoxy resins
  • polyesters including, for example, amorphous, crystalline and/or semi-crystalline polyesters, including saturated polyesters, prepared by condensation of aliphatic and/or aromatic dicarboxylic acids (or the corresponding alkyl esters or anhydrides with diols having a chain length of C2 to C20, the polyesters being of medium molecular weight (e.g., about 1000 to about 20,000 number average molecular weight) , such as the polyesters sold under the tradename DYNACOLL by Degussa Corporation, and including polyesters functional!zed with carboxylic acid and/or hydroxy1 endgroups, as well as adducts of such functionalized polyesters with epoxy resins;
  • medium molecular weight e.g., about 1000 to about 20,000 number average molecular weight
  • adducts of dimeric fatty acids with epoxy resins including, for example, the adducts sold under the tradename EPON 872 by Resolution Performance Products, the adducts sold under the tradename HYPOX DA323 (formerly ERISYS EMDA 3-23) by CVC Specialty Chemicals, as well as those adducts described in U.S. Pat. No. 5,218,063, incorporated herein by reference in its entirety) ;
  • adducts of hydroxyl-containing triglycerides e.g., castor oil
  • epoxy resins including, for example, the adducts sold under the tradename HELOXY 505 by Resolution Performance Products
  • adducts of polysulfides with epoxy resins including, for example, the adducts sold under the tradename THIOPLAST EPS 350 by Akzo Nobel;
  • block copolymers wherein at least one polymeric block of the copolymer has a glass transition temperature below 2O 0 C (preferably below 0 0 C or below -3O 0 C or below -50 0 C) and at least one polymeric block of the copolymer has a glass transition temperature above 20 0 C (preferably above 50 0 C or above 7O 0 C) , in particular block copolymers containing a polystyrene block, a 1, 4-polybutadiene block (preferably having a glass transition temperature below about -60 degrees C) and a polymethylmethacrylate block ⁇ preferably, having a highly, i.e., >80%, syndiotactic structure), such as the SBM copolymers made by living polymerization methods using nitroxide initiator (such as the methods described in U.S.
  • epoxy-terminated polyethers such as polymers of alkylene oxides like ethylene oxide, propylene oxide or mixtures thereof that have been functionalized with epoxy groups, including by reacting the hydroxy groups of a polyalkylene glycol with epichlorohydrin;
  • phenol-terminated and aminophenyl-terminated products produced by reacting a stoichiometric excess of a carboxylic anhydride or dianhydride with a diamine or polyamine and then further reacting the excess carboxylic anhydride or carboxylic acid groups with at least one polyphenol or aminophenol, as described, for example, in published U.S. application 2004-0181013, incorporated herein by reference in its entirety.
  • auxiliary impact modifiers/toughening agents may be used.
  • the total amount of auxiliary impact modifier/toughening agent in the curable compositions of the present invention ' may vary substantially but typically is up to about 40 weight percent, e.g. from about 5 to about 25 weight percent.
  • the composition typically may contain from about 5 to about 30 weight percent (in one embodiment, from about 10 to about 25 weight percent) of such epoxy-based prepolymer.
  • one or more reaction products of epoxy resins and compounds containing chelating functional groups (herein called “chelate-modified epoxy resins") are added to the composition.
  • Such reaction products include those substances commonly referred to in the art as "chelate epoxies” or “chelating epoxy resins” .
  • the chelating functional groups include those functional groups capable of forming chelate bonds with divalent or polyvalent metal atoms, either by themselves or in cooperation with other functional groups positioned on the same molecule.
  • Suitable chelating functional groups include, for example, phosphorus- containing acid groups (e.g., -PO(OH) 2 ), carboxylic acid groups (-CO 2 H), sulfur-containing acid groups (e.g., -SO 3 H), amino groups, and hydroxyl groups (particularly hydroxyl groups adjacent to each other on aromatic rings) .
  • reaction products may be carried out by methods known in the art such as, for example, those methods described in U.S. Patent Nos . 4,702,962 and 4,340,716, European Patent No. EP 342 035 and Japanese Patent Document Nos. JP 58-063758 and JP 58-069265, each of which is incorporated herein by reference in its entirety.
  • Reaction products of epoxy resins and compounds containing chelating functional groups are also available from commercial sources such as, for example, the ADEKA Resins EP-49-10N, EP-49-55C, EP-49-10, EP-49-20, EP-49-23, and EP-49-25 sold by Asahi Denka.
  • the composition may contain up to about 8 weight percent (e.g. from about 0.1 to about 3 weight percent) of such chelate-modified epoxy resins.
  • compositions of the present invention may also be used in the compositions of the present invention to help enhance the adhesion of the cured adhesive to a substrate surface, including, for example, the adhesion promoters described in U.S. Patent Application Publication No. 2005- 0129955, incorporated herein by reference in its entirety.
  • adhesion promoters are also suitable for use as adhesion promoters.
  • acetoacetate-functionalized modifying resins sold by King Industries under the brand name K-FLEX XM-B301.
  • the inventive compositions may, in addition to the aforementioned platy fillers, also contain known fillers such as the various ground or precipitated chalks, quartz powder, alumina, non-platy clays, dolomite, carbon fibers, glass fibers, polymeric fibers, titanium dioxide, fused silica, carbon black, calcium oxide, calcium magnesium carbonates, barite and, especially, silicate-like fillers of the aluminum magnesium calcium silicate type, for example wollastonite and chlorite.
  • the compositions of the present invention may contain from about 0.5 to about 10 weight percent of fillers.
  • the composition additionally contains one or more expanding agents (sometimes referred to in the art as blowing agents) .
  • expanding agents sometimes referred to in the art as blowing agents.
  • the expandable properties of the resulting adhesive are particularly useful in applications where the complete filling of a gap or cavity in a part or member is critical in order to maintain maximum structural integrity of the part or member.
  • the foamed cured adhesive has improved fracture toughness, thereby imparting impact resistance to the assembly.
  • the expanding agent is preferably a latent expanding agent which causes expansion or foaming of the adhesive only when heated to a temperature significantly above room temperature (typically, a temperature which is in the range at which curing of the adhesive is also initiated) .
  • Expandable microspheres generally comprise small diameter polymeric shells or bubbles which encapsulate one or more volatile substances such as light hydrocarbons or halocarbons .
  • the outer shells are usually thermoplastic in character to permit softening and expansion of the microspheres when heated due to volatilization of the substances trapped within the shells.
  • the polymers used in the shells may be linear, branched, or cross-linked and may be comprised of, for example, acrylic resins, styrenic resins, polyvinylidene chloride, nitrile polymers, and the like.
  • the average particle size of the expandable microspheres is in the range of from about 5 to about 100 microns.
  • Suitable expandable microspheres are commercially available under the trademark names DUALITE and EXPANCEL from Henkel Corporation and Casco Nobel, respectively.
  • hollow glass microspheres are present in the composition.
  • Commercially available hollow glass microspheres include the materials sold by Minnesota Mining & Manufacturing under the trademark SCOTCHLITE, with suitable grades including those available under the designations B38, CIS, K20 and VS 5500.
  • the glass microspheres preferably have diameters in the range of from about 5 to 200 micrometers and/or densities of from about 0.3 to about 0.5 g/cc .
  • the composition may contain from about 0.5 to about 5 weight percent of hollow glass microspheres.
  • the adhesive compositions according to the present invention may also contain other common adjuvants and additives, such as plasticizers, reactive and/or non-reactive diluents, flow auxiliaries, coupling agents (e.g., silanes) , adhesion promoters, wetting agents, tackifiers, flame retardants, thixotropic and/or rheology control agents, ageing and/or corrosion inhibitors, stabilizers and/or coloring pigments.
  • other common adjuvants and additives such as plasticizers, reactive and/or non-reactive diluents, flow auxiliaries, coupling agents (e.g., silanes) , adhesion promoters, wetting agents, tackifiers, flame retardants, thixotropic and/or rheology control agents, ageing and/or corrosion inhibitors, stabilizers and/or coloring pigments.
  • coupling agents e.g., silanes
  • adhesion promoters wetting agents
  • the composition includes a reactive diluent such as a mono-epoxide (e.g., monoglycidyl ethers of alkyl- and alkenyl-substituted phenols) .
  • a reactive diluent such as a mono-epoxide (e.g., monoglycidyl ethers of alkyl- and alkenyl-substituted phenols) .
  • the composition contains up to about 10 weight percent (e.g., from about 0.1 to about 5 weight percent) reactive diluent.
  • the inventive composition is suitable for adhering together parts made of different materials, including, for example, wood, metal, coated or pretreated metal, plastic, filled plastic, thermoset materials such as sheet molding compound and fiberglass and the like.
  • the substrates to be joined using the adhesive may be the same as or different from each other. It is preferably used for the gluing of metal parts and particularly for the gluing of steel sheets such as cold rolled steel sheets. These can also be electro-galvanized, hot-dip galvanised and/or zinc/nickel-coated steel sheets, for example.
  • the composition is especially useful for bonding substrates having surfaces contaminated with oily substances, as good adhesion is attained despite such contamination.
  • the inventive composition can be applied to a substrate surface by any technique known in the art.
  • it can be applied by extrusion from a robot in bead form onto the substrate or by mechanical application methods such as a caulking gun, or any other manual application means, and can also be applied using a swirl or streaming technique.
  • the swirl and streaming techniques utilize equipment well known in the art such as pumps, control systems, dosing gun assemblies, remote dosing devices and application guns.
  • the adhesive is applied to one or both of the substrates to be joined.
  • the substrates are contacted such that the adhesive is located between the substrates to be bonded together.
  • the adhesive composition is subjected to heating to a temperature at which the heat curable or latent curing agent initiates cure of the epoxy resin composition.
  • the adhesive is formulated so as to function as a hot melt; that is, an adhesive which is solid at room temperature, but capable of being converted to a pumpable or flowable material when heated to a temperature above room temperature.
  • the composition of this invention is formulated to be capable of being flowed or pumped to the work site at ambient temperatures or slightly above since, in most applications, it is preferable to ensure that the adhesive is heated only up to a temperature at which the latent curing agent is not yet activated.
  • the melted composition may be applied directly to the substrate surface or may be allowed to flow into a space separately the substrates to be joined, such as in a hem flanging operation.
  • the composition is formulated (by inclusion of a finely divided thermoplastic or by use of multiple curatives having different activation temperatures, for example) such that the curing process proceeds in two or more stages (partial curing at a first temperature, complete curing at a second, higher temperature) .
  • the two parts are joined together, preferably immediately after deposition of the adhesive mass, thereby provisionally bonding the two parts to each other .
  • the resultant bond preferably already has sufficient strength so that the still uncured adhesive is not readily washed out, as might otherwise occur, for example, if the metal sheets which are provisionally bonded to each other are treated for de-greasing purposes in a wash bath and then in a phosphating bath.
  • the composition is preferably finally cured in an oven at a temperature which lies clearly above the temperature at which the composition was applied to the parts to be bonded and at or above the temperature at which the curing agent and/or accelerator and/or latent expanding agent ⁇ if present) are activated ⁇ i.e., in the case of the hardener, the minimum temperature at which the curing agent becomes reactive towards the other components of the adhesive; in the case of the expanding agent, the minimum temperature at which the expanding agent causes foaming or expansion of the adhesive) .
  • Curing preferably takes place at a temperature above 15O 0 C, for example at 160 to 22O 0 C, for about 10 to about 120 minutes.
  • the adhesive compositions according to the present invention may be used as casting resins in the electrical or electronics industry or as die attach adhesives in electronics for bonding components to printed circuit boards. Further possible applications for the compositions are as matrix materials for composites, such as fiber-reinforced composites.
  • One particularly preferred application for the adhesives according to the present invention is the formation of structural bonds in vehicle construction such as in hem flanges and the like.
  • the adhesive may be utilized to form structural foams which serve to stiffen and reinforce cavities, gaps, structural members and the like.
  • the composition may be supported or contained within a carrier or receptacle or the like so as to position or orient the adhesive such that it expands in one or more particular directions when heated to induce curing and foaming.
  • the composition thus is particularly useful in filling irregularly shaped spaces, as the composition will expand so as to come into contact with a greater portion of the substrate surfaces in the vicinity of the composition than would occur if no expanding agent was present.
  • the foamed, cured composition stiffens an ⁇ 5/or increases the energy absorption capacity of vehicle cavities and structural members .
  • a series of adhesive compositions was prepared using the components listed in Table 1 (the amounts of each component being given as weight percent of the total composition) in addition to the following components used in the same amount in each example : 41.00 wt. % Kaneka MX156 epoxy resin/core-shell rubber masterbatch (33 wt . % core- shell rubber particles; Kaneka
  • Adeka Resin EP-49-10N ⁇ epoxy equivalent weight 225; 100% solids; Asahi Denka Kogyo) ;
  • the components were mixed in a SPEEDMIXER mixer (FlackTek, Inc.) for up to 3 minutes, with the resulting adhesive composition then being de-aired under a vacuum of at least 25 psi for 25 minutes.
  • Coupons for t-peel testing had 75 mm overlay and a width of 20 mm and were pulled using an Instron tester at a speed of 50 mm/min. The average load at plateau was used to calculate peel strength. Coupons for impact peel testing having ISO 11343 test geometry (30 mm overlay, 20 mm width) were subjected to 90 J impact load at a drop weight speed of 2 m/s. Impact peel strength was measured at average impact load at plateau using an Instron Dynatup 9250 HV impact tester. The test results obtained are shown in Table 1. The composition of Example 6 was found to exhibit a higher t-peel strength and a higher degree of cohesive failure than the compositions of Examples 1-5, while still providing high impact peel resistance.
  • Example 6 showed adhesive failure, which is unacceptable for advanced structural bonding applications. Without wishing to be bound by theory, it is believed that the superior properties achieved in the Example 6 composition may be attributed to the use of a combination of a polyurethane and a phosphate ester plasticizer .
  • An adhesive composition was prepared containing the following components: 53.66 wt. % epoxy resin/core-shell masterbatch (Kaneka
  • MX156 containing 25 wt. % core- shell rubber particles
  • Two adhesive compositions were prepared using the following components (the amounts of each component being given as weight percent of the total composition) in addition to 5.00 wt. % of a polyurethane (Example 8 used DY965 CH polyurethane sold by Huntsman Advanced Materials and believed to be made in accordance with Example 16 of U.S.
  • Example 9 used ANCAREZ 2364, an acrylate functionalized polyurethane sold by Air Products ⁇ : 41.00 wt. % Kaneka MX156 epoxy resin/core-shell rubber masterbatch containing 33 wt. % core- shell rubber particles,-
  • Example 10 An additional adhesive composition (Example 10) was prepared in accordance with Example 9, except that the amount of epoxy resin (EPON 828 or DER 331) was reduced to 9.90 wt. %, the amount of ANCAREZ 2364 polyurethane was reduced to 3.00 wt. %, the amount of AMICURE CG1200 dicyandiamide was reduced to 4.40 wt. % and tricresyl phosphate (5.75 wt. %) and WINGSTAY L anti-oxidant (0.50 wt . %) were added.
  • epoxy resin EPON 828 or DER 3311
  • ANCAREZ 2364 polyurethane was reduced to 3.00 wt. %
  • the amount of AMICURE CG1200 dicyandiamide was reduced to 4.40 wt. % and tricresyl phosphate (5.75 wt. %) and WINGSTAY L anti-oxidant (0.50 wt . %) were added.
  • Adhesive compositions were prepared based on the following components :
  • Examples 11-13 also included 6 pbw of a blocked polyurethane prepolymer, while Examples 14-16 also included 8 pbw of this component .
  • TPP triphenylphosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This invention relates to compositions useful as adhesives and more particularly to the preparation of epoxy-based adhesive composition with improved impact resistance and good adhesion to oily metal substrates.

Description

CURABLE EPOXY RESIN-BASED ADHESIVE COMPOSITIONS
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
This invention relates to compositions useful as adhesives and more particularly to the preparation of epoxy-based adhesive compositions with improved impact resistance and/or improved adhesion to oily metal substrates.
BRIEF DISCUSSION OF THE RELATED ART
Numerous compositions and processes are described in the art for making and using a wide variety of epoxy-based compositions and other resins and additives in an effort to improve the expansion, impact resistance and other key properties of adhesives useful in adhering, filling and making composite structures. For example, patents which describe components for the formulation of adhesive compositions and the use of such compositions to adhere various substrates to each other and to provide structural reinforcement include U.S. Patent Nos . 5,290,857, 5,686,509, 5,334,654, 6,015,865, 5,278,257, 6,884,854, and 6,776,869 and U.S. Patent Application Publication No. 2005-0022929.
For advanced structural adhesive operations such as vehicle assembly, adhesives are required which provide broad cure schedules, stiffness improvement, weld reduction and energy/management. In particular, it would be highly desirable to develop heat-curable structural adhesives that not only have these characteristics but also are capable of forming strong bonds to metal surfaces contaminated with oily substances (especially surfaces comprised of cold rolled steel, which has the advantage of being significantly less expensive than other types of metals that could be used in vehicle construction) .
In particular, it is known that the use of core-shell rubber particles that are stably dispersed in an epoxy resin matrix and that are nano-sized (e.g., about 25 to about 200 ran) are capable of improving the impact properties of epoxy-based adhesives. However, such materials tend to interfere with the ability of the cured adhesive to bond strongly with an oil-contaminated metal surface.
SUMMARY OF THE INVENTION
We have discovered that unexpectedly improved adhesive formulations can be prepared by admixing epoxy resin, rubber particles (preferably having a core-shell structure and/or an average particle size of less than 500 run) , at least one additive selected from the group consisting of polyurethanes, platy fillers, and anti-oxidants, at least one plasticizer (e.g., sulfonate plasticizers, phosphate ester plasticizers) , and at least one latent curing agent capable of being activated by heating. Optionally, such compositions also contain chelate-modified epoxy resin, auxiliary impact modifiers/toughening agents, fillers other than mica (e.g., calcium oxide), thixotropic agents (e.g., fumed silica, mixed mineral thixotropes) , or other adjuvants. When applied to a substrate or carrier and cured by heating, the adhesive results in a product capable of forming strong bonds to oil-contaminated metal surfaces while simultaneously exhibiting good impact toughness and/or impact resistance.
DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION
PARTICULAR EMBODIMENTS
In one preferred embodiment of the invention, the adhesive composition is comprised of at least one epoxy resin {especially a diglycidyl ether of a polyphenol such as bisphenol A) , at least one type of core-shell rubber particles, at least one plasticizer (especially a phosphate ester plasticizer) , at least one polyurethane (especially a reaction product of an isocyanate-terminated prepolymer and a compound having one or more active hydrogen-containing groups such as hydroxy1 and amino groups, e.g., phenolic, benzyl alcohol, aminophenyl or benzylamino groups, as described for example in U.S. Pat. No. 5,278,257), at least one epoxy-based prepolymer obtained by reacting one or more amine-terminated polymers such as an amine-terminated polyether with one or more epoxy resins, and at least one heat-activated latent curing agent.
In another preferred embodiment of the invention, the adhesive composition is comprised of at least one epoxy resin (especially a diglycidyl ether of a polyphenol such as bisphenol A) , at least one type of core-shell rubber particles, plasticizer (especially a sulfonate plasticizer), at least one epoxy-based prepolymer obtained by reacting one or more amine-terminated polymers such as an amine-terminated polyether with one or more epoxy resins, mica and/or talc, at least one anti-oxidant (especially a hindered phenol antioxidant) and at least one heat-activated latent curing agent .
In still another preferred embodiment of the invention, the adhesive composition is comprised of at least one epoxy resin (especially a diglycidyl ether of a polyphenol such as bisphenol A) , at least one type of core-shell rubber particles, plasticizer (especially a phosphate ester plasticizer) , at least one polyurethane (especially an acrylate-functionalized polyurethane) , at least one epoxy- based prepolymer obtained by reacting one or more amine- terminated polymers such as an amine-terminated polyether with one or more epoxy resins, at least one anti-oxidant (especially a hindered phenol anti-oxidant) and at least one heat-activated latent curing agent.
In another embodiment, the adhesive composition is comprised of at least one epoxy resin (especially a diglycidyl ether of a polyphenol such as bisphenol A) , core- shell rubber particles having an average particle size of from 50 to 250 nm and stably dispersed in a liquid epoxy resin matrix, at least one polyurethane, at least one phosphate ester plasticizer, and at least one platy filler (in particular, mica and/or talc} . Such formulations can attain particular strong adhesion to cold rolled steel while simultaneously also displaying superior impact properties. EPOXY RESINS
In general, a large number of polyepoxides having at least about two 1,2-epoxy groups per molecule are suitable as epoxy resins for the compositions of this invention. The polyepoxides may be saturated, unsaturated, cyclic or acyclic, aliphatic, alicyclic, aromatic or heterocyclic polyepoxide compounds . Examples of suitable polyepoxides include the polyglycidyl ethers, which are prepared by reaction of epichlorohydrin or epibromohydrin with a polyphenol in the presence of alkali . Suitable polyphenols therefor are, for example, resorcinol, pyrocatechol , hydroquinone , bisphenol A (bis (4-hydroxyphenyl) -2, 2-propane) , bisphenol F (bis (4-hydroxyphenyl) methane) , bis (4- hydroxyphenyl) -1, 1-isobutane, 4,4' -dihydroxybenzophenone, bis (4-hydroxyphenyl} -1 , 1-ethane , and 1,5-hydroxynaphthalene . Other suitable polyphenols as the basis for the polyglycidyl ethers are the known condensation products of phenol and formaldehyde or acetaldehyde of the novolak resin-type.
Other polyepoxides that are in principle suitable are the polyglycidyl ethers of polyalcohols or diamines. Such polyglycidyl ethers are derived from polyalcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2- propylene glycol, 1,4 -butylene glycol, triethylene glycol, 1, 5-pentanediol, 1, 6-hexanediol or trimethylolpropane .
Other polyepoxides are polyglycidyl esters of polycarboxylic acids, for example, reaction products of glycidol or epichlorohydrin with aliphatic or aromatic polycarboxylic acids, such as oxalic acid, succinic acid, glutaric acid, terephthalic acid or a dimeric fatty acid. Other epoxides are derived from the epoxidation products of olefinically- unsaturated cycloaliphatic compounds or from natural oils and fats .
Particular preference is given to the liquid epoxy resins derived by reaction of bisphenol A or bisphenol F and epichlorohydrin. The epoxy resins that are liquid at room temperature generally have epoxy equivalent weights of from 150 to about 480.
The epoxy resins that are solid at room temperature may also or alternatively be used and are likewise obtainable from polyphenols and epichlorohydrin; particular preference is given to those based on bisphenol A or bisphenol F having a melting point of from 45 to 1300C, preferably from 50 to 800C. They differ from the liquid epoxy resins substantially by the higher molecular weight thereof, as a result of which they become solid at room temperature. The solid epoxy resins generally have an epoxy equivalent weight of _> 400.
Typically, the composition may contain from about 25 to about 55 weight percent (in one embodiment, from about 30 to about 50 weight percent) of epoxy resin.
POLYURETHANES
In accordance with one aspect of this invention, the adhesive composition contains one or more polyurethanes . The polyurethane may be any oligomeric or polymeric substance containing a plurality of urethane and/or urea
" O ™* linkages and one or more "soft" (elastomeric) segments having a glass transition temperature less than room temperature (e.g., less than about 0 0C, less than about -20 0C, or less than about -40 0C) . The urethane and urea linkages are typically formed by reaction of an active hydrogen-containing material such as a polyol (e.g., polyether polyol, polyester polyol, monomeric polyalcohol, polybutadiene polyol) or polyamine with an isocyanate (in particular, compounds containing two or more isocyanate groups per molecule) . In certain embodiments of the present invention, the polyurethane selected for used is an isocyanate-functionalized polyurethane prepolymer in which at least a portion of the isocyanate groups have been reacted or blocked. The isocyanate groups of the prepolymer may be blocked or reacted with any suitable reactant such as an alcohol (e.g., a phenol), oxime, amine, lactam (e.g., caprolactam) , acetoacetate, malonate or the like. In one embodiment of the invention, the blocking groups remain on the polyurethane prepolymer when the adhesive composition is cured, but in other embodiments "de-blocking" takes place such that the polyurethane prepolymer is capable of reacting with other components of the adhesive composition when the composition is cured.
For example, the polyurethane may be a acrylate- functionalized polyurethane such as those described in U.S. Pat. Nos. 3,297,745; 4,360,653; 4,390,662; 4,719,268; 4,486,582; 4,618,658; 5,334,654; and 5,700,891 which are hereby incorporated by reference in their entirety. (Meth) acrylate-functionalized polyurethanes may comprise the reaction product of an isocyanate-terminated urethane prepolymer and an isocyanate-reactive acrylate and/or methacrylate . Isocyanate terminated prepolymers are prepared by reacting a polyfunctional isocyanate, typically an aromatic diisocyanate, with a polyol, preferably a long chain hydroxyl-terminated polyether or polyester polyol, such as the ethylene and propylene oxide adducts of C2 to C4 polyalcohols, polytetramethylene glycol (polyTHF) , and polycaprolactone . For enhanced flexibilization of the cured adhesive, the molecular number average weight of the polyol should range from about 400 to 4000, preferably 700 to 2000. Acrylate terminated urethane resins utilizing a polyol having a number average molecular weight of less than 1000 generally are extremely viscous. Higher molecular weight polyols tend to cause premature phase separation in the formulated adhesive leading to poor physical properties. The preferred isocyanate-terminated urethane prepolymer is prepared by any known means, for example, a 2000 raw polypropylene glycol may be reacted with an 80/20 2,4/2,6- toluenediisocyanate mixture. Any other polyisocyanate such as methylenediphenyldiiεocyanate (MDI) , isophoronediisocyanate, (IPDI) or paraphenylenediisocyanate (PPDI) is also suitable.
The isocyanate-reactive acrylates and methacrylates (" (meth) acrylates" ) typically used to prepare the
(meth) acrylate-functionalized polyurethanes are hydroxy alkylacrylates and methacrylates and these include: hydroxyacrylates such as hydroxyethyl acrylate or methacrylate, hydroxypropyl acrylate or methacrylate, hydroxypentyl acrylate or methacrylate, 2 -hydroxyethyl acrylate, 2 -hydroxyethyl hexyl methacrylate, hydroxybutyl methacrylate and the like. Typically the ester portion of the acrylate or methacrylate is from a C2-C8 alcohol. Mixtures of different (meth) acrylates may be used.
Additional materials which can be used to prepare substances which we choose to describe as included within the definition of (meth) acrylate-functionalized polyurethanes include the following:
prepolymers having number average molecular weights of 250- 10,000, preferably 700-4000, and having glass transition temperatures below about 10 degrees C, preferably below about minus 10 degrees C. The average functionality of these prepolymers is at least 2, preferably 2 to 6 and particularly preferably 2 to 3. The terminal functional groups of the prepolymer are isocyanate-reactive and may be amino or hydroxyl or carboxyl or mercapto, preferably, hydroxyl . Particularly preferred prepolymers include linear and branched polypropylene glycols having number average molecular weights about 700 to about 4000; linear and branched polytetrahydrofurans having number average molecular weights between about 700 and about 4000; linear and branched poly {1, 2-buyleneoxide) having number average molecular weights between about 700 and about 4000; and hydroxyl- terminated polyesters having number average molecular weights between about 700 and about 4000;
polyisocyanates, preferably diisocyanates or triisocyanates such as isophonoronediisocyanate, methylenediphenyldiisocyanate, toluenediisocyanate, hexamethylenediisocyanate, tetramethylxyly-lenediisocyanate, and the 1ike ; and
isocyanate-reactive acrylates or methacrylates , preferably hydroxyacrylates or -methacrylates such as hydroxyethyl- acrylate, hydroxypropylacrylate, hydroxyethyImeth-aerylate, hydroxypropylmethacrylate , and the like.
Chain lengtheners such as diols and triols like 1,4 butanediol, 1, 1, 1-tritnethylolpropane, glycerol, 1,2,6- hexanetriol, pentaerythritol and the like optionally may be employed in combination with the polyol(s), preferably, from 0.01 to about 5% by weight. When triol chain lengtheners, as described above, are added during this reaction and a suitable amount of polyisocyanate is used, branched NCO- tipped prepolymers are produced. Diol chain lengtheners can be used to control the molecular weight of the resulting prepolymer. This NCO- functional polymer is then reacted with the NCO-reactive acrylate or methacrylate to yield materials which are described for the purposes of this invention as (meth) acrylate-functionalized polyurethanes .
(Meth) acrylate-functionalized polyurethanes are also available from commercial sources such as, for example, the acrylate-functionalized polyurethanes sold under the tradename ANCAREZ by Air Products .
Polyurethanes suitable for use in the adhesive compositions of the present invention include the reaction products of isocyanate-terminated prepolymers and compounds having one or more active hydrogen-containing groups (e.g., hydroxyl, thiol and amino groups such as primary aliphatic, cycloaliphatic, heteroaromatic and araliphatic amino, secondary aliphatic, cycloaliphatic, heteroaromatic and araliphatic amino, alkyl amido, phenolic, benzyl alcohol, aminophenyl or benzylamino groups or the like, such as those described in U.S. Pat. Nos. 3,525,779; 3,636,133; 5,278,257; and 6,776,869; published U.S. application 2005-070634, and WO 2006/128722, each of which is incorporated herein by reference in its entirety) . Such polyurethanes may or may not contain isocyanate-reactive end groups (e.g., active hydrogen-containing end groups) . Polyurethanes of this type are also available commercially from Huntsman Advanced Materials (formerly Vantico) under the tradename RAM.
Also suitable for use as polyurethanes in the present invention are branched aromatic urethane polymers containing ether groups, such as the products sold under the tradenames DESMOCAP HA and DESMOCAP 12A by Bayer Material Science (which have been described as 4-nonylphenol blocked isocyanate prepolymers or polypropyleneglycol/toluene diisocyanate prepolymers blocked with 4-nonylphenol} .
The polyurethane may also be an epoxy-functionalized polyurethane of the type disclosed in published U.S. applications US 2007-0066721 and US 2007-0105983, each of which is incorporated herein by reference in its entirety. Such epoxy-functionalized polyurethanes may, for example, be prepared by reacting an isocyanate-functionalized polyurethane prepolymer with a hydroxy-functional!zed glycidyl ether. In general, the adhesive compositions of the present invention may contain up to about 20 weight % (e.g., about 0.1 to about 10 or about 2 to about S weight %) of polyurethane .
In embodiments of the invention where both plasticizer and polyurethane are present, the weight ratio of plasticizer : polyurethane is typically from about 0.1:1 to about 10:1 or, in other embodiments, from about 0.3:1 to about 3:1.
In certain embodiments of the invention, the polyurethane selected for use has plasticizer and/or flexibilizing properties. For example, the polyurethane sold under the tradename DESMOCAP 2540 (which is described as a linear prepolymer based on TDI and polyalkylene glycol prepared using double metal cyanide catalysts, with the isocyanate groups being blocked) by Bayer Material Science could be suitable for such purposes.
PLASTICIZERS
Suitable plasticizers for use in the present invention include, for example, sulfonate plasticizers, phosphate ester plasticizers, sulfonamide plasticizers, glycerin triester plasticizers, dialkyl esters of aliphatic dicarboxylic acids, glycol esters of benzoic acid and the like. Preferably, the plasticizer is not a phthalate- containing plasticizer. Illustrative sulfonate plasticizers include alkyl sulfonic acid esters of phenolic compounds such as the phenyl cresyl esters of pentadecyl sulfonic acid. Suitable commercially available sulfonate plasticizers include the plasticizer sold by Bayer under the tradename MESAMOLL.
Phosphate ester plasticizers include the organic esters of phosphoric acid, such as, for example, phenolic esters of phosphoric acid, e.g., tricresyl phosphate, cresyl diphenyl phosphate, isopropylated triphenyl phosphate, 2-ethylhexyl diphenyl phosphate, isodecyl diphenyl phosphate, and triphenyl phosphate, as well as other triaryl phosphates and alkyl diaryl phosphates . Other suitable phosphate plasticizers include, but are not limited to, tributoxyethyl phosphate, tributyl phosphate, and the like.
Suitable glycerin triester plasticizers include the compounds described in U.S. Pat. No. 6,652,774, incorporated herein by reference in its entirety.
Sulfonamide plasticizers may also be utilized, including, for example, aromatic sulfonamides such as N- (2 - hydroxypropyl) benzene sulfonamide (sold under the tradename UNIPLEX 225 by Unitex Chemical Co.), N-ethyl toluene sulfonamides, N- (n-butyl) benzene sulfonamide, N-cyclohexyl- p-toluenesulfonamide, and the like.
Other plasticizers suitable for use in the present invention include C3-C20 dialkyl esters of aliphatic dicarboxylic acids such as adipic acid, e.g., dioctyl adipate, dibutyl adipate, di (2-ethylhexyl } adipate, diisononyl adipate, diisodecyl adipate, and di(heptyl, nonyl) adipate as well as glycol esters of benzoic acid such as dipropylene glycol dibenzoate and dipropylene glycol monobenzoate .
The adhesive compositions of the present invention may contain, for example, up to about 20 weight percent total of plasticizer (e.g., about 0.1 to 10 or about 1 to about 8 weight percent)
ANTI-OXIDANTS
In certain embodiments of the invention, the adhesive composition additionally contains one or more anti-oxidants . Particularly suitable anti-oxidants for purposes of this invention include phenolic (especially hindered phenolic) anti-oxidants such as, for example, the alkylated reaction products of phenols and dienes, such as the butylated reaction product of p-cresol and dicyclopentadiene sold by Eliokem under the tradename WINGSTAY L, and well as stearyl 3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate (sold under the tradename ANTIOXIDANT 1076 by Akrochem Corp.) .
Typically, the anti-oxidant (s) may be present in the adhesive composition at concentrations up to about 3 weight percent (e.g., from about 0.1 to about 2 weight %) .
PLATY FILLERS
In certain embodiments of the invention, the adhesive composition additionally contains one or more platy fillers such as mica, glass flakes, metal flakes, delaminated graphite, talc or clay {e.g., kaolin). Preferably, the mica is muscovite mica such as 4K mica in powder or ground form. The mica particles may, for example, have a relatively high aspect ratio (e.g., from about 5 to about 15), a bulk density of from about 10 to about 20 lb/ft3, and/or a median particle diameter [D (V, 0.5), the size value of particles at which 50% of the sample is smaller and 50% is larger than this value, also known as the mass median diameter] of from about 10 to about 100 microns. Typically, the composition may contain up to about 10 weight percent (e.g., from about 0.1 to about 3 weight percent} platy filler. The surface of the platy filler may optionally be treated, for example, by reaction with a coupling agent such as a silane.
CURING AGENTS
Since the compositions of the present invention are preferably one-part or single-component compositions and are to be cured at elevated temperature, they also contain one or more curing agents (hardeners) capable of accomplishing cross-linking or curing of certain of the adhesive components when the adhesive is heated to a temperature well in excess of room temperature. That is, the hardener is activated by heating. The hardener may function in a catalytic manner or, in preferred embodiments of the invention, participate directly in the curing process by reaction with one or more of the adhesive components.
There may be used as thermally-activatable or latent hardeners for the adhesive compositions of the present invention, for example, guanidines, substituted guanidines, substituted ureas, melamine resins, guanamine derivatives, cyclic tertiary amines, aromatic amines and/or mixtures thereof. The hardeners may be involved stoichiometrically in the hardening reaction; they may, however, also be catalyti- cally active. Examples of substituted guanidines are methylguanidine, dimethylguanidine, trimethylguanidine, tetramethylguanidine , methylisobiguanidine, dimethylisobiguanidine, tetramethylisobiguanidine, hexamethylisobiguanidine, heptamethylisobiguanidine and, more especially, cyanoguanidine (dicyandiamide) . Representatives of suitable guanamine derivatives which may be mentioned are alkylated benzoguanamine resins, benzoguanamine resins or methoxymethylethoxymethylbenzoguanamine . For single- component, thermosetting adhesives, the selection criterion is, of course, the low solubility of those substances at room temperature in the resin system, so that solid, finely ground hardeners are preferred; dicyandiamide is especially suitable. Good storage stability of the composition is thereby ensured.
In addition to or instead of the above-mentioned hardeners, catalytically-active substituted ureas may be used. They are especially p-chlorophenyl-N, N-dimethylurea (monuron) , 3- phenyl-1, 1-dimethylurea {fenuron) or 3 , 4-dichlorophenyl-N,N- dimethylurea (diuron) . In principle, catalytically active tertiary acryl- or alkyl-amines, such as benzyldimethylamine , tris {dimethylamino) phenol, piperidine or piperidine derivatives, may also be used, but they are in many cases too highly soluble in the adhesive system, so that usable storage stability of the single-component system is not achieved. Various imidazole derivatives, preferably solid imidazole derivatives, may also be used as catalytically-active accelerators. Examples which may be mentioned are 2-ethyl-2- methylimidazole, N-butylimidazole, benzimidazole and N-C1 to C12-alkylimidazoles or N-arylimidazoles . Particular preference is given to the use of a combination of hardener and accelerator in the form of so-called accelerated dicyandiatnides in finely ground form. The separate addition of catalytically-active accelerators to the epoxy hardening system is thus not necessary.
The amount of curing agent utilized will depend upon a number of factors, including whether the curing agent acts as a catalyst or participates directly in crosslinking of the composition, the concentration of epoxy groups and other reactive groups in the composition, the desired curing rate and so forth. Typically, the composition contains from about 0.5 to about 8 weight percent curing agent (s) .
RUBBER PARTICLES
Rubbpr particles, especially rubber particles that have a core- shell structure and/or a relatively small average particle size (e.g., less than about 500 nm or less than about 200 nm) , are an additional component of the compositions of the present invention. In one embodiment, the rubber particles have a core-shell structure and an average particle size less than about 500 nm. In another embodiment, the rubber particles do not have a shell, but have an average particle size less than about 500 nm. In still another embodiment, the rubber particles have a core- shell structure and an average particle size greater than about 500 nm .
Preferably, the rubber particles are relatively small in size. For example, the average particle size may be from about 0.03 to about 2 microns or from about 0.05 to about 1 micron. In certain embodiments of the invention, the rubber particles have an average diameter of less than about 500 nm. In other embodiments, the average particle size is less than about 200 nm. For example, the rubber particles may have an average diameter within the range of from about 25 to about 200 nm or from about 50 to about 150 nm.
Core-shell rubber particles generally have a core comprised of a polymeric material having elastomeric or rubbery properties (i.e., a glass transition temperature less than about 00C, e.g., less than about -3O0C) surrounded by a shell comprised of a non-elastomeric polymeric material (i.e., a thermoplastic or thermoset/crosslinked polymer having a glass transition temperature greater than ambient temperatures, e.g., greater than about 500C). For example, the core may be comprised of a diene homopolymer or copolymer (for example, a homopolymer of butadiene or isoprene, a copolymer of butadiene or isoprene with one or more ethylenically unsaturated monomers such as vinyl aromatic monomers, (meth) acrylonitrile, (meth) acrylates, or the like) while the shell may be comprised of a polymer or copolymer of one or more monomers such as (meth) acrylates (e.g., methyl methacrylate) , vinyl aromatic monomers (e.g., styrene) , vinyl cyanides (e.g., acrylonitrile), unsaturated acids and anhydrides (e.g., acrylic acid), (meth)acrylamides, and the like having a suitably high glass transition temperature. The polymer or copolymer used in the shell may have acid groups that are crosslinked ionically through metal carboxylate formation (e.g., by forming salts of divalent metal cations) . The shell polymer or copolymer could also be covalently crosslinked through the use of monomers having two or more double bonds per molecule. The outer surface of the shell may be functionalized with groups such as carboxylic acid groups . Other rubbery polymers may also be suitably be used for the core, including polybutylacrylate or polysiloxane elastomer (e.g., polydimethylsiloxane, particularly crosslinked polydimethylsiloxane) . The rubber particle may be comprised of more than two layers (e.g., a central core of one rubbery material may be surrounded by a second core of a different rubbery material or the rubbery core may be surrounded by two shells of different composition or the rubber particle may have the structure soft core, hard shell, soft shell, hard shell) . In one embodiment of the invention, the rubber particles used are comprised of a core and at least two concentric shells having different chemical compositions and/or properties. Either the core or the shell or both the core and the shell may be crosslinked (e.g., ionically or covalently), as described, for example, in U.S. Pat. No. 5,686,509 (incorporated herein by reference in its entirety) . The shell may be grafted onto the core. The polymer comprising the shell may bear one or more different types of functional groups (e.g., epoxy groups) that are capable of interacting with other components of the compositions of the present invention. Typically, the core will comprise from about 50 to about 95 percent by weight of the rubber particles while the shell will comprise from about 5 to about 50 percent by weight of the rubber particles.
Methods of preparing rubber particles having a core-shell structure are well-known in the art and are described, for example, in U.S. Patent Nos . 3,985,703, 4,419,496, 4,778,851, 5,223,586, 5,290,857, 5,534,594, 5,686,509, 5,981,659, 6,111,015, 6,147,142, 6,180,693, 6,331,580 and published U.S. application 2005-124761, each of which is incorporated herein by reference in its entirety. Rubber particles having a core-shell structure are also available from several commercial sources. The following core-shell rubbers are suitable for use in the present invention, for example: the core- shell particles available in powder form from Wacker Chemie under the tradename GENIOPERL, including GENIOPERL P22, P23, P52 and P53, which are described by the supplier as having crosslinked polysiloxane cores, epoxy- functionalized polymethylmethacrylate shells, polysiloxane content of about 65 weight percent, softening points as measured by DSC/DMTA of about 120 degrees C, and a primary particle size of about 100 nm, the core-shell rubber particles available from Rohm & Haas under the tradename PARALOID, in particular the PARALOID EXL 2600/3600 series of products, which are grafted polymers containing a polybutadiene core upon which is grafted a styrene/methylmethacrylate copolymer and having an average particle size of ca. 0.1 to about 0.3 microns, the core- shell rubber particles sold under the tradename DEGALAN by Roehm GmbH or Roehm America, Inc. (e.g., DEGALAN 4899F, which is reported to have a glass transition temperature of about 950C) , the core-shell rubber particles sold by Nippon Zeon under the tradename F351, and the core- shell rubber particles sold by General Electric under the tradename BLENDEX .
Rubber particles having a core-shell structure may be prepared as a raasterbatch where the rubber particles are dispersed in one or more epoxy resins such as a diglycidyl ether of bisphenol A. For example, the rubber particles typically are prepared as aqueous dispersions or emulsions. Such dispersions or emulsions may be combined with the desired epoxy resin or mixture of epoxy resins and the water and other volatile substances removed by distillation or the like. One method of preparing such masterbatches is described in more detail in European Patent Application EP 1632533, incorporated herein by reference in its entirety. For example, an aqueous latex of rubber particles may be brought into contact with an organic medium having partial solubility in water and then with another organic medium having lower partial solubility in water than the first organic medium to separate the water and to provide a dispersion of the rubber particles in the second organic medium. This dispersion may then be mixed with the desired epoxy resin (s) and volatile substances removed by distillation or the like to provide the masterbatch. Other methods for preparing masterbatches of rubber particles having a core- shell structure stably dispersed in an epoxy resin matrix are described in U.S. Pat. Nos . 4,778,851 and 6,111,015, each incorporated herein by reference in its entirety. Preferably, the rubber particles are stably dispersed in the epoxy resin matrix (i.e., the core- shell rubber particles remain as separated individual particles with little or no agglomeration of the particles or precipitation (settling) of the particles from the masterbatch as the masterbatch is aged by standing at room temperature. The shell of the rubber particles may advantageously be functionalized to improve the stability of the masterbatch, although in certain embodiments the shell is non-functional!zed (contains no functional groups that react with any of the other components of the adhesive composition when that composition is cured) .
Particularly suitable dispersions of rubber particles having a core-shell structure in an epoxy resin matrix are available from Kaneka Corporation under the tradename "ACE MX" .
For instance, the core may be formed predominantly from feed stocks of dienes such as butadiene, (meth) acrylates, ethylenically unsaturated nitriles such as acrylonitrile, and/or any other monomers that when polymerised or copolymer!zed yield a polymer or copolymer having a low glass transition temperature. The outer shells may be formed predominantly from feed stocks of (meth) acrylates such as methylmethacrylate, vinyl aromatic monomers such as styrene and/or ethylenically unsaturated halocarbons such as vinyl chloride and/or any other monomers that when polymerized or copolymerized yield a polymer having a higher glass transition temperature. The core shell rubbers may have a particle size in the range of 0.07 to 10 microns, such as 0.1 to 5 microns.
The core shell rubber made in this way may be dispersed in an epoxy matrix or a phenolic matrix. The matrix material preferably is liquid at room temperature. Examples of epoxy matrices include the diglycidyl ethers of bisphenol A, F or S, or bisphenol, novalac epoxies, and cycloaliphatic epoxies . Examples of phenolic resins include bisphenol-A based phenoxies .
The core- shell rubber particles may be present in the epoxy or phenolic matrix in an amount in the range of about 5 to about 50% by weight (about 15 to about 40% by weight) .
In the inventive formulations, use of these core shell rubbers allows for toughening to occur in the formulation, irrespective of the temperature or temperatures used to cure the formulation. That is, because of the two phase separation inherent in the formulation due to the core shell rubber - as contrasted for instance with a liquid rubber that is miscible or partially miscible or even immiscible in the formulation and can solidify at temperatures different than those used to cure the formulation - there is a minimum disruption of the matrix properties, as the phase separation in the formulation is often observed to be substantially uniform in nature.
In addition, predictable toughening - in terms of temperature neutrality toward cure -- may be achieved because of the substantial uniform dispersion. Many of the core-shell rubber structures available from Kaneka are believed to have a core made from a copolymer of Cmeth) acrylate-butadiene-styrene, where the butadiene is the primary component in the phase separated particles, dispersed in epoxy resins. Other commercially available masterbatches of core-shell rubber particles dispersed in epoxy resins include GENIOPERL M23A {a dispersion of 30 weight percent core- shell particles in an aromatic epoxy resin based on bisphenol A diglycidyl ether; the core-shell particles have an average diameter of ca. 100 nm and contain a crosslinked silicone elastomer core onto which an epoxy- functional acrylate copolymer has been grafted; the silicone elastomer core represents about 65 weight percent of the core- shell particle) , available from Wacker Chemie GmbH.
Typically, the composition may contain from about 5 to about 35 weight percent (in one embodiment, from about 15 to about 30 weight percent) rubber particles having a core-shell structure.
Combinations of different core- shell rubber particles may advantageously be used in the present invention. The core- shell rubber particles may differ, for example, in particle size, the glass transition temperatures of their respective cores and/or shells, the compositions of the polymers used in their respective cores and/or shells, the functionalization of their respective shells, and so forth. A portion of the core- shell particles may be supplied to the adhesive composition in the form of a masterbatch wherein the particles are stably dispersed in an epoxy resin matrix and another portion may be supplied to the adhesive composition in the form of a dry powder (i.e., without any epoxy resin or other matrix material} . For example, the adhesive composition may be prepared using both a first type of core-shell particles in dry powder form having an average particle diameter of from about 0.1 to about 0.5 microns and a second type of core-shell particles stably dispersed in a matrix of liquid bisphenol A diglycidyl ether at a concentration of from about 5 to about 50 weight % having an average particle diameter of from about 25 to about 200 nm. The weight ratio of first type: second type core-shell rubber particles may be from about 1.5:1 to about 0.3:1, for example.
In other embodiments of the invention, the rubber particles do not have shells that encapsulate a central core. In such embodiments, the chemical composition of the rubber particles is essentially uniform throughout each particle. However, the outer surface of the particle may be modified by reaction with a coupling agent, oxidizing agent or the like so as to enhance the ability to disperse the rubber particles in the adhesive composition (e.g., reduce agglomeration of the rubber particles, reduce the tendency of the rubber particles to settle out of the adhesive composition) . Modification of the rubber particle surface may also enhance the adhesion of the epoxy resin matrix to the rubber particles when the adhesive is cured. The rubber particles may alternatively be irradiated so as to change the extent of crosεlinking of the polymer (s) constituting the rubber particles in different regions of the particle.
For example, the rubber particles may be treated with gamma radiation such that the rubber is more highly crosslinked near the surface of the particle than in the center of the particle.
The polymers suitable for use in preparing rubber particles that do not have shells may be selected from any of the types of polymers previously described as suitable for use as the core of core-shell rubber particles. The rubber particles thus may be comprised of a polymeric material having elastomeric or rubbery properties (i.e., a glass transition temperature less than about O0C, e.g., less than about -300C) . Illustrative suitable polymers include, but are not limited to, diene homopolymers and copolymers and polysiloxanes . The polymer may contain functional groups such as carboxylate groups, hydroxyl groups or the like and may have a linear, branched, crosslinked, random copolymer or block copolymer structure.
Rubber particles that do not have core-shell structures but are nonetheless suitable for use in the present invention are available from commercial sources. For example, the following rubber particles supplied by Eliokem, Inc. may be used: NEP R0401 and NEP R401S (both based on acrylonitrile/butadiene copolymer) ; NEP R0501 (based on carboxylated acrylonitrile/butadiene copolymer; CAS 9010-81- 5) ; NEP RO60IA (based on hydroxy-terminated polydimethylsiloxane; CAS 70131-67-8) ; and NEP R0701 and NEP 0701S (based on butadiene/styrene/2-vinylpyridine copolymer,- CAS 25053-48-9} . The foregoing materials are believed to contain minor amounts of inorganic materials such as calcium carbonate or silica. Rubber particles that have been treated with a reactive gas or other reagent to modify the outer surfaces of the particles by, for instance, creating polar groups {e.g., hydroxyl groups, carboxylic acid groups) on the particle surface, are also suitable for use in the present invention. Illustrative reactive gases include, for example, ozone, C12, F2, O2, SO3, and oxidative gases. Methods of surface modifying rubber particles using such reagents are known in the art and are described, for example, in U.S. Pat. Nos . 5,382,635; 5,506,283; 5,693,714; and 5 , 969, 053 , each of which is incorporated herein by reference in its entirety. Suitable surface modified rubber particles are also available from commercial sources, such as the rubbers sold under the tradename "Vistamer" by Exousia Corporation.
When the rubber particles do not have a core-shell structure, it will generally be preferred that the particles have a relatively small average particle size. In certain embodiments of the invention, the rubber particles have an average diameter of less than about 500 nm, In other embodiments, the average particle size is less than about 200 nm. For example, the rubber particles may have an average diameter within the range of from about 25 to about 200 nm or from about 50 to about 150 nm.
Where the rubber particles are initially provided in dry form, it may be advantageous to ensure that such particles are well dispersed in the adhesive composition prior to curing the adhesive composition. That is, agglomerates of the rubber particles are preferably broken up so as to provide discrete individual rubber particles, which may be accomplished by intimate and thorough mixing of the dry rubber particles with other components of the adhesive composition. For example, dry rubber particles may be blended with epoxy resin and milled or melt compounded for a length of time effective to essentially completely disperse the rubber particles and break up any agglomerations of the rubber particles .
Typically, in embodiments of this invention where the adhesive composition contains rubber particles and/or auxiliary impact modifier/toughening agent (s), the weight ratio of epoxy resin: combined weight of auxiliary impact modifier/toughening agent (e.g., epoxy-based prepolymer) and rubber particles having a core-shell structure is from about 0.25:1 to about 2.5:1 or from about 0.5:1 to about 1.5:1.
In embodiments of the present invention wherein the adhesive composition contains both rubber particles and one or more auxiliary impact modifiers/toughening agents, the weight ratio of auxiliary impact modifier/toughening agent (e.g., epoxy-based prepolymer) : rubber particles is typically from about 3 : 1 to about 0.2:1 or from about 2 : 1 to about 0.5:1.
AUXILIARY IMPACT MODIFIERS/TOUGHENING AGENTS
The impact properties of cured adhesive compositions in accordance with the present invention can be further improved or modified by the incoporation of one or more auxiliary impact modifiers and/or toughening agents. In one embodiment, the auxiliary impact modifier/toughening agent contains one or more functional groups capable of participating in the reaction of the epoxy resin component when the adhesive composition is cured. Suitable reactive functional groups include epoxy groups, carboxylic acid groups, and the like.
The epoxy-based prepolymers (sometimes described herein as "adducts") obtained by reacting one or more amine-terminated polymers such as amine-terminated polyethers or amino silane capped polymers with one or more epoxy resins represent a particularly preferred class of auxiliary impact modifiers/toughening agents. The epoxy resins useful for such purpose may be selected from among the epoxy resins described hereinabove, with particular preference being given to the diglycidyl ethers of polyphenols such as bisphenol A and bisphenol F (for example, having epoxy equivalent weights of from about 150 to about 1000) . Mixtures of solid and liquid epoxy resins may be suitably employed.
The preparation of such epoxy-based prepolymers from amine- terminated polyethers is well known in the art and is described, for example, in U.S. Patent Nos . 5,084,532 and 6,015,865, each of which is incorporated herein by reference in its entirety. Generally speaking, it will often be desirable to adjust the ratio of amine-terminated polyether : epoxy resin being reacted such that there is an excess of epoxy groups relative to amine groups such that the latter functional groups are completely reacted (i.e., the epoxy-based prepolymer contains essentially no free amine groups) . In the preparation of the epoxy-based prepolymer, the following compounds may, for example, be used:
1. linear amine-terminated polyoxyethylene ethers having the formula :
H2N- (CH2J2-[O- (CH2J2-O- (CH2)Jn-NH2
in which n preferably is 17 to 27.
2. linear amine-terminated polyoxypropylene ethers having the formula :
H2NCHCH2- [OCH2CH] n-NH2 I l
CH3 CH3
in which n preferably is 5 to 100. They are obtainable from Huntsman Chemical under the trade name JEFFAMINE® (D- series) . The number average molecular weight of such amine- terminated polyoxypropylene ethers may vary, for example, from about 300 to about 5000.
3. trifunctional compounds having the formula:
Figure imgf000032_0001
in which A is
CH2-
CH2-
or
-CH2-CH-CH2-
and x, y and z independently of each other are 1 to 40 and x+y+z is preferably >6. Representative examples of these trifunctional compounds are available commercially from Huntsman Chemical under the tradename Jeffamine® (T-εeries) Such substances typically have number average molecular weights of from about 300 to about 6000.
4. amino silane capped polymers, such as those that may be embraced by the general formula: R1 R3 R5 HN —Si —X-Si -NHR6
R2 R4
where R1, R2, R3 and R4 may be the same or different and are selected from hydrogen, hydroxyl, alkyl, alkoxy, alkenyl, alkenyloxy, aryl , and aryloxy; R5 and R6 may be the same or different and are selected from hydrogen, alkyl and aryl; and X is selected from alkylene, alkenylene, arylene, with or without interruption by a heteroatom; polyurethanes ; polyethers,- polyesters; polyacrylates ; polyamides,- polydienes; polysiloxanes ; and polyimides .
For instance, amine-terminated siloxanes may be used, such as diamino siloxanes embraced by:
R7PIN R1
Figure imgf000033_0001
where R11 and R12 may be the same or different and are selected from alkylene, arylene, alkylene oxide, arylene oxide, alkylene esters, arlyene esters, alkylene amides or arylene amides; R9 and R10 may be the same or different and are selected from alkyl or aryl; R7 and R8 are as defined above and n is 1-1,200.
Certain amino-modified silicone fluids that are commercially available from Shin-Etsu under the trade designations KF857, KF858, KF859, KF861, KF864 and KF880 may be useful herein. In addition, Wacker Silicones offers commercially a line of amino-functional silicone fluids designated as L650, L651, L653, L654, L655 and L656, and an amino- functional polydimethylsiloxane under the tradename WACKER FINISH WR 1600 that may be useful herein.
Other amino-functionaIized silanes or siloxanes useful in forming the adduct include materials available for purchase from Degussa's Sivento division, such as a proprietary aminofunctional silane composition (called DYNASYLAN® 1126) , an oligomeric diaminosilane system (called DYNASYLAN® 1146) , N-vinylbenzyl-N -aminoethyl -e-aminopropylpolysiloxane (DYNASYLAN® 1175), N- (n-butyl) -3 -aminopropyltrimethoxysilane (DYNASYLAN® 1189) , a proprietary aminofunctional silane composition (called DYNASYLAN® 1204), N- (2 -aminoethyl) -3- aminopropylmethyldimethoxysilane (DYNASYLAN® 1411) , 3- aminopropylmthyldiethoxysilane {DYNASYLAN® 1505) , 3- aminopropylmethyldiethoxysilane (DYNASYLAN® 1506) , 3- aminopropyltriethoxysilane (DYNASYLAN® AMEO) , a proprietary aminosilane composition (called DYNASYLAN® AMEO-T), 3- aminopropyltrimethoxysilane (DYNASYLAN® AMMO) , N-2- aminoethyl-3 -aminopropyltrimethoxysilane (DYNASYLAN® DAMO) , N- (2-aminoethyl) -3 -aminopropyltrimethoxysilane (DYNASYLAN® DAMO-T) and a triamino-functional propyltrimethoxysilane (called DYNASYLAN® TRIAMO) .
When reacting the epoxy resins with the amine-terminated polyether, an excess of epoxy groups over the amino groups is preferably used so that the latter react completely with epoxide groups. Typically, there is a 1.5 to 10- fold excess, for example a 3.5-fold excess of epoxy groups over the active hydrogen equivalents (AHEW) of the amine-terminated polyether. In preparing the composition according to the present invention, the epoxy-based prepolymer component preferably is initially prepared in a first stage. To this end, preferably, the epoxy resins are reacted with the amine-terminated polyether c) in the desired ratio. The reaction preferably is carried out at high temperature, preferably at 90 to 1300C, for example at approximately 12O0C, for a duration of, e.g., three hours.
Other tougheners or impact modifiers known in the epoxy adhesive art may be used in addition to, or as a substitute for, the aforementioned epoxy-based prepolymers derived by reaction of amine-terminated polyethers with epoxy resins. Generally speaking, such tougheners and impact modifiers are characterized by having glass transition temperatures below about 00C, preferably below about -300C, even more preferably below about -500C. Examples of such tougheners and impact modifiers include, but are not limited to:
reaction products of epoxy-reactive copolymers of conjugated dieres such as butadiene (especially epoxy-reactive copolymers of butadiene with relatively polar comonomers such as (meth) acrylonitrile, (meth) acrylic acid, or alkyl acrylates, e.g., carboxyl -terminated butadiene-nitrile rubbers, such as the products available commercially from Noveon under the trade name HYCAR) with epoxy resins (as described, for example, in U.S. Patent Application Publication Nos . US 2003/0196753 and US 2005-0070634 and U.S. Pat. No. 6,776,869 , each of which is incorporated herein by reference in its entirety) ; adducts of anhydrides (e.g., unsaturated anhydrides such as maleic anhydride) and diene polymers (e.g., liquid 1,4-cis polybutadienes) , typically having number average molecular weights between about 1000 and about 5000, including for example, the adducts sold under the tradename POLYVEST by Degussa Corporation, as well as further reaction products of such adducts with epoxy resins;
polyesters, including, for example, amorphous, crystalline and/or semi-crystalline polyesters, including saturated polyesters, prepared by condensation of aliphatic and/or aromatic dicarboxylic acids (or the corresponding alkyl esters or anhydrides with diols having a chain length of C2 to C20, the polyesters being of medium molecular weight (e.g., about 1000 to about 20,000 number average molecular weight) , such as the polyesters sold under the tradename DYNACOLL by Degussa Corporation, and including polyesters functional!zed with carboxylic acid and/or hydroxy1 endgroups, as well as adducts of such functionalized polyesters with epoxy resins;
adducts of dimeric fatty acids with epoxy resins (including, for example, the adducts sold under the tradename EPON 872 by Resolution Performance Products, the adducts sold under the tradename HYPOX DA323 (formerly ERISYS EMDA 3-23) by CVC Specialty Chemicals, as well as those adducts described in U.S. Pat. No. 5,218,063, incorporated herein by reference in its entirety) ;
adducts of hydroxyl-containing triglycerides (e.g., castor oil) with epoxy resins (including, for example, the adducts sold under the tradename HELOXY 505 by Resolution Performance Products) ;
adducts of polysulfides with epoxy resins (including, for example, the adducts sold under the tradename THIOPLAST EPS 350 by Akzo Nobel;
adducts of amine-terminated polydienes and diene copolymers with epoxy resins;
polyether prepolymers capped with hydroxyarylcarboxylic or hydroxyaralkylcarboxylic acids, or a capped polyester, polythioeεter or polyamide containing polyether segments, as described, for example, in U.S. Pat. No. 5,202,390 (incorporated herein by reference in its entirety) , in particular the tougheners of formula I described in detail at column 1, line 59, to column 2, line 16, of said patent;
block copolymers, wherein at least one polymeric block of the copolymer has a glass transition temperature below 2O0C (preferably below 00C or below -3O0C or below -500C) and at least one polymeric block of the copolymer has a glass transition temperature above 200C (preferably above 500C or above 7O0C) , in particular block copolymers containing a polystyrene block, a 1, 4-polybutadiene block (preferably having a glass transition temperature below about -60 degrees C) and a polymethylmethacrylate block {preferably, having a highly, i.e., >80%, syndiotactic structure), such as the SBM copolymers made by living polymerization methods using nitroxide initiator (such as the methods described in U.S. Pat. Nos. 5,677,387, 5,686,534, and 5,886,112, each of which is incorporated herein by reference in its entirety) and sold under the tradename NANOSTRENGTH by Arkema and the block copolymers described in U.S. Pat. No. 6,894,113, incorporated herein by reference in its entirety;
carboxyl-functionalized adducts of amino- or hydroxyl- terminated polymers and carboxylic anhydrides, as well as further reaction products of such adducts with epoxy resins (such as those described in U.S. Pat. No. 6,884,854 and published U.S. application 2005-0215730, each of which is incorporated herein by reference in its entirety) ;
epoxy-terminated polyethers, such as polymers of alkylene oxides like ethylene oxide, propylene oxide or mixtures thereof that have been functionalized with epoxy groups, including by reacting the hydroxy groups of a polyalkylene glycol with epichlorohydrin;
phenol-terminated and aminophenyl-terminated products produced by reacting a stoichiometric excess of a carboxylic anhydride or dianhydride with a diamine or polyamine and then further reacting the excess carboxylic anhydride or carboxylic acid groups with at least one polyphenol or aminophenol, as described, for example, in published U.S. application 2004-0181013, incorporated herein by reference in its entirety.
Mixtures of different auxiliary impact modifiers/toughening agents may be used. The total amount of auxiliary impact modifier/toughening agent in the curable compositions of the present invention' may vary substantially but typically is up to about 40 weight percent, e.g. from about 5 to about 25 weight percent.
When an epoxy-based prepolymer is used, the composition typically may contain from about 5 to about 30 weight percent (in one embodiment, from about 10 to about 25 weight percent) of such epoxy-based prepolymer.
ADHESION PROMOTERS
To help improve adhesion of the cured adhesive to a substrate surface, especially a metallic substrate surface contaminated with oily substances as is commonly encountered in vehicle assembly operations, one or more reaction products of epoxy resins and compounds containing chelating functional groups (herein called "chelate-modified epoxy resins") are added to the composition.
Such reaction products include those substances commonly referred to in the art as "chelate epoxies" or "chelating epoxy resins" . The chelating functional groups include those functional groups capable of forming chelate bonds with divalent or polyvalent metal atoms, either by themselves or in cooperation with other functional groups positioned on the same molecule. Suitable chelating functional groups include, for example, phosphorus- containing acid groups (e.g., -PO(OH)2), carboxylic acid groups (-CO2H), sulfur-containing acid groups (e.g., -SO3H), amino groups, and hydroxyl groups (particularly hydroxyl groups adjacent to each other on aromatic rings) . The preparation of such reaction products may be carried out by methods known in the art such as, for example, those methods described in U.S. Patent Nos . 4,702,962 and 4,340,716, European Patent No. EP 342 035 and Japanese Patent Document Nos. JP 58-063758 and JP 58-069265, each of which is incorporated herein by reference in its entirety. Reaction products of epoxy resins and compounds containing chelating functional groups are also available from commercial sources such as, for example, the ADEKA Resins EP-49-10N, EP-49-55C, EP-49-10, EP-49-20, EP-49-23, and EP-49-25 sold by Asahi Denka. Typically, the composition may contain up to about 8 weight percent (e.g. from about 0.1 to about 3 weight percent) of such chelate-modified epoxy resins.
Other compounds having metal chelating properties may also be used in the compositions of the present invention to help enhance the adhesion of the cured adhesive to a substrate surface, including, for example, the adhesion promoters described in U.S. Patent Application Publication No. 2005- 0129955, incorporated herein by reference in its entirety. Also suitable for use as adhesion promoters are the acetoacetate-functionalized modifying resins sold by King Industries under the brand name K-FLEX XM-B301.
OTHER ADDITIVES
The inventive compositions may, in addition to the aforementioned platy fillers, also contain known fillers such as the various ground or precipitated chalks, quartz powder, alumina, non-platy clays, dolomite, carbon fibers, glass fibers, polymeric fibers, titanium dioxide, fused silica, carbon black, calcium oxide, calcium magnesium carbonates, barite and, especially, silicate-like fillers of the aluminum magnesium calcium silicate type, for example wollastonite and chlorite. Typically, the compositions of the present invention may contain from about 0.5 to about 10 weight percent of fillers.
In one embodiment of the invention, the composition additionally contains one or more expanding agents (sometimes referred to in the art as blowing agents) . The expandable properties of the resulting adhesive are particularly useful in applications where the complete filling of a gap or cavity in a part or member is critical in order to maintain maximum structural integrity of the part or member. The foamed cured adhesive has improved fracture toughness, thereby imparting impact resistance to the assembly. If the composition is to be utilized as a one-part or single-component composition, the expanding agent is preferably a latent expanding agent which causes expansion or foaming of the adhesive only when heated to a temperature significantly above room temperature (typically, a temperature which is in the range at which curing of the adhesive is also initiated) . Although any suitable expanding agent may be employed, such as a chemical expanding agent, e.g., azo compounds, hydrazides and the like, particular preference is given to expandable microspheres. Expandable microspheres generally comprise small diameter polymeric shells or bubbles which encapsulate one or more volatile substances such as light hydrocarbons or halocarbons . The outer shells are usually thermoplastic in character to permit softening and expansion of the microspheres when heated due to volatilization of the substances trapped within the shells. The polymers used in the shells may be linear, branched, or cross-linked and may be comprised of, for example, acrylic resins, styrenic resins, polyvinylidene chloride, nitrile polymers, and the like. Typically, the average particle size of the expandable microspheres is in the range of from about 5 to about 100 microns. Suitable expandable microspheres are commercially available under the trademark names DUALITE and EXPANCEL from Henkel Corporation and Casco Nobel, respectively.
In yet another embodiment, hollow glass microspheres are present in the composition. Commercially available hollow glass microspheres include the materials sold by Minnesota Mining & Manufacturing under the trademark SCOTCHLITE, with suitable grades including those available under the designations B38, CIS, K20 and VS 5500. The glass microspheres preferably have diameters in the range of from about 5 to 200 micrometers and/or densities of from about 0.3 to about 0.5 g/cc . Typically, the composition may contain from about 0.5 to about 5 weight percent of hollow glass microspheres.
The adhesive compositions according to the present invention may also contain other common adjuvants and additives, such as plasticizers, reactive and/or non-reactive diluents, flow auxiliaries, coupling agents (e.g., silanes) , adhesion promoters, wetting agents, tackifiers, flame retardants, thixotropic and/or rheology control agents, ageing and/or corrosion inhibitors, stabilizers and/or coloring pigments. Depending on the requirements made of the adhesive application with respect to its processing properties, its flexibility, the required rigidifying action and the adhesive bond to the substrates, the relative proportions of the individual components may vary within comparatively wide limits .
In one embodiment, the composition includes a reactive diluent such as a mono-epoxide (e.g., monoglycidyl ethers of alkyl- and alkenyl-substituted phenols) . Typically, the composition contains up to about 10 weight percent (e.g., from about 0.1 to about 5 weight percent) reactive diluent.
METHODS OF USE
The inventive composition is suitable for adhering together parts made of different materials, including, for example, wood, metal, coated or pretreated metal, plastic, filled plastic, thermoset materials such as sheet molding compound and fiberglass and the like. The substrates to be joined using the adhesive may be the same as or different from each other. It is preferably used for the gluing of metal parts and particularly for the gluing of steel sheets such as cold rolled steel sheets. These can also be electro-galvanized, hot-dip galvanised and/or zinc/nickel-coated steel sheets, for example. The composition is especially useful for bonding substrates having surfaces contaminated with oily substances, as good adhesion is attained despite such contamination.
The inventive composition can be applied to a substrate surface by any technique known in the art. For example, it can be applied by extrusion from a robot in bead form onto the substrate or by mechanical application methods such as a caulking gun, or any other manual application means, and can also be applied using a swirl or streaming technique. The swirl and streaming techniques utilize equipment well known in the art such as pumps, control systems, dosing gun assemblies, remote dosing devices and application guns. Generally, the adhesive is applied to one or both of the substrates to be joined. The substrates are contacted such that the adhesive is located between the substrates to be bonded together. Thereafter, the adhesive composition is subjected to heating to a temperature at which the heat curable or latent curing agent initiates cure of the epoxy resin composition.
In one embodiment, the adhesive is formulated so as to function as a hot melt; that is, an adhesive which is solid at room temperature, but capable of being converted to a pumpable or flowable material when heated to a temperature above room temperature. In another embodiment, the composition of this invention is formulated to be capable of being flowed or pumped to the work site at ambient temperatures or slightly above since, in most applications, it is preferable to ensure that the adhesive is heated only up to a temperature at which the latent curing agent is not yet activated. The melted composition may be applied directly to the substrate surface or may be allowed to flow into a space separately the substrates to be joined, such as in a hem flanging operation. In yet another embodiment, the composition is formulated (by inclusion of a finely divided thermoplastic or by use of multiple curatives having different activation temperatures, for example) such that the curing process proceeds in two or more stages (partial curing at a first temperature, complete curing at a second, higher temperature) . The two parts are joined together, preferably immediately after deposition of the adhesive mass, thereby provisionally bonding the two parts to each other .
The resultant bond preferably already has sufficient strength so that the still uncured adhesive is not readily washed out, as might otherwise occur, for example, if the metal sheets which are provisionally bonded to each other are treated for de-greasing purposes in a wash bath and then in a phosphating bath.
The composition is preferably finally cured in an oven at a temperature which lies clearly above the temperature at which the composition was applied to the parts to be bonded and at or above the temperature at which the curing agent and/or accelerator and/or latent expanding agent {if present) are activated {i.e., in the case of the hardener, the minimum temperature at which the curing agent becomes reactive towards the other components of the adhesive; in the case of the expanding agent, the minimum temperature at which the expanding agent causes foaming or expansion of the adhesive) . Curing preferably takes place at a temperature above 15O0C, for example at 160 to 22O0C, for about 10 to about 120 minutes.
Once cured, the adhesive compositions according to the present invention may be used as casting resins in the electrical or electronics industry or as die attach adhesives in electronics for bonding components to printed circuit boards. Further possible applications for the compositions are as matrix materials for composites, such as fiber-reinforced composites. One particularly preferred application for the adhesives according to the present invention is the formation of structural bonds in vehicle construction such as in hem flanges and the like.
In the embodiment of the invention where the composition includes one or more expanding agents, the adhesive may be utilized to form structural foams which serve to stiffen and reinforce cavities, gaps, structural members and the like. The composition may be supported or contained within a carrier or receptacle or the like so as to position or orient the adhesive such that it expands in one or more particular directions when heated to induce curing and foaming. The composition thus is particularly useful in filling irregularly shaped spaces, as the composition will expand so as to come into contact with a greater portion of the substrate surfaces in the vicinity of the composition than would occur if no expanding agent was present. The foamed, cured composition stiffens an<5/or increases the energy absorption capacity of vehicle cavities and structural members .
EXAMPLES 1-6
A series of adhesive compositions was prepared using the components listed in Table 1 (the amounts of each component being given as weight percent of the total composition) in addition to the following components used in the same amount in each example : 41.00 wt. % Kaneka MX156 epoxy resin/core-shell rubber masterbatch (33 wt . % core- shell rubber particles; Kaneka
CO . ) ;
15.00 wt. % epoxy resin/amine-terminated, polyether reaction product, prepared in accordance with U.S. Pat. No.
6, 015,865;
9.00 wt. % Zeon F351 core-shell rubber particles (Nippon
Zeon Chemicals) ;
2.00 wt. % Adeka Resin EP-49-10N {epoxy equivalent weight =225; 100% solids; Asahi Denka Kogyo) ;
3.00 wt. % carboxylic anhydride/amine-terminated polyether adduct reacted further with epoxy resin, prepared in accordance with U.S. Pat. No. 6,884,854 or published U.S. application 2005-0215730; 1.50 wt. % GARAMITE 1958 mixed mineral thixotrope (Southern
Clay) ,-
1.00 wt. % CARDOLITE LITE 2513 reactive diluent (Cardolite
CO . ) ;
0.15 wt. % SILQUEST A- 187J gamma- glycidoxypropyltrimethoxysilane (GE Advanced Materials) ;
2.00 wt. % calcium oxide;
0.50 wt. % SYLOTHIX 53 thixotropic agent (J. Rettenmaier &
Soehne,-
1.50 wt. % CABOSIL TS-720 (Cabot); 0.30 wt. % MONARCH 280 carbon black (Cabot); and
0.50 wt. % AMICURE UR 1 , 1-dimethyl-3 -phenylurea (Air
Products) .
The components were mixed in a SPEEDMIXER mixer (FlackTek, Inc.) for up to 3 minutes, with the resulting adhesive composition then being de-aired under a vacuum of at least 25 psi for 25 minutes.
Metal coupons of cold rolled steel (CRS) were cleaned with acetone and wiped with a paper towel, before being coated with 3 g/m2 of FERROCOTE 61AUS oil on one side. The adhesive composition was then warm-applied to the oiled side of the coupon. Glass beads (0.25 mm) were sprinkled onto the adhesive layer before overlaying the test coupons. Metal clips were used to hold the two coupons together during the baking cycle. All coupon/adhesive assemblies were cured in accordance with the following bake schedule: 45 minutes at 190 0C, 10 minutes at 205 0C, 45 minutes at 190 0C, and 2 hours at room temperature. Coupons for t-peel testing had 75 mm overlay and a width of 20 mm and were pulled using an Instron tester at a speed of 50 mm/min. The average load at plateau was used to calculate peel strength. Coupons for impact peel testing having ISO 11343 test geometry (30 mm overlay, 20 mm width) were subjected to 90 J impact load at a drop weight speed of 2 m/s. Impact peel strength was measured at average impact load at plateau using an Instron Dynatup 9250 HV impact tester. The test results obtained are shown in Table 1. The composition of Example 6 was found to exhibit a higher t-peel strength and a higher degree of cohesive failure than the compositions of Examples 1-5, while still providing high impact peel resistance. Examples 1-5 showed adhesive failure, which is unacceptable for advanced structural bonding applications. Without wishing to be bound by theory, it is believed that the superior properties achieved in the Example 6 composition may be attributed to the use of a combination of a polyurethane and a phosphate ester plasticizer .
Table 1.
Figure imgf000049_0001
1EPON 828 {Hexion Specialty Chemicals, Inc.) or DER 331 (Dow) diglycidyl ether of bisphenol A 2DY965 CH polyurethane, believed to be prepared in accordance with Example 16 of U.S. Pat. No. 5,278,257 {Huntsman Advanced Materials} 3MESAMOLL sulfonate plasticizer (Bayer) 4tricresyl phosphate 5AMICURE CG1200 dicyandiamide (Air Products) Example 7
An adhesive composition was prepared containing the following components: 53.66 wt. % epoxy resin/core-shell masterbatch (Kaneka
MX156, containing 25 wt. % core- shell rubber particles;
Kaneka Co . ) ;
15.00 wt. % epoxy resin/amine-terminated polyether reaction product, prepared in accordance with U.S. Pat. No. 6,015,865;
9.00 wt. % Zeon F351 core-shell rubber particles (Nippon
Zeon Chemicals) ;
4.00 wt. % MESAMOLL sulfonate plasticizer (Bayer);
2.00 wt. % Adeka Resin EP-49-10N (epoxy equivalent weight =225; 100% solids; Asahi Denka Kogyo) ;
3.00 wt. % carboxylic anhydride/amine-terminated polyether adduct reacted further with epoxy resin, prepared in accordance with U.S. Pat. No. 6,884,854 or published U.S. application 2005-0215730; 0.64 wt. % WINGSTAY L anti-oxidant (Eliokem) ;
1.50 wt. % GARAMITE 1958 mixed mineral thixotrope (Southern
Clay) ;
1.00 wt. % CARDOLITE LITE 2513 reactive diluent (Cardolite
Co . ) ; 0.15 wt. % SILQUEST A-187J gamma- glycidoxypropyltrimethoxysilane (GE Advanced Materials) ;
2.00 wt. % calcium oxide;
0.85 wt. % muscovite mica 4K;
4.40 wt. % AMICURE CG1200 dicyandiamide (Air Products); 0.50 wt. % SYLOTHIX 53 (J. Rettenmaier & Soehne) ;
1.50 wt. % CABOSIL TS-720 (Cabot); 0.30 wt. % MONARCH 280 carbon black (Cabot); and 0.50 wt. % AMICURE UR 1 , 1-dimethyl-3 -phenylurea (Air Products) .
These components were added together in the order listed above up to the GARAMITE 1958 mixed mineral thixotrope and mixed in a SPEEDMIXER mixer for one minute. The GARAMITE 1958 mixed mineral thixotrope was then added and mixed with the other components for one minute. The next two components were added and mixed together for one minute before adding the final three components and continuing mixing for one minute. The resulting adhesive composition was de-aired under vacuum before being tested as described above in connection with Examples 1-6.
The following test results were obtained: t-peel strength on CRS, 3.8 N/mm; 100% cohesive failure; impact peel resistance at 230C, 22.5 N/mm.
The excellent properties of the cured adhesive composition, as compared to those of Examples 1-5, are believed to be largely due to the use of a combination of sulfonate plasticizer, mica and anti-oxidant .
EXAMPLES 8-10
Two adhesive compositions were prepared using the following components (the amounts of each component being given as weight percent of the total composition) in addition to 5.00 wt. % of a polyurethane (Example 8 used DY965 CH polyurethane sold by Huntsman Advanced Materials and believed to be made in accordance with Example 16 of U.S.
Pat. No. 5,278,257; Example 9 used ANCAREZ 2364, an acrylate functionalized polyurethane sold by Air Products} : 41.00 wt. % Kaneka MX156 epoxy resin/core-shell rubber masterbatch containing 33 wt. % core- shell rubber particles,-
13.00 wt. % epoxy resin (EPON 828 or DER 331, from Dow and
Hexion Specialty Chemicals, Inc., respectively);
15.00 wt. % epoxy resin/amine- terminated polyether adduct reacted further with epoxy resin, prepared in accordance with U.S. Pat. No. 6,015,865;
9.00 wt. % Zeon F351 core- shell rubber particles (Nippon
Zeon Chemicals) ;
2.00 wt. % Adeka Resin EP-49-10N (epoxy equivalent weight =225; 100% solids);
3.00 wt. % carboxylic anhydride/amine- terminated polyether reaction product, prepared in accordance with U.S. Pat. No.
6,884,854 or published U.S. application 2005-0215730;
1.50 wt. % GARAMITE 1958 mixed mineral thixotrope (Southern Clay) ;
1.00 wt. % CARDOLITE LITE 2513 reactive diluent (Cardolite
Co . ) ;
0.15 wt. % SILQUEST A- 187J gamma- glycidoxypropyltrimethoxysilane (GE Advanced Materials) ; 2.00 wt. % calcium oxide;
4.55 wt. % AMICURE CG1200 dicyandiamide (Air Products);
0.50 wt. % SYLOTHIX 53 thixotropic agent (J. Rettenmaier &
Soehne) ;
1.50 wt. % CABOSIL TS-720 fumed silica (Cabot); 0.30 wt. % MONARCH 280 carbon black (Cabot); and 0 . 50 wt . % AMICURE UR 1 , 1 - dimethyl- 3 -phenylurea (Air Products ) .
An additional adhesive composition (Example 10) was prepared in accordance with Example 9, except that the amount of epoxy resin (EPON 828 or DER 331) was reduced to 9.90 wt. %, the amount of ANCAREZ 2364 polyurethane was reduced to 3.00 wt. %, the amount of AMICURE CG1200 dicyandiamide was reduced to 4.40 wt. % and tricresyl phosphate (5.75 wt. %) and WINGSTAY L anti-oxidant (0.50 wt . %) were added.
When the adhesive compositions were tested in accordance with the procedures previously described, the results shown in Table 2 were obtained.
Table 2.
Figure imgf000053_0001
The excellent properties of the cured adhesive composition of Example 10 (in particular, the high t-peel strength and 100% cohesive failure) , as compared to those of Examples 8 and 9, are believed to be largely due to the use of a combination of polyurethane, plasticizer, and anti-oxidant. EXAMPLES 11-16
Adhesive compositions were prepared based on the following components :
42.6 parts by weight (pbw) epoxy resin/core-shell rubber masterbatch;
8 pbw EPON 828 epoxy resin {Dow) ;
15 pbw epoxy resin/amine-terminated polyether reaction product, prepared in accordance with U.S. Pat. No.
6,015,865;
7 pbw Adeka EP-49-10N (epoxy equivalent weight =225; 100% solids; Asahi Denka Kogyo K.K.);
3 pbw CAB-O-SIL TS720 fumed silica (Cabot) ; 3 pbw calcium oxide;
0.7 pbw DYHARD UR700 urea accelerator (Degussa);
0.3 pbw MONARCH 580 carbon black (Cabot);
9.5 pbw Zeon F351 core- shell rubber particles (Nippon Zeon
Chemicals) ; 4.9 pbw DYHARD IOOSH dicyandiamide (Degussa)
Examples 11-13 also included 6 pbw of a blocked polyurethane prepolymer, while Examples 14-16 also included 8 pbw of this component .
The amounts of triphenylphosphate (TPP) plasticizer were varied for each of Examples 11-16 as shown in Table 3. The observed adhesive properties of each composition after curing for 60 minutes at 190 0C are also stated in Table 3 (cf = cohesive failure; scf = surface cohesive failure) . T— peel strength was significantly improved on both electrogalvanized steel and hot dipped galvanized steel when triphenylphosphate plasticizer was present in the adhesive formulation.
Table 3.
Figure imgf000055_0001

Claims

WHAT IS CLAIMED IS:
1. A composition comprising:
A) at least one epoxy resin;
B) rubber particles;
C) at least one additive selected from the group consisting of polyurethanes, platy fillers, and anti -oxidants ;
D) at least one heat-activated latent curing agent; and
E) at least one plasticizer.
2. The composition of Claim 1 wherein said rubber particles have an average particle size of less than 500 nm.
3. The composition of Claim 1 wherein at least a portion of the rubber particles are provided to the adhesive composition in the form of a stable dispersion in an epoxy resin.
4. The composition of Claim 1 additionally comprising at least one auxiliary impact modifier/toughening agent.
5. The composition of Claim 1 additionally comprising at least one epoxy-based prepolymer obtained by reacting one or more amine-terminated polymers with one or more epoxy resins.
6. The composition of Claim 1 in which the epoxy resin is selected from the group consisting of diglycidyl ethers of bisphenol A and bisphenol F.
7. The composition of Claim 1 additionally comprising at least one chelate-modifled epoxy resin.
8. The composition of Claim 1 comprising at least one sulfonate plasticizer, mica, and at least one anti-oxidant .
9. The composition of Claim 1 comprising at least one polyurethane and at least one phosphate ester plasticizer.
10. The composition of Claim 1, wherein said rubber particles have a core-shell structure.
11. The composition of Claim 10, wherein said rubber particles have a core comprised of a diene homopolymer, diene copolymer or polysiloxane elastomer.
12. The composition of Claim 10, wherein said rubber particles have a shell comprised of an alkyl (meth) acrylate homopolymer or copolymer.
13. The composition of Claim 1, wherein said rubber particles have an average particle size of less than about 250 nm.
14. The composition of Claim 1, wherein said at least one plasticizer is selected from the group consisting of phosphate ester plasticizers and sulfonate plasticizers .
15. The composition of Claim 1, wherein said at least one plasticizer is selected from the group consisting of phenolic esters of phosphoric acid and alkyl sulfonic acid esters of phenolic compounds.
16. The composition of Claim 1, wherein said at least one plasticizer is selected from the group consisting of triphenylphosphate , tricresyl phosphate, and phenyl cresyl esters of pentadecyl sulfonic acid.
17. The composition of Claim 1, wherein said composition is comprised of from 1 to 8 weight percent of said at least one plasticizer.
18. A method of making a composite article which comprises: contacting a surface with the composition of Claim 1 and curing the composition in contact with the surface to prepare a composite article.
19. The method of Claim 18 in which the surface is metal.
20. The method of Claim 18 in which at least two surfaces are contacted with the composition and cured in contact therewith.
21. The method of Claim 18 in which the surface is cold rolled steel contaminated with at least one oily substance.
22. The method of Claim 18 wherein the surface is contaminated with at least one oily substance and the composition additionally comprises at least one chelate- modified epoxy resin.
PCT/US2007/074785 2006-07-31 2007-07-31 Curable epoxy resin-based adhesive compositions WO2008016889A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009522999A JP5307714B2 (en) 2006-07-31 2007-07-31 Curable epoxy resin adhesive composition
KR1020097004324A KR101352811B1 (en) 2006-07-31 2007-07-31 Curable epoxy resin-based adhesive compositions
CN2007800360908A CN101517029B (en) 2006-07-31 2007-07-31 Curable epoxy resin-based adhesive compositions
EP07813567.0A EP2049611B1 (en) 2006-07-31 2007-07-31 Curable epoxy resin-based adhesive compositions
PL07813567T PL2049611T3 (en) 2006-07-31 2007-07-31 Curable epoxy resin-based adhesive compositions
ES07813567.0T ES2691528T3 (en) 2006-07-31 2007-07-31 Adhesive compositions based on curable epoxy resin
US12/363,830 US8673108B2 (en) 2006-07-31 2009-02-02 Curable epoxy resin-based adhesive compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82082106P 2006-07-31 2006-07-31
US60/820,821 2006-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/363,830 Continuation US8673108B2 (en) 2006-07-31 2009-02-02 Curable epoxy resin-based adhesive compositions

Publications (1)

Publication Number Publication Date
WO2008016889A1 true WO2008016889A1 (en) 2008-02-07

Family

ID=38997490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/074785 WO2008016889A1 (en) 2006-07-31 2007-07-31 Curable epoxy resin-based adhesive compositions

Country Status (8)

Country Link
US (1) US8673108B2 (en)
EP (1) EP2049611B1 (en)
JP (1) JP5307714B2 (en)
KR (1) KR101352811B1 (en)
CN (1) CN101517029B (en)
ES (1) ES2691528T3 (en)
PL (1) PL2049611T3 (en)
WO (1) WO2008016889A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110397A1 (en) 2008-04-16 2009-10-21 Sika Technology AG Polyurethane polymer based on amphiphilic block copolymers and its use as impact resistance modifier
EP2113525A1 (en) 2008-04-30 2009-11-04 Sika Technology AG Activator for epoxy resin composites
EP2128182A1 (en) 2008-05-28 2009-12-02 Sika Technology AG Heat hardened epoxy resin compound containing a catalyst with heteroatoms
EP2145924A1 (en) 2008-07-18 2010-01-20 Sika Technology AG Reaction products based on amphiphilic block copolymers and use thereof as impact modifiers
EP2145908A1 (en) 2008-07-17 2010-01-20 Sika Technology AG Adhesive compounds for oiled steel
US20100028651A1 (en) * 2008-07-29 2010-02-04 Golden Michael R Toughened expandable epoxy resins for stiffening and energy dissipation in automotive cavities
WO2010023166A1 (en) * 2008-08-28 2010-03-04 Robert Bosch Gmbh Method for gluing components, forming a temperature resistant adhesive layer
EP2173810A2 (en) * 2007-07-26 2010-04-14 Henkel Corporation Curable epoxy resin-based adhesive compositions
WO2010040499A1 (en) * 2008-10-09 2010-04-15 Zephyros Inc Provision of inserts
EP2182025A1 (en) 2008-10-31 2010-05-05 Sika Technology AG Heat curable epoxide resin compositions suitable as bodyshop adhesive or structural foam
JP2010185034A (en) * 2009-02-13 2010-08-26 Yokohama Rubber Co Ltd:The Structural adhesive composition
JP2010270198A (en) * 2009-05-20 2010-12-02 Yokohama Rubber Co Ltd:The Epoxy resin composition
CN101921373A (en) * 2010-08-17 2010-12-22 华南理工大学 Acrylic modified epoxy resin emulsion and preparation method thereof
EP2436712A1 (en) 2010-10-01 2012-04-04 Sika Technology AG Tougheners for epoxy resin compositions
EP2437936A1 (en) 2009-02-27 2012-04-11 Momentive Specialty Chemicals Research Belgium S.A. Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same
US20120129980A1 (en) * 2010-11-19 2012-05-24 Ppg Industries Ohio, Inc. Structural adhesive compositions
US20120211161A1 (en) * 2009-11-05 2012-08-23 Andreas Lutz Structural epoxy resin adhesives containing elastomeric tougheners capped with ketoximes
JP2012528205A (en) * 2009-05-28 2012-11-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Epoxy based adhesive film or adhesive tape
US8491749B2 (en) 2008-07-23 2013-07-23 3M Innovative Properties Company Two-part epoxy-based structural adhesives
WO2013151835A1 (en) 2012-04-02 2013-10-10 Dow Global Technologies Llc Epoxy adhesive, manufacture and use thereof
US8618204B2 (en) 2008-07-23 2013-12-31 3M Innovative Properties Company Two-part epoxy-based structural adhesives
US8637614B2 (en) 2008-07-23 2014-01-28 3M Innovative Properties Company Reactive liquid modifiers
WO2014071334A2 (en) * 2012-11-05 2014-05-08 3M Innovative Properties Company Thermoset adhesive, automotive component using thermoset adhesive, and method of manufacturing same
US8859695B2 (en) 2008-04-30 2014-10-14 Sika Technology Ag Activator for epoxy resin compositions
US9051497B2 (en) 2010-11-12 2015-06-09 3M Innovative Properties Company Curable compositions
US9139756B2 (en) 2009-09-11 2015-09-22 3M Innovative Properties Company Curable and cured adhesive compositions
TWI506081B (en) * 2009-06-15 2015-11-01 Ajinomoto Kk Resin composition and organic electrolyte battery
US9181463B2 (en) 2010-12-26 2015-11-10 Dow Global Technologies Llc Structural epoxy resin adhesives containing chain-extended elastomeric tougheners capped with phenol, polyphenol or aminophenol compounds
US9284447B2 (en) 2008-08-27 2016-03-15 Sika Technology Ag Silane/urea compound as a heat-activated curing agent for epoxide resin compositions
US9290683B2 (en) 2010-11-12 2016-03-22 3M Innovative Properties Company Curable and cured compositions
WO2016102329A1 (en) * 2014-12-22 2016-06-30 Henkel Ag & Co. Kgaa Epoxy resin composition
US9528035B2 (en) 2009-09-11 2016-12-27 3M Innovative Properties Company Curable and cured adhesive compositions
US9586363B2 (en) 2013-10-04 2017-03-07 Zephyros, Inc. Method and apparatus for adhesion of inserts
US9796891B2 (en) 2014-08-11 2017-10-24 Zephyros, Inc. Panel edge enclosures
US9932503B2 (en) 2014-06-30 2018-04-03 Hexcel Composites Limited Adhesive compositions
WO2019036211A1 (en) * 2017-08-15 2019-02-21 Dow Global Technologies Llc Two-component room temperature curable toughened epoxy adhesives
WO2019055128A1 (en) 2017-09-12 2019-03-21 Dow Global Technologies Llc One-component toughened epoxy adhesives
RU2718831C1 (en) * 2019-10-10 2020-04-14 Акционерное общество "Препрег-Современные Композиционные Материалы" Epoxy binder, prepreg based thereon and article made therefrom
EP3170860B1 (en) 2015-11-19 2020-07-29 3M Innovative Properties Company Structural adhesive with improved corrosion resistance
WO2020167758A1 (en) * 2019-02-11 2020-08-20 Ppg Industries Ohio, Inc. Systems for treating a metal substrate
EP3170657B1 (en) 2015-11-19 2020-09-09 3M Innovative Properties Company Multilayer structural adhesive film
EP3492508B1 (en) 2016-07-29 2020-10-14 Adeka Corporation Curable resin composition and adhesive for binding structural material using the composition
US11155673B2 (en) 2015-11-12 2021-10-26 Zephyros, Inc. Controlled glass transition polymeric material and method
DE102020128962A1 (en) 2020-11-03 2022-05-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Semi-finished product and method for manufacturing foam sandwich structures
CN114585701A (en) * 2019-08-23 2022-06-03 Ppg工业俄亥俄公司 System and method for improving lap shear strength and displacement of two-part structural adhesives

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517029B (en) 2006-07-31 2013-10-16 汉高股份及两合公司 Curable epoxy resin-based adhesive compositions
KR20090057289A (en) * 2006-09-29 2009-06-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Adhesives inhibiting formation of artifacts in polymer based optical elements
KR20090080956A (en) 2006-10-06 2009-07-27 헨켈 아게 운트 코. 카게아아 Pumpable epoxy paste adhesives resistant to wash-off
GB0700960D0 (en) * 2007-01-18 2007-02-28 3M Innovative Properties Co High strength epoxy adhesive and uses thereof
CN101932668B (en) * 2007-10-30 2015-03-25 汉高股份及两合公司 Epoxy paste adhesives resistant to wash-off
KR101095136B1 (en) * 2009-04-23 2011-12-16 삼성전기주식회사 Resin composition for printed circuit board and printed circuit board using the same
CN102821946B (en) * 2010-01-27 2016-01-20 陶氏环球技术有限责任公司 Sandwich construction and preparation method thereof
EP2528734A4 (en) * 2010-01-27 2014-01-15 Dow Global Technologies Llc A multilayer structure, and a method for making the same
JP5488036B2 (en) * 2010-02-23 2014-05-14 コニカミノルタ株式会社 Ultrasonic probe backing material, ultrasonic probe using the same, and ultrasonic medical diagnostic imaging apparatus
GB201005444D0 (en) * 2010-03-31 2010-05-19 3M Innovative Properties Co Epoxy adhesive compositions comprising an adhesion promoter
DE102010038487A1 (en) * 2010-07-27 2012-02-02 Wacker Chemie Ag Process for the preparation of siloxane copolymers with urethane sulfonamido compound groups
US20140150970A1 (en) 2010-11-19 2014-06-05 Ppg Industries Ohio, Inc. Structural adhesive compositions
US20120128499A1 (en) 2010-11-19 2012-05-24 Desai Umesh C Structural adhesive compositions
US8440746B2 (en) 2010-12-02 2013-05-14 Ppg Industries Ohio, Inc One component epoxy structural adhesive composition prepared from renewable resources
DE102011007897A1 (en) * 2011-04-12 2012-10-18 Henkel Ag & Co. Kgaa Impact-modified adhesives
US8895148B2 (en) * 2011-11-09 2014-11-25 Cytec Technology Corp. Structural adhesive and bonding application thereof
US20150098833A1 (en) * 2011-12-22 2015-04-09 Hexcel Holding Gmbh Fibre reinforced composites
DE102012010583A1 (en) * 2012-05-21 2013-11-21 Mankiewicz Gebr. & Co. Gmbh & Co. Kg Epoxy-based gelcoat for surface treatment of fiber-reinforced plastics components
WO2014062903A1 (en) * 2012-10-19 2014-04-24 Dow Global Technologies Llc Polymer particle dispersions with polyols
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
ES2778199T3 (en) * 2013-10-11 2020-08-10 Kaneka Corp Epoxy resin composition containing core-shell polymer, cured product of the same and method for its preparation
JP6061837B2 (en) * 2013-12-05 2017-01-18 アイシン化工株式会社 Structural adhesive composition
US10428175B2 (en) 2014-09-12 2019-10-01 Drexel University Toughening of epoxy thermosets
US10808152B2 (en) * 2014-11-28 2020-10-20 Dai Nippon Printing Co., Ltd. Adhesive composition and adhesive sheet using same
BR112017019246B1 (en) * 2015-03-11 2022-05-17 Basf Se Process of preparation of polyurethane, polyurethane, use of an isocyanate-reactive compound (p1) and uses of polyurethane
JP2018090651A (en) * 2015-03-31 2018-06-14 株式会社カネカ Curable epoxy resin composition excellent in storage stability
WO2016159223A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Curable epoxy resin composition exhibiting excellent thixotropy
US10005935B2 (en) 2015-05-01 2018-06-26 Lord Corporation Adhesive for rubber bonding
CN106194931B (en) * 2015-05-07 2018-07-06 哈尔滨飞机工业集团有限责任公司 It is a kind of that reversely the method for bushing is inlayed in installation in sandwich
CN105038137B (en) * 2015-08-31 2017-03-15 四川大学 A kind of composite for having structural strength and damping capacity concurrently and preparation method thereof and purposes
EP3170877B1 (en) 2015-11-19 2020-11-18 3M Innovative Properties Company Structural adhesive with improved failure mode
US10351661B2 (en) 2015-12-10 2019-07-16 Ppg Industries Ohio, Inc. Method for producing an aminimide
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
KR101879849B1 (en) 2016-11-17 2018-07-20 황진상 Polyurethane adhesive resin compound including rubber particle and mobile device bezel adhesive tape using the same
US11661484B2 (en) * 2017-05-24 2023-05-30 Toray Industries, Inc. Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
US11332609B2 (en) * 2017-06-29 2022-05-17 Dow Global Technologies Llc Epoxy-fiber reinforced composites, method to form the composites and epoxy resin composition used therefor
JP7215163B2 (en) * 2017-12-28 2023-01-31 日本製鉄株式会社 Metal-fiber reinforced resin material composite
JP7176090B2 (en) 2018-07-25 2022-11-21 エルジー・ケム・リミテッド adhesive composition
KR102183705B1 (en) * 2018-07-25 2020-11-27 주식회사 엘지화학 Adhesive composition
EP3816253B1 (en) 2018-07-25 2024-06-26 Lg Chem, Ltd. Adhesive composition
CN112534018B (en) 2018-07-25 2023-06-23 株式会社Lg化学 Adhesive composition
KR102230947B1 (en) * 2018-07-25 2021-03-23 주식회사 엘지화학 Adhesive composition
JP7122228B2 (en) * 2018-11-06 2022-08-19 ライオン・スペシャリティ・ケミカルズ株式会社 Adhesive, adhesive sheet, method for producing adhesive sheet, and image display device
US10822517B2 (en) 2018-11-28 2020-11-03 Industrial Technology Research Institute Resin composition and cured resin composition
KR102529462B1 (en) * 2019-03-11 2023-05-08 현대자동차주식회사 Structural adhesive composition
WO2021076102A1 (en) * 2019-10-15 2021-04-22 Swimc, Llc Intumescent coating compositions effective at low temperatures
CN113248917B (en) * 2020-02-13 2023-02-03 台光电子材料(昆山)有限公司 Resin composition and product thereof
KR102392001B1 (en) 2020-05-29 2022-04-28 주식회사 영우 Waterproof tape having improved stepped adhesion
KR20220016317A (en) * 2020-07-30 2022-02-09 현대자동차주식회사 Structural adhesive tape
JP2023550229A (en) * 2020-09-14 2023-12-01 ディディピー スペシャルティ エレクトロニック マテリアルズ ユーエス,エルエルシー thermal interface material
GB2599165B (en) * 2020-09-29 2022-09-28 Henkel Ag & Co Kgaa Hybrid epoxy composition
KR20220097640A (en) 2020-12-30 2022-07-08 삼성디스플레이 주식회사 Resin composition and display device including adhesive layer formed from the same
CN113512389B (en) * 2021-08-03 2022-09-20 威盛亚(上海)有限公司 Water-based environment-friendly binder for producing fire-resistant decorative material and preparation method thereof
WO2023211911A1 (en) * 2022-04-25 2023-11-02 Zephyros, Inc. Two-component rapid cure adhesive
WO2024206319A1 (en) * 2023-03-31 2024-10-03 Henkel Ag & Co. Kgaa Expanded cure window crash durable epoxy adhesives

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500009A1 (en) 1991-02-19 1992-08-26 Nippon Zeon Co., Ltd. Foamable epoxy resin composition
US5278257A (en) 1987-08-26 1994-01-11 Ciba-Geigy Corporation Phenol-terminated polyurethane or polyurea(urethane) with epoxy resin
US5290857A (en) 1991-09-04 1994-03-01 Nippon Zeon Co., Ltd. Epoxy resin adhesive composition
US5334654A (en) 1993-05-03 1994-08-02 Air Products And Chemicals, Inc. Flexibilized polyepoxide resins
US5686509A (en) 1993-05-24 1997-11-11 Nippon Zeon Co., Ltd. Epoxy resin structural adhesive composition
EP0971011A2 (en) * 1998-07-06 2000-01-12 Lintec Corporation Adhesive composition and adhesive sheet
US6015865A (en) 1991-06-26 2000-01-18 Henkel-Teroson Gmbh Hot melt adhesive from epoxy resin/amine-terminated polyalkylene glycol adduct
US6555187B1 (en) 1999-04-01 2003-04-29 Mitsui Chemicals, Inc. Sealing material composition for liquid crystal
KR20040049913A (en) * 2002-12-05 2004-06-14 소니 케미카루 가부시키가이샤 Latent Hardener, Manufacturing Method for Latent Hardener, and Adhesive
US6776869B1 (en) 1998-12-19 2004-08-17 Henkel-Teroson Gmbh Impact-resistant epoxide resin compositions
US20050022929A1 (en) 2001-12-22 2005-02-03 Rainer Schoenfeld Multi-phase structural adhesives
US6884854B2 (en) 2000-04-10 2005-04-26 Henkel Kommanditgesellschaft Auf Aktien Composition of epoxy resin, low glass transition temperature copolymer, latent hardener and carboxy-terminated polyamide and/or polyamide
EP0836892B1 (en) * 1996-10-21 2005-06-01 Dai Nippon Printing Co., Ltd. Transfer sheet, and pattern-forming method
CA2557352A1 (en) * 2004-02-26 2005-09-09 Nagoya Oilchemical Co., Ltd. Fire resistant fiber sheet, moldings thereof, and flame-retardant acoustical absorbents for automobiles
KR100524830B1 (en) * 1998-04-03 2005-12-27 시미즈겐세쓰 가부시키가이샤 Reinforcement method of the structure and composition for bonding the bundled fiber sheet used therein
WO2007025007A1 (en) 2005-08-24 2007-03-01 Henkel Kommanditgesellschaft Auf Aktien Epoxy compositions having improved impact resistance

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US568509A (en) * 1896-09-29 Bottle
US2786042A (en) 1951-11-23 1957-03-19 Du Pont Process for preparing sols of colloidal particles of reacted amorphous silica and products thereof
US2739075A (en) 1952-03-06 1956-03-20 Du Pont Product and process
US2831820A (en) 1953-04-13 1958-04-22 Honeywell Regulator Co Foamed epoxy resin composition and method of making
BE582883A (en) 1958-10-28
US3297745A (en) 1962-04-05 1967-01-10 Robertson Co H H Ethylenically unsaturated di-and tetra-urethane monomers
US3320187A (en) 1962-06-27 1967-05-16 Samuel L Burt Epoxy resin foaming process
DE1300696B (en) 1964-07-17 1969-08-07 Hoechst Ag Process for the production of foamed molded articles based on epoxy polyadducts
US3425964A (en) 1964-10-09 1969-02-04 Nat Starch Chem Corp Latent curing agents for thermosetting polymers
DE1720492B1 (en) 1966-08-04 1972-05-31 Dow Chemical Co METHOD OF MANUFACTURING MODIFIED EPOXY POLY ADDUCTS
BE758976A (en) 1969-11-17 1971-05-17 Dow Chemical Co IMPROVED ADHESIVE COMPOSITION BASED ON EPOXY RESIN
US3985703A (en) 1975-06-24 1976-10-12 Rohm And Haas Company Process for manufacture of acrylic core/shell polymers
US4116866A (en) 1977-07-01 1978-09-26 N L Industries, Inc. Organophilic clay gellant
US4180529A (en) 1977-12-08 1979-12-25 E. I. Du Pont De Nemours And Company Acrylic multistage graft copolymer products and processes
JPS5667322A (en) 1979-11-05 1981-06-06 Showa Highpolymer Co Ltd Curable resin composition
JPS5710651A (en) 1980-06-23 1982-01-20 Asahi Denka Kogyo Kk Coating material composition
US4315085A (en) 1980-07-25 1982-02-09 Gaf Corporation Core-shell composite polymers having high amounts of carboxylic acid units in the shell
US4569923A (en) 1980-10-03 1986-02-11 Southern Clay Products, Inc. Process for manufacturing organoclays having enhanced gelling properties
US5110501A (en) 1980-10-03 1992-05-05 Southern Clay Products, Inc. Process for manufacturing organoclays having enhanced gelling properties
US4412018A (en) 1980-11-17 1983-10-25 Nl Industries, Inc. Organophilic clay complexes, their preparation and compositions comprising said complexes
US4434076A (en) 1981-10-19 1984-02-28 Nl Industries, Inc. Clay cation complexes and their use to increase viscosity of liquid organic systems
US4382868A (en) 1981-08-13 1983-05-10 Venture Innovations, Inc. Organophilic clay gellants
US4360653A (en) 1981-10-23 1982-11-23 Ppg Industries, Inc. Polymerizate of (allyl carbonate) and aliphatic polyurethane having acrylic unsaturation
US4474705A (en) 1981-12-17 1984-10-02 The Sherwin-Williams Company Process for the preparation of organophilic clays
US4517112A (en) 1982-02-18 1985-05-14 Nl Industries, Inc. Modified organophilic clay complexes, their preparation and non-aqueous systems containing them
US4419496A (en) 1982-02-22 1983-12-06 The Dow Chemical Company Particle agglomeration in rubber latices
US4474706A (en) 1982-08-30 1984-10-02 The Sherwin-Williams Company Process for the preparation of organophilic clays
US4486582A (en) 1983-01-27 1984-12-04 The Dow Chemical Company Reactive monomers and thermosettable compositions containing same
US4560732A (en) 1983-11-11 1985-12-24 Asahi Denka Kogyo K.K. Coating composition
US4664842A (en) 1983-12-13 1987-05-12 Southern Clay Products, Inc. Process for manufacturing organoclays having enhanced gelling properties
US5160454A (en) 1983-12-13 1992-11-03 Southern Clay Products, Inc. Process for manufacturing organoclays having enhanced gelling properties
JPS61252224A (en) * 1985-05-01 1986-11-10 Hitachi Ltd Heat-resistant resin composition
US4719268A (en) 1985-05-16 1988-01-12 The Dow Chemical Company Polymer modified vinyl ester resin compositions
US4618658A (en) 1985-05-16 1986-10-21 The Dow Chemical Company Polymer modified epoxy resin compositions
KR900007766B1 (en) 1985-06-26 1990-10-19 더 다우 케미칼 캄파니 Rubber-modified epoxy compounds
US4695402A (en) 1985-08-20 1987-09-22 Nl Chemicals, Inc. Organophilic clay gellants and process for preparation
US4742098A (en) 1985-08-20 1988-05-03 Nl Chemicals, Inc. Organophilic clay gellants and process for preparation
US4621025A (en) * 1985-09-23 1986-11-04 Westinghouse Electric Corp. β-keto amide modified epoxy resins
JPS6381121A (en) * 1986-09-24 1988-04-12 Ihara Chem Ind Co Ltd Heat-resistant epoxy resin composition
DE3864484D1 (en) 1987-08-26 1991-10-02 Ciba Geigy Ag MODIFIED EPOXY RESINS.
US5075033A (en) 1987-10-19 1991-12-24 Rheox, Inc. Processes for preparing organophilic clay gellants
US4894182A (en) 1987-10-19 1990-01-16 Nl Chemicals, Inc. Organophilic clay gellant and processes for preparing organophilic clay gellants
EP0338985B1 (en) 1988-04-18 1994-05-18 Ciba-Geigy Ag Modified epoxy resins
US5202390A (en) 1988-07-28 1993-04-13 Ciba-Geigy Corporation Butadiene/polar comonomer copolymer and aromatic reactive end group-containing prepolymer
ES2068911T3 (en) 1988-07-28 1995-05-01 Ciba Geigy Ag COMBINATIONS OF FLEXIBILIZERS FOR EPOXY RESINS.
DE3827626A1 (en) 1988-08-10 1990-03-08 Teroson Gmbh REACTIVE MELT ADHESIVE
EP0379468B1 (en) 1989-01-20 1995-03-01 Ciba-Geigy Ag Curable epoxy resin composition containing a thermoplastic resin having phenolic end groups
DE59010431D1 (en) 1989-02-02 1996-09-05 Ciba Geigy Ag Tough epoxy resins
US5789482A (en) 1990-03-30 1998-08-04 Ciba Specialty Chemicals Corporation Epoxy resin with anhydride, toughener and active hydrogen-containing compound
JPH04234422A (en) 1990-10-31 1992-08-24 Internatl Business Mach Corp <Ibm> Double-cured epoxy back seal preparation
DE4040986A1 (en) 1990-12-20 1992-06-25 Wacker Chemie Gmbh ELASTOMERIC Graft Copolymers With Core-Shell Structure
US5198524A (en) 1991-04-22 1993-03-30 W.R. Grace & Co.-Conn. Moisture-curing acrylate/epoxy hybrid adhesives
JPH04332785A (en) * 1991-05-08 1992-11-19 Aisin Chem Co Ltd Plastisol composition
US5218063A (en) 1991-06-26 1993-06-08 W. R. Grace & Co.-Conn. Epoxy adhesives and methods of using cured compositions therefrom
FR2679237B1 (en) 1991-07-19 1994-07-22 Atochem PRIMING SYSTEM FOR THE ANIONIC POLYMERIZATION OF (METH) ACRYLIC MONOMERS.
JP3087393B2 (en) * 1991-10-22 2000-09-11 日本ゼオン株式会社 Panel reinforcing sheet material and vehicle outer panel structure using the same
US5336647A (en) 1991-11-14 1994-08-09 Rheox, Inc. Organoclay compositions prepared with a mixture of two organic cations and their use in non-aqueous systems
US5429999A (en) 1991-11-14 1995-07-04 Rheox, Inc. Organoclay compositions containing two or more cations and one or more organic anions, their preparation and use in non-aqueous systems
CA2090092C (en) 1992-02-27 2000-01-11 Edwin Lee Mcinnis Higher modulus compositions incorporating particulate rubber
US5969053A (en) 1992-02-27 1999-10-19 Composite Particles, Inc. Higher modulus compositions incorporating particulate rubber
US5506283A (en) 1992-02-27 1996-04-09 Composite Particles, Inc. Higher modulus compositions incorporating particulate rubber
US5693714A (en) 1992-02-27 1997-12-02 Composite Particles, Inc. Higher modulus compositions incorporating particulate rubber
US5232996A (en) 1992-05-07 1993-08-03 Lord Corporation Acrylate-terminated polyurethane/epoxy adhesives
EP0578613B1 (en) * 1992-07-09 2000-07-12 Ciba SC Holding AG Curable epoxy resin suspensions
JP2850698B2 (en) * 1993-03-30 1999-01-27 日本ゼオン株式会社 Epoxy resin structural adhesive composition
EP0730615B1 (en) 1993-11-26 2000-09-06 Henkel Kommanditgesellschaft auf Aktien Low-odour adhesive composition comprising urethane group containing (meth)acrylate
JPH08100162A (en) 1994-09-29 1996-04-16 Nippon Zeon Co Ltd Bonding method using epoxy resin-based adherent composition
US5534594A (en) 1994-12-05 1996-07-09 Rohm And Haas Company Preparation of butadiene-based impact modifiers
WO1996017880A1 (en) 1994-12-06 1996-06-13 The Dexter Corporation Novel polyurethane toughener, thermosetting resin compositions and adhesives
JPH0925393A (en) 1995-05-09 1997-01-28 Toray Ind Inc Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP2001505174A (en) 1995-05-09 2001-04-17 サザン クレイ プロダクツ インク Organoclays containing branched alkyl quaternary ammonium ions
US5755486A (en) 1995-05-23 1998-05-26 Novamax Technologies Holdings, Inc. Composite structural reinforcement member
FR2735480B1 (en) 1995-06-15 1997-07-18 Atochem Elf Sa CONTINUOUS ANIONIC POLYMERIZATION PROCESS OF AT LEAST ONE (METH) ACRYLIC MONOMER FOR THE OBTAINING OF POLYMERS WITH A HIGH SOLID RATE
JPH0940831A (en) * 1995-07-26 1997-02-10 Aisin Chem Co Ltd Vinyl chloride based plastisol composition
US5728764A (en) 1995-09-07 1998-03-17 Southern Clay Products, Inc. Formulations including improved organoclay compositions
US5663111A (en) 1995-09-07 1997-09-02 Southern Clay Products, Inc. Organoclay compositions
DE19535824A1 (en) 1995-09-26 1997-03-27 Wacker Chemie Gmbh Pre-crosslinked silicone elastomer particles with an organopolymer shell as a formulation component in powder coatings
US6635108B1 (en) 1995-11-07 2003-10-21 Southern Clay Products, Inc. Organoclay compositions for gelling unsaturated polyester resin systems
EP0776917B1 (en) 1995-11-29 2002-05-29 Vantico AG Core/Shell particles and epoxy resin compositions containing them
US5863970A (en) 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
US6045898A (en) 1996-02-02 2000-04-04 Toray Industried, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
DE19617379A1 (en) 1996-04-30 1997-11-06 Wacker Chemie Gmbh Pre-crosslinked silicone elastomer particles with an organopolymer shell as a formulation component in aqueous paint preparations
US5755468A (en) 1996-05-03 1998-05-26 Itt Automotive Electrical Systems, Inc. Power striker with over-ride capabilities
US6316528B1 (en) 1997-01-17 2001-11-13 Loctite (R&D) Limited Thermosetting resin compositions
US5891697A (en) 1997-09-25 1999-04-06 Washington State University Research Foundation Monoterpene synthases from common sage (Salvia officinalis)
US6070427A (en) 1997-10-10 2000-06-06 National Starch And Chemical Investment Holding Corporation Method for shipping exothermic materials
JP3407638B2 (en) * 1997-12-05 2003-05-19 エヌオーケー株式会社 Rubber laminated metal plate
US6068424A (en) 1998-02-04 2000-05-30 Henkel Corporation Three dimensional composite joint reinforcement for an automotive vehicle
US5891367A (en) 1998-02-23 1999-04-06 General Motors Corporation Conductive epoxy adhesive
US6036765A (en) 1998-04-01 2000-03-14 Southern Clay Products Organoclay compositions and method of preparation
ZA991856B (en) 1998-08-27 1999-09-22 Henkel Corp Storage-stable compositions useful for the production of structural foams.
JP2000141538A (en) * 1998-09-04 2000-05-23 Nok Corp Rubber-laminated metallic sheet md its manufacture
EP0985692B1 (en) 1998-09-09 2005-01-19 Rohm And Haas Company Improved MBS impact modifier
US20040181013A1 (en) 1998-10-06 2004-09-16 Henkel Teroson Gmbh Impact resistant epoxide resin compositions
DE19845607A1 (en) * 1998-10-06 2000-04-20 Henkel Teroson Gmbh Impact-resistant epoxy resin compositions
US6437059B1 (en) 1999-02-11 2002-08-20 Reichhold, Inc. Composition of epoxy, urethane polyacrylate and polyamine
US20020012760A1 (en) 1999-03-01 2002-01-31 John E. Barry Antimicrobial food tray
DE19909270A1 (en) 1999-03-03 2000-09-07 Henkel Teroson Gmbh Thermosetting, thermally expandable molded body
JP4014352B2 (en) * 1999-04-01 2007-11-28 三井化学株式会社 Liquid crystal sealant composition
JP4588817B2 (en) 1999-07-08 2010-12-01 ソマール株式会社 One-pack type epoxy resin adhesive
US6787592B1 (en) 1999-10-21 2004-09-07 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
US6323263B1 (en) 1999-11-11 2001-11-27 Shin-Etsu Chemical Co., Ltd. Semiconductor sealing liquid epoxy resin compositions
KR20080087045A (en) 2000-02-15 2008-09-29 히다치 가세고교 가부시끼가이샤 Adhesive composition, process for producing the same, adhesive film made with the same, substrate for semiconductor mounting, and semiconductor device
US6699351B2 (en) 2000-03-24 2004-03-02 3M Innovative Properties Company Anisotropically conductive adhesive composition and anisotropically conductive adhesive film formed from it
FR2809741B1 (en) 2000-05-31 2002-08-16 Atofina IMPROVED SHOCK RESISTANT MATERIALS
US6372350B1 (en) 2000-06-16 2002-04-16 Loctite Corporation Curable epoxy-based compositions
TWI298412B (en) 2000-06-21 2008-07-01 Mitsui Chemicals Inc
JP3876965B2 (en) 2000-11-17 2007-02-07 信越化学工業株式会社 Liquid epoxy resin composition and semiconductor device
EP1352026B1 (en) 2000-11-29 2004-07-21 Vantico AG Filled epoxy resin system having high mechanical strength values
US6548575B2 (en) 2000-12-13 2003-04-15 National Starch And Chemical Investment Holding Corporation High temperature underfilling material with low exotherm during use
DE10062009A1 (en) * 2000-12-13 2002-07-04 Henkel Teroson Gmbh Multi-layer sandwich materials with organic intermediate layers based on epoxy
JP2002284849A (en) 2001-03-26 2002-10-03 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device
JP4771445B2 (en) 2001-07-11 2011-09-14 日本化薬株式会社 Insulating resin composition for electronic parts and adhesive sheet
DE10138127A1 (en) 2001-08-03 2003-02-27 Henkel Kgaa Binder component for surface coating agents with improved adhesive properties
US6624213B2 (en) 2001-11-08 2003-09-23 3M Innovative Properties Company High temperature epoxy adhesive films
US6652774B2 (en) 2001-12-20 2003-11-25 Ferro Corporation Glycerin triester plasticizer
EP1456286B1 (en) 2001-12-21 2012-06-13 Henkel AG & Co. KGaA Expandable epoxy resin-based systems modified with thermoplastic polymers
DE10236240A1 (en) 2002-02-06 2003-08-14 Roehm Gmbh Silicone graft copolymers with core-shell structure, impact-modified molding compositions and moldings, and process for their preparation
US20030192643A1 (en) 2002-03-15 2003-10-16 Rainer Schoenfeld Epoxy adhesive having improved impact resistance
JP2003277579A (en) 2002-03-22 2003-10-02 Nippon Kayaku Co Ltd Highly heat-resistant epoxy resin composition and its cured product
JP2003286391A (en) 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
GB0209485D0 (en) 2002-04-25 2002-06-05 Procter & Gamble Durable fiber treatment composition
EP1359202A1 (en) 2002-05-03 2003-11-05 Sika Schweiz AG Temperature curable epoxy resin composition
US7022410B2 (en) 2003-12-16 2006-04-04 General Electric Company Combinations of resin compositions and methods of use thereof
EP1431325A1 (en) 2002-12-17 2004-06-23 Sika Technology AG Heat-curable epoxy resin composition with improved low-temperatur impact strength
EP1457509B1 (en) 2003-03-11 2006-06-28 hanse chemie AG Epoxy Resin Polymers Composition
DE10312815A1 (en) 2003-03-22 2004-10-07 Henkel Kgaa Process for contamination-tolerant bonding of parts to be joined
US7125461B2 (en) 2003-05-07 2006-10-24 L & L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
ES2412804T3 (en) 2003-06-09 2013-07-12 Kaneka Corporation Procedure to produce modified epoxy resin
CN101691418B (en) 2003-07-07 2012-10-03 陶氏环球技术有限责任公司 Adhesive epoxy composition and process for applying it
EP1498441A1 (en) 2003-07-16 2005-01-19 Sika Technology AG Temperature curable compositions with low temperature impact strength modifier
US20050016677A1 (en) 2003-07-22 2005-01-27 L&L Products, Inc. Two-component adhesive material and method of use therefor
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
JP2005248134A (en) * 2004-03-08 2005-09-15 Shin Etsu Chem Co Ltd Flame retardant adhesive composition, and cover lay film and flexible copper clad laminate plate by using the same
JP2005255822A (en) 2004-03-11 2005-09-22 Kaneka Corp Rubber-reinforced epoxy resin product
EP1574537B2 (en) 2004-03-12 2014-12-24 Dow Global Technologies LLC Epoxy adhesive composition
KR101104779B1 (en) 2004-03-22 2012-01-12 니폰 가야꾸 가부시끼가이샤 Sealing material for liquid crystal and method for producing same
US20050215730A1 (en) 2004-03-24 2005-09-29 Rainer Schoenfeld Polycarboxy-functionalized prepolymers
US20070261883A1 (en) 2004-04-22 2007-11-15 Chan Bruce C Methods For Improving The Flux Compatibility Of Underfill Formulations
EP1602702B2 (en) 2004-06-01 2020-09-16 Dow Global Technologies LLC Epoxy adhesive composition
US7019102B2 (en) * 2004-06-18 2006-03-28 Henkel Kommanditgesellschaft Auf Aktien Blocked polyurethane prepolymers useful in coating compositions
JP2006013378A (en) 2004-06-29 2006-01-12 Tdk Corp Thermistor element body forming resin composition and thermistor
US7247683B2 (en) 2004-08-05 2007-07-24 Fry's Metals, Inc. Low voiding no flow fluxing underfill for electronic devices
JP5027509B2 (en) 2004-08-18 2012-09-19 株式会社カネカ Epoxy resin composition for semiconductor encapsulant and epoxy resin molding material
WO2006107273A1 (en) 2005-04-06 2006-10-12 National University Of Singapore Compounds having progestogenic activity and their use
US7410694B2 (en) * 2005-04-11 2008-08-12 Tesa Aktiengesellschaft Adhesive
DE602005020260D1 (en) 2005-06-02 2010-05-12 Dow Global Technologies Inc Impact-modified structural adhesive based on epoxy
CA2613762A1 (en) 2005-07-01 2007-01-11 Sika Technology Ag Solid thermally expansible material
WO2007025036A1 (en) 2005-08-24 2007-03-01 Dow Global Technologies, Inc. Epoxy based reinforcing patches with encapsulated physical blowing agents
US20070116961A1 (en) 2005-11-23 2007-05-24 3M Innovative Properties Company Anisotropic conductive adhesive compositions
US7701641B2 (en) 2006-03-20 2010-04-20 Ophthonix, Inc. Materials and methods for producing lenses
US7892396B2 (en) 2006-06-07 2011-02-22 Zephyros, Inc. Toughened activatable material for sealing, baffling or reinforcing and method of forming same
CN101517029B (en) 2006-07-31 2013-10-16 汉高股份及两合公司 Curable epoxy resin-based adhesive compositions
US20080051524A1 (en) 2006-08-28 2008-02-28 Henkel Corporation Epoxy-Based Compositions Having Improved Impact Resistance
FR2910314B1 (en) 2006-12-20 2009-05-08 Oreal TREATMENT OF CAPILLARY FIBERS FROM A COMPOSITION COMPRISING REACTIVE SILICONE COMPOUNDS BEFORE OR AFTER A COLORING PROCESS
FR2910309A1 (en) 2006-12-20 2008-06-27 Oreal Hair dyeing composition containing a polymerisable or crosslinkable polyorganosiloxane composition and an oxidation base
CN101821333A (en) * 2007-07-26 2010-09-01 汉高公司 Curable epoxy resin-based adhesive compositions
EP2154052A1 (en) 2008-08-12 2010-02-17 Sika Technology AG Structural reinforcement system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278257A (en) 1987-08-26 1994-01-11 Ciba-Geigy Corporation Phenol-terminated polyurethane or polyurea(urethane) with epoxy resin
EP0500009A1 (en) 1991-02-19 1992-08-26 Nippon Zeon Co., Ltd. Foamable epoxy resin composition
US6015865A (en) 1991-06-26 2000-01-18 Henkel-Teroson Gmbh Hot melt adhesive from epoxy resin/amine-terminated polyalkylene glycol adduct
US5290857A (en) 1991-09-04 1994-03-01 Nippon Zeon Co., Ltd. Epoxy resin adhesive composition
US5334654A (en) 1993-05-03 1994-08-02 Air Products And Chemicals, Inc. Flexibilized polyepoxide resins
US5686509A (en) 1993-05-24 1997-11-11 Nippon Zeon Co., Ltd. Epoxy resin structural adhesive composition
EP0836892B1 (en) * 1996-10-21 2005-06-01 Dai Nippon Printing Co., Ltd. Transfer sheet, and pattern-forming method
KR100524830B1 (en) * 1998-04-03 2005-12-27 시미즈겐세쓰 가부시키가이샤 Reinforcement method of the structure and composition for bonding the bundled fiber sheet used therein
EP0971011A2 (en) * 1998-07-06 2000-01-12 Lintec Corporation Adhesive composition and adhesive sheet
US6776869B1 (en) 1998-12-19 2004-08-17 Henkel-Teroson Gmbh Impact-resistant epoxide resin compositions
US6555187B1 (en) 1999-04-01 2003-04-29 Mitsui Chemicals, Inc. Sealing material composition for liquid crystal
US6884854B2 (en) 2000-04-10 2005-04-26 Henkel Kommanditgesellschaft Auf Aktien Composition of epoxy resin, low glass transition temperature copolymer, latent hardener and carboxy-terminated polyamide and/or polyamide
US20050022929A1 (en) 2001-12-22 2005-02-03 Rainer Schoenfeld Multi-phase structural adhesives
KR20040049913A (en) * 2002-12-05 2004-06-14 소니 케미카루 가부시키가이샤 Latent Hardener, Manufacturing Method for Latent Hardener, and Adhesive
CA2557352A1 (en) * 2004-02-26 2005-09-09 Nagoya Oilchemical Co., Ltd. Fire resistant fiber sheet, moldings thereof, and flame-retardant acoustical absorbents for automobiles
WO2007025007A1 (en) 2005-08-24 2007-03-01 Henkel Kommanditgesellschaft Auf Aktien Epoxy compositions having improved impact resistance

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173810A4 (en) * 2007-07-26 2012-07-25 Henkel Corp Curable epoxy resin-based adhesive compositions
EP2173810A2 (en) * 2007-07-26 2010-04-14 Henkel Corporation Curable epoxy resin-based adhesive compositions
EP2110397A1 (en) 2008-04-16 2009-10-21 Sika Technology AG Polyurethane polymer based on amphiphilic block copolymers and its use as impact resistance modifier
US8829122B2 (en) 2008-04-16 2014-09-09 Sika Technology Ag Polyurethane polymer based on an amphiphilic block copolymer and its use as impact modifier
US8859695B2 (en) 2008-04-30 2014-10-14 Sika Technology Ag Activator for epoxy resin compositions
EP2113525A1 (en) 2008-04-30 2009-11-04 Sika Technology AG Activator for epoxy resin composites
EP2128182A1 (en) 2008-05-28 2009-12-02 Sika Technology AG Heat hardened epoxy resin compound containing a catalyst with heteroatoms
US8608899B2 (en) 2008-05-28 2013-12-17 Sika Technology Ag Heat-curing epoxy resin composition comprising an accelerator having heteroatoms
EP2145908A1 (en) 2008-07-17 2010-01-20 Sika Technology AG Adhesive compounds for oiled steel
EP2145924A1 (en) 2008-07-18 2010-01-20 Sika Technology AG Reaction products based on amphiphilic block copolymers and use thereof as impact modifiers
US8637614B2 (en) 2008-07-23 2014-01-28 3M Innovative Properties Company Reactive liquid modifiers
US8618204B2 (en) 2008-07-23 2013-12-31 3M Innovative Properties Company Two-part epoxy-based structural adhesives
US8491749B2 (en) 2008-07-23 2013-07-23 3M Innovative Properties Company Two-part epoxy-based structural adhesives
US20100028651A1 (en) * 2008-07-29 2010-02-04 Golden Michael R Toughened expandable epoxy resins for stiffening and energy dissipation in automotive cavities
US9284447B2 (en) 2008-08-27 2016-03-15 Sika Technology Ag Silane/urea compound as a heat-activated curing agent for epoxide resin compositions
WO2010023166A1 (en) * 2008-08-28 2010-03-04 Robert Bosch Gmbh Method for gluing components, forming a temperature resistant adhesive layer
US8709201B2 (en) 2008-08-28 2014-04-29 Robert Bosch Gmbh Method for gluing components, forming a temperature-resistant adhesive layer
JP2012500878A (en) * 2008-08-28 2012-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of bonding components (Bauteilen) under the formation of a temperature stable adhesive layer
WO2010040499A1 (en) * 2008-10-09 2010-04-15 Zephyros Inc Provision of inserts
CN102232100A (en) * 2008-10-09 2011-11-02 泽菲罗斯公司 Provision of inserts
CN105885708A (en) * 2008-10-09 2016-08-24 泽菲罗斯公司 Provision of inserts
EP2182025A1 (en) 2008-10-31 2010-05-05 Sika Technology AG Heat curable epoxide resin compositions suitable as bodyshop adhesive or structural foam
US9187592B2 (en) 2008-10-31 2015-11-17 Sika Technology Ag Hot-curing epoxy resin compositions that can be used as bodyshell adhesive or structural foam
JP2010185034A (en) * 2009-02-13 2010-08-26 Yokohama Rubber Co Ltd:The Structural adhesive composition
EP2437936A1 (en) 2009-02-27 2012-04-11 Momentive Specialty Chemicals Research Belgium S.A. Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same
JP2010270198A (en) * 2009-05-20 2010-12-02 Yokohama Rubber Co Ltd:The Epoxy resin composition
JP2012528205A (en) * 2009-05-28 2012-11-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Epoxy based adhesive film or adhesive tape
TWI506081B (en) * 2009-06-15 2015-11-01 Ajinomoto Kk Resin composition and organic electrolyte battery
US9528035B2 (en) 2009-09-11 2016-12-27 3M Innovative Properties Company Curable and cured adhesive compositions
US9139756B2 (en) 2009-09-11 2015-09-22 3M Innovative Properties Company Curable and cured adhesive compositions
US20120211161A1 (en) * 2009-11-05 2012-08-23 Andreas Lutz Structural epoxy resin adhesives containing elastomeric tougheners capped with ketoximes
US8858752B2 (en) * 2009-11-05 2014-10-14 Dow Global Technologies Llc Structural epoxy resin adhesives containing elastomeric tougheners capped with ketoximes
CN101921373A (en) * 2010-08-17 2010-12-22 华南理工大学 Acrylic modified epoxy resin emulsion and preparation method thereof
EP2436712A1 (en) 2010-10-01 2012-04-04 Sika Technology AG Tougheners for epoxy resin compositions
WO2012042058A1 (en) 2010-10-01 2012-04-05 Sika Technology Ag Impact resistance modifiers for epoxy resin compositions
US9051497B2 (en) 2010-11-12 2015-06-09 3M Innovative Properties Company Curable compositions
US9290683B2 (en) 2010-11-12 2016-03-22 3M Innovative Properties Company Curable and cured compositions
US20120129980A1 (en) * 2010-11-19 2012-05-24 Ppg Industries Ohio, Inc. Structural adhesive compositions
US9181463B2 (en) 2010-12-26 2015-11-10 Dow Global Technologies Llc Structural epoxy resin adhesives containing chain-extended elastomeric tougheners capped with phenol, polyphenol or aminophenol compounds
US20150045510A1 (en) * 2012-04-02 2015-02-12 Christof Braendli Epoxy adhesive, manufacture and use thereof
WO2013151835A1 (en) 2012-04-02 2013-10-10 Dow Global Technologies Llc Epoxy adhesive, manufacture and use thereof
WO2014071334A2 (en) * 2012-11-05 2014-05-08 3M Innovative Properties Company Thermoset adhesive, automotive component using thermoset adhesive, and method of manufacturing same
WO2014071334A3 (en) * 2012-11-05 2014-08-07 3M Innovative Properties Company Thermoset adhesive, automotive component using thermoset adhesive, and method of manufacturing same
US11008487B2 (en) 2012-11-05 2021-05-18 3M Innovative Properties Company Thermoset adhesive, automotive component using thermoset adhesive, and method of manufacturing same
US10316225B2 (en) 2012-11-05 2019-06-11 3M Innovative Properties Company Thermoset adhesive, automotive component using thermoset adhesive, and method of manufacturing same
US9586363B2 (en) 2013-10-04 2017-03-07 Zephyros, Inc. Method and apparatus for adhesion of inserts
US9932503B2 (en) 2014-06-30 2018-04-03 Hexcel Composites Limited Adhesive compositions
US9796891B2 (en) 2014-08-11 2017-10-24 Zephyros, Inc. Panel edge enclosures
US10442965B2 (en) 2014-08-11 2019-10-15 Zephyros, Inc. Panel edge enclosures
WO2016102329A1 (en) * 2014-12-22 2016-06-30 Henkel Ag & Co. Kgaa Epoxy resin composition
US10329465B2 (en) 2014-12-22 2019-06-25 Henkel Ag & Co. Kgaa Epoxy resin composition
US11155673B2 (en) 2015-11-12 2021-10-26 Zephyros, Inc. Controlled glass transition polymeric material and method
EP3170657B1 (en) 2015-11-19 2020-09-09 3M Innovative Properties Company Multilayer structural adhesive film
EP3170860B1 (en) 2015-11-19 2020-07-29 3M Innovative Properties Company Structural adhesive with improved corrosion resistance
EP3492508B1 (en) 2016-07-29 2020-10-14 Adeka Corporation Curable resin composition and adhesive for binding structural material using the composition
WO2019036211A1 (en) * 2017-08-15 2019-02-21 Dow Global Technologies Llc Two-component room temperature curable toughened epoxy adhesives
WO2019055128A1 (en) 2017-09-12 2019-03-21 Dow Global Technologies Llc One-component toughened epoxy adhesives
WO2020167758A1 (en) * 2019-02-11 2020-08-20 Ppg Industries Ohio, Inc. Systems for treating a metal substrate
CN113631759A (en) * 2019-02-11 2021-11-09 Ppg工业俄亥俄公司 System for treating metal substrates
CN113631759B (en) * 2019-02-11 2023-10-20 Ppg工业俄亥俄公司 System for processing metal substrates
CN114585701A (en) * 2019-08-23 2022-06-03 Ppg工业俄亥俄公司 System and method for improving lap shear strength and displacement of two-part structural adhesives
CN114585701B (en) * 2019-08-23 2024-04-09 Ppg工业俄亥俄公司 System and method for improving lap shear strength and displacement of two-component structural adhesives
RU2718831C1 (en) * 2019-10-10 2020-04-14 Акционерное общество "Препрег-Современные Композиционные Материалы" Epoxy binder, prepreg based thereon and article made therefrom
DE102020128962A1 (en) 2020-11-03 2022-05-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Semi-finished product and method for manufacturing foam sandwich structures

Also Published As

Publication number Publication date
US8673108B2 (en) 2014-03-18
JP2009545656A (en) 2009-12-24
US20090294057A1 (en) 2009-12-03
PL2049611T3 (en) 2019-04-30
EP2049611A4 (en) 2012-08-15
KR20090037966A (en) 2009-04-16
EP2049611B1 (en) 2018-09-05
CN101517029A (en) 2009-08-26
JP5307714B2 (en) 2013-10-02
CN101517029B (en) 2013-10-16
ES2691528T3 (en) 2018-11-27
KR101352811B1 (en) 2014-02-17
EP2049611A1 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
EP2049611B1 (en) Curable epoxy resin-based adhesive compositions
US20100130655A1 (en) Curable epoxy resin-based adhesive compositions
US7919555B2 (en) Epoxy compositions having improved impact resistance
US8545667B2 (en) Pumpable epoxy paste adhesives resistant to wash-off
EP2205692B1 (en) Epoxy paste adhesives resistant to wash-off
EP2135909B1 (en) Next generation, highly toughened two part structural epoxy adhesive compositions
JP2019199606A (en) Thermosetting resin composition
KR20230129192A (en) Crash-resistant, stress-resistant and weldable epoxy adhesive

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036090.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07813567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009522999

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007813567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097004324

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU