WO2008010361A1 - Optical film, and its manufacturing method - Google Patents

Optical film, and its manufacturing method Download PDF

Info

Publication number
WO2008010361A1
WO2008010361A1 PCT/JP2007/061620 JP2007061620W WO2008010361A1 WO 2008010361 A1 WO2008010361 A1 WO 2008010361A1 JP 2007061620 W JP2007061620 W JP 2007061620W WO 2008010361 A1 WO2008010361 A1 WO 2008010361A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation
value
optical
optical film
Prior art date
Application number
PCT/JP2007/061620
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Kazama
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2008010361A1 publication Critical patent/WO2008010361A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92028Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92523Force; Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Definitions

  • the present invention relates to an optical film produced by a melt casting film forming method, in particular, a protective film for a polarizing plate, a retardation film, a viewing angle widening film, a plasma display used in a liquid crystal display (LCD) and the like.
  • the present invention relates to an optical film that can be used for various functional films such as antireflection films used, or various functional films used for organic EL displays, and a method for producing the same.
  • Liquid crystal display devices are widely used as monitors because they save space and energy compared to conventional CRT display devices. Furthermore, it is also spreading for TV.
  • various optical films such as a polarizing film and a retardation film are used.
  • the polarizing film of a polarizing plate used in a liquid crystal display device is laminated on one or both sides of a polarizer made of a stretched polyvinyl alcohol record film using an optical film made of a cellulose ester film as a protective film.
  • the retardation film is used for the purpose of widening the viewing angle and improving the contrast, and is provided with a retardation by stretching a film of polycarbonate, cyclic polyolefin resin, cellulose ester or the like. .
  • Optical film production methods are roughly classified into a melt casting film forming method and a solution casting film forming method.
  • the former is a method in which a polymer is dissolved by heating and cast on a support, cooled and solidified, and further stretched as necessary to form a film.
  • the latter is a solution in which the polymer is dissolved in a solvent to dissolve the solution. Is cast on a support, the solvent is evaporated, and the film is further stretched as necessary to form a film.
  • the molten polymer or polymer solution is cooled and solidified on a support. And after peeling from a support body, processes, such as drying and extending
  • the solution casting film forming method has a problem that the environmental load is large because a large amount of solvent is used. On the other hand, since the melt casting film forming method does not use a solvent, it can be expected to improve productivity and is preferable from the viewpoint of environmental protection.
  • Patent Document 1 Conventionally, an apparatus described in Patent Document 1 below has been proposed as a sheet-film forming apparatus using a melt casting film forming method.
  • Patent Document 1 discloses a sheet roll forming apparatus that introduces a sheet-like molten resin extruded from an extrusion molding machine between a main roll and a press roll (touch roll) and performs nipping molding.
  • the main roll is composed of a highly rigid metal roll, and the Tatsuronole is fitted into the thin metal outer cylinder in the same axial center with a flexible thin metal outer cylinder and a cooling fluid flow space.
  • a roll apparatus for forming a sheet 'film constituted by a double cylinder comprising a highly rigid metal inner cylinder is disclosed.
  • the elastic deformation of the thin metal outer cylinder can be used to secure the contact length to the main roll in the same manner as in the rubber roll pressing method, whereby the holding pressure without a bank can be secured. It enables molding and diffused reflection of light with no residual strain. It produces an optically excellent resin film sheet without birefringence.
  • Patent Document 1 Japanese Patent No. 3194904
  • Patent Document 1 discloses a technique for improving uniformity with a drum-shaped (crown) touch roll.
  • the roll temperature also fluctuates, and the roll deforms thermally, so that the crown amount deviates from the optimum value, the lateral direction distribution of the pressing pressure fluctuates, and the film retards.
  • the dating could fluctuate.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, improve the uniformity of the retardation of the film in the width direction, obtain an optical film having excellent optical characteristics, and The object is to provide a method of manufacturing by the melt casting method.
  • the invention of claim 1 is characterized in that an amorphous thermoplastic resin is melted, extruded from a casting die onto a rotating support, and melted on the support.
  • the resin is pressed on the surface of the support by pressing means, cooled and solidified to form a film, the film is peeled off from the support, transported by the transporting means, and then wound by a scraping device, and then optically formed by a melt casting film forming method.
  • the retardation value of the film is measured by a retardation measuring device installed on the way of conveyance by the conveying means, and the support of the pressing means is based on the retardation value measured by the measuring device.
  • the film is controlled in real time by adjusting the pressing force against the film so that the retardation value of the film falls within a predetermined range.
  • the invention of claim 2 is the method for producing an optical film of claim 1, wherein the retardance measuring instrument determines the retardation value of the film at a plurality of positions in the width direction. It is characterized by measuring.
  • the invention of claim 3 is the optical film manufacturing method of claim 1, wherein the difference between the maximum value and the minimum value of the retardation value measured by the retardation measuring device
  • the pressing force of the pressing means against the support is adjusted in real time so that it becomes S4 nm or less.
  • the retardation value force may be any one of the in-plane direction retardation value and the thickness direction retardation value.
  • the width of the film when scraped is 1.
  • Om or less is preferably 15 / im or more and 60 / im or less when the film is peeled off.
  • the invention of the optical film according to the present invention is manufactured by the above-described optical film manufacturing method, and has a maximum value and a minimum value of the retardation value in the width direction and the longitudinal direction of the film. It is characterized by a differential force of 4 nm or less.
  • the film is peeled off from the support, transported by a transporting means, and wound by a scraping device.
  • the retardation value of the film is measured with a retardation measuring device installed on the way of conveyance by the means, and the pressing force of the pressing means against the support is adjusted in real time based on the retardation value measured by the measuring device.
  • the retardation value of the film is controlled to be within a predetermined range. According to the present invention, the film retardation value in the width direction is controlled. Improved one property, an effect that it is possible to obtain an optical film excellent in optical properties.
  • the invention of claim 2 is the method for producing an optical film of claim 1, wherein the retardation measuring device calculates the retardation value of the film at a plurality of locations in the width direction. According to the present invention, it is possible to improve the uniformity in the width direction of the retardation of the film and to obtain an optical film having excellent optical characteristics.
  • the invention of claim 3 is the method of manufacturing an optical film according to claim 1, wherein the difference between the maximum value and the minimum value of the retardation value measured by the retardation measuring device.
  • the pressing force of the pressing means against the support is adjusted in real time so that it becomes S4 nm or less.
  • the uniformity in the width direction of the retardation of the film is improved and the optical characteristics are improved. If an excellent optical film can be obtained, the effect is achieved.
  • the invention of the optical film according to the present invention is manufactured by the above-described optical film manufacturing method, and the difference between the maximum value and the minimum value of the retardation value in the width direction and the longitudinal direction of the film is 4 nm or less. According to the present invention, the uniformity in the width direction of the retardation of the film is improved, and the optical film is excellent in optical properties.
  • FIG. 1 is a schematic flow sheet showing one embodiment of an apparatus for carrying out the method for producing an optical film of the present invention. Explanation of symbols
  • the present invention relates to a method for producing an optical film that can be used particularly as a protective film for a polarizing plate of a liquid crystal display device (LCD).
  • LCD liquid crystal display device
  • the film constituent material used preferably removes volatile components typified by moisture, solvent, and the like before film formation or during heating.
  • a so-called known drying method can be applied, which can be performed by a heating method, a decompression method, a heating decompression method, or the like, and in air, dehumidified air, or an atmosphere selected with nitrogen as an inert gas. You can do it.
  • the generation of volatile components can be reduced, and the resin alone, or at least one mixture or compatible material other than the resin among the resin and the film constituent material.
  • the drying temperature is preferably 80 ° C or higher.
  • heating to a drying temperature higher than the glass transition temperature may cause the material to melt and become difficult to handle. It is preferable that it is below the glass transition temperature.
  • the glass transition temperature with the lower glass transition temperature is used as a reference.
  • the drying time is preferably 0.5 to 24 hours, more preferably 1 to 18 hours, and further preferably 1.5 to 12 hours. If the drying temperature is too low, the removal rate of volatile components will be low, and it will take too long to dry.
  • the drying process may be divided into two or more stages. For example, the drying process includes a preliminary drying process for storing materials and a previous drying process performed immediately before film formation to one week before. May be.
  • melt casting film forming methods are classified as molding methods that are heated and melted, and melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like can be applied.
  • the melt extrusion method is excellent for obtaining an optical film excellent in mechanical strength and surface accuracy.
  • the film production method of the present invention will be described by taking the melt extrusion method as an example.
  • FIG. 1 is a schematic flow sheet showing the overall configuration of an apparatus for carrying out the method for producing an optical film of the present invention.
  • a film material such as a cellulose resin is mixed and then melted from the casting die 4 onto the first cooling roll 5 using the extruder 1. Extruding and circumscribing the first cooling roll 5, and further circumscribing a total of three cooling rolls, that is, the second cooling roll 7 and the third cooling roll 8, in order to cool and solidify the final roll 10. Next, the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by gripping both ends of the film by the stretching device 12, and then scraped off by the scraping device 16.
  • a touch roll 6 is provided for pressing the molten film against the surface of the first cooling roll 5 in order to correct the flatness.
  • the touch roll 6 has an elastic surface and forms a two-piece with the first cooling roll 5.
  • the cooling roll 5 is defined as a roll that transports the film and has a longer contact time with the film out of the two rolls that press the film, and the touch roll 6 is the film that is pressed. It is defined as a roll in contact with the film from the opposite side of the cooling roll 5.
  • the touch roll 6 is provided with a pressing force control unit (not shown), and a transport film retardation measuring device 20 is installed on the way of transporting the film.
  • the retardation value is measured online, and the retardation measurement value signal from the measuring instrument 20 is transmitted to the pressing force control unit of the touch roll 6, and the control unit pushes the retardation value signal based on the retardation measurement value signal.
  • the pressure is adjusted in real time, and the retardation value of the transport film is controlled to be within a predetermined range.
  • the difference between the maximum value and the minimum value of the retardation of the transport film is always 4 nm or less.
  • the pressure adjustment between the first cooling roll 5 and the touch roll 6 can be performed by adjusting the position with a motor while measuring the pressing force between the first cooling roll 5 and the touch roll 6 using a pressure sensor,
  • the pressure between the mouths can be controlled appropriately by adjusting the pressure of the air cylinder or hydraulic cylinder.
  • the position adjustment by these motors and the pressure adjustment by the air cylinder or hydraulic cylinder may be performed based on the retardation measurement value signal from the measuring device 20.
  • an air cylinder MBL-100 manufactured by SMC Corporation can be used as an air cylinder that adjusts the pressing force by the touch roll 6 in real time.
  • the retardation measuring device 20 for measuring the retardation value of the transport film online for example, Kobra_WX150K manufactured by Oji Scientific Instruments Co., Ltd., which uses a photoelectric tube without contact, can be used. it can.
  • the conveyance film retardation measuring device 20 may be installed on the upstream side or on the downstream side of the stretching device 12.
  • the retardation value of the transport film measured on-line by the retardation measuring instrument 20 is either the in-plane direction retardation (Ro) value or the thickness direction retardation (Rt) value
  • Ro indicates in-plane retardation
  • the difference between the refractive index in the longitudinal direction MD in the plane and the refractive index in the width direction TD is multiplied by the thickness
  • Rt indicates the thickness direction retardation. It is the difference between the refractive index (average of longitudinal MD and width TD) and the refractive index in the thickness direction multiplied by the thickness.
  • the width of the film when scraped is 1.5 m or more and 4. Om or less, and the film length force is, for example, 1000 m or more and 2600 m or less. ,preferable.
  • the thickness of the film at the time of scraping is 15 zm or more and 60 zm or less.
  • the conditions for melt extrusion can be carried out in the same manner as those used for other thermoplastic resins such as polyesters. It is preferable to dry the material in advance. Desirably, the moisture should be dried to 100 ppm or less, preferably 200 ppm or less, using a vacuum or vacuum dryer or dehumidifying hot air dryer.
  • a cellulose ester resin dried under hot air, vacuum or reduced pressure is melted at an extrusion temperature of about 200 to 300 ° C using an extruder 1, and filtered through a leaf disk type filter 2 or the like. Remove foreign material.
  • additives such as a plasticizer are not mixed in advance, they may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as Static Mixer 3.
  • the cellulose resin and other additives such as a stabilizer added as necessary are preferably mixed before melting. More preferably, the cellulose resin and the stabilizer are mixed first. Mixing may be performed by a mixer or the like, or may be performed in the cellulose resin preparation process as described above. When using a mixer, V-type mixer, conical screw type mixer, horizontal cylindrical type mixer, etc. A general mixer such as a heater or a ribbon mixer can be used. Mixing is preferably performed in an atmosphere of an inert gas such as dehumidified air or nitrogen gas.
  • an inert gas such as dehumidified air or nitrogen gas.
  • the mixture may be directly melted and formed into a film using the extruder 1, but once the film constituent materials are pelletized, The pellets may be melted by the extruder 1 to form a film.
  • the film constituent material includes a plurality of materials having different melting points, a so-called braided semi-melt is once produced at a temperature at which only the material having a low melting point is melted, and the semi-melt is extruded 1 It is also possible to form a film by throwing it into the film. If the film component contains a material that is easily pyrolyzed, the film can be formed directly without producing pellets for the purpose of reducing the number of melting times, A method of forming a film from is preferred.
  • the extruder 1 may be a single screw extruder or a twin screw extruder which is preferable for a melt kneading extruder.
  • a twin-screw extruder When forming a film directly without making pellets from film constituent materials, it is preferable to use a twin-screw extruder because an appropriate degree of kneading is required, but even with a single-screw extruder, the screw shape is a Maddock type. By changing to a kneading type screw such as a unimelt type or a dull mage, an appropriate kneading can be obtained, so that it can be used. Full flight type screws and double flight type screws are also preferably used. When pellets or braided semi-melts are used as the film constituent material, they can be used with either single-screw extruders or twin-screw extruders.
  • the preferable conditions for the melting temperature of the film constituent material in the extruder 1 vary depending on the viscosity and discharge amount of the film constituent material, the thickness of the sheet to be produced, etc., but generally the glass transition temperature Tg of the finoleme. On the other hand, it is Tg or more and Tg + 100 ° C or less, preferably Tg + 10 ° C or more and Tg + 90 ° C or less.
  • the melt viscosity at the time of extrusion is 10 to 100,000 boise, preferably 100 to 10,000 boise.
  • a shorter residence time of the film constituent material in the extruder 1 is preferably within 5 minutes, preferably within 3 minutes, and more preferably within 2 minutes.
  • the residence time depends on the type of extruder 1 and the extrusion conditions, but it can be shortened by adjusting the material supply amount, L / D, screw rotation speed, screw groove depth, etc. Is possible.
  • L / D is preferably 10 or more and 40 or less, more preferably 20 or more and 35 or less.
  • the compression ratio is preferably 2 or more and 4 or less.
  • the shape, rotation speed, and the like of the screw of the extruder 1 are appropriately selected depending on the viscosity of the film constituting material, the discharge amount, and the like.
  • the shear rate in the extruder 1 is 1 Z seconds to 100.
  • the extruder 1 that can be used in the present invention is generally available as a plastic molding machine.
  • the film constituent material extruded from the extruder 1 is sent to the casting die 4 and extruded from the slit of the casting die 4 into a film shape.
  • the casting die 4 is not particularly limited as long as it can be used to manufacture sheets and films.
  • hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc. are sprayed or plated.
  • a preferred material for the lip portion of the casting die 4 is the same as that of the casting die 4.
  • the surface accuracy of the lip is preferably 0.5 S or less, more preferably 0.2 S or less.
  • the slit of the casting die 4 is configured such that the gap can be adjusted.
  • the force is omitted in the drawing.
  • the pair of lips forming the slit of the casting die 4 one is a flexible lip with low rigidity and easily deformed, and the other is a fixed lip.
  • a number of heat bolts are arranged at a constant pitch in the width direction of the casting die 4, that is, in the length direction of the slit.
  • Each heat bolt is provided with a block having a loaded electric heater and a cooling medium passage, and each heat bolt passes through each block vertically.
  • the base of the heat bolt is fixed to the die body, and the tip is in contact with the outer surface of the flexible lip.
  • the input of the embedded electric heater is increased or decreased to raise or lower the temperature of the block, thereby thermally expanding and contracting the heat bolt, and displacing the flexible lip to adjust the film thickness.
  • a thickness gauge is installed at the required location in the wake of the die, and the web thickness information detected by this is fed back to the control device. The thickness information is set by the control device. Compared with the information, the power of the heating element of the heat bolt by the correction control amount signal coming from the device
  • the ON rate can be controlled.
  • the heat bolt may preferably be a cylinder having a length of 20 to 40 cm and a diameter of 7 to 20 mm, or a prism having a side of 5 to 20 mm.
  • a plurality of, for example, several tens of heat bolts are preferably arranged at a pitch of 20 to 40 mm.
  • a gap adjustment member mainly composed of a bolt that adjusts the slit gap by moving it back and forth in the axial direction manually can be provided.
  • the slit gap adjusted by the gap adjusting member is usually preferably 500 to 1500 ⁇ m.
  • preferred materials for the first cooling roll 5 and the second cooling roll 7 include carbon steel, stainless steel, resin, ceramics, and the like.
  • the surface accuracy is preferably increased, and the surface roughness is set to 0.3 S or less, more preferably 0.1 S or less.
  • the thickness of the second cooling roll 7 is preferably 0.5 mm to 10 mm, more preferably 2 mm to 5 mm 3.
  • the fluctuation of the first cooling roll 5 and the second cooling roll 7 is preferably 100 ⁇ m or less, more preferably 50 / im or less, and the roundness of the cooling roll is preferably 100 / im or less. More preferably, it is 50 ⁇ or less, and the cylindricity of the cooling roll is preferably 100 / im or less, more preferably 50 ⁇ m or less.
  • a structure that can be kept warm by flowing warm water or oil inside the cooling roll is preferable.
  • the difference between the maximum value and the minimum value of the surface temperature of the cooling roll is preferably within 2 degrees.
  • the gap between the first cooling roll 5 and the second cooling roll 7 can be adjusted by a motor while measuring the pressing force between the first cooling roll 5 and the second cooling roll 7 using a pressure sensor.
  • the pressure between the chill rolls can be suitably controlled by adjusting the pressure of the air cylinder or hydraulic cylinder.
  • a suction device in the vicinity of the casting die 4 to remove the sublimate. It is preferable to take measures such as heating with a heater so that the suction device itself does not become a place where the sublimate adheres. In the present invention, if the suction pressure is too small, the sublimate cannot be sucked effectively, so it is necessary to set the suction pressure appropriately.
  • a film-like cellulose ester-based resin in a molten state is sequentially transferred from the T die 4 to the first roll (first cooling roll) 5, the second cooling roll 7, and the third cooling roll 8. Unstretched cellulose ester-based resin film that is cooled and solidified while being transported in close contact
  • the uncooled and solidified film 10 peeled off from the third cooling roll 8 by the peeling roll 9 has a dancer roll (film tension adjusting tool) 11. Then, the film is guided to a stretching device 12, where the film 10 is stretched in the transverse direction (width direction). By this stretching, the molecules in the film are oriented.
  • a known tenter or the like can be preferably used as a method of stretching the film in the width direction.
  • the slow axis of the optical film which is a cellulose ester resin film, becomes the width direction.
  • the transmission axis of the polarizing film is also usually in the width direction.
  • a polarizing plate that is laminated so that the transmission axis of the polarizing film and the slow axis of the optical film are parallel, the display contrast of the liquid crystal display device can be increased and good A great viewing angle can be obtained.
  • the glass transition temperature Tg of the film constituting material can be controlled by varying the kind of the material constituting the film and the ratio of the constituting material.
  • Tg is preferably 120 ° C or higher, preferably 135 ° C or higher.
  • the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source.
  • the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape of the film will be greatly changed. .
  • Tg is preferably 250 ° C or lower.
  • the stretching process may be carried out using known heat setting conditions, cooling, and relaxation treatment.
  • the stretching process may be appropriately adjusted to have the characteristics required for the target optical film.
  • the end of the film is slit to the product width by slitter 13 and cut off, and then the Narka mouth (embombosinda cache) is filmed by a knurling device comprising embossing ring 14 and back roll 15. Apply to both ends and scrape off with scissor 16 to prevent sticking in optical film (original scissors) F and scratches.
  • a metal ring having a concavo-convex pattern on its side surface can be caloeed by heating or pressing. Note that the gripping parts of the clips at both ends of the film are usually deformed and cannot be used as film products, so they are cut out and reused as raw materials.
  • the thickness of the protective film is preferably 15 to 6 Ozm.
  • the retardation film is thick, the polarizing plate after polarizing plate processing becomes too thick, and it is not particularly suitable for the purpose of thin and light in the liquid crystal display used for the notebook type personal computer and mopile type electronic equipment.
  • the retardation film is thin, it is difficult to develop retardation as a retardation film, and the moisture permeability of the film is increased, and the ability to protect the polarizer from humidity is reduced, which is not preferable.
  • the optical film according to the present invention is manufactured by the above-described method for manufacturing an optical film of the present invention, and has a maximum value and a minimum value of the retardation value in the width direction and the longitudinal direction of the film.
  • the difference has 4nm or less.
  • the uniformity of the film retardation in the width direction is improved, and the optical film is excellent in optical characteristics.
  • the optical film stretched in the width direction obtained as described above has a fixed-size retardation with molecules oriented by stretching.
  • the in-plane retardation (Ro) of the film is 20 to 200 nm
  • the thickness direction retardation (Rt) is 90 to 400 nm
  • the in-plane retardation (Ro) of the film is 20 to 100 nm
  • the ratio of Rt to Ro: Rt / Ro is 0.5 to 2.5 force S, preferably 1.0 to 2.0.
  • Rt ⁇ (Nx + Ny) / 2-Nz ⁇ Xd.
  • the variation in retardation is preferably as small as possible, usually within 15 nm, preferably 1 Onm or less, more preferably 4 nm or less.
  • the resin used in the present invention is preferably cellulose acetate, cellulose propionate, cenololose butyrate, cenololose acetate propionate, cenololose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. It ’s not limited.
  • the degree of substitution of the acetyl group of the cellulose ester is at least 1.5 or more, which is preferable because the strength S and the dimensional stability of the resulting film are excellent.
  • As a method for measuring the degree of substitution of the acyl group of cellulose ester it can be carried out according to ASTM D_817-91.
  • the molecular weight of the cellulose ester is 50,000 to 300,000, especially 60,000 to 200,000 as the number average molecular weight. This is preferable because the mechanical strength of the resulting Finolem can be increased.
  • additives such as a plasticizer, an ultraviolet absorber, an antioxidant, a matting agent, an antistatic agent, a flame retardant, a dye and an oil agent are used for various purposes. Can be included.
  • plasticizer examples include triphenyl phosphate, tricresyl phosphate, credinole diphenyl phosphate, otachinoresi phenino rephosphate, diphen eno rebi eno rephosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl Phosphate plastic plastics such as phosphate, trixylinophosphate, arylene bis (diaryl phosphate) ester, tricresyl phosphate, jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, Phthalate ester plasticizers such as dibutyl phthalate and di-2-ethylhexyl phthalate, triacetin, tributyrin, ethinoreglycolate, butynolephthalinorebutinoleglycolate
  • Polyester ether, polyester monourethane, polyester, and the like can also be preferably used because they can improve plasticity by blending.
  • Polyester ethers include aromatic dicarboxylic acids having 8 to 12 carbon atoms or alicyclic dicarboxylic acids (eg terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid), carbon Atom 2 to: 10 aliphatic glycols or cycloaliphatic glycols (eg, ethylene diol, propylene diol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,4-cyclohexane Xanthodimethanol and 1,5-pentanediol), polyether glycols having 2 to 4 carbon atoms between ether units (eg, polytetramethylene ether glycolone, especially 1,4-cyclohexanedicarboxylic acid, 1,4-cyclohexanedimethanol and polytetramethylene ether glycol Cop
  • polyester urethane examples include a polyester urethane obtained by a reaction between a polyester and a diisocyanate. It has a repeating unit represented by the following general formula (1).
  • R represents any of the structural units represented by structural unit formulas (2) to (7).
  • p represents 2 to 8.
  • the glycol component is ethylene glycolol, 1, propanediol, or 1,4 butanediol
  • the dibasic acid component is succinic acid, dartaric acid, or adipic acid.
  • the polyester having hydroxyl groups at both ends and having a polymerization degree n of 1 to 100. Polyester molecular weight of 1,000 to 4,500. S Particularly desirable.
  • the diisocyanate component constituting the polyester monourethane includes polymethylene isocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and p-phenylene diisocyanate. , Tolylene diisocyanate, p, p r —diphenylmethane diisocyanate, 1,5_naphthyl Aromatic diisocyanates such as diisocyanate, m-xylylene diisocyanate and the like. Of these, tolylene diisocyanate, m-xylylene diisocyanate, and tetramethylene diisocyanate are preferable because they are excellent in compatibility with cellulose esters.
  • polymethylene isocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and
  • the molecular weight of polyester urethane is preferably 2,000 to 50,000 force S, more preferably 5,000 to 15,000 force S.
  • the synthesis of polyester monourethane can be easily obtained by a conventional synthesis method in which the above polyester and disoocyanate are mixed and heated with stirring.
  • the raw material polyester can be obtained by a conventional method, a corresponding dibasic acid, or a hot melt condensation method using a polyesterification reaction or transesterification reaction between these alkyl esters and dallicols, or by using these acids. It can be easily synthesized by adjusting the terminal group to be a hydroxyl group by any one of the interfacial condensation methods of acid chloride and glycols.
  • the blending amount of the polyester-urethane is preferably 5 to 30% by mass with respect to the main resin. When the blending amount is within this range, a film exhibiting good plasticity can be obtained.
  • the polyester is a polyester composed of polyethylene glycol and an aliphatic dibasic acid, and the average molecular weight is preferably 700 to 10,000.
  • Polyethylene glycol has the general formula
  • n is preferably 4 or less
  • Aliphatic dibasic acids have the general formula
  • the polyester is synthesized by a conventional method, a polyesterification reaction of the above dibasic acid or an alkyl ester thereof with a dallicol, a hot melt condensation method by transesterification, or an acid of these acids. It can be easily synthesized by any of the methods of interfacial condensation between chloride and glycols.
  • the blending amount of the polyester is preferably 5 to 30% by mass with respect to the main resin. By setting the blending amount within this range, a film exhibiting good plasticity can be obtained.
  • a hindered phenol compound is suitable, and specific examples thereof include 2,6 di-tert-butyl-cresol, pentaerythrityl-tetrakis [3- (3, 5- Di-tert-butyl-4-hydroxyphenyl) propionate], triethylene glycol monobis [3_ (3_t_butyl-1-5-methyl_4_hydroxyphenyl) propionate], 1,6-hexanediol 1-bis [3- (3,5-di-tert-butyl-1-hydroxyphenyl) propionate], 2,4_bis_ (n-octylthio) 1- 6_ (4-hydroxy-1,3,5-di- t-Butylanilino) _ 1, 3, 5, 5-triazine, 2, 2-thiodiethylene
  • 2,6-di_t_butyl_p_cresol, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and triethylene glycol monobis [3- (3- t-butyl 5-methyl 4-hydroxyphenol) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N'-bis [3- (3,5-dibutyl 4-hydroxyphenyl) propionyl] hydrazine, tris (2,4-dibutyl butylphenyl) ) Phosphorite and other phosphorus processing stabilizers may be used in combination.
  • the amount of these compounds added is preferably from 1 ppm to 1.0% by mass with respect to the thermoplastic resin. 10 to:! OOOOppm force S Especially preferred.
  • examples of the ultraviolet absorber that can be used include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, and nickel complex salts. Compounds can be mentioned, but benzotriazole compounds with less coloring are preferred. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
  • an ultraviolet absorber from the viewpoint of preventing deterioration of a polarizer and a liquid crystal, it has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, it absorbs visible light having a wavelength of 400 nm or more. There are few les and things are preferred.
  • UV absorbers useful in the present invention include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-1 3 ', 5'-di-1 t ert butylphenyl) benzotriazole, 2— (2 ′ —hydroxyl 3 ′ — tert butynol 5 ′ —methylphenyl) benzotriazole, 2_ (2 ′ —hydroxyl 3 ′, 5′-di-tert-butylphenyl) _ 5_ cloguchibenzotriazole, 2 _ ⁇ 2 '—hydroxyl 3 r — (3, “, 5”, ⁇ “—tetrahydrophthalimidomethyl) 1 5 ′ —methylphenyl) benzotriazole, 2, 2-methylenebis (4— (1, 1, 3, 3, 3-tetramethylbutyl) _6 — (2H—benzotriazole-2-yl) phenol), 2— (2 ′ —hydroxy
  • benzophenone compounds include 2,4 dihydroxybenzophenone, 2, 2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-1-methoxy-1-5-sulfobenzophenone, bis (2-methoxy (4) hydroxy (1-5) benzoyl methane), and the like.
  • the blending amount of these ultraviolet absorbers is preferably in the range of 0.01 to 10% by mass with respect to the thermoplastic resin, and more preferably 0.1 to 5% by mass. If the amount used is too small, the UV absorption effect may be insufficient, and if it is too large, the transparency of the film may deteriorate.
  • the ultraviolet absorber is preferably one having high heat stability.
  • the fine particles used in the present invention may be either an inorganic compound or an organic compound as long as it has heat resistance during melting.
  • the inorganic compound includes a compound containing silicon, diacid Silicon fluoride, aluminum oxide, dinoleconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate are preferred, more preferably Inorganic compounds containing zirconium and zirconium oxide.
  • silicon dioxide is particularly preferably used because haze can be kept small.
  • silicon dioxide As specific examples of silicon dioxide, commercially available products having trade names such as Aerosil 200 V, Aerosilore R972V, Aerosilore R972, R974, R812, 200, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.) are preferable. Can be used.
  • the optical film obtained by the present invention can be made into a circularly polarizing plate by being bonded to at least one surface of a polarizing film.
  • the polarizing film is a film that has been conventionally stretched, for example, a film that can be stretched and oriented, such as a polybutyl alcohol film, treated with a dichroic dye such as iodine. Since the polarizing film itself does not have sufficient strength and durability, in general, a cellulose triacetate film having no anisotropy as a protective film is attached to both sides to form a polarizing plate.
  • the optical film obtained by the present invention may be prepared by bonding to the polarizing plate with the protective film, or may be prepared by directly bonding to the polarizing film also serving as the protective film.
  • the optical film obtained by the present invention since the optical film obtained by the present invention has a slow axis in the width direction, it can be bonded to a polarizing film between long rolls without cutting, and production of a polarizing plate sexually improves.
  • a polarizing plate is a sticking type in which a peelable sheet is laminated on one or both sides via a pressure-sensitive adhesive layer (for example, an acrylic pressure-sensitive adhesive layer) (to peel off the peelable sheet). It can also be easily attached to a liquid crystal cell or the like.
  • a pressure-sensitive adhesive layer for example, an acrylic pressure-sensitive adhesive layer
  • the polarizing plate thus obtained can be used in various display devices.
  • a liquid crystal display device using a VA mode liquid crystal cell in which liquid crystal molecules are substantially vertically aligned when no voltage is applied is preferable.
  • Matting agent (average particle size 0.3 z m silica fine particles) 0.1 parts by mass
  • the method for measuring the degree of substitution of an acyl group such as an acetyl group, propionyl group, or pentyl group was measured according to ASTM-D817-96.
  • pellets were supplied to a single-screw extruder (GT-50, manufactured by Plastic Engineering Laboratory Co., Ltd.) 1 having a diameter of 50 mm, to which a T-die 4 was attached, to form a film.
  • the set temperature of the extruder 1 was 250 ° C.
  • the T-die 4 was a coat hanger type.
  • T die 4 outlet force The temperature of the casting die 4 was set so that the temperature T1 of the extruded material was 250 ° C.
  • the melt-extruded film was dropped into a gap formed by the first cooling roll 5 and the touch roll 6 so as to be in contact with the first cooling roll 5 and the touch roll 6 having a diameter of 350 mm whose temperature was adjusted to 100 ° C. at the same time.
  • the entire width of the film, 1500 mm was contacted at a pressure of 0.39 MPa.
  • the touch roll 6 is provided with a pressing force control unit (not shown), and the conveyance film retardation measuring device 20 is placed at a predetermined interval in the width direction while the film is being conveyed. Open two, install two units, measure the retardation values at two points with different width directions of the transport film online, and send the retardation measurement value signal from this measuring device 20 to the pressure control unit of Touch Roll 6 In the control unit, the pressing force by the touch roll 6 is adjusted in real time based on this retardation measurement value signal, and the retardation value of the transport film is controlled to be within a predetermined range.
  • the difference between the maximum value and the minimum value of the retardation of the transport film is always 4 nm or less.
  • the gap between the first cooling roll 5 and the touch roll 6 was controlled by adjusting the pressure of the air cylinder.
  • the pressure control unit of the touch roll 6 the pressure was adjusted by the air cylinder based on the retardation measurement value signal from the measuring device 20.
  • the air cylinder MBL-100 manufactured by SMC Corporation was used as the air cylinder, and the pressing force by the touch roll 6 was adjusted in real time.
  • the retardation measuring device 20 for measuring the retardation value of the transport film online Kobra-WX150K manufactured by Oji Scientific Instruments Co., Ltd., which uses a photoelectric tube without contact, is used.
  • the retardation measuring device 20 was installed between the stretching device 12 and the scraping device 16.
  • the retardation value of the transport film measured online by the retardation measuring instrument 20 is the in-plane direction retardation (RoM direct).
  • the in-plane direction retardation (Ro) value of the transport film measured by the retardation measuring instrument 20 is 29.7 nm on the left side, 30.6 nm on the left side, and 30.6 nm on the right side.
  • the difference between the maximum value and the minimum value of the in-plane direction retardation (Ro) value of the transport film was 4 nm or less.
  • the pressed film comes into contact with the circumferential portion of the first cooling roll 5 with a central angle of 150 °.
  • the second cooling roll 7 and the third cooling roll 8 are brought into close contact with each other and cooled and solidified while being conveyed to obtain an unstretched cell mouth ester-based resin film 10.
  • the cooled and solidified unstretched film 10 peeled from the third cooling roll 8 by the peeling roll 9 has a dancer roll (film tension adjusting tool) 11. Then, the film is guided to a stretching device 12, where the film 10 is stretched in the transverse direction (width direction). By this stretching, the molecules in the film are oriented.
  • the end of the film is slit to the product width by slitter 13 and cut off, and then the Narka mouth (embombosinda cache) is filmed by a knurling device consisting of embossing ring 14 and back roll 15.
  • Cellulose acetate propionate film F (original milling) F having a width of 1500 mm and a length of 2600 m was obtained by applying to both ends and scraping with a scraper 16. The extrusion amount and the number of rotations of the take-up roll were adjusted so that the thickness of the film F that had been scraped off was 40 ⁇ m.
  • Example 1 For comparison, the same operation as in Example 1 is performed, but the difference from Example 1 is that a transport film retardation measuring device 20 is installed, and the in-plane direction of the transport film is retarded (Ro). The force to measure the value on-line at two points This point is that the pressing force of the touch roll 6 was not controlled based on the in-plane direction retardation (Ro) value of this transport film.
  • the in-plane direction retardation (Ro) value of the transport film measured by the retardation measuring device 20 is 27.2 nm on the left side and Max force on the left side of the two points. ⁇ 7 nm, Min on the right side is 28.3 nm, Max on the right side is 37.2 nm, and the difference between the maximum and minimum in-plane retardation (Ro) values of the transport film is greater than 8 nm. It was a thing.
  • the difference between the maximum value and the minimum value of the in-plane retardation (Ro) value in the width direction and the longitudinal direction of the film is 4 nm or less, improving the uniformity of the film retardation in the width direction.
  • the optical properties were excellent.
  • Example 2 Next, the present invention is carried out in the same manner as in the first embodiment, but the difference from the first embodiment is that the retardation value of the transport film measured online by the retardation measuring device 20 is used as the retardation value in the thickness direction. It is at the point where the (Rt) value was measured.
  • the thickness direction retardation (Rt) value of the transport film measured by the retardation measuring instrument 20 was 118. Onm on the left side and Max. Force 120.2 nm on the left side of the two points. The Min was 117.3 nm, and the right Max was 119.7 nm. In either case, the difference between the maximum and minimum thickness direction retardation (Rt) values of the transport film was 4 nm or less.
  • Example 2 For comparison, the same procedure as in Example 2 is performed, but the difference from Example 2 is that a transport film retardation measuring device 20 is installed and the transport film thickness direction retardation (Rt) value is set. The two points are measured online, but the pressing force of the touch roll 6 is not controlled based on the thickness direction retardation (Rt) value of the transport film.
  • the thickness direction retardation (Rt) value of the transport film measured by the retardation measuring instrument 20 is 26.4 of the left side Min is 116.4 nm, and the left side Ma X is 123. ⁇ 7 nm, right side Min is 114. 2 mm, right side Max is 122. 3 mm, both of which are the differential force between the maximum and minimum retardation (Rt) values in the thickness direction of the transport film ⁇ 7 nm It was a big thing beyond.
  • the difference between the maximum value and the minimum value in the thickness direction retardation (Rt) in the width direction and the longitudinal direction was 4 nm.
  • the film had the following characteristics, and improved uniformity in the width direction of the retardation of the film, and was excellent in optical characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

It is an object to provide an optical film used for a liquid crystal display device and other various display devices and its manufacturing method by use of melt flow casting method, wherein the optical film has improved uniformity in a width direction of retardation of the film and a superior optical characteristic. A touch roll (6) is provided with a pressure control unit and a retardation measuring device (20) is disposed on a film carrying way to measure retardation of the carrying film on an on-line basis. A retardation measured value signal is sent to the pressure control unit of the touch roll (6). A retardation value of the carrying film is controlled in the pressure control unit by adjusting the pressure of the touch roll (6) on a real time basis in accordance with the retardation measured value signal to make differences between the maximum and minimum values of the retardation of the carrying film always not more than 4 nm.

Description

明 細 書  Specification
光学フィルム、及びその製造方法  Optical film and method for producing the same
技術分野  Technical field
[0001] 本発明は、溶融流延製膜法により作製される光学フィルム、特に液晶表示装置 (L CD)等に用いられる偏光板用保護フィルム、位相差フィルム、視野角拡大フィルム、 プラズマディスプレイに用いられる反射防止フィルムなどの各種機能フィルム、または 有機 ELディスプレイ等で使用される各種機能フィルム等にも利用することができる光 学フィルム、及びその製造方法に関するものである。  [0001] The present invention relates to an optical film produced by a melt casting film forming method, in particular, a protective film for a polarizing plate, a retardation film, a viewing angle widening film, a plasma display used in a liquid crystal display (LCD) and the like. The present invention relates to an optical film that can be used for various functional films such as antireflection films used, or various functional films used for organic EL displays, and a method for producing the same.
背景技術  Background art
[0002] 液晶表示装置は、従来の CRT表示装置に比べて、省スペース、省エネルギーであ ることからモニターとして広く使用されている。さらに TV用としても普及が進んできて いる。このような液晶表示装置には、偏光フィルムや位相差フィルムなどの種々の光 学フィルムが使用されてレ、る。  [0002] Liquid crystal display devices are widely used as monitors because they save space and energy compared to conventional CRT display devices. Furthermore, it is also spreading for TV. In such a liquid crystal display device, various optical films such as a polarizing film and a retardation film are used.
[0003] ところで、液晶表示装置に用いられる偏光板の偏光フィルムは、延伸ポリビニルァ ノレコールフィルムからなる偏光子の片面または両面に、セルロースエステルフィルム よりなる光学フィルムを保護膜として積層されている。また、位相差フィルムは、視野 角の拡大やコントラストの向上などの目的で用いられており、ポリカーボネート、環状 ポリオレフイン樹脂、セルロースエステルなどのフィルムを延伸するなどしてリタデーシ ヨンが付与されたものである。光学補償フィルムとも呼ばれることがある。  By the way, the polarizing film of a polarizing plate used in a liquid crystal display device is laminated on one or both sides of a polarizer made of a stretched polyvinyl alcohol record film using an optical film made of a cellulose ester film as a protective film. The retardation film is used for the purpose of widening the viewing angle and improving the contrast, and is provided with a retardation by stretching a film of polycarbonate, cyclic polyolefin resin, cellulose ester or the like. . Sometimes called an optical compensation film.
[0004] これらの光学フィルムでは、光学的な欠陥がなぐリタデーシヨンが均一であること、 特に位相軸のばらつきがないことが要求される。特に、モニターや TVの大型化や高 精細化が進み、これらの要求品質は、ますます厳しくなつてきている。  [0004] These optical films are required to have uniform retardation with no optical defects, and in particular, no phase axis variation. In particular, as monitors and TVs become larger and higher definition, these required qualities are becoming increasingly severe.
[0005] 光学フィルムの製造方法には、大別して、溶融流延製膜法と溶液流延製膜法とが ある。前者は、ポリマーを加熱溶解して支持体上に流延し、冷却固化し、さらに必要 に応じて延伸してフィルムにする方法であり、後者は、ポリマーを溶媒に溶力 て、そ の溶液を支持体上に流延し、溶媒を蒸発し、さらに必要に応じて延伸してフィルムに する方法である。 [0006] いずれの製膜法であっても、溶融したポリマーまたはポリマー溶液は支持体上で冷 却固化や乾燥固化される。そして、支持体から剥離された後、ポリマーフィルムは、複 数の搬送ロールを用いて搬送されながら、乾燥や延伸などの処理がなされる。 [0005] Optical film production methods are roughly classified into a melt casting film forming method and a solution casting film forming method. The former is a method in which a polymer is dissolved by heating and cast on a support, cooled and solidified, and further stretched as necessary to form a film. The latter is a solution in which the polymer is dissolved in a solvent to dissolve the solution. Is cast on a support, the solvent is evaporated, and the film is further stretched as necessary to form a film. [0006] In any film forming method, the molten polymer or polymer solution is cooled and solidified on a support. And after peeling from a support body, processes, such as drying and extending | stretching, are made | formed, while a polymer film is conveyed using a some conveyance roll.
[0007] 溶液流延製膜法は、溶剤を大量に使用することより、環境負荷が大きいことが課題 となっている。一方、溶融流延製膜法は、溶媒を使用しないことから、生産性の向上 が期待でき、また環境保護の観点より好ましい。  [0007] The solution casting film forming method has a problem that the environmental load is large because a large amount of solvent is used. On the other hand, since the melt casting film forming method does not use a solvent, it can be expected to improve productivity and is preferable from the viewpoint of environmental protection.
[0008] 従来、溶融流延製膜法によるシート'フィルムの成形装置として、下記の特許文献 1 に記載の装置が提案されてレ、る。  [0008] Conventionally, an apparatus described in Patent Document 1 below has been proposed as a sheet-film forming apparatus using a melt casting film forming method.
[0009] 特許文献 1には、押出成形機から押出されるシート状溶融樹脂を主ロールと押さえ ロール (タツチロール)間に導入して挟圧成形するシート'フィルムの成形用ロール装 置であって、主ロールを高剛性の金属ロールにより構成し、タツチローノレを、可撓性 を有する薄肉金属外筒と、冷却流体の流送空間をあけてこの薄肉金属外筒に同一 軸心状に内嵌される高剛性の金属内筒とからなる二重筒により構成したシート'フィ ルムの成形用ロール装置が開示されている。  Patent Document 1 discloses a sheet roll forming apparatus that introduces a sheet-like molten resin extruded from an extrusion molding machine between a main roll and a press roll (touch roll) and performs nipping molding. The main roll is composed of a highly rigid metal roll, and the Tatsuronole is fitted into the thin metal outer cylinder in the same axial center with a flexible thin metal outer cylinder and a cooling fluid flow space. A roll apparatus for forming a sheet 'film constituted by a double cylinder comprising a highly rigid metal inner cylinder is disclosed.
[0010] この特許文献 1では、薄肉金属外筒の弾性変形を利用して、ゴムロール挟圧成形 法と同様に主ロールへの接触長さを確保することができ、これによりバンクのない挟 圧成形を可能にして、残留歪みがなぐ光の乱反射ゃ複屈折現象のない光学的に 優れた樹脂フィルム 'シートを製造するものである。 [0010] In Patent Document 1, the elastic deformation of the thin metal outer cylinder can be used to secure the contact length to the main roll in the same manner as in the rubber roll pressing method, whereby the holding pressure without a bank can be secured. It enables molding and diffused reflection of light with no residual strain. It produces an optically excellent resin film sheet without birefringence.
特許文献 1 :特許第 3194904号公報  Patent Document 1: Japanese Patent No. 3194904
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] ところで、一般に、タツチロールの押し圧により、フィルムのリタデーシヨンは変化す る力 幅が広くなると、タツチロールの押し圧の幅手方向の均一性を保つのが困難で あった。 [0011] By the way, in general, when the range of force that changes the retardation of the film becomes wide due to the pressing pressure of the touch roll, it is difficult to maintain the uniformity in the width direction of the pressing pressure of the touch roll.
[0012] タツチロールの圧力は、中央部で低くなる傾向にあるため、特許文献 1では、太鼓 状(クラウン)のタツチロールで、均一性を高める技術が公開されている。しかしながら 、製膜中に樹脂の温度が変動すると、ロール温度も変動し、ロールが熱変形するた めに、クラウン量が最適値からずれ、押し圧の幅手方向分布が変動し、フィルムのリタ デーシヨンが変動することがあるという問題があった。 [0012] Since the pressure of the touch roll tends to be lowered at the center, Patent Document 1 discloses a technique for improving uniformity with a drum-shaped (crown) touch roll. However, if the temperature of the resin fluctuates during film formation, the roll temperature also fluctuates, and the roll deforms thermally, so that the crown amount deviates from the optimum value, the lateral direction distribution of the pressing pressure fluctuates, and the film retards. There was a problem that the dating could fluctuate.
[0013] 本発明の目的は、上記の従来技術の問題を解決し、フィルムのリタデーシヨンの幅 手方向の均一性を向上して、光学特性に優れた光学フィルムを得ること、及び該フィ ルムを溶融流延製膜法により製造する方法を提供しょうとすることにある。  [0013] An object of the present invention is to solve the above-mentioned problems of the prior art, improve the uniformity of the retardation of the film in the width direction, obtain an optical film having excellent optical characteristics, and The object is to provide a method of manufacturing by the melt casting method.
課題を解決するための手段  Means for solving the problem
[0014] 上記の目的を達成するために、請求の範囲第 1項の発明は、非晶性熱可塑性樹脂 を溶融し、回転する支持体上へ流延ダイから押し出し、前記支持体上の溶融樹脂を 前記支持体表面に押圧手段により押圧し、冷却固化してフィルムとし、該フィルムを 支持体より剥離し、搬送手段で搬送した後、卷取り装置によって巻き取る溶融流延製 膜法による光学フィルムの製造方法において、前記搬送手段による搬送途上に設置 されたリタデーシヨン測定器で、前記フィルムのリタデーシヨン値を測定し、この測定 器により測定されたリタデーシヨン値に基づいて、前記押圧手段の前記支持体に対 する押圧力をリアルタイムで調整して、前記フィルムのリタデーシヨン値を所定の範囲 内となるように制御することを特徴としている。  [0014] In order to achieve the above object, the invention of claim 1 is characterized in that an amorphous thermoplastic resin is melted, extruded from a casting die onto a rotating support, and melted on the support. The resin is pressed on the surface of the support by pressing means, cooled and solidified to form a film, the film is peeled off from the support, transported by the transporting means, and then wound by a scraping device, and then optically formed by a melt casting film forming method. In the film manufacturing method, the retardation value of the film is measured by a retardation measuring device installed on the way of conveyance by the conveying means, and the support of the pressing means is based on the retardation value measured by the measuring device. The film is controlled in real time by adjusting the pressing force against the film so that the retardation value of the film falls within a predetermined range.
[0015] 請求の範囲第 2項の発明は、請求の範囲第 1項に記載の光学フィルムの製造方法 であって、前記リタデーンヨン測定器は、幅手方向の複数箇所でフィルムのリタデー シヨン値を測定することを特徴としている。  [0015] The invention of claim 2 is the method for producing an optical film of claim 1, wherein the retardance measuring instrument determines the retardation value of the film at a plurality of positions in the width direction. It is characterized by measuring.
[0016] 請求の範囲第 3項の発明は、請求の範囲第 1項に記載の光学フィルムの製造方法 であって、前記リタデーシヨン測定器が測定したリタデーシヨン値の最大値と最小値と の差力 S4nm以下となるように、前記押圧手段の前記支持体に対する押圧力をリアル タイムで調整することを特徴としてレ、る。  [0016] The invention of claim 3 is the optical film manufacturing method of claim 1, wherein the difference between the maximum value and the minimum value of the retardation value measured by the retardation measuring device The pressing force of the pressing means against the support is adjusted in real time so that it becomes S4 nm or less.
[0017] 上記において、リタデーシヨン値力 面内方向リタデーシヨン値、または厚み方向リ タデーシヨン値のいずれか一方であれば、良い。  In the above, the retardation value force may be any one of the in-plane direction retardation value and the thickness direction retardation value.
[0018] また、本発明による光学フィルムの製造方法では、卷き取り時のフィルムの幅が 1.  [0018] Further, in the method for producing an optical film according to the present invention, the width of the film when scraped is 1.
5m以上、 4. Om以下であるのが、好ましぐ卷き取り時のフィルムの厚みが 15 /i m以 上、 60 /i m以下であるのが、好ましい。  A thickness of 5 m or more and 4. Om or less is preferably 15 / im or more and 60 / im or less when the film is peeled off.
[0019] 本発明による光学フィルムの発明は、上記の光学フィルムの製造方法で製造され、 かつフィルム幅手方向および長手方向内でのリタデーシヨン値の最大値と最小値の 差力 4nm以下であることを特徴としている。 The invention of the optical film according to the present invention is manufactured by the above-described optical film manufacturing method, and has a maximum value and a minimum value of the retardation value in the width direction and the longitudinal direction of the film. It is characterized by a differential force of 4 nm or less.
発明の効果  The invention's effect
[0020] 請求の範囲第 1項の発明は、非晶性熱可塑性樹脂を溶融し、回転する支持体上へ 流延ダイから押し出し、前記支持体上の溶融樹脂を前記支持体表面に押圧手段に より押圧し、冷却固化してフィルムとし、該フィルムを支持体より剥離し、搬送手段で 搬送した後、卷取り装置によって巻き取る溶融流延製膜法による光学フィルムの製造 方法において、前記搬送手段による搬送途上に設置されたリタデーシヨン測定器で、 前記フィルムのリタデーシヨン値を測定し、この測定器により測定されたリタデーシヨン 値に基づいて、前記押圧手段の前記支持体に対する押圧力をリアルタイムで調整し て、前記フィルムのリタデーシヨン値を所定の範囲内となるように制御するもので、本 発明によれば、フィルムのリタデーシヨンの幅手方向の均一性を向上して、光学特性 に優れた光学フィルムを得ることができるという効果を奏する。  [0020] The invention of claim 1, wherein the amorphous thermoplastic resin is melted and extruded from a casting die onto a rotating support, and the molten resin on the support is pressed against the surface of the support. In the method for producing an optical film by a melt casting film forming method in which the film is pressed and solidified by cooling to form a film, the film is peeled off from the support, transported by a transporting means, and wound by a scraping device. The retardation value of the film is measured with a retardation measuring device installed on the way of conveyance by the means, and the pressing force of the pressing means against the support is adjusted in real time based on the retardation value measured by the measuring device. The retardation value of the film is controlled to be within a predetermined range. According to the present invention, the film retardation value in the width direction is controlled. Improved one property, an effect that it is possible to obtain an optical film excellent in optical properties.
[0021] 請求の範囲第 2項の発明は、請求の範囲第 1項に記載の光学フィルムの製造方法 であって、前記リタデーシヨン測定器は、幅手方向の複数箇所でフィルムのリタデー シヨン値を測定するもので、本発明によれば、フィルムのリタデーシヨンの幅手方向の 均一性を向上して、光学特性に優れた光学フィルムを得ることができるとレ、う効果を 奏する。  [0021] The invention of claim 2 is the method for producing an optical film of claim 1, wherein the retardation measuring device calculates the retardation value of the film at a plurality of locations in the width direction. According to the present invention, it is possible to improve the uniformity in the width direction of the retardation of the film and to obtain an optical film having excellent optical characteristics.
[0022] 請求の範囲第 3項の発明は、請求の範囲第 1項に記載の光学フィルムの製造方法 であって、前記リタデーシヨン測定器が測定したリタデーシヨン値の最大値と最小値と の差力 S4nm以下となるように、前記押圧手段の前記支持体に対する押圧力をリアル タイムで調整するもので、本発明によれば、フィルムのリタデーシヨンの幅手方向の均 一性を向上して、光学特性に優れた光学フィルムを得ることができるとレ、う効果を奏 する。  [0022] The invention of claim 3 is the method of manufacturing an optical film according to claim 1, wherein the difference between the maximum value and the minimum value of the retardation value measured by the retardation measuring device. The pressing force of the pressing means against the support is adjusted in real time so that it becomes S4 nm or less.According to the present invention, the uniformity in the width direction of the retardation of the film is improved and the optical characteristics are improved. If an excellent optical film can be obtained, the effect is achieved.
[0023] 本発明による光学フィルムの発明は、上記の光学フィルムの製造方法で製造され、 かつフィルム幅手方向および長手方向内でのリタデーシヨン値の最大値と最小値の 差力 4nm以下であるから、本発明によれば、フィルムのリタデーシヨンの幅手方向 の均一性を向上して、光学フィルムは光学特性に優れているものであるという効果を 奏する。 図面の簡単な説明 [0023] The invention of the optical film according to the present invention is manufactured by the above-described optical film manufacturing method, and the difference between the maximum value and the minimum value of the retardation value in the width direction and the longitudinal direction of the film is 4 nm or less. According to the present invention, the uniformity in the width direction of the retardation of the film is improved, and the optical film is excellent in optical properties. Brief Description of Drawings
[0024] [図 1]本発明の光学フィルムの製造方法を実施する装置の 1つの実施形態を示す概 略フローシートである。 符号の説明  [0024] FIG. 1 is a schematic flow sheet showing one embodiment of an apparatus for carrying out the method for producing an optical film of the present invention. Explanation of symbols
[0025] 1 押出し機 [0025] 1 Extruder
2 フイノレター  2 Huino Letter
3 スタチックミキサー  3 Static mixer
4 流延ダイ  4 Casting die
5 第 1冷却ロール  5 First cooling roll
6 タツチローノレ  6 Tatsuchi Ronore
7 第 2冷却ロール  7 Second cooling roll
8 第 3冷却ロール  8 Third cooling roll
9 剥離ロール  9 Peeling roll
10 未延伸フィルム  10 Unstretched film
12 延伸装置  12 Stretching device
16 卷取り装置  16 Scraper
F 光学フィルム(元卷き)  F optical film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明 する力 本発明はこれらに限定されるものではない。  [0026] Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to these.
[0027] 本発明は、特に液晶表示装置 (LCD)の偏光板用保護フィルム等に利用することが できる光学フィルムの製造方法に係るものである。  The present invention relates to a method for producing an optical film that can be used particularly as a protective film for a polarizing plate of a liquid crystal display device (LCD).
[0028] 用いるフィルム構成材料は、水分や溶媒等に代表される揮発成分を、製膜する前 に、または加熱時に除去することが好ましい。除去する方法は、いわゆる公知の乾燥 方法が適用でき、加熱法、減圧法、加熱減圧法等の方法で行なうことができ、空気中 または除湿空気中または不活性ガスとして窒素を選択した雰囲気下で行なってもよ レ、。これらの公知の乾燥方法を行なうとき、フィルム構成材料が分解しない温度領域 で行なうこと力 フィルムの品質上好ましい。 [0029] 製膜前に乾燥することにより、揮発成分の発生を削減することができ、樹脂単独、ま たは樹脂とフィルム構成材料の内、樹脂以外の少なくとも 1種以上の混合物または相 溶物に分割して乾燥することもできる。乾燥温度は 80°C以上が好ましい。乾燥する 材料にガラス転移温度を有する物が存在するときには、そのガラス転移温度よりも高 い乾燥温度に加熱すると、材料が融着して取り扱いが困難になることがあるので、乾 燥温度は、ガラス転移温度以下であることが好ましい。複数の物質がガラス転移温度 を有する場合は、ガラス転移温度が低い方のガラス転移温度を基準とする。乾燥時 間は、好ましくは 0. 5〜24時間、より好ましくは 1〜: 18時間、さらに好ましくは 1. 5〜 12時間である。乾燥温度が低くなりすぎると揮発成分の除去率が低くなり、また乾燥 するのに時間にかかり過ぎることになる。また、乾燥工程は 2段階以上にわけてもよく 、例えば、乾燥工程が、材料の保管のための予備乾燥工程と、製膜する直前〜 1週 間前の間に行なう直前乾燥工程を含むものであってもよい。 [0028] The film constituent material used preferably removes volatile components typified by moisture, solvent, and the like before film formation or during heating. As the removal method, a so-called known drying method can be applied, which can be performed by a heating method, a decompression method, a heating decompression method, or the like, and in air, dehumidified air, or an atmosphere selected with nitrogen as an inert gas. You can do it. When performing these known drying methods, it is preferable to carry out in a temperature range in which the film constituting material does not decompose. [0029] By drying before film formation, the generation of volatile components can be reduced, and the resin alone, or at least one mixture or compatible material other than the resin among the resin and the film constituent material. It can also be divided and dried. The drying temperature is preferably 80 ° C or higher. When a material having a glass transition temperature is present in the material to be dried, heating to a drying temperature higher than the glass transition temperature may cause the material to melt and become difficult to handle. It is preferable that it is below the glass transition temperature. When multiple substances have a glass transition temperature, the glass transition temperature with the lower glass transition temperature is used as a reference. The drying time is preferably 0.5 to 24 hours, more preferably 1 to 18 hours, and further preferably 1.5 to 12 hours. If the drying temperature is too low, the removal rate of volatile components will be low, and it will take too long to dry. In addition, the drying process may be divided into two or more stages. For example, the drying process includes a preliminary drying process for storing materials and a previous drying process performed immediately before film formation to one week before. May be.
[0030] 溶融流延製膜法は、加熱溶融する成形法に分類され、溶融押出し成形法、プレス 成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などを適用で きる。これらの中で、機械的強度及び表面精度などに優れる光学フィルムを得るため には、溶融押出し法が優れている。以下、溶融押出し法を例にとり、本発明のフィル ムの製造方法について説明する。  [0030] Melt casting film forming methods are classified as molding methods that are heated and melted, and melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like can be applied. Among these, the melt extrusion method is excellent for obtaining an optical film excellent in mechanical strength and surface accuracy. Hereinafter, the film production method of the present invention will be described by taking the melt extrusion method as an example.
[0031] 図 1は、本発明の光学フィルムの製造方法を実施する装置の全体構成を示す概略 フローシートである。  FIG. 1 is a schematic flow sheet showing the overall configuration of an apparatus for carrying out the method for producing an optical film of the present invention.
[0032] 同図を参照すると、本発明による光学フィルムの製造方法は、セルロース樹脂など のフィルム材料を混合した後、押出し機 1を用いて、流延ダイ 4から第 1冷却ロール 5 上に溶融押し出し、第 1冷却ロール 5に外接させるとともに、さらに、第 2冷却ロール 7 、第 3冷却ロール 8の合計 3本の冷却ロールに順に外接させて、冷却固化してフィノレ ム 10とする。ついで、剥離ロール 9によって剥離したフィルム 10を、ついで延伸装置 12によりフィルムの両端部を把持して幅方向に延伸した後、卷取り装置 16により卷き 取る。また、平面性を矯正するために溶融フィルムを第 1冷却ロール 5表面に挟圧す るタツチロール 6が設けられている。このタツチロール 6は表面が弾性を有し、第 1冷 却ロール 5との間で二ップを形成している。 [0033] ここで、冷却ロール 5とは、フィルムを押圧する 2つのロールのうち、フィルムを搬送し 、フィルムとの接触時間が長い方のロールと定義し、タツチロール 6とは、押圧時にフ イルムを介して冷却ロール 5の反対側からフィルムに接するロールと定義する。 [0032] Referring to the figure, in the method for producing an optical film according to the present invention, a film material such as a cellulose resin is mixed and then melted from the casting die 4 onto the first cooling roll 5 using the extruder 1. Extruding and circumscribing the first cooling roll 5, and further circumscribing a total of three cooling rolls, that is, the second cooling roll 7 and the third cooling roll 8, in order to cool and solidify the final roll 10. Next, the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by gripping both ends of the film by the stretching device 12, and then scraped off by the scraping device 16. In addition, a touch roll 6 is provided for pressing the molten film against the surface of the first cooling roll 5 in order to correct the flatness. The touch roll 6 has an elastic surface and forms a two-piece with the first cooling roll 5. [0033] Here, the cooling roll 5 is defined as a roll that transports the film and has a longer contact time with the film out of the two rolls that press the film, and the touch roll 6 is the film that is pressed. It is defined as a roll in contact with the film from the opposite side of the cooling roll 5.
[0034] 本発明による光学フィルムの製造方法において、タツチロール 6に、図示しない押 圧力制御ユニットが具備されており、フィルムの搬送途上に、搬送フィルムのリタデー シヨン測定器 20を設置して、搬送フィルムのリタデーシヨン値をオンラインで測定し、 この測定器 20からのリタデーシヨン測定値信号をタツチロール 6の押圧力制御ュニッ トに電送し、制御ユニットにおいて、このリタデーシヨン測定値信号に基づいて、タツ チロール 6による押圧力をリアルタイムで調整して、搬送フィルムのリタデーシヨン値を 所定の範囲内となるように制御するものである。  [0034] In the method for producing an optical film according to the present invention, the touch roll 6 is provided with a pressing force control unit (not shown), and a transport film retardation measuring device 20 is installed on the way of transporting the film. The retardation value is measured online, and the retardation measurement value signal from the measuring instrument 20 is transmitted to the pressing force control unit of the touch roll 6, and the control unit pushes the retardation value signal based on the retardation measurement value signal. The pressure is adjusted in real time, and the retardation value of the transport film is controlled to be within a predetermined range.
[0035] タツチロール 6の押圧力制御ユニットにおいては、測定器 20からのリタデーシヨン測 定値信号に基づいて、搬送フィルムのリタデーシヨンの最大値と最小値との差が、常 に 4nm以下となるように、タツチロール 6による溶融フィルムの冷却ロール 5表面への 押圧力を演算し、タツチロール 6による押圧力をリアルタイムで調整する。  [0035] In the pressing force control unit of the touch roll 6, based on the retardation measurement value signal from the measuring device 20, the difference between the maximum value and the minimum value of the retardation of the transport film is always 4 nm or less. Calculate the pressing force of the molten film on the surface of the cooling roll 5 with the touch roll 6 and adjust the pressing force with the touch roll 6 in real time.
[0036] ここで、第 1冷却ロール 5とタツチロール 6との圧力調整は、圧力センサーを用いて 第 1冷却ロール 5とタツチロール 6間の押し圧を測定しながら、モーターにより位置を 調整させたり、エアシリンダまたは油圧シリンダの圧力調整により口ール間圧力を好 適に制御できる。タツチロール 6の押圧力制御ユニットにおいては、測定器 20からの リタデーシヨン測定値信号に基づき、これらのモーターによる位置調整、エアシリンダ または油圧シリンダによる圧力調整を行なえば良い。  Here, the pressure adjustment between the first cooling roll 5 and the touch roll 6 can be performed by adjusting the position with a motor while measuring the pressing force between the first cooling roll 5 and the touch roll 6 using a pressure sensor, The pressure between the mouths can be controlled appropriately by adjusting the pressure of the air cylinder or hydraulic cylinder. In the pressing force control unit of the touch roll 6, the position adjustment by these motors and the pressure adjustment by the air cylinder or hydraulic cylinder may be performed based on the retardation measurement value signal from the measuring device 20.
[0037] 本発明において、タツチロール 6による押圧力をリアルタイムで調整するエアシリン ダとしては、例えば SMC株式会社製のエアシリンダ MBL— 100を使用することがで きる。  In the present invention, as an air cylinder that adjusts the pressing force by the touch roll 6 in real time, for example, an air cylinder MBL-100 manufactured by SMC Corporation can be used.
[0038] また、本発明において、搬送フィルムのリタデーシヨン値をオンラインで測定するリタ デーシヨン測定器 20としては、例えば無接触式で光電管を利用した、王子計測機器 株式会社製の Kobra_WX150Kを使用することができる。  [0038] Further, in the present invention, as the retardation measuring device 20 for measuring the retardation value of the transport film online, for example, Kobra_WX150K manufactured by Oji Scientific Instruments Co., Ltd., which uses a photoelectric tube without contact, can be used. it can.
[0039] なお、搬送フィルムのリタデーシヨン測定器 20の設置は、延伸装置 12のいわゆる上 流側であっても、下流側であっても良い。 [0040] ここで、リタデーシヨン測定器 20によりオンラインで測定する搬送フィルムのリタデー シヨン値は、面内方向リタデーシヨン (Ro)値、または厚み方向リタデーシヨン (Rt)値 のいずれか一方であれば、良レ、。なお、 Roとは面内リタデーシヨンを示し、面内の長 手方向 MDの屈折率と幅方向 TDの屈折率との差に厚みを乗じたもの、 Rtとは厚み 方向リタデーシヨンを示し、面内の屈折率(長手方向 MDと幅方向 TDの平均)と厚み 方向の屈折率との差に厚みを乗じたものである。 [0039] The conveyance film retardation measuring device 20 may be installed on the upstream side or on the downstream side of the stretching device 12. [0040] Here, if the retardation value of the transport film measured on-line by the retardation measuring instrument 20 is either the in-plane direction retardation (Ro) value or the thickness direction retardation (Rt) value, the good quality is obtained. ,. Ro indicates in-plane retardation, the difference between the refractive index in the longitudinal direction MD in the plane and the refractive index in the width direction TD is multiplied by the thickness, and Rt indicates the thickness direction retardation. It is the difference between the refractive index (average of longitudinal MD and width TD) and the refractive index in the thickness direction multiplied by the thickness.
[0041] 本発明による光学フィルムの製造方法では、卷き取り時のフィルムの幅が 1. 5m以 上、 4. Om以下であり、フィルムの長さ力 例えば 1000m以上、 2600m以下である のが、好ましい。  [0041] In the method for producing an optical film according to the present invention, the width of the film when scraped is 1.5 m or more and 4. Om or less, and the film length force is, for example, 1000 m or more and 2600 m or less. ,preferable.
[0042] また本発明による光学フィルムの製造方法では、卷き取り時のフィルムの厚みが 15 z m以上、 60 z m以下であるのが、好ましい。  [0042] In the method for producing an optical film according to the present invention, it is preferable that the thickness of the film at the time of scraping is 15 zm or more and 60 zm or less.
[0043] 本発明による光学フィルムの製造方法において、溶融押し出しの条件は、他のポリ エステルなどの熱可塑性樹脂に用いられる条件と同様にして行なうことができる。材 料は予め乾燥させておくことが好ましい。真空または減圧乾燥機や除湿熱風乾燥機 などで水分を lOOOppm以下、好ましくは 200ppm以下に乾燥させることが望ましレ、。 [0043] In the method for producing an optical film according to the present invention, the conditions for melt extrusion can be carried out in the same manner as those used for other thermoplastic resins such as polyesters. It is preferable to dry the material in advance. Desirably, the moisture should be dried to 100 ppm or less, preferably 200 ppm or less, using a vacuum or vacuum dryer or dehumidifying hot air dryer.
[0044] 例えば、熱風や真空または減圧下で乾燥したセルロースエステル系樹脂を押出し 機 1を用いて、押し出し温度 200〜300°C程度で溶融し、リーフディスクタイプのフィ ルター 2などで濾過し、異物を除去する。 [0044] For example, a cellulose ester resin dried under hot air, vacuum or reduced pressure is melted at an extrusion temperature of about 200 to 300 ° C using an extruder 1, and filtered through a leaf disk type filter 2 or the like. Remove foreign material.
[0045] 供給ホッパー(図示略)から押出し機 1へ導入する際は、真空下または減圧下ゃ不 活性ガス雰囲気下にして、酸化分解等を防止することが好ましレ、。 [0045] When introducing into the extruder 1 from a supply hopper (not shown), it is preferable to prevent oxidative decomposition and the like under an inert gas atmosphere under vacuum or reduced pressure.
[0046] 可塑剤などの添加剤を予め混合しない場合は、押出し機の途中で練り込んでもよ レ、。均一に添加するために、スタチックミキサー 3などの混合装置を用いることが好ま しい。 [0046] If additives such as a plasticizer are not mixed in advance, they may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as Static Mixer 3.
[0047] 本発明において、セルロース樹脂と、その他、必要により添加される安定化剤等の 添加剤は、溶融する前に混合しておくことが好ましい。セルロース樹脂と安定化剤を 最初に混合することがさらに好ましい。混合は、混合機等により行なってもよぐまた、 前記したようにセルロース樹脂調製過程において混合してもよい。混合機を使用する 場合は、 V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミ キサ一、リボンミキサーなど一般的な混合機を用いることができる。混合は除湿空気 または窒素ガス等の不活性ガスの雰囲気下で行なうことが好ましい。 In the present invention, the cellulose resin and other additives such as a stabilizer added as necessary are preferably mixed before melting. More preferably, the cellulose resin and the stabilizer are mixed first. Mixing may be performed by a mixer or the like, or may be performed in the cellulose resin preparation process as described above. When using a mixer, V-type mixer, conical screw type mixer, horizontal cylindrical type mixer, etc. A general mixer such as a heater or a ribbon mixer can be used. Mixing is preferably performed in an atmosphere of an inert gas such as dehumidified air or nitrogen gas.
[0048] 上記のようにフィルム構成材料を混合した後に、その混合物を押出し機 1を用いて 直接溶融して製膜するようにしてもよいが、一旦、フィルム構成材料をペレツトイ匕した 後、該ペレットを押出し機 1で溶融して製膜するようにしてもよい。また、フィルム構成 材料が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが溶融す る温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機 1に投 入して製膜することも可能である。フィルム構成材料に熱分解しやすい材料が含まれ る場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や 、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。  [0048] After the film constituent materials are mixed as described above, the mixture may be directly melted and formed into a film using the extruder 1, but once the film constituent materials are pelletized, The pellets may be melted by the extruder 1 to form a film. In addition, when the film constituent material includes a plurality of materials having different melting points, a so-called braided semi-melt is once produced at a temperature at which only the material having a low melting point is melted, and the semi-melt is extruded 1 It is also possible to form a film by throwing it into the film. If the film component contains a material that is easily pyrolyzed, the film can be formed directly without producing pellets for the purpose of reducing the number of melting times, A method of forming a film from is preferred.
[0049] 押出し機 1は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練 押出し機が好ましぐ単軸押出し機でも 2軸押出し機でも良い。フィルム構成材料から ペレットを作製せずに、直接製膜を行なう場合、適当な混練度が必要であるため 2軸 押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック 型、ュニメルト型、ダルメージ等の混練型のスクリューに変更することにより、適度の混 練が得られるので、使用可能である。フルフライト型スクリュー、ダブルフライト型スクリ ユーも好適に使用される。フィルム構成材料として、一旦、ペレットやおこし状の半溶 融物を使用する場合は、単軸押出し機でも 2軸押出し機でも使用可能である。  [0049] Various extruders available on the market can be used as the extruder 1. However, the extruder 1 may be a single screw extruder or a twin screw extruder which is preferable for a melt kneading extruder. When forming a film directly without making pellets from film constituent materials, it is preferable to use a twin-screw extruder because an appropriate degree of kneading is required, but even with a single-screw extruder, the screw shape is a Maddock type. By changing to a kneading type screw such as a unimelt type or a dull mage, an appropriate kneading can be obtained, so that it can be used. Full flight type screws and double flight type screws are also preferably used. When pellets or braided semi-melts are used as the film constituent material, they can be used with either single-screw extruders or twin-screw extruders.
[0050] 押出し機 1内および押出した後の冷却工程は、窒素ガス等の不活性ガスで置換す るカ あるいは減圧することにより、酸素の濃度を下げることが好ましい。  [0050] In the extruder 1 and in the cooling step after extrusion, it is preferable to reduce the oxygen concentration by replacing with an inert gas such as nitrogen gas or reducing the pressure.
[0051] 押出し機 1内のフィルム構成材料の溶融温度は、フィルム構成材料の粘度や吐出 量、製造するシートの厚み等によって好ましい条件が異なるが、一般的には、フィノレ ムのガラス転移温度 Tgに対して、 Tg以上、 Tg + 100°C以下、好ましくは Tg + 10°C 以上、 Tg + 90°C以下である。押出し時の溶融粘度は、 10〜: 100000ボイズ、好まし くは 100〜10000ボイズである。また、押出し機 1内でのフィルム構成材料の滞留時 間は短い方が好ましぐ 5分以内、好ましくは 3分以内、より好ましくは 2分以内である 。滞留時間は、押出し機 1の種類、押出す条件にも左右されるが、材料の供給量や L /D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが 可能である。 L/Dは 10以上 40以下が好ましぐより好ましくは 20以上 35以下である[0051] The preferable conditions for the melting temperature of the film constituent material in the extruder 1 vary depending on the viscosity and discharge amount of the film constituent material, the thickness of the sheet to be produced, etc., but generally the glass transition temperature Tg of the finoleme. On the other hand, it is Tg or more and Tg + 100 ° C or less, preferably Tg + 10 ° C or more and Tg + 90 ° C or less. The melt viscosity at the time of extrusion is 10 to 100,000 boise, preferably 100 to 10,000 boise. In addition, a shorter residence time of the film constituent material in the extruder 1 is preferably within 5 minutes, preferably within 3 minutes, and more preferably within 2 minutes. The residence time depends on the type of extruder 1 and the extrusion conditions, but it can be shortened by adjusting the material supply amount, L / D, screw rotation speed, screw groove depth, etc. Is possible. L / D is preferably 10 or more and 40 or less, more preferably 20 or more and 35 or less.
。圧縮比は 2以上 4以下が好ましい。 . The compression ratio is preferably 2 or more and 4 or less.
[0052] 押出し機 1のスクリューの形状や回転数等は、フィルム構成材料の粘度や吐出量等 により適宜選択される。本発明において押出し機 1でのせん断速度は、 1Z秒〜 100[0052] The shape, rotation speed, and the like of the screw of the extruder 1 are appropriately selected depending on the viscosity of the film constituting material, the discharge amount, and the like. In the present invention, the shear rate in the extruder 1 is 1 Z seconds to 100.
00/秒、好ましくは 5/秒〜 1000/秒、より好ましくは 10/秒〜 100Z秒である。 00 / sec, preferably 5 / sec to 1000 / sec, more preferably 10 / sec to 100Z sec.
[0053] 本発明に使用できる押出し機 1としては、一般的にプラスチック成形機として入手可 能である。 [0053] The extruder 1 that can be used in the present invention is generally available as a plastic molding machine.
[0054] 押出し機 1から押し出されたフィルム構成材料は、流延ダイ 4に送られ、流延ダイ 4 のスリットからフィルム状に押し出される。流延ダイ 4はシートやフィルムを製造するた めに用いられるものであれば特に限定はされなレ、。流延ダイ 4の材質としては、ハー ドクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セ ラミック(タングステンカーバイド、酸化アルミ、酸化クロム)などを溶射もしくはメツキし 、表面加工としてバフ、 # 1000番手以降の砥石を用いるラッピング、 # 1000番手以 上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向 )、電解研磨、電解複合研磨などの加工を施したものなどがあげられる。流延ダイ 4の リップ部の好ましい材質は、流延ダイ 4と同様である。またリップ部の表面精度は 0. 5 S以下が好ましぐ 0. 2S以下がより好ましい。  The film constituent material extruded from the extruder 1 is sent to the casting die 4 and extruded from the slit of the casting die 4 into a film shape. The casting die 4 is not particularly limited as long as it can be used to manufacture sheets and films. As the material of the casting die 4, hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc. are sprayed or plated. Buffing as surface processing, lapping using # 1000 or higher whetstone, #cutting using diamond whetstone of # 1000 or higher (cutting direction is perpendicular to resin flow direction), electrolytic polishing, electrolytic composite polishing, etc. And the like. A preferred material for the lip portion of the casting die 4 is the same as that of the casting die 4. The surface accuracy of the lip is preferably 0.5 S or less, more preferably 0.2 S or less.
[0055] この流延ダイ 4のスリットは、そのギャップが調整可能なように構成されている。図示 は省略した力 流延ダイ 4のスリットを形成する一対のリップのうち、一方は剛性の低 い変形しやすいフレキシブルリップであり、他方は固定リップである。そして、多数のヒ ートボルトが流延ダイ 4の幅方向すなわちスリットの長さ方向に一定ピッチで配列され ている。各ヒートボルトには、坦め込み電気ヒータと冷却媒体通路とを具えたブロック が設けられ、各ヒートボルトが各ブロックを縦に貫通している。ヒートボルトの基部はダ ィ本体に固定され、先端はフレキシブルリップの外面に当接している。そしてブロック を常時空冷しながら、埋め込み電気ヒータの入力を増減してブロックの温度を上下さ せ、これによりヒートボルトを熱伸縮させて、フレキシブルリップを変位させてフィルム の厚さを調整する。ダイ後流の所要箇所に厚さ計を設け、これによつて検出されたゥ エブ厚さ情報を制御装置にフィードバックし、この厚さ情報を制御装置で設定厚み情 報と比較し、同装置から来る補正制御量の信号によってヒートボルトの発熱体の電力[0055] The slit of the casting die 4 is configured such that the gap can be adjusted. The force is omitted in the drawing. Of the pair of lips forming the slit of the casting die 4, one is a flexible lip with low rigidity and easily deformed, and the other is a fixed lip. A number of heat bolts are arranged at a constant pitch in the width direction of the casting die 4, that is, in the length direction of the slit. Each heat bolt is provided with a block having a loaded electric heater and a cooling medium passage, and each heat bolt passes through each block vertically. The base of the heat bolt is fixed to the die body, and the tip is in contact with the outer surface of the flexible lip. While the block is always air-cooled, the input of the embedded electric heater is increased or decreased to raise or lower the temperature of the block, thereby thermally expanding and contracting the heat bolt, and displacing the flexible lip to adjust the film thickness. A thickness gauge is installed at the required location in the wake of the die, and the web thickness information detected by this is fed back to the control device. The thickness information is set by the control device. Compared with the information, the power of the heating element of the heat bolt by the correction control amount signal coming from the device
、またはオン率を制御するようにすることもできる。ヒートボルトは、好ましくは、長さ 20 〜40cm、直径 7〜20mmの円柱、または一辺が 5〜20mmの角柱であっても良い。 そして、複数、例えば数十本のヒートボルトが、好ましくはピッチ 20〜40mmで配列さ れている。ヒートボルトの代わりに、手動で軸方向に前後動させることによりスリットギヤ ップを調節するボルトを主体とするギャップ調節部材を設けてもょレ、。ギャップ調節部 材によって調節されたスリットギャップは、通常 500〜1500 μ mが好ましい。 Alternatively, the ON rate can be controlled. The heat bolt may preferably be a cylinder having a length of 20 to 40 cm and a diameter of 7 to 20 mm, or a prism having a side of 5 to 20 mm. A plurality of, for example, several tens of heat bolts are preferably arranged at a pitch of 20 to 40 mm. Instead of a heat bolt, a gap adjustment member mainly composed of a bolt that adjusts the slit gap by moving it back and forth in the axial direction manually can be provided. The slit gap adjusted by the gap adjusting member is usually preferably 500 to 1500 μm.
[0056] 本発明において、第 1冷却ロール 5、第 2冷却ロール 7に好ましい材質は、炭素鋼、 ステンレス鋼、樹脂、セラミックスなどが挙げられる。また、表面精度は高くすることが 好ましく表面粗さとして 0. 3S以下、より好ましくは 0. 1S以下とする。  In the present invention, preferred materials for the first cooling roll 5 and the second cooling roll 7 include carbon steel, stainless steel, resin, ceramics, and the like. The surface accuracy is preferably increased, and the surface roughness is set to 0.3 S or less, more preferably 0.1 S or less.
[0057] 第 2冷却ロール 7の肉厚としては 0. 5mm〜10mmが好ましぐより好ましくは 2mm 〜 5mmで 3 。  [0057] The thickness of the second cooling roll 7 is preferably 0.5 mm to 10 mm, more preferably 2 mm to 5 mm 3.
[0058] 第 1冷却ロール 5および第 2冷却ロール 7の振れとしては 100 μ m以下が好ましぐ より好ましくは 50 /i m以下、冷却ロールの真円度としては 100 /i m以下が好ましぐよ り好ましくは 50 μ ΐη以下、冷却ロールの円筒度としては 100 /i m以下が好ましぐより 好ましくは 50 μ m以下である。冷却ロールの内部には温水または油を流すことで保 温できる構造が好ましい。冷却ロールの表面温度の最大値と最小値の差は 2度以内 とすることが好ましい。  [0058] The fluctuation of the first cooling roll 5 and the second cooling roll 7 is preferably 100 μm or less, more preferably 50 / im or less, and the roundness of the cooling roll is preferably 100 / im or less. More preferably, it is 50 μΐη or less, and the cylindricity of the cooling roll is preferably 100 / im or less, more preferably 50 μm or less. A structure that can be kept warm by flowing warm water or oil inside the cooling roll is preferable. The difference between the maximum value and the minimum value of the surface temperature of the cooling roll is preferably within 2 degrees.
[0059] 第 1冷却ロール 5と第 2冷却ロール 7の間隙は、圧力センサーを用いて第 1冷却ロー ル 5と第 2冷却ロール 7間の押し圧を測定しながらモーターにより位置を調整させたり 、エアーシリンダーまたは油圧シリンダーの圧力調整により冷却ロール間圧力を好適 に制御できる。  [0059] The gap between the first cooling roll 5 and the second cooling roll 7 can be adjusted by a motor while measuring the pressing force between the first cooling roll 5 and the second cooling roll 7 using a pressure sensor. The pressure between the chill rolls can be suitably controlled by adjusting the pressure of the air cylinder or hydraulic cylinder.
[0060] 流延ダイ 4の近傍に吸引装置を設けて昇華物を除去することが好ましい。吸引装置 自体が昇華物の付着場所にならなレ、ようヒーターで加熱するなどの処置を施すことが 好ましい。本発明では、吸引圧が小さすぎると昇華物を効果的に吸引できないため、 適当な吸引圧とする必要がある。  [0060] It is preferable to provide a suction device in the vicinity of the casting die 4 to remove the sublimate. It is preferable to take measures such as heating with a heater so that the suction device itself does not become a place where the sublimate adheres. In the present invention, if the suction pressure is too small, the sublimate cannot be sucked effectively, so it is necessary to set the suction pressure appropriately.
[0061] 本発明において、 Tダイ 4から溶融状態のフィルム状のセルロースエステル系樹脂 を、第 1ロール (第 1冷却ロール) 5、第 2冷却ロール 7、及び第 3冷却ロール 8に順次 密着させて搬送しながら冷却固化させ、未延伸のセルロースエステル系樹脂フィルム[0061] In the present invention, a film-like cellulose ester-based resin in a molten state is sequentially transferred from the T die 4 to the first roll (first cooling roll) 5, the second cooling roll 7, and the third cooling roll 8. Unstretched cellulose ester-based resin film that is cooled and solidified while being transported in close contact
10を得る。 Get ten.
[0062] 図 1に示す本発明の実施形態では、第 3冷却ロール 8から剥離ロール 9によって剥 離した冷却固化された未延伸のフィルム 10は、ダンサーロール (フィルム張力調整口 ール) 11を経て延伸装置 12に導き、そこでフィルム 10を横方向(幅方向)に延伸する 。この延伸により、フィルム中の分子が配向される。  In the embodiment of the present invention shown in FIG. 1, the uncooled and solidified film 10 peeled off from the third cooling roll 8 by the peeling roll 9 has a dancer roll (film tension adjusting tool) 11. Then, the film is guided to a stretching device 12, where the film 10 is stretched in the transverse direction (width direction). By this stretching, the molecules in the film are oriented.
[0063] フィルムを幅方向に延伸する方法は、公知のテンターなどを好ましく用いることがで きる。特に延伸方向を幅方向とすることで、偏光フィルムとの積層がロール形態で実 施できるので好ましい。幅方向に延伸することで、セルロースエステル系樹脂フィルム 力 なる光学フィルムの遅相軸は幅方向になる。  [0063] As a method of stretching the film in the width direction, a known tenter or the like can be preferably used. In particular, it is preferable to set the stretching direction to the width direction because lamination with a polarizing film can be performed in a roll form. By stretching in the width direction, the slow axis of the optical film, which is a cellulose ester resin film, becomes the width direction.
[0064] 一方、偏光フィルムの透過軸も、通常、幅方向である。偏光フィルムの透過軸と光 学フィルムの遅相軸とが平行になるように積層した偏光板を液晶表示装置に組み込 むことで、液晶表示装置の表示コントラストを高くすることができるとともに、良好な視 野角が得られるのである。  On the other hand, the transmission axis of the polarizing film is also usually in the width direction. By incorporating into the liquid crystal display device a polarizing plate that is laminated so that the transmission axis of the polarizing film and the slow axis of the optical film are parallel, the display contrast of the liquid crystal display device can be increased and good A great viewing angle can be obtained.
[0065] フィルム構成材料のガラス転移温度 Tgは、フィルムを構成する材料種及び構成す る材料の比率を異ならしめることにより制御できる。光学フィルムとして位相差フィルム を作製する場合、 Tgは 120°C以上、好ましくは 135°C以上とすることが好ましい。液 晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば 光源由来の温度上昇によってフィルムの温度環境が変化する。このときフィルムの使 用環境温度よりもフィルムの Tgが低いと、延伸によってフィルム内部に固定された分 子の配向状態に由来するリタデーシヨン値及びフィルムとしての寸法形状に大きな変 化を与えることとなる。フィルムの Tgが高過ぎると、フィルム構成材料をフィルム化す るとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化する ときの材料自身の分解、それによる着色が生じることがあり、従って、 Tgは 250°C以 下が好ましい。 [0065] The glass transition temperature Tg of the film constituting material can be controlled by varying the kind of the material constituting the film and the ratio of the constituting material. When a retardation film is produced as an optical film, Tg is preferably 120 ° C or higher, preferably 135 ° C or higher. In the liquid crystal display device, in the image display state, the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source. At this time, if the Tg of the film is lower than the operating temperature of the film, the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape of the film will be greatly changed. . If the Tg of the film is too high, the temperature when the film constituent material is converted into a film increases, so that the energy consumption for heating increases, and the material itself may be decomposed and colored due to the film formation. Therefore, Tg is preferably 250 ° C or lower.
[0066] また延伸工程には公知の熱固定条件、冷却、緩和処理を行なってもよぐ 目的とす る光学フィルムに要求される特性を有するように適宜調整すればょレ、。  [0066] In addition, the stretching process may be carried out using known heat setting conditions, cooling, and relaxation treatment. The stretching process may be appropriately adjusted to have the characteristics required for the target optical film.
[0067] 液晶表示装置の視野角拡大のための位相差フィルムとしての機能を達成するため に、上記延伸工程、熱固定処理は適宜選択して行なわれている。 [0067] To achieve a function as a retardation film for widening the viewing angle of a liquid crystal display device In addition, the stretching process and the heat setting process are appropriately selected and performed.
[0068] 延伸後、フィルムの端部をスリツター 13により製品となる幅にスリットして裁ち落とし た後、エンボスリング 14及びバックロール 15よりなるナール加工装置によりナールカ口 ェ(ェンボッシンダカ卩ェ)をフィルム両端部に施し、卷取り機 16によって卷き取ること により、光学フィルム(元卷き) F中の貼り付きや、すり傷の発生を防止する。  [0068] After stretching, the end of the film is slit to the product width by slitter 13 and cut off, and then the Narka mouth (embombosinda cache) is filmed by a knurling device comprising embossing ring 14 and back roll 15. Apply to both ends and scrape off with scissor 16 to prevent sticking in optical film (original scissors) F and scratches.
[0069] ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧に よりカロェすることができる。なお、フィルム両端部のクリップの把持部分は通常、変形 しており、フィルム製品として使用できないので、切除されて、原料として再利用され る。  [0069] According to the method of knurling, a metal ring having a concavo-convex pattern on its side surface can be caloeed by heating or pressing. Note that the gripping parts of the clips at both ends of the film are usually deformed and cannot be used as film products, so they are cut out and reused as raw materials.
[0070] 位相差フィルムを偏光板保護フィルムとする場合、該保護フィルムの厚さは、 15〜6 O z mが好ましい。位相差フィルムが厚いと、偏光板加工後の偏光板が厚くなり過ぎ、 ノート型パソコンゃモパイル型電子機器に用いる液晶表示においては、特に薄型軽 量の目的に適さない。一方、位相差フィルムが薄いと、位相差フィルムとしてのリタデ ーシヨンの発現が困難となり、加えてフィルムの透湿性が高くなり、偏光子を湿度から 保護する能力が低下してしまうために好ましくない。  [0070] When the retardation film is a polarizing plate protective film, the thickness of the protective film is preferably 15 to 6 Ozm. When the retardation film is thick, the polarizing plate after polarizing plate processing becomes too thick, and it is not particularly suitable for the purpose of thin and light in the liquid crystal display used for the notebook type personal computer and mopile type electronic equipment. On the other hand, if the retardation film is thin, it is difficult to develop retardation as a retardation film, and the moisture permeability of the film is increased, and the ability to protect the polarizer from humidity is reduced, which is not preferable.
[0071] 本発明による光学フィルムは、上記の本発明の光学フィルムの製造方法で製造さ れたものであり、かつフィルム幅手方向および長手方向内でのリタデーシヨン値の最 大値と最小値の差が、 4nm以下を有している。本発明の光学フィルムによれば、フィ ルムのリタデーシヨンの幅手方向の均一性を向上して、光学フィルムは光学特性に優 れているものである。 [0071] The optical film according to the present invention is manufactured by the above-described method for manufacturing an optical film of the present invention, and has a maximum value and a minimum value of the retardation value in the width direction and the longitudinal direction of the film. The difference has 4nm or less. According to the optical film of the present invention, the uniformity of the film retardation in the width direction is improved, and the optical film is excellent in optical characteristics.
[0072] 以上のようにして得られた幅手方向に延伸された光学フィルムは、延伸により分子 が配向されて、一定の大きさのリタデーシヨンを持つ。通常、フィルムの面内方向リタ デーシヨン(Ro)は 20〜200nm、厚み方向リタデーシヨン(Rt)は 90〜400nmであり 、フィルムの面内方向リタデーシヨン(Ro)が 20〜100nm、厚み方向リタデーシヨン( Rt)が 90〜200nmであることが好ましレ、。また、 Rtと Roの比: Rt/Roは、 0. 5〜2. 5力 S好ましく、特に 1. 0〜2. 0カ好ましレヽ。  [0072] The optical film stretched in the width direction obtained as described above has a fixed-size retardation with molecules oriented by stretching. Usually, the in-plane retardation (Ro) of the film is 20 to 200 nm, the thickness direction retardation (Rt) is 90 to 400 nm, the in-plane retardation (Ro) of the film is 20 to 100 nm, and the thickness direction retardation (Rt). Les, preferably 90-200nm. Also, the ratio of Rt to Ro: Rt / Ro is 0.5 to 2.5 force S, preferably 1.0 to 2.0.
[0073] なお、フィルムの遅相軸方向の屈折率 Nx、進相軸方向の屈折率 Ny、厚み方向の 屈折率 Nz、フィルムの膜厚を d (nm)とすると、 Ro= (Nx-Ny) X d [0073] When the refractive index Nx in the slow axis direction of the film, the refractive index Ny in the fast axis direction, the refractive index Nz in the thickness direction, and the film thickness of the film are d (nm), Ro = (Nx-Ny) X d
Rt= { (Nx + Ny) /2-Nz} X dとして表される。  Rt = {(Nx + Ny) / 2-Nz} Xd.
[0074] リタデーシヨンのバラツキは小さいほど好ましぐ通常 15nm以内、好ましくは lOnm 以下、より好ましくは 4nm以下である。  [0074] The variation in retardation is preferably as small as possible, usually within 15 nm, preferably 1 Onm or less, more preferably 4 nm or less.
[0075] 本発明に用いる樹脂としては、セルロースアセテート、セルロースプロピオネート、 セノレロースブチレート、セノレロースアセテートプロピオネート、セノレロースアセテートブ チレート、セルロースアセテートフタレート、及びセルロースフタレートが好ましいが、 これらに限定されなレ、。上記セルロースエステルのァセチル基の置換度は、少なくと も 1. 5以上であること力 S、得られるフィルムの寸法安定性に優れるので好ましい。セル ロースエステルのァシル基の置換度の測定方法としては、 ASTMの D _ 817— 91に 準じて実施することができる。セルロースエステルの分子量は、数平均分子量として 5 0, 000〜300, 000、とくに 60, 000〜200, 000であること力 得られるフイノレムの 機械的強度を強くできるので好ましレ、。  [0075] The resin used in the present invention is preferably cellulose acetate, cellulose propionate, cenololose butyrate, cenololose acetate propionate, cenololose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. It ’s not limited. The degree of substitution of the acetyl group of the cellulose ester is at least 1.5 or more, which is preferable because the strength S and the dimensional stability of the resulting film are excellent. As a method for measuring the degree of substitution of the acyl group of cellulose ester, it can be carried out according to ASTM D_817-91. The molecular weight of the cellulose ester is 50,000 to 300,000, especially 60,000 to 200,000 as the number average molecular weight. This is preferable because the mechanical strength of the resulting Finolem can be increased.
[0076] 本発明において、非晶性熱可塑性樹脂中には、種々の目的で可塑剤、紫外線吸 収剤、酸化防止剤、マット剤、帯電防止剤、難燃剤、染料及び油剤などの添加剤を 含有させることができる。  In the present invention, in the amorphous thermoplastic resin, additives such as a plasticizer, an ultraviolet absorber, an antioxidant, a matting agent, an antistatic agent, a flame retardant, a dye and an oil agent are used for various purposes. Can be included.
[0077] 可塑剤としては、例えば、トリフエニルホスフェート、トリクレジルホスフェート、クレジ ノレジフエ二ノレホスフェート、オタチノレジフエニノレホスフェート、ジフエニノレビフエニノレホ スフヱート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート 、トリキシリノレホスフェート、ァリーレンビス(ジァリールホスフェート)エステル、リン酸ト リクレジル等のリン酸エステル系可塑斉 lj、ジェチルフタレート、ジメトキシェチルフタレ ート、ジメチルフタレート、ジォクチルフタレート、ジブチルフタレート及びジ一 2—ェ チルへキシルフタレート等のフタル酸エステル系可塑剤、トリァセチン、トリブチリン、 ェチノレグリコレート及びブチノレフタリノレブチノレグリコレート等のグリコーノレ酸エステノレ 系可塑剤、ァセチルクェン酸トリブチルなどのクェン酸系可塑剤、ジプロピレングリコ 一ノレべンゾエート、トリプロピレングリコーノレジべンゾエート、 1, 3 _ジブチレングリコ ーノレジべンゾエート、テトラエチレングリコーノレジべンゾエート、トリメチローノレプロノ ン トリアセテート、トリメチロールプロパントリべンゾエート等の多価アルコールエステル 系可塑剤、その他にトリメリット酸トリス(2—ェチルへキシル)などを挙げることができる 。必要に応じて上記のうち 2種類以上の可塑剤を併用して用いてもよい。これらの添 加量は、可塑剤の効果とブリードアウトの兼ね合いから、熱可塑性樹脂に対して 1 % 〜 30%が好ましい。 [0077] Examples of the plasticizer include triphenyl phosphate, tricresyl phosphate, credinole diphenyl phosphate, otachinoresi phenino rephosphate, diphen eno rebi eno rephosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl Phosphate plastic plastics such as phosphate, trixylinophosphate, arylene bis (diaryl phosphate) ester, tricresyl phosphate, jetyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, Phthalate ester plasticizers such as dibutyl phthalate and di-2-ethylhexyl phthalate, triacetin, tributyrin, ethinoreglycolate, butynolephthalinorebutinoleglycolate and other groups Ricoholenic acid esterolate plasticizer, citrate plasticizer such as tributyl acetyl citrate, dipropyleneglycol monorebenzoate, tripropyleneglycolinoresevenzoate, 1,3_dibutyleneglycolinoresevenzoate, tetraethyleneglycolenoresiate Benzoate, trimethylone lepronone Examples thereof include polyhydric alcohol ester plasticizers such as triacetate and trimethylolpropane tribenzoate, and trimellitic acid tris (2-ethylhexyl). If necessary, two or more of the above plasticizers may be used in combination. These addition amounts are preferably 1% to 30% with respect to the thermoplastic resin in view of the effect of the plasticizer and bleed out.
[0078] また、ポリエステルエーテル、ポリエステル一ウレタン、ポリエステルなどもブレンドす ることで可塑性を改良できるので好ましく用いることができる。  [0078] Polyester ether, polyester monourethane, polyester, and the like can also be preferably used because they can improve plasticity by blending.
[0079] ポリエステルエーテルとしては、炭素原子 8〜: 12個の芳香族ジカルボン酸または脂 環式ジカルボン酸(例えばテレフタール酸、イソフタール酸、ナフタレンジカルボン酸 および 1 , 4—シクロへキサンジカルボン酸)、炭素原子 2〜: 10個の脂肪族グリコール または脂環式グリコール類(例えば、エチレンジオール、プロピレンジオール、 1 , 4- ブタンジオール、ネオペンチルグリコール、 1, 6—へキサンジオール、 1, 4—シクロ へキサンジメタノールおよび 1, 5—ペンタンジオール)、エーテル単位の間に炭素原 子 2〜4個を有するポリエーテルグリコール類(例えば、ポリテトラメチレンエーテルグ リコーノレ、特に 1, 4ーシクロへキサンジカルボン酸、 1 , 4ーシクロへキサンジメタノー ルおよびポリテトラメチレンエーテルグリコールを構成要素とするコポリエステルエー テル)が好ましい。ポリエステルエーテルの配合量は、主たる樹脂に対して 5〜30質 量%が好ましレ、。配合量をこの範囲とすることで良好な可塑性を呈するフィルムが得 られる。  [0079] Polyester ethers include aromatic dicarboxylic acids having 8 to 12 carbon atoms or alicyclic dicarboxylic acids (eg terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid), carbon Atom 2 to: 10 aliphatic glycols or cycloaliphatic glycols (eg, ethylene diol, propylene diol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,4-cyclohexane Xanthodimethanol and 1,5-pentanediol), polyether glycols having 2 to 4 carbon atoms between ether units (eg, polytetramethylene ether glycolone, especially 1,4-cyclohexanedicarboxylic acid, 1,4-cyclohexanedimethanol and polytetramethylene ether glycol Copolyester ether) to component a Lumpur are preferred. The blending amount of the polyester ether is preferably 5 to 30% by mass with respect to the main resin. By setting the blending amount within this range, a film exhibiting good plasticity can be obtained.
[0080] ポリエステル ウレタンとしては、ポリエステルとジイソシアナートとの反応により得ら れるポリエステル ウレタンが挙げられる。下記一般式(1)で表される繰り返し単位を 有する。  [0080] Examples of the polyester urethane include a polyester urethane obtained by a reaction between a polyester and a diisocyanate. It has a repeating unit represented by the following general formula (1).
[0081] [化 1] H«»ャ ^[0081] [Chemical 1] H «» r ^
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0002
Figure imgf000018_0003
[0082] 一般式(1)中、 1は、 2、 3または 4を表わし、 mは、 2、 3または 4を表わし、 nは、:!〜 1 00を表わす。 Rは、構造単位式(2)〜(7)に示す構造単位のいずれかを表わす。な お、構造単位式(2)中、 pは 2〜8を表わす。 In the general formula (1), 1 represents 2, 3 or 4, m represents 2, 3 or 4, and n represents:! To 100. R represents any of the structural units represented by structural unit formulas (2) to (7). In the structural unit formula (2), p represents 2 to 8.
[0083] ポリエステル一ウレタンを構成するポリエステルとしては、グリコール成分が、ェチレ ングリコーノレ、 1, プロパンジオール、または 1, 4 ブタンジオールであり、二塩基 性酸成分が、コハク酸、ダルタル酸、またはアジピン酸からなる両末端ヒドロキシル基 を有するポリエステルであり、その重合度 nは 1〜: 100である。ポリエステルの分子量 として、 1 , 000〜4, 500に当るもの力 S特に望ましレヽ。  [0083] As the polyester constituting the polyester monourethane, the glycol component is ethylene glycolol, 1, propanediol, or 1,4 butanediol, and the dibasic acid component is succinic acid, dartaric acid, or adipic acid. The polyester having hydroxyl groups at both ends and having a polymerization degree n of 1 to 100. Polyester molecular weight of 1,000 to 4,500. S Particularly desirable.
[0084] ポリエステル一ウレタンを構成するジイソシアナート成分としては、エチレンジイソシ アナート、トリメチレンジイソシアナート、テトラメチレンジイソシアナート、へキサメチレ ンジイソシアナート等のポリメチレンイソシアナート、 p—フエ二レンジイソシアナート、ト リレンジイソシアナート、 p, pr —ジフエニルメタンジイソシアナート、 1, 5_ナフチレ ンジイソシアナ一ト等の芳香族ジイソシアナ一ト、 m—キシリレンジイソシアナート等が 挙げられる。中でも、トリレンジイソシアナ一ト、 m—キシリレンジイソシアナ一ト、テトラ メチレンジイソシアナートがポリウレタン化した場合、セルロースエステルとの相溶性 が秀れているので好ましい。 [0084] The diisocyanate component constituting the polyester monourethane includes polymethylene isocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and p-phenylene diisocyanate. , Tolylene diisocyanate, p, p r —diphenylmethane diisocyanate, 1,5_naphthyl Aromatic diisocyanates such as diisocyanate, m-xylylene diisocyanate and the like. Of these, tolylene diisocyanate, m-xylylene diisocyanate, and tetramethylene diisocyanate are preferable because they are excellent in compatibility with cellulose esters.
[0085] ポリエステノレ一ウレタンの分子量は、 2, 000〜50, 000力 S好ましく、さらに 5, 000 〜15, 000力 S好ましレ、。ポリエステル一ウレタンの合成は、上記のポリエステルとジィ ソシアナ一トとを混じ攪拌下加熱させる常法の合成法により、容易に得ることができる 。また、原料のポリエステルも常法により、相当する二塩基性酸、またはこれらのアル キルエステル類とダリコール類とのポリエステル化反応またはエステル交換反応によ る熱溶融縮合法が、あるいはこれらの酸の酸クロリドとグリコール類との界面縮合法の いずれかの方法により、末端基がヒドロキシル基となるよう適宜調整すれば容易に合 成すること力 Sできる。 [0085] The molecular weight of polyester urethane is preferably 2,000 to 50,000 force S, more preferably 5,000 to 15,000 force S. The synthesis of polyester monourethane can be easily obtained by a conventional synthesis method in which the above polyester and disoocyanate are mixed and heated with stirring. In addition, the raw material polyester can be obtained by a conventional method, a corresponding dibasic acid, or a hot melt condensation method using a polyesterification reaction or transesterification reaction between these alkyl esters and dallicols, or by using these acids. It can be easily synthesized by adjusting the terminal group to be a hydroxyl group by any one of the interfacial condensation methods of acid chloride and glycols.
[0086] ポリエステル—ウレタンの配合量は、主たる樹脂に対して 5〜30質量%が好ましレヽ 。配合量をこの範囲とすることで良好な可塑性を呈するフィルムが得られる。  [0086] The blending amount of the polyester-urethane is preferably 5 to 30% by mass with respect to the main resin. When the blending amount is within this range, a film exhibiting good plasticity can be obtained.
[0087] ポリエステルとしては、ポリエチレングリコールと脂肪族二塩基性酸とからなるポリエ ステルで、その平均分子量は 700から 10, 000が好ましい。  [0087] The polyester is a polyester composed of polyethylene glycol and an aliphatic dibasic acid, and the average molecular weight is preferably 700 to 10,000.
[0088] ポリエチレングリコールは、一般式が  [0088] Polyethylene glycol has the general formula
HO— (CH CH -0) — H (式中、 nは、整数である)で表される。 nは 4以下が好  HO— (CH 2 CH −0) — H (wherein n is an integer) n is preferably 4 or less
2 2 n  2 2 n
ましい。  Good.
[0089] また、脂肪族二塩基性酸とは、一般式が  [0089] Aliphatic dibasic acids have the general formula
HOOC— R— COOH (式中、 Rは、脂肪族二価炭化水素基である)で表される蓚 酸、マロン酸、コハク酸、アジピン酸などであり、炭素数 9以下が好ましい。  Oxalic acid, malonic acid, succinic acid, adipic acid and the like represented by HOOC—R—COOH (wherein R is an aliphatic divalent hydrocarbon group), preferably having 9 or less carbon atoms.
[0090] ポリエステルの合成は、常法により、上記二塩基性酸またはこれらのアルキルエス テル類とダリコール類とのポリエステル化反応、またはエステル交換反応による熱溶 融縮合法か、あるいはこれら酸の酸クロライドとグリコール類との界面縮合法のいずれ 力、の方法によっても容易に合成することができる。 [0090] The polyester is synthesized by a conventional method, a polyesterification reaction of the above dibasic acid or an alkyl ester thereof with a dallicol, a hot melt condensation method by transesterification, or an acid of these acids. It can be easily synthesized by any of the methods of interfacial condensation between chloride and glycols.
[0091] ポリエステルの配合量は、主たる樹脂に対して 5〜30質量%が好ましい。配合量を この範囲とすることで良好な可塑性を呈するフィルムが得られる。 [0092] 酸化防止剤としては、ヒンダードフエノール系の化合物が適当であり、その具体例と しては、 2, 6 ジ tーブチルー p クレゾール、ペンタエリスリチルーテトラキス〔3— (3, 5—ジ tーブチルー 4ーヒドロキシフエニル)プロピオネート〕、トリエチレングリコ ール一ビス〔3 _ (3 _ t _ブチル一 5—メチル _ 4 _ヒドロキシフエニル)プロピオネー ト〕、 1, 6—へキサンジオール一ビス〔3— (3, 5—ジ一 t—ブチル一4—ヒドロキシフエ ニル)プロピオネート〕、 2, 4_ビス _ (n—ォクチルチオ)一 6 _ (4—ヒドロキシ一3, 5 —ジ一 t—ブチルァニリノ)_ 1 , 3, 5—トリアジン、 2, 2—チォ一ジエチレンビス〔3 _ (3, 5—ジ _t_ブチル _4—ヒドロキシフエニル)プロピオネート〕、ォクタデシル一 3 _ (3, 5—ジ _t_ブチル _4—ヒドロキシフエニル)プロピオネート、 1 , 3, 5 _トリメチ ノレ一2, 4, 6 _トリス(3, 5—ジ _t_ブチル _4—ヒドロキシベンジル)ベンゼン及びト リス一(3, 5—ジ一 t—ブチル一4—ヒドロキシベンジル)一イソシァヌレイト等を挙げる こと力 Sできる。とくに 2, 6—ジ _t_ブチル _p_クレゾール、ペンタエリスリチル一テト ラキス〔3—(3, 5—ジ tーブチルー 4ーヒドロキシフエニル)プロピオネート〕及びトリ エチレングリコール一ビス〔3— (3— t ブチル 5—メチル 4—ヒドロキシフエ二ノレ) プロピオネート〕が好ましい。また例えば、 N, N' —ビス〔3— (3, 5—ジ一 t ブチノレ 4ーヒドロキシフエニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤 ゃトリス(2, 4—ジ一 t ブチルフエニル)フォスファイト等のリン系加工安定剤を併用 してもよレ、。これらの化合物の添加量は、その効果を得るために、熱可塑性樹脂に対 し、質量割合で lppm〜l . 0%が好ましぐ 10〜: !OOOppm力 Sとくに好ましレヽ。 [0091] The blending amount of the polyester is preferably 5 to 30% by mass with respect to the main resin. By setting the blending amount within this range, a film exhibiting good plasticity can be obtained. [0092] As the antioxidant, a hindered phenol compound is suitable, and specific examples thereof include 2,6 di-tert-butyl-cresol, pentaerythrityl-tetrakis [3- (3, 5- Di-tert-butyl-4-hydroxyphenyl) propionate], triethylene glycol monobis [3_ (3_t_butyl-1-5-methyl_4_hydroxyphenyl) propionate], 1,6-hexanediol 1-bis [3- (3,5-di-tert-butyl-1-hydroxyphenyl) propionate], 2,4_bis_ (n-octylthio) 1- 6_ (4-hydroxy-1,3,5-di- t-Butylanilino) _ 1, 3, 5, 5-triazine, 2, 2-thiodiethylenebis [3_ (3,5-di-t_butyl_4-hydroxyphenyl) propionate], octadecyl-3_ (3, 5 —Di_t_butyl _4-hydroxyphenyl) propione 1, 3, 5 _trimethylol 2, 4, 6 _tris (3,5-di-t_butyl _4-hydroxybenzyl) benzene and tris (3,5-di-tert-butyl 4- (Hydroxybenzyl) monoisocyanurate, etc. In particular, 2,6-di_t_butyl_p_cresol, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and triethylene glycol monobis [3- (3- t-butyl 5-methyl 4-hydroxyphenol) propionate] is preferred. Also, for example, hydrazine-based metal deactivators such as N, N'-bis [3- (3,5-dibutyl 4-hydroxyphenyl) propionyl] hydrazine, tris (2,4-dibutyl butylphenyl) ) Phosphorite and other phosphorus processing stabilizers may be used in combination. In order to obtain the effect, the amount of these compounds added is preferably from 1 ppm to 1.0% by mass with respect to the thermoplastic resin. 10 to:! OOOOppm force S Especially preferred.
[0093] 本発明において、使用し得る紫外線吸収剤としては、例えば、ォキシベンゾフエノン 系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフエノ ン系化合物、シァノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることがで きるが、着色の少ないベンゾトリアゾール系化合物が好ましレ、。また、特開平 10— 18 2621号公報、特開平 8— 337574号公報記載の紫外線吸収剤、特開平 6— 14843 0号公報記載の高分子紫外線吸収剤も好ましく用レ、られる。  In the present invention, examples of the ultraviolet absorber that can be used include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, and nickel complex salts. Compounds can be mentioned, but benzotriazole compounds with less coloring are preferred. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574, and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
[0094] 紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長 370nm以下 の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長 400nm以上 の可視光の吸収が少なレ、ものが好ましレ、。 [0095] 本発明において、有用な紫外線吸収剤の具体例としては、 2— (2' —ヒドロキシ— 5' —メチルフエニル)ベンゾトリアゾール、 2— (2' —ヒドロキシ一 3' , 5' —ジ一 t ert ブチルフエニル)ベンゾトリアゾール、 2— (2' —ヒドロキシ一 3' — tert ブチ ノレ一5' —メチルフエニル)ベンゾトリアゾール、 2_ (2' —ヒドロキシ一3' , 5' - ジ一tert—ブチルフエニル) _ 5_クロ口べンゾトリァゾール、 2 _ {2' —ヒドロキシ一 3r — (3 , " , 5" , < " —テトラヒドロフタルイミドメチル)一5' —メチルフエニル )ベンゾトリアゾール、 2, 2—メチレンビス(4— (1, 1 , 3, 3—テトラメチルブチル) _6 — (2H—ベンゾトリアゾール一2—ィル)フエノール)、 2— (2' —ヒドロキシ一 3' -t ert_ブチル一5' —メチルフエニル) _ 5_クロ口べンゾトリァゾール、 2_ (2H—ベ ンゾトリアゾール _ 2 _ィル) - 6 - (直鎖及び側鎖ドデシル) _4_メチルフエノール、 ォクチル _ 3 _〔3 _tert_ブチル _4—ヒドロキシ一 5 _ (クロ口一2H—ベンゾトリア ゾール _ 2 _ィノレ)フエニル〕プロピオネートと 2—ェチルへキシル - 3 - [3 -tert- ブチル 4 ヒドロキシ一 5— (5 クロ口一 2H ベンゾトリアゾール 2 ィル)フエ ニル〕プロピオネートの混合物等を挙げることができる力 S、これらに限定されなレ、。ま た、市販品として、チヌビン(TINUVIN) 109、チヌビン(TINUVIN) 171、チヌビン (TINUVIN) 326 (何れもチバ'スペシャルティ'ケミカルズ社製)を好ましく使用でき る。 [0094] As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer and a liquid crystal, it has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, it absorbs visible light having a wavelength of 400 nm or more. There are few les and things are preferred. [0095] Specific examples of UV absorbers useful in the present invention include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-1 3 ', 5'-di-1 t ert butylphenyl) benzotriazole, 2— (2 ′ —hydroxyl 3 ′ — tert butynol 5 ′ —methylphenyl) benzotriazole, 2_ (2 ′ —hydroxyl 3 ′, 5′-di-tert-butylphenyl) _ 5_ cloguchibenzotriazole, 2 _ {2 '—hydroxyl 3 r — (3, “, 5”, <“—tetrahydrophthalimidomethyl) 1 5 ′ —methylphenyl) benzotriazole, 2, 2-methylenebis (4— (1, 1, 3, 3, 3-tetramethylbutyl) _6 — (2H—benzotriazole-2-yl) phenol), 2— (2 ′ —hydroxy 1-3′-tert_butyl-1-5′—methylphenyl) _ 5_ Black mouth Benzotriazole, 2_ (2H— Nzotriazole _ 2 _yl)-6-(Straight and side chain dodecyl) _4_Methylphenol, Octyl _ 3 _ [3 _tert_Butyl _4-Hydroxy mono 5 _ (Black mouth 2H-Benzotriazole _ 2 _Inole) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl 4-hydroxy-5- (5 chlorotriethyl 2H benzotriazole 2-yl) phenyl] propionate Power S, not limited to these, and commercially available products such as TINUVIN 109, TINUVIN 171 and TINUVIN 326 (all manufactured by Ciba 'Specialty' Chemicals) can be preferably used. The
[0096] ベンゾフヱノン系化合物の具体例として、 2, 4 ジヒドロキシベンゾフエノン、 2, 2' —ジヒドロキシ一 4—メトキシベンゾフエノン、 2 ヒドロキシ一 4—メトキシ一 5—スルホ ベンゾフエノン、ビス(2—メトキシ一 4 ヒドロキシ一 5 ベンゾィルフエニルメタン)等 を挙げること力 Sできる力 これらに限定されない。  [0096] Specific examples of benzophenone compounds include 2,4 dihydroxybenzophenone, 2, 2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-1-methoxy-1-5-sulfobenzophenone, bis (2-methoxy (4) hydroxy (1-5) benzoyl methane), and the like.
[0097] これらの紫外線吸収剤の配合量は、熱可塑性樹脂に対して、 0. 01〜: 10質量%の 範囲が好ましぐさらに 0. 1〜5質量%が好ましい。使用量が少なすぎると紫外線吸 収効果が不十分の場合があり、多すぎるとフィルムの透明性が劣化する場合がある。 紫外線吸収剤は熱安定性の高いものが好ましい。  [0097] The blending amount of these ultraviolet absorbers is preferably in the range of 0.01 to 10% by mass with respect to the thermoplastic resin, and more preferably 0.1 to 5% by mass. If the amount used is too small, the UV absorption effect may be insufficient, and if it is too large, the transparency of the film may deteriorate. The ultraviolet absorber is preferably one having high heat stability.
[0098] 本発明では、フィルムの滑り性を付与するために、微粒子を添加することが好ましい 。本発明で用いられる微粒子としては、溶融時の耐熱性があれば無機化合物または 有機化合物どちらでもよぐ例えば、無機化合物としては、珪素を含む化合物、二酸 化珪素、酸化アルミニウム、酸化ジノレコニゥム、炭酸カルシウム、タルク、クレイ、焼成 カオリン、焼成ケィ酸カルシウム、水和ケィ酸カルシウム、ケィ酸アルミニウム、ケィ酸 マグネシウム及びリン酸カルシウム等が好ましぐさらに好ましくは、ケィ素を含む無機 化合物や酸化ジルコニウムである。中でもヘイズを小さく抑えることができることから二 酸化珪素が特に好ましく用いられる。二酸化珪素の具体例としては、ァエロジル 200 V、ァェロジノレ R972V、ァェロジノレ R972、 R974、 R812、 200、 300、 R202, OX5 0、 TT600 (以上日本ァエロジル株式会社製)等の商品名を有する市販品が好ましく 使用できる。 [0098] In the present invention, it is preferable to add fine particles in order to impart slipperiness of the film. The fine particles used in the present invention may be either an inorganic compound or an organic compound as long as it has heat resistance during melting. For example, the inorganic compound includes a compound containing silicon, diacid Silicon fluoride, aluminum oxide, dinoleconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate are preferred, more preferably Inorganic compounds containing zirconium and zirconium oxide. Of these, silicon dioxide is particularly preferably used because haze can be kept small. As specific examples of silicon dioxide, commercially available products having trade names such as Aerosil 200 V, Aerosilore R972V, Aerosilore R972, R974, R812, 200, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.) are preferable. Can be used.
[0099] 本発明により得られる光学フィルムは、偏光フィルムの少なくとも片面に貼り合わせ ることにより精円偏光板とすることができる。  [0099] The optical film obtained by the present invention can be made into a circularly polarizing plate by being bonded to at least one surface of a polarizing film.
[0100] 偏光フィルムは、従来から使用されている、例えば、ポリビュルアルコールフィルム の如きの延伸配向可能なフィルムを、沃素のような二色性染料で処理して縦延伸し たものである。偏光フィルム自身では、十分な強度、耐久性がないので、一般的には その両面に保護フィルムとしての異方性のないセルローストリアセテートフィルムを接 着して偏光板としている。本発明により得られる光学フィルムは、上記保護フィルム付 きの偏光板に貼り合わせて作製してもよいし、また保護フィルムも兼ねて、直接偏光 フィルムと貼り合わせて作製してもよレ、。 [0100] The polarizing film is a film that has been conventionally stretched, for example, a film that can be stretched and oriented, such as a polybutyl alcohol film, treated with a dichroic dye such as iodine. Since the polarizing film itself does not have sufficient strength and durability, in general, a cellulose triacetate film having no anisotropy as a protective film is attached to both sides to form a polarizing plate. The optical film obtained by the present invention may be prepared by bonding to the polarizing plate with the protective film, or may be prepared by directly bonding to the polarizing film also serving as the protective film.
[0101] 特に、本発明により得られる光学フィルムは幅手方向に遅相軸を有しているため、 偏光フィルムと、裁断することなく長尺ロール同士で貼り合わすことができ、偏光板の 生産性が飛躍的に向上する。  [0101] In particular, since the optical film obtained by the present invention has a slow axis in the width direction, it can be bonded to a polarizing film between long rolls without cutting, and production of a polarizing plate Sexually improves.
[0102] 偏光板はその片面または両面に感圧性接着剤層(例えば、アクリル系感圧性接着 剤層など)を介して剥離性シートを積層した貼着型のもの(剥離性シートを剥すことに より、液晶セルなどに容易に貼着することができる)としてもよい。  [0102] A polarizing plate is a sticking type in which a peelable sheet is laminated on one or both sides via a pressure-sensitive adhesive layer (for example, an acrylic pressure-sensitive adhesive layer) (to peel off the peelable sheet). It can also be easily attached to a liquid crystal cell or the like.
[0103] このようにして得られた偏光板は、種々の表示装置に使用できる。特に電圧無印加 時に液晶性分子が実質的に垂直配向している VAモードの液晶セルを用いた液晶 表示装置が好ましい。  [0103] The polarizing plate thus obtained can be used in various display devices. In particular, a liquid crystal display device using a VA mode liquid crystal cell in which liquid crystal molecules are substantially vertically aligned when no voltage is applied is preferable.
実施例  Example
[0104] 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定さ れるものではなレ、。 [0104] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. It ’s not what you ’ll get.
[0105] 実施  [0105] Implementation
セルロースアセテートプロピオネート 100質量部  100 parts by weight of cellulose acetate propionate
(ァセチル基置換度 1. 4、プロピオニル基置換度 1  (Acetyl group substitution degree 1.4, propionyl group substitution degree 1
総ァシル基置換度、数平均分子量 60000)  (Total degree of acyl substitution, number average molecular weight 60000)
トリメチロールプロパントリべンゾエート(可塑剤) 10質量部  10 parts by weight of trimethylolpropane tribenzoate (plasticizer)
添加剤(IRGANOX—XP— 420/FD) 1質量部  Additive (IRGANOX—XP—420 / FD) 1 part by mass
(チバスペシャルティケミカルズ社製)  (Ciba Specialty Chemicals)
紫外線吸収剤 Ti928 5質量部  UV absorber Ti928 5 parts by mass
(チバスペシャルティケミカルズ社製)  (Ciba Specialty Chemicals)
マット剤(平均粒径 0. 3 z mシリカ微粒子) 0. 1質量部  Matting agent (average particle size 0.3 z m silica fine particles) 0.1 parts by mass
(シーホスター KEP— 30 :日本触媒株式会社製)  (Seahoster KEP-30: manufactured by Nippon Shokubai Co., Ltd.)
なお、ァセチル基、プロピオニル基、プチリル基等のァシル基の置換度の測定方法 は ASTM— D817— 96の規定に準じて測定した。  The method for measuring the degree of substitution of an acyl group such as an acetyl group, propionyl group, or pentyl group was measured according to ASTM-D817-96.
[0106] 上記材料の混合物を V型混合機で 30分混合した後、図 1に示す 2軸押し出し機 (P CM30、株式会社池貝製)で 220°Cにて溶融させ、長さ 4mm、直径 3mmの円筒形 のペレットを作製した。この時、押出し機 1入り口力も材料とともに窒素を添加し、酸素 濃度を低下させた。 [0106] After mixing the mixture of the above materials with a V-type mixer for 30 minutes, it was melted at 220 ° C with a twin-screw extruder (PCM30, manufactured by Ikegai Co., Ltd.) shown in Fig. 1 and was 4mm in length and diameter. A 3 mm cylindrical pellet was produced. At this time, nitrogen was also added to the extruder 1 inlet force to reduce the oxygen concentration.
[0107] ついで、 Tダイ 4を取り付けた直径 50mmの単軸押し出し機(GT— 50、株式会社プ ラスチック工学研究所製) 1にペレットを供給し製膜した。押出し機 1の設定温度は 25 0°C、 Tダイ 4はコートハンガータイプとした。  [0107] Next, pellets were supplied to a single-screw extruder (GT-50, manufactured by Plastic Engineering Laboratory Co., Ltd.) 1 having a diameter of 50 mm, to which a T-die 4 was attached, to form a film. The set temperature of the extruder 1 was 250 ° C., and the T-die 4 was a coat hanger type.
[0108] Tダイ 4出口力 押し出される材料の温度 T1が、 250°Cになるように流延ダイ 4の温 度を設定した。溶融押し出ししたフィルムは、 100°Cに温度調整した直径 350mmの クロムメツキ鏡面第 1冷却ロール 5とタツチロール 6に同時に接触するように、第 1冷却 ロール 5とタツチロール 6が作る間隙に落下させた。第 1冷却ロール 5に密着したフィ ノレムは、第 1冷却ロール 5の中心角 5° の円周部分を搬送された後、タツチロール 6 で押圧された。フィルムの幅手 1500mmの全面に対し、 0. 39MPaの圧力で接触し た。 [0109] 本発明による光学フィルムの製造方法において、タツチロール 6に、図示しない押 圧力制御ユニットが具備されており、フィルムの搬送途上に、搬送フィルムのリタデー シヨン測定器 20を幅方向に所定の間隔を開けて 2台設置して、搬送フィルムの幅方 向の異なる 2点のリタデーシヨン値をオンラインで測定し、この測定器 20からのリタデ ーシヨン測定値信号をタツチロール 6の押圧力制御ユニットに電送し、制御ユニットに おいて、このリタデーシヨン測定値信号に基づいて、タツチロール 6による押圧力をリ アルタイムで調整して、搬送フィルムのリタデーシヨン値を所定の範囲内となるように 制御するものである。 [0108] T die 4 outlet force The temperature of the casting die 4 was set so that the temperature T1 of the extruded material was 250 ° C. The melt-extruded film was dropped into a gap formed by the first cooling roll 5 and the touch roll 6 so as to be in contact with the first cooling roll 5 and the touch roll 6 having a diameter of 350 mm whose temperature was adjusted to 100 ° C. at the same time. After finishing the first cooling roll 5 in close contact with the first cooling roll 5, it was pressed by the touch roll 6 after being transported around the circumference of the first cooling roll 5 having a central angle of 5 °. The entire width of the film, 1500 mm, was contacted at a pressure of 0.39 MPa. [0109] In the method for producing an optical film according to the present invention, the touch roll 6 is provided with a pressing force control unit (not shown), and the conveyance film retardation measuring device 20 is placed at a predetermined interval in the width direction while the film is being conveyed. Open two, install two units, measure the retardation values at two points with different width directions of the transport film online, and send the retardation measurement value signal from this measuring device 20 to the pressure control unit of Touch Roll 6 In the control unit, the pressing force by the touch roll 6 is adjusted in real time based on this retardation measurement value signal, and the retardation value of the transport film is controlled to be within a predetermined range.
[0110] タツチロール 6の押圧力制御ユニットにおいては、測定器 20からのリタデーシヨン測 定値信号に基づいて、搬送フィルムのリタデーシヨンの最大値と最小値との差が、常 に 4nm以下となるように、タツチロール 6による溶融フィルムの冷却ロール 5表面への 押圧力を演算し、タツチロール 6による押圧力をリアルタイムで調整する。  [0110] In the pressing force control unit of the touch roll 6, based on the retardation measurement value signal from the measuring device 20, the difference between the maximum value and the minimum value of the retardation of the transport film is always 4 nm or less. Calculate the pressing force of the molten film on the surface of the cooling roll 5 with the touch roll 6 and adjust the pressing force with the touch roll 6 in real time.
[0111] この実施例では、第 1冷却ロール 5とタツチロール 6との間隙は、エアシリンダの圧力 調整によりロール間圧力を制御した。タツチロール 6の押圧力制御ユニットにおいて は、測定器 20からのリタデーシヨン測定値信号に基づき、エアシリンダによる圧力調 整を行なった。ここで、エアシリンダとしては、 SMC株式会社製のエアシリンダ MBL — 100を使用し、タツチロール 6による押圧力をリアルタイムで調整した。  [0111] In this example, the gap between the first cooling roll 5 and the touch roll 6 was controlled by adjusting the pressure of the air cylinder. In the pressure control unit of the touch roll 6, the pressure was adjusted by the air cylinder based on the retardation measurement value signal from the measuring device 20. Here, the air cylinder MBL-100 manufactured by SMC Corporation was used as the air cylinder, and the pressing force by the touch roll 6 was adjusted in real time.
[0112] また、この実施例において、搬送フィルムのリタデーシヨン値をオンラインで測定す るリタデーシヨン測定器 20としては、無接触式で光電管を利用した、王子計測機器株 式会社製の Kobra— WX150Kを使用し、該リタデーシヨン測定器 20は、延伸装置 1 2と卷取り装置 16との間に設置した。また、リタデーシヨン測定器 20によりオンライン で測定する搬送フィルムのリタデーシヨン値は、面内方向リタデーシヨン (RoM直とした  [0112] Further, in this example, as the retardation measuring device 20 for measuring the retardation value of the transport film online, Kobra-WX150K manufactured by Oji Scientific Instruments Co., Ltd., which uses a photoelectric tube without contact, is used. The retardation measuring device 20 was installed between the stretching device 12 and the scraping device 16. In addition, the retardation value of the transport film measured online by the retardation measuring instrument 20 is the in-plane direction retardation (RoM direct).
[0113] リタデーシヨン測定器 20により測定された搬送フィルムの面内方向リタデーシヨン( Ro)値は、 2点のうち、左側 Minが 29. 7nm、左側 Maxが 30. 6nmであり、右側 Min 力 ¾9. 5nm、右側 Maxが 30. 3nmであり、いずれも搬送フィルムの面内方向リタデ ーシヨン (Ro)値の最大値と最小値との差が、 4nm以下であった。 [0113] The in-plane direction retardation (Ro) value of the transport film measured by the retardation measuring instrument 20 is 29.7 nm on the left side, 30.6 nm on the left side, and 30.6 nm on the right side. The difference between the maximum value and the minimum value of the in-plane direction retardation (Ro) value of the transport film was 4 nm or less.
[0114] 押圧されたフィルムは、第 1冷却ロール 5の中心角 150° の円周部分で接触した後 、第 2冷却ロール 7および第 3冷却ロール 8に順次密着させて搬送しながら冷却固化 させ、未延伸のセル口ースエステル系樹脂フィルム 10を得る。 [0114] The pressed film comes into contact with the circumferential portion of the first cooling roll 5 with a central angle of 150 °. The second cooling roll 7 and the third cooling roll 8 are brought into close contact with each other and cooled and solidified while being conveyed to obtain an unstretched cell mouth ester-based resin film 10.
[0115] 図 1に示す本発明の実施形態では、第 3冷却ロール 8から剥離ロール 9によって剥 離した冷却固化された未延伸のフィルム 10は、ダンサーロール (フィルム張力調整口 ール) 11を経て延伸装置 12に導き、そこでフィルム 10を横方向(幅方向)に延伸する 。この延伸により、フィルム中の分子が配向される。  In the embodiment of the present invention shown in FIG. 1, the cooled and solidified unstretched film 10 peeled from the third cooling roll 8 by the peeling roll 9 has a dancer roll (film tension adjusting tool) 11. Then, the film is guided to a stretching device 12, where the film 10 is stretched in the transverse direction (width direction). By this stretching, the molecules in the film are oriented.
[0116] 延伸後、フィルムの端部をスリツター 13により製品となる幅にスリットして裁ち落とし た後、エンボスリング 14及びバックロール 15よりなるナール加工装置によりナールカ口 ェ(ェンボッシンダカ卩ェ)をフィルム両端部に施し、卷取り機 16によって卷き取ること により、幅 1500mm、および長さ 2600mのセルロースアセテートプロピオネートフィ ルム(元卷き) Fを得た。卷き取ったフィルム Fの厚みが 40 μ mとなるように押し出し量 と引き取りロールの回転数を調整した。  [0116] After stretching, the end of the film is slit to the product width by slitter 13 and cut off, and then the Narka mouth (embombosinda cache) is filmed by a knurling device consisting of embossing ring 14 and back roll 15. Cellulose acetate propionate film F (original milling) F having a width of 1500 mm and a length of 2600 m was obtained by applying to both ends and scraping with a scraper 16. The extrusion amount and the number of rotations of the take-up roll were adjusted so that the thickness of the film F that had been scraped off was 40 μm.
[0117] 比較例 1  [0117] Comparative Example 1
比較のために、上記実施例 1の場合と同様に実施するが、実施例 1の場合と異なる 点は、搬送フィルムのリタデーシヨン測定器 20を設置して、搬送フィルムの面内方向 リタデーシヨン (Ro)値をオンラインで 2点測定する力 この搬送フィルムの面内方向リ タデーシヨン(Ro)値に基づくタツチロール 6の押圧力の制御を行なわなかった点にあ る。  For comparison, the same operation as in Example 1 is performed, but the difference from Example 1 is that a transport film retardation measuring device 20 is installed, and the in-plane direction of the transport film is retarded (Ro). The force to measure the value on-line at two points This point is that the pressing force of the touch roll 6 was not controlled based on the in-plane direction retardation (Ro) value of this transport film.
[0118] その結果、この比較例 1では、リタデーシヨン測定器 20により測定された搬送フィル ムの面内方向リタデーシヨン(Ro)値は、 2点のうち、左側 Minが 27. 2nm、左側 Max 力 ¾5· 7nmであり、右側 Minが 28. 3nm、右側 Maxが 37. 2nmであり、いずれも搬 送フィルムの面内方向リタデーシヨン (Ro)値の最大値と最小値との差力 8nmを超 えて大きいものであった。  As a result, in Comparative Example 1, the in-plane direction retardation (Ro) value of the transport film measured by the retardation measuring device 20 is 27.2 nm on the left side and Max force on the left side of the two points. · 7 nm, Min on the right side is 28.3 nm, Max on the right side is 37.2 nm, and the difference between the maximum and minimum in-plane retardation (Ro) values of the transport film is greater than 8 nm. It was a thing.
[0119] このように、本発明の実施例 1によるセルロースアセテートプロピオネートフィルムはThus, the cellulose acetate propionate film according to Example 1 of the present invention is
、フィルム幅手方向および長手方向内での面内方向リタデーシヨン (Ro)値の最大値 と最小値の差が、 4nm以下を有しており、フィルムのリタデーシヨンの幅手方向の均 一性を向上して、光学特性に優れているものであった。 The difference between the maximum value and the minimum value of the in-plane retardation (Ro) value in the width direction and the longitudinal direction of the film is 4 nm or less, improving the uniformity of the film retardation in the width direction. Thus, the optical properties were excellent.
[0120] 実施例 2 つぎに、本発明の上記実施例 1の場合と同様に実施するが、実施例 1の場合と異な る点は、リタデーシヨン測定器 20によりオンラインで測定する搬送フィルムのリタデー シヨン値として、厚み方向リタデーシヨン (Rt)値を測定した点にある。 [0120] Example 2 Next, the present invention is carried out in the same manner as in the first embodiment, but the difference from the first embodiment is that the retardation value of the transport film measured online by the retardation measuring device 20 is used as the retardation value in the thickness direction. It is at the point where the (Rt) value was measured.
[0121] その結果、リタデーシヨン測定器 20により測定された搬送フィルムの厚み方向リタデ ーシヨン(Rt)値は、 2点のうち、左側 Minが 118. Onm、左側 Max力 120. 2nmであ り、右側 Minが 117. 3nm、右側 Maxが 119. 7nmであり、いずれも搬送フィルムの 厚み方向リタデーシヨン (Rt)値の最大値と最小値との差力 4nm以下であった。  [0121] As a result, the thickness direction retardation (Rt) value of the transport film measured by the retardation measuring instrument 20 was 118. Onm on the left side and Max. Force 120.2 nm on the left side of the two points. The Min was 117.3 nm, and the right Max was 119.7 nm. In either case, the difference between the maximum and minimum thickness direction retardation (Rt) values of the transport film was 4 nm or less.
[0122] 比較例 2  [0122] Comparative Example 2
比較のために、上記実施例 2の場合と同様に実施するが、実施例 2の場合と異なる 点は、搬送フィルムのリタデーシヨン測定器 20を設置して、搬送フィルムの厚み方向 リタデーシヨン (Rt)値をオンラインで 2点測定するが、この搬送フィルムの厚み方向リ タデーシヨン(Rt)値に基づくタツチロール 6の押圧力の制御を行なわなかった点にあ る。  For comparison, the same procedure as in Example 2 is performed, but the difference from Example 2 is that a transport film retardation measuring device 20 is installed and the transport film thickness direction retardation (Rt) value is set. The two points are measured online, but the pressing force of the touch roll 6 is not controlled based on the thickness direction retardation (Rt) value of the transport film.
[0123] その結果、この比較例 1では、リタデーシヨン測定器 20により測定された搬送フィル ムの厚み方向リタデーシヨン(Rt)値は、 2点のうち、左側 Minが 116. 4nm、左側 Ma Xが 123· 7nmであり、右側 Minが 114. 2應、右側 Maxが 122. 3應であり、いず れも搬送フィルムの厚み方向リタデーシヨン (Rt)値の最大値と最小値との差力 \ 7n mを超えて大きいものであった。  [0123] As a result, in Comparative Example 1, the thickness direction retardation (Rt) value of the transport film measured by the retardation measuring instrument 20 is 26.4 of the left side Min is 116.4 nm, and the left side Ma X is 123. · 7 nm, right side Min is 114. 2 mm, right side Max is 122. 3 mm, both of which are the differential force between the maximum and minimum retardation (Rt) values in the thickness direction of the transport film \ 7 nm It was a big thing beyond.
[0124] このように、本発明の実施例 2によるセルロースアセテートプロピオネートフィルムは 、フィルム幅手方向および長手方向内での厚み方向リタデーシヨン (Rt)値の最大値 と最小値の差が、 4nm以下を有しており、フィルムのリタデーシヨンの幅手方向の均 一性を向上して、光学特性に優れているものであった。  Thus, in the cellulose acetate propionate film according to Example 2 of the present invention, the difference between the maximum value and the minimum value in the thickness direction retardation (Rt) in the width direction and the longitudinal direction was 4 nm. The film had the following characteristics, and improved uniformity in the width direction of the retardation of the film, and was excellent in optical characteristics.

Claims

請求の範囲 The scope of the claims
[1] 非晶性熱可塑性樹脂を溶融し、回転する支持体上へ流延ダイから押し出し、前記 支持体上の溶融樹脂を前記支持体表面に押圧手段により押圧し、冷却固化してフィ ノレムとし、該フィルムを支持体より剥離し、搬送手段で搬送した後、卷取り装置によつ て巻き取る溶融流延製膜法による光学フィルムの製造方法において、  [1] Amorphous thermoplastic resin is melted and extruded from a casting die onto a rotating support, the molten resin on the support is pressed against the surface of the support by pressing means, and cooled and solidified to form a finalem. In the method for producing an optical film by the melt casting film forming method, after peeling the film from the support, transporting it by a transporting means, and winding it by a scissoring device,
前記搬送手段による搬送途上に設置されたリタデーシヨン測定器で、前記フィルムの リタデーシヨン値を測定し、この測定器により測定されたリタデーンヨン値に基づレ、て 、前記押圧手段の前記支持体に対する押圧力をリアルタイムで調整して、前記フィル ムのリタデーシヨン値を所定の範囲内となるように制御することを特徴とする、光学フィ ルムの製造方法。  The retardation value of the film is measured with a retardation measuring device installed on the way of conveyance by the conveying means, and the pressing force of the pressing means against the support is measured based on the retardation value measured by the measuring device. Is adjusted in real time, and the retardation value of the film is controlled to be within a predetermined range.
[2] 前記リタデーシヨン測定器は、幅手方向の複数箇所でフィルムのリタデーシヨン値を 測定することを特徴とする、請求の範囲第 1項に記載の光学フィルムの製造方法。  [2] The method for producing an optical film according to [1], wherein the retardation measuring instrument measures a retardation value of the film at a plurality of positions in the width direction.
[3] 前記リタデーシヨン測定器が測定したリタデーシヨン値の最大値と最小値との差が 4 nm以下となるように、前記押圧手段の前記支持体に対する押圧力をリアルタイムで 調整することを特徴とする、請求の範囲第 1項に記載の光学フィルムの製造方法。 [3] The pressing force of the pressing means against the support is adjusted in real time so that the difference between the maximum value and the minimum value of the retardation value measured by the retardation measuring device is 4 nm or less. The method for producing an optical film according to claim 1.
[4] リタデーシヨン値力 面内方向リタデーシヨン値または厚み方向リタデーシヨン値で あることを特徴とする、請求の範囲第 1項〜第 3項のうちのいずれか一項に記載の光 学フィルムの製造方法。 [4] Retardation value force The method for producing an optical film according to any one of claims 1 to 3, wherein the retardation value is an in-plane direction retardation value or a thickness direction retardation value. .
[5] 卷き取り時のフィルムの幅が 1. 5m以上、 4. Om以下であることを特徴とする、請求 の範囲第 1項〜第 3項のうちのいずれか一項に記載の光学フィルムの製造方法。 [5] The optical according to any one of claims 1 to 3, wherein the width of the film at the time of wiping is 1.5 m or more and 4. Om or less. A method for producing a film.
[6] 卷き取り時のフィルムの厚みが 15 μ m以上、 60 μ m以下であることを特徴とする、 請求の範囲第 1項〜第 3項のうちのいずれか一項に記載の光学フィルムの製造方法 [6] The optical device according to any one of claims 1 to 3, wherein the thickness of the film at the time of peeling is 15 μm or more and 60 μm or less. Film production method
[7] 請求の範囲第 1項〜第 3項のうちのいずれか一項に記載の光学フィルムの製造方 法で製造され、かつフィルム幅手方向および長手方向内でのリタデーシヨン値の最 大値と最小値の差が、 4nm以下であることを特徴とする、光学フィルム。 [7] The maximum value of the retardation value produced by the method for producing an optical film according to any one of claims 1 to 3 and within the film width direction and the longitudinal direction. An optical film characterized in that the difference between the minimum value and the minimum value is 4 nm or less.
PCT/JP2007/061620 2006-07-18 2007-06-08 Optical film, and its manufacturing method WO2008010361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006195804 2006-07-18
JP2006-195804 2006-07-18

Publications (1)

Publication Number Publication Date
WO2008010361A1 true WO2008010361A1 (en) 2008-01-24

Family

ID=38956696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061620 WO2008010361A1 (en) 2006-07-18 2007-06-08 Optical film, and its manufacturing method

Country Status (2)

Country Link
TW (1) TW200821122A (en)
WO (1) WO2008010361A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026940A1 (en) * 2008-08-04 2010-02-04 Fujifilm Corporation Method for producing optical film, optical film, polarizer, optical compensatory film, antireflection film and liquid crystal display device
US20100078850A1 (en) * 2008-09-26 2010-04-01 Fujifilm Corporation Process for producing thermoplastic resin film
US20100078849A1 (en) * 2008-09-26 2010-04-01 Fujifilm Corporation Process for producing thermoplastic resin film
US20110063544A1 (en) * 2009-09-11 2011-03-17 Fujifilm Corporation Optical film and method for producing it, polarizer, and liquid crystal display device
US20110177289A1 (en) * 2008-10-01 2011-07-21 Fujifilm Corporation Film and method for producing film
CN111033327A (en) * 2017-05-17 2020-04-17 埃弗里克斯股份有限公司 Ultra-thin, flexible thin-film filters having spatially or temporally varying optical properties and methods of making the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474918B (en) * 2010-05-26 2015-03-01 Hon Hai Prec Ind Co Ltd Method for making designed pattern of roll
TWI450780B (en) * 2011-07-07 2014-09-01 Benq Materials Corp Manufacturing method of roller for phase retardation film, method for manufacturing phase retardation film by roller and phase retardation film made therefrom

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264238A (en) * 1997-03-27 1998-10-06 Toshiba Mach Co Ltd Residual stress-monitoring method for sheet formed by bank formation, and forming control method for sheet to adjust bank formation
JP2006142774A (en) * 2004-11-24 2006-06-08 Sekisui Chem Co Ltd Method for producing optical film and optical film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264238A (en) * 1997-03-27 1998-10-06 Toshiba Mach Co Ltd Residual stress-monitoring method for sheet formed by bank formation, and forming control method for sheet to adjust bank formation
JP2006142774A (en) * 2004-11-24 2006-06-08 Sekisui Chem Co Ltd Method for producing optical film and optical film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026940A1 (en) * 2008-08-04 2010-02-04 Fujifilm Corporation Method for producing optical film, optical film, polarizer, optical compensatory film, antireflection film and liquid crystal display device
US20100078850A1 (en) * 2008-09-26 2010-04-01 Fujifilm Corporation Process for producing thermoplastic resin film
US20100078849A1 (en) * 2008-09-26 2010-04-01 Fujifilm Corporation Process for producing thermoplastic resin film
US20110177289A1 (en) * 2008-10-01 2011-07-21 Fujifilm Corporation Film and method for producing film
US8501065B2 (en) * 2008-10-01 2013-08-06 Fujifilm Corporation Film and method for producing film
US20110063544A1 (en) * 2009-09-11 2011-03-17 Fujifilm Corporation Optical film and method for producing it, polarizer, and liquid crystal display device
CN111033327A (en) * 2017-05-17 2020-04-17 埃弗里克斯股份有限公司 Ultra-thin, flexible thin-film filters having spatially or temporally varying optical properties and methods of making the same
CN111033327B (en) * 2017-05-17 2022-08-23 埃弗里克斯股份有限公司 Ultra-thin, flexible thin-film filters having spatially or temporally varying optical properties and methods of making the same

Also Published As

Publication number Publication date
TW200821122A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
TWI409159B (en) A manufacturing method of a cellulose film, an optical device manufactured by the manufacturing apparatus, a polarizing plate using the optical film, and a liquid crystal display device
JP4863994B2 (en) Cellulose acylate film and method for producing the same, polarizing plate, retardation film, optical compensation film, antireflection film, and liquid crystal display device
KR101216903B1 (en) Optical Film
WO2008010361A1 (en) Optical film, and its manufacturing method
JP5194798B2 (en) Roll optical film, method for manufacturing roll optical film, polarizing plate and liquid crystal display device
JP2007090753A (en) Thermoplastic resin film and manufacturing method therefor
JP2007098916A (en) Optical film and its forming method
JP2006341393A (en) Manufacturing method of cellulose acylate resin film
JP5333441B2 (en) Optical film manufacturing method and manufacturing apparatus
JP2009073154A (en) Optical film and method for producing optical film
JP2007253476A (en) Roll cleaning method and roll cleaning apparatus in manufacturing process of optical film
JP2008068533A (en) Method for longitudinally orienting thermoplastic resin film, and longitudinally oriented film manufactured by the method
JP2006208934A (en) Optical film and its manufacturing method
JP2006116904A (en) Manufacturing method of optical film
JP2006306027A (en) Optical film, its manufacturing method, and polarizing plate using the optical film
JP4792954B2 (en) Manufacturing method of optical film
JP5298655B2 (en) Optical film and manufacturing method thereof
JP2007065065A (en) Optical film and its manufacturing method
JP5347327B2 (en) Manufacturing method of optical film
JP2007030351A (en) Thermoplastic resin film and its manufacturing method
JP2007083471A (en) Optical film and its manufacturing method
JP5626213B2 (en) Film production method
JP2006272615A (en) Optical film, its manufacturing method and deflector using optical film
JP4876000B2 (en) Method for producing stretched film
JP2007083469A (en) Optical film and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07744940

Country of ref document: EP

Kind code of ref document: A1