WO2008007796A1 - Controlled-release drug preparation and method for producing the same - Google Patents

Controlled-release drug preparation and method for producing the same Download PDF

Info

Publication number
WO2008007796A1
WO2008007796A1 PCT/JP2007/064047 JP2007064047W WO2008007796A1 WO 2008007796 A1 WO2008007796 A1 WO 2008007796A1 JP 2007064047 W JP2007064047 W JP 2007064047W WO 2008007796 A1 WO2008007796 A1 WO 2008007796A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
particles
sustained
release
calcium phosphate
Prior art date
Application number
PCT/JP2007/064047
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Ikoma
Tomohiko Yoshioka
Toru Tonegawa
Junzo Tanaka
Tetsuya Abe
Masataka Sakane
Naoyuki Ochiai
Original Assignee
National Institute For Materials Science
University Of Tsukuba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, University Of Tsukuba filed Critical National Institute For Materials Science
Priority to JP2008524869A priority Critical patent/JP5273657B2/en
Publication of WO2008007796A1 publication Critical patent/WO2008007796A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a sustained-release pharmaceutical preparation that releases a therapeutic agent gradually and over a long period in a living body, and a method for producing the same.
  • DDS Drug Delivery System
  • the main role of DDS is to gradually release the drug at a constant rate over a period of time.
  • Targeting slow drug release
  • selective transport to the target affected area targeting drug
  • Various inorganic materials and polymer materials have been used so far for sustained drug release. For example, hydroxyapatite is slowly decomposed in vivo and has the property of binding or encapsulating various drugs, so it is used as a safe carrier for various drugs. .
  • a hydrogel obtained by bridging a biocompatible polymer compound such as sodium alginate collagen can also encapsulate the drug in the gel and can be slowly decomposed to release the drug, so that only the drug can be used. It is also used in food and cosmetics. Hybrid materials of both are also being developed.
  • apatite particles are mixed with an alginate solution, dropped into a hardened aqueous solution, dried and dried.
  • the drug (Biocidel) dispersed in tanol is formulated by dripping it onto the surface of the dry particles.
  • the sustained release time has been improved compared to the conventional method.
  • a mixed solution of hydroxyapatite and alginic acid derived from koji is dropped into a polymethyl methacrylate (PMMA) solution.
  • composite microparticles are produced by adding chlorinated chloride as a crosslinking agent.
  • the drug is loaded onto the composite micro-mouth particles by immersing the particles in a phosphate buffer solution in which the drug is dissolved, and the sustained release time is zero-dimensional (approximately 3 days). ) Is displayed.
  • the drug loading method is important for drug delivery (DDS) by the apatite nolginate complex. It has been reported that the method of adsorbing to the apatite particles and then combining with alginic acid has the best sustained release.
  • sustained release of the drug is at most several hours to several days.
  • the drug is an anticancer agent
  • sustained release is not sufficient, and a sustained release over a long period of at least 14 days is required.
  • PLGA polylactic acid-dalycolic acid copolymer
  • anticancer agents are poorly water-soluble, and it is difficult to prepare an aqueous solution and impregnate the composite. Disclosure of the invention
  • the problem of the present invention is that long-term sustained release, which could not be expected in the past, is possible, and even if the sustained release drug is poorly water-soluble, such as an anticancer agent. It is an object of the present invention to provide a sustained-release pharmaceutical preparation capable of long-term sustained release and a method for producing the same. Further, the present invention further provides a material having a high affinity with bone tissue, preventing bone formation, and maintaining a material strength that can withstand bone grafting, even when cancer tissue having bone metastasis is targeted. At the same time, it is to provide a drug sustained-release preparation having a deformation characteristic that can be adapted to the shape of the bone defect site and a method for producing the same.
  • Sustained-release pharmaceutical preparation characterized in that a large number of porous calcium phosphate particles composed of aggregates of calcium phosphate nanocrystals, to which the drug is dried and fixed, are contained in a biocompatible polymer matrix .
  • the calcium phosphate contains at least one or more divalent metals selected from the group consisting of magnesium, zinc, strontium, and barium together with calcium or as a part of calcium.
  • the drug sustained-release preparation according to any one of (1) to (4).
  • the biocompatible polymer is at least one selected from the group consisting of sodium alginate, locust bean gum, xanthan gum, dextran sodium, carrageenan, bectin, chitosan, hyaluronic acid, carboxymethylcellulose, and derivatives thereof.
  • the sustained-release pharmaceutical preparation according to any one of (1) to (5), wherein
  • the drug sustained-release preparation according to any one of (1) to (6).
  • said particle size of the calcium phosphate nanocrystals is 1 ⁇ 1 X 1 0 3 nm, the drug sustained-release preparation according to any one of (7) (1).
  • a drug sustained-release medicament comprising the drug sustained-release preparation according to any one of (1) to (1 0).
  • the hardening aqueous solution is an aqueous solution of a salt of a divalent metal selected from the group consisting of magnesium, calcium, strontium, barium, and zinc.
  • Figure 1 shows a scanning electron microscope (SEM) photograph of each particle produced by spray-drying (sample A: no paglitaxel, sample B: paclitaxel 2.4%, sample C: paclitaxel 7.3%).
  • Figure 2 shows the particle size distribution measurement results of paclitaxel-containing (2.4%) apatite particles (Sample B).
  • FIG. 3 shows the thermal analysis (TG-DTA) of each particle obtained by spray drying (sample A: no paclitaxel, sample B: 2.4% paclitaxel, sample C: 7.3% paclitaxel).
  • Figure 4 shows the IR spectrum of each particle obtained by the spray drying process (Sample A: No Notaxel, Sample B: Paclitaxel 2.4%, Sample C: Paclitaxel 7.3%) o
  • Figure 5 shows photographs of the resulting particles before and after compression (left: before compression, right: after 90% compression).
  • Figure 6 shows the changes in the compressive strength of the particles produced as a result of the immersion time in the cured aqueous solution.
  • Figure 7 shows the correlation between the diameter and strength of the particles produced.
  • Figure 8 shows the change in compressive strength depending on the content of the particles in the produced particles.
  • Figure 9 shows the change in compressive strength of the produced particles with the concentration of alginic acid.
  • FIG. 10 shows the results of a drug elution test in PBS (+ Ca, Mg) to which Tween-80 added to the prepared paclitaxel-containing particle preparation was added.
  • FIG 1 Photographs of cells cultured with clitaxel-containing particles are shown ((a) —week, (b) week 4).
  • Figure 12 shows the results of lower limb motor function evaluation (B-B-B score) in the local treatment group and the control group.
  • Figure 13 shows the Kaplan-Meier survival curves for the local treatment group and the control mouth group.
  • Figure 14 shows a histopathological section of a rat breast cancer spinal metastasis model (left figure: normal. Spinal canal, right figure: tissue invaded by tumor tissue).
  • Figure 16 shows a SEM photograph and EDX analysis of a cross section of hydroxyapatite toalginic acid particles cross-linked with barium ions.
  • Figure 17 shows the expansion coefficient of hydroxyapatite toalginic acid particles crosslinked with barium ions.
  • Figure 18 shows the cumulative release of paclitaxel from hydroxide alginate and alginate particles crosslinked with barium ions.
  • This application claims the priority of Japanese Patent Application No. 2006-189259 filed on Jul. 10, 2006. Description of the patent application The contents described in the above are included. The present invention is described in detail below.
  • the drug sustained-release preparation of the present invention is that a large number of porous calcium phosphate particles composed of aggregates of calcium phosphate nanocrystals, to which the drug is dry-adhered around, are contained in the matrix of the biocompatible polymer.
  • the drug sustained-release preparation of the present invention is granular, and its size is the amount of calcium phosphate mixed, the biocompatible polymer concentration, the diameter of the needle of the dropping device, the size of the droplet, the dropping method, and the hardening aqueous solution. Although it can be controlled by the type / concentration and curing time, etc., it can be visually observed, specifically 0.1 to 5 mm, preferably about 1 to 3 mm.
  • the above “size” means a value obtained by measuring the particle diameter of at least 5 gel particles and calculating the average.
  • the porous calcium phosphate particles included in the drug sustained-release preparation of the present invention are prepared by spray-drying an aqueous organic solvent dispersion suspension of calcium phosphate nanocrystals and a drug as described above, and firing is performed. Absent. Therefore, there is no decrease in the specific surface area by calcination, the specific surface area is 30111 2 Roh 8 or more, preferably 50 m 2 Bruno g or more.
  • “calcium phosphate” is represented by the general formula C a 10 (P0 4 X) 6 Y 2 (X represents a carbonate group or a deficiency, and ⁇ represents a hydroxyl group, a carbonate group, a halogen group, or a deficiency).
  • This concept includes the hydroxyl, carbonate, fluorine, and chlorine apatites.
  • at least one divalent metal selected from the group consisting of magnesium, zinc, strontium, and barium may be contained together with or in place of calcium.
  • the porous particle particles are spherical microparticles, and the particle diameter is 1 X 10 2 jum or less, preferably: ⁇ 5 X 10 ⁇ m.
  • biocompatible polymers include sodium alginate, locust bean gum, xanthan gum, dextran sodium, carrageenan, bectin, chitosan, hyaluronic acid, carboxymethylcellulose, and derivatives thereof.
  • the content of the drug in the drug sustained-release preparation of the present invention varies depending on the sustained-release period, 1 X 1 0- 3 ⁇ 1 X 1 0 2 wt 0/0 for calcium phosphate by weight, preferably. 1 to 5 X 1 0% by weight.
  • the content of the porous calcium phosphate particles in the particles is 1 to 5 X 10% by weight, preferably 1 X 10 to 3
  • X 10% by weight and the content of the biocompatible polymer may be 1 X 10 ⁇ 3 to 1 X 10% by weight, preferably 1 to 3% by weight.
  • the sustained release property of the drug sustained-release preparation of the present invention can be controlled by the type of biocompatible polymer, the concentration of the biocompatible high molecule, the apatite content, etc., and is at least 14 days, preferably 30 Sustained release over more than a day is possible.
  • the drug sustained-release preparation of the present invention can be produced by the following method.
  • a water-organic solvent dispersion suspension of calcium phosphate nanocrystals and a drug is spray-dried, and the drug is dried and fixed around the crystal to produce porous calcium phosphate particles that are aggregates of the crystals.
  • the calcium phosphate nanocrystals used here have a particle size of 1 to 1 X 10
  • the type of the organic solvent used depending on the type of the drug and the ratio with water can be determined.
  • ethanol, methanol, etc. can be used as the organic solvent
  • the mixing ratio of water and organic solvent should be in the range of 1 X 10 4 : 1 to 1: 1 X 10 4 .
  • the type of the drug is not particularly limited, but a poorly water-soluble drug that is difficult to impregnate calcium phosphate particles in the form of an aqueous solution can also be used.
  • poorly water-soluble anticancer agents include paclitaxel, adriamycin, camptothecin, cisplastin, daunomycin, pinorbin, methotrexate, mitomycin c, etoposide, gefitinib, irinotecan hydrochloride, topotecan hydrochloride, docetaxol, vinbrathol sulfate Vincristine sulfate, vindesine sulfate, teniposide, pinorelvin tartrate, busunolevane, carbocon, thiotepa, cyclophosphamide, melphalan, estramustine sodium phosphate, mechlorethamine oxide hydrochloride, ifosfamide, ramustine hydroch
  • Spray drying can be performed by a conventional method using a commercially available apparatus equipped with a two-fluid nozzle and a four-fluid nozzle such as Buchi, Yamato Kagaku, and Okawara Kogyo Co., Ltd.
  • the liquid mixture is made into fine droplets of about 1 to 5 X 10 2 m, blown into hot air at 100 to 300 ° C., and dried.
  • porous calcium phosphate spherical particles are mixed and dispersed in a biocompatible polymer aqueous solution, and then dropped into a cured aqueous solution to be granulated.
  • the particles are kept dripped in the aqueous curing solution for about 1 minute to 2 hours. It is preferable to immerse in the aqueous solution.
  • the porous calcium phosphate particles are 1 to 5 10% by weight, preferably 1 X 10 to 3 X 10% by weight, based on the biocompatible polymer aqueous solution.
  • the aqueous hardening solution may be an aqueous solution of a divalent metal salt selected from the group consisting of magnesium, calcium, strontium, barium, and zinc.
  • the salt may be either an inorganic acid salt or an organic acid salt.
  • calcium chloride, zinc chloride, barium chloride, strontium chloride, calcium acetate, zinc acetate, etc. can be used. Calcium chloride is particularly preferred.
  • concentration of the divalent metal ion in the curable aqueous solution is 1 X 10 ⁇ 3 to 5 mol 1, preferably 2 X 10 0 — 2 to 2 m o 1/1.
  • the biocompatible polymer By dispersing the porous calcium phosphate spherical particles in the biocompatible polymer aqueous solution, the biocompatible polymer is coated on the porous calcium phosphate spherical particles, and when this is dropped into the cured aqueous solution, the metal of the biocompatible polymer is added.
  • a salt for example, calcium alginate
  • a salt is formed, forming a three-dimensional network structure and gelling.
  • Collect and wash the final particles The collection is performed by filtration or the like, and the recovered particles can be further classified as necessary to obtain particles having a desired particle size distribution.
  • drying treatment after washing is preferable in terms of storage and sterilization. Drying is performed, for example, from 0 to: I 0 0 ° C. from 6 to: I for 2 hours.
  • the drug sustained-release preparation of the present invention exhibits a long-term sustained release of at least 14 days or more
  • the drug sustained-release preparation has a function of having sufficient strength even when transplanted into bone and having excellent affinity with bone tissue. Therefore, the drug sustained-release preparation of the present invention can be used alone or in combination with pharmaceutically acceptable additives as a drug sustained-release drug, particularly a drug sustained-release drug for cancer treatment.
  • cancers that cause bone lesions such as primary bone tumors such as osteosarcoma, chondrosarcoma, Ewing sarcoma, other organs / organs (lung, stomach, mammary gland) It is also effective for metastatic bone tumors in which cancer of the thyroid, kidney, prostate, etc. has metastasized to bone, and blood cancers such as myeloma and lymphoma.
  • the sustained-release drug of the present invention can be prepared in various dosage forms and administered systemically or locally orally or parenterally.
  • the medicament of the present invention When orally administering the medicament of the present invention, it is formulated into tablets, force capsules, granules, powders, pills, water for internal use, suspensions, emulsions, syrups, etc., or redissolved when used. It may be a dry product.
  • the pharmaceutical of the present invention is administered parenterally, it is formulated into intravenous injection (including infusion), intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, etc. Are provided in unit-dose samples or in multi-dose containers.
  • compositions include excipients, extenders, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers, preservatives,
  • a flavoring agent, a soothing agent, a stabilizer, a tonicity agent and the like can be appropriately selected and produced by a conventional method.
  • the administration route is preferably administration by injection, and the dosage form is preferably injection.
  • administration by injection include subcutaneous administration, intraperitoneal administration, arterial administration, intravenous administration and the like. Of these, arterial injection into the artery near the affected area or direct administration to the affected area is most preferable.
  • the sustained-release medicament of the present invention may contain other drugs used for cancer therapy.
  • contrast media such as ribiodol or vascular occlusive agents
  • apoptosis inducers such as staurosporine
  • immunosuppressants such as steroids and cyclosporine
  • angiogenesis inhibitors such as morphine for pain relief.
  • narcotics such as morphine for pain relief.
  • the dosage of the medicament of the present invention is the age, sex, symptom, route of administration, number of times of administration. Varies and can vary widely.
  • the effective amount of drug included is: 0.1 mg / kg body weight at a time!
  • a dose in the range of OO Omg can be selected, preferably administered once to several times a day.
  • a potassium suspension (1 liter) was added dropwise to a 0.25 mol / l calcium hydroxide suspension (2 liters) to synthesize an apatite suspension.
  • the synthesized suspension
  • the particle diameter (diameter) measured from 100 particles is 3.31 ⁇ 0.83 urn (maximum 6.1 ⁇ , minimum 1.9 / 1 m) for sample A (without paclitaxel), and 3.42 for sample B (contains 2.4% paclitaxel).
  • FIG. 2 shows the particle size distribution measurement results for Sample B (containing paclitaxel 2.4%). It can be seen that the spray-dried particles are all distributed from 1 to 20 / zm. From this result, it is considered that particles of 10 zm or more aggregated during the measurement.
  • the average particle size is 4.0 ⁇ 0.2 ⁇ for sample A (without paclitaxel), and the average particle size for sample ⁇ (containing 2.4% paclitaxel).
  • paclitaxel 300 mg was dispersed in 50 ml of ethanol, and mixed with 250 ral (3 g of apatite content) of an apatite suspension synthesized in the same manner as described above.
  • the mixed apatite paclitaxel / ethanol suspension was spray-dried with a spray dryer manufactured by Buchi under the same conditions as above to synthesize paclitaxel-containing (7.3%) porous apatite spherical particles (sample) C).
  • Figure 1 also shows a scanning electron microscope (SEM) image of Sample C.
  • the paclitaxel content contained in each particle produced in Example 1 was quantified by UV method and thermal analysis method.
  • Paclitaxel eluted by dispersing Sample B 13.2, 10.6, and 8 mg in 10 ml of purified water ethanol mixed solvent (50:50) was quantified at a wavelength of 230 nm. As a result, it was found that the content was 2.4 ⁇ 0.2% per weight of the produced particles.
  • Samples C 4.26, 6.03, and 7.19 mg were quantified in the same manner. As a result, it was found that 7.3 ⁇ 0.4% was contained per particle weight.
  • Figure 3 shows the results of thermal analysis measurement.
  • a gentle weight loss up to 1200 ° C was observed.
  • the weight loss was 11.6 wt%, and almost no exotherm was observed.
  • samples containing paclitaxel samples containing paclitaxel (samples B and C)
  • exothermic peaks were observed at 242, 347, and 455 ° C.
  • the weight loss to 1200 ° C was 13.6% (Sample B) and 19.6% (Sample C), respectively.
  • the paclitaxel content was calculated by subtracting the weight loss (sample B—sample A, sample C one sample A).
  • the paclitaxel content was 2.0 wt% (Sample B) and 8.0 wt% (Sample C).
  • Example 3 FT-IR analysis of paclitaxel-containing porous apatite spherical particles
  • Fig. 4 shows the results of FT-IR analysis of paclitaxel-containing porous apatite spherical particles prepared in Example 1. Absorption peaks due to paclitaxel are 1742, 1711, 1577,
  • a 1% aqueous alginate solution was prepared using sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd .; viscosity 500-600 cps (lw / v%. 20 ° C), pH 7.3)). After mixing sodium alginate mechanically with purified water using Cell Master (As one), centrifuge for 10 minutes at 12,000 rpm (Tomy Seye) to remove insoluble matter and degas Went. The pure porous apatite spherical particles prepared in Example 1 (Sample A) lg were mixed with lOral aqueous alginate solution.
  • This mixed solution was dropped into a hardening aqueous solution (100 ml of 2 mol / 1 calcium chloride solution) using a pipette with a microphone (200 1).
  • the obtained particles were all spherical.
  • the time-series strength change (compression test) was examined by changing the time of immersion in the cured aqueous solution to 10 minutes, 1, 2, 4, and 24 hours. Using a texture analyzer, the probe was pushed into purified water at a speed of 0.1 lram / s and compressed 90%.
  • Figure 5 shows the outer shape of the particles produced and the morphology of the particles after the compression test.
  • the average particle diameter of the 25 particles produced was also calculated using a texture analyzer.
  • the average value was 2.04 ⁇ 0.03 mm (maximum particle diameter: 2.07 mm, minimum particle diameter: 1.90 mm).
  • Fig. 6 shows the time-series changes in strength when strain stresses of 10, 20, and 30% are applied. Particles with sufficient strength to be obtained even after immersion for 10 minutes were obtained. The compressive strength increased slightly by changing the time of immersion in the curable aqueous solution.
  • Example A Pure porous apatite spherical particles (Sample A) of 5 10, 20, 30, and 40 wt% were mixed with the 1% alginate aqueous solution prepared in the same manner as in Example 4, and the resulting cured aqueous solution was the same as in Example 4. Dropped and dipped for 10 minutes to produce particles. The obtained particles were washed and similarly subjected to a compressive strength test using a texture analyzer. The size of the particles prepared at each concentration was 1.81 ⁇ 0.03, 2.02 ⁇ 0.04, 2.11 ⁇ 0.04, 2.21 ⁇ 0.01. 2.13 ⁇ 0.03 mm. In order to correct the intensity depending on the size, the plot was made with the diameter corrected to 2 mm (Fig. 8). It was found that the strength increased linearly with increasing the content of the ferrite.
  • paclitaxel-containing porous apatite spherical particles containing paclitaxel 7.3%) prepared in Example 1
  • particles alginic acid concentration 1%; 10 wt% apatite with respect to the alginate aqueous solution
  • the resulting particle preparation was subjected to a paclitaxel elution test using water / ethanol (50-50).
  • One particle formulation was added to 5 ml of solution and allowed to stand for up to 12 hours. The supernatant was collected and subjected to UV measurement (wavelength: 230 nm).
  • paclitaxel-containing porous apatite spherical particles (containing paclitaxel 2.4%) prepared in Example 1, particles (alginic acid concentration: 1%; with respect to aqueous alginate solution) in the same manner as in Example 4. 10wt%, 20% containing).
  • the amount of paclitaxel contained in the obtained particles is water / ethanol.
  • the 10 and 20 wt% 7-partite particle formulations contained 0.035 mg and 0.08 mgZ paclitaxel, respectively.
  • PBS phosphate buffer solution
  • the CRL-1666 breast cancer cell line (Rockville, MA, USA) was used as the cultured cancer cells.
  • the cells are Dulbecco Modified Eagle Medium supplemented with 10% fetal bovine serum and 80.5 pg / ral streptomycin and 80.5 U / ral penicill in and 1% L-glutaraine. All products are from Gibco Invitrogen TM 5% C0 2 at 37 ° C (purchased from Corp, CA, USA) Incubation was performed under humidified pressure conditions. The medium was changed approximately every 3 days at a concentration of 10 6 cel ls / ml.
  • CRL-1666 breast cancer cell line (Rockville, MA, USA) was used.
  • Cells were Dulbecco Modified Eagle Medium supplemented with 10% fetal bovine serum, 80.5 pg / ml streptomycin, and 80.5 U / ml penici ll in and 1% L-glutaraine (all products from Gibco Invitrogen TM Corp , CA, and cultured under conditions of 5% C0 2 humidified pressure at 37 ° C for at purchased from USA). The medium was changed approximately every 3 days at a concentration of 10 6 cel ls / ml.
  • Confluent cells were detached with 0.01 M EDTA, and proliferating cells were removed from the ventral skin of 8-week-old female Fischer 344 rats (weight 150-180 g, Charles River Laboratories, JAPAN). Injecting 1 ⁇ 10 6 cells to produce solid tumor pieces for transplantation. The tumor mass on the 10th day after injection was removed and placed in sterile physiological saline to a size of 1 X 1 X 1 ram. A CRL-1666 solid tumor fragment was transplanted into the lumbar spine of a rat to obtain a rat breast cancer spinal metastasis model.
  • the obtained rat breast cancer spinal metastasis model was divided into a control group and a local treatment group.
  • the rats in the control group closed the bone hole containing the tumor pieces with a paclitaxel-free particle preparation.
  • particles containing paclitaxel 2.4% prepared in Example 9 (alginate concentration 1%, containing 10% apatite with respect to alginate aqueous solution) were administered.
  • the following tests were performed, and the control group and the local treatment group were compared using a log-rank test. For statistical evaluation, P ⁇ 0.05 was considered significant.
  • BBB score was used every day.
  • BBB score is based on a rat gait of 21 points It is a score. Rats were placed in a 57 x 38 x 30 cm plastic enclosure and observed for 4 minutes. In the early stages of tumor growth, rotation of toes and heels is observed, corresponding to 20 to 14 points. When a neurological deficit symptom appears, a trauma or lameness appears, which corresponds to 13 to 8 points. When spinal cord compression progresses, continuous movement of the lower limbs is not observed, which corresponds to 7 to 0 points. All tests were done in a double blind study. The control group died of paralysis of the lower extremities in about 2 weeks, as reported previously. The average BBB scale at 15 days after surgery is 5.2 days for the control group and 16.4 days for the local treatment group (Fig.
  • the period until the occurrence of paralysis was expressed as a Kaplan-Meier curve as a disease-free time, and was compared between the control group and the local treatment group.
  • the survival rate of each group was expressed by Kaplan-Meier curve, and the average survival time was compared between the control group and the local treatment group.
  • paclitaxel-containing apatite gel preparations significantly prolonged the occurrence of spinal paralysis and improved survival in a rat breast cancer spinal transition model.
  • Extraosseous tumors were evaluated by extravertebral soft tissue growth, and the maximum diameter (a) X minimum diameter (b) of the tumor was determined, and the tumor weight (mg) was calculated from the formula 0.5ab 2 *. All cases of extraskeletal lesions (extravertebral soft tissue) Tumor weight is shown in Table 1 below. The mean tumor weights in the control mouth group and the local treatment group at the end of the experiment were 6.14 g and 6.09 g, respectively, and there was no statistically significant difference. table 1
  • the incised spine and tumor were fixed with 10% formalin solution, decalcified, and embedded in paraffin.
  • a 3 ⁇ m section obtained by horizontally cutting the spinal column containing the tumor was stained with hematoxylin-eosin (H & E staining).
  • the degree of vertebral body invasion and occupancy in the spinal canal was evaluated.
  • the H & E-stained transverse section of the spine showed a strong infiltration of the tumor, which occupied the spinal canal extensively and pressed the spinal cord ( Figures 14 and 15).
  • 344 rats (8-week-old female) were prepared and classified into the control group and the systemic treatment group (5 mg / Kg paclitaxel was administered from the tail vein on days 1, 7, and 14) and the local treatment group.
  • the topical treatment group included particles containing paclitaxel 7.2 wt% (alginate concentration 1%; algin A dried product containing 10 wt% apatite with respect to the acid aqueous solution was used.
  • the evaluation method was performed in the same manner as in Example 11.
  • Rats in the control group began to paralyze on average 9 days and died on average 14-75 days.
  • paralysis began to occur on averages of 10.4 days and 12.8 days, respectively, and died on averages of 14.22 days and 17.45 days, respectively.
  • the average weight of the rats at the start of the experiment was 144.lg (129-181g).
  • the change in body weight of each group was evaluated using a paired t test for rats whose body weight at 2 weeks could be measured.
  • the systemic treatment group there was no statistically significant difference between the start of the experiment and 2 weeks in the control group, but the local administration group tended to have less weight change at 2 weeks.
  • the body weight of the whole body treatment group and the control group tended to decrease compared to the time when the experiment was started (control group 3.2 g, whole body treatment group 5.3 g, local treatment Treatment group 0.18g; p-value in the control group and local treatment group is 0.62 0.
  • Sodium alginate (Wako Pure Chemical Industries, Ltd.;. The viscosity 500_600cps (lw / v% 20 ° C), P H7 3) was dissolved in distilled water in a concentration of l 3% (w / v) , was prepared alginate solution.
  • 5 40% (w / w) paclitaxel-containing porous apatite spherical particles (containing 2.6% paclitaxel) prepared in the same manner as in Example 1 were uniformly mixed at room temperature. .
  • Hydroxyapatite toalginic acid mixture was dropped into a hardening aqueous solution (2.0 M barium chloride solution) using a micropipette (200 / zl) to prepare a spherical gel having a size of 2.02.8 mm.
  • the resulting hydroxyapatite toalginic acid spherical gel was dried for at least 24 hours to obtain firm hydroxyapatite toalginic acid particles.
  • This particle was named AxHy-Ba (where x and y represent alginate concentration and potassium content, respectively).
  • the internal structure of the particles was sputter coated with platinum and then examined with a scanning electron microscope (SEM) and EDX. Mechanical properties were examined using a texture analyzer (Stable Micro Systems, UK). The compressive strength was measured using a cylindrical probe (5.0mra diameter) with a speed of 0.1 / s. The expansion rate of the particles was measured in D-PBS according to the following formula.
  • paclitaxel release was examined at 37 ° C in D-PBS containing 1% Tween_80.
  • the amount of paclitaxel was quantified by high performance liquid chromatography (HPLC) in which the mobile phase consisted of acetonitrile and water (volume ratio 60 40), and the flow rate was l. O ml / min.
  • Paclitaxel was detected at 227 nm using a UV detector.
  • Figure 16 shows SEM photographs and EDX analysis of the cross section of hydroxide apatite toalginic acid particles cross-linked with barium ions.
  • the SEM photograph of A1H40-Ba showed that the mic mouth particles of the hydroxyapatite having a particle size of 1 10 jura were uniformly dispersed in the particles. Hydroxide microparticles did not appear on A1H05-Ba and A3H05-Ba.
  • all of the types of particles examined were subjected to hydroxide activity. Uniform dispersion of the mouthpiece particles was shown. Valium ions cross-linked with alginic acid were also uniformly dispersed in the particles.
  • the compressive strength of hydroxyapatite-alginate particles increased in the order of AlH40_Ba ⁇ AlH05-Ba A3H05-Ba. This result shows that the compressive strength increases as the ratio of alginic acid to hydroxylapatite increases.
  • the ratio of alginic acid to hydroxyapatite was more influenced by compressive strength than hydroxyapatite content.
  • it has been found that hydroxyapatite toalginic acid particles tend to collapse due to alginate when compressed.
  • the hydroxyapatite-alginate particles obtained in the present invention became firm as the gel was dehydrated.
  • Figure 17 shows the expansion coefficient of hydroxyapatite toalginic acid particles crosslinked with barium ions.
  • the expansion characteristics differed depending on the composition of the particles. The higher the ratio of alginic acid to hydroxyapatite, the better the expansion. This result was thought to be due to the strong hydration properties of alginic acid.
  • Figure 18 shows the cumulative release of paclitaxel from hydroxyapatite to alginate particles crosslinked with barium ions. Paclitaxel was gradually released from the particles into the culture medium. The release behavior of A1H05-Ba and A3H05-Ba was the same. Since the expansion coefficient of A3H05-Ba is higher than that of A1H05-Ba (Fig. 17), it was found that the release behavior of paclitaxel is not related to the expansion coefficient of the particles.
  • A1H20-Ba The release behavior from A1H20-Ba was almost the same for A1H05-Ba and A3H05_Ba. After 5 hours, A1H05-Ba and A3H05_Ba did not release paclitaxel, whereas A1H20-Ba still had a lot of release. The release of paclitaxel. Therefore, the release behavior of paclitaxel was considered to depend on the amount of hydroxyapatite to alginate particles supported. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety. Industrial applicability
  • the drug sustained-release preparation of the present invention is excellent in sustained-release property and can maintain its effect for at least 14 days.
  • a sustained release effect over a long period of time of the drug sustained-release preparation of the present invention is that the drug is dried and fixed around the calcium phosphate nanocrystals, and porous calcium phosphate particles that are aggregates thereof.
  • This is considered to be achieved by incorporating a large number of bioaffinity in a biocompatible high molecular matrix.
  • the adhesion of the drug is increased by drying and fixing around the nanocrystal, so that the drug is not separated but the crystal is not separated. More parts are released into the body due to disintegration.
  • the collapse of the calcium phosphate nanocrystals in vivo can be mitigated.
  • the drug sustained-release preparation of the present invention has sufficient strength even when transplanted into bone, has excellent affinity with the bone tissue, and does not change the sustained-release effect. Furthermore, in manufacturing such sustained-release pharmaceutical preparations, the spray-dry method has been used to fix even poorly water-soluble anticancer agents to calcium phosphate nanocrystals. Then, the possibility of use for diseases for which sustained release action could not be utilized can be greatly expanded. Therefore, the drug sustained-release preparation of the present invention is very useful as a sustained-release pharmaceutical for treating bone metastasis cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Neurosurgery (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

It is intended to provide a drug-release particle which exhibits prolonged controlled release, has a sufficient strength even if it is implanted in the bone, and has high affinity for bone tissue. According to the invention, a controlled-release drug preparation characterized by containing a large number of porous calcium phosphate particles composed of an aggregate of calcium phosphate nanocrystals to the periphery of which a drug adheres by drying in a biocompatible polymer matrix, and a method for producing the same are provided.

Description

薬剤徐放性製剤とその製造方法  Drug sustained-release preparation and method for producing the same
技術分野 Technical field
本発明は、 生体内にあって治療薬を徐々にかつ長期間にわたって放出する薬剤 徐放性製剤とその製造方法に関するものである。 明  The present invention relates to a sustained-release pharmaceutical preparation that releases a therapeutic agent gradually and over a long period in a living body, and a method for producing the same. Light
背景技術 Background art
近年、薬剤による治療効果を高め副作用を軽減する目的で、薬剤を必要な時に、 書  In recent years, in order to increase the therapeutic effects of drugs and reduce side effects,
必要な量で、必要な部位に供給する「ドラッグデリバリーシステム(Drug Delivery System, DDS) の研究が活発に行われている。 DDSの主たる役割は、 薬剤を一定期 間にわたって一定速度で放出する徐放化 (薬剤の徐放化) と、 目的とする患部に 選択的に輸送するターゲッティング (薬剤のターゲッティング) である。 薬剤の 徐放化のために、 これまで様々な無機材料や高分子材料が開発されている。 たと えば水酸アパタイ トは生体内で緩徐に分解され、 また、 種々の薬剤を結合または 封入できる性質を有しているため、 種々の薬剤の安全なキヤリアとして利用され ている。 “Drug Delivery System (DDS) is being actively researched to deliver the required amount to the required site. The main role of DDS is to gradually release the drug at a constant rate over a period of time. Targeting (slow drug release) and selective transport to the target affected area (targeting drug) Various inorganic materials and polymer materials have been used so far for sustained drug release. For example, hydroxyapatite is slowly decomposed in vivo and has the property of binding or encapsulating various drugs, so it is used as a safe carrier for various drugs. .
一方、 アルギン酸ナトリゥムゃコラーゲンなどの生体親和性高分子化合物を架 橋することにより得られるハイ ドロゲルもまたゲル内に薬剤を封入でき、 また、 緩徐に分解して薬剤を放出できるため、 医薬のみならず、 食品、 化粧品にも用い られている。 また、 両者のハイブリッド材料も開発されている。  On the other hand, a hydrogel obtained by bridging a biocompatible polymer compound such as sodium alginate collagen can also encapsulate the drug in the gel and can be slowly decomposed to release the drug, so that only the drug can be used. It is also used in food and cosmetics. Hybrid materials of both are also being developed.
ァパタイ トノアルギン酸複合体を薬剤放出粒子として用いる報告として、 W. As a report on the use of apatite tonoalginate complex as drug release particles, W.
Paul, C. P. Sharma, J. Mater. Sci. Lett. , 16 (1997) 2050— 2051には、 ゲンタ マイシン(gentaraicin)を水酸ァパタイ ト/アルギン酸複合マイク口粒子から徐放 させることが開示されている。 この複合マイクロ粒子は、 200〜400 111 の水酸ァ パタイ ト粒子をゲンタマイシン溶液に浸潰し、 乾燥させることで薬剤との複合体 化を行い、 これをアルギン酸溶液と混合後、 一軸圧縮して作製されているが、 薬 剤の徐放時間は 24時間程度にすぎない。 E. Krylova, A. Ivanov, V. Orlovski, G. El-Regi stan, S. Barinov, J. Matei. Sci. : Mater. Med., 13 (2002) 87-90 で は、 アパタイ ト粒子をアルギン酸溶液と混合し、 硬化水溶液に滴下 ·乾燥後、 ェ タノールに分散させた薬剤 (Biocidel) を該乾燥粒子表面に滴下することによつ て製剤化しているが、 徐放時間について、 従来に比し向上しているものとの確認 でさてレヽなレヽ。 M. Sivakumar, K. P. Rao, J. Biomed. Mater. Res. , 65A (2003) 222-228 では、 珊瑚由来の水酸ァパタイ トとアルギン酸との混合溶液を、 ポリメ チルメタァクリ レート (PMMA) 溶液に滴下 ·攪拌させた後に架橋剤として塩化力 ルシゥムを加えて複合マイクロ粒子を作製している。 本文献では、 薬剤の複合マ イク口粒子への担持は、 薬剤を溶解させたリン酸緩衝溶液に該粒子を浸漬させる ことによって行われており、 徐放時間については 0次元放出 (3日程度) と記載 されてレヽる。 また、 C. C. Ribeiro, C. C. Barrias, M. A. Barbosa, Biomater. , 25 (2004) 4363-4373 では、 ァパタイ トノアルギン酸複合体による薬物送達 (DDS) には、 薬剤の担持方法が重要であり、 薬剤 (酵素) をアパタイ ト粒子に吸着させ てからアルギン酸と複合させる方法が最も徐放性に優れていたことが報告されて いる。 Paul, CP Sharma, J. Mater. Sci. Lett., 16 (1997) 2050—2051 discloses the slow release of gentaraicin from hydroxyapatite / alginate composite mic mouth particles. . These composite microparticles are prepared by immersing 200-400 111 hydroxide particles in a gentamicin solution and drying to form a complex with the drug, mixing it with the alginate solution, and then uniaxially compressing it. However, the sustained release time of the drug is only about 24 hours. E. Krylova, A. Ivanov, V. Orlovski, G. In El-Registan, S. Barinov, J. Matei. Sci .: Mater. Med., 13 (2002) 87-90, apatite particles are mixed with an alginate solution, dropped into a hardened aqueous solution, dried and dried. The drug (Biocidel) dispersed in tanol is formulated by dripping it onto the surface of the dry particles. However, it has been confirmed that the sustained release time has been improved compared to the conventional method. . In M. Sivakumar, KP Rao, J. Biomed. Mater. Res., 65A (2003) 222-228, a mixed solution of hydroxyapatite and alginic acid derived from koji is dropped into a polymethyl methacrylate (PMMA) solution. After stirring, composite microparticles are produced by adding chlorinated chloride as a crosslinking agent. In this document, the drug is loaded onto the composite micro-mouth particles by immersing the particles in a phosphate buffer solution in which the drug is dissolved, and the sustained release time is zero-dimensional (approximately 3 days). ) Is displayed. In CC Ribeiro, CC Barrias, MA Barbosa, Biomater., 25 (2004) 4363-4373, the drug loading method is important for drug delivery (DDS) by the apatite nolginate complex. It has been reported that the method of adsorbing to the apatite particles and then combining with alginic acid has the best sustained release.
このように、 薬剤をァパタイ ト Zアルギン酸複合体へ担持させるためには様々 な方法が試みられているが、 その薬剤徐放性については、 せいぜい数時間から数 日間にすぎない。 しかしながら、 薬剤が抗癌剤である場合は、 このような徐放性 では足りず、 少なく とも 1 4日以上の長期間の徐放性が要求される。 これまで、 抗癌剤の徐放製剤に関する研究も行われており、 その多くは高分子素材を中心と した粒子である。 代表的には酢酸リユープリンをポリ乳酸一ダリコール酸共重合 体(PLGA)のような生体分解性高分子に封入したマイクロカプセル粒子があるが、 疎水性であるが故に細胞接着性に乏しいという欠点がある。 さらに、 抗癌剤のな かには水難溶性のものが多く、 その水溶液を調製して複合体に含浸させることが 困難である。 発明の開示  As described above, various methods have been tried to support the drug on the apatite Z-alginate complex, but the sustained release of the drug is at most several hours to several days. However, when the drug is an anticancer agent, such sustained release is not sufficient, and a sustained release over a long period of at least 14 days is required. Until now, research on sustained-release preparations of anticancer drugs has been conducted, and many of them are particles mainly made of polymer materials. Typically, microcapsule particles are encapsulated in a biodegradable polymer such as polylactic acid-dalycolic acid copolymer (PLGA), but it has the disadvantage of poor cell adhesion due to its hydrophobic nature. is there. Furthermore, many anticancer agents are poorly water-soluble, and it is difficult to prepare an aqueous solution and impregnate the composite. Disclosure of the invention
従って、 本発明の課題は、 従来には望めなかった長期間の徐放が可能であり、 また、 徐放する薬剤が水難溶性である例えば抗癌剤のようなものであっても、 同 様な長期の徐放が可能な薬剤徐放性製剤とその製造方法を提供することにある。 また、 本発明のさらなる課題は、 骨転移した癌組織を対象とする場合にも、 骨 組織との親和性が優れ、 骨形成を阻害せず、 骨内移植に耐えられる材料強度を保 持するとともに、 骨欠損部位の形状に適合可能な変形特性を有している薬剤徐放 性製剤とその製造方法を提供することにある。 Therefore, the problem of the present invention is that long-term sustained release, which could not be expected in the past, is possible, and even if the sustained release drug is poorly water-soluble, such as an anticancer agent, It is an object of the present invention to provide a sustained-release pharmaceutical preparation capable of long-term sustained release and a method for producing the same. Further, the present invention further provides a material having a high affinity with bone tissue, preventing bone formation, and maintaining a material strength that can withstand bone grafting, even when cancer tissue having bone metastasis is targeted. At the same time, it is to provide a drug sustained-release preparation having a deformation characteristic that can be adapted to the shape of the bone defect site and a method for producing the same.
本発明者らは上記課題を解決すベく鋭意研究を重ねた結果、 以下の発明を提供 するに至った。  As a result of intensive studies to solve the above problems, the present inventors have provided the following inventions.
(1) 薬剤が周囲に乾燥固着されたリン酸カルシウムナノ結晶の凝集体からなる 多孔質リン酸カルシウム粒子が、 生体親和性高分子マトリックス中に多数含有さ れていることを特徴とする、 薬剤徐放性製剤。  (1) Sustained-release pharmaceutical preparation, characterized in that a large number of porous calcium phosphate particles composed of aggregates of calcium phosphate nanocrystals, to which the drug is dried and fixed, are contained in a biocompatible polymer matrix .
( 2 ) 前記薬剤が抗癌剤であることを特徴とする、( 1 )に記載の薬剤徐放性製剤。 (2) The drug sustained-release preparation according to (1), wherein the drug is an anticancer drug.
(3) 前記薬剤が水難溶性の薬剤であることを特徴とする、 (1) または (2) に 記載の薬剤徐放性製剤。 (3) The drug sustained-release preparation according to (1) or (2), wherein the drug is a poorly water-soluble drug.
(4) 前記リン酸カルシウムが、 水酸基、 炭酸基、 またはハロゲン基を含有する ことを特徴とする、 (1) から (3) のいずれかに記載の薬剤徐放性製剤。  (4) The sustained-release pharmaceutical preparation according to any one of (1) to (3), wherein the calcium phosphate contains a hydroxyl group, a carbonate group, or a halogen group.
(5) 前記リン酸カルシウムが、 カルシウムとともに、 あるいはカルシウムの一 部に置換して、 マグネシウム、 亜鉛、 ス トロンチウム、 およびバリウムからなる 群より選ばれる少なく とも 1種以上の二価金属を含有することを特徴とする、 (5) The calcium phosphate contains at least one or more divalent metals selected from the group consisting of magnesium, zinc, strontium, and barium together with calcium or as a part of calcium. And
(1) から (4) のいずれかに記載の薬剤徐放性製剤。 The drug sustained-release preparation according to any one of (1) to (4).
(6) 前記生体親和性高分子が、アルギン酸ナトリゥム、ローカストビーンガム、 キサンタンガム、 デキス トランナトリ ウム、 カラギーナン、 ベクチン、 キトサン、 ヒアルロン酸、 カルボキシメチルセルロース、 およびこれらの誘導体からなる群 より選ばれる少なくとも 1種以上の多糖類である、 (1) から (5) のいずれかに 記載の薬剤徐放性製剤。  (6) The biocompatible polymer is at least one selected from the group consisting of sodium alginate, locust bean gum, xanthan gum, dextran sodium, carrageenan, bectin, chitosan, hyaluronic acid, carboxymethylcellulose, and derivatives thereof. The sustained-release pharmaceutical preparation according to any one of (1) to (5), wherein
(7) 大きさが 1 X 1 0―1〜 5mmであることを特徴とする、 (1) から (6) のいずれかに記載の薬剤徐放性製剤。 (7), wherein the size is 1 X 1 0- 1 ~ 5 mm, the drug sustained-release preparation according to any one of (1) to (6).
(8) 前記リン酸カルシウムナノ結晶の粒子径が 1〜 1 X 1 03nmであること を特徴とする、 (1) から (7) のいずれかに記載の薬剤徐放性製剤。 (8) characterized in that said particle size of the calcium phosphate nanocrystals is 1~ 1 X 1 0 3 nm, the drug sustained-release preparation according to any one of (7) (1).
(9) 前記多孔質リン酸カルシウム粒子が比表面積 30m2Zg以上の球形粒子 であることを特徴とする、 (1) から (8) のいずれかに記載の薬剤徐放性製剤。(9) Spherical particles in which the porous calcium phosphate particles have a specific surface area of 30 m 2 Zg or more The sustained-release drug preparation according to any one of (1) to (8), wherein
(1 0) 前記多孔質リン酸カルシウム粒子の粒子径が 1 X 1 02 / m以下である ことを特徴とする、 (1) から (9) のいずれかに記載の薬剤徐放性製剤。 (10) The sustained-release drug preparation according to any one of (1) to (9), wherein the porous calcium phosphate particles have a particle size of 1 × 10 2 / m or less.
(1 1) (1) から (1 0) のいずれかに記載の薬剤徐放性製剤を含有する薬剤 徐放性医薬。  (1 1) A drug sustained-release medicament comprising the drug sustained-release preparation according to any one of (1) to (1 0).
(1 2) 以下の工程を含む、 (1) から (1 0) のいずれかに記載の薬剤徐放性 製剤の製造方法。  (1 2) A method for producing a drug sustained-release preparation according to any one of (1) to (10), comprising the following steps.
(a) リン酸カルシゥムナノ結晶と薬剤との水 有機溶媒分散懸濁液をスプ レイ ドライし、 薬剤を周囲に加熱固着したリン酸カルシウムナノ結晶の凝集体か らなる多孔質リン酸カルシウム粒子を得る工程  (a) A step of spray-drying an aqueous dispersion of calcium phosphate nanocrystals and a drug to obtain porous calcium phosphate particles comprising aggregates of calcium phosphate nanocrystals with the drug heated and fixed around
(b ) 上記多孔質リン酸カルシウム粒子を生体親和性高分子水溶液に混合分散 した後、 硬化水溶液に滴下し、 生体親和性高分子マトリ ックス中に前記粒子を含 有させた目視可能な大きさの生体親和性高分子粒子を作る工程  (b) After the porous calcium phosphate particles are mixed and dispersed in a biocompatible polymer aqueous solution, the porous calcium phosphate particles are dropped into a cured aqueous solution, and the particles are contained in the biocompatible polymer matrix. Process for making affinity polymer particles
( c ) 上記生体親和性高分子粒子を回収,洗浄する工程  (c) A process for collecting and washing the biocompatible polymer particles.
(1 3) 生体親和性高分子粒子を回収 ·洗浄する工程の後に当該高分子粒子を乾 燥する工程をさらに含む、 (1 2) に記載の製造方法。  (1 3) The production method according to (12), further comprising a step of drying the polymer particles after the step of collecting and washing the biocompatible polymer particles.
(14) 硬化水溶液が、マグネシウム、カルシウム、 ス トロンチウム、バリ ウム、 及び亜鉛から成る群から選ばれる二価金属の塩の水溶液であることを特徴とする、 (14) The hardening aqueous solution is an aqueous solution of a salt of a divalent metal selected from the group consisting of magnesium, calcium, strontium, barium, and zinc.
(1 2) または (1 3) に記載の方法。 図面の簡単な説明 The method described in (1 2) or (1 3). Brief Description of Drawings
図 1は、 スプレイ ドライ処理により作製した各粒子の走査型電子顕微鏡 (SEM) 写真を示す (試料 A:パグリタキセルなし、 試料 B :パクリタキセル 2.4%、 試料 C : パク リタキセル 7.3%)。  Figure 1 shows a scanning electron microscope (SEM) photograph of each particle produced by spray-drying (sample A: no paglitaxel, sample B: paclitaxel 2.4%, sample C: paclitaxel 7.3%).
図 2は、 パクリタキセル含有 (2.4%)ァパタイ ト粒子 (試料 B) の粒度分布測定 結果を示す。  Figure 2 shows the particle size distribution measurement results of paclitaxel-containing (2.4%) apatite particles (Sample B).
図 3は、 スプレイ ドライ処理で得られた各粒子の熱分析 (TG-DTA) を示す (試 料 A:パクリタキセルなし、 試料 B :パクリタキセル 2.4%、 試料 C :パクリタキ セル 7.3%)。 図 4は、 スプレイ ドライ処理で得られた各粒子の IR スぺク トルを示す (試料 A : ノ ク リタキセルなし、 試料 B : パクリタキセル 2. 4%、 試料 C :パク リタキセ ル 7. 3%) o Figure 3 shows the thermal analysis (TG-DTA) of each particle obtained by spray drying (sample A: no paclitaxel, sample B: 2.4% paclitaxel, sample C: 7.3% paclitaxel). Figure 4 shows the IR spectrum of each particle obtained by the spray drying process (Sample A: No Notaxel, Sample B: Paclitaxel 2.4%, Sample C: Paclitaxel 7.3%) o
図 5は、 作製した粒子の圧縮前と圧縮後の形態の写真を示す (左側:圧縮前、 右側: 90%圧縮後)。  Figure 5 shows photographs of the resulting particles before and after compression (left: before compression, right: after 90% compression).
図 6は、 硬化水溶液浸漬時間による作製した粒子の圧縮強度変化を示す。  Figure 6 shows the changes in the compressive strength of the particles produced as a result of the immersion time in the cured aqueous solution.
図 7は、 作製した粒子の直径と強度の相関を示す。  Figure 7 shows the correlation between the diameter and strength of the particles produced.
図 8は、 作製した粒子のァパタイ ト含有量による圧縮強度変化を示す。  Figure 8 shows the change in compressive strength depending on the content of the particles in the produced particles.
図 9は、 作製した粒子のアルギン酸濃度による圧縮強度変化を示す。  Figure 9 shows the change in compressive strength of the produced particles with the concentration of alginic acid.
図 1 0は、 作製したパク リタキセル含有粒子製剤の Tween- 80 を添加した PBS (+Ca, Mg)中での薬剤溶出試験の結果を示す。  FIG. 10 shows the results of a drug elution test in PBS (+ Ca, Mg) to which Tween-80 added to the prepared paclitaxel-containing particle preparation was added.
図 1 1はノ、。クリタキセル含有粒子と培養した細胞の写真を示す((a) —週目、 (b)四週目)。  Figure 1 1. Photographs of cells cultured with clitaxel-containing particles are shown ((a) —week, (b) week 4).
図 1 2は、 局所治療群とコントロール群の下肢運動機能評価 (B-B-B スコア) 結果を示す。  Figure 12 shows the results of lower limb motor function evaluation (B-B-B score) in the local treatment group and the control group.
図 1 3は、 局所治療群とコント口ール群の Kaplan— Meier生存曲線を示す。 図 1 4は、 ラット乳癌脊椎転移モデルの病理組織切片の図を示す (左図:正常. 脊柱管、 右図 :腫瘍組織が侵入した組織)。  Figure 13 shows the Kaplan-Meier survival curves for the local treatment group and the control mouth group. Figure 14 shows a histopathological section of a rat breast cancer spinal metastasis model (left figure: normal. Spinal canal, right figure: tissue invaded by tumor tissue).
図 1 5は、 ラット乳癌脊椎転移モデルの脊椎の断面図 (腫瘍に冒された脊椎、 H & E染色 X 4 0 ) を示す (SC:脊髄、 VB:椎体、 T :腫瘍)。 バー =500 /z m。  Fig. 15 shows a cross-sectional view of the spine of a rat breast cancer spinal metastasis model (spine affected by tumor, H & E stained X40) (SC: spinal cord, VB: vertebral body, T: tumor). Bar = 500 / z m.
図 1 6は、 バリウムイオンで架橋した水酸ァパタイ トーアルギン酸粒子の断面 の SEM写真および EDX分析を示す。  Figure 16 shows a SEM photograph and EDX analysis of a cross section of hydroxyapatite toalginic acid particles cross-linked with barium ions.
図 1 7は、 バリウムイオンで架橋した水酸ァパタイ トーアルギン酸粒子の膨張 率を示す。  Figure 17 shows the expansion coefficient of hydroxyapatite toalginic acid particles crosslinked with barium ions.
図 1 8は、 バリゥムイオンで架橋した水酸ァパタイ ト一アルギン酸粒子からの パクリタキセルの累積放出量を示す。 以下、 本発明を詳細に説明する。 本願は、 2006年 7月 10 日に出願された日本 国特許出願 2006-189259号の優先権を主張するものであり、 該特許出願の明細書 に記載される内容を包含する。 以下に、 本発明について詳細に述べる。 Figure 18 shows the cumulative release of paclitaxel from hydroxide alginate and alginate particles crosslinked with barium ions. Hereinafter, the present invention will be described in detail. This application claims the priority of Japanese Patent Application No. 2006-189259 filed on Jul. 10, 2006. Description of the patent application The contents described in the above are included. The present invention is described in detail below.
(1) 薬剤徐放性製剤  (1) Drug sustained-release preparation
本発明の薬剤徐放性製剤は、 薬剤が周囲に乾燥固着されたリン酸カルシウムナ ノ結晶の凝集体からなる多孔質リン酸カルシウム粒子が、 生体親和性高分子のマ トリックス中に多数包含されていることを特徴とする。  The drug sustained-release preparation of the present invention is that a large number of porous calcium phosphate particles composed of aggregates of calcium phosphate nanocrystals, to which the drug is dry-adhered around, are contained in the matrix of the biocompatible polymer. Features.
本発明の薬剤徐放性製剤は粒状であり、 その大きさは、 リン酸カルシウムの混 合量 ·生体親和性高分子濃度 ·滴下装置の針の径 ·液滴の大きさ ·滴下方法 ·硬 化水溶液の種類 ·濃度及び硬化時間などによって制御できるが、 目視可能な大き さ、 具体的には 0. l〜5mm、 好ましくは 1〜 3 mm程度である。  The drug sustained-release preparation of the present invention is granular, and its size is the amount of calcium phosphate mixed, the biocompatible polymer concentration, the diameter of the needle of the dropping device, the size of the droplet, the dropping method, and the hardening aqueous solution. Although it can be controlled by the type / concentration and curing time, etc., it can be visually observed, specifically 0.1 to 5 mm, preferably about 1 to 3 mm.
なお、 上記の 「大きさ」 とは、 最低 5個以上のゲル粒子の粒子径を測定して平 均を算出することにより得られる値をいう。  The above “size” means a value obtained by measuring the particle diameter of at least 5 gel particles and calculating the average.
本発明の薬剤徐放性製剤に包含される多孔質リン酸カルシウム粒子は、 上記の ようにリン酸カルシゥムナノ結晶と薬剤との水 有機溶媒分散懸濁液をスプレイ ドライすることによって作製され、 焼成は行わない。 従って、 焼成による比表面 積の低下がなく、 その比表面積は 301112ノ8以上、 好ましくは 50m2ノ g以上 である。 The porous calcium phosphate particles included in the drug sustained-release preparation of the present invention are prepared by spray-drying an aqueous organic solvent dispersion suspension of calcium phosphate nanocrystals and a drug as described above, and firing is performed. Absent. Therefore, there is no decrease in the specific surface area by calcination, the specific surface area is 30111 2 Roh 8 or more, preferably 50 m 2 Bruno g or more.
本発明において、 「リン酸カルシウム」 とは、 一般式 C a 10 (P04X) 6 Y2 (Xは炭酸基または欠損を、 Υは水酸基、 炭酸基、 ハロゲン基、 または欠損を示 す) で表される水酸ァパタイ ト、 炭酸ァパタイ ト、 フッ素ァパタイ ト、 塩素アバ タイ トなどを含む概念である。 また、 カルシウムとともにまたはカルシウムの一 部に置換して、 マグネシウム、 亜鉛、 ストロンチウム、 およびバリウムからなる 群より選ばれる少なくとも 1種以上の二価金属を含有してもよい。 In the present invention, “calcium phosphate” is represented by the general formula C a 10 (P0 4 X) 6 Y 2 (X represents a carbonate group or a deficiency, and Υ represents a hydroxyl group, a carbonate group, a halogen group, or a deficiency). This concept includes the hydroxyl, carbonate, fluorine, and chlorine apatites. Further, at least one divalent metal selected from the group consisting of magnesium, zinc, strontium, and barium may be contained together with or in place of calcium.
前記多孔質ァパタイ ト粒子は球形のマイクロ粒子であり、 その粒子径は 1 X 1 02jum以下、 好ましくは:!〜 5 X 1 0 μ mである。 The porous particle particles are spherical microparticles, and the particle diameter is 1 X 10 2 jum or less, preferably: ~ 5 X 10 μm.
生体親和性高分子としては、 たとえば、 アルギン酸ナトリウム、 ローカストビ ーンガム、 キサンタンガム、 デキス トランナトリ ウム、 カラギーナン、 ベクチン、 キトサン、 ヒアルロン酸、 カルボキシメチルセルロース、 およびこれらの誘導体 からなる群より選ばれる多糖類が挙げられ、 これらの 1種であっても 2種 ^上の 組み合わせであってもよい。 このうち、 アルギン酸ナトリウムが最も好ましい。 本発明の薬剤徐放性製剤における薬剤の含有量は徐放期間によって異なるが、 リン酸カルシウム重量に対して 1 X 1 0— 3〜 1 X 1 02重量0 /0、 好ましくは 1〜 5 X 1 0重量%である。 Examples of biocompatible polymers include sodium alginate, locust bean gum, xanthan gum, dextran sodium, carrageenan, bectin, chitosan, hyaluronic acid, carboxymethylcellulose, and derivatives thereof. A polysaccharide selected from the group consisting of: 1 type of these or a combination of 2 types ^. Of these, sodium alginate is most preferred. The content of the drug in the drug sustained-release preparation of the present invention varies depending on the sustained-release period, 1 X 1 0- 3 ~ 1 X 1 0 2 wt 0/0 for calcium phosphate by weight, preferably. 1 to 5 X 1 0% by weight.
また、 本発明の薬剤徐放性製剤が十分な強度を有するためには、 該粒子中の多 孔質リン酸カルシウム粒子の含有量は 1〜 5 X 1 0重量%、 好ましくは 1 X 1 0 〜3 X 1 0重量%、 生体親和性高分子の含有量は 1 X 1 0— 3〜 1 X 1 0重量%、 好ましくは 1〜3重量%とすることが例示できる。 In order that the drug sustained-release preparation of the present invention has sufficient strength, the content of the porous calcium phosphate particles in the particles is 1 to 5 X 10% by weight, preferably 1 X 10 to 3 For example, X 10% by weight, and the content of the biocompatible polymer may be 1 X 10 −3 to 1 X 10% by weight, preferably 1 to 3% by weight.
本発明の薬剤徐放性製剤の徐放性は、 生体親和性高分子の種類、 生体親和性高 分子の濃度、 アパタイ ト含有量などにより制御でき、 少なくとも 14日以上、 好 ましくは、 30日以上にわたる徐放が可能である。  The sustained release property of the drug sustained-release preparation of the present invention can be controlled by the type of biocompatible polymer, the concentration of the biocompatible high molecule, the apatite content, etc., and is at least 14 days, preferably 30 Sustained release over more than a day is possible.
(2) 薬剤徐放性製剤の製造方法 (2) Method for producing drug sustained-release preparation
本発明の薬剤徐放性製剤は、 次のような方法で製造できる。  The drug sustained-release preparation of the present invention can be produced by the following method.
まず、 リン酸カルシウムナノ結晶と薬剤との水 有機溶媒分散懸濁液をスプレ イ ドライし、 薬剤を結晶周囲に乾燥固着させ、 この結晶の凝集体である多孔質リ ン酸カルシウム粒子を作製する。  First, a water-organic solvent dispersion suspension of calcium phosphate nanocrystals and a drug is spray-dried, and the drug is dried and fixed around the crystal to produce porous calcium phosphate particles that are aggregates of the crystals.
ここで用いるリン酸カルシウムナノ結晶としては、 その粒子径が 1〜 1 X 1 0 The calcium phosphate nanocrystals used here have a particle size of 1 to 1 X 10
3 nm、 好ましくは 1 X 1 0〜 1 X 1 02 nmのものであればよく、 その製造は、 例えば、水酸ァパタイ トナノ結晶を製造する場合、湿式法で行うことが好ましく、 下式に従い行うことができる。 3 nm, preferably 1 X 10 to 1 X 10 2 nm, and the production thereof is preferably carried out by a wet method, for example, when producing hydroxyapatite nanocrystals. It can be carried out.
1 0 C a (OH) 2+ 6 H3 (PO4) 3→C a 10 (PO4) 6 (OH) 2 1 0 C a (OH) 2 + 6 H 3 (PO 4 ) 3 → C a 10 (PO 4 ) 6 (OH) 2
薬剤を分散させる有機溶媒としては、 薬剤の種類に応じて用いる有機溶媒の種 類、 水との比率を決定すればよいが、 例えば、 有機溶媒としては、 エタノール、 メタノール等を用いることができ、水と有機溶媒の混合比は 1 X 1 04: 1〜1 : 1 X 1 04の範囲とすればよレ、。 As the organic solvent for dispersing the drug, the type of the organic solvent used depending on the type of the drug and the ratio with water can be determined. For example, ethanol, methanol, etc. can be used as the organic solvent, The mixing ratio of water and organic solvent should be in the range of 1 X 10 4 : 1 to 1: 1 X 10 4 .
薬剤の種類としては、 特に限定はされないが、 水溶液の形態にしてリン酸カル シゥム粒子に含浸させることが困難である水難溶性薬剤も使用できる。 この内、 水難溶性の抗癌剤としては、 例えば、 パクリタキセル、 アドリアマイシン, カン プトテシン、 シスプラスチン、 ダウノマイシン、 ピノルビン、 メ ト トレキセ一ト、 マイ トマイシン c、 エトポシド、 ゲフイチニブ、 塩酸イリノテカン、 塩酸トポテ カン、 ドセタキソール、 硫酸ビンブラスチン、 硫酸ビンクリスチン、 硫酸ビンデ シン、 テニポシド、酒石酸ピノ レルビン、 ブスノレファン、 カルボコン、 チォテパ、 シクロホスフアミ ド、 メルファラン、 リン酸エス トラムスチンナトリ ウム、 塩酸 メクロレタミンォキシド、 ィホスフアミ ド、 ラ-ムスチン、 塩酸二ムスチン、 塩 酸ブレオマイシン、 硫酸ぺプロマイシン、 ジノスタチンスチマラート、 ァクチノ マイシン D、 塩酸アクラルビシン、 塩酸ドキソルビシン、 塩酸イダルビシン、 塩 酸アムルビシン、 塩酸ダウノルビシン、 ピラノレビシン、 塩酸ェピノレビシン、 バル ルビシン、 メルカプトプリン、 リン酸フルダラビン、 クラ ドリ ビン、 フルォロウ ラシル、 テガフール、 シタラビン、 塩酸ゲムシタビン、 シタラビンォクホスファ ート、 力ぺシタビン、 レンチナン、 ォキサリブラチンド、 キシフルリジン、 カル モフール、 エノシタビン、ネダプラチン、 カルボプラチン、塩酸ファ ドロゾール、 アナス トロゾー Λ ェキセメスタン、 ビカノレタミ ド、 フ^/タミ ド、 クェン酸タモ キシフェン、 クェン酸トレミフェン、 トレチノイン、 ペントスタチン、 L—ァス パラギナーゼ、 ダカルバジン、 塩酸プロカルバジン、 塩酸ミ トキサントロン、 ソ ブゾキサン、 トラスッズマブ、 リツキシマブ、 メシル酸ィマチニブ、 5—フルォ 口 _ 2, 一デォキシゥリジン、 アスクレ、 カノレボク リン、 キノレスパン、 クレス チン、 ピシバニール、 およびその誘導体などが挙げられるが、 これらに限定はさ れない。 また。 上記の抗癌剤は一種を用いても二種以上を組み合わせて用いても よい。 The type of the drug is not particularly limited, but a poorly water-soluble drug that is difficult to impregnate calcium phosphate particles in the form of an aqueous solution can also be used. Of these, Examples of poorly water-soluble anticancer agents include paclitaxel, adriamycin, camptothecin, cisplastin, daunomycin, pinorbin, methotrexate, mitomycin c, etoposide, gefitinib, irinotecan hydrochloride, topotecan hydrochloride, docetaxol, vinbrathol sulfate Vincristine sulfate, vindesine sulfate, teniposide, pinorelvin tartrate, busunolevane, carbocon, thiotepa, cyclophosphamide, melphalan, estramustine sodium phosphate, mechlorethamine oxide hydrochloride, ifosfamide, ramustine hydrochloride Bleomycin hydrochloride, pepromycin sulfate, dinostatin stimarate, actinomycin D, aclarubicin hydrochloride, doxorubicin hydrochloride, salt Idarubicin, amrubicin hydrochloride, daunorubicin hydrochloride, pyranolevicin, epenolevicin hydrochloride, valrubicin, mercaptopurine, fludarabine phosphate, cladribine, fluoracil, tegafur, cytarabine, gemcitabine hydrochloride, cytarabine , Oxalibratin, Xifluridine, Carmofur, Enositabine, Nedaplatin, Carboplatin, Fadrozole hydrochloride, Anastrozo Λ Exemestane, Bicanoletamide, Fu ^ / Tamido, Tamoxifen citrate, Toreminoin citrate, Pentatin L —Asparaginase, dacarbazine, procarbazine hydrochloride, mitoxantrone hydrochloride, sobuzoxane, trastuzumab, rituxi Mab, imatinib mesylate, 5-fluo-2, monodeoxyuridine, ascle, canolevocrine, quinolespan, krestin, picibanil, and derivatives thereof, but are not limited to these. Also. The above anticancer agents may be used singly or in combination of two or more.
スプレイ ドライは、 例えば B u c h i社、 ャマト科学社、 大川原工業社などの 二流体ノズル及び四流体ノズルを装備した市販の装置を用いて定法により行うこ とができるが、 表面積を大きくするために、 混合液を 1〜 5 X 1 0 2 m程度の 微細な液滴にし、 1 0 0〜 3 0 0 °Cの熱風中に噴出させ、 乾燥させる。 Spray drying can be performed by a conventional method using a commercially available apparatus equipped with a two-fluid nozzle and a four-fluid nozzle such as Buchi, Yamato Kagaku, and Okawara Kogyo Co., Ltd. In order to increase the surface area, The liquid mixture is made into fine droplets of about 1 to 5 X 10 2 m, blown into hot air at 100 to 300 ° C., and dried.
次に得られた多孔質リン酸カルシウム球形粒子を生体親和性高分子水溶液に混 合分散した後、 硬化水溶液に滴下し粒状にする。 製造される粒子が十分な強度を 有するために、 この粒子を硬化水溶液に滴下したままで、 1分〜 2時間程度、 硬 化水溶液中に浸漬することが好ましい。 Next, the obtained porous calcium phosphate spherical particles are mixed and dispersed in a biocompatible polymer aqueous solution, and then dropped into a cured aqueous solution to be granulated. In order for the particles to be produced to have sufficient strength, the particles are kept dripped in the aqueous curing solution for about 1 minute to 2 hours. It is preferable to immerse in the aqueous solution.
生体親和性高分子水溶液としては、 前記の多糖類の水溶液を用いればよい。 生 #:親和性高分子水溶液の濃度は、製造される粒子が十分な強度を有するためには、 What is necessary is just to use the aqueous solution of the said polysaccharide as biocompatible polymer aqueous solution. Raw #: The concentration of the aqueous affinity polymer solution is sufficient so that the particles produced have sufficient strength.
1 X 1 0— 3〜 1 X 1 0重量%、 好ましくは 1〜3重量%とする。 また、 多孔質リ ン酸カルシウム粒子は、 生体親和性高分子水溶液に対し、 1〜5 1 0重量%、 好ましくは 1 X 1 0〜3 X 1 0重量%とする。 1 X 10 −3 to 1 X 10 wt%, preferably 1 to 3 wt%. The porous calcium phosphate particles are 1 to 5 10% by weight, preferably 1 X 10 to 3 X 10% by weight, based on the biocompatible polymer aqueous solution.
硬化水溶液は、 マグネシウム、 カルシウム、 ストロンチウム、 バリウム、 及び 亜鉛から成る群から選ばれる二価金属の塩の水溶液を用レ、ることができる。 塩は 無機酸、 有機酸の塩のいずれであってもよく、 具体的には、 塩化カルシウム、 塩 化亜鉛、 塩化バリウム、 塩化ス トロンチウム、 酢酸カルシウム、 酢酸亜鉛等を用 いることができるが、 塩化カルシウムが特に好ましい。 硬化水溶液における二価 金属イオンの濃度は、 1 X 1 0— 3〜 5mo lノ 1、 好ましくは 2 X 1 0_2〜2m o 1 / 1 とする。 また、 硬化水溶液は予め p H 5〜8程度に調整するのが好まし い。 The aqueous hardening solution may be an aqueous solution of a divalent metal salt selected from the group consisting of magnesium, calcium, strontium, barium, and zinc. The salt may be either an inorganic acid salt or an organic acid salt. Specifically, calcium chloride, zinc chloride, barium chloride, strontium chloride, calcium acetate, zinc acetate, etc. can be used. Calcium chloride is particularly preferred. The concentration of the divalent metal ion in the curable aqueous solution is 1 X 10 −3 to 5 mol 1, preferably 2 X 10 0 — 2 to 2 m o 1/1. Moreover, it is preferable to adjust the hardening aqueous solution to about pH 5 to 8 in advance.
多孔質リン酸カルシウム球形粒子を生体親和性高分子水溶液に分散することに よって、 多孔質リン酸カルシウム球形粒子上に生体親和性高分子がコーティング され、 これを硬化水溶液に滴下すると、 生体親和性高分子の金属塩 (例えばアル ギン酸カルシウム) が形成され、 3次元の網目構造となりゲル化する。  By dispersing the porous calcium phosphate spherical particles in the biocompatible polymer aqueous solution, the biocompatible polymer is coated on the porous calcium phosphate spherical particles, and when this is dropped into the cured aqueous solution, the metal of the biocompatible polymer is added. A salt (for example, calcium alginate) is formed, forming a three-dimensional network structure and gelling.
多孔質リン酸カルシウム球形粒子を分散した生体親和性高分子水溶液を硬化水 溶液に滴下する場合は、 目的とする粒子の大きさにもよるが、 滴下粒子が微細粒 となるようにマイク口ピぺット、 注射器等で滴下するのが好ましい。  When dropping a biocompatible polymer aqueous solution in which porous calcium phosphate spherical particles are dispersed into a hardened water solution, depending on the size of the target particle, pipette the microphone so that the dropped particles become fine particles. It is preferable to drop it with a syringe or syringe.
最後に得られた粒子を回収 ·洗浄する。 回収は濾過等によって行い、 回収した 粒子は、 必要に応じてさらに分級することにより、 所望の粒子径分布を有する粒 子を得ることができる。  Collect and wash the final particles. The collection is performed by filtration or the like, and the recovered particles can be further classified as necessary to obtain particles having a desired particle size distribution.
また、 洗浄後、 乾燥処理をすると、 保存や滅菌の点で好ましい。 乾燥は、 例え ば、 0〜: I 0 0 °Cで 6〜: I 2時間を行う。  In addition, a drying treatment after washing is preferable in terms of storage and sterilization. Drying is performed, for example, from 0 to: I 0 0 ° C. from 6 to: I for 2 hours.
(3) 薬剤徐放性医薬 (3) Drug sustained release medicine
本発明の薬剤徐放性製剤は、 少なくとも 1 4日以上の長期間の徐放性を発揮す る。 また、 当該薬剤徐放性製剤は、 骨内に移植しても十分な強度を持ち、 骨組織 と親和性が優れるという機能を有する。 従って、 本発明の薬剤徐放性製剤は単独 で、 あるいは薬学的に許容される添加物とともに薬剤徐放性医薬、 特には癌治療 用薬剤徐放性医薬として用いることができる。 治療対象となる癌の種類は、 限定 はされないが、 骨に病変をつくる癌、 例えば、 骨肉種、 軟骨肉腫、 ユーイング肉 腫などの原発性骨腫瘍、 他の臓器 ·器官 (肺、 胃、 乳腺、 甲状腺、 腎、 前立腺な ど) の癌が骨に転移を起こした転移性骨腫瘍、 骨髄腫やリンパ腫などの血液癌に も有効である。 The drug sustained-release preparation of the present invention exhibits a long-term sustained release of at least 14 days or more The In addition, the drug sustained-release preparation has a function of having sufficient strength even when transplanted into bone and having excellent affinity with bone tissue. Therefore, the drug sustained-release preparation of the present invention can be used alone or in combination with pharmaceutically acceptable additives as a drug sustained-release drug, particularly a drug sustained-release drug for cancer treatment. The types of cancer to be treated are not limited, but cancers that cause bone lesions, such as primary bone tumors such as osteosarcoma, chondrosarcoma, Ewing sarcoma, other organs / organs (lung, stomach, mammary gland) It is also effective for metastatic bone tumors in which cancer of the thyroid, kidney, prostate, etc. has metastasized to bone, and blood cancers such as myeloma and lymphoma.
本発明の薬剤徐放性医薬は、 各種製剤形態に調製し、 経口又は非経口的に全身 又は局所投与することができる。 本発明の医薬を経口投与する場合は、 錠剤、 力 プセル剤、 顆粒剤、 散剤、 丸剤、 内用水剤、 懸濁剤、 乳剤、 シロップ剤等に製剤 化するか、 使用する際に再溶解させる乾燥生成物にしてもよい。 また、 本発明の 医薬を非経口投与する場合は、 静脈内注射剤 (点滴を含む)、 筋肉内注射剤、 腹腔 内注射剤、 皮下注射剤、 坐剤などに製剤化し、 注射用製剤の場合は単位投与量ァ ンプル又は多投与量容器の状態で提供される。  The sustained-release drug of the present invention can be prepared in various dosage forms and administered systemically or locally orally or parenterally. When orally administering the medicament of the present invention, it is formulated into tablets, force capsules, granules, powders, pills, water for internal use, suspensions, emulsions, syrups, etc., or redissolved when used. It may be a dry product. In addition, when the pharmaceutical of the present invention is administered parenterally, it is formulated into intravenous injection (including infusion), intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, etc. Are provided in unit-dose samples or in multi-dose containers.
これらの各種製剤は、製剤上通常用いられる賦形剤、増量剤、結合剤、湿潤剤、 崩壊剤、 潤滑剤、 界面活性剤、 分散剤、 緩衝剤、 保存剤、 溶解補助剤、 防腐剤、 矯味矯臭剤、 無痛化剤、 安定化剤、 等張化剤等などを適宜選択し、 常法により製 造することができる。  These various preparations include excipients, extenders, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers, preservatives, A flavoring agent, a soothing agent, a stabilizer, a tonicity agent and the like can be appropriately selected and produced by a conventional method.
本発明の徐放性医薬が薬剤として抗癌剤を含み、上記の癌治療に用いる場合は、 投与経路としては、 注射による投与が好ましく、 剤型が注射剤であるのが好まし い。 注射による投与としては、 皮下投与、 腹腔内投与、 動脈投与、 静脈投与等が 例示できる。 このうち、 患部付近の動脈への動脈注射又は患部への直接投与が最 も好ましい。 また、 本発明の徐放性医薬が薬剤として抗癌剤を含み、 上記の癌治 療に用いる場合は、 癌の治療で用いられる他の薬剤を含有させてもよい。 このよ うな薬剤としては、 リビオドール等の造影剤または血管閉塞剤、 スタウロスポリ ン等のアポトーシス誘導剤、 ステロイ ド、 シクロスポリン等の免疫抑制剤、 血管 新生抑制剤、 モルヒネ等の痛み止めのための麻薬等が例示できる。  When the sustained-release medicament of the present invention contains an anticancer agent as a drug and is used for the above cancer treatment, the administration route is preferably administration by injection, and the dosage form is preferably injection. Examples of administration by injection include subcutaneous administration, intraperitoneal administration, arterial administration, intravenous administration and the like. Of these, arterial injection into the artery near the affected area or direct administration to the affected area is most preferable. In addition, when the sustained-release medicament of the present invention contains an anticancer agent as a drug and is used for the above-described cancer therapy, it may contain other drugs used for cancer therapy. Examples of such drugs include contrast media such as ribiodol or vascular occlusive agents, apoptosis inducers such as staurosporine, immunosuppressants such as steroids and cyclosporine, angiogenesis inhibitors, and narcotics such as morphine for pain relief. Can be illustrated.
本発明の医薬の投与量は、 投与対象の年齢、 性別、 症状、 投与経路、 投与回数 により異なり、 広範囲に変えることができる。 例えば、 包含される薬剤の有効量 ととして、 一回につき体重 1 k gあたり 0. O l mg〜:! O O Omgの範囲の投 与量を選ぶことができ、 1 日 1回から数回に分けて投与するのが好ましい。 発明を実施するための最良の形態 The dosage of the medicament of the present invention is the age, sex, symptom, route of administration, number of times of administration. Varies and can vary widely. For example, the effective amount of drug included is: 0.1 mg / kg body weight at a time! A dose in the range of OO Omg can be selected, preferably administered once to several times a day. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明の範囲は これらによって限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited by these.
(実施例 1) パクリタキセル含有多孔質ァパタイ ト粒子の製造と粒子形態  (Example 1) Production and particle morphology of paclitaxel-containing porous apatite particles
0.25mol/lの水酸化カルシウム懸濁液(2 リットル) 中に 0.15mol/lのリン酸水 溶液(1 リ ッ トル)を滴下してァパタイ ト懸濁液を合成した。 合成した懸濁液を A potassium suspension (1 liter) was added dropwise to a 0.25 mol / l calcium hydroxide suspension (2 liters) to synthesize an apatite suspension. The synthesized suspension
120°Cで乾燥させてァパタイ ト含有量を測定し、懸濁液単位量当たりのァパタイ ト 重量を算出した。 150mg のパク リ タキセル (タキソール ; 和光純薬社 CatAfter drying at 120 ° C, the content of the buffer was measured, and the weight of the buffer per unit amount of suspension was calculated. 150mg of Pakri Taxel (Taxol; Wako Pure Chemical Industries, Ltd. Cat)
No.163-18614, Lot No. CEG1585, 分子量 853.91, assay 97%(HPLC)) を 100mlの エタノールに分散し、 500mlのァパタイ ト懸濁液 (約 6gのァパタイ ト含有量) に 混合した。 得られたアパタイ トノパクリタキセル/ ^エタノール懸濁液、 ならびに パクリタキセルを含有していないァパタイ ト エタノール懸濁液を Buchiネ±製の スプレイ ドライヤーにより噴霧乾燥を行レ、、多孔質球形粒子を作製した(試料 A: パクリタキセルなし、 試料 B :パクリタキセル 2.4%含有)。 作製した粒子の走査 型電子顕微鏡 (SEM) 写真像を図 1に示す。 SEM像より明らかなように、 パクリタ キセルの混合によらず、 作製した粒子はいずれも球形を呈していた。 100 個の粒 子から測長した粒子径 (直径) は試料 A (パクリタキセルなし) では 3.31±0.83 urn (最大 6· 1μπι、 最小 1.9/1 m)、 試料 B (パクリタキセル 2.4%含有)では 3.42No. 163-18614, Lot No. CEG1585, molecular weight 853.91, assay 97% (HPLC)) was dispersed in 100 ml of ethanol and mixed with 500 ml of a suspension of a suspension (approximately 6 g of a suspension). The obtained apatite tonopaclitaxel / ^ ethanol suspension and the apatite ethanol suspension not containing paclitaxel were spray-dried with a spray dryer manufactured by Buchi Ne ± to produce porous spherical particles ( Sample A: no paclitaxel, sample B: containing 2.4% paclitaxel). Figure 1 shows a scanning electron microscope (SEM) photographic image of the particles produced. As is clear from the SEM image, all the particles produced were spherical, regardless of the mixing of paclitaxel. The particle diameter (diameter) measured from 100 particles is 3.31 ± 0.83 urn (maximum 6.1 μπι, minimum 1.9 / 1 m) for sample A (without paclitaxel), and 3.42 for sample B (contains 2.4% paclitaxel).
±1· 13μπι (最大 9, l//m、 最小 1.8/ m) であった。 パクリタキセルの混合による 粒子形態および粒子径への変化は観測されなかった。 また、 試料 B (パクリタキ セル 2.4%含有)の粒度分布測定の結果を図 2に示す。 スプレイ ドライ処理した粒 子はいずれも 1 から 20/zmに分布していることが分かる。 この結果から、 10 zm 以上の粒子は測定中に凝集した結果と考えられる。また、平均粒子径は試料 A (パ クリタキセルなし) では 4.0±0.2μηι、 試料 Β (パクリタキセル 2.4%含有)では± 1 · 13μπι (maximum 9, l // m, minimum 1.8 / m). No change in particle morphology and particle size due to mixing of paclitaxel was observed. Figure 2 shows the particle size distribution measurement results for Sample B (containing paclitaxel 2.4%). It can be seen that the spray-dried particles are all distributed from 1 to 20 / zm. From this result, it is considered that particles of 10 zm or more aggregated during the measurement. The average particle size is 4.0 ± 0.2μηι for sample A (without paclitaxel), and the average particle size for sample Β (containing 2.4% paclitaxel).
4.0±0.2μπι であった。 従って、 パクリタキセルを混合することで粒度分布に違 いは観測されなかった。 It was 4.0 ± 0.2 μπι. Therefore, mixing paclitaxel makes a difference in the particle size distribution. Was not observed.
また、 300mgのパクリタキセルを 50mlのエタノールに分散し、 上記と同様の方 法で合成したアパタイ ト懸濁液 250ral (3gのアパタイ ト含有量) に混合した。 混 合したァパタイ ト パクリタキセル/エタノール懸濁液を Buchi社製のスプレイ ドライヤーにより上記と同じ条件で噴霧乾燥を行レ、、パクリタキセル含有(7. 3%) 多孔質ァパタイ ト球形粒子を合成した(試料 C )。 図 1に試料 Cの走査型電子顕微 鏡 (SEM) 像も示す。  In addition, 300 mg of paclitaxel was dispersed in 50 ml of ethanol, and mixed with 250 ral (3 g of apatite content) of an apatite suspension synthesized in the same manner as described above. The mixed apatite paclitaxel / ethanol suspension was spray-dried with a spray dryer manufactured by Buchi under the same conditions as above to synthesize paclitaxel-containing (7.3%) porous apatite spherical particles (sample) C). Figure 1 also shows a scanning electron microscope (SEM) image of Sample C.
(実施例 2 ) パクリタキセル含有量分析 (Example 2) Paclitaxel content analysis
実施例 1で作製した各粒子中に含まれるパクリタキセル含有量を UV 法および 熱分析法によりそれぞれ定量した。 10mlの精製水 エタノール混合溶媒(50 : 50) に、 試料 B 13. 2、 10. 6、 8mgを分散させて溶出させたパクリタキセルを 230nmの 波長で定量した。 その結果、 作製した粒子重量あたり 2. 4± 0. 2%含有しているこ とが分かった。 また、 試料 C 4. 26、 6. 03、 7. 19mg を同様の方法で定量を行った。 その結果、 粒子重量あたり 7. 3±0. 4%含有していることが分かった。  The paclitaxel content contained in each particle produced in Example 1 was quantified by UV method and thermal analysis method. Paclitaxel eluted by dispersing Sample B 13.2, 10.6, and 8 mg in 10 ml of purified water ethanol mixed solvent (50:50) was quantified at a wavelength of 230 nm. As a result, it was found that the content was 2.4 ± 0.2% per weight of the produced particles. Samples C 4.26, 6.03, and 7.19 mg were quantified in the same manner. As a result, it was found that 7.3 ± 0.4% was contained per particle weight.
また、 熱分析測定の結果を図 3に示す。 これより、 アパタイ ト単体 (試料 A) の熱分析では 1200°Cまでなだらかな重量減少が観測された。 重量減少は 11. 6wt% であり、発熱は殆ど観測されなかった。パクリタキセルを含有する試料(試料 B、 C )では、 242、 347、 455°Cに発熱ピークが観測された。 1200°Cまでの重量減少は、 それぞれ 13. 6% (試料 B ) と 19. 6% (試料 C )であった。パクリタキセル含有量は、 重量減少 (試料 B—試料 A、 試料 C一試料 A) の引き算により算出した。 その結 果、 パクリタキセル含有量は 2. 0wt% (試料 B ) と 8. 0wt% (試料 C ) であった。 こ れらの結果は UV測定と良く一致していた。  Figure 3 shows the results of thermal analysis measurement. As a result, in the thermal analysis of the single apatite (sample A), a gentle weight loss up to 1200 ° C was observed. The weight loss was 11.6 wt%, and almost no exotherm was observed. In samples containing paclitaxel (samples B and C), exothermic peaks were observed at 242, 347, and 455 ° C. The weight loss to 1200 ° C was 13.6% (Sample B) and 19.6% (Sample C), respectively. The paclitaxel content was calculated by subtracting the weight loss (sample B—sample A, sample C one sample A). As a result, the paclitaxel content was 2.0 wt% (Sample B) and 8.0 wt% (Sample C). These results were in good agreement with the UV measurements.
(実施例 3 ) パクリタキセル含有多孔質ァパタイ ト球形粒子の FT-IR分析 実施例 1で作製したパクリタキセル含有多孔質ァパタイ ト球形粒子の FT-IR分 析の結果を図 4に示す。パクリタキセルに起因する吸収ピークが 1742、 1711、 1577、(Example 3) FT-IR analysis of paclitaxel-containing porous apatite spherical particles Fig. 4 shows the results of FT-IR analysis of paclitaxel-containing porous apatite spherical particles prepared in Example 1. Absorption peaks due to paclitaxel are 1742, 1711, 1577,
1347、 1316、 1276、 1244、 907、 773、 708cnT 1にそれぞれ観測された。 また、 パ クリタキセル含有量の違いによりこれら吸収ピーク強度が増加していることが明 らかであった。 また、 1490、 1453、 SScnT 1に炭酸基に帰属できる吸収ピークが 観測された。 これは、 炭酸基がアパタイ ト構造中の水酸基やリン酸基に置換して いることを示すものである。 Observed at 1347, 1316, 1276, 1244, 907, 773, and 708cnT 1 , respectively. It is also clear that these absorption peak intensities increase due to the difference in paclitaxel content. It was easy. Further, 1490, 1453, absorption peaks assignable to carbonate groups SSCNTs 1 was observed. This indicates that the carbonate group is substituted with a hydroxyl group or a phosphate group in the apatite structure.
(実施例 4 ) 粒子の製造と硬化水溶液中での浸漬時間による強度物性 (Example 4) Production of particles and strength properties due to immersion time in aqueous curing solution
アルギン酸ナトリウム(和光純薬社製;粘度 500-600cps (lw/v%. 20°C)、pH 7. 3) ) を用いて 1 %アルギン酸水溶液を調製した。セルマスター(As one社製)により、 アルギン酸ナトリゥムを精製水に機械的に混合後、 12,000rpmにて 10分間の遠心 分離 (トミー精ェ社製) を行い、 不溶解物の除去と脱泡を行った。 lOralのアルギ ン酸水溶液に実施例 1で作製した純粋な多孔質ァパタイ ト球形粒子.(試料 A) lg を混合した。この混合溶液をマイク口ピぺッ ト(200 1)を用いて、硬化水溶液( 2 mol/1の塩化カルシウム溶液 100ml) 中に滴下した。得られた粒子はいずれも球形 の形態であった。 硬化水溶液に浸漬する時間を 10分、 1、 2、 4、 24時間と変化さ せて、 時系列的な強度変化 (圧縮試験) を検討した。 テクスチャーアナライザー を用いて、 精製水中にプローブを速度 0. lram/sで押し込み、 90%圧縮を行った。 作 製した粒子の外形と圧縮試験後の粒子の形態を図 5に示す。  A 1% aqueous alginate solution was prepared using sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd .; viscosity 500-600 cps (lw / v%. 20 ° C), pH 7.3)). After mixing sodium alginate mechanically with purified water using Cell Master (As one), centrifuge for 10 minutes at 12,000 rpm (Tomy Seye) to remove insoluble matter and degas Went. The pure porous apatite spherical particles prepared in Example 1 (Sample A) lg were mixed with lOral aqueous alginate solution. This mixed solution was dropped into a hardening aqueous solution (100 ml of 2 mol / 1 calcium chloride solution) using a pipette with a microphone (200 1). The obtained particles were all spherical. The time-series strength change (compression test) was examined by changing the time of immersion in the cured aqueous solution to 10 minutes, 1, 2, 4, and 24 hours. Using a texture analyzer, the probe was pushed into purified water at a speed of 0.1 lram / s and compressed 90%. Figure 5 shows the outer shape of the particles produced and the morphology of the particles after the compression test.
作製した 25個(時系列当たり 5個) の粒子の平均粒子直径もテクスチャーアナ ライザ一により計算した。 その平均値は 2. 04±0. 03mm (最大粒子直径: 2. 07mm、 最小粒子直径: 1. 90隱) であった。 また、 10、 20、 30%の歪応力を与えた場合の強 度の時系列変化を図 6に示す。 10分の浸漬でも十分に极いやすい強度を持った粒 子が得られた。 硬化水溶液に浸漬する時間を変化させることで圧縮強度は若干上 昇した。  The average particle diameter of the 25 particles produced (5 particles per time series) was also calculated using a texture analyzer. The average value was 2.04 ± 0.03 mm (maximum particle diameter: 2.07 mm, minimum particle diameter: 1.90 mm). In addition, Fig. 6 shows the time-series changes in strength when strain stresses of 10, 20, and 30% are applied. Particles with sufficient strength to be obtained even after immersion for 10 minutes were obtained. The compressive strength increased slightly by changing the time of immersion in the curable aqueous solution.
(実施例 5 ) 粒子径による粒子の強度物性変化 (Example 5) Strength property change of particle depending on particle diameter
実施例 4と同様にして、 1%アルギン酸水溶液 lOralに対して純粋な多孔質アバ タイ ト球形粒子 (試料 A) lgを混合した。 この混合溶液を、 実施例 4と同様の硬 化水溶液に滴下して 10分間浸漬し、 粒子の直径のみを変化させた粒子を 50個作 製した。 実施例 4と同じ条件で圧縮強度試験を行った。 図 7に粒子直径と強度の 相関図を示す。 横軸に 2mm直径で規格化した値を、 縦軸に最小強度で規格化した 値を示す。 作製した粒子の直径は、 1.47から 2.69mmの範囲である。 図 7に示し たように直径と強度の相関は、 一次関数で近似できる。 回帰曲線分析の結果、 Y=l.0073Χ R=0.95であった。 材料強度が直径に依存することが明らかであった。 In the same manner as in Example 4, pure porous abatite spherical particles (sample A) lg were mixed with 1% alginate aqueous solution lOral. This mixed solution was dropped into a hardening aqueous solution similar to that in Example 4 and immersed for 10 minutes to produce 50 particles in which only the particle diameter was changed. The compressive strength test was performed under the same conditions as in Example 4. Figure 7 shows the correlation between particle diameter and strength. The horizontal axis is normalized by 2mm diameter, and the vertical axis is normalized by minimum strength. Indicates the value. The diameter of the particles produced is in the range of 1.47 to 2.69 mm. As shown in Fig. 7, the correlation between diameter and intensity can be approximated by a linear function. As a result of regression curve analysis, Y = l.0073ΧR = 0.95. It was clear that the material strength was dependent on the diameter.
(実施例 6) ァパタイ ト含有量による粒子の強度物性変化 (Example 6) Change in strength properties of particles depending on the content of the particles
実施例 4と同様に調製した 1 %アルギン酸水溶液に対して 5 10, 20, 30, 40wt%の純粋な多孔質ァパタイ ト球形粒子 (試料 A) を混合し、 実施例 4と同様の 硬化水溶液に滴下して 10分間浸漬し、 粒子を作製した。 得られた粒子を洗浄し、 同様にテクスチャーアナライザ一により圧縮強度試験を行った。 各ァパタイ ト濃 度で作製した粒子の大きさは、 1.81±0.03,2.02±0.04,2.11±0.04,2.21±0.01. 2.13±0.03mmであった。 大きさによる強度を補正するため、 直径を 2mmに補正し てプロットした (図 8)。 ァパタイ ト含有量を増加させることで直線的に強度が高 くなることが分かった。  Pure porous apatite spherical particles (Sample A) of 5 10, 20, 30, and 40 wt% were mixed with the 1% alginate aqueous solution prepared in the same manner as in Example 4, and the resulting cured aqueous solution was the same as in Example 4. Dropped and dipped for 10 minutes to produce particles. The obtained particles were washed and similarly subjected to a compressive strength test using a texture analyzer. The size of the particles prepared at each concentration was 1.81 ± 0.03, 2.02 ± 0.04, 2.11 ± 0.04, 2.21 ± 0.01. 2.13 ± 0.03 mm. In order to correct the intensity depending on the size, the plot was made with the diameter corrected to 2 mm (Fig. 8). It was found that the strength increased linearly with increasing the content of the ferrite.
(実施例 7) アルギン酸濃度による粒子の強度物性変化 (Example 7) Strength property change of particles due to alginate concentration
1 2 3%のアルギン酸水溶液に対してそれぞれ 10 。の純粋な多孔質ァパタイ ト球形粒子 (試料 A) を混合し、 実施例 4と同様の硬化水溶液に滴下して 10分間 浸漬し、 粒子を作製した。 同様に圧縮強度試験を行い、 2 直径で規格化した。 その結果を図 9に示す。 図中の%表示は歪み値である。 アルギン酸濃度が増加す るに従い、 対荷重強度が明らかに増加した。  1 2 10 for each 3% aqueous alginate solution. Pure porous sphere spherical particles (sample A) were mixed, dropped into a cured aqueous solution similar to that in Example 4, and immersed for 10 minutes to produce particles. Similarly, a compressive strength test was conducted and normalized by 2 diameters. The results are shown in Fig. 9. The% display in the figure is the distortion value. As the alginic acid concentration increased, the load carrying strength clearly increased.
(実施例 8 ) 硬化水溶液の違いによる粒子の強度物性変化 (Example 8) Strength property change of particles due to difference in curing aqueous solution
実施例 4と同様の混合 ·滴下条件にて、各硬化水溶液(塩化カルシウム水溶液、 塩化ス トロンチウム水溶液、塩化バリゥム水溶液) に 10分間浸漬させて、 粒子を 作製した。 実施例 4と同じ条件で圧縮強度試験を行った。 大きさによる強度を補 正するため、 直径を 2 に^格化した。 各硬化水溶液で作製した粒子の 90%歪み に必要な荷重は、 1016±77 1303±45 1584± 126 gであった。 硬化水溶液によつ て、 粒子の強度を増加できることが明らかであった。 (実施例 9 ) 本発明の粒子製剤の薬剤徐放性試験 Under the same mixing and dropping conditions as in Example 4, particles were prepared by immersing in each aqueous solution of hardening (calcium chloride aqueous solution, strontium chloride aqueous solution, and barium chloride aqueous solution) for 10 minutes. The compressive strength test was performed under the same conditions as in Example 4. The diameter was scaled to 2 in order to correct the strength due to size. The load required for 90% strain of the particles prepared with each aqueous curable solution was 1016 ± 77 1303 ± 45 1584 ± 126 g. It was clear that the strength of the particles could be increased by the aqueous curing solution. (Example 9) Sustained drug release test of the particle preparation of the present invention
実施例 1で作製したパクリタキセル含有多孔質ァパタイ ト球形粒子 (パクリタ キセル 7. 3%含有)を用いて、実施例 4と同様の方法で粒子(アルギン酸濃度 1%; アルギン酸水溶液に対して 10wt%ァパタイ ト含有) を作製し、 本発明の製剤とし て得た。 得られた粒子製剤について、 水/エタノール (50ノ50) を用いてパクリ タキセルの溶出試験を行った。 5mlの溶液に 1個の粒子製剤を加えて 12時間まで 静置した。 上清を採取し、 UV測定 (波長: 230nm)を行った。 その結果、 粒子製剤 からすべてのパクリタキセルが溶出するには、 最低 6時間必要であった。 一方、 1. 3mgのパクリタキセルを 4ml の溶液に浸漬した場合、 わずか 1時間以内にすべ てのパクリタキセルが溶出した。 従って、 アルギン酸ゲルによるパクリタキセル 含有多孔質ァパタイ ト球形粒子のコーティングは、 薬剤徐放に有効であることが 明らかであった。  Using the paclitaxel-containing porous apatite spherical particles (containing paclitaxel 7.3%) prepared in Example 1, particles (alginic acid concentration 1%; 10 wt% apatite with respect to the alginate aqueous solution) were prepared in the same manner as in Example 4. Was obtained as a preparation of the present invention. The resulting particle preparation was subjected to a paclitaxel elution test using water / ethanol (50-50). One particle formulation was added to 5 ml of solution and allowed to stand for up to 12 hours. The supernatant was collected and subjected to UV measurement (wavelength: 230 nm). As a result, a minimum of 6 hours was required for all paclitaxel to elute from the particle formulation. On the other hand, when 1.3 mg of paclitaxel was immersed in 4 ml of solution, all paclitaxel eluted within just 1 hour. Therefore, it was clear that coating of paclitaxel-containing porous apatite spherical particles with alginate gel was effective for sustained drug release.
同様に、実施例 1で作製したパクリタキセル含有多孔質ァパタイ ト球形粒子(パ クリダキセル 2. 4%含有) を用いて、 実施例 4と同様の方法で粒子(アルギン酸濃 度 1 % ;アルギン酸水溶液に対して 10wt%, 20 %ァパタイ ト含有)を作製した。 得られた粒子 (直径約 2mm) 中に含まれるパクリタキセル量は、 水/エタノール Similarly, using the paclitaxel-containing porous apatite spherical particles (containing paclitaxel 2.4%) prepared in Example 1, particles (alginic acid concentration: 1%; with respect to aqueous alginate solution) in the same manner as in Example 4. 10wt%, 20% containing). The amount of paclitaxel contained in the obtained particles (diameter about 2mm) is water / ethanol.
(50/50) に 5個の粒子を加えて上澄みの UV測定(波長: 230nm) から計算した。 10、 20wt%7パタイ ト含有粒子製剤には、 それぞれ 0. 035mgノ個及び 0. 08mgZ個 のパクリタキセルが含有されていた。 リン酸緩衝溶液 (PBS) に 0. 25mMのカルシ ゥムと 0. 15mMのマグネシウムと 0. lwt%の Tween_80を加えた溶液 20mlに対して 1個の粒子製剤を加えて、 1、 2、 12、 24時間攪拌を行った。 遠心分離により上澄 みを採取し、 UV 測定 (波長: 230nm) を行った。 その結果を図 1 0に示す。 いず れも 24時間で約 20%から 30%の徐放量であった。 5 particles were added to (50/50), and calculation was performed from the UV measurement (wavelength: 230 nm) of the supernatant. The 10 and 20 wt% 7-partite particle formulations contained 0.035 mg and 0.08 mgZ paclitaxel, respectively. Add 1 particle formulation to 20 ml of phosphate buffer solution (PBS) containing 0.25 mM calcium, 0.15 mM magnesium and 0.1 lwt% Tween_80. The mixture was stirred for 24 hours. The supernatant was collected by centrifugation and UV measurement (wavelength: 230 nm) was performed. The results are shown in FIG. In both cases, the sustained release amount was about 20% to 30% in 24 hours.
(実施例 1 0 ) 培養癌細胞に対する粒子製剤乾燥体の有効性 (Example 10) Efficacy of dried particle preparation for cultured cancer cells
培養癌細胞として CRL- 1666乳腺癌細胞株(Rockvi l l, MA, USA)を用いた。 細胞 は 10% fetal bovine serum と 80. 5 pg/ral の streptomycinならびに 80. 5 U/ral penicill in と 1% L-glutaraineを添カ卩した Dulbecco Modified Eagle Medium 、全 ての製品は from Gibco Invitrogen™ Corp, CA, USAより購入)にて、 37°Cで 5% C02 加湿気圧の条件で培養した。 106cel ls/ml の濃度でおよそ 3 日毎に培地交換を行 つた。 The CRL-1666 breast cancer cell line (Rockville, MA, USA) was used as the cultured cancer cells. The cells are Dulbecco Modified Eagle Medium supplemented with 10% fetal bovine serum and 80.5 pg / ral streptomycin and 80.5 U / ral penicill in and 1% L-glutaraine. All products are from Gibco Invitrogen ™ 5% C0 2 at 37 ° C (purchased from Corp, CA, USA) Incubation was performed under humidified pressure conditions. The medium was changed approximately every 3 days at a concentration of 10 6 cel ls / ml.
一方、 実施例 9で作製したパクリタキセル 7. 3 %含有粒子(アルギン酸濃度 1 % ; アルギン酸水溶液に対して 10wt%ァパタイ ト含有)を室温にて 24時間乾燥 させて乾燥体を得た。 この乾燥体を上記の培養細胞と共培養した。 顕微鏡下にお いて 2 日目から細胞の減少を認め、その効果は 4週を経過しても維持されていた。 図 1 1に細胞培養の写真 ((a)—週目、 (b) 四週目) を示す。  On the other hand, particles containing 7.3% of paclitaxel prepared in Example 9 (alginate concentration: 1%; containing 10 wt% apatite with respect to alginate aqueous solution) were dried at room temperature for 24 hours to obtain a dried product. This dried body was co-cultured with the above cultured cells. Under the microscope, cell reduction was observed from the second day, and the effect was maintained even after 4 weeks. Figure 11 shows a picture of cell culture ((a) -week, (b) week 4).
(実施例 1 1 ) 本発明の粒子製剤の In vivoでの有効性 (Example 1 1) In vivo efficacy of the particle preparation of the present invention
(1) ラッ ト乳癌脊椎転移モデル  (1) Rat breast cancer spinal metastasis model
CRL- 1666乳腺癌細胞株(Rockvi l l, MA, USA)を用いた。 細胞は 10% fetal bovine serum と 80. 5 pg/ml の streptomycin ならびに 80. 5 U/ml penici l l in と 1% L-glutaraine を添カロした Dulbecco Modified Eagle Medium (全ての製品は from Gibco Invitrogen™ Corp, CA, USAより購入)にて 37°Cで 5% C02加湿気圧の条件 で培養した。 106cel l s/ml の濃度でおよそ 3 日毎に.培地交換を行った。 コンフル ェントとなった細胞は 0. 01M EDTAで剥がし、増殖期の細胞を、 8週齢の雌 Fi scher 344ラット (体重 150- 180g、 Charles River Laboratories, JAPAN) の腹側の皮 下に 1ml = 1 X 106個注入し、 移植用固形腫瘍片を作製した。 注入後 10 日目の腫 瘍塊を摘出し、 滅菌生理食塩水中に入れて 1 X 1 X 1 ram大にした。 CRL-1666固形 腫瘍片をラットの腰椎に移植し、 ラット乳癌脊椎転移モデルを得た。 CRL-1666 breast cancer cell line (Rockville, MA, USA) was used. Cells were Dulbecco Modified Eagle Medium supplemented with 10% fetal bovine serum, 80.5 pg / ml streptomycin, and 80.5 U / ml penici ll in and 1% L-glutaraine (all products from Gibco Invitrogen ™ Corp , CA, and cultured under conditions of 5% C0 2 humidified pressure at 37 ° C for at purchased from USA). The medium was changed approximately every 3 days at a concentration of 10 6 cel ls / ml. Confluent cells were detached with 0.01 M EDTA, and proliferating cells were removed from the ventral skin of 8-week-old female Fischer 344 rats (weight 150-180 g, Charles River Laboratories, JAPAN). Injecting 1 × 10 6 cells to produce solid tumor pieces for transplantation. The tumor mass on the 10th day after injection was removed and placed in sterile physiological saline to a size of 1 X 1 X 1 ram. A CRL-1666 solid tumor fragment was transplanted into the lumbar spine of a rat to obtain a rat breast cancer spinal metastasis model.
得られたラット乳癌脊椎転移モデルを、コントロール群と局所治療群に分けた。 コントロール群のラットは腫瘍片を入れた骨孔をパクリタキセル非含有粒子製剤 で塞いだ。局所治療群は実施例 9で作製したパクリタキセル 2. 4%含有粒子(アル ギン酸濃度 1%、 アルギン酸水溶液に対して 10 %ァパタイ ト含有)を投与した。 下記の各試験を行い、 log- rank検定を用いてコントロール群と局所治療群を比較 した。 統計学的評価は、 P〈0. 05を有意差ありとした。  The obtained rat breast cancer spinal metastasis model was divided into a control group and a local treatment group. The rats in the control group closed the bone hole containing the tumor pieces with a paclitaxel-free particle preparation. In the local treatment group, particles containing paclitaxel 2.4% prepared in Example 9 (alginate concentration 1%, containing 10% apatite with respect to alginate aqueous solution) were administered. The following tests were performed, and the control group and the local treatment group were compared using a log-rank test. For statistical evaluation, P <0.05 was considered significant.
(2) 下肢運動機能評価  (2) Lower limb motor function evaluation
谷群の下肢連動機能評価 Basso-Beattie-Bresnahan locomotor rating scale Basso-Beattie-Bresnahan locomotor rating scale
(B- B- Bスコア) を用いて連日行った。 B-B-Bスコアはラット歩容を 21点満点で スコア化したものである。ラットを 57 X 38 X 30cmのプラスティックの囲いの中に 入れて 4分間観察した。 腫瘍増殖の初期にはつま先や踵の回旋が見られ、 20点か ら 14点に相当する。神経脱落症状が出ると踏み外しや跛行が出現し、 13点から 8 点に相当する。 脊髄圧迫が進行すると下肢の持続的な運動が見られなくなり 7点 から 0点に相当する。 すべてのテス トは 2重盲目試験で行った。 コントロール群 は先に報告されたと同様に約 2週で下肢麻痺を生じて死に至った。術後 15 日での 平均 B-B-B scaleはコントロール群が 5. 2 日、 局所治療群が 16. 4 日であつだ (図(B-B-B score) was used every day. BBB score is based on a rat gait of 21 points It is a score. Rats were placed in a 57 x 38 x 30 cm plastic enclosure and observed for 4 minutes. In the early stages of tumor growth, rotation of toes and heels is observed, corresponding to 20 to 14 points. When a neurological deficit symptom appears, a trauma or lameness appears, which corresponds to 13 to 8 points. When spinal cord compression progresses, continuous movement of the lower limbs is not observed, which corresponds to 7 to 0 points. All tests were done in a double blind study. The control group died of paralysis of the lower extremities in about 2 weeks, as reported previously. The average BBB scale at 15 days after surgery is 5.2 days for the control group and 16.4 days for the local treatment group (Fig.
1 2 )。 1 2).
(3) 麻痺発生期間  (3) Paralysis occurrence period
麻痺発生までの期間を無病期間 (Di sease-free t ime) として、 Kaplan-Meier 曲線で表し、 コントロール群と局所治療群で比較した。 麻痺発生までの平均期間 は、 コント口ール群と局所治療群がそれぞれ 11. 8、 20. 8 日であり、 局所投与群で 有意に延長していた(P=0. 006)。  The period until the occurrence of paralysis was expressed as a Kaplan-Meier curve as a disease-free time, and was compared between the control group and the local treatment group. The mean time to onset of paralysis was 11.8 and 20.8 days in the control mouth group and local treatment group, respectively, and was significantly prolonged in the local administration group (P = 0.006).
(4) 生存期間  (4) Survival period
各群の生存率を Kaplan- Meier曲線で表し、平均生存期間をコントロール群と局 所治療群で比較した。 コント口ール群と局所投与群の平均生存期間はそれぞれ 14. 0 日と 21. 6 日で、局所投与群では最長で 32 日と統計学的に有意な生存期間の 延長を認めた (P=0. 014、 図 1 3 )。  The survival rate of each group was expressed by Kaplan-Meier curve, and the average survival time was compared between the control group and the local treatment group. The mean survival times in the control mouth group and the local administration group were 14.0 days and 21.6 days, respectively, while the local administration group had a statistically significant increase in survival time of up to 32 days (P = 0.014, Figure 1 3).
以上のように、 パクリタキセル含有アパタイ トゲル製剤は、 ラット乳癌脊椎転 移モデルで脊椎麻痺の発生を有意に延長し、 生存率を改善した。  As described above, paclitaxel-containing apatite gel preparations significantly prolonged the occurrence of spinal paralysis and improved survival in a rat breast cancer spinal transition model.
(5) 平均腫瘍重量 (腫瘍サイズ)  (5) Average tumor weight (tumor size)
骨外と骨内の腫瘍を区別して評価した。 骨外腫瘍は椎体外軟部組織増殖で評価 し、 腫瘍の最大径(a) X最小径(b)を求め、 0. 5ab2 *の式から腫瘍重量 (mg)を算出 した。 全例の骨外病変 (椎体外軟部組織) 腫瘍重量を下記表 1に示す。 実験終了 時のコント口ール群と局所治療群の平均腫瘍重量は、 それぞれ 6. 14gと 6. 09gで あり、 統計学的有意差はなかった。 表 1 Evaluation was made by distinguishing extra- and intra-osseous tumors. Extraosseous tumors were evaluated by extravertebral soft tissue growth, and the maximum diameter (a) X minimum diameter (b) of the tumor was determined, and the tumor weight (mg) was calculated from the formula 0.5ab 2 *. All cases of extraskeletal lesions (extravertebral soft tissue) Tumor weight is shown in Table 1 below. The mean tumor weights in the control mouth group and the local treatment group at the end of the experiment were 6.14 g and 6.09 g, respectively, and there was no statistically significant difference. table 1
Figure imgf000020_0001
Figure imgf000020_0001
(6) 骨内病変の顕微鏡観察 (6) Microscopic observation of intraosseous lesions
切開した脊柱と腫瘍を 10% ホルマリン溶液で固定し、 脱灰させ、 パラフィン包 埋した。 腫瘍を含む脊柱を水平方向にカットした 3 μ mの切片を、 へマトキシリ ン ·ェォシン染色 (H & E染色) した。 椎体浸潤と脊柱管内占拠の程度を評価し た。 H & E染色した脊椎の横断切片では腫瘍の強い浸潤像を認め、 腫瘍は脊柱管 内を広汎に占拠し、 脊髄を圧迫していた (図 1 4、 図 1 5 )。  The incised spine and tumor were fixed with 10% formalin solution, decalcified, and embedded in paraffin. A 3 μm section obtained by horizontally cutting the spinal column containing the tumor was stained with hematoxylin-eosin (H & E staining). The degree of vertebral body invasion and occupancy in the spinal canal was evaluated. The H & E-stained transverse section of the spine showed a strong infiltration of the tumor, which occupied the spinal canal extensively and pressed the spinal cord (Figures 14 and 15).
(7) X線学的評価  (7) X-ray evaluation
実験終了時に骨融解性病変を評価するために SOFTEX CSM-2 type (SOFTEX CO. , Tokyo JAPAN ) X-ray system を用いて X線学的評価を行った。 現像機は Konica SRX-101 を使用した。 ラッ トは椎体そのものが小さく、 骨融解性病変の評価が困 難で、 B-B-B scale による下肢運動機能評価の方が腫瘍増殖を質的、 空間時間的 によく反映していた。  To evaluate osteolytic lesions at the end of the experiment, X-ray evaluation was performed using the SOFTEX CSM-2 type (SOFTEX CO., Tokyo JAPAN) X-ray system. The development machine used was Konica SRX-101. Rats have a small vertebral body, making it difficult to evaluate osteolytic lesions. Evaluation of locomotor function using the B-B-B scale reflected tumor growth more qualitatively and spatiotemporally.
(実施例 1 2 ) 本発明の粒子製剤乾燥体の In vivoでの有効性 (Example 1 2) In vivo efficacy of the dried particle preparation of the present invention
実施例 1 1と同様な方法でラッ ト乳癌脊椎転移モデル (130-180g の Fischer Example 11 Rat breast cancer spinal metastasis model (130-180 g Fischer)
344ラットで 8週齢のメス) を作製し、 コントロール群、 全身治療群 (5mg/Kgの パクリタキセルを術後 1, 7, 14 日に尾静脈から投与)、 局所治療群に分類した。 局 所治療群には、 パクリタキセル 7. 2wt%含有粒子(アルギン酸濃度 1%;アルギン 酸水溶液に対して 10wt%アパタイ ト含有)の乾燥体を用いた。 評価方法は、 実施 例 1 1と同様な方法にて行った。 344 rats (8-week-old female) were prepared and classified into the control group and the systemic treatment group (5 mg / Kg paclitaxel was administered from the tail vein on days 1, 7, and 14) and the local treatment group. The topical treatment group included particles containing paclitaxel 7.2 wt% (alginate concentration 1%; algin A dried product containing 10 wt% apatite with respect to the acid aqueous solution was used. The evaluation method was performed in the same manner as in Example 11.
(1) 下肢運動機能評価  (1) Lower limb motor function evaluation
コントロール群のラッ トは平均 9 日で麻痺が発生し始め、 平均 14· 75 日で死亡 した。 全身治療群と局所治療群はそれぞれ平均 10. 4 日、 12. 8 日で麻痺が発生し 始め、 それぞれ平均 14. 22 日、 17. 45 日で死亡した。  Rats in the control group began to paralyze on average 9 days and died on average 14-75 days. In the systemic treatment group and the local treatment group, paralysis began to occur on averages of 10.4 days and 12.8 days, respectively, and died on averages of 14.22 days and 17.45 days, respectively.
(2) 麻痺発生期間  (2) Paralysis occurrence period
単変量解析を用いて治療群 (全身治療群と局所治療群) とコントロール群を比 較すると、 局所治療群では麻痺発生までの期間が 12. 8 日とコントロール群の 9 日と比較して有意に延長していた (Pく 0. 05、 P=0. 044)。 一方、 全身治療群は統計 学的な有意差を認めなかった。 麻痺進行の程度を実験開始から 1週、 1週から 2 週まで、 2週以降に分けて AN0VA解析による分散分析と Fischer' s PLSD検定を用 いて 3群間を評価した。 1週目には 3群間に有意差なかったが、 1週から 2週では コント口ール群と比較して全身投与群と局所投与群は有意に麻痺の進行が遅延し ていた (P=0. 046 と P=0. 039)。 2週目以降は局所治療群の麻痺の進行が、 コント ロール群と全身治療群と比較して有意に遅延していた (P=0. 0028と P=0. 0025)。 以上のように、 局所投与群で有意に麻痺発生までの期間が延長しており、 しか も全身治療群で認めたような抗癌剤の毒性を示す症例はなかった。  When the treatment group (systemic treatment group and local treatment group) was compared with the control group using univariate analysis, the time to paralysis in the local treatment group was significant compared to 12.8 days compared to 9 days in the control group. (P-0.05, P = 0.044). On the other hand, there was no statistically significant difference in the systemic treatment group. The degree of paralysis was divided into 3 weeks using the AN0VA analysis of variance and Fischer's PLSD test, divided into 1 week from the start of the experiment, 1 week to 2 weeks, and after 2 weeks. There was no significant difference between the 3 groups at 1 week, but the progression of paralysis was significantly delayed in the systemic administration group and the local administration group compared with the control mouth group from 1 to 2 weeks (P = 0.046 and P = 0.039). From the second week onwards, the progression of paralysis in the local treatment group was significantly delayed compared to the control and systemic treatment groups (P = 0.0028 and P = 0.0025). As described above, the period until the onset of paralysis was significantly prolonged in the local administration group, and there were no cases of toxicity of anticancer drugs as observed in the systemic treatment group.
(3) 生存期間と体重変化  (3) Survival period and weight change
単変量解析を用いて治療群 (全身治療群と局所治療群) とコントロール群の生 存期間を比較すると統計学的な有意差を認めなかった(コントロール群 14. 75 日、 全身治療群 14. 22 日、局所治療群 17. 45 日;コントロール群に対して全身治療群、 局所治療群の P値はそれぞれ 0. 78、 0. 15)。  There was no statistically significant difference between the treatment group (systemic treatment group and local treatment group) and the control group using univariate analysis (control group 14.75 days, systemic treatment group 14. 22 days, local treatment group 17. 45 days; P values in systemic treatment group and local treatment group were 0.78 and 0.15, respectively, compared to control group.
また、 実験開始時のラットの平均体重は 144. lg (129- 181g) であった。 2週目 の体重が計測可能であったラットを対象として、各群の体重変化を paired t test を用いて評価した。 全身治療群では、 コントロール群ともに実験開始時と 2週で 統計学的に有意な違いは認めなかったが、 局所投与群は 2週での体重変化が少な い傾向を示していた。 一方、 全身治療群とコントロール群は実験開始時と比較し て体重が減少する傾向にあった (コントロール群 3. 2g、 全身治療群 5. 3g、 局所治 療群 0. 18g;全身治療群に対してコントロール群、 局所治療群の p値はそれぞれ 0. 62 0. 16)。 The average weight of the rats at the start of the experiment was 144.lg (129-181g). The change in body weight of each group was evaluated using a paired t test for rats whose body weight at 2 weeks could be measured. In the systemic treatment group, there was no statistically significant difference between the start of the experiment and 2 weeks in the control group, but the local administration group tended to have less weight change at 2 weeks. On the other hand, the body weight of the whole body treatment group and the control group tended to decrease compared to the time when the experiment was started (control group 3.2 g, whole body treatment group 5.3 g, local treatment Treatment group 0.18g; p-value in the control group and local treatment group is 0.62 0.
(実施例 1 3 ) (Example 1 3)
アルギン酸ナトリウム (和光純薬社製;粘度 500_600cps ( lw/v% 20°C)、 PH7. 3) を l 3% (w/v) の濃度で蒸留水に溶解し、 アルギン酸水溶液を調製した。 このァ ルギン酸水溶液に、 実施例 1 と同様にして作製した 5 40% (w/w) のパクリタキセ ル含有多孔質ァパタイ ト球形粒子 (パクリタキセル 2. 6%含有) を室温にて均一に 混合した。水酸ァパタイ トーアルギン酸混合物をマイクロピペット (200 /z l)を用 いて硬化水溶液 (2. 0Mの塩化バリゥム溶液) 中に滴下し、 2. 0 2. 8mmの大きさの 球形ゲルを調製した。 得られた水酸ァパタイ トーアルギン酸球形ゲルを少なく と も 24時間乾燥させ、堅固な水酸ァパタイ トーアルギン酸粒子を得た。 この粒子を AxHy-Ba (xと yはそれぞれアルギン酸濃度、 ァパタイ ト含有量を示す) と名づけ た。 Sodium alginate (Wako Pure Chemical Industries, Ltd.;. The viscosity 500_600cps (lw / v% 20 ° C), P H7 3) was dissolved in distilled water in a concentration of l 3% (w / v) , was prepared alginate solution. To this aqueous solution of alginate, 5 40% (w / w) paclitaxel-containing porous apatite spherical particles (containing 2.6% paclitaxel) prepared in the same manner as in Example 1 were uniformly mixed at room temperature. . Hydroxyapatite toalginic acid mixture was dropped into a hardening aqueous solution (2.0 M barium chloride solution) using a micropipette (200 / zl) to prepare a spherical gel having a size of 2.02.8 mm. The resulting hydroxyapatite toalginic acid spherical gel was dried for at least 24 hours to obtain firm hydroxyapatite toalginic acid particles. This particle was named AxHy-Ba (where x and y represent alginate concentration and potassium content, respectively).
粒子の内部構造はプラチナにてスパッタ被覆した後、 走査型電子顕微鏡(SEM) と EDXにて調べた。機械特性はテクスチャーアナライザー(Stable Micro Systems, UK)を用いて調べた。 圧縮強度は、 速度 0. 1 / sの円筒プローブ (5. 0mra直径) を 用いて測定した。 粒子の膨張率は下式によって D- PBS中で測定した。  The internal structure of the particles was sputter coated with platinum and then examined with a scanning electron microscope (SEM) and EDX. Mechanical properties were examined using a texture analyzer (Stable Micro Systems, UK). The compressive strength was measured using a cylindrical probe (5.0mra diameter) with a speed of 0.1 / s. The expansion rate of the particles was measured in D-PBS according to the following formula.
膨張率 = (W。- Wd) /Wd Expansion coefficient = (W.-W d ) / W d
(式中、 W。と Wdは膨張粒子および乾燥粒子の重量をそれぞれ示す。) (Where W. and W d indicate the weight of the expanded and dry particles, respectively)
パクリタキセル放出の挙動は 1% Tween_80含有 D- PBS中、 37°Cにて調べた。 パ クリタキセルの量は、 移動相がァセトニトリルと水 (体積比 60 40) からなり、 流速が l. O ml/minである高速液体クロマトグラフィー(HPLC)によって定量した。 パクリタキセルは UV検出器を用いて 227nmにて検出した。  The behavior of paclitaxel release was examined at 37 ° C in D-PBS containing 1% Tween_80. The amount of paclitaxel was quantified by high performance liquid chromatography (HPLC) in which the mobile phase consisted of acetonitrile and water (volume ratio 60 40), and the flow rate was l. O ml / min. Paclitaxel was detected at 227 nm using a UV detector.
図 1 6は、 バリゥムイオンで架橋した水酸ァパタイ トーアルギン酸粒子の断面 の SEM写真および EDX分析を示す。 A1H40-Baの SEM写真は 1 10 ju raの粒子径を 有する水酸ァパタイ トのマイク口粒子が粒子内に均一に分散していることを示し た。 A1H05-Baおよび A3H05- Ba上には、 水酸ァパタイ トのマイクロ粒子が現れな かった。 一方、 EDX 分析では調べたすべての種類の粒子に水酸ァパタイ トのマイ ク口粒子の均一な分散が示された。 アルギン酸と架橋したバリゥムイオンもまた 粒子中に均一に分散していた。 これらの結果は、 得られた水酸アパタイ ト一アル ギン酸粒子がその組成に関係なく均一であることを支持するものである。 Figure 16 shows SEM photographs and EDX analysis of the cross section of hydroxide apatite toalginic acid particles cross-linked with barium ions. The SEM photograph of A1H40-Ba showed that the mic mouth particles of the hydroxyapatite having a particle size of 1 10 jura were uniformly dispersed in the particles. Hydroxide microparticles did not appear on A1H05-Ba and A3H05-Ba. On the other hand, in the EDX analysis, all of the types of particles examined were subjected to hydroxide activity. Uniform dispersion of the mouthpiece particles was shown. Valium ions cross-linked with alginic acid were also uniformly dispersed in the particles. These results support that the obtained hydroxyapatite monoalginate particles are uniform regardless of their composition.
また、 水酸ァパタイ ト—アルギン酸粒子の圧縮強度は、 AlH40_Ba < AlH05-Baく A3H05- Baの順で増加した。 この結果は、 水酸ァパタイ トに対するアルギン酸の割 合が大きくなるほど、 圧縮強度が増加することを示す。 水酸アパタイ トに対する アルギン酸の割合は、水酸ァパタイ ト含有量よりも圧縮強度により影響を与えた。 本発明者らによる先の研究において、 水酸ァパタイ トーアルギン酸粒子は圧縮し たときアルギン酸のために形状が崩れやすいことが見出されている。これに対し、 本発明において得られた水酸ァパタイ ト—アルギン酸粒子はゲルの脱水に伴って 堅固になることがわかった。  In addition, the compressive strength of hydroxyapatite-alginate particles increased in the order of AlH40_Ba <AlH05-Ba A3H05-Ba. This result shows that the compressive strength increases as the ratio of alginic acid to hydroxylapatite increases. The ratio of alginic acid to hydroxyapatite was more influenced by compressive strength than hydroxyapatite content. In previous studies by the inventors, it has been found that hydroxyapatite toalginic acid particles tend to collapse due to alginate when compressed. On the other hand, it was found that the hydroxyapatite-alginate particles obtained in the present invention became firm as the gel was dehydrated.
図 1 7は、 バリウムイオンで架橋した水酸ァパタイ トーアルギン酸粒子の膨張 率を示す。 膨張特性は粒子の組成によって異なっていた。 水酸ァパタイ 卜に対す るアルギン酸の割合が高いほど膨張が良好であった。 この結果は、 アルギン酸の 強い水和性によるものであると考えられた。  Figure 17 shows the expansion coefficient of hydroxyapatite toalginic acid particles crosslinked with barium ions. The expansion characteristics differed depending on the composition of the particles. The higher the ratio of alginic acid to hydroxyapatite, the better the expansion. This result was thought to be due to the strong hydration properties of alginic acid.
図 1 8は、 バリゥムイオンで架橋した水酸ァパタイ トーアルギン酸粒子からの パクリタキセルの累積放出を示す。 パクリタキセルは徐々に粒子から培養液に放 出された。 A1H05- Baと A3H05-Baの放出挙動は同じであった。 A3H05-Baの膨張率 は A1H05- Baよりも高いことから (図 1 7 )、 パクリタキセルの放出挙動は粒子の 膨張率には関係ないことがわかった。  Figure 18 shows the cumulative release of paclitaxel from hydroxyapatite to alginate particles crosslinked with barium ions. Paclitaxel was gradually released from the particles into the culture medium. The release behavior of A1H05-Ba and A3H05-Ba was the same. Since the expansion coefficient of A3H05-Ba is higher than that of A1H05-Ba (Fig. 17), it was found that the release behavior of paclitaxel is not related to the expansion coefficient of the particles.
A1H20-Baからの放出挙動は A1H05- Ba と A3H05_Baはほとんど同じであったカ 、 5時間後には、 A1H05-Baと A3H05_Baはパクリタキセルの放出が認められなつたの に対し、 A1H20-Ba は依然として多くのパクリタキセルの放出していた。 よって、 パクリタキセルの放出挙動は水酸ァパタイ トーアルギン酸粒子への担持量による と考えられた。 本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考として本 明細書に組み入れるものとする。 産業上の利用可能性 The release behavior from A1H20-Ba was almost the same for A1H05-Ba and A3H05_Ba. After 5 hours, A1H05-Ba and A3H05_Ba did not release paclitaxel, whereas A1H20-Ba still had a lot of release. The release of paclitaxel. Therefore, the release behavior of paclitaxel was considered to depend on the amount of hydroxyapatite to alginate particles supported. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety. Industrial applicability
本発明の薬剤徐放性製剤は、 徐放性に優れ、 少なくとも 1 4日にわたりその効 能を持続させることできる。 このような、 本発明の薬剤徐放性製剤の従来にはな い長期間にわたる徐放性効果は、 薬剤をリン酸カルシウムナノ結晶の周囲に乾燥 固着させたこと、 その凝集体である多孔質リン酸カルシウム粒子を生体親和性高 分子マトリックス中に多数含有させたことにより達成されるものと考えられる。 すなわち、従来のようにナノ結晶周囲に単に薬剤が吸着されただけのものに比べ、 薬剤がナノ結晶周囲に乾燥固着することによってその接着力が大きくなり、 薬剤 のみが離脱するのではなく結晶の崩壊により薬剤が生体内に放出される部分が多 くなる。 また、 そのようなナノ結晶の凝集体を多数個、 生体親和性高分子マトリ ックス中に含有させることによって、 リン酸カルシウムナノ結晶の生体内での崩 壊を緩和できる。  The drug sustained-release preparation of the present invention is excellent in sustained-release property and can maintain its effect for at least 14 days. Such a sustained release effect over a long period of time of the drug sustained-release preparation of the present invention is that the drug is dried and fixed around the calcium phosphate nanocrystals, and porous calcium phosphate particles that are aggregates thereof. This is considered to be achieved by incorporating a large number of bioaffinity in a biocompatible high molecular matrix. In other words, compared to the conventional case where the drug is simply adsorbed around the nanocrystal, the adhesion of the drug is increased by drying and fixing around the nanocrystal, so that the drug is not separated but the crystal is not separated. More parts are released into the body due to disintegration. In addition, by incorporating a large number of such nanocrystal aggregates in the biocompatible polymer matrix, the collapse of the calcium phosphate nanocrystals in vivo can be mitigated.
また、 本発明の薬剤徐放性製剤は、 骨内に移植しても十分な強度を持ち、 骨組 織と親和性が優れ、 徐放効果も変わらない。 さらに、 このような薬剤徐放性製剤 を製造するに当たり、 スプレイ ドライ法を利用したことにより、 水難溶性の抗癌 剤をもリン酸カルシウムナノ結晶に固定できるようになったので、 骨癌治療など の従来では徐放作用を利用することが出来なかった疾患に対する使用の可能性を 大きく広げることができる。 従って、 本発明の薬剤徐放性製剤は、 特に骨転移癌 治療用の徐放性医薬としても非常に有用である。  In addition, the drug sustained-release preparation of the present invention has sufficient strength even when transplanted into bone, has excellent affinity with the bone tissue, and does not change the sustained-release effect. Furthermore, in manufacturing such sustained-release pharmaceutical preparations, the spray-dry method has been used to fix even poorly water-soluble anticancer agents to calcium phosphate nanocrystals. Then, the possibility of use for diseases for which sustained release action could not be utilized can be greatly expanded. Therefore, the drug sustained-release preparation of the present invention is very useful as a sustained-release pharmaceutical for treating bone metastasis cancer.

Claims

1 . 薬剤が周囲に乾燥固着されたリン酸カルシウムナノ結晶の凝集体からなる多 孔質リン酸カルシウム粒子が、 生体親和性高分子マトリックス中に多数含有され ていることを特徴とする、 薬剤徐放性製剤。 1. A sustained-release pharmaceutical preparation, characterized in that a large number of porous calcium phosphate particles composed of aggregates of calcium phosphate nanocrystals to which a drug is fixed by drying are fixedly contained in a biocompatible polymer matrix.
2 . 前記薬剤が抗癌剤であることを特徴とする、 請求項 1に記載の薬剤徐放性製 剤。  2. The sustained-release drug preparation according to claim 1, wherein the drug is an anticancer drug.
3 . 前記薬剤が水難溶性の薬剤で請あることを特徴とする、 請求項 1または 2に記 載の薬剤徐放性製剤。  3. The drug sustained-release preparation according to claim 1 or 2, wherein the drug is a poorly water-soluble drug.
4 . 前記リン酸カルシウムが、 水酸基、 炭酸の基、 またはハロゲン基を含有するこ とを特徴とする、 請求項 1から 3のいずれかに記載の薬剤徐放性製剤。  4. The sustained-release pharmaceutical preparation according to any one of claims 1 to 3, wherein the calcium phosphate contains a hydroxyl group, a carbonic acid group, or a halogen group.
5 . 前記リン酸カルシウムが、 カルシウムとともに、 あるいはカルシウムの一部 囲  5. The calcium phosphate is mixed with calcium or a part of the calcium.
に置換して、 マグネシウム、 亜鉛、 ストロンチウム、 およびバリウムからなる群 より選ばれる少なく とも 1種以上の二価金属を含有することを特徴とする、 請求 項 1から 4のいずれかに記載の薬剤徐放性製剤。 The drug gradual agent according to any one of claims 1 to 4, characterized by containing at least one divalent metal selected from the group consisting of magnesium, zinc, strontium, and barium. Release formulation.
6 . 前記生体親和性高分子が、 アルギン酸ナトリウム、 ローカストビーンガム、 キサンタンガム、 デキス トランナ卜リ ゥム、 カラギーナン、 ベクチン、 キトサン、 ヒアルロン酸、 力ノレボキシメチルセルロース、 およびこれらの誘導体からなる群 より選ばれる少なくとも 1種以上の多糖類である、 請求項 1から 5のいずれかに 記載の薬剤徐放性製剤。  6. The biocompatible polymer is selected from the group consisting of sodium alginate, locust bean gum, xanthan gum, dextran rum, carrageenan, bectin, chitosan, hyaluronic acid, strong noroxymethylcellulose, and derivatives thereof. The drug sustained-release preparation according to any one of claims 1 to 5, which is at least one kind of polysaccharide.
7 . 大きさが 1 X 1 0―1〜 5 mmであることを特徴とする、 請求項 1から 6のい ずれかに記載の薬剤徐放性製剤。 7. Wherein the size is 1 X 1 0- 1 ~ 5 mm , the drug sustained-release preparation according to any 6 Neu deviation from claim 1.
8 . 前記リン酸カルシウムナノ結晶の粒子径が 1 〜 1 X 1 0 3 n mであることを 特徴とする、 請求項 1から 7のいずれかに記載の薬剤徐放性製剤。 8., Characterized in that the particle size of said calcium phosphate nanocrystals is 1 ~ 1 X 1 0 3 nm , the drug sustained-release preparation according to any one of claims 1 to 7.
9 . 前記多孔質リン酸カルシウム粒子が比表面積 3 O m 2 / g以上の球形粒子で あることを特徴とする、 請求項 1から 8のいずれかに記載の薬剤徐放性製剤。9. The sustained-release pharmaceutical preparation according to any one of claims 1 to 8, wherein the porous calcium phosphate particles are spherical particles having a specific surface area of 3 O m 2 / g or more.
1 0 . 前記多孔質リン酸カルシウム粒子の粒子径が 1 X 1 0 2 m以下であるこ とを特徴とする、 請求項 1から 9のいずれかに記載の薬剤徐放性製剤。 10. The sustained-release pharmaceutical preparation according to any one of claims 1 to 9, wherein the porous calcium phosphate particles have a particle diameter of 1 X 10 2 m or less.
1 1 . 請求項 1から 1 0のいずれかに記載の薬剤徐放性製剤を含有する薬剤徐放 性医薬。 1 1. Sustained drug release comprising the drug sustained release preparation according to claim 1. Sex medicine.
1 2. 以下の工程を含む、 請求項 1から 1 0のいずれかに記載の薬剤徐放性製剤 の製造方法。  1 2. The method for producing a sustained-release pharmaceutical preparation according to any one of claims 1 to 10, comprising the following steps.
(a) リン酸カルシウムナノ結晶と薬剤との水 有機溶媒分散懸濁液をスプ レイ ドライし、 薬剤を周囲に加熱固着したリン酸カルシウムナノ結晶の凝集体か らなる多孔質リン酸カルシウム粒子を得る工程  (a) A step of spray-drying an aqueous dispersion of an organic solvent with calcium phosphate nanocrystals and a drug to obtain porous calcium phosphate particles comprising aggregates of calcium phosphate nanocrystals with the drug heated and fixed around
(b) 上記多孔質リン酸カルシウム粒子を生体親和性高分子水溶液に混合分散 した後、 硬化水溶液に滴下し、 生体親和性高分子マトリックス中に前記粒子を含 有させた目視可能な大きさの生体親和性高分子粒子を作る工程  (b) The above-mentioned porous calcium phosphate particles are mixed and dispersed in a biocompatible polymer aqueous solution, then dropped into a cured aqueous solution, and the particles are contained in a biocompatible polymer matrix and have a biocompatible size of a visible size. Of making conductive polymer particles
(c) 上記生体親和性高分子粒子を回収 ·洗浄する工程  (c) Step of collecting and washing the biocompatible polymer particles
1 3. 生体親和性高分子粒子を回収 ·洗浄する工程の後に当該高分子粒子を乾燥 する工程をさらに含む、 請求項 1 2に記載の製造方法。  1 3. The production method according to claim 12, further comprising a step of drying the polymer particles after the step of collecting and washing the biocompatible polymer particles.
14. 硬化水溶液が、 マグネシウム、 カルシウム、 ス トロンチウム、 バリ ウム、 及び亜鉛から成る群から選ばれる二価金属の塩の水溶液であることを特徴とする、 請求項 1 2または 1 3に記載の方法。  14. The method according to claim 12 or 13, wherein the aqueous hardening solution is an aqueous solution of a salt of a divalent metal selected from the group consisting of magnesium, calcium, strontium, barium, and zinc. .
PCT/JP2007/064047 2006-07-10 2007-07-10 Controlled-release drug preparation and method for producing the same WO2008007796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008524869A JP5273657B2 (en) 2006-07-10 2007-07-10 Drug sustained-release preparation and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006189259 2006-07-10
JP2006-189259 2006-07-10

Publications (1)

Publication Number Publication Date
WO2008007796A1 true WO2008007796A1 (en) 2008-01-17

Family

ID=38923355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064047 WO2008007796A1 (en) 2006-07-10 2007-07-10 Controlled-release drug preparation and method for producing the same

Country Status (2)

Country Link
JP (1) JP5273657B2 (en)
WO (1) WO2008007796A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526144A (en) * 2009-05-06 2012-10-25 ラボラトリー スキン ケア インコーポレイテッド Transdermal delivery composition comprising active substance-calcium phosphate particle complex and method of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218310A (en) * 1988-12-29 1991-09-25 Asahi Optical Co Ltd Sustained releasing granule of drug and its production
JP2004277422A (en) * 2003-03-13 2004-10-07 Nanotrend Ino-Tech Inc Stable and taste masked pharmaceutical dosage form using porous apatite grains

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218310A (en) * 1988-12-29 1991-09-25 Asahi Optical Co Ltd Sustained releasing granule of drug and its production
JP2004277422A (en) * 2003-03-13 2004-10-07 Nanotrend Ino-Tech Inc Stable and taste masked pharmaceutical dosage form using porous apatite grains

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIZUSHIMA Y. ET AL.: "Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs", J. CONTROL. RELEASE, vol. 110, no. 2, 2006, pages 260 - 265, XP005222195 *
RIBEIRO C.C. ET AL.: "Calcium phosphate-alginate microspheres as enzyme delivery matrices", BIOMATERIALS, vol. 25, no. 18, 2004, pages 4363 - 4373, XP004497098 *
YOSHIOKA T. ET AL.: "Preparation of hydroxyapatite-alginate gels as a carrier for controlled release of paclitaxel", KEY ENGINEERING MATERIALS, vol. 330-332, no. PART 2, 2007, pages 1053 - 1056, XP003020431 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526144A (en) * 2009-05-06 2012-10-25 ラボラトリー スキン ケア インコーポレイテッド Transdermal delivery composition comprising active substance-calcium phosphate particle complex and method of use thereof
JP2015187107A (en) * 2009-05-06 2015-10-29 ラボラトリー スキン ケア インコーポレイテッド Dermal delivery compositions comprising active agent-calcium phosphate particle complexes and methods of using the same
JP2017218456A (en) * 2009-05-06 2017-12-14 ラボラトリー スキン ケア インコーポレイテッド Composition
US10350168B2 (en) 2009-05-06 2019-07-16 Laboratory Skin Care, Inc. Dermal delivery compositions comprising active agent-calcium phosphate particle complexes and methods of using the same

Also Published As

Publication number Publication date
JPWO2008007796A1 (en) 2009-12-10
JP5273657B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
Abasalizadeh et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting
Nie et al. Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration
Andorko et al. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine
Qu et al. Injectable and thermosensitive hydrogel and PDLLA electrospun nanofiber membrane composites for guided spinal fusion
Gong et al. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites
JP2014205059A (en) Delayed self-gelling alginate system and use thereof
KR20140059238A (en) Injectable filler
US20240316249A1 (en) Injection formulation composition for use as filler or drug carrier through click chemistry reaction
JP2023099115A (en) Drug-loaded microbead compositions, embolization compositions, and associated methods
Dou et al. Highly elastic and self-healing nanostructured gelatin/clay colloidal gels with osteogenic capacity for minimally invasive and customized bone regeneration
Kaur et al. Microwave grafted, composite and coprocessed materials: drug delivery applications
JP2022501365A (en) Porous bioabsorbable radiodensity embolic embolic microspheres for drug delivery
Zhang et al. Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects
Vargas-Osorio et al. Three-dimensional hybrid mesoporous scaffolds for simvastatin sustained delivery with in vitro cell compatibility
El-Meliegy et al. Anticancer drug carriers using dicalcium phosphate/dextran/CMCnanocomposite scaffolds
Gholivand et al. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu (II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility
Martínez et al. Versatile biodegradable poly (acrylic acid)-based hydrogels infiltrated in porous titanium implants to improve the biofunctional performance
Khan et al. Biomedical applications of interpenetrating polymer network gels
Rasouli et al. Multifunctional Hydroxyapatite-based Nanoparticles for Biomedicine: Recent Progress inDrug Delivery and Local Controlled Release
WO2008007796A1 (en) Controlled-release drug preparation and method for producing the same
Sawant et al. Bone scaffolds: What's new in nanoparticle drug delivery research?
Xu et al. Dexamethasone long-term controlled release from injectable dual-network hydrogels with porous microspheres immunomodulation promotes bone regeneration
CN115414477A (en) Magnetic injectable particle hydrogel, preparation method and application thereof
Popa et al. Biological macromolecules for drug delivery in tissue engineering
CN115040472A (en) Preparation and application of bionic injectable polypeptide hydrogel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768424

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008524869

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768424

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)