WO2008015745A1 - Optical path switching device - Google Patents

Optical path switching device Download PDF

Info

Publication number
WO2008015745A1
WO2008015745A1 PCT/JP2006/315370 JP2006315370W WO2008015745A1 WO 2008015745 A1 WO2008015745 A1 WO 2008015745A1 JP 2006315370 W JP2006315370 W JP 2006315370W WO 2008015745 A1 WO2008015745 A1 WO 2008015745A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
path switching
switching device
optical path
Prior art date
Application number
PCT/JP2006/315370
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Togawa
Junichiro Asano
Original Assignee
Nabtesco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation filed Critical Nabtesco Corporation
Priority to US12/376,190 priority Critical patent/US20100074618A1/en
Priority to CA002660055A priority patent/CA2660055A1/en
Priority to PCT/JP2006/315370 priority patent/WO2008015745A1/en
Priority to JP2008527619A priority patent/JPWO2008015745A1/en
Publication of WO2008015745A1 publication Critical patent/WO2008015745A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3514Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path

Definitions

  • the present invention relates to an optical path switching device that is used as, for example, an optical device in an optical communication system and switches an optical path.
  • an optical path switching device that switches an optical path by mechanically moving an optical switch prism in and out of a light path (moving it between a position in an optical path and a position in a non-optical path)
  • a method in which a part of the light is branched at a predetermined ratio by an optical branching device, and the branched light is detected by a light receiving element for example, see Patent Document 1).
  • O Branch detected by a light receiving element The light amount level of light is monitored via a light receiving circuit. This monitoring result can be used for mechanical movement (moving in and out of the optical path) of the optical switch prism.
  • a separate control device drives the moving means of the optical switch prism.
  • the optical path can be switched by moving the optical switch prism to a position in the non-optical path.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-21756 (Page 5, Fig. 1)
  • a conventional optical path switching device uses a half mirror as an optical splitter for obtaining monitoring light.
  • This half mirror separates incoming light into transmitted light and reflected light, guides one reflected light to the light receiving element, and guides the other transmitted light to the output optical fiber collimator.
  • the light entering the optical fiber collimator for output is near the axial center of the light beam using the condensing function of the collimator lens (when the light is viewed in cross section, the light is concentrated and the amount of light is large!) It is known that there is a limit to the condensing performance of the collimator lens.
  • the half mirror as an optical branching device in the conventional optical path switching device acts on the entire region of the light beam to split the light, and has a center of the light beam. Even nearby light (that is, light that is effective for confinement in an optical fiber) is partly branched, leading to loss of light. For this reason, the conventional optical path switching device is difficult, although it has good confinement efficiency of light in the optical fiber for output.
  • the present invention has been made to solve the conventional problems, and can suppress the loss of light for monitoring and improve the light confinement efficiency with respect to the optical fiber for output as compared with the conventional one.
  • An object is to provide an optical path switching device.
  • the optical path switching device of the present invention includes at least one or more optical input means including an optical fiber and a lens for inputting an optical signal, and at least an optical fiber and a lens for outputting the optical signal.
  • the optical path switching device in which the optical path switching component is controlled in accordance with a monitoring result of the light.
  • the optical detection component is a radially outer portion of the light. Configure to detect only a part of.
  • the light detection component includes a part of the light input as an optical signal on the radially outer side (that is, a part of the light excluding the vicinity of the axial center effective for confinement in the optical fiber).
  • This is a configuration that detects only. Therefore, the optical path switching device of the present invention can suppress the loss of light for monitoring as compared with the conventional one, and can improve the light confinement efficiency for the output optical fiber as compared with the conventional one.
  • the optical path switching device of the present invention comprises light branching means for branching only a part of the light input from the light input means on the radially outer side, and the light detection component is the light branching means. It is configured to detect the branched light.
  • the optical path switching device of the present invention can reduce the restriction on the mounting position of the light detection component by appropriately setting the position and direction of the light branching means, and increases the degree of freedom in design. be able to.
  • the light detection component is input from the light input means. It is the structure arrange
  • the optical path switching device of the present invention can eliminate the optical branching means, and can reduce the number of components.
  • the present invention can provide an optical path switching device capable of improving the confinement efficiency of an optical signal with respect to an output optical fiber as compared with the conventional one.
  • FIG. 1 is a block diagram of an optical communication system according to a first embodiment of the present invention.
  • FIG. 2 is a side sectional view of the optical path switching device of the optical communication system shown in FIG.
  • FIG. 3 (a) Top sectional view of the optical path switching device shown in FIG. 2 (b) Top sectional view of the optical path switching device shown in FIG. 2 in a state different from the state shown in FIG. 3 (a)
  • FIG. 4 is a top view of the reflection mirror of the optical path switching device shown in FIG.
  • FIG. 5 is a side sectional view of a part of the optical path switching device of the optical communication system according to the first embodiment of the present invention having a configuration different from the configuration shown in FIG.
  • FIG. 6 (a) Cross-sectional top view of the optical path switching device of the optical communication system according to the second embodiment of the present invention. (B) FIG. 6 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
  • FIG. 7 is a top view of the glass block of the optical path switching device shown in FIG.
  • FIG. 8 is a top view of the glass block of the optical path switching device of the optical communication system according to the second embodiment of the present invention having a configuration different from the configuration shown in FIG.
  • FIG. 9 (a) Top view of an optical path switching device of an optical communication system according to a third embodiment of the present invention (b) FIG. 9 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
  • FIG. 10 is a top view of the reflection mirror of the optical path switching device shown in FIG.
  • FIG. 11 (a) Top view of an optical path switching device of an optical communication system according to a fourth embodiment of the present invention (b) FIG. 11 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
  • FIG. 12 is a top view of the reflection mirror of the optical path switching device shown in FIG.
  • FIG. 13 is a top view of a lens formed with a reflective film in place of the reflective mirror shown in FIG.
  • FIG. 14 (a) is a top cross-sectional view of an optical path switching device of an optical communication system according to a fifth embodiment of the present invention.
  • FIG. 14 (a) in a state different from the state shown in FIG. 14 (a).
  • FIG. 15 (a) Top view of an optical path switching device of an optical communication system according to a sixth embodiment of the present invention (b) FIG. 15 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
  • FIG. 16 is a top view of the prism of the optical path switching device shown in FIG.
  • FIG. 17 (a) Top view of an optical path switching device of an optical communication system according to a seventh embodiment of the present invention (b) FIG. 17 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
  • FIG. 18 is a top view of the light receiving element of the optical path switching device shown in FIG.
  • an optical communication system 10 includes an optical transmission device 11 that transmits an optical signal, an optical reception device 12 that receives an optical signal, and transmission by the optical transmission device 11.
  • the optical branching device 13 that branches the optical signal to two lines and the optical signal input from each of the two lines branched by the optical branching device 13 and the optical signal received by the optical receiving device 12 are output. Operation of the optical path switching device 20 so that the optical receiving device 12 receives any one of the optical signals input from each of the two lines branched by the optical branching device 13 And a control device 14 for controlling the control.
  • the optical path switching device 20 is installed on a printed circuit board 15 on which a control device 14 (see FIG. 1) is also installed.
  • the optical path switching device 20 and the control device 14 are electrically connected via a printed board 15.
  • the optical path switching device 20 includes a housing 21 and a platform 22 that is housed in the housing 21 and mounts various optical components.
  • This platform 22 includes an input optical fiber collimator 23 as an optical input means for inputting an optical signal from one of two lines branched by an optical branching device 13 (see FIG. 1), and an optical branching device.
  • an output optical fiber collimator 25 as an optical output means for outputting an optical signal.
  • the optical path switching device 20 further has an arrow that is opposite to the direction indicated by the arrow 22a orthogonal to the platform 22 (direction of force from the platform 22 to the printed circuit board 15: hereinafter referred to as the downward direction) and the direction indicated by the arrow 22a.
  • an optical path switching component that switches the light path according to a change in its position in the direction indicated by 22b (direction direction from the platform 22 to the upper surface side of the casing 21: hereinafter referred to as the upward direction), that is, its own state.
  • the platform 22 includes optical fiber collimators 23 to 25, a right-angle prism 28, and a reflection mirror. , 29, 30, light receiving elements 31, 32, and light absorber 34 are fixed. The light absorber 33 is fixed to the parallel prism 26.
  • the optical fiber collimator 23 includes an optical fiber 23a and a lens 23b.
  • the optical fiber collimator 24 includes an optical fiber 24a and a lens 24b.
  • the optical fiber collimator 25 includes an optical fiber 25a and a lens 25b.
  • reflection mirrors 26a and 26b that reflect all of incident light are formed by a film.
  • the film force S for reflection is not particularly required.
  • an antireflection film is provided on the incident surface, the transmission efficiency can be improved.
  • reflection mirrors 28a and 28b that reflect all of incident light are formed by a film.
  • the film force S for reflection is not particularly required.
  • an antireflection film is provided on the incident surface, the transmission efficiency can be improved.
  • the light receiving elements 31 and 32 are arranged at positions for detecting light upstream of the position of the parallel prism 26 in the light path! Speak.
  • the light receiving elements 31 and 32 convert the detected optical signal into an electrical signal and output the electrical signal to the control device 14 (see FIG. 1).
  • the actuator 27 moves the parallel prism 26 in response to a control signal from the control device 14.
  • the reflecting mirror 30 is output from the optical fiber collimator 24 by being arranged at a position where only a part (5%) of the light radially output from the optical fiber collimator 24 is incident. It branches off reflecting 5% of the light.
  • the light branching ratio can be arbitrarily set depending on the radial position of the reflecting mirror with respect to the light.
  • the settable branching ratio can be set as appropriate, but is practically 0.1 to 20%.
  • the optical signal transmitted by the optical transmission device 11 is branched into two lines by the optical branching device 13 and input to the optical path switching device 20 respectively.
  • the optical path switching device 20 converts the detected amount of light into an electric signal and outputs it to the control device 14. Then, the control device 14 determines the force / failure force in which the two lines branched by the optical branching device 13 are faulty based on the electric signal input from the optical path switching device 20, and no fault has occurred. The operation of the optical path switching device 20 is controlled so that the optical receiving device 12 receives the input optical signal with the line power.
  • the optical path switching device 20 branches a part of the light by the reflection mirrors 29 and 30, and detects the branched light by the light receiving elements 31 and 32 to monitor the optical signal. It is carried out
  • the optical receiver 12 receives the optical signal through the line between the optical branching device 13 and the optical path switching device 20 in which no failure has occurred.
  • the control device 14 calculates the amount of light emitted from the optical fiber collimator 23 based on the electrical signal from the light receiving element 31.
  • the rate at which the reflection mirror 29 reflects the light 23A output from the optical fiber collimator 23 (5% in the above example)
  • the amount of light received by the light receiving element 31, and the amount of light emitted from the optical fiber collimator 23 are shown. Assuming R, pl, and P, respectively, P can be calculated by “Equation 1”.
  • the control device 14 determines that there is no failure in the line connected to the optical fiber collimator 23.
  • the parallel prism 26 is located at the lower end (parallel A control signal is sent to the actuator 27 so as to wait at the position where the system 26 is avoided from the light path (position in the non-light path). Therefore, the actuator 27 causes the parallel prism 26 to stand by at a position in the non-optical path in response to a control signal from the control device 14.
  • the parallel prism 26 When the parallel prism 26 is at a position in the non-optical path, the light in the optical path switching device 20 travels as shown by the dotted arrow in FIG. In other words, 5% of the light output from the optical fiber collimator 23 is reflected by the reflection mirror 29 and detected by the light receiving element 31, and the remaining 95% is upward with respect to the parallel prism 26 as indicated by the arrow 22b. The direction of travel is changed by the reflecting mirrors 28a and 28b of the right angle prism 28 after passing through the side and input to the optical fiber collimator 25.
  • control device 14 determines that there is no failure in the line connected to the optical fiber collimator 23
  • an optical signal received through the line connected to the optical fiber collimator 23 is received by the optical receiving device 12. Is done.
  • the wavelength of the light reflected by the mirror 29 may be the entire band of the wavelength of the incident light or may be a part thereof.
  • the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23. Then, the control signal is transmitted to the actuator 27 so that the parallel prism 26 moves to the upper end indicated by the arrow 22b in the movement range (position where the parallel prism 26 blocks the light path: position in the optical path). Therefore, the actuator 27 moves the parallel prism 26 to a position in the optical path in accordance with the control signal from the control device 14.
  • the parallel prism 26 When the parallel prism 26 is at a position in the optical path, the light in the optical path switching device 20 travels as indicated by the dotted arrow in FIG. That is, 5% of the light output from the optical fiber collimator 23 is reflected by the reflection mirror 29 and detected by the light receiving element 31, and the remaining 95% is absorbed by the light absorber 33 fixed to the parallel prism 26. The 5% of the light output from the optical fiber collimator 24 is reflected by the reflecting mirror 30 and detected by the light receiving element 32, and the remaining 95% is reflected by the reflecting mirrors 26a, 26b and 26 of the parallel prism 26. The traveling direction is changed by the reflecting mirrors 28 a and 28 b of the right-angle prism 28 and input to the optical fiber collimator 25.
  • control device 14 constantly monitors whether or not the line connected to the optical fiber collimator 24 has a fault, based on the electrical signal from the light receiving element 32.
  • the monitoring (monitoring) of the optical signal may be performed not only on the amount of light incident on the light receiving element but also on the wavelength, frequency, phase, or encoded signal of the light included in the optical signal. . That is, when the control device 14 detects the wavelength or waveform of a predetermined light itself (frequency, phase, encoded optical signal, etc.), it transmits a control signal to the actuator 27 to switch the optical path. Also good. For example, in a certain optical transmission system, when the transmission speed of an optical signal from the optical transmission device 11 to the optical reception device 12 exceeds lOGbps, the wavelength, frequency, and phase of the optical signal in the optical signal change, resulting in a line failure. There is a system. In such a transmission system, all phenomena that do not function normally can be determined as line faults and the optical path can be switched.
  • the optical path switching device 20 branches only a part of the light output from the optical fibers 23 and 24 by the reflecting mirrors 29 and 30 on the radially outer side, and the branched light. Is detected by the light receiving elements 31, 32, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved.
  • the optical path switching device 20 is provided with light receiving elements 31 and 32 at positions that detect upstream light in the optical path from the position of the parallel prism 26 that is the optical path switching component. Can be improved.
  • the optical path switching device 20 can reduce polarization-dependent loss (PDL) and is widely used as the reflection mirrors 29 and 30.
  • PDL polarization-dependent loss
  • a simple mirror can be used.
  • the optical path switching device 20 arranges the light receiving elements 31 and 32 in the directions indicated by the arrows 22a with respect to the reflection mirrors 29 and 30, respectively. Out The reflection mirrors 29 and 30 may be tilted and fixed with respect to the platform 22 so that a part of the applied light is reflected in the direction indicated by the arrow 22a toward the light receiving elements 31 and 32, respectively.
  • the optical path switching device 20 can be reduced in size as compared with the configuration shown in FIG.
  • the wiring length from the light receiving elements 31 and 32 to the printed circuit board 15 is shorter than that in the configuration shown in FIG. Compared to the configuration shown in Fig. 3, it is less susceptible to the effects of disturbance noise even when the electrical signal is small.
  • the optical path switching device 20 includes members serving as reference surfaces of optical components such as the optical fiber collimators 23 to 25 and the parallel prism 26, that is, the platform 22 that functions as an optical surface plate.
  • the positioning accuracy of optical components can be achieved at the submicron level, and the positional relationship of each optical component can be maintained even when the ambient temperature and humidity change.
  • the configuration of the optical communication system according to the present embodiment is the same as the configuration provided in the optical communication system 10 in place of the optical path switching device 80 shown in Fig. 6 instead of the optical path switching device 20 (see Fig. 3). It is the same.
  • the configuration of the optical path switching device 80 is that the reflecting mirrors 8 la and 82a that reflect all of the incident light are made of glass blocks 81 and 82, each of which is formed of a film, by reflecting mirrors 29 and 30 (see FIG. 3).
  • the optical path switching device 20 has the same configuration as that in which the fixed positions of the light receiving elements 31 and 32 with respect to the platform 22 are changed.
  • the glass blocks 81 and 82 are fixed to the platform 22.
  • the glass block 81 is arranged at a position where only a part of the outer periphery in the radial direction of the light 23A output from the optical fiber collimator 23 is incident, thereby providing an optical fiber collimator. A part of the light 23A output from 23 is reflected. Also, The lath block 81 has an angle 81C formed by the incident surface 81A of the light 23A output from the optical fiber collimator 23 and the reflective surface 81B, for example, 45 degrees, and the incident surface 81A is in the traveling direction of the light 23A. It is arranged so as to be substantially vertical. The same applies to the force glass block 82 described for the glass block 81.
  • optical communication system 10 The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see Fig. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
  • the light in the optical path switching device 80 is indicated by a dotted line in FIG. 6 (a) when the control device 14 determines that a line connected to the optical fiber collimator 23 has failed.
  • the process proceeds as indicated by the arrow, and when the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 6 (b).
  • the optical path switching device 80 branches only a part of the light output from the optical fibers 23 and 24 by the glass blocks 81 and 82 on the radially outer side. Since the light is detected by the light receiving elements 31 and 32, the loss of light for monitoring is suppressed, and the light confinement efficiency for the output optical fiber is improved.
  • the glass block 81 is arranged so that the incident surface 81A of the glass block 81 is substantially perpendicular to the traveling direction of the light 23A output from the optical fiber collimator 23. Therefore, an inexpensive antireflection film can be applied to the incident surface 81A of the glass block 81.
  • the reflection mirror 81a of the glass block 81 reflects all of the incident light, the reflection mirror 81a can be formed of a general inexpensive reflection film.
  • the optical path switching device 80 has a smaller installation area on the platform 22 than that of the thin reflection mirror 29 (see FIG. 3) like the optical path switching device 20 (see FIG. 3) according to the first embodiment. Since the large glass block 81 is provided, the fixing work of the reflecting mirror 81a to the platform 22 can be facilitated, and the fine adjustment work of the inclination of the reflecting mirror 81a to the platform 22 can be performed. It is reduced.
  • the optical path switching device 80 is provided with a glass block 81 having a large installation area on the platform 22 that is not the thin reflecting mirror 29, as in the optical path switching device 20, and therefore, due to defects such as adhesive used for fixing and deterioration of characteristics. As a result, it is possible to prevent the reflection mirror 81a from being inclined with respect to the platform 22 with the passage of time, and the optical signal detection reliability can be maintained for a long time.
  • the glass block 81 has been described, the same applies to the glass block 82.
  • the glass block 81 may have an angle 81C of less than 45 degrees.
  • the optical path switching device 80 when the angle 81C of the glass block 81 is less than 45 degrees, the light intensity received by the light receiving element 31 is narrowed and the light intensity is increased, so the light receiving efficiency by the light receiving element 31 is improved. can do.
  • the optical path switching device 80 can reduce the light receiving area of the light receiving element 31 because the light beam received by the light receiving element 31 is narrowed when the angle 81C of the glass block 81 is less than 45 degrees.
  • the configuration of the optical communication system according to the present embodiment includes a configuration in which the optical communication system 10 includes the mechanical optical path switching device 180 shown in FIG. 9 instead of the optical path switching device 20 (see FIG. 3). It is the same.
  • the configuration of the optical path switching device 180 is that the optical path switching device 20 includes the reflection mirrors 181 and 182 that reflect all of the incident light instead of the reflection mirrors 29 and 30 (see FIG. 3). This is the same as the configuration with 32 fixed positions changed.
  • the reflection mirror 181 is inserted between the optical fiber 23a and the lens 23b and fixed to the platform 22.
  • the reflection mirror 182 is interposed between the optical fiber 24a and the lens 24b. And is fixed to the platform 22.
  • the light receiving element 31 is fixed to the housing 21 at a position on the direction side indicated by an arrow 22b (see FIG. 2) with respect to the light receiving element 32.
  • the light receiving element 32 is fixed to the platform 22.
  • the reflecting mirror 181 is tilted and fixed to the platform 22 so that the reflected light reaches the light receiving element 31 without being blocked by the optical fiber collimator 24.
  • the reflecting mirror 182 is a position where only a part of the light 24A output from the optical fiber 24a on the radially outer side (hereinafter described as 5% as an example) is incident. As a result, 5% of the light 24A output from the optical fiber 24a is reflected. The same applies to the force reflecting mirror 181 described for the reflecting mirror 182.
  • optical communication system 10 The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see FIG. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
  • the light in the optical path switching device 180 is determined by the control device 14 that the line connected to the optical fiber collimator 23 has failed.
  • the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 9 (b).
  • the optical path switching device 180 branches only a part of the light output from the optical fibers 23a and 24a by the reflecting mirrors 181 and 182 on the radially outer side.
  • the light receiving elements 31 and 32 are used to detect the received light, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved. .
  • the optical path switching device 180 is downsized because the reflection mirror 181 is inserted between the optical fiber 23a and the lens 23b, and the reflection mirror 182 is inserted between the optical fiber 24a and the lens 24b. can do.
  • the configuration of the optical communication system according to the present embodiment is a configuration in which the optical communication system 10 includes the mechanical optical path switching device 200 shown in FIG. 11 in place of the optical path switching device 20 (see FIG. 3). Is the same.
  • the configuration of the optical path switching apparatus 200 includes the reflection mirrors 201 and 202 that reflect all of the incident light, instead of the reflection mirrors 29 and 30 (see FIG. 3). This is the same as the configuration with 32 fixed positions changed.
  • the reflection mirrors 201 and 202 are fixed in the lenses 23b and 24b, respectively.
  • the light receiving element 31 is fixed to the housing 21 at a position on the direction side indicated by an arrow 22b (see FIG. 2) with respect to the light receiving element 32.
  • the light receiving element 32 is fixed to the platform 22.
  • the reflection mirror 201 is tilted and fixed to the lens 23b so that the reflected light reaches the light receiving element 31 without being blocked by the optical fiber collimator 24.
  • the reflection mirror 202 is a position where only a part of the light 24A output from the optical fiber 24a on the radially outer side (hereinafter described as 5% as an example) is incident. As a result, 5% of the light 24A output from the optical fiber 24a is reflected.
  • the force reflecting mirror 201 described for the reflecting mirror 202 As an alternative to the reflecting mirror 202, as shown in FIG. 13, the lens 24b can be cut into a slant and a reflecting film can be formed on the slope 202 formed there.
  • the light in the optical path switching device 200 is indicated by a dotted arrow in FIG. 11 (a) when the control device 14 determines that there is no failure in the line connected to the optical fiber collimator 23.
  • the controller 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 11 (b).
  • the optical path switching device 200 branches only a part of the light that is output from the optical fibers 23 and 24 by the reflecting mirrors 201 and 202 on the radially outer side.
  • the light receiving elements 31 and 32 are configured to detect the received light, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved.
  • the optical path switching device 200 can be reduced in size and can be easily manufactured.
  • the configuration similar to the configuration of the optical communication system 10 according to the first embodiment is the same as that of the optical communication system 10.
  • the same reference numerals as those in FIG. 1 are the same reference numerals as those in FIG. 1
  • the configuration of the optical communication system according to the present embodiment is a configuration in which the optical communication system 10 includes the mechanical optical path switching device 220 shown in FIG. 14 instead of the optical path switching device 20 (see FIG. 3). Is the same.
  • the configuration of the optical path switching device 220 is one optical fiber collimator to which an optical signal from one of the two lines branched by the optical branch device 13 (see Fig. 1) and an optical signal from the other are input.
  • the optical path switching device 20 is provided in place of the optical fiber collimators 23 and 24 (see FIG. 3), and the fixing position of the reflection mirror 30 and the light receiving element 32 with respect to the platform 22 is changed.
  • the optical fiber collimator 221 is fixed to the platform 22.
  • the optical fiber collimator 221 includes an optical fiber 221a to which an optical signal of one of the two lines branched by the optical branching device 13 is input, and the other of the two lines branched by the optical branching device 13.
  • An optical fiber 221b to which an optical signal is input and a lens 221c are configured.
  • the reflection mirrors 29 and 30 are only a part of the light output from the optical fiber collimator 221 in the width direction (hereinafter described as 5% as an example). It is arranged so that 5% of the light output from the optical fiber collimator 221 is reflected by being arranged at the position where the light is incident.
  • optical communication system The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see Fig. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
  • the light in the optical path switching device 220 causes the line connected to the optical fiber 221a to fail and the control device 14 determines that the line is connected to the dotted line arrow in FIG. 14 (a).
  • the controller 14 determines that a failure has occurred in the line connected to the optical fiber 221b, the process proceeds as indicated by the dotted arrow in FIG. 14 (b).
  • the optical path switching device 220 branches only a part of the light output from the optical fibers 23, 24 by the reflecting mirrors 29, 30 outside in the radial direction. Since the light is detected by the light receiving elements 31 and 32, the loss of light for monitoring is suppressed, and the light confinement efficiency for the output optical fiber is improved.
  • optical path switching device 220 is an optical path switching device 20 according to the first embodiment (see FIG. 3).
  • the optical fiber collimator 23, 24 has one optical fiber collimator 221, so the number of steps for fixing optical components to the platform 22 can be reduced. .
  • optical path switching device 220 is similar to the optical path switching device 20 according to the first embodiment (see FIG. 5);
  • the reflection mirrors 29 and 30 are placed on the platform 22a so that a part of the light output from the optical fiber collimator 221 is reflected in the downward direction indicated by the arrow 22a. It may be tilted and fixed.
  • the same configuration as the configuration of the optical communication system according to the fifth embodiment is the same as that of the optical communication system according to the fifth embodiment.
  • the same reference numerals as in the configuration of the stem are attached and detailed description is omitted.
  • the configuration of the optical communication system according to the present embodiment is the same as that of the fifth embodiment, except that the mechanical optical path switching device 240 shown in FIG. 15 is replaced with the optical path switching device 220 (see FIG. 14).
  • Optical communication The configuration is the same as that provided in the system.
  • the configuration of the optical path switching device 240 is such that the reflecting mirrors 241a and 241b that reflect all of the incident light are replaced by the reflecting mirrors 29 and 30 (see FIG. 14) instead of the prism 241 formed of a film. This is the same as the configuration provided in FIG.
  • the prism 241 is fixed to the platform 22. As shown in FIG. 16, the prism 241 is a portion of the light 221A output from the optical fiber collimator 221 (see FIG. 15) via the optical fiber 221a (see FIG. 15). In the following, only 5% will be described as an example.) Only the light incident on the reflecting mirror 241a and output from the optical fiber collimator 221 (see FIG. 15) via the optical fiber 221b (see FIG. 15). By placing only a part of the 221B in the width direction (hereinafter described as 5% as an example) at a position where it is incident on the reflection mirror 241b, the light 221A and 22 IB output from the optical fiber collimator 221 is displayed. Reflects 5% of each! /
  • the light in the optical path switching device 240 causes the line connected to the optical fiber 221a to fail and the control device 14 determines that the line is connected to the dotted line arrow in FIG. 15 (a).
  • the controller 14 determines that a failure has occurred in the line connected to the optical fiber 221b, the process proceeds as indicated by the dotted arrow in FIG. 15 (b).
  • the optical path switching device 240 branches only a part of the light output from the optical fibers 221a and 221b in the radial direction by the reflecting mirrors 241a and 241b, and the branched light. Is detected by the light receiving elements 31, 32, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved.
  • the optical fiber collimator 221 and the prism 241 can be easily fixed to the platform 22 so as to satisfy the positional relationship shown in FIG. [0103]
  • the prism 241 is configured to reflect the light output from the optical fiber collimator 221 if the reflection mirrors 241a and 241b are half mirrors that reflect a part of incident light (for example, 5%) and transmit the remaining part. The entire size may be incident on the reflecting mirrors 241a and 241b.
  • the configuration of the optical communication system according to the present embodiment includes a configuration in which the optical communication system 10 includes the mechanical optical path switching device 280 shown in FIG. 17 in place of the optical path switching device 20 (see FIG. 3). Is the same.
  • the configuration of the optical path switching device 280 is the same as the configuration in which the reflection mirrors 29 and 30 (see Fig. 3) are removed from the optical path switching device 20 and the positions of the light receiving elements 31 and 32 with respect to the platform 22 are changed. .
  • the light receiving element 31 receives only a part of the light 23A output from the optical fiber collimator 23 on the radially outer side (hereinafter described as 5% as an example). By being arranged at the position, 5% of the light 23A output from the optical fiber collimator 23 is received.
  • the light receiving element 32 is arranged at a position where only a part of the light output from the optical fiber collimator 24 in the width direction (hereinafter, described as 5% as an example) is incident. 5% of the light output from the fiber collimator 24 is received.
  • optical communication system 10 The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see Fig. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
  • the light in the optical path switching device 280 is determined by the control device 14 that the line connected to the optical fiber collimator 23 has failed.
  • the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 17 (b).
  • the optical path switching device 280 allows the light receiving elements 31, 32 to directly detect only a part of the light output from the optical fibers 2323a, 24a on the radially outer side. Because it is configured, the loss of light for monitoring is suppressed, and the light confinement efficiency for the optical fiber for output is improved.
  • optical path switching device 280 is the optical path switching device 20 according to the first embodiment (see FIG. 3).
  • optical path switching device 280 directly receives the optical signals output from the optical fiber collimators 23 and 24 by the light receiving elements 31 and 32, respectively, it is possible to reduce the polarization dependent loss.
  • the optical path switching device has the effect of suppressing the loss of light for monitoring and improving the light confinement efficiency with respect to the output optical fiber. It is useful as an optical path switching device for optical communication.

Abstract

An optical path switching device is provided to suppress loss of light for monitoring and to improve confinement efficiency of light for an output optical fiber better than a conventional device. The optical path switching device (20) is provided with a platform (22) set in a housing (21) and on which various optical components are mounted, an optical fiber collimators (23, 24) as an optical input means, an optical fiber collimator (25) as an optical output means, a parallel prism (26) for switching optical paths among the optical fiber collimators (23, 24, 25) in accordance with its own state change, and light receiving elements (31, 32) for detecting a part of the light input from the optical fiber collimators (23, 24) to monitor it, so that a position of the parallel prism (26) is controlled in accordance with a monitored result. The light receiving elements (31, 32) are configured to detect a part of the light in a radial direction on the outer side.

Description

明 細 書  Specification
光路切換装置  Optical path switching device
技術分野  Technical field
[0001] 本発明は、例えば光通信システムにおける光デバイスとして用いられ、光の経路を 切り換える光路切換装置に関するものである。  The present invention relates to an optical path switching device that is used as, for example, an optical device in an optical communication system and switches an optical path.
背景技術  Background art
[0002] 従来、光の径路上に光スィッチ用プリズムを機械的に出入させる(光路中の位置と 非光路中の位置とに移動させる)ことによってその光路を切り換える光路切換装置と して、光の一部を光分岐器によって所定の比率で分岐し、その分岐した光を受光素 子によって検出するものが知られている(例えば、特許文献 1参照。 ) o受光素子で検 出された分岐光の光量レベルは、受光回路を介してモニタリングされている。このモ ユタリング結果は、光スィッチ用プリズムの機械的な動き (光路への出入移動)のため に使用できる。例えば、受光素子で検出された受光レベルが所定量に満たな力つた とき、別に設けた制御装置は、光スィッチ用プリズムの移動手段を駆動させる。光スィ ツチ用プリズムを非光路中の位置力 光路中の位置へ移動させることで、光路を切り 換えることができる。  Conventionally, an optical path switching device that switches an optical path by mechanically moving an optical switch prism in and out of a light path (moving it between a position in an optical path and a position in a non-optical path) There is known a method in which a part of the light is branched at a predetermined ratio by an optical branching device, and the branched light is detected by a light receiving element (for example, see Patent Document 1). O Branch detected by a light receiving element The light amount level of light is monitored via a light receiving circuit. This monitoring result can be used for mechanical movement (moving in and out of the optical path) of the optical switch prism. For example, when the light receiving level detected by the light receiving element is sufficient to satisfy a predetermined amount, a separate control device drives the moving means of the optical switch prism. The optical path can be switched by moving the optical switch prism to a position in the non-optical path.
[0003] 特許文献 1 :特開 2003— 21756号公報 (第 5頁、第 1図)  [0003] Patent Document 1: Japanese Unexamined Patent Publication No. 2003-21756 (Page 5, Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の光路切換装置は、モニタリング用の光を得るための光分岐器としてハーフミ ラーを使用している。このハーフミラーは、侵入してきた光を透過光と反射光とに分離 し、一方の反射光を受光素子へ導き、他方の透過光を出力用の光ファイバコリメータ へと導く。この出力用の光ファイバコリメータに侵入する光は、コリメータレンズの集光 機能を用いて光束の軸心付近 (光を断面で見たとき、光が集中して 、て光量が多!、 部分)を中心にして光ファイバへ閉じ込められる力 そのコリメータレンズの集光性能 にも限界があることが知られている。従来の光路切換装置における光分岐器としての ハーフミラーは、光束の全領域に作用して光を分岐させるものであり、光束の軸心付 近の光(つまり、光ファイバへ閉じ込めるのに有効な光)に対してもその一部を分岐さ せるものであるため、光の損失を招くものとなっていた。こうしたことから、従来の光路 切換装置は、出力用の光ファイバへの光の閉じ込め効率が良 、とは言 、難 、もので めつに。 [0004] A conventional optical path switching device uses a half mirror as an optical splitter for obtaining monitoring light. This half mirror separates incoming light into transmitted light and reflected light, guides one reflected light to the light receiving element, and guides the other transmitted light to the output optical fiber collimator. The light entering the optical fiber collimator for output is near the axial center of the light beam using the condensing function of the collimator lens (when the light is viewed in cross section, the light is concentrated and the amount of light is large!) It is known that there is a limit to the condensing performance of the collimator lens. The half mirror as an optical branching device in the conventional optical path switching device acts on the entire region of the light beam to split the light, and has a center of the light beam. Even nearby light (that is, light that is effective for confinement in an optical fiber) is partly branched, leading to loss of light. For this reason, the conventional optical path switching device is difficult, although it has good confinement efficiency of light in the optical fiber for output.
[0005] 本発明は、従来の問題を解決するためになされたもので、モニタリングのための光 の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率を従来に比べて向上 することができる光路切換装置を提供することを目的とする。  [0005] The present invention has been made to solve the conventional problems, and can suppress the loss of light for monitoring and improve the light confinement efficiency with respect to the optical fiber for output as compared with the conventional one. An object is to provide an optical path switching device.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の光路切換装置は、光信号を入力するための光ファイバおよびレンズを含 む少なくとも一つ以上の光入力手段と、光信号を出力するための光ファイバおよびレ ンズを含む少なくとも一つ以上の光出力手段と、それら光入力手段および光出力手 段の間の光の径路を自身の状態の変化によって切り換える光路切換部品と、前記光 入力手段力 入力した前記光をモニタリングするためにこの光の一部を検出する光 検出部品とを備え、前記光のモニタリング結果に応じて前記光路切換部品が制御さ れる光路切換装置において、前記光検出部品は、前記光のうち径方向外側の一部 のみを検出するように構成する。  [0006] The optical path switching device of the present invention includes at least one or more optical input means including an optical fiber and a lens for inputting an optical signal, and at least an optical fiber and a lens for outputting the optical signal. One or more light output means, an optical path switching component for switching a light path between the light input means and the light output means according to a change in its own state, and the light input means force for monitoring the input light The optical path switching device in which the optical path switching component is controlled in accordance with a monitoring result of the light. The optical detection component is a radially outer portion of the light. Configure to detect only a part of.
[0007] この構成によれば、光検出部品は、光信号として入力された光のうち径方向外側の 一部(つまり、光ファイバへ閉じ込めるのに有効な軸心付近を除いた部分の光)のみ を検出する構成である。したがって、本発明の光路切換装置は、従来に比べてモ- タリングのための光の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率を 従来に比べて向上することができる。  [0007] According to this configuration, the light detection component includes a part of the light input as an optical signal on the radially outer side (that is, a part of the light excluding the vicinity of the axial center effective for confinement in the optical fiber). This is a configuration that detects only. Therefore, the optical path switching device of the present invention can suppress the loss of light for monitoring as compared with the conventional one, and can improve the light confinement efficiency for the output optical fiber as compared with the conventional one.
[0008] また、本発明の光路切換装置は、前記光入力手段から入力した光のうち径方向外 側の一部のみを分岐する光分岐手段を備え、前記光検出部品がこの光分岐手段で 分岐された光を検出するように構成する。  [0008] Further, the optical path switching device of the present invention comprises light branching means for branching only a part of the light input from the light input means on the radially outer side, and the light detection component is the light branching means. It is configured to detect the branched light.
[0009] この構成により、本発明の光路切換装置は、光分岐手段の位置や方向を適宜設定 することによって光検出部品の取付け位置に対する制限を小さくすることができ、設 計の自由度を増すことができる。  With this configuration, the optical path switching device of the present invention can reduce the restriction on the mounting position of the light detection component by appropriately setting the position and direction of the light branching means, and increases the degree of freedom in design. be able to.
[0010] また、本発明の光路切換装置は、前記光検出部品を前記光入力手段から入力した 光のうち径方向外側の一部のみが直接的に入射される位置に配置した構成である。 [0010] Further, in the optical path switching device of the present invention, the light detection component is input from the light input means. It is the structure arrange | positioned in the position into which only a part of radial direction outer side is directly incident among lights.
[0011] この構成により、本発明の光路切換装置は、前記光分岐手段をなくすことができ、 部品点数の削減を図ることができる。  With this configuration, the optical path switching device of the present invention can eliminate the optical branching means, and can reduce the number of components.
発明の効果  The invention's effect
[0012] 本発明は、出力用の光ファイバに対する光信号の閉じ込め効率を従来に比べて向 上することができる光路切換装置を提供することができるものである。  The present invention can provide an optical path switching device capable of improving the confinement efficiency of an optical signal with respect to an output optical fiber as compared with the conventional one.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の第 1の実施の形態に係る光通信システムのブロック図 FIG. 1 is a block diagram of an optical communication system according to a first embodiment of the present invention.
[図 2]図 1に示す光通信システムの光路切換装置の側面断面図  2 is a side sectional view of the optical path switching device of the optical communication system shown in FIG.
[図 3] (a)図 2に示す光路切換装置の上面断面図 (b)図 3 (a)に示す状態とは異なる 状態での図 2に示す光路切換装置の上面断面図  [FIG. 3] (a) Top sectional view of the optical path switching device shown in FIG. 2 (b) Top sectional view of the optical path switching device shown in FIG. 2 in a state different from the state shown in FIG. 3 (a)
[図 4]図 2に示す光路切換装置の反射ミラーの上面図  FIG. 4 is a top view of the reflection mirror of the optical path switching device shown in FIG.
[図 5]図 2に示す構成とは異なる構成での本発明の第 1の実施の形態に係る光通信 システムの光路切換装置の一部分の側面断面図  FIG. 5 is a side sectional view of a part of the optical path switching device of the optical communication system according to the first embodiment of the present invention having a configuration different from the configuration shown in FIG.
[図 6] (a)本発明の第 2の実施の形態に係る光通信システムの光路切換装置の上面 断面図 (b)図 6 (a)に示す状態とは異なる状態での図 6 (a)に示す光路切換装置の 上面断面図  [FIG. 6] (a) Cross-sectional top view of the optical path switching device of the optical communication system according to the second embodiment of the present invention. (B) FIG. 6 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
[図 7]図 6に示す光路切換装置のガラスブロックの上面図  FIG. 7 is a top view of the glass block of the optical path switching device shown in FIG.
[図 8]図 7に示す構成とは異なる構成での本発明の第 2の実施の形態に係る光通信 システムの光路切換装置のガラスブロックの上面図  FIG. 8 is a top view of the glass block of the optical path switching device of the optical communication system according to the second embodiment of the present invention having a configuration different from the configuration shown in FIG.
[図 9] (a)本発明の第 3の実施の形態に係る光通信システムの光路切換装置の上面 断面図 (b)図 9 (a)に示す状態とは異なる状態での図 9 (a)に示す光路切換装置の 上面断面図  [FIG. 9] (a) Top view of an optical path switching device of an optical communication system according to a third embodiment of the present invention (b) FIG. 9 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
[図 10]図 9に示す光路切換装置の反射ミラーの上面図  FIG. 10 is a top view of the reflection mirror of the optical path switching device shown in FIG.
[図 11] (a)本発明の第 4の実施の形態に係る光通信システムの光路切換装置の上面 断面図 (b)図 11 (a)に示す状態とは異なる状態での図 11 (a)に示す光路切換装置 の上面断面図  [FIG. 11] (a) Top view of an optical path switching device of an optical communication system according to a fourth embodiment of the present invention (b) FIG. 11 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
[図 12]図 11に示す光路切換装置の反射ミラーの上面図 [図 13]図 12に示す反射ミラーに代わる反射膜を形成したレンズの上面図 FIG. 12 is a top view of the reflection mirror of the optical path switching device shown in FIG. FIG. 13 is a top view of a lens formed with a reflective film in place of the reflective mirror shown in FIG.
[図 14] (a)本発明の第 5の実施の形態に係る光通信システムの光路切換装置の上面 断面図 (b)図 14 (a)に示す状態とは異なる状態での図 14 (a)に示す光路切換装置 の上面断面図  14 (a) is a top cross-sectional view of an optical path switching device of an optical communication system according to a fifth embodiment of the present invention. (B) FIG. 14 (a) in a state different from the state shown in FIG. 14 (a). ) Cross-sectional top view of the optical path switching device shown in
[図 15] (a)本発明の第 6の実施の形態に係る光通信システムの光路切換装置の上面 断面図 (b)図 15 (a)に示す状態とは異なる状態での図 15 (a)に示す光路切換装置 の上面断面図  [FIG. 15] (a) Top view of an optical path switching device of an optical communication system according to a sixth embodiment of the present invention (b) FIG. 15 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
[図 16]図 15に示す光路切換装置のプリズムの上面図  FIG. 16 is a top view of the prism of the optical path switching device shown in FIG.
[図 17] (a)本発明の第 7の実施の形態に係る光通信システムの光路切換装置の上面 断面図 (b)図 17 (a)に示す状態とは異なる状態での図 17 (a)に示す光路切換装置 の上面断面図  [FIG. 17] (a) Top view of an optical path switching device of an optical communication system according to a seventh embodiment of the present invention (b) FIG. 17 (a) in a state different from the state shown in FIG. ) Cross-sectional top view of the optical path switching device shown in
[図 18]図 17に示す光路切換装置の受光素子の上面図  18 is a top view of the light receiving element of the optical path switching device shown in FIG.
符号の説明  Explanation of symbols
[0014] 20 光路切換装置 [0014] 20 optical path switching device
26 平行プリズム (光路切換部品)  26 Parallel prism (optical path switching component)
31、 32 受光素子 (光検出部品)  31, 32 Light receiving element (light detection component)
40 光路切換装置  40 Optical path switching device
60 光路切換装置  60 Optical path switching device
80 光路切換装置  80 Optical path switching device
180 光路切換装置  180 Optical path switching device
200 光路切換装置  200 Optical path switching device
220 光路切換装置  220 Optical path switching device
240 光路切換装置  240 optical path switching device
280 光路切換装置  280 Optical path switching device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の実施の形態について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016] (第 1の実施の形態) [0016] (First embodiment)
まず、第 1の実施の形態に係る光通信システムの構成について説明する。 [0017] 図 1に示すように、本実施の形態に係る光通信システム 10は、光信号を送信する光 送信装置 11と、光信号を受信する光受信装置 12と、光送信装置 11によって送信さ れた光信号を 2つの回線に分岐させる光分岐装置 13と、光分岐装置 13によって分 岐された 2つの回線それぞれから光信号を入力するとともに光受信装置 12に受信さ れる光信号を出力する機械式の光路切換装置 20と、光分岐装置 13によって分岐さ れた 2つの回線それぞれから入力された光信号のうち何れか一方を光受信装置 12 に受信させるように光路切換装置 20の動作を制御する制御装置 14とを備えている。 First, the configuration of the optical communication system according to the first embodiment will be described. As shown in FIG. 1, an optical communication system 10 according to the present embodiment includes an optical transmission device 11 that transmits an optical signal, an optical reception device 12 that receives an optical signal, and transmission by the optical transmission device 11. The optical branching device 13 that branches the optical signal to two lines and the optical signal input from each of the two lines branched by the optical branching device 13 and the optical signal received by the optical receiving device 12 are output. Operation of the optical path switching device 20 so that the optical receiving device 12 receives any one of the optical signals input from each of the two lines branched by the optical branching device 13 And a control device 14 for controlling the control.
[0018] 光路切換装置 20は、図 2に示すように、制御装置 14 (図 1参照。)も設置されている プリント基板 15に設置されている。光路切換装置 20及び制御装置 14は、プリント基 板 15を介して電気的に接続されている。  As shown in FIG. 2, the optical path switching device 20 is installed on a printed circuit board 15 on which a control device 14 (see FIG. 1) is also installed. The optical path switching device 20 and the control device 14 are electrically connected via a printed board 15.
[0019] 図 2及び図 3に示すように、光路切換装置 20は、筐体 21と、筐体 21内に収納され て各種光学部品を搭載するプラットフォーム 22を備える。このプラットフォーム 22は、 光分岐装置 13 (図 1参照。)によって分岐された 2つの回線の一方からの光信号が入 力される光入力手段としての入力用の光ファイバコリメータ 23と、光分岐装置 13によ つて分岐された 2つの回線の他方力 の光信号が入力されるもう一つの光入力手段 としての入力用の光ファイバコリメータ 24と、光受信装置 12 (図 1参照。)に受信され る光信号が出力される光出力手段としての出力用の光ファイバコリメータ 25とを搭載 している。光路切換装置 20は、さらに、プラットフォーム 22と直交する矢印 22aで示 す方向(プラットフォーム 22からプリント基板 15へ向力 方向:以下、下方向という。 ) 及び矢印 22aで示す方向とは逆向きの矢印 22bで示す方向(プラットフォーム 22から 筐体 21の上面側へ向力 方向:以下、上方向という。)における自身の位置の変化、 即ち、自身の状態の変化によって光の経路を切り換える光路切換部品としての平行 プリズム 26と、平行プリズム 26に対して矢印 22aで示す下方向の位置に配置されて 平行プリズム 26を矢印 22a及び矢印 22bで示す上下方向に移動させるァクチユエ一 タ 27と、光の進行方向を変更する直角プリズム 28と、入射光の全部を反射する反射 ミラー 29、 30と、光を検出する光検出部品としての受光素子 31、 32と、光を吸収す る光吸収体 33、 34とを備えている。  As shown in FIGS. 2 and 3, the optical path switching device 20 includes a housing 21 and a platform 22 that is housed in the housing 21 and mounts various optical components. This platform 22 includes an input optical fiber collimator 23 as an optical input means for inputting an optical signal from one of two lines branched by an optical branching device 13 (see FIG. 1), and an optical branching device. An optical fiber collimator 24 for input as another optical input means for inputting an optical signal of the other power of the two lines branched by 13 and the optical receiver 12 (see FIG. 1). And an output optical fiber collimator 25 as an optical output means for outputting an optical signal. The optical path switching device 20 further has an arrow that is opposite to the direction indicated by the arrow 22a orthogonal to the platform 22 (direction of force from the platform 22 to the printed circuit board 15: hereinafter referred to as the downward direction) and the direction indicated by the arrow 22a. As an optical path switching component that switches the light path according to a change in its position in the direction indicated by 22b (direction direction from the platform 22 to the upper surface side of the casing 21: hereinafter referred to as the upward direction), that is, its own state. Parallel prism 26, an actuator 27 arranged in the downward direction indicated by arrow 22a with respect to parallel prism 26, and moving the parallel prism 26 in the vertical direction indicated by arrows 22a and 22b, and the light traveling direction Right angle prism 28, reflecting mirrors 29 and 30 that reflect all incident light, light receiving elements 31 and 32 as light detection components that detect light, and light that absorbs light Absorbers 33 and 34 are provided.
[0020] プラットフォーム 22には、光ファイバコリメータ 23〜25と、直角プリズム 28と、反射ミ ラー 29、 30と、受光素子 31、 32と、光吸収体 34とが固定されている。また、光吸収 体 33は、平行プリズム 26に固定されている。 [0020] The platform 22 includes optical fiber collimators 23 to 25, a right-angle prism 28, and a reflection mirror. , 29, 30, light receiving elements 31, 32, and light absorber 34 are fixed. The light absorber 33 is fixed to the parallel prism 26.
[0021] 光ファイバコリメータ 23は、光ファイバ 23aと、レンズ 23bとから構成されている。同 様に、光ファイバコリメータ 24は、光ファイバ 24a及びレンズ 24bから構成されていて[0021] The optical fiber collimator 23 includes an optical fiber 23a and a lens 23b. Similarly, the optical fiber collimator 24 includes an optical fiber 24a and a lens 24b.
、光ファイバコリメータ 25は、光ファイバ 25a及びレンズ 25bから構成されている。 The optical fiber collimator 25 includes an optical fiber 25a and a lens 25b.
[0022] 平行プリズム 26は、入射光の全部を反射する反射ミラー 26a、 26bが膜によって形 成されている。なお、反射面が全反射条件で使用する場合は、特に反射のための膜 力 S無くともよい。さらに、入射面に反射防止膜を設けると、透過効率を向上させること ができる。 [0022] In the parallel prism 26, reflection mirrors 26a and 26b that reflect all of incident light are formed by a film. When the reflective surface is used under total reflection conditions, the film force S for reflection is not particularly required. Furthermore, if an antireflection film is provided on the incident surface, the transmission efficiency can be improved.
[0023] 直角プリズム 28は、入射光の全部を反射する反射ミラー 28a、 28bが膜によって形 成されている。なお、反射面が全反射条件で使用する場合は、特に反射のための膜 力 S無くともよい。さらに、入射面に反射防止膜を設けると、透過効率を向上させること ができる。  In the right-angle prism 28, reflection mirrors 28a and 28b that reflect all of incident light are formed by a film. When the reflective surface is used under total reflection conditions, the film force S for reflection is not particularly required. Furthermore, if an antireflection film is provided on the incident surface, the transmission efficiency can be improved.
[0024] 受光素子 31、 32は、平行プリズム 26の位置より光の経路における上流の光を検出 する位置に配置されて!ヽる。  [0024] The light receiving elements 31 and 32 are arranged at positions for detecting light upstream of the position of the parallel prism 26 in the light path! Speak.
[0025] 受光素子 31、 32は、検出した光信号を電気信号に変換して制御装置 14 (図 1参 照。)に出力するようになっている。また、ァクチユエータ 27は、制御装置 14からの制 御信号に応じて平行プリズム 26を移動させるようになって 、る。  [0025] The light receiving elements 31 and 32 convert the detected optical signal into an electrical signal and output the electrical signal to the control device 14 (see FIG. 1). In addition, the actuator 27 moves the parallel prism 26 in response to a control signal from the control device 14.
[0026] 反射ミラー 29は、図 4に示すように、光ファイバコリメータ 23から出力された光 23 Aのうち径方向外側の一部(以下、例として 5%として説明する。)のみが入射される 位置に配置されることによって、光ファイバコリメータ 23から出力された光 23Aの 5% を反射して分岐するようになっている。同様に、反射ミラー 30は、光ファイバコリメータ 24から出力された光のうち径方向外側の一部(5%)のみが入射される位置に配置さ れることによって、光ファイバコリメータ 24から出力された光の 5%を反射して分岐す るようになっている。なお、この光の分岐比率は、光に対する反射ミラーの径方向の 位置により任意に設定可能である。その設定可能な分岐比率は適宜に設定できるが 、実用上 0. 1〜20%が一般的である。  As shown in FIG. 4, only a part of the light 23 A output from the optical fiber collimator 23 on the outer side in the radial direction (hereinafter, described as 5% as an example) is incident on the reflection mirror 29. As a result, 5% of the light 23A output from the optical fiber collimator 23 is reflected and branched. Similarly, the reflecting mirror 30 is output from the optical fiber collimator 24 by being arranged at a position where only a part (5%) of the light radially output from the optical fiber collimator 24 is incident. It branches off reflecting 5% of the light. The light branching ratio can be arbitrarily set depending on the radial position of the reflecting mirror with respect to the light. The settable branching ratio can be set as appropriate, but is practically 0.1 to 20%.
[0027] 次に、光通信システム 10の動作について説明する。 [0028] 光送信装置 11によって送信された光信号は、光分岐装置 13によって 2つの回線に 分岐されてそれぞれ光路切換装置 20に入力される。 Next, the operation of the optical communication system 10 will be described. The optical signal transmitted by the optical transmission device 11 is branched into two lines by the optical branching device 13 and input to the optical path switching device 20 respectively.
[0029] 光路切換装置 20では、検出した光の量をそれぞれ電気信号に変換して制御装置 14に出力する。そして、制御装置 14は、光分岐装置 13によって分岐された 2つの回 線に障害が生じている力否力を光路切換装置 20から入力された電気信号に基づい て判断し、障害が生じていない回線力も入力された光信号を光受信装置 12に受信さ せるように光路切換装置 20の動作を制御する。  The optical path switching device 20 converts the detected amount of light into an electric signal and outputs it to the control device 14. Then, the control device 14 determines the force / failure force in which the two lines branched by the optical branching device 13 are faulty based on the electric signal input from the optical path switching device 20, and no fault has occurred. The operation of the optical path switching device 20 is controlled so that the optical receiving device 12 receives the input optical signal with the line power.
[0030] なお、ここで 、う「障害」とは、光の光量レベルや波長が所定値からはずれる場合を 指す。所定の光量レベルより大きすぎる場合や小さすぎる場合、所定の波長より短い 波長の場合や長い波長の場合などが障害の例にあたる。このような障害の有無を判 断するため、光路切換装置 20は、反射ミラー 29、 30によって光の一部を分岐させ、 その分岐した光を受光素子 31、 32により検出して光信号のモニタリングを行っている  [0030] Here, "failure" refers to a case where the light quantity level or wavelength of light deviates from a predetermined value. Examples of obstacles include cases where the light level is too large or too small, a wavelength shorter than a predetermined wavelength, or a long wavelength. In order to determine the presence or absence of such a failure, the optical path switching device 20 branches a part of the light by the reflection mirrors 29 and 30, and detects the branched light by the light receiving elements 31 and 32 to monitor the optical signal. It is carried out
[0031] したがって、光受信装置 12には、光分岐装置 13と光路切換装置 20との間の回線 のうち障害が生じていない回線を通った光信号が受信される。 Therefore, the optical receiver 12 receives the optical signal through the line between the optical branching device 13 and the optical path switching device 20 in which no failure has occurred.
[0032] 以下、光路切換装置 20の動作について詳細に説明する。制御装置 14は、光ファ ィバコリメータ 23から出射された光の量を受光素子 31からの電気信号に基づいて算 出する。ここで、光ファイバコリメータ 23から出力された光 23Aを反射ミラー 29が反射 する率 (上述した例では 5%)、受光素子 31の受光量、光ファイバコリメータ 23から出 射された光の量をそれぞれ R、 pl、 Pとすると、 Pは、「数 1」によって算出可能である。  Hereinafter, the operation of the optical path switching device 20 will be described in detail. The control device 14 calculates the amount of light emitted from the optical fiber collimator 23 based on the electrical signal from the light receiving element 31. Here, the rate at which the reflection mirror 29 reflects the light 23A output from the optical fiber collimator 23 (5% in the above example), the amount of light received by the light receiving element 31, and the amount of light emitted from the optical fiber collimator 23 are shown. Assuming R, pl, and P, respectively, P can be calculated by “Equation 1”.
[数 1]  [Number 1]
P = ^ P = ^
R  R
[0033] そして、制御装置 14は、光ファイバコリメータ 23から出射された光の量が所定の範 囲内の量であるとき、光ファイバコリメータ 23に接続された回線に障害が生じていな いと判断し、平行プリズム 26が移動範囲のうち矢印 22aで示す下方向の端 (平行プリ ズム 26が光の径路から回避した位置:非光路中の位置)に待機するようにァクチユエ ータ 27に制御信号を送信する。したがって、ァクチユエータ 27は、制御装置 14から の制御信号に応じて平行プリズム 26を非光路中の位置に待機させる。 [0033] Then, when the amount of light emitted from the optical fiber collimator 23 is an amount within a predetermined range, the control device 14 determines that there is no failure in the line connected to the optical fiber collimator 23. , The parallel prism 26 is located at the lower end (parallel A control signal is sent to the actuator 27 so as to wait at the position where the system 26 is avoided from the light path (position in the non-light path). Therefore, the actuator 27 causes the parallel prism 26 to stand by at a position in the non-optical path in response to a control signal from the control device 14.
[0034] 平行プリズム 26が非光路中の位置にあるとき、光路切換装置 20内の光は図 3 (a) に点線の矢線で示すように進行する。即ち、光ファイバコリメータ 23から出力された 光は、 5%が反射ミラー 29によって反射されて受光素子 31によって検出されるととも に、残り 95%が平行プリズム 26に対して矢印 22bで示す上方向側を通過して直角プ リズム 28の反射ミラー 28a、 28bによって進行方向が変更されて光ファイバコリメータ 25に入力される。光ファイバコリメータ 24から出力された光は、 5%が反射ミラー 30に よって反射されて受光素子 32によって検出されるとともに、残り 95%が平行プリズム 26に対して矢印 22bで示す上方向側を通過して光吸収体 34に吸収される。  When the parallel prism 26 is at a position in the non-optical path, the light in the optical path switching device 20 travels as shown by the dotted arrow in FIG. In other words, 5% of the light output from the optical fiber collimator 23 is reflected by the reflection mirror 29 and detected by the light receiving element 31, and the remaining 95% is upward with respect to the parallel prism 26 as indicated by the arrow 22b. The direction of travel is changed by the reflecting mirrors 28a and 28b of the right angle prism 28 after passing through the side and input to the optical fiber collimator 25. 5% of the light output from the optical fiber collimator 24 is reflected by the reflecting mirror 30 and detected by the light receiving element 32, and the remaining 95% passes through the upward direction indicated by the arrow 22b with respect to the parallel prism 26. And is absorbed by the light absorber 34.
[0035] したがって、光ファイバコリメータ 23に接続された回線に障害が生じていないと制御 装置 14が判断したとき、光ファイバコリメータ 23に接続された回線を通った光信号が 光受信装置 12に受信される。  Therefore, when the control device 14 determines that there is no failure in the line connected to the optical fiber collimator 23, an optical signal received through the line connected to the optical fiber collimator 23 is received by the optical receiving device 12. Is done.
[0036] なお、ミラー 29で反射する光の波長は入射する光の波長の全帯域であっても良ぐ また一部であっても良い。  Note that the wavelength of the light reflected by the mirror 29 may be the entire band of the wavelength of the incident light or may be a part thereof.
[0037] 一方、制御装置 14は、光ファイバコリメータ 23から出射された光の量が所定の範囲 内の量ではないとき、光ファイバコリメータ 23に接続された回線に障害が生じていると 判断し、平行プリズム 26が移動範囲のうち矢印 22bで示す上方向の端 (平行プリズム 26が光の径路を遮る位置:光路中の位置)に移動するようにァクチユエータ 27に制 御信号を送信する。したがって、ァクチユエータ 27は、制御装置 14からの制御信号 に応じて平行プリズム 26を光路中の位置に移動させる。  On the other hand, when the amount of light emitted from the optical fiber collimator 23 is not within a predetermined range, the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23. Then, the control signal is transmitted to the actuator 27 so that the parallel prism 26 moves to the upper end indicated by the arrow 22b in the movement range (position where the parallel prism 26 blocks the light path: position in the optical path). Therefore, the actuator 27 moves the parallel prism 26 to a position in the optical path in accordance with the control signal from the control device 14.
[0038] 平行プリズム 26が光路中の位置にあるとき、光路切換装置 20内の光は図 3 (b)に 点線の矢線で示すように進行する。即ち、光ファイバコリメータ 23から出力された光 は、 5%が反射ミラー 29によって反射されて受光素子 31によって検出されるとともに 、残り 95%が平行プリズム 26に固定された光吸収体 33に吸収される。光ファイバコリ メータ 24から出力された光は、 5%が反射ミラー 30によって反射されて受光素子 32 によって検出されるとともに、残り 95%が平行プリズム 26の反射ミラー 26a、 26b及び 直角プリズム 28の反射ミラー 28a、 28bによって進行方向が変更されて光ファイバコ リメータ 25に入力される。 [0038] When the parallel prism 26 is at a position in the optical path, the light in the optical path switching device 20 travels as indicated by the dotted arrow in FIG. That is, 5% of the light output from the optical fiber collimator 23 is reflected by the reflection mirror 29 and detected by the light receiving element 31, and the remaining 95% is absorbed by the light absorber 33 fixed to the parallel prism 26. The 5% of the light output from the optical fiber collimator 24 is reflected by the reflecting mirror 30 and detected by the light receiving element 32, and the remaining 95% is reflected by the reflecting mirrors 26a, 26b and 26 of the parallel prism 26. The traveling direction is changed by the reflecting mirrors 28 a and 28 b of the right-angle prism 28 and input to the optical fiber collimator 25.
[0039] したがって、光ファイバコリメータ 23に接続された回線に障害が生じていると制御装 置 14が判断したとき、光ファイバコリメータ 24に接続された回線を通った光信号が光 受信装置 12に受信される。  [0039] Therefore, when the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, an optical signal passing through the line connected to the optical fiber collimator 24 is transmitted to the optical receiving device 12. Received.
[0040] なお、制御装置 14は、光ファイバコリメータ 24に接続された回線に障害が生じてい る力否かにっ 、ても受光素子 32からの電気信号に基づ 、て常時監視して 、る。  [0040] Note that the control device 14 constantly monitors whether or not the line connected to the optical fiber collimator 24 has a fault, based on the electrical signal from the light receiving element 32. The
[0041] 前記光信号に対する監視 (モニタリング)は、受光素子に入射される光の量のみな らず、光信号に含まれる光の波長、周波数、位相あるいは符号化された信号に対し てでも良い。すなわち、制御装置 14は所定の光の波長あるいは波形そのもの(周波 数、位相、符号化された光信号など)を検出した際に、ァクチユエータ 27に制御信号 を送信し、光路を切り換えるものであっても良い。例えば、ある光伝送システムでは、 光送信装置 11から光受信装置 12への光信号の伝送速度が lOGbpsを越えると、そ の光信号における光の波長、周波数、位相が変化し、回線障害となるシステムがある 。こうした伝送システムにおいて、正常に機能しなくなる全ての現象を回線障害と判 断し、光路を切り換えることができる。  [0041] The monitoring (monitoring) of the optical signal may be performed not only on the amount of light incident on the light receiving element but also on the wavelength, frequency, phase, or encoded signal of the light included in the optical signal. . That is, when the control device 14 detects the wavelength or waveform of a predetermined light itself (frequency, phase, encoded optical signal, etc.), it transmits a control signal to the actuator 27 to switch the optical path. Also good. For example, in a certain optical transmission system, when the transmission speed of an optical signal from the optical transmission device 11 to the optical reception device 12 exceeds lOGbps, the wavelength, frequency, and phase of the optical signal in the optical signal change, resulting in a line failure. There is a system. In such a transmission system, all phenomena that do not function normally can be determined as line faults and the optical path can be switched.
[0042] 以上に説明したように、光路切換装置 20は、反射ミラー 29、 30によって光ファイバ 23、 24から出力された光のうち径方向外側の一部のみを分岐し、この分岐された光 を受光素子 31、 32で検出するように構成されているので、モニタリングのための光の 損失を抑え、出力用の光ファイバに対する光の閉じ込め効率の向上が図られている ものである。また、光路切換装置 20は、光路切換部品である平行プリズム 26の位置 より光の経路における上流の光を検出する位置に受光素子 31、 32が配置されてい るので、光信号の検出の信頼性を向上することができる。  As described above, the optical path switching device 20 branches only a part of the light output from the optical fibers 23 and 24 by the reflecting mirrors 29 and 30 on the radially outer side, and the branched light. Is detected by the light receiving elements 31, 32, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved. In addition, the optical path switching device 20 is provided with light receiving elements 31 and 32 at positions that detect upstream light in the optical path from the position of the parallel prism 26 that is the optical path switching component. Can be improved.
[0043] また、光路切換装置 20は、反射ミラー 29、 30が入射光の全部を反射するので、偏 波依存性損失 (PDL)を少なくすることができるとともに、反射ミラー 29、 30として汎 用なミラーを使用可能である。  [0043] In addition, since the reflection mirrors 29 and 30 reflect all of the incident light, the optical path switching device 20 can reduce polarization-dependent loss (PDL) and is widely used as the reflection mirrors 29 and 30. A simple mirror can be used.
[0044] また、光路切換装置 20は、図 5に示すように、受光素子 31、 32をそれぞれ反射ミラ 一 29、 30に対して矢印 22aで示す方向に配置し、光ファイバコリメータ 23、 24から出 力された光の一部をそれぞれ受光素子 31、 32に向けて矢印 22aで示す方向に反射 するように反射ミラー 29、 30をプラットフォーム 22に対して傾けて固定しても良い。光 路切換装置 20は、図 5に示す構成である場合、図 3に示す構成と比較して小型化す ることができる。また、光路切換装置 20は、図 5に示す構成である場合、受光素子 31 、 32からプリント基板 15までの配線長が図 3に示す構成と比較して短いので、受光 素子 31、 32が出力する電気信号が微小であっても外乱ノイズの影響を図 3に示す構 成と比較して受け難い。 In addition, as shown in FIG. 5, the optical path switching device 20 arranges the light receiving elements 31 and 32 in the directions indicated by the arrows 22a with respect to the reflection mirrors 29 and 30, respectively. Out The reflection mirrors 29 and 30 may be tilted and fixed with respect to the platform 22 so that a part of the applied light is reflected in the direction indicated by the arrow 22a toward the light receiving elements 31 and 32, respectively. In the case of the configuration shown in FIG. 5, the optical path switching device 20 can be reduced in size as compared with the configuration shown in FIG. Further, when the optical path switching device 20 has the configuration shown in FIG. 5, the wiring length from the light receiving elements 31 and 32 to the printed circuit board 15 is shorter than that in the configuration shown in FIG. Compared to the configuration shown in Fig. 3, it is less susceptible to the effects of disturbance noise even when the electrical signal is small.
[0045] また、光路切換装置 20は、光ファイバコリメータ 23〜25や平行プリズム 26等の各 光学部品の基準面となる部材、即ち、光学定盤として機能するプラットフォーム 22を 備えているので、各光学部品の位置決め精度をサブミクロンレベルで実現することが 可能であるとともに、周囲の温度や湿度が変化したときであっても各光学部品の位置 関係を維持することができる。  [0045] The optical path switching device 20 includes members serving as reference surfaces of optical components such as the optical fiber collimators 23 to 25 and the parallel prism 26, that is, the platform 22 that functions as an optical surface plate. The positioning accuracy of optical components can be achieved at the submicron level, and the positional relationship of each optical component can be maintained even when the ambient temperature and humidity change.
[0046] (第 2の実施の形態)  [0046] (Second Embodiment)
まず、第 2の実施の形態に係る光通信システムの構成について説明する。  First, the configuration of the optical communication system according to the second embodiment will be described.
[0047] なお、本実施の形態に係る光通信システムの構成のうち、第 1の実施の形態に係る 光通信システム 10 (図 1参照。)の構成と同様な構成については、光通信システム 10 の構成と同一の符号を付して詳細な説明を省略する。  [0047] Of the configuration of the optical communication system according to the present embodiment, the configuration similar to that of the optical communication system 10 (see Fig. 1) according to the first embodiment is described. The same reference numerals as those in FIG.
[0048] 本実施の形態に係る光通信システムの構成は、図 6に示す機械式の光路切換装置 80を光路切換装置 20 (図 3参照。 )に代えて光通信システム 10が備えた構成と同様 である。  [0048] The configuration of the optical communication system according to the present embodiment is the same as the configuration provided in the optical communication system 10 in place of the optical path switching device 80 shown in Fig. 6 instead of the optical path switching device 20 (see Fig. 3). It is the same.
[0049] 光路切換装置 80の構成は、入射光の全部を反射する反射ミラー 8 la、 82aがそれ ぞれ膜によって形成されたガラスブロック 81、 82を反射ミラー 29、 30 (図 3参照。)に 代えて光路切換装置 20が備え、プラットフォーム 22に対する受光素子 31、 32の固 定位置が変更された構成と同様である。  [0049] The configuration of the optical path switching device 80 is that the reflecting mirrors 8 la and 82a that reflect all of the incident light are made of glass blocks 81 and 82, each of which is formed of a film, by reflecting mirrors 29 and 30 (see FIG. 3). Instead of this, the optical path switching device 20 has the same configuration as that in which the fixed positions of the light receiving elements 31 and 32 with respect to the platform 22 are changed.
[0050] ガラスブロック 81、 82は、プラットフォーム 22に固定されている。 [0050] The glass blocks 81 and 82 are fixed to the platform 22.
[0051] ガラスブロック 81は、図 7に示すように、光ファイバコリメータ 23から出力された光 23 Aのうち径方向外周の一部のみが入射される位置に配置されることによって、光ファ ィバコリメータ 23から出力された光 23Aの一部を反射するようになっている。また、ガ ラスブロック 81は、光ファイバコリメータ 23から出力された光 23Aの入射面 81Aと、反 射面 81 Bとのなす角度 81Cを例えば 45度とし、入射面 81 Aが光 23Aの進行方向に 対して略垂直になるように配置されている。ガラスブロック 81について説明した力 ガ ラスブロック 82についても同様である。 [0051] As shown in FIG. 7, the glass block 81 is arranged at a position where only a part of the outer periphery in the radial direction of the light 23A output from the optical fiber collimator 23 is incident, thereby providing an optical fiber collimator. A part of the light 23A output from 23 is reflected. Also, The lath block 81 has an angle 81C formed by the incident surface 81A of the light 23A output from the optical fiber collimator 23 and the reflective surface 81B, for example, 45 degrees, and the incident surface 81A is in the traveling direction of the light 23A. It is arranged so as to be substantially vertical. The same applies to the force glass block 82 described for the glass block 81.
[0052] 次に、本実施の形態に係る光通信システムの動作について説明する。  Next, the operation of the optical communication system according to the present embodiment will be described.
[0053] 本実施の形態に係る光通信システムの動作は、第 1の実施の形態に係る光通信シ ステム 10 (図 1参照。)の動作とほぼ同様であるので、詳細な説明を省略する。  [0053] The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see Fig. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
[0054] 光路切換装置 80内の光は、光ファイバコリメータ 23に接続された回線に障害が生 じて 、な 、と制御装置 14が判断して 、るときに図 6 (a)に点線の矢線で示すように進 行し、光ファイバコリメータ 23に接続された回線に障害が生じたと制御装置 14が判断 したときに図 6 (b)に点線の矢線で示すように進行する。  [0054] The light in the optical path switching device 80 is indicated by a dotted line in FIG. 6 (a) when the control device 14 determines that a line connected to the optical fiber collimator 23 has failed. The process proceeds as indicated by the arrow, and when the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 6 (b).
[0055] 以上に説明したように、光路切換装置 80は、ガラスブロック 81、 82によって光フアイ ノ 23、 24から出力された光のうち径方向外側の一部のみを分岐し、この分岐された 光を受光素子 31、 32で検出するように構成されているので、モニタリングのための光 の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率の向上が図られてい るものである。  As described above, the optical path switching device 80 branches only a part of the light output from the optical fibers 23 and 24 by the glass blocks 81 and 82 on the radially outer side. Since the light is detected by the light receiving elements 31 and 32, the loss of light for monitoring is suppressed, and the light confinement efficiency for the output optical fiber is improved.
[0056] また、光路切換装置 80は、光ファイバコリメータ 23から出力された光 23Aの進行方 向に対してガラスブロック 81の入射面 81 Aが略垂直になるようにガラスブロック 81が 配置されているので、ガラスブロック 81の入射面 81Aに安価な反射防止膜を施すこ とができる。また、光路切換装置 80は、ガラスブロック 81の反射ミラー 81aが入射光 の全部を反射するので、一般的な安価な反射膜によって反射ミラー 81aが形成され ることが可能である。また、ガラスブロック 81の屈折率を 1. 5、光の光軸と反射面 81a との成す角から決まる光の入射角が 41. 9度を超える場合は、全反射条件が成り立 ち、反射膜を付けなくとも 100%の反射率となる。また、光路切換装置 80は、第 1の 実施の形態に係る光路切換装置 20 (図 3参照。 )のように薄 ヽ反射ミラー 29 (図 3参 照。)ではなぐプラットフォーム 22への設置面積が大きいガラスブロック 81を備えて いるので、プラットフォーム 22に対する反射ミラー 81aの固定作業を容易化すること ができるとともに、プラットフォーム 22に対する反射ミラー 81aの傾きの微調整作業が 軽減される。また、光路切換装置 80は、光路切換装置 20のように薄い反射ミラー 29 ではなぐプラットフォーム 22への設置面積が大きいガラスブロック 81を備えているの で固定に用いる接着剤などの不良や特性劣化により、時間の経過とともにプラットフ オーム 22に対して反射ミラー 81aが傾いてくることを防止することができ、光信号の検 出の信頼性を長期間維持することができる。ガラスブロック 81につ 、て説明したが、 ガラスブロック 82についても同様である。 Further, in the optical path switching device 80, the glass block 81 is arranged so that the incident surface 81A of the glass block 81 is substantially perpendicular to the traveling direction of the light 23A output from the optical fiber collimator 23. Therefore, an inexpensive antireflection film can be applied to the incident surface 81A of the glass block 81. In the optical path switching device 80, since the reflection mirror 81a of the glass block 81 reflects all of the incident light, the reflection mirror 81a can be formed of a general inexpensive reflection film. In addition, when the refractive index of the glass block 81 is 1.5 and the incident angle of light determined by the angle between the optical axis of the light and the reflecting surface 81a exceeds 41.9 degrees, the total reflection condition is satisfied and the reflection Even without a film, the reflectivity is 100%. Further, the optical path switching device 80 has a smaller installation area on the platform 22 than that of the thin reflection mirror 29 (see FIG. 3) like the optical path switching device 20 (see FIG. 3) according to the first embodiment. Since the large glass block 81 is provided, the fixing work of the reflecting mirror 81a to the platform 22 can be facilitated, and the fine adjustment work of the inclination of the reflecting mirror 81a to the platform 22 can be performed. It is reduced. In addition, the optical path switching device 80 is provided with a glass block 81 having a large installation area on the platform 22 that is not the thin reflecting mirror 29, as in the optical path switching device 20, and therefore, due to defects such as adhesive used for fixing and deterioration of characteristics. As a result, it is possible to prevent the reflection mirror 81a from being inclined with respect to the platform 22 with the passage of time, and the optical signal detection reliability can be maintained for a long time. Although the glass block 81 has been described, the same applies to the glass block 82.
[0057] なお、ガラスブロック 81は、図 10に示すように、角度 81Cが 45度未満であっても良 い。光路切換装置 80は、ガラスブロック 81の角度 81Cが 45度未満である場合、受光 素子 31によって受光される光の幅が狭まって光の強度が増加するので、受光素子 3 1による受光効率を向上することができる。また、光路切換装置 80は、ガラスブロック 81の角度 81Cが 45度未満である場合、受光素子 31によって受光される光の光束が 狭まるので、受光素子 31の受光面積を小さくすることができ、結果として、安価な受 光素子 31を使用することや、光信号に対する受光素子 31の応答性を向上すること や、受光素子 31の出力信号に発生するノイズを低減すること等ができる。ガラスプロ ック 81につ!/、て説明した力 ガラスブロック 82につ!/ヽても同様である。  [0057] As shown in FIG. 10, the glass block 81 may have an angle 81C of less than 45 degrees. In the optical path switching device 80, when the angle 81C of the glass block 81 is less than 45 degrees, the light intensity received by the light receiving element 31 is narrowed and the light intensity is increased, so the light receiving efficiency by the light receiving element 31 is improved. can do. The optical path switching device 80 can reduce the light receiving area of the light receiving element 31 because the light beam received by the light receiving element 31 is narrowed when the angle 81C of the glass block 81 is less than 45 degrees. As a result, it is possible to use an inexpensive light receiving element 31, improve the response of the light receiving element 31 to an optical signal, reduce noise generated in the output signal of the light receiving element 31, and the like. The same applies to the glass block 81! / And the force described above!
[0058] (第 3の実施の形態)  [0058] (Third embodiment)
まず、第 3の実施の形態に係る光通信システムの構成について説明する。  First, the configuration of the optical communication system according to the third embodiment will be described.
[0059] なお、本実施の形態に係る光通信システムの構成のうち、第 1の実施の形態に係る 光通信システム 10 (図 1参照。)の構成と同様な構成については、光通信システム 10 の構成と同一の符号を付して詳細な説明を省略する。  [0059] Of the configuration of the optical communication system according to the present embodiment, the configuration similar to the configuration of the optical communication system 10 according to the first embodiment (see Fig. 1) is the same as that of the optical communication system 10. The same reference numerals as those in FIG.
[0060] 本実施の形態に係る光通信システムの構成は、図 9に示す機械式の光路切換装置 180を光路切換装置 20 (図 3参照。 )に代えて光通信システム 10が備えた構成と同 様である。  The configuration of the optical communication system according to the present embodiment includes a configuration in which the optical communication system 10 includes the mechanical optical path switching device 180 shown in FIG. 9 instead of the optical path switching device 20 (see FIG. 3). It is the same.
[0061] 光路切換装置 180の構成は、入射光の全部を反射する反射ミラー 181、 182を反 射ミラー 29、 30 (図 3参照。)に代えて光路切換装置 20が備え、受光素子 31、 32の 固定位置が変更された構成と同様である。  The configuration of the optical path switching device 180 is that the optical path switching device 20 includes the reflection mirrors 181 and 182 that reflect all of the incident light instead of the reflection mirrors 29 and 30 (see FIG. 3). This is the same as the configuration with 32 fixed positions changed.
[0062] 反射ミラー 181は、光ファイバ 23aと、レンズ 23bとの間に挿入されてプラットフォー ム 22に固定されている。反射ミラー 182は、光ファイバ 24aと、レンズ 24bとの間に揷 入されてプラットフォーム 22に固定されている。受光素子 31は、受光素子 32に対し て矢印 22b (図 2参照。)で示す方向側の位置で筐体 21に固定されている。受光素 子 32は、プラットフォーム 22に固定されている。なお、反射ミラー 181は、反射光が 光ファイバコリメータ 24に妨げられずに受光素子 31に到達するように、傾 、てプラッ トフオーム 22に固定されて!、る。 [0062] The reflection mirror 181 is inserted between the optical fiber 23a and the lens 23b and fixed to the platform 22. The reflection mirror 182 is interposed between the optical fiber 24a and the lens 24b. And is fixed to the platform 22. The light receiving element 31 is fixed to the housing 21 at a position on the direction side indicated by an arrow 22b (see FIG. 2) with respect to the light receiving element 32. The light receiving element 32 is fixed to the platform 22. The reflecting mirror 181 is tilted and fixed to the platform 22 so that the reflected light reaches the light receiving element 31 without being blocked by the optical fiber collimator 24.
[0063] 反射ミラー 182は、図 10に示すように、光ファイバ 24aから出力された光 24Aのうち 径方向外側の一部(以下、例として 5%として説明する。)のみが入射される位置に配 置されることによって、光ファイバ 24aから出力された光 24Aの 5%を反射するように なっている。反射ミラー 182について説明した力 反射ミラー 181についても同様で ある。 As shown in FIG. 10, the reflecting mirror 182 is a position where only a part of the light 24A output from the optical fiber 24a on the radially outer side (hereinafter described as 5% as an example) is incident. As a result, 5% of the light 24A output from the optical fiber 24a is reflected. The same applies to the force reflecting mirror 181 described for the reflecting mirror 182.
[0064] 次に、本実施の形態に係る光通信システムの動作について説明する。  Next, the operation of the optical communication system according to the present embodiment will be described.
[0065] 本実施の形態に係る光通信システムの動作は、第 1の実施の形態に係る光通信シ ステム 10 (図 1参照。)の動作とほぼ同様であるので、詳細な説明を省略する。  The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see FIG. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
[0066] 光路切換装置 180内の光は、光ファイバコリメータ 23に接続された回線に障害が 生じて 、な 、と制御装置 14が判断して 、るときに図 9 (a)に点線の矢線で示すように 進行し、光ファイバコリメータ 23に接続された回線に障害が生じたと制御装置 14が判 断したときに図 9 (b)に点線の矢線で示すように進行する。  [0066] The light in the optical path switching device 180 is determined by the control device 14 that the line connected to the optical fiber collimator 23 has failed. When the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 9 (b).
[0067] 以上に説明したように、光路切換装置 180は、反射ミラー 181、 182によって光ファ ィバ 23a、 24aから出力された光のうち径方向外側の一部のみを分岐し、この分岐さ れた光を受光素子 31、 32で検出するように構成されているので、モニタリングのため の光の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率の向上が図られ ているものである。  [0067] As described above, the optical path switching device 180 branches only a part of the light output from the optical fibers 23a and 24a by the reflecting mirrors 181 and 182 on the radially outer side. The light receiving elements 31 and 32 are used to detect the received light, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved. .
[0068] また、光路切換装置 180は、反射ミラー 181が光ファイバ 23aとレンズ 23bとの間に 挿入され、反射ミラー 182が光ファイバ 24aとレンズ 24bとの間に挿入されているので 、小型化することができる。  [0068] Further, the optical path switching device 180 is downsized because the reflection mirror 181 is inserted between the optical fiber 23a and the lens 23b, and the reflection mirror 182 is inserted between the optical fiber 24a and the lens 24b. can do.
[0069] (第 4の実施の形態)  [0069] (Fourth embodiment)
まず、第 4の実施の形態に係る光通信システムの構成について説明する。  First, the configuration of the optical communication system according to the fourth embodiment will be described.
[0070] なお、本実施の形態に係る光通信システムの構成のうち、第 1の実施の形態に係る 光通信システム 10 (図 1参照。)の構成と同様な構成については、光通信システム 10 の構成と同一の符号を付して詳細な説明を省略する。 [0070] Of the configuration of the optical communication system according to the present embodiment, the configuration according to the first embodiment The same components as those of the optical communication system 10 (see FIG. 1) are denoted by the same reference numerals as those of the optical communication system 10 and detailed description thereof is omitted.
[0071] 本実施の形態に係る光通信システムの構成は、図 11に示す機械式の光路切換装 置 200を光路切換装置 20 (図 3参照。 )に代えて光通信システム 10が備えた構成と 同様である。  The configuration of the optical communication system according to the present embodiment is a configuration in which the optical communication system 10 includes the mechanical optical path switching device 200 shown in FIG. 11 in place of the optical path switching device 20 (see FIG. 3). Is the same.
[0072] 光路切換装置 200の構成は、入射光の全部を反射する反射ミラー 201、 202を反 射ミラー 29、 30 (図 3参照。)に代えて光路切換装置 20が備え、受光素子 31、 32の 固定位置が変更された構成と同様である。  [0072] The configuration of the optical path switching apparatus 200 includes the reflection mirrors 201 and 202 that reflect all of the incident light, instead of the reflection mirrors 29 and 30 (see FIG. 3). This is the same as the configuration with 32 fixed positions changed.
[0073] 反射ミラー 201、 202は、それぞれレンズ 23b、 24b中に固定されている。受光素子 31は、受光素子 32に対して矢印 22b (図 2参照。)で示す方向側の位置で筐体 21に 固定されている。受光素子 32は、プラットフォーム 22に固定されている。なお、反射ミ ラー 201は、反射光が光ファイバコリメータ 24に妨げられずに受光素子 31に到達す るように、傾いてレンズ 23bに固定されている。  [0073] The reflection mirrors 201 and 202 are fixed in the lenses 23b and 24b, respectively. The light receiving element 31 is fixed to the housing 21 at a position on the direction side indicated by an arrow 22b (see FIG. 2) with respect to the light receiving element 32. The light receiving element 32 is fixed to the platform 22. The reflection mirror 201 is tilted and fixed to the lens 23b so that the reflected light reaches the light receiving element 31 without being blocked by the optical fiber collimator 24.
[0074] 反射ミラー 202は、図 12に示すように、光ファイバ 24aから出力された光 24Aのうち 径方向外側の一部(以下、例として 5%として説明する。)のみが入射される位置に配 置されることによって、光ファイバ 24aから出力された光 24Aの 5%を反射するように なっている。反射ミラー 202について説明した力 反射ミラー 201についても同様で ある。また、この反射ミラー 202の代わりとして、図 13に示すように、レンズ 24b こ斜 めの切り込みを入れ、そこに形成された斜面 202,に反射膜を成膜することもできる。  As shown in FIG. 12, the reflection mirror 202 is a position where only a part of the light 24A output from the optical fiber 24a on the radially outer side (hereinafter described as 5% as an example) is incident. As a result, 5% of the light 24A output from the optical fiber 24a is reflected. The same applies to the force reflecting mirror 201 described for the reflecting mirror 202. As an alternative to the reflecting mirror 202, as shown in FIG. 13, the lens 24b can be cut into a slant and a reflecting film can be formed on the slope 202 formed there.
[0075] 次に、本実施の形態に係る光通信システムの動作について説明する。  Next, the operation of the optical communication system according to the present embodiment will be described.
[0076] 本実施の形態に係る光通信システムの動作は、第 1の実施の形態に係る光通信シ ステム 10 (図 1参照。)の動作とほぼ同様であるので、詳細な説明を省略する。  Since the operation of the optical communication system according to the present embodiment is substantially the same as the operation of the optical communication system 10 (see FIG. 1) according to the first embodiment, detailed description thereof is omitted. .
[0077] 光路切換装置 200内の光は、光ファイバコリメータ 23に接続された回線に障害が 生じていないと制御装置 14が判断しているときに図 11 (a)に点線の矢線で示すよう に進行し、光ファイバコリメータ 23に接続された回線に障害が生じたと制御装置 14が 判断したときに図 11 (b)に点線の矢線で示すように進行する。  [0077] The light in the optical path switching device 200 is indicated by a dotted arrow in FIG. 11 (a) when the control device 14 determines that there is no failure in the line connected to the optical fiber collimator 23. When the controller 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 11 (b).
[0078] 以上に説明したように、光路切換装置 200は、反射ミラー 201、 202によって光ファ ィバ 23、 24から出力された光のうち径方向外側の一部のみを分岐し、この分岐され た光を受光素子 31、 32で検出するように構成されているので、モニタリングのための 光の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率の向上が図られて いるものである。 As described above, the optical path switching device 200 branches only a part of the light that is output from the optical fibers 23 and 24 by the reflecting mirrors 201 and 202 on the radially outer side. In this configuration, the light receiving elements 31 and 32 are configured to detect the received light, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved.
[0079] また、光路切換装置 200は、反射ミラー 201、 202がそれぞれレンズ 23b、 24b中に 固定されているので、小型化することができるとともに、容易に製造されることができる  [0079] In addition, since the reflection mirrors 201 and 202 are respectively fixed in the lenses 23b and 24b, the optical path switching device 200 can be reduced in size and can be easily manufactured.
[0080] (第 5の実施の形態) [0080] (Fifth embodiment)
まず、第 5の実施の形態に係る光通信システムの構成について説明する。  First, the configuration of the optical communication system according to the fifth embodiment will be described.
[0081] なお、本実施の形態に係る光通信システムの構成のうち、第 1の実施の形態に係る 光通信システム 10 (図 1参照。)の構成と同様な構成については、光通信システム 10 の構成と同一の符号を付して詳細な説明を省略する。 Of the configuration of the optical communication system according to the present embodiment, the configuration similar to the configuration of the optical communication system 10 according to the first embodiment (see FIG. 1) is the same as that of the optical communication system 10. The same reference numerals as those in FIG.
[0082] 本実施の形態に係る光通信システムの構成は、図 14に示す機械式の光路切換装 置 220を光路切換装置 20 (図 3参照。 )に代えて光通信システム 10が備えた構成と 同様である。 The configuration of the optical communication system according to the present embodiment is a configuration in which the optical communication system 10 includes the mechanical optical path switching device 220 shown in FIG. 14 instead of the optical path switching device 20 (see FIG. 3). Is the same.
[0083] 光路切換装置 220の構成は、光分岐装置 13 (図 1参照。 )によって分岐された 2つ の回線の一方からの光信号及び他方からの光信号が入力される 1つの光ファイバコ リメータ 221を光ファイバコリメータ 23、 24 (図 3参照。)に代えて光路切換装置 20が 備え、プラットフォーム 22に対する反射ミラー 30及び受光素子 32の固定位置が変更 された構成と同様である。  [0083] The configuration of the optical path switching device 220 is one optical fiber collimator to which an optical signal from one of the two lines branched by the optical branch device 13 (see Fig. 1) and an optical signal from the other are input. The optical path switching device 20 is provided in place of the optical fiber collimators 23 and 24 (see FIG. 3), and the fixing position of the reflection mirror 30 and the light receiving element 32 with respect to the platform 22 is changed.
[0084] 光ファイバコリメータ 221は、プラットフォーム 22に固定されている。 The optical fiber collimator 221 is fixed to the platform 22.
[0085] 光ファイバコリメータ 221は、光分岐装置 13によって分岐された 2つの回線の一方 力 の光信号が入力される光ファイバ 221aと、光分岐装置 13によって分岐された 2 つの回線の他方からの光信号が入力される光ファイバ 221bと、レンズ 221cと力 構 成されている。 [0085] The optical fiber collimator 221 includes an optical fiber 221a to which an optical signal of one of the two lines branched by the optical branching device 13 is input, and the other of the two lines branched by the optical branching device 13. An optical fiber 221b to which an optical signal is input and a lens 221c are configured.
[0086] 反射ミラー 29、 30は、第 1の実施の形態と同様に、光ファイバコリメータ 221から出 力された光のうち幅方向の一部(以下、例として 5%として説明する。)のみが入射さ れる位置に配置されることによって、光ファイバコリメータ 221から出力された光の 5% を反射するようになっている。 [0087] 次に、本実施の形態に係る光通信システムの動作について説明する。 As in the first embodiment, the reflection mirrors 29 and 30 are only a part of the light output from the optical fiber collimator 221 in the width direction (hereinafter described as 5% as an example). It is arranged so that 5% of the light output from the optical fiber collimator 221 is reflected by being arranged at the position where the light is incident. Next, the operation of the optical communication system according to the present embodiment will be described.
[0088] 本実施の形態に係る光通信システムの動作は、第 1の実施の形態に係る光通信シ ステム 10 (図 1参照。)の動作とほぼ同様であるので、詳細な説明を省略する。  [0088] The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see Fig. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
[0089] 光路切換装置 220内の光は、光ファイバ 221aに接続された回線に障害が生じて V、な 、と制御装置 14が判断して 、るときに図 14 (a)に点線の矢線で示すように進行 し、光ファイバ 221bに接続された回線に障害が生じたと制御装置 14が判断したとき に図 14 (b)に点線の矢線で示すように進行する。  [0089] The light in the optical path switching device 220 causes the line connected to the optical fiber 221a to fail and the control device 14 determines that the line is connected to the dotted line arrow in FIG. 14 (a). When the controller 14 determines that a failure has occurred in the line connected to the optical fiber 221b, the process proceeds as indicated by the dotted arrow in FIG. 14 (b).
[0090] 以上に説明したように、光路切換装置 220は、反射ミラー 29、 30によって光フアイ ノ 23、 24から出力された光のうち径方向外側の一部のみを分岐し、この分岐された 光を受光素子 31、 32で検出するように構成されているので、モニタリングのための光 の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率の向上が図られてい るものである。  [0090] As described above, the optical path switching device 220 branches only a part of the light output from the optical fibers 23, 24 by the reflecting mirrors 29, 30 outside in the radial direction. Since the light is detected by the light receiving elements 31 and 32, the loss of light for monitoring is suppressed, and the light confinement efficiency for the output optical fiber is improved.
[0091] また、光路切換装置 220は、第 1の実施の形態に係る光路切換装置 20 (図 3参照。  Further, the optical path switching device 220 is an optical path switching device 20 according to the first embodiment (see FIG. 3).
)のように 2つの光ファイバコリメータ 23、 24 (図 3参照。)ではなぐ 1つの光ファイバコ リメータ 221を備えているので、プラットフォーム 22への光学部品の固定作業の工程 数を少なくすることができる。  As shown in Fig. 3, the optical fiber collimator 23, 24 (see Fig. 3) has one optical fiber collimator 221, so the number of steps for fixing optical components to the platform 22 can be reduced. .
[0092] なお、光路切換装置 220は、第 1の実施の形態に係る光路切換装置 20 (図 5参照 。;)と同様に、受光素子 31、 32をそれぞれ反射ミラー 29、 30に対して矢印 22a (図 5 参照。)で示す下方向に配置し、光ファイバコリメータ 221から出力された光の一部を それぞれ矢印 22aで示す下方向に反射するように反射ミラー 29、 30をプラットフォー ム 22に対して傾けて固定しても良い。  Note that the optical path switching device 220 is similar to the optical path switching device 20 according to the first embodiment (see FIG. 5); The reflection mirrors 29 and 30 are placed on the platform 22a so that a part of the light output from the optical fiber collimator 221 is reflected in the downward direction indicated by the arrow 22a. It may be tilted and fixed.
[0093] (第 6の実施の形態)  [0093] (Sixth embodiment)
まず、第 6の実施の形態に係る光通信システムの構成について説明する。  First, the configuration of the optical communication system according to the sixth embodiment will be described.
[0094] なお、本実施の形態に係る光通信システムの構成のうち、第 5の実施の形態に係る 光通信システムの構成と同様な構成については、第 5の実施の形態に係る光通信シ ステムの構成と同一の符号を付して詳細な説明を省略する。  Of the configuration of the optical communication system according to the present embodiment, the same configuration as the configuration of the optical communication system according to the fifth embodiment is the same as that of the optical communication system according to the fifth embodiment. The same reference numerals as in the configuration of the stem are attached and detailed description is omitted.
[0095] 本実施の形態に係る光通信システムの構成は、図 15に示す機械式の光路切換装 置 240を光路切換装置 220 (図 14参照。 )に代えて第 5の実施の形態に係る光通信 システムが備えた構成と同様である。 The configuration of the optical communication system according to the present embodiment is the same as that of the fifth embodiment, except that the mechanical optical path switching device 240 shown in FIG. 15 is replaced with the optical path switching device 220 (see FIG. 14). Optical communication The configuration is the same as that provided in the system.
[0096] 光路切換装置 240の構成は、入射光の全部を反射する反射ミラー 241a、 241bが 膜によって形成されたプリズム 241を反射ミラー 29、 30 (図 14参照。)に代えて光路 切換装置 220が備えた構成と同様である。  The configuration of the optical path switching device 240 is such that the reflecting mirrors 241a and 241b that reflect all of the incident light are replaced by the reflecting mirrors 29 and 30 (see FIG. 14) instead of the prism 241 formed of a film. This is the same as the configuration provided in FIG.
[0097] プリズム 241は、プラットフォーム 22に固定されている。プリズム 241は、図 16に示 すように、光ファイバ 221a (図 15参照。)を介して光ファイバコリメータ 221 (図 15参 照。)から出力された光 221Aのうち径方向外側の一部(以下、例として 5%として説 明する。)のみが反射ミラー 241aに入射されるとともに、光ファイバ 221b (図 15参照 。)を介して光ファイバコリメータ 221 (図 15参照。)から出力された光 221Bのうち幅 方向の一部(以下、例として 5%として説明する。)のみが反射ミラー 241bに入射され る位置に配置されることによって、光ファイバコリメータ 221から出力された光 221A、 22 IBそれぞれの 5%を反射するようになって!/、る。  The prism 241 is fixed to the platform 22. As shown in FIG. 16, the prism 241 is a portion of the light 221A output from the optical fiber collimator 221 (see FIG. 15) via the optical fiber 221a (see FIG. 15). In the following, only 5% will be described as an example.) Only the light incident on the reflecting mirror 241a and output from the optical fiber collimator 221 (see FIG. 15) via the optical fiber 221b (see FIG. 15). By placing only a part of the 221B in the width direction (hereinafter described as 5% as an example) at a position where it is incident on the reflection mirror 241b, the light 221A and 22 IB output from the optical fiber collimator 221 is displayed. Reflects 5% of each! /
[0098] 次に、本実施の形態に係る光通信システムの動作について説明する。  Next, the operation of the optical communication system according to the present embodiment will be described.
[0099] 本実施の形態に係る光通信システムの動作は、第 11の実施の形態に係る光通信 システムの動作とほぼ同様であるので、詳細な説明を省略する。  [0099] Since the operation of the optical communication system according to the present embodiment is substantially the same as the operation of the optical communication system according to the eleventh embodiment, detailed description thereof is omitted.
[0100] 光路切換装置 240内の光は、光ファイバ 221aに接続された回線に障害が生じて V、な 、と制御装置 14が判断して 、るときに図 15 (a)に点線の矢線で示すように進行 し、光ファイバ 221bに接続された回線に障害が生じたと制御装置 14が判断したとき に図 15 (b)に点線の矢線で示すように進行する。  [0100] The light in the optical path switching device 240 causes the line connected to the optical fiber 221a to fail and the control device 14 determines that the line is connected to the dotted line arrow in FIG. 15 (a). When the controller 14 determines that a failure has occurred in the line connected to the optical fiber 221b, the process proceeds as indicated by the dotted arrow in FIG. 15 (b).
[0101] 以上に説明したように、光路切換装置 240は、反射ミラー 241a、 241bによって光 ファイバ 221a、 221bから出力された光のうち径方向外側の一部のみを分岐し、この 分岐された光を受光素子 31、 32で検出するように構成されているので、モニタリング のための光の損失を抑え、出力用の光ファイバに対する光の閉じ込め効率の向上が 図られているものである。  [0101] As described above, the optical path switching device 240 branches only a part of the light output from the optical fibers 221a and 221b in the radial direction by the reflecting mirrors 241a and 241b, and the branched light. Is detected by the light receiving elements 31, 32, so that the loss of light for monitoring is suppressed and the light confinement efficiency for the output optical fiber is improved.
[0102] また、光路切換装置 240は、光ファイバ 221a、 221bがともにレンズ 221cに連結さ れており、光ファイバ 221aと光ファイバ 221bとの間隔が一定であるので、光ファイバ コリメータ 221及びプリズム 241を図 21に示す位置関係を満たすように容易にプラッ トフオーム 22に固定することができる。 [0103] なお、プリズム 241は、反射ミラー 241a、 241bが入射光の一部(例えば 5%)を反 射して残りを透過させるハーフミラーであれば、光ファイバコリメータ 221から出力され た光の全部が反射ミラー 241a、 241bに入射される大きさであっても良い。 [0102] Further, in the optical path switching device 240, since the optical fibers 221a and 221b are both connected to the lens 221c, and the distance between the optical fiber 221a and the optical fiber 221b is constant, the optical fiber collimator 221 and the prism 241 Can be easily fixed to the platform 22 so as to satisfy the positional relationship shown in FIG. [0103] Note that the prism 241 is configured to reflect the light output from the optical fiber collimator 221 if the reflection mirrors 241a and 241b are half mirrors that reflect a part of incident light (for example, 5%) and transmit the remaining part. The entire size may be incident on the reflecting mirrors 241a and 241b.
[0104] (第 7の実施の形態)  [Seventh Embodiment]
まず、第 7の実施の形態に係る光通信システムの構成について説明する。  First, the configuration of the optical communication system according to the seventh embodiment will be described.
[0105] なお、本実施の形態に係る光通信システムの構成のうち、第 1の実施の形態に係る 光通信システム 10 (図 1参照。)の構成と同様な構成については、光通信システム 10 の構成と同一の符号を付して詳細な説明を省略する。  Note that, in the configuration of the optical communication system according to the present embodiment, the configuration similar to the configuration of the optical communication system 10 according to the first embodiment (see FIG. 1) is described. The same reference numerals as those in FIG.
[0106] 本実施の形態に係る光通信システムの構成は、図 17に示す機械式の光路切換装 置 280を光路切換装置 20 (図 3参照。 )に代えて光通信システム 10が備えた構成と 同様である。  The configuration of the optical communication system according to the present embodiment includes a configuration in which the optical communication system 10 includes the mechanical optical path switching device 280 shown in FIG. 17 in place of the optical path switching device 20 (see FIG. 3). Is the same.
[0107] 光路切換装置 280の構成は、反射ミラー 29、 30 (図 3参照。 )を光路切換装置 20か ら取り除き、プラットフォーム 22に対する受光素子 31、 32の位置を変更した構成と同 様である。  [0107] The configuration of the optical path switching device 280 is the same as the configuration in which the reflection mirrors 29 and 30 (see Fig. 3) are removed from the optical path switching device 20 and the positions of the light receiving elements 31 and 32 with respect to the platform 22 are changed. .
[0108] 受光素子 31は、図 18に示すように、光ファイバコリメータ 23から出力された光 23A のうち径方向外側の一部(以下、例として 5%として説明する。)のみが入射される位 置に配置されることによって、光ファイバコリメータ 23から出力された光 23Aの 5%を 受光するようになつている。同様に、受光素子 32は、光ファイバコリメータ 24から出力 された光のうち幅方向の一部(以下、例として 5%として説明する。)のみが入射され る位置に配置されることによって、光ファイバコリメータ 24から出力された光の 5%を 受光するようになつている。  As shown in FIG. 18, the light receiving element 31 receives only a part of the light 23A output from the optical fiber collimator 23 on the radially outer side (hereinafter described as 5% as an example). By being arranged at the position, 5% of the light 23A output from the optical fiber collimator 23 is received. Similarly, the light receiving element 32 is arranged at a position where only a part of the light output from the optical fiber collimator 24 in the width direction (hereinafter, described as 5% as an example) is incident. 5% of the light output from the fiber collimator 24 is received.
[0109] 次に、本実施の形態に係る光通信システムの動作について説明する。  Next, the operation of the optical communication system according to the present embodiment will be described.
[0110] 本実施の形態に係る光通信システムの動作は、第 1の実施の形態に係る光通信シ ステム 10 (図 1参照。)の動作とほぼ同様であるので、詳細な説明を省略する。  [0110] The operation of the optical communication system according to the present embodiment is substantially the same as the operation of optical communication system 10 (see Fig. 1) according to the first embodiment, and thus detailed description thereof is omitted. .
[0111] 光路切換装置 280内の光は、光ファイバコリメータ 23に接続された回線に障害が 生じて 、な 、と制御装置 14が判断して 、るときに図 17 (a)に点線の矢線で示すよう に進行し、光ファイバコリメータ 23に接続された回線に障害が生じたと制御装置 14が 判断したときに図 17 (b)に点線の矢線で示すように進行する。 [0112] 以上に説明したように、光路切換装置 280は、受光素子 31、 32が光ファイバ 2323 a、 24aから出力された光のうち径方向外側の一部のみを直接的に検出するように構 成されているので、モニタリングのための光の損失を抑え、出力用の光ファイバに対 する光の閉じ込め効率の向上が図られているものである。 [0111] The light in the optical path switching device 280 is determined by the control device 14 that the line connected to the optical fiber collimator 23 has failed. When the control device 14 determines that a failure has occurred in the line connected to the optical fiber collimator 23, the process proceeds as indicated by the dotted arrow in FIG. 17 (b). [0112] As described above, the optical path switching device 280 allows the light receiving elements 31, 32 to directly detect only a part of the light output from the optical fibers 2323a, 24a on the radially outer side. Because it is configured, the loss of light for monitoring is suppressed, and the light confinement efficiency for the optical fiber for output is improved.
[0113] また、光路切換装置 280は、第 1の実施の形態に係る光路切換装置 20 (図 3参照。 Further, the optical path switching device 280 is the optical path switching device 20 according to the first embodiment (see FIG. 3).
)のように反射ミラー 29、 30 (図 3参照。)を設ける必要がないので、光路切換装置 20 と比較して部品点数が少なぐ小型化することができる。  ), It is not necessary to provide the reflecting mirrors 29 and 30 (see FIG. 3), so that the number of parts can be reduced as compared with the optical path switching device 20.
[0114] また、光路切換装置 280は、光ファイバコリメータ 23、 24から出力された光信号を それぞれ受光素子 31、 32によって直接受光するので、偏波依存性損失を少なくす ることがでさる。 [0114] Further, since the optical path switching device 280 directly receives the optical signals output from the optical fiber collimators 23 and 24 by the light receiving elements 31 and 32, respectively, it is possible to reduce the polarization dependent loss.
産業上の利用可能性  Industrial applicability
[0115] 以上のように、本発明に係る光路切換装置は、モニタリングのための光の損失を抑 え、出力用の光ファイバに対する光の閉じ込め効率の向上を図ることができるという 効果を有し、光通信用の光路切換装置等として有用である。 [0115] As described above, the optical path switching device according to the present invention has the effect of suppressing the loss of light for monitoring and improving the light confinement efficiency with respect to the output optical fiber. It is useful as an optical path switching device for optical communication.

Claims

請求の範囲 The scope of the claims
[1] 光信号を入力するための光ファイバおよびレンズを含む少なくとも一つ以上の光入 力手段と、光信号を出力するための光ファイバおよびレンズを含む少なくとも一つ以 上の光出力手段と、それら光入力手段および光出力手段の間の光の径路を自身の 状態の変化によって切り換える光路切換部品と、前記光入力手段から入力した前記 光をモニタリングするためにこの光の一部を検出する光検出部品とを備え、前記光の モニタリング結果に応じて前記光路切換部品が制御される光路切換装置において、 前記光検出部品は、前記光のうち径方向外側の一部のみを検出するように構成され たことを特徴とする光路切換装置。  [1] at least one optical input means including an optical fiber and a lens for inputting an optical signal, and at least one optical output means including an optical fiber and a lens for outputting an optical signal; An optical path switching component that switches a light path between the light input means and the light output means according to a change in its own state, and a part of the light is detected to monitor the light input from the light input means An optical path switching device in which the optical path switching component is controlled in accordance with a monitoring result of the light, so that the optical detection component detects only a part of the light outside in the radial direction. An optical path switching device characterized by being configured.
[2] 前記光入力手段から入力した前記光のうち径方向外側の一部のみを分岐する光 分岐手段を備え、前記光検出部品は、この光分岐手段で分岐された光を検出する、 請求項 1に記載の光路切換装置。  [2] The light branching means for branching only a part of the light input from the light input means on the radially outer side, and the light detection component detects light branched by the light branching means. Item 4. The optical path switching device according to Item 1.
[3] 前記光検出部品は、前記光入力手段から入力した前記光のうち径方向外側の一 部のみが直接に入射される位置に配置した、請求項 1に記載の光路切換装置。  [3] The optical path switching device according to [1], wherein the light detection component is disposed at a position where only a portion of the light input from the light input means is radially incident directly on the light input component.
PCT/JP2006/315370 2006-08-03 2006-08-03 Optical path switching device WO2008015745A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/376,190 US20100074618A1 (en) 2006-08-03 2006-08-03 Optical path switching device
CA002660055A CA2660055A1 (en) 2006-08-03 2006-08-03 Optical path switching device
PCT/JP2006/315370 WO2008015745A1 (en) 2006-08-03 2006-08-03 Optical path switching device
JP2008527619A JPWO2008015745A1 (en) 2006-08-03 2006-08-03 Optical path switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/315370 WO2008015745A1 (en) 2006-08-03 2006-08-03 Optical path switching device

Publications (1)

Publication Number Publication Date
WO2008015745A1 true WO2008015745A1 (en) 2008-02-07

Family

ID=38996933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315370 WO2008015745A1 (en) 2006-08-03 2006-08-03 Optical path switching device

Country Status (4)

Country Link
US (1) US20100074618A1 (en)
JP (1) JPWO2008015745A1 (en)
CA (1) CA2660055A1 (en)
WO (1) WO2008015745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066880A (en) * 2016-10-20 2018-04-26 ファナック株式会社 Beam distributor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636449B2 (en) * 2008-06-10 2011-02-23 横河電機株式会社 Delay interferometer
JP4893969B2 (en) * 2008-06-10 2012-03-07 横河電機株式会社 Delay interferometer
JP4715872B2 (en) * 2008-06-10 2011-07-06 横河電機株式会社 Delay interferometer
GB2513123B (en) * 2013-04-15 2015-12-02 Lumenis Ltd Adaptor
US10359570B1 (en) * 2016-12-22 2019-07-23 X Development Llc Free-space optical communications beacon source architecture
CN110868651B (en) * 2019-12-23 2024-04-05 中国电子科技集团公司第三十四研究所 All-optical switching device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756200A (en) * 1993-08-10 1995-03-03 Ricoh Co Ltd Stabilized higher harmonic wave generator
JP2003021756A (en) * 2001-07-06 2003-01-24 Sun Tec Kk Module for optical communication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363182B2 (en) * 2000-07-31 2002-03-26 James D. Mills Optical switch for reciprocal traffic
US6760503B1 (en) * 2001-04-12 2004-07-06 Eric F. Hermann Scalable optical router/switch and method of constructing thereof
EP1424585A4 (en) * 2001-08-10 2005-07-13 Japan Aviation Electronics Ind Ltd Optical switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756200A (en) * 1993-08-10 1995-03-03 Ricoh Co Ltd Stabilized higher harmonic wave generator
JP2003021756A (en) * 2001-07-06 2003-01-24 Sun Tec Kk Module for optical communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066880A (en) * 2016-10-20 2018-04-26 ファナック株式会社 Beam distributor

Also Published As

Publication number Publication date
CA2660055A1 (en) 2008-02-07
US20100074618A1 (en) 2010-03-25
JPWO2008015745A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
WO2008015745A1 (en) Optical path switching device
JP5079088B2 (en) Optical interconnect
JP4158828B2 (en) Retroreflective photoelectric sensor, sensor body and retroreflective part of retroreflective photoelectric sensor
US7346282B2 (en) Optical-transmission-space determining apparatus and optical-space transmission apparatus
US8374506B2 (en) Apparatus for transmitting data between two systems which move relative to one another
CN1761900A (en) Small form factor all-polymer optical device with integrated dual beam path based on total internal reflection optical turn
US6782153B2 (en) Hybrid opto-mechanical component
CN103163594A (en) Optical module having a plurality of optical sources
WO2014180024A1 (en) Lens optical device and optical path transmission method based on same
CN101655587A (en) Optical module, optical communication device using the same and reflective optical path setting method
WO2005006043A1 (en) Monitoring device
WO2009017771A2 (en) Optical interconnect
JP2006251045A (en) Optical path switching device
US10279427B2 (en) Beam distributor
JP2009276571A (en) Variable optical attenuator and optical transmitter-receiver equipped with variable optical attenuator
KR100486061B1 (en) Two-way optical transmitter-receiver module
CA2335892A1 (en) Raised optical detector on optical sub-assembly
US6895160B2 (en) Variable optical attenuator
US10749598B2 (en) Integrated optical device
EP4354678A2 (en) Integrated end mirror assembly for a fiber ring laser
JP4881846B2 (en) Light beam control device for optical space communication system
WO2007108440A1 (en) Method for manufacturing optical head device, and optical head device
JP2017134400A (en) Optical receiver module
JP6555110B2 (en) Optical receiver
JP4520414B2 (en) Optical path correction control device for optical space communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06782230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008527619

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2660055

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12376190

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06782230

Country of ref document: EP

Kind code of ref document: A1