WO2008009339A1 - Method and device for converting chemical fuels into mechanical energy - Google Patents

Method and device for converting chemical fuels into mechanical energy Download PDF

Info

Publication number
WO2008009339A1
WO2008009339A1 PCT/EP2007/005463 EP2007005463W WO2008009339A1 WO 2008009339 A1 WO2008009339 A1 WO 2008009339A1 EP 2007005463 W EP2007005463 W EP 2007005463W WO 2008009339 A1 WO2008009339 A1 WO 2008009339A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
expansion
pressure
temperature
fuels
Prior art date
Application number
PCT/EP2007/005463
Other languages
German (de)
French (fr)
Inventor
Bodo Max Wolf
Original Assignee
Bw-Energiesysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102006033303A external-priority patent/DE102006033303A1/en
Priority claimed from DE102007010813A external-priority patent/DE102007010813B4/en
Application filed by Bw-Energiesysteme Gmbh filed Critical Bw-Energiesysteme Gmbh
Priority to DE112007001688T priority Critical patent/DE112007001688A5/en
Publication of WO2008009339A1 publication Critical patent/WO2008009339A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3442Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a process for the conversion of chemical fuels of all kinds, which are completely or incompletely burned with oxygen-containing gas mixtures, in particular of liquid and gaseous fuels, such as gasoline, diesel or heating oil, natural gas, as well as gases and liquids from the chemical conversion and the fermentation, but also of dust-like solid fuels, into mechanical energy by means of internal combustion engines.
  • oxygen-containing gas mixtures in particular of liquid and gaseous fuels, such as gasoline, diesel or heating oil, natural gas, as well as gases and liquids from the chemical conversion and the fermentation, but also of dust-like solid fuels, into mechanical energy by means of internal combustion engines.
  • thermodynamic difference between internal combustion engine and gas turbine lies in the type of transmission of chemical or thermal energy to the working fluid.
  • this is done by chemical reaction of the working fluid air with the fuel under pressure under approximately isochoric conditions, which in addition to the temperature increases the pressure of the working fluid in the cylinder, while in the turbomachine after the mechanical compression of the air, the transmission of thermal energy through chemical reaction of the working fluid air with the fuel, but under approximately isobaric conditions, can be done so that not the pressure but the flow rate and thus the kinetic energy of the working fluid increases.
  • the turbomachine therefore has the disadvantage that a higher proportion of the technical work occurring during the expansion must be used for the internal compression of the working fluid.
  • the internal combustion engine can thus convert a larger part of the supplied fuel heat into mechanical energy and deliver it to external consumers compared with turbomachines.
  • An effective measure for improving the fuel utilization in turbomachines is the in-process isobaric recuperative preheating of the working fluid after its mechanical compression by the hot exhaust gas from the expansion.
  • the thermodynamically decisive disadvantage of internal combustion engines is that the further pressure build-up in the engine itself, achieved under approximately isochoric conditions, can not be fully utilized to increase the yield of technical work since the same cylinder volume is available for compression and expansion.
  • the work equipment present after expansion still has usable pressures and temperatures for technical work.
  • the technical object of the invention is to make better use of the fuel heat supplied to the engine and to further reduce the specific fuel heat requirement of the internal combustion engines.
  • the technical problem with internal combustion engines is solved by the fact that the pressure of the working fluid built up by mechanical compression and approximately isochoric combustion is fully utilized for the conversion of fuel heat into technical work without intermediate cooling through expansion to near ambient pressure.
  • the temperature of the working fluid preferably air, after the mechanical compression, but before the supply of fuel, by isobaric recuperative supply of heat, preferably in-process waste heat, and subsequently the temperature and pressure are raised by approximately isochoric combustion.
  • the working fluid of the internal combustion engines of whatever type not only not to cool after mechanical compression, but isobaric recuperative continue to heat before its temperature and pressure by chemical reaction with the fuel under approximately isochoric conditions are further increased ,
  • the device according to the invention is therefore characterized by an expansion chamber, formed by a cylinder and a piston or a widening cell wheel chamber or by an expansion turbine, which is present after mechanical compression, isobaric recuperative heat supply and approximately isochoric combustion, compared to the mechanical compression larger and less receives higher pressure working fluid volume and expands with maximum delivery of technical work to a minimum pressure required to deliver the exhaust gas to the environment.
  • the economic advantage of the invention lies in the 20 to 50% lower fuel consumption in the conversion of fuel energy into technical work in the field of application.
  • the working fluid was supplied to one or more combustion chambers formed by the piston and the cylinder when the piston was at top dead center, and in which the gas volume present after recuperation is completely exhausted for the purpose of almost isochoric chemical reaction with fuel supplied (isochoric combustion with formation of combustion gas) and subsequent expansion to ambient pressure.
  • the mass flow rate to the intake increased by approximately 1.4% and the pressure of the gas mixture of the compressed and preheated air and the combustion gases to about 7.6 bar in the combustion chamber.
  • mechanical energy supplied expansion of the present after combustion gas mixture to approximately ambient pressure reached this a temperature of about 700 0 C, sufficient for the recuperative preheating of the sucked and mechanically compressed air.
  • the expansion in the cylinder to ambient pressure is only possible if, according to the invention, the volumetric expansion ratio the volumetric Compression ratio is adjusted, ie the gas space in the cylinder at top dead center of the piston (combustion chamber) can absorb the volume increase from the isobaric heat transfer. This is achieved by adapting the cylinder bore of the combustion chamber to that of the compression cylinder, or the sum of the cylinder bores to the volume flow and to the piston stroke to secure the expansion to the ambient pressure.
  • the increase in the working fluid temperature from 680 to 1200 0 C with adiabatic combustion requires the supply of about 610 kJ fuel heat / kg of working fluid.
  • the working fluid when expanded to a pressure of 1.1 bar and an internal efficiency of the machine of 90%, can provide 585 kJ / kg of technical work, of which 200 kJ / kg must be expended for the compression of the working fluid.
  • Example 3 The method was implemented with a device consisting of a turbo-compressor, a recuperator and a piston machine, in which the compression of the working fluid with the turbo compressor and the approximately isochoric combustion of the fuel was carried out according to the invention recuperatively preheated air and the expansion in the cylinders of the piston engine.
  • a device consisting of a turbo-compressor, a recuperator and a piston machine, in which the compression of the working fluid with the turbo compressor and the approximately isochoric combustion of the fuel was carried out according to the invention recuperatively preheated air and the expansion in the cylinders of the piston engine.
  • the method has been realized with an apparatus which has been subjected to compression and expansion in turbomachinery, wherein the approximately isochoric combustion of the fuels with the recuperatively preheated air in cylinders of a reciprocating engine or in a cell of a cellular wheel constituting the combustion gas of the expansion stage of the turbomachine flow, ie between compression and expansion in turbomachinery.
  • the method was implemented here with a device which according to the invention consisted of two cell wheels, one with a smaller and one larger comparable chamber volume, and a recuperator, wherein the chamber volume of the large cell wheel at the same position of the cells over that of the smaller cell wheel the ratio of Volume of the working fluid from after before the recuperative heat input was greater, ie Air as a working medium was mechanically compressed with the smaller cell wheel and then preheated recuperatively. After preheating, the working fluid of the chamber of the larger cellular wheel, which opens after top dead center, was supplied via a gas supply opening as long as it was approximately isobarically possible.
  • the air was loaded in the now formed second chamber of the cellular wheel with fuel and carried out the approximately isochoric combustion under pressure and temperature increase.
  • the cell wheel chambers of the large cell wheel which then opened further, enabled expansion to near ambient pressure.
  • a special variant of a device according to the invention is characterized by two cell wheels which are driven in the cell wheel housing 1 by a centric cell wheel core 2 and an eccentric ring traveler 3 which guides the discs 4 forming the chambers and which drives the expansion work to the outside, is formed so that the volumes of Chambers of the outer cell wheel 5 to the chambers of the inner cellular wheel 6 corresponds to the ratio of the volumes of the working fluid from to before the recuperative preheating.
  • the chambers of the inner cell wheel 6 are used for suction and mechanical compression of the air and their supply for isobaric recuperative preheating, while the forming after top dead center chamber of the outer cell wheel 5, the isobaric recuperatively preheated working fluid, in the direction of rotation after closure of the Hästoffzu Entry in the outer cell wheel as the combustion chamber 7 forms in which the fuel is introduced and the isochoric combustion takes place before the further increase in direction of rotation chambers 8 while releasing technical work on the eccentric rotor 3, the working fluid to ambient pressure and after passing through the give dead center via the recuperator 9 to the environment 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a method for converting chemical fuels into mechanical energy with the aid of internal combustion engines, wherein the pressure achieved by means of mechanical compression, and possibly by means of chemical reaction of the fuels together with the oxygen-containing working medium, and the temperature of the working medium by means of technical work performing expansion up to the ambient pressure, are utilized, wherein the temperature of the working medium after the mechanical compression thereof by means of isobar recuperative transfer of heat, preferably process-internal waste heat, and subsequently, the temperature and the pressure, before the expansion of the working medium, are increased by means of an approximately isochore chemical reaction of the working medium comprising supplied fuel.

Description

Verfahren und Vorrichtung zur Umwandlung chemischer Brennstoffe in mechanische Energie Method and device for converting chemical fuels into mechanical energy
Die Erfindung betrifft ein Verfahren zur Umwandlung von chemischen Brennstoffen aller Art, die mit sauerstoffhaltigen Gasgemischen vollständig oder unvollständig verbrannt werden, insbesondere von flüssigen und gasförmigen Brennstoffen, wie Benzin, Diesel- oder Heizöl, Erdgas, sowie von Gasen und Flüssigkeiten aus der chemischen Stoffumwandlung und der Fermentation, aber auch von staubförmigen festen Brennstoffen, in mechanische Energie mit Hilfe von Verbrennungskraftmaschinen.The invention relates to a process for the conversion of chemical fuels of all kinds, which are completely or incompletely burned with oxygen-containing gas mixtures, in particular of liquid and gaseous fuels, such as gasoline, diesel or heating oil, natural gas, as well as gases and liquids from the chemical conversion and the fermentation, but also of dust-like solid fuels, into mechanical energy by means of internal combustion engines.
Das Anwendungsgebiet ist der Bau von Verbrennungskraftmaschinen für alle Bereiche der Volkswirtschaft, in denen chemische Brennstoffe zum Zwecke der technischen Arbeit in mechanische Energie, insbesondere für den Antrieb von Arbeitsmaschinen, von Verkehrsmitteln sowie von Maschinen zur Erzeugung von Elektroenergie, umgewandelt werden, sowie deren Anwendung im lokalen, kommunalen, gewerblichen und industriellen Einsatz, sowie im Verkehrswesen selbst.The field of application is the construction of internal combustion engines for all sectors of the economy in which chemical fuels are converted for the purpose of technical work into mechanical energy, in particular for the drive of working machines, of means of transport as well as machines for the production of electric energy, as well as their application in the local, municipal, commercial and industrial use, as well as in transportation itself.
Der Stand der Technik bei der Umwandlung von chemischen Brennstoffen in technische Arbeit mit Hilfe von Verbrennungskraftmaschinen ist zwar im Detail sehr vielfältig, lässt sich aber auf zwei Grundprinzipien zurückführen, nämlich auf die Verbrennungsmotoren, die als zyklisch arbeitende thermische Kreisprozesse mit Kompressions-, Brenn- und Expansionskammern ausgestattet sind, die von Kolben und Zylindern nach dem Vorbild der Otto- und Dieselmotoren, einschließlich der Vorschläge zur Kombination beider Motorkonzepte, gebildet werden sowie auf die Strömungsmaschinen, deren bekannteste Art die Gasturbinen sind. Das bedeutendste Arbeitsmittel der Verbrennungskraftmaschinen zur Umwandlung von chemischen Brennstoffen in mechanische Energie ist Luft, die nach Kompression und direkter oder indirekter Zuführung von Energie im Zuge der Expansion latente Energie und/oder kinetische Energie in technische Arbeit umwandeln kann. Der entscheidende thermodynamische Unterschied zwischen Verbrennungsmotor und Gasturbine liegt in der Art der Übertragung von chemischer bzw. thermischer Energie an das Arbeitsmittel. Beim Verbrennungsmotor erfolgt dies durch chemische Reaktion des Arbeitsmittels Luft mit dem Brennstoff unter Druck unter annähernd isochoren Bedingungen, was neben der Temperatur den Druck des Arbeitsmittels im Zylinder erhöht, während bei der Strömungsmaschine nach der mechanischen Kompression der Luft die Übertragung der thermischen Energie zwar auch durch chemische Reaktion des Arbeitsmittels Luft mit dem Brennstoff, aber unter annähernd isobaren Bedingungen, erfolgen kann, so dass sich nicht der Druck, sondern die Strömungsgeschwindigkeit und damit die kinetische Energie des Arbeitsmittels erhöht.Although the state of the art in the conversion of chemical fuels into technical work with the help of internal combustion engines is very diverse in detail, but can be attributed to two basic principles, namely the internal combustion engines, as cyclically operating thermal cycles with compression, combustion and Expansion chambers are equipped, which are formed by pistons and cylinders on the model of gasoline and diesel engines, including the proposals for combining both engine concepts, as well as on the turbomachinery, the best known of which are the gas turbines. The most important work equipment of internal combustion engines for the conversion of chemical fuels into mechanical energy is air, which after compression and direct or indirect supply of energy in the course of expansion can convert latent energy and / or kinetic energy into technical work. The decisive thermodynamic difference between internal combustion engine and gas turbine lies in the type of transmission of chemical or thermal energy to the working fluid. In the internal combustion engine, this is done by chemical reaction of the working fluid air with the fuel under pressure under approximately isochoric conditions, which in addition to the temperature increases the pressure of the working fluid in the cylinder, while in the turbomachine after the mechanical compression of the air, the transmission of thermal energy through chemical reaction of the working fluid air with the fuel, but under approximately isobaric conditions, can be done so that not the pressure but the flow rate and thus the kinetic energy of the working fluid increases.
Bei den Verbrennungsmotoren steht für die die technische Arbeit leistende Expansion somit der Druckanstieg durch Kompression und Verbrennung zur Verfügung, während bei den Strömungsmaschinen nur der Druck aus der mechanischen Kompression zur Verfügung steht.In the case of internal combustion engines, the increase in pressure due to compression and combustion is thus available for the expansion which carries out the technical work, whereas in the turbomachinery only the pressure from the mechanical compression is available.
Die Strömungsmaschine hat deshalb den Nachteil, dass ein höherer Anteil der während der Expansion anfallenden technischen Arbeit für die interne Kompression des Arbeitsmittels verwendet werden muss. Der Verbrennungsmotor kann gegenüber den Strömungsmaschinen somit einen größeren Teil der zugeführten Brennstoffwärme in mechanische Energie umwandeln und an externe Verbraucher abgeben. Eine wirksame Maßnahme zur Verbesserung der Brennstoffausnutzung bei Strömungsmaschinen ist die prozessinterne isobar- rekuperative Vorwärmung des Arbeitsmittels nach seiner mechanischen Kompression durch das heiße Abgas aus der Expansion. Der thermodynamisch entscheidende Nachteil der Verbrennungsmotoren ist, dass der unter annähernd isochoren Bedingungen erzielte weitere Druckaufbau im Motor selbst nicht vollständig zur Steigerung der Ausbeute an technischer Arbeit genutzt werden kann, da für die Kompression und Expansion das gleiche Zylindervolumen zur Verfügung steht. Das nach der Expansion vorliegende Arbeitsmittel hat noch für technische Arbeit nutzbare Drücke und Temperaturen. Diese Eigenschaften des Arbeitsmittels ermöglichen die Kombination des Verbrennungsmotors mit Turboladern, die das Arbeitsvermögen der Abgase zur Druckerhöhung des Arbeitsmittels vor der internen Kompression im Verbrennungsmotor nutzen.The turbomachine therefore has the disadvantage that a higher proportion of the technical work occurring during the expansion must be used for the internal compression of the working fluid. The internal combustion engine can thus convert a larger part of the supplied fuel heat into mechanical energy and deliver it to external consumers compared with turbomachines. An effective measure for improving the fuel utilization in turbomachines is the in-process isobaric recuperative preheating of the working fluid after its mechanical compression by the hot exhaust gas from the expansion. The thermodynamically decisive disadvantage of internal combustion engines is that the further pressure build-up in the engine itself, achieved under approximately isochoric conditions, can not be fully utilized to increase the yield of technical work since the same cylinder volume is available for compression and expansion. The work equipment present after expansion still has usable pressures and temperatures for technical work. These properties of the working fluid allow the combination of the internal combustion engine with turbochargers, which utilize the working capacity of the exhaust gases to increase the pressure of the working fluid before the internal compression in the internal combustion engine.
Die Aufladung des Arbeitsmittels vor der motorinternen Kompression beseitigt diesen grundsätzlichen Mangel des Kolbenmotors nicht, sie ermöglicht nur den Bau kleinerer Motoren mit höherer Leistung und verbessert das Masse zu Leistungs-Verhältnis der Maschine. Eine indirekte Rückführung von Motorabwärme in den Motorprozess erfolgt auf diese Art nur dann, wenn das zum Zwecke des höheren Massedurchsatzes und damit der Reduzierung der Motorabmessungen vom Turbolader im Druck erhöhte Arbeitsmittel vor seiner Einleitung in den Motor nicht gekühlt wird. Insbesondere bei großen Kolbenmotoren wird das aufgeladene Arbeitsmittel aber gekühlt, so dass auch diese Methode der indirekten Rückführung von Abwärme nicht genutzt wird.The supercharging of the working fluid prior to the engine internal compression does not eliminate this fundamental deficiency of the reciprocating engine, it only allows the construction of smaller engines with higher power and improves the mass to power ratio of the engine. Indirect recycling of engine waste heat to the engine process is accomplished in this manner only when the higher pressure mass and thus reduction in engine size from the turbocharger in the pressurized working fluid is not cooled prior to its introduction into the engine. In particular, in large reciprocating engines but the charged working fluid is cooled, so that this method of indirect recycling of waste heat is not used.
In der DE 197 34 984 wird vorgeschlagen, das Arbeitsmittel in den Verbrennungsmotoren nur so weit zu komprimieren, dass das durch den internen Verbrennungs- prozess im Druck erhöhte Arbeitsmittel im anschließenden Expansionstakt vollständig expandieren und so spezifisch mehr Arbeit leisten kann. Des Weiteren wurde ebenda vorgeschlagen, einen Verbrennungsmotor mit einer Strömungsmaschine, so zu kombinieren, dass das Zusammenwirken von mechanischer Kompression und annähernd isochorer Verbrennung beim Druckaufbau vor der Expansion optimiert und damit zur Verbesserung der Brennstoffausnutzung genutzt wird.In DE 197 34 984 it is proposed to compress the working fluid in the internal combustion engines only so far that the working fluid increased by the internal combustion process in the subsequent expansion stroke completely expands and thus can do more specific work. Furthermore, it has been proposed to combine an internal combustion engine with a turbomachine in such a way that the interaction of mechanical compression and approximately isochoric combustion in the pressure build-up before the Expansion is optimized and thus used to improve fuel efficiency.
Die technische Aufgabe der Erfindung besteht darin, die dem Motor zugeführte Brennstoffwärme besser auszunutzen und den spezifischen Brennstoffwärmebedarf der Verbrennungskraftmaschinen weiter zu senken.The technical object of the invention is to make better use of the fuel heat supplied to the engine and to further reduce the specific fuel heat requirement of the internal combustion engines.
Gelöst wird die technische Aufgabe mit Verbrennungskraftmaschinen dadurch, dass der durch mechanische Kompression und annähernd isochore Verbrennung aufgebaute Druck des Arbeitsmittels ohne Zwischenkühlung durch Expansion bis nahe Umgebungsdruck vollständig zur Umwandlung von Brennstoffwärme in technische Arbeit genutzt wird, wobei erfindungsgemäß die Temperatur des Arbeitsmittels, vorzugsweise Luft, nach der mechanischen Kompression, aber vor der Zuführung von Brennstoff, durch isobar-rekuperative Zuführung von Wärme, vorzugsweise prozessinterner Abwärme, und nachfolgend die Temperatur und der Druck durch annähernd isochore Verbrennung angehoben werden.The technical problem with internal combustion engines is solved by the fact that the pressure of the working fluid built up by mechanical compression and approximately isochoric combustion is fully utilized for the conversion of fuel heat into technical work without intermediate cooling through expansion to near ambient pressure. According to the invention, the temperature of the working fluid, preferably air, after the mechanical compression, but before the supply of fuel, by isobaric recuperative supply of heat, preferably in-process waste heat, and subsequently the temperature and pressure are raised by approximately isochoric combustion.
Es ist somit erfindungsgemäß, das Arbeitsmittel der Verbrennungskraftmaschinen, gleich welcher Bauart, nach der mechanischen Kompression nicht nur nicht zu kühlen, sondern isobar-rekuperativ weiter zu erwärmen bevor seine Temperatur und sein Druck durch chemische Reaktion mit dem Brennstoff unter annähernd isochoren Bedingungen weiter gesteigert werden.It is thus according to the invention, the working fluid of the internal combustion engines, of whatever type not only not to cool after mechanical compression, but isobaric recuperative continue to heat before its temperature and pressure by chemical reaction with the fuel under approximately isochoric conditions are further increased ,
Die Vorrichtungen des Standes der Technik der Verbrennungskraftmaschinen, also die Verbrennungsmotoren, bei denen mechanische Kompression, Verbrennung und mechanische Expansion im selben, von einem Zylinder und einem Kolben gebildeten Raum zwangsgekoppelt stattfinden, und die Strömungsmaschinen mit zwischen mechanischer Kompression und Expansion integrierter annähernd isobarer Verbrennung sind, sind selbst in ihrer Ausführung als Rekuperationsgasturbine für die Realisierung des erfindungsgemäßen Verfahrens nicht geeignet, da bei Verbrennungsmotoren des Standes der Technik eine rekuperative Vorwärmung des Arbeitsmittels nach der motorinternen mechanischen Kompression nicht möglich ist, und Gasturbinen eine über den Druck des Arbeitsmittels steigernde, annähernd isochore Verbrennung der Brennstoffe nicht ermöglichen.The prior art devices of internal combustion engines, that is, the internal combustion engines in which mechanical compression, combustion and mechanical expansion take place positively coupled in the same space formed by a cylinder and a piston, and the turbomachinery with integrated isobaric combustion between mechanical compression and expansion , are even in their execution as Rekuperationsgasturbine for the realization of the invention Method is not suitable because in internal combustion engines of the prior art, a recuperative preheating of the working fluid after the engine internal mechanical compression is not possible, and gas turbines do not over the pressure of the working medium increasing, almost isochoric combustion of the fuels do not allow.
Die erfindungsgemäße Vorrichtung ist deshalb gekennzeichnet durch eine Expansionskammer, gebildet durch einen Zylinder und einen Kolben oder eine sich erweiternde Zellradkammer oder durch eine Expansionsturbine, die das nach mechanischer Kompression, isobar-rekuperativer Wärmezuführung und annähernd isochorer Verbrennung vorliegende, gegenüber der mechanischen Kompression größere und unter höherem Druck stehende Arbeitsmittelvolumen aufnimmt und unter maximaler Abgabe von technischer Arbeit auf einen minimalen Druck expandiert, der zur Abgabe des Abgases an die Umgebung erforderlich ist.The device according to the invention is therefore characterized by an expansion chamber, formed by a cylinder and a piston or a widening cell wheel chamber or by an expansion turbine, which is present after mechanical compression, isobaric recuperative heat supply and approximately isochoric combustion, compared to the mechanical compression larger and less receives higher pressure working fluid volume and expands with maximum delivery of technical work to a minimum pressure required to deliver the exhaust gas to the environment.
Der wirtschaftliche Vorteil der Erfindung liegt im um 20 bis 50 % niedrigeren Brennstoffverbrauch bei der Umwandlung von Brennstoffenergie in technische Arbeit im Anwendungsgebiet.The economic advantage of the invention lies in the 20 to 50% lower fuel consumption in the conversion of fuel energy into technical work in the field of application.
AusführunqsbeispieleEXEMPLARY EMBODIMENTS
Verfahren und Vorrichtung werden nachstehend anhand von Beispielen näher erläutert.Methods and apparatus are explained in more detail below by way of examples.
Beispiel 1example 1
Für die Kompression und Expansion wurde eine Hubkolbenmaschine eingesetzt, bei der die Kompression und Expansion erfindungsgemäß in verschiedenen Zylindern durchgeführt wurden. Arbeitsmittel war trockene Luft. Ein Zylinder komprimierte die trockene Luft, die mit 1 bar und 15 0C von der Maschine angesaugt wurde. Nach der mechanischen Kompression hatte die Luft einen Druck von 5 bar, eine Temperatur von 200 0C und dementsprechend ein Volumen von 0,254 m3/kg . Das volumetrische Verdichtungsverhältnis war damit 3 : 1.For the compression and expansion, a reciprocating engine was used, in which the compression and expansion were carried out according to the invention in different cylinders. Work equipment was dry air. A cylinder compressed the dry air, with 1 bar and 15 0 C from the machine was sucked. After mechanical compression, the air had a pressure of 5 bar, a temperature of 200 0 C and consequently a volume of 0.254 m 3 / kg. The volumetric compression ratio was thus 3: 1.
In diesem Zustand wurde die Luft aus dem Zylinder gedrückt und im Gegenstrom einem Rekuperator zugeführt, in dem sie durch Abgas aus der Expansion auf 680 0C, unter annähernd isobaren Bedingungen, vorgewärmt wurde, wodurch das Volumen von 0,254 auf 0.512 m3/kg, unter realen Bedingungen also auf mehr als das Doppelte, stieg.In this state, the air was forced out of the cylinder and fed countercurrently to a recuperator where it was preheated by exhaust gas from expansion to 680 ° C., under approximately isobaric conditions, reducing the volume from 0.254 to 0.512 m 3 / kg. under real conditions, more than double, soared.
Danach wurde das Arbeitsmittel einer Brennkammer oder mehreren Brennkammern zugeführt, die vom Kolben und dem Zylinder beim Stand des Kolbens im oberen Totpunkt gebildet wurden, und in denen das nach der Rekuperation vorliegende Gasvolumen vollständig zum Zwecke der annähernd isochoren chemischen Reaktion mit zugeführtem Brennstoff (isochore Verbrennung unter Bildung von Verbrennungsgas) und nachfolgender Expansion auf Umgebungsdruck aufgenommen wurde.Thereafter, the working fluid was supplied to one or more combustion chambers formed by the piston and the cylinder when the piston was at top dead center, and in which the gas volume present after recuperation is completely exhausted for the purpose of almost isochoric chemical reaction with fuel supplied (isochoric combustion with formation of combustion gas) and subsequent expansion to ambient pressure.
Durch die Zuführung von Brennstoff für eine annähernd isochore Verbrennung, bis zu einer im Beispiel auf 1200 0C begrenzten Temperatur, stieg der Massedurchsatz gegenüber der Ansaugung um ca. 1 ,4 % und der Druck des Gasgemisches aus der komprimierten und vorgewärmten Luft und den Verbrennungsgasen auf ca. 7,6 bar in der Brennkammer. Durch nachfolgende, mechanische Energie liefernde Expansion des nach der Verbrennung vorliegenden Gasgemisches auf annähernd Umgebungsdruck erreichte dieses eine Temperatur von ca. 700 0C, ausreichend für die rekuperative Vorwärmung der angesaugten und mechanisch komprimierten Luft.By supplying fuel for an approximately isochoric combustion, to a temperature limited in the example to 1200 0 C, the mass flow rate to the intake increased by approximately 1.4% and the pressure of the gas mixture of the compressed and preheated air and the combustion gases to about 7.6 bar in the combustion chamber. By subsequent, mechanical energy supplied expansion of the present after combustion gas mixture to approximately ambient pressure reached this a temperature of about 700 0 C, sufficient for the recuperative preheating of the sucked and mechanically compressed air.
Die Expansion im Zylinder auf Umgebungsdruck ist nur möglich, wenn wie erfindungsgemäß das volumetrische Expansionsverhältnis dem volumetrischen Kompressionsverhältnis angepasst ist, d.h. der Gasraum im Zylinder beim oberen Totpunkt des Kolbens (Brennkammer) den Volumenzuwachs aus der isobaren Wärmeübertragung aufnehmen kann. Dies wird erreicht durch eine Anpassung der Zylinderbohrung der Brennkammer an die des Kompressionszylinders, bzw. der Summe der Zylinderbohrungen an den Volumenstrom und an den Kolbenhub zur Sicherung der Expansion bis zum Umgebungsdruck.The expansion in the cylinder to ambient pressure is only possible if, according to the invention, the volumetric expansion ratio the volumetric Compression ratio is adjusted, ie the gas space in the cylinder at top dead center of the piston (combustion chamber) can absorb the volume increase from the isobaric heat transfer. This is achieved by adapting the cylinder bore of the combustion chamber to that of the compression cylinder, or the sum of the cylinder bores to the volume flow and to the piston stroke to secure the expansion to the ambient pressure.
Die Steigerung der Arbeitsmitteltemperatur von 680 auf 1200 0C bei adiabater Verbrennung erfordert die Zuführung von ca. 610 kJ Brennstoffwärme/kg Arbeitsmittel. Demgegenüber kann das Arbeitsmittel bei seiner Expansion auf einen Druck von 1 ,1 bar und einem inneren Wirkungsgrad der Maschine von 90 % 585 kJ/kg technische Arbeit leisten, wovon 200 kJ/kg für die Kompression des Arbeitsmittels aufgewendet werden müssen.The increase in the working fluid temperature from 680 to 1200 0 C with adiabatic combustion requires the supply of about 610 kJ fuel heat / kg of working fluid. In contrast, the working fluid, when expanded to a pressure of 1.1 bar and an internal efficiency of the machine of 90%, can provide 585 kJ / kg of technical work, of which 200 kJ / kg must be expended for the compression of the working fluid.
Damit ergibt sich, dass die erfindungsgemäße rekuperative Einkopplung von prozessinterner Abwärme in den Kraftprozess einer erfindungsgemäß modifizierten Hubkolbenmaschine den Brennstoffbedarf bei gleicher technischer Arbeit halbieren kann.This results in that the inventive recuperative coupling of in-process waste heat in the power process of a modified reciprocating engine according to the invention can halve the fuel demand for the same technical work.
Beispiel 2Example 2
Das Verfahren wurde mit einer Vorrichtung bestehend aus einem Turbokompressor, einem Rekuperator und einer Kolbenmaschine realisiert, bei der die Kompression des Arbeitsmittels mit dem Turbokompressor und die annähernd isochore Verbrennung des Brennstoffes mit erfindungsgemäß rekuperativ vorgewärmter Luft und die Expansion in den Zylindern der Kolbenmaschine durchgeführt wurde. Beispiel 3The method was implemented with a device consisting of a turbo-compressor, a recuperator and a piston machine, in which the compression of the working fluid with the turbo compressor and the approximately isochoric combustion of the fuel was carried out according to the invention recuperatively preheated air and the expansion in the cylinders of the piston engine. Example 3
Das Verfahren wurde realisiert mit einer Vorrichtung, bei der die Kompression und die Expansion in Turbomaschinen erfolgte, wobei die annähernd isochore Verbrennung der Brennstoffe mit der rekuperativ vorgewärmten Luft in Zylindern einer Kolbenmaschine oder in einer Zelle eines Zellrades, aus denen das Verbrennungsgas der Expansionsstufe der Turbomaschine zufloss, also zwischen der Kompression und Expansion in Turbomaschinen, erfolgte.The method has been realized with an apparatus which has been subjected to compression and expansion in turbomachinery, wherein the approximately isochoric combustion of the fuels with the recuperatively preheated air in cylinders of a reciprocating engine or in a cell of a cellular wheel constituting the combustion gas of the expansion stage of the turbomachine flow, ie between compression and expansion in turbomachinery.
Beispiel 4Example 4
Das Verfahren wurde hier mit einer Vorrichtung realisiert, die erfindungsgemäß aus zwei Zellrädern, einem mit einem kleineren und einem mit größerem vergleichbaren Kammervolumen, und einem Rekuperator bestand, wobei das Kammervolumen des großen Zellrades bei gleicher Stellung der Zellen gegenüber dem des kleineren Zellrades dem Verhältnis der Volumen des Arbeitsmittels von nach zu vor der rekuperativen Wärmezufuhr größer war, d.h. Luft als Arbeitsmittel wurde mit dem kleineren Zellrad mechanisch komprimiert und danach rekuperativ vorgewärmt. Nach der Vorwärmung wurde das Arbeitsmittel der sich nach dem oberen Totpunkt öffnenden Kammer des größeren Zellrades so lange über eine Gaszuführungsöffnung zugeführt wie es annähernd isobar möglich war. Unmittelbar nach Beendigung der Gaszuführung wurde die Luft in der sich nun gebildeten zweiten Kammer des Zellrades mit Brennstoff beladen und die annähernd isochore Verbrennung unter Druck- und Temperaturanstieg durchgeführt. Die sich danach weiter öffnenden Zellradkammern des großen Zellrades ermöglichten eine Expansion bis nahe Umgebungsdruck.The method was implemented here with a device which according to the invention consisted of two cell wheels, one with a smaller and one larger comparable chamber volume, and a recuperator, wherein the chamber volume of the large cell wheel at the same position of the cells over that of the smaller cell wheel the ratio of Volume of the working fluid from after before the recuperative heat input was greater, ie Air as a working medium was mechanically compressed with the smaller cell wheel and then preheated recuperatively. After preheating, the working fluid of the chamber of the larger cellular wheel, which opens after top dead center, was supplied via a gas supply opening as long as it was approximately isobarically possible. Immediately after completion of the gas supply, the air was loaded in the now formed second chamber of the cellular wheel with fuel and carried out the approximately isochoric combustion under pressure and temperature increase. The cell wheel chambers of the large cell wheel, which then opened further, enabled expansion to near ambient pressure.
Eine spezielle Variante einer erfindungsgemäßen Vorrichtung ist gemäß Figur 1 gekennzeichnet durch zwei Zellräder, die im Zellradgehäuse 1 durch einen zentrischen Zellradkern 2 und einen exzentrischen Ringläufer 3, der die die Kammern bildenden Scheiben 4 führt, von denen angetrieben wird und die Expansionsarbeit nach außen abführt, so gebildet wird, dass die Volumina der Kammern des äußeren Zellrades 5 zu den Kammern des inneren Zellrades 6 dem Verhältnis der Volumina des Arbeitsmittels von nach zu vor der rekuperativen Vorwärmung entspricht. Die Kammern des innere Zellrades 6 dienen der Ansaugung und mechanischen Kompression der Luft und deren Zuführung zur isobar-rekuperativen Vorwärmung, während die sich nach dem oberen Totpunkt bildende Kammer des äußeren Zellrades 5 das isobar-rekuperativ vorgewärmte Arbeitsmittel aufnimmt, sich in Drehrichtung nach Verschluss der Arbeitsmittelzuführung im äußerem Zellrad als Brennkammer 7 ausbildet, in der der Brennstoff eingebracht wird und die isochore Verbrennung stattfindet, bevor die sich in Drehrichtung weiter vergrößernden Kammern 8 unter Abgabe von technischer Arbeit über den exzentrischen Ringläufer 3 das Arbeitsmittel bis zum Umgebungsdruck entspannen und nach Durchlaufen des untern Totpunktes über den Rekuperator 9 an die Umgebung 10 abgeben. According to FIG. 1, a special variant of a device according to the invention is characterized by two cell wheels which are driven in the cell wheel housing 1 by a centric cell wheel core 2 and an eccentric ring traveler 3 which guides the discs 4 forming the chambers and which drives the expansion work to the outside, is formed so that the volumes of Chambers of the outer cell wheel 5 to the chambers of the inner cellular wheel 6 corresponds to the ratio of the volumes of the working fluid from to before the recuperative preheating. The chambers of the inner cell wheel 6 are used for suction and mechanical compression of the air and their supply for isobaric recuperative preheating, while the forming after top dead center chamber of the outer cell wheel 5, the isobaric recuperatively preheated working fluid, in the direction of rotation after closure of the Arbeitsmittelzuführung in the outer cell wheel as the combustion chamber 7 forms in which the fuel is introduced and the isochoric combustion takes place before the further increase in direction of rotation chambers 8 while releasing technical work on the eccentric rotor 3, the working fluid to ambient pressure and after passing through the give dead center via the recuperator 9 to the environment 10.

Claims

Patentansprüche claims
1. Verfahren zur Umwandlung chemischer Brennstoffe in mechanische Energie mit Hilfe von Verbrennungskraftmaschinen, bei denen der durch mechanische Kompression und gegebenenfalls chemische Reaktion der Brennstoffe mit dem sauerstoffhaltigen Arbeitsmittel erreichte Druck und die Temperatur des Arbeitsmittels durch technische Arbeit leistend Expansion bis zum Umgebungsdruck genutzt werden, dadurch gekennzeichnet, dass die Temperatur des Arbeitsmittels nach seiner mechanischen Kompression durch isobar-rekuperative Übertragung von Wärme, vorzugsweise prozessinterne Abwärme und nachfolgend, vor der Expansion des Arbeitsmittels, die Temperatur und der Druck durch annähernd isochor- chemische Reaktion des Arbeitsmittels mit zugeführtem Brennstoff, angehoben werden.1. A process for the conversion of chemical fuels into mechanical energy by means of internal combustion engines, in which the pressure achieved by mechanical compression and optionally chemical reaction of the fuels with the oxygen-containing working fluid and the temperature of the working fluid by engineering work expansion to ambient pressure, thereby characterized in that the temperature of the working fluid after its mechanical compression by isobaric recuperative transfer of heat, preferably in-process waste heat and subsequently, before the expansion of the working fluid, the temperature and the pressure by approximately isochorochemical reaction of the working fluid with fuel supplied, are raised ,
2. Vorrichtung zur Umwandlung chemischer Brennstoffe in mechanische Energie, gekennzeichnet durch eine oder mehrere Expansionskammern, gebildet durch Zylinder und Kolben, oder sich erweiternde Zellradkammern, oder durch Expansionsturbinen, die das nach mechanischer Kompression, rekuperativ-isobarer Wärmezuführung und isochorer Verbrennung vorliegende Arbeitsmittel aufnimmt und unter maximalerAbgabe von mechanischer Energie auf einen Druck entspannt, der für die Abführung des Abgases an die Umgebung erforderlich ist. 2. Apparatus for converting chemical fuels into mechanical energy, characterized by one or more expansion chambers, formed by cylinders and pistons, or widening Zellradkammern, or by expansion turbines, which receives the present after mechanical compression, recuperatively isobaric heat supply and isochoric combustion working fluid and with maximum release of mechanical energy to a pressure required to exhaust the exhaust gas to the environment.
PCT/EP2007/005463 2006-07-17 2007-06-21 Method and device for converting chemical fuels into mechanical energy WO2008009339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112007001688T DE112007001688A5 (en) 2006-07-17 2007-06-21 Process and apparatus for converting chemical fuels into mechanical energy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006033303A DE102006033303A1 (en) 2006-07-17 2006-07-17 Method for converting chemical fuels into mechanical energy by internal combustion engines, involves mechanical compression and chemical reaction of fuels together with oxygen containing working medium
DE102006033303.9 2006-07-17
DE102007010813.5 2007-03-01
DE102007010813A DE102007010813B4 (en) 2007-03-01 2007-03-01 Method and device for converting chemical fuels into mechanical energy

Publications (1)

Publication Number Publication Date
WO2008009339A1 true WO2008009339A1 (en) 2008-01-24

Family

ID=38577530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/005463 WO2008009339A1 (en) 2006-07-17 2007-06-21 Method and device for converting chemical fuels into mechanical energy

Country Status (2)

Country Link
DE (1) DE112007001688A5 (en)
WO (1) WO2008009339A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732315A1 (en) * 1977-07-16 1979-02-01 Werner Vieler Two-stroke multicylinder IC engine - has compressor cylinders pressurising fuel charge and exhaust heat exchanger
WO1982003422A1 (en) * 1981-03-27 1982-10-14 Pocrnja Anton Method and device for the transformation of reaction heat into mechanical energy
WO2001075290A1 (en) * 2000-03-31 2001-10-11 Innogy Plc An engine
US20030167768A1 (en) * 2001-12-05 2003-09-11 Clawson Lawrence G. High-efficiency otto cycle engine with power generating expander
WO2006025743A2 (en) * 2004-09-03 2006-03-09 Franklin Hubertus Truijens Two-stroke internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732315A1 (en) * 1977-07-16 1979-02-01 Werner Vieler Two-stroke multicylinder IC engine - has compressor cylinders pressurising fuel charge and exhaust heat exchanger
WO1982003422A1 (en) * 1981-03-27 1982-10-14 Pocrnja Anton Method and device for the transformation of reaction heat into mechanical energy
WO2001075290A1 (en) * 2000-03-31 2001-10-11 Innogy Plc An engine
US20030167768A1 (en) * 2001-12-05 2003-09-11 Clawson Lawrence G. High-efficiency otto cycle engine with power generating expander
WO2006025743A2 (en) * 2004-09-03 2006-03-09 Franklin Hubertus Truijens Two-stroke internal combustion engine

Also Published As

Publication number Publication date
DE112007001688A5 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
EP0749521B1 (en) Process for the low-pollutant conversion of fossil fuels into power
EP2480780B1 (en) Internal combustion engine
DE102007010813B4 (en) Method and device for converting chemical fuels into mechanical energy
EP1482131A1 (en) Indirectly heated process for generating electric power in a cycle and device for the implementation thereof
WO2008009339A1 (en) Method and device for converting chemical fuels into mechanical energy
DE102006033303A1 (en) Method for converting chemical fuels into mechanical energy by internal combustion engines, involves mechanical compression and chemical reaction of fuels together with oxygen containing working medium
EP1761699B1 (en) Method for increasing the efficiency of a four-stroke internal combustion engine and four-stroke internal combustion engine
DE19528342A1 (en) Four=stroke compound diesel IC engine
RU2440499C1 (en) Thermal engine and operating method of thermal engine
DE19734984B4 (en) Process for the compression of gases
DE3130667A1 (en) Method and device for converting fuel heat into mechanical energy
EP4253738B1 (en) Method for operating a cyclically driven piston motor
CN108087102A (en) A kind of internal-combustion engine system
CN108119235B (en) Isothermal compression preheating type internal combustion engine
DE102013004736A1 (en) Method for operating an internal combustion engine with heat recovery and decoupled compressor and expansion unit
EP0075569A1 (en) Method and device for the transformation of reaction heat into mechanical energy
DE4219080A1 (en) Thermal energy machine using compression principle - has separate units for compression and expansion with heat exchanger in exhaust from reciprocating expander
DE102010003436B4 (en) Internal combustion engine and method for operating an internal combustion engine
DE102013200630A1 (en) Method for operating engine system with internal combustion engine for motor car, involves introducing compressed air from compressed air source to end of exhaust stroke and prior to beginning of combustion cycle
Liu The influences of air intake temperature on the turbocharged gasoline engine’s otto cycle
DE102015206458A1 (en) Arrangement with Organic Rankine cycle for charge air compression
RU101092U1 (en) HEAT ENGINE
DE102018001491A1 (en) Method and device for producing electricity using liquid air
EP0805916B1 (en) Continuous operating mode with the most isothermal possible compression for rotary piston heat engines
DE102011017248B4 (en) Free piston machine and method of operation

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07726108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070016884

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07726108

Country of ref document: EP

Kind code of ref document: A1

REF Corresponds to

Ref document number: 112007001688

Country of ref document: DE

Date of ref document: 20100128

Kind code of ref document: P