WO2008007750A1 - Process for producing carbon nanostructure and gas for carbon nanostructure production - Google Patents

Process for producing carbon nanostructure and gas for carbon nanostructure production Download PDF

Info

Publication number
WO2008007750A1
WO2008007750A1 PCT/JP2007/063928 JP2007063928W WO2008007750A1 WO 2008007750 A1 WO2008007750 A1 WO 2008007750A1 JP 2007063928 W JP2007063928 W JP 2007063928W WO 2008007750 A1 WO2008007750 A1 WO 2008007750A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon
carbon nanostructure
catalyst
raw material
Prior art date
Application number
PCT/JP2007/063928
Other languages
French (fr)
Japanese (ja)
Inventor
Supriya Chakrabarti
Yoshikazu Nakayama
Lujun Pan
Takeshi Nagasaka
Toru Sakai
Original Assignee
Osaka Industrial Promotion Organization
Public University Corporation Osaka Prefecture University
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization, Public University Corporation Osaka Prefecture University, Taiyo Nippon Sanso Corporation filed Critical Osaka Industrial Promotion Organization
Publication of WO2008007750A1 publication Critical patent/WO2008007750A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length

Definitions

  • the present invention relates to a method for producing a carbon nanostructure such as a carbon nanotube or carbon nanocoil, and a gas for producing the carbon nanostructure.
  • a carbon nanostructure such as a carbon nanotube or carbon nanocoil
  • a gas for producing the carbon nanostructure when carbon nanostructures are grown using a catalyst disposed in the reaction chamber by supplying a raw material gas and a carrier gas to the reaction chamber, a reducing gas and an oxidizing gas are further supplied to the reaction chamber.
  • the present invention relates to a production method for efficiently synthesizing continuously growing carbon nanostructures, and a production gas used therefor.
  • CVD method chemical vapor deposition method
  • CVD method chemical vapor deposition
  • a raw material gas such as hydrocarbon is decomposed to grow a target material
  • CVD method a catalytic chemical vapor deposition method
  • CCVD method Catalyst Chemical Vapor Deposition
  • One of the manufacturing apparatuses using this type of manufacturing method is a raw material spray type carbon nanostructure synthesis apparatus.
  • this carbon nanostructure synthesis apparatus supplies a raw material gas together with a carrier gas to a reaction chamber in which a catalyst body is disposed, and carbon nanostructures on the surface of the catalyst body.
  • the structure is configured to grow.
  • the nozzle tip of the raw material gas nozzle that introduces the raw material gas into the reaction chamber is disposed near the surface of the catalyst body, and a large amount of preheated carbon raw material gas is instantaneously blasted or blown onto the catalyst surface.
  • the carbon nanostructure can be produced with high efficiency by dramatically increasing the contact probability between the source gas and the catalyst surface.
  • Non-Patent Document 1 the growth of carbon nanostructures was realized with high efficiency by supplying the necessary amount of source gas instantaneously without initial fluctuation of the source gas flow rate.
  • carbon nano It is described that the growth mechanism of the structure has a first stage in which carbon nanostructures grow rapidly in the early stage and a second stage in which relatively slow and continuous growth occurs.
  • Patent Document 2 discloses that a substrate having a catalytic metal layer is processed by a CVD method at a predetermined temperature with a mixing ratio of a reducing gas and a source gas within a predetermined range.
  • a method for producing carbon nanotubes with a fiber length of 700 m or more is disclosed.
  • Patent Document 3 discloses a method for producing a carbon material while controlling the ratio of impurity carbon decomposition products that decompose impurity carbon generated during the growth of the carbon material. Attempts have been made to promote the growth of carbon nanotubes by decomposing impurity carbon that grows on the surface of the catalyst by allowing the carbon to be present in the vicinity of the catalyst.
  • Patent Document 1 Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2004-182573 (Publication Date: July 2, 2004)”
  • Patent Document 2 Japanese Patent Publication “JP-A-2006-69805 (Publication Date: March 16, 2006)”
  • Patent Document 3 Japanese Patent Publication “JP 2006-143515 Publication (Publication Date: June 8, 2006)”
  • Non-Patent Document 1 Emperor Sukane, Takeshi Nagasaka, Toshinori Nosaka, Yoshiaki Nakayama, Applied Physics 13, 73rd, (20 04), No. 5
  • the second stage is carbon diffusion rate-limiting on the catalyst surface.
  • the method according to Non-Patent Document 1 shows that the inventors of the present invention have a detrimental adverse effect on the synthesis part (growth in the first stage) in which the growth time of the carbon nanostructure is extremely short. This has already been clarified by research.
  • the carbon nanotubes produced by the methods disclosed in Patent Documents 2 and 3 each have a maximum length of 1000 / ⁇ ⁇ and about 2.5 mm, and are not yet sufficiently long. Therefore, the methods disclosed in Patent Documents 2 and 3 have a problem that efficient production of carbon nanotubes has not yet been realized. This is presumed to be caused by the methods disclosed in Patent Documents 2 and 3, because the catalyst activity is not sufficiently maintained, and the growth of the carbon nanostructure cannot be sustained sufficiently. .
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to maintain the growth of the carbon nanostructure and to produce a carbon nanostructure of high quality.
  • the object of the present invention is to provide a manufacturing method of a product and a gas for manufacturing a carbon nanostructure used therefor.
  • a method for producing a carbon nanostructure includes at least a raw material gas containing carbon that is a raw material of the carbon nanostructure, and a carrier that conveys the raw material gas.
  • a reducing gas for supplying hydrogen into the reaction chamber is further introduced into the reaction chamber. It is characterized in that an acidic gas having an acidic property with respect to carbon is supplied to the reaction chamber.
  • the equilibrium of the decomposition reaction of the raw material gas moves in the direction opposite to the direction in which decomposition proceeds according to the principle of Le Chatelier.
  • the raw material gas is decomposed to generate a carbon and hydrogen decomposition reaction.
  • the hydrogen derived from the reducing gas causes an equilibrium force decomposition of the decomposition reaction. It moves in the opposite direction to the direction in which.
  • the rate of decomposition becomes slower. That is, the production rate of the carbon becomes slow. Therefore, it is possible to prevent the generation of excess carbon derived from the source gas, and it is possible to prevent the catalyst from being deactivated due to the excess carbon being deposited on the surface of the catalyst.
  • the growth of carbon nanostructures particularly the carbon nanostructures in the second stage
  • the growth of objects can be sustained, and high-quality carbon nanostructures can be produced.
  • the amount of source gas which is a combustible gas such as ethylene, can be reduced, carbon nanostructures can be manufactured at low cost and safety is improved.
  • the carbon deposited on the catalyst surface can be oxidized, that is, combusted and removed. Therefore, the activity of the catalyst surface is maintained.
  • the growth of the carbon nanostructure particularly the growth of the carbon nanostructure in the second stage can be maintained, and a higher quality carbon nanostructure can be produced.
  • At least two gases out of the source gas, the carrier gas, and the reducing gas are supplied to the reaction chamber. It is preferable to mix in advance before carrying out.
  • the ratio of the supply amounts of the raw material gas, the carrier gas, and the reducing gas affects the quality of the obtained carbon nanostructure.
  • the gas mixed before supplying to the said reaction chamber, in the gas mixed, at least 2 gas is mixed previously among the said source gas, the said carrier gas, and the said reducing gas. , The ratio of the supply amount can be easily adjusted.
  • the supply rate of the source gas (g / min) is set to the supply rate of the reducing gas (g / min). Divided power 0. 05-0.
  • the growth of the carbon nanostructure in the second stage can be sustained. Can be performed more efficiently, and high-quality carbon nanostructures can be efficiently manufactured.
  • the supply amount of the oxidizing gas is 150 ppm to 500 ppm of the total amount of gas supplied to the reaction chamber. I prefer to be there!
  • the carbon deposited on the catalyst surface is removed.
  • the carbon derived from the raw material gas is supplied to the catalyst at a suitable rate and used for the synthesis of the carbon nanostructure.
  • a value obtained by dividing the supply rate of the raw material gas by the amount of the catalyst is 100 to 100000 (lZmin
  • the growth of the carbon nanostructure in the second stage can be sustained, and the carbon nanostructure can be more efficiently produced, and the high-quality carbon nanostructure can be efficiently produced. It becomes.
  • the carbon nanostructure-producing gas in order to solve the above problems, at least a raw material gas containing carbon that is a raw material of the carbon nanostructure, or a carrier gas that conveys the raw material gas And a reducing gas that supplies hydrogen into the reaction chamber, and the mixture further includes an acidic gas.
  • the growth of the carbon nanostructure in the second stage can be continued, and a high-quality carbon nanostructure can be produced.
  • the growth of the carbon nanostructure, particularly the growth of the carbon nanostructure in the second stage can be sustained, and a higher quality carbon nanostructure can be produced.
  • the raw material gas and the reducing gas are mixed in a weight ratio of 0.05: 1 to 0.6: 1. It is preferable to include a mixed mixture.
  • the growth of the carbon nanostructures in the second stage can be sustained, and the carbon nanostructures can be efficiently produced, and high-quality carbon nanostructures can be efficiently produced. It becomes.
  • the raw material gas and the reducing gas are mixed at a weight ratio of 0.05: 1 to 0.6: 1.
  • the carbon deposited on the catalyst surface is removed by manufacturing the carbon nanostructure using the carbon nanostructure manufacturing gas. On the other hand, it does not remove the carbon necessary for the production of carbon nanostructures. Therefore, the raw material gas Carbon derived from carbon is supplied to the catalyst at a suitable rate and used for the synthesis of carbon nanostructures.
  • the source gas does not generate an extra substance other than carbon and hydrogen, which are constituent elements of the carbon nanostructure.
  • it is inexpensive and easily available, and is highly reactive with the above catalyst.
  • the reducing gas is selected from a group power consisting of hydrogen, ammonia and hydrogen sulfide. Gas is preferred!
  • the reducing gas can be used to produce the carbon nanostructure as a component other than hydrogen necessary for moving the equilibrium of the decomposition reaction in the direction in which the decomposition proceeds. Don't produce extra substances that hinder!
  • the oxidizing gas power water, oxygen, acetone, alcohol, dimethylformamide, CO, C
  • the group force of 0, O and H 2 O forces is preferably at least one gas selected.
  • FIG. 1 is a schematic configuration diagram of a carbon nanostructure manufacturing apparatus in the present embodiment.
  • FIG. 2 is a diagram schematically showing oxidation and micronization of a catalyst on a catalyst substrate in the present embodiment.
  • FIG. 3 is a diagram showing the results of examining the ratio of the supply amount of reducing gas to the supply amount of raw material gas in this example.
  • FIG. 4 is a graph showing the results of examining the ratio of the supply amount of the acidic gas to the supply amount of the raw material gas in this example.
  • FIG. 6 is a diagram showing the results of observing the appearance of carbon nanotubes obtained in this example.
  • FIG. 7 is a diagram showing the results of observing the carbon nanotubes obtained in this example with a transmission microscope.
  • FIGS. 1 and 2 One embodiment of the present invention is described below with reference to FIGS. 1 and 2.
  • a raw material gas, a carrier gas, and a reducing gas which will be described later, are supplied to a reaction chamber in which carbon nanostructures are grown using a carbon nanostructure manufacturing apparatus exemplified below. By doing so, the carbon nanostructure is manufactured.
  • a carbon nanostructure manufacturing apparatus exemplified below.
  • FIG. 1 is a schematic configuration diagram of a carbon nanostructure manufacturing apparatus according to an embodiment of the present invention.
  • the manufacturing apparatus is a carbon nanostructure manufacturing apparatus that manufactures a carbon nanostructure using a CCVD method which is a form of the CVD method.
  • the manufacturing apparatus includes a reaction chamber 4 in which a carbon nanostructure growth reaction is performed, and a reaction heater 1 for raising the temperature of the reaction chamber 4.
  • the reaction chamber 4 has a carbon nanostructure growth reaction.
  • a catalyst body 6 that catalyzes is disposed. Carbon nanostructures 2 grow on the surface of the catalyst body 6 by the CCVD method. That is, in this embodiment, the carbon nanostructure physical force carbon nanostructure 2 according to the present invention is illustrated.
  • carbon nanostructure is a nano-sized substance that is composed of carbon nuclear power.
  • carbon nanotubes and beads with beads formed on carbon nanotubes are attached. These include carbon nanotubes, carbon nanobrushes with many carbon nanotubes, carbon nanotwists with twisted carbon nanotubes, and coiled carbon nanocoils. In this specification, these substances are collectively referred to as “carbon nanostructures”.
  • the "CVD method” is a general term for a method in which a source gas is decomposed in a reaction vessel to grow a target substance, and the decomposition means includes heat, Various decomposition means such as electron beam, laser beam, and ion beam are included in the meaning.
  • a gas exhaust line 3 is communicated with one end of the reaction chamber 4, and a carrier gas container (not shown) is connected to the flow path connected to the gas exhaust line 3 via opening and closing valves 5 and 7. It is connected to the.
  • the carrier gas is not limited as long as it can transport a source gas to be described later and does not react with the source gas or a reducing gas to be described later.
  • inert gases such as helium (He), argon (Ar), neon, N, CO, krypton, xenon,
  • the mixed gas is used. Of these, a mixed gas of helium and argon is preferable.
  • the source gas is consumed by the reaction, whereas the carrier gas has no reaction and is not consumed.
  • the raw material gas according to the present embodiment is not limited as long as it includes carbon that is a raw material of the carbon nanostructure, and is not limited to organic gases such as hydrocarbons, sulfur-containing organic gases, and phosphorus-containing organic gases. If you use ⁇ .
  • organic gases hydrocarbons that do not generate extra substances are preferred.
  • ethylene H is cheap and easily available, and carbon nanostructures
  • hydrocarbons examples include alkane compounds such as methane and ethane, ethylene, butadiene, and the like.
  • Alkene compounds such as alkene compounds, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene and styrene, aromatic hydrocarbons having condensed rings such as indene, naphthalene and phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane Products, cycloolefin compounds such as cyclopentene, and alicyclic hydrocarbon compounds having a condensed ring such as steroids can be used.
  • a mixed hydrocarbon gas in which two or more of the above hydrocarbons are mixed.
  • a mixed hydrocarbon gas obtained by mixing two or more gases among hydrocarbons, preferably low molecules such as acetylene, arylene, ethylene, benzene, toluene, and methane is preferable.
  • the source gas is supplied from the source gas container (not shown) to the reaction chamber 4 through the source gas inflow passage 9 provided at the other end of the reaction chamber 4.
  • the source gas is reduced in pressure to a predetermined pressure by a regulator (not shown).
  • the above-mentioned source gas whose pressure has been reduced is adjusted to a predetermined flow rate by a source gas flow rate controller 8 having a mass flow controller (MFC) force.
  • the raw material gas flow rate controller 8 is provided in the inflow passage communicating with the raw material gas inflow passage 9, and the raw material gas is supplied through the electromagnetic three-way valves 10, 12 and the opening / closing valve 11.
  • the carrier gas is supplied with the carrier gas container force, and the carrier gas is supplied so as to merge with the raw material gas inflow passage 9 as will be described later through the two flow paths provided with the gas flow controllers 22 and 23.
  • reducing gas is supplied to the reaction chamber 4.
  • the reducing gas it is possible to prevent the catalyst from being deactivated, and to perform a slow growth process of the carbon nanostructure described later continuously and continuously. That is, since the slow growth process can be continued for a long time, a long and sized carbon nanostructure can be manufactured. For example, 5-7 mm carbon nanostructures can be manufactured.
  • the reducing gas is not limited as long as it is a gas capable of supplying hydrogen into the reaction chamber 4, but hydrogen, ammonia, and hydrogen sulfide are preferable. These may be used alone or as a mixture of two or more.
  • a more preferred reducing gas is hydrogen.
  • Hydrogen does not produce any extra material other than hydrogen necessary to move the equilibrium of the decomposition reaction in the direction in which the decomposition does not proceed. In other words, Most preferably, hydrogen is supplied directly to the reaction chamber 4. In the reaction chamber 4, hydrogen produced from ammonia hydrosulfide may be supplied depending on the reaction with the raw material gas, the temperature in the reaction chamber 4, the pressure condition, or the like.
  • the ratio of the feed rate of the source gas (g / min) to the feed rate of the reducing gas (g / min) is appropriately determined according to the size, generation rate, etc. of the target carbon nanostructure.
  • the weight ratio is preferably 0.05: 1 to 0.6: 1, and more preferably 0.1: 1 to 0.3: 1.
  • the value obtained by dividing the feed rate (g / min) of the raw material gas by the catalyst amount (g) is preferably 100 to 100,000 (lZmin). At this time, the slow growth process of the carbon nanostructure described later can be performed more continuously and continuously.
  • a gas (carbon nanostructure production gas) in which the reducing gas and the source gas are mixed in a weight ratio of 0.05: 1 to 0.6: 1 in advance may be used. Furthermore, it is preferable to use a carbon nanostructure-producing gas having a weight ratio of 0.1: 1 to 0.3: 1.
  • the reducing gas supply means is not limited as long as it is supplied to the reaction chamber 4.
  • only the reducing gas may be separately supplied to the reaction chamber 4 or may be supplied in advance mixed with other gases such as the above-mentioned source gas or the above carrier gas. . However, it is mixed with gas that may cause explosion by reacting with the reducing gas, such as O.
  • a gas (carbon nanostructure production gas) in which the reducing gas is mixed with at least one of the carrier gas and the raw material gas is supplied to the reaction chamber 4. That is, it is preferable that the carbon nanostructure manufacturing gas is manufactured before being supplied to the reaction chamber 4.
  • the carbon nanostructure production gas is not limited to being produced in any of the steps of the production apparatus, and a container previously filled with a carrier gas or a raw material gas is filled with the carrier gas described above. It may be used as a container or a source gas container. Thus, as long as the reducing gas is finally supplied to the reaction chamber 4, any means can be used.
  • an acidic gas is used.
  • the acidic gas is not limited as long as it is a gas having an oxidizing property with respect to carbon, but water, oxygen, acetone, alcohol, Dimethylformamide, CO, CO, O and HO are preferred, more preferably water, oxygen
  • carbon (amorphous carbon) deposited on the catalyst surface which will be described later, can be oxidized, that is, burned and removed. Therefore, carbon nanostructures can be generated more continuously.
  • the mixing amount of the oxidizing gas may be appropriately set according to the size, generation rate, and the like of the target carbon nanostructure.
  • 150 ppm A force of ⁇ 500 ppm S is preferable, more preferably 300 to 400 ppm.
  • water and oxygen it is not restricted to said range, It is preferable to mix water in the range of 0.05 ppm-3%, and oxygen at 0.01 ppb-l%.
  • a gas (carbon nanostructure production gas) obtained by mixing the above-described reducing gas and the above-described raw material gas with the above-described acidic gas may be used in advance.
  • the amount of the oxidizing gas mixed at this time may be appropriately set according to the amount of the raw material gas used. For example, when it is 40% of the total amount of gas used in the reducing gas power, the reducing gas may be mixed so as to be 375 ppm to 1250 ppm, more preferably 750 to 1000 ppm.
  • the oxygen-containing gas is supplied from an oxygen cylinder (not shown) filled to a predetermined concentration by a gravimetric method to a predetermined flow rate by an oxygen flow controller 13 in which oxygen also has an MFC force. Adjusted.
  • the oxygen flow rate controller 13 is provided in the inflow path communicating with the raw material gas inflow path 9, and oxygen is supplied to the reaction chamber 4 through the electromagnetic three-way valve 14 and the opening / closing valve 11.
  • An oxygen analyzer 21 is provided in the carrier gas introduction path 11 before the open / close valve 11, and oxygen from the oxygen cylinder is also introduced into the oxygen analyzer 21, and oxygen of an appropriate concentration is supplied to the reaction chamber 4. Monitor and ensure that is supplied.
  • the water adding device 15 is a water container provided with a heater.
  • the purified carrier gas is introduced into the warmed water of the moisture adding device 15 via the gas flow controller 16, and the moisture added by the flow mixing method and the mixed gas of the carrier gas are electromagnetically mixed. It is supplied to the reaction chamber 4 through the valve 18 and the open / close valve 11.
  • the carrier gas is also merged and mixed via the gas flow controller 20 at the outlet side of the moisture addition device 15.
  • a moisture analyzer 17 is provided in the monitoring bypass 19 provided in the gas introduction channel, and monitoring is performed so that the moisture analyzer 17 supplies water with an appropriate concentration to the reaction chamber 4.
  • the catalyst body 6 is a substrate on which a carbon nanostructure growth reaction catalyst is formed on the surface by film formation or the like.
  • the shape of the substrate is a substrate, a multilayer substrate, a cylinder, a polyhedron, a pellet, a powder, (Hereinafter, in the present embodiment, the substrate on which the catalyst is formed is referred to as a “catalyst substrate”.)
  • the catalyst to be used is not limited as long as it contains an iron element, but iron oxide is more preferable, and triiron tetroxide is more preferable. Magnetite as a component is preferable. Further, a catalyst comprising iron element, that is, pure iron is used to supply an oxidizing gas to the carbon nanostructure device to oxidize the pure iron, thereby converting the pure iron into magnetite. Let me do it. Even when a V-shifted catalyst is used, it is preferable that the catalyst be finely atomized in the temperature raising step described later.
  • the catalyst body 6 containing iron element is arranged in advance in the reaction chamber 4, and the raw material gas is supplied and circulated through the reaction chamber 4.
  • a mechanism may be provided in which an acidic gas is supplied to the reaction chamber 4 together with the carrier gas to convert the catalyst body 6 into magnetite.
  • the raw material gas and the oxidizing gas may be circulated into the reaction chamber 4.
  • the method for forming the iron catalyst on the catalyst substrate is not limited to any means such as Ar sputtering, electron beam evaporation, dip coating, or spin coating, but it is uniformly in the nanometer order. It is important that a catalyst film having a thickness can be formed.
  • the powder is dispersed in a liquid in the order of nanometers and uniformly dispersed in the liquid phase. There is no particular limitation as long as the catalyst particles of the order are formed.
  • the substrate used for the catalyst substrate is preferably a material that does not form a compound with iron as a catalyst at the reaction temperature for synthesizing the carbon nanostructure.
  • reaction temperature From the viewpoints of stability, surface smoothness, cost, and reuse, silicon substrates or, in particular, silicon oxide with a sufficiently oxidized surface of silicon substrate S1 as shown in (2A) of FIG. It is preferable to use a silicon substrate provided with a layer S2.
  • the catalyst When the catalyst generates a compound with the catalyst substrate or has a strong affinity with the catalyst substrate, the catalyst is oxidized into particles in the heating step described later. This does not occur well, and the carbon nanostructure formation probability may be reduced.
  • the electromagnetic three-way valve 10 is controlled to a cut-off state and a supply state by the action of an automatic valve controller (not shown). That is, in the state in which the source gas is shut off, the source gas is exhausted to the exhaust side, and in the source gas supply state, the source gas is supplied to the injection side, and the source gas is separated from the carrier gas at the junction where the on-off valve 11 is reached.
  • an automatic valve controller not shown
  • the electromagnetic three-way valve 10 When the electromagnetic three-way valve 10 is used, since the source gas is already controlled to a predetermined flow rate, there is no initial fluctuation of the source gas even if it is switched to the injection side. In addition, since the switching is performed by electromagnetic action, the switching is performed instantaneously without any pressure fluctuation, and the raw material gas is supplied at a predetermined flow rate without any slow rise of the raw material gas. Even when the source gas is switched to a state where the supply state force is shut off, the flow rate of the source gas can be instantaneously switched to zero without pressure fluctuations by electromagnetic action by the automatic valve controller, and there is no slow fall of the source gas. .
  • the electromagnetic three-way valve 10 As described above, if the electromagnetic three-way valve 10 is used, the supply and cut-off of the raw material gas to the reaction chamber 4 can be instantaneously performed, and the flow rate does not fluctuate at all in the changing process. Therefore, if the total flow rate is constant, the gas pressure inside the reaction chamber 4 is constant. Since the source gas is decomposed while this total pressure (gas pressure) is constant, pressure fluctuation does not occur inside the reaction chamber 4, the gas conditions of the catalyst body 8 can be made constant, and the carbon nanostructure 2 It has the effect of promoting growth.
  • the carrier gas and the source gas are mixed at the junction, and then supplied to the reaction chamber 4 from a gas supply nozzle (not shown) provided at the tip of the source gas inflow passage 9 as a mixed flow.
  • the reaction chamber 4 is heated to a temperature range where carbon nanostructures are most easily generated, and the raw material gas is thermally decomposed in the vicinity of the catalyst body 6, and carbon nanostructures 2 are formed from the decomposition products on the surface of the catalyst body 6. To be long.
  • a force that uses the thermal decomposition method to decompose the source gas over the CVD method such as a laser beam decomposition method, an electron beam decomposition method, an ion beam decomposition method, a plasma decomposition method, Other decomposition methods can be used.
  • the carbon nanostructure 2 is formed on the surface of the catalyst body 6 from these decomposition products.
  • a part of the raw material gas is converted into carbon nanostructures, and the unreacted raw material gas that has not contributed to the reaction is discharged from the gas discharge line 3 together with the carrier gas.
  • the temperature in the reaction chamber 4 is raised to the reaction temperature before starting the growth reaction of the carbon nanostructure.
  • the reaction temperature may be appropriately set depending on the size of the target carbon nanostructure, the raw material gas used, the carrier gas, the reducing gas, etc., but is preferably 600 ° C 1200 ° C force S, more preferably 700 ° C 900 ° C.
  • FIG. 2 is a diagram schematically showing oxidation and fine particle formation of the catalyst on the catalyst substrate.
  • the catalyst that has undergone moderate oxidation combines fine polycrystalline particles A of the order of 1 or less in the film formation step, and is several nanometers to several nanometers. Forms large particles BC on the order of 10 nm. This is the so-called micronization process. Furthermore, it is preferable that the fine particles are formed near the surface to form oxides.
  • the synthesis reaction of carbon nanostructures is based on a two-step reaction: initial “rapid growth” and “slow growth” that grows while producing amorphous carbon. It has been found that there is growth.
  • the above "rapid growth" in the initial stage is a reaction whose rate is determined by the reaction itself mainly composed of the following formulas (1) and (2) on the catalyst surface.
  • This initial rapid growth is due to a moderate affinity between the catalyst and the catalyst substrate in the catalyst, a moderate oxidation of fine particles in the heating process, a sufficient amount of source gas relative to the catalyst amount, and introduction of a source gas.
  • the formation of carbon nanostructures with a length of 50 ⁇ m to 100 ⁇ m can be achieved.
  • the “rapid growth” is stopped by the oxygen amount held by the catalyst being consumed by the reaction, as described later, due to the excess amorphous carbon supplied with the raw material gas power. By covering the surface of the catalyst, it becomes difficult to contact the catalyst and the raw material gas, and eventually the reaction is stopped.
  • the length of the carbon nanostructure is approximately the same, so that there is reproducibility and at the same time the force depends on the amount of oxygen retained in the initial catalyst. It can be understood that the length of one-bon nanostructure is determined.
  • FIG. 2 is a diagram schematically illustrating the growth of carbon nanostructures.
  • D is a catalyst particle containing the above iron element (catalyst particle)
  • F is a multilayer layer of carbon nanostructures that grow.
  • E is a region on the catalyst particle D where the catalyst particle D and the source gas are in contact with each other.
  • the catalyst particles D in contact with ethylene have carbon nanostructures on the surface of the carbide (FeC) of the catalyst particles D carbonized by the ethylene-derived carbon.
  • the multilayer layer F constituting the wall is formed.
  • the amorphous carbon produced by the reaction between the catalyst particles D and the raw material gas pushes out the multilayer layer F, thereby forming a powerful nano structure.
  • the arrows shown in FIG. 2 (2B) indicate the direction of carbon diffusion.
  • the catalyst particle D When the affinity between the catalyst particle D and the catalyst substrate is strong, the catalyst particle D is not spherical, and the multilayer layers F on both sides are not extruded at a uniform speed and are not oriented vertically. It becomes. Also, if there is no affinity between the catalyst substrate and the catalyst particles D, the multilayer The carrier F moves toward the substrate while the catalyst particle D exists at the tip of the carbon nanostructure, and the carbon nanostructure grows. In the case of moderate affinity, the multi-layer layer F stretches vertically to some extent, and the catalyst may float against the force pushed out by the diffusion of carbon, and may exist at the midpoint of the length of the carbon nanostructure. .
  • thermal decomposition indicated by That is, it is considered that the raw material gas is decomposed in the process of manufacturing the carbon nanostructure to generate radical carbon (C +) and hydrogen.
  • the reducing gas is supplied to the reaction chamber 4. And since there is a large amount of soot derived from the reducing gas, the above formula (5)
  • the rate of thermal decomposition of tyrene is reduced. As a result, excessive generation of the amorphous carbon can be prevented. That is, the reducing gas functions as a suppression component for the amorphous carbon. Therefore, the deposition on the catalyst surface by the amorphous carbon can be prevented very efficiently, and the deactivation of the catalyst can be prevented. As a result, continuous carbon nanostructure growth can be achieved. That is, the “reducing gas” in this specification means the equilibrium of thermal decomposition of the source gas. It can be said that the gas moves in a direction to suppress the solution. It can also be said that the material gas has the property of giving hydrogen to radical carbon generated by thermal decomposition.
  • H 2 O is used as the oxidizing gas, and the H 2 O is used for the entire gas supplied to the reaction chamber.
  • H purity 99.9999%
  • Ethylene was used as the source gas.
  • the total amount of gas supplied to the reaction chamber of the carbon nanostructure manufacturing apparatus was 20 CKcm / min at 1 atm.
  • reaction chamber was heated to 750 ° C in this example and in all the following examples.
  • heating step O
  • the total gas supply amount was set to 200 (cm 3 / min) at 1 atmospheric pressure, and after heating, a part of He was replaced with ethylene, thereby supplying each gas supply amount.
  • the ratio of was changed.
  • the amount of ethylene supplied that is, the amount of He replaced after the temperature raising step, is in the range of 5% to 25% of 200 (cmVmin), which is the total amount of gas supplied. is there.
  • Fe was used as the catalyst.
  • the Fe catalyst is a lcm x 1cm square, and a thin film with a thickness of lnm.
  • the axis is the height of the carbon nanotube obtained by holding for 30 minutes after the temperature raising step.
  • the height force of the obtained carbon nanotube was the largest value.
  • the temperature raising step was also performed in the same manner as in Example 1. After the reaction chamber was heated to 750 ° C, the total gas supply rate was set to 200 (cmVmin), and after heating, 7. 5% (15 (cm 3 / min)) was replaced with ethylene.
  • the acidic gas uses H 2 O and has a concentration with respect to the total amount of gas supplied to the reaction chamber.
  • the horizontal axis is the value obtained by dividing the amount of ethylene supplied by the amount of H 2 O.
  • the vertical axis shows the height of the obtained carbon nanotubes by holding for 30 minutes after the temperature raising step. That's it.
  • the height of Yub was the largest value.
  • the supply amount of the raw material gas (ethylene) was set to 7.5% (15 (cmVmin)) with respect to 200 (cmVmin), which is the total amount of gas to be supplied. And so on.
  • the carbon nanotubes obtained 12 hours after the temperature raising step had a length of 7 mm (hereinafter referred to as “7 mm carbon nanotube” for the sake of simplicity). This is an unreported length so far.
  • Fig. 6 shows the result of observing the appearance of the 7 mm carbon nanotube.
  • Fig. 6 (a) is a diagram showing the appearance of a group of 7 mm carbon nanotubes. From FIG. 6 (a), it can be seen that the carbon nanotube has a height of 7 mm.
  • FIG. 6B is a view of the carbon nanotube group shown in FIG. 6A observed from above (from a plane perpendicular to the length direction of the carbon nanotube) by SEM. This reveals that the surface of the surface perpendicular to the length direction of the carbon nanotube group is smooth and flat. This indicates that the individual 7 mm carbon nanotubes have grown to an equal length.
  • FIGS. 6 (c) and 6 (e) are views of the upper part (front end side) and the lower part of the 7 mm carbon nanotube observed by SEM, respectively. As a result, it can be seen that the 7 mm carbon nanotubes are dense and aligned vertically.
  • Fig. 6 (d) and Fig. 6 (f) show the upper part (tip side) of the 7mm carbon nanotube. ) Are enlarged views of the lower part. This shows that the 7mm carbon nanotubes are curved at the nanoscale and entangled with each other.
  • FIG. 7 shows the result of observation of the 7 mm carbon nanotubes with a transmission electron microscope.
  • the product was manufactured.
  • the length of the carbon nanotube obtained after 2 hours was 500 m.
  • the reducing gas (H) is not used and the supply amount of the carrier gas (He) is set to 200 (cmVmin)
  • the length of the carbon nanotubes obtained after 2 hours was 100 ⁇ m or less.
  • the method for producing a carbon nanostructure according to the present invention includes a reaction chamber for producing a carbon nanostructure by using the reducing gas in addition to the raw material gas and the carrier gas. Therefore, the hydrogen derived from the reducing gas slows down the decomposition reaction of the raw material gas in the carbon nanostructure manufacturing process. Therefore, the deactivation of the catalyst due to the carbon derived from the source gas being deposited on the surface of the catalyst can be prevented. Furthermore, the method for producing a carbon nanostructure according to the present invention May supply an oxidizing gas having an oxidizing property to carbon to the reaction chamber. In this case, the carbon deposited on the catalyst surface can be removed by oxidation.
  • the gas for producing carbon nanostructures according to the present invention includes the above-mentioned raw material gas or a mixture of the carrier gas and the reducing gas. .
  • the carbon nanostructure manufacturing gas according to the present invention may include an oxidizing gas having an oxidizing property with respect to carbon. In this case, by using the carbon nanostructure manufacturing gas, the carbon deposited on the catalyst surface can be removed by oxidizing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A process for carbon nanostructure production in which the length of the nanostructure can be continuously regulated. The process comprises feeding a carrier gas and a raw-material gas to a reaction chamber (4) to produce a carbon nanostructure (2) by the action of a catalyst (6), wherein a reducing gas, e.g., hydrogen, which has the ability to reduce the raw-material gas is incorporated into the carrier gas or raw-material gas and an oxidizing gas, e.g., water, which has the ability to oxidize the raw-material gas is further incorporated thereinto while adequately regulating the concentrations of the reducing gas and oxidizing gas. Thus, a carbon nanostructure of good quality can be produced at a high efficiency. The process enables the production of a carbon nanotube having an overall length of, e.g., 7 mm, which has not been obtained so far. Consequently, the mechanism of the continuous growth of a carbon nanostructure can be optimized and a carbon nanostructure of high quality can be produced. Also provided is a gas for carbon nanostructure production which is for use in producing a carbon nanostructure.

Description

明 細 書  Specification
カーボンナノ構造物の製造方法及びカーボンナノ構造物製造用ガス 技術分野  Carbon nanostructure manufacturing method and carbon nanostructure manufacturing gas
[0001] 本発明はカーボンナノチューブやカーボンナノコイル等のカーボンナノ構造物を製 造する方法、及びカーボンナノ構造物製造用ガスに関する。殊に、原料ガス及びキ ャリアガスを反応室に供給して、反応室に配置された触媒によりカーボンナノ構造物 を成長させる場合に、さらに還元性ガスおよび酸化性ガスを上記反応室に供給する ことにより、連続的に成長するカーボンナノ構造物を高効率に合成する製造方法、そ れに用いる製造用ガスに関する。  [0001] The present invention relates to a method for producing a carbon nanostructure such as a carbon nanotube or carbon nanocoil, and a gas for producing the carbon nanostructure. In particular, when carbon nanostructures are grown using a catalyst disposed in the reaction chamber by supplying a raw material gas and a carrier gas to the reaction chamber, a reducing gas and an oxidizing gas are further supplied to the reaction chamber. The present invention relates to a production method for efficiently synthesizing continuously growing carbon nanostructures, and a production gas used therefor.
背景技術  Background art
[0002] カーボンナノ構造物を製造する方法として、炭化水素などの原料ガスを分解して目 的物質を成長させる化学的気相成長法(CVD法、 Chemical Vapor Deposition)、ま た上記 CVD法の一形態である、触媒を利用して目的物質を成長させる触媒化学的 気相成長法(CCVD法、 Catalyst Chemical Vapor Deposition)が知られている。  [0002] As a method for producing a carbon nanostructure, a chemical vapor deposition method (CVD method, chemical vapor deposition) in which a raw material gas such as hydrocarbon is decomposed to grow a target material, or the above CVD method is used. As one form, a catalytic chemical vapor deposition method (CCVD method, Catalyst Chemical Vapor Deposition) is known in which a target substance is grown using a catalyst.
[0003] 従来、 CVD法でカーボンナノ構造物を製造するには、反応室に原料ガスとキャリア ガスの混合ガスを導入し、触媒により原料ガスを分解して触媒表面にカーボンナノ構 造物を成長させる製造方法が採用されている。  [0003] Conventionally, in order to produce carbon nanostructures by the CVD method, a mixed gas of a source gas and a carrier gas is introduced into a reaction chamber, the source gas is decomposed by a catalyst, and the carbon nanostructure is grown on the catalyst surface. A manufacturing method is adopted.
[0004] この種の製造方法を用いた製造装置の一つに原料吹き付け式カーボンナノ構造 物合成装置がある。このカーボンナノ構造物合成装置は、例えば、特許文献 1に示さ れているように、触媒体を内部に配置した反応室にキャリアガスとともに、原料ガスを 供給して、触媒体の表面にカーボンナノ構造物を成長させるように構成されて 、る。 反応室の中に原料ガスを導入する原料ガスノズルのノズル先端が触媒体表面の近 傍に配設され、予熱されたカーボン原料ガスを瞬時に大量に触媒表面に集中的に 吹き付け、または吹き込むことによって、原料ガスと触媒表面との接触確率を飛躍的 に高めることにより、高効率にカーボンナノ構造物を製造することができる。  [0004] One of the manufacturing apparatuses using this type of manufacturing method is a raw material spray type carbon nanostructure synthesis apparatus. For example, as shown in Patent Document 1, this carbon nanostructure synthesis apparatus supplies a raw material gas together with a carrier gas to a reaction chamber in which a catalyst body is disposed, and carbon nanostructures on the surface of the catalyst body. The structure is configured to grow. The nozzle tip of the raw material gas nozzle that introduces the raw material gas into the reaction chamber is disposed near the surface of the catalyst body, and a large amount of preheated carbon raw material gas is instantaneously blasted or blown onto the catalyst surface. In addition, the carbon nanostructure can be produced with high efficiency by dramatically increasing the contact probability between the source gas and the catalyst surface.
[0005] 非特許文献 1では、原料ガス流量の初期揺らぎなぐ瞬時に必要量の原料ガスを供 給することで、高効率でカーボンナノ構造物の成長を実現した。更に、カーボンナノ 構造物の成長機構を、カーボンナノ構造物が初期に急速に成長する第 1段階、比較 的緩やかに連続的に成長する第 2段階があることが記載されている。 [0005] In Non-Patent Document 1, the growth of carbon nanostructures was realized with high efficiency by supplying the necessary amount of source gas instantaneously without initial fluctuation of the source gas flow rate. In addition, carbon nano It is described that the growth mechanism of the structure has a first stage in which carbon nanostructures grow rapidly in the early stage and a second stage in which relatively slow and continuous growth occurs.
[0006] また、特許文献 2には、触媒金属層を備える基板を、還元性ガスと原料ガスとの混 合比を所定の範囲とした上で、所定の温度で CVD法により処理することにより、繊維 長 700 m以上のカーボンナノチューブを製造する方法が開示されており、原料ガ スに還元性ガスを含ませることにより、カーボンナノチューブへの炭素堆積物の付着 等を抑制し、長尺のカーボンナノチューブを製造することが試みられて 、る。  [0006] Further, Patent Document 2 discloses that a substrate having a catalytic metal layer is processed by a CVD method at a predetermined temperature with a mixing ratio of a reducing gas and a source gas within a predetermined range. A method for producing carbon nanotubes with a fiber length of 700 m or more is disclosed. By containing a reducing gas in the raw material gas, adhesion of carbon deposits to the carbon nanotubes is suppressed, and long carbon Attempts have been made to produce nanotubes.
[0007] さらに、特許文献 3には、カーボン材料の成長の際に発生する不純物炭素を分解 する不純物炭素分解物の割合を制御しつつカーボン材料を製造する方法が開示お り、不純物炭素分解物を触媒の近傍に存在させることにより、触媒の表面に成長する 不純物炭素を分解させ、カーボンナノチューブの成長を促進することが試みられて ヽ る。  [0007] Further, Patent Document 3 discloses a method for producing a carbon material while controlling the ratio of impurity carbon decomposition products that decompose impurity carbon generated during the growth of the carbon material. Attempts have been made to promote the growth of carbon nanotubes by decomposing impurity carbon that grows on the surface of the catalyst by allowing the carbon to be present in the vicinity of the catalyst.
特許文献 1 :日本国公開特許公報「特開 2004— 182573号公報 (公開日: 2004年 7 月 2日)」  Patent Document 1: Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2004-182573 (Publication Date: July 2, 2004)”
特許文献 2 :日本国公開特許公報「特開 2006— 69805号公報 (公開日: 2006年 3 月 16日)」  Patent Document 2: Japanese Patent Publication “JP-A-2006-69805 (Publication Date: March 16, 2006)”
特許文献 3 :日本国公開特許公報「特開 2006— 143515号公報 (公開日: 2006年 6 月 8日)」  Patent Document 3: Japanese Patent Publication “JP 2006-143515 Publication (Publication Date: June 8, 2006)”
非特許文献 1 :末金皇,長坂岳志,野坂俊紀,中山喜萬,応用物理 13,第 73卷,(20 04) ,第 5号  Non-Patent Document 1: Emperor Sukane, Takeshi Nagasaka, Toshinori Nosaka, Yoshiaki Nakayama, Applied Physics 13, 73rd, (20 04), No. 5
発明の開示  Disclosure of the invention
[0008] 上述のように、上記第 1段階におけるカーボンナノ構造物の急速な成長が鈍化する と、成長が緩やかな上記第 2段階に移行する。しかし、上記第 2段階では、カーボン ナノ構造物の成長速度が遅いため、触媒表面に、過剰に生成された原料ガス由来の 炭素が堆積し、原料ガスと触媒表面との接触を妨げる現象が起こる。  [0008] As described above, when the rapid growth of the carbon nanostructure in the first stage slows down, the process proceeds to the second stage where the growth is moderate. However, in the second stage above, the growth rate of carbon nanostructures is slow, so that excessively generated carbon derived from the source gas is deposited on the catalyst surface, causing a phenomenon that prevents contact between the source gas and the catalyst surface. .
[0009] 例えば、上記特許文献 1や上記非特許文献 1に係るカーボンナノ構造物の製造方 法など、従来のカーボンナノ構造物の製造方法は、上記第 2段階は触媒表面の炭素 の拡散律速となり、遂にはカーボンナノ構造の成長が止まるという問題点があった。さ らに、非特許文献 1に係る方法では、カーボンナノ構造物の成長時間が極めて短時 間の合成の部分 (上記第 1段階における成長)に決定的な悪影響を与えることは本 発明者等の研究により既に明らかになつている。 [0009] For example, in the conventional carbon nanostructure manufacturing method such as the carbon nanostructure manufacturing method according to Patent Document 1 and Non-Patent Document 1 described above, the second stage is carbon diffusion rate-limiting on the catalyst surface. Finally, there was a problem that the growth of carbon nanostructures stopped. The Furthermore, the method according to Non-Patent Document 1 shows that the inventors of the present invention have a detrimental adverse effect on the synthesis part (growth in the first stage) in which the growth time of the carbon nanostructure is extremely short. This has already been clarified by research.
[0010] また、特許文献 2, 3に開示された方法で製造されたカーボンナノチューブはそれ ぞれ最長 1000 /ζ πι、約 2. 5mmであり、未だ十分な長さとは言えない。したがって、 特許文献 2, 3に開示された方法では、カーボンナノチューブの効率よい製造は未だ 実現できていないという問題点がある。これは、特許文献 2, 3に開示された方法では 、触媒の活性維持が不十分であるため、カーボンナノ構造物の成長を十分に持続さ せることができないことが原因であると推測される。  [0010] In addition, the carbon nanotubes produced by the methods disclosed in Patent Documents 2 and 3 each have a maximum length of 1000 / ζ πι and about 2.5 mm, and are not yet sufficiently long. Therefore, the methods disclosed in Patent Documents 2 and 3 have a problem that efficient production of carbon nanotubes has not yet been realized. This is presumed to be caused by the methods disclosed in Patent Documents 2 and 3, because the catalyst activity is not sufficiently maintained, and the growth of the carbon nanostructure cannot be sustained sufficiently. .
[0011] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、カーボンナノ 構造物の成長を持続させ、高品質のカーボンナノ構造物を製造することのできるカー ボンナノ構造物の製造方法及び、それに用いるカーボンナノ構造物製造用ガスを提 供することにある。  [0011] The present invention has been made in view of the above-described problems, and an object of the present invention is to maintain the growth of the carbon nanostructure and to produce a carbon nanostructure of high quality. The object of the present invention is to provide a manufacturing method of a product and a gas for manufacturing a carbon nanostructure used therefor.
[0012] 本発明に係るカーボンナノ構造物の製造方法は、上記課題を解決するために、少 なくともカーボンナノ構造物の原料となる炭素を含む原料ガス、及び、上記原料ガス を搬送するキャリアガスを、少なくとも鉄元素を含む触媒が配置された反応室に供給 することにより、カーボンナノ構造物を製造する方法において、さらに、上記反応室内 に水素を供給する還元性ガスを、上記反応室に供給し、上記反応室に、炭素に対し て酸ィ匕性を有する酸ィ匕性ガスを供給することを特徴としている。  [0012] In order to solve the above problems, a method for producing a carbon nanostructure according to the present invention includes at least a raw material gas containing carbon that is a raw material of the carbon nanostructure, and a carrier that conveys the raw material gas. In the method for producing a carbon nanostructure by supplying a gas to a reaction chamber in which a catalyst containing at least an iron element is disposed, a reducing gas for supplying hydrogen into the reaction chamber is further introduced into the reaction chamber. It is characterized in that an acidic gas having an acidic property with respect to carbon is supplied to the reaction chamber.
[0013] 上記の構成によれば、上記還元性ガスに由来する水素によって、上記原料ガスの 分解反応の平衡が、ル=シャトリエの原理により、分解が進む方向とは逆向きに移動 する。つまり、カーボンナノ構造物の製造工程においては、上記原料ガスが分解され 、炭素と水素とを生成する分解反応が起こるが、上記還元性ガスに由来する水素に よって、この分解反応の平衡力 分解が進む方向とは逆向きに移動する。そのため、 分解の速度が緩やかになる。つまり、当該炭素の生成速度が緩やかになる。よって、 上記原料ガスに由来する過剰な炭素の生成を防ぐことができ、上記過剰な炭素が上 記触媒の表面に堆積することによる、上記触媒の失活を防ぐことができる。  [0013] According to the above configuration, due to hydrogen derived from the reducing gas, the equilibrium of the decomposition reaction of the raw material gas moves in the direction opposite to the direction in which decomposition proceeds according to the principle of Le Chatelier. In other words, in the manufacturing process of the carbon nanostructure, the raw material gas is decomposed to generate a carbon and hydrogen decomposition reaction. The hydrogen derived from the reducing gas causes an equilibrium force decomposition of the decomposition reaction. It moves in the opposite direction to the direction in which. As a result, the rate of decomposition becomes slower. That is, the production rate of the carbon becomes slow. Therefore, it is possible to prevent the generation of excess carbon derived from the source gas, and it is possible to prevent the catalyst from being deactivated due to the excess carbon being deposited on the surface of the catalyst.
[0014] 従って、カーボンナノ構造物の成長、特に上記第 2段階におけるカーボンナノ構造 物の成長を持続させることができ、高品質のカーボンナノ構造物を製造することが可 能となる。さらに、エチレンなどの可燃性ガスである原料ガスの添加量を削減すること ができるため、カーボンナノ構造物を低コストで製造することができ、安全性も向上す る。 [0014] Accordingly, the growth of carbon nanostructures, particularly the carbon nanostructures in the second stage The growth of objects can be sustained, and high-quality carbon nanostructures can be produced. Furthermore, since the amount of source gas, which is a combustible gas such as ethylene, can be reduced, carbon nanostructures can be manufactured at low cost and safety is improved.
[0015] また、上記の構成によれば、上述した触媒表面に堆積する炭素を酸化、つまり燃焼 、除去することが可能となる。よって、触媒表面の活性が維持される。  [0015] According to the above configuration, the carbon deposited on the catalyst surface can be oxidized, that is, combusted and removed. Therefore, the activity of the catalyst surface is maintained.
[0016] 従って、カーボンナノ構造物の成長、特に上記第 2段階におけるカーボンナノ構造 物の成長を持続させることができ、より高品質のカーボンナノ構造物を製造することが 可能となる。  [0016] Accordingly, the growth of the carbon nanostructure, particularly the growth of the carbon nanostructure in the second stage can be maintained, and a higher quality carbon nanostructure can be produced.
[0017] 本発明に係るカーボンナノ構造物の製造方法では、上記課題を解決するために、 上記原料ガス、上記キャリアガス及び上記還元性ガスの内、少なくとも 2つのガスを、 上記反応室に供給する前に予め混合することが好ましい。  In the method for producing a carbon nanostructure according to the present invention, in order to solve the above problems, at least two gases out of the source gas, the carrier gas, and the reducing gas are supplied to the reaction chamber. It is preferable to mix in advance before carrying out.
[0018] カーボンナノ構造物の製造においては、上記原料ガス、上記キャリアガス及び上記 還元性ガスの供給量の比が、得られるカーボンナノ構造物の品質に影響を及ぼす。 そして、上記の構成によれば、上記反応室に供給する前に、上記原料ガス、上記キ ャリアガス及び上記還元性ガスの内、少なくとも 2つのガスを、予め混合することにより 、混合するガスにおいては、供給量の比の調整が容易となる。  [0018] In the production of the carbon nanostructure, the ratio of the supply amounts of the raw material gas, the carrier gas, and the reducing gas affects the quality of the obtained carbon nanostructure. And according to said structure, before supplying to the said reaction chamber, in the gas mixed, at least 2 gas is mixed previously among the said source gas, the said carrier gas, and the said reducing gas. , The ratio of the supply amount can be easily adjusted.
[0019] 従って、上記還元性ガスによるカーボンナノ構造物の成長の持続性向上に加え、 供給するガスにおける供給量の比の調整が容易となることによって、さらに、高品質 なカーボンナノ構造物の製造が可能となる。  [0019] Therefore, in addition to improving the sustainability of the growth of the carbon nanostructure by the reducing gas, it becomes easier to adjust the ratio of the supply amount of the supplied gas, thereby further improving the quality of the carbon nanostructure. Manufacture is possible.
[0020] 本発明に係るカーボンナノ構造物の製造方法では、上記課題を解決するために、 上記原料ガスの供給速度 (g/min)を、上記還元性ガスの供給速度 (g/min)で除した 値力 0. 05-0. 6であること力好まし!/ヽ。  [0020] In the method for producing a carbon nanostructure according to the present invention, in order to solve the above problems, the supply rate of the source gas (g / min) is set to the supply rate of the reducing gas (g / min). Divided power 0. 05-0.
[0021] 上記の構成によれば、上記分解反応の平衡が、分解が進む方向とは逆に移動する ため、上記触媒の表面に上記原料ガスに由来する炭素が堆積することを防ぐことが できる。一方で、分解が進む方向に移動しすぎないため、上記原料ガス由来の炭素 力 好適な速度で上記触媒に供給され、カーボンナノ構造物の合成に供される。  [0021] According to the above configuration, since the equilibrium of the decomposition reaction moves in the direction opposite to the direction in which the decomposition proceeds, it is possible to prevent carbon derived from the source gas from being deposited on the surface of the catalyst. . On the other hand, since it does not move too much in the direction in which the decomposition proceeds, the carbon power derived from the raw material gas is supplied to the catalyst at a suitable rate and used for the synthesis of the carbon nanostructure.
[0022] 従って、特に上記第 2段階におけるカーボンナノ構造物の成長を持続させることが でき、さらに効率的に行うことが可能となり、高品質のカーボンナノ構造物を効率的に 製造することが可能となる。 [0022] Therefore, in particular, the growth of the carbon nanostructure in the second stage can be sustained. Can be performed more efficiently, and high-quality carbon nanostructures can be efficiently manufactured.
[0023] 本発明に係るカーボンナノ構造物の製造方法では、上記課題を解決するために、 上記酸化性ガスの供給量は、上記反応室に供給されるガスの総量の内、 150ppm 〜500ppmであることが好まし!/、。  In the method for producing a carbon nanostructure according to the present invention, in order to solve the above problems, the supply amount of the oxidizing gas is 150 ppm to 500 ppm of the total amount of gas supplied to the reaction chamber. I prefer to be there!
[0024] 上記の構成によれば、上述した触媒表面に堆積した炭素が除去される。一方で、力 一ボンナノ構造物の製造に必要な炭素を除去することが無い。よって、上記原料ガス 由来の炭素が、好適な速度で上記触媒に供給され、カーボンナノ構造物の合成に 供される。  [0024] According to the above configuration, the carbon deposited on the catalyst surface is removed. On the other hand, there is no need to remove carbon necessary for the production of strong single-bone nanostructures. Therefore, the carbon derived from the raw material gas is supplied to the catalyst at a suitable rate and used for the synthesis of the carbon nanostructure.
[0025] 従って、高品質なカーボンナノ構造物を、効率的に製造することが可能となる。  [0025] Therefore, it is possible to efficiently produce high-quality carbon nanostructures.
[0026] 本発明に係るカーボンナノ構造物の製造方法では、上記課題を解決するために、 上記原料ガスの供給速度を、上記触媒の量で除した値が、 100〜 100000 (lZminIn the method for producing a carbon nanostructure according to the present invention, in order to solve the above problem, a value obtained by dividing the supply rate of the raw material gas by the amount of the catalyst is 100 to 100000 (lZmin
)であることが好ましい。 ) Is preferable.
[0027] 上記の構成によれば、上記分解反応の平衡が、分解が進む方向とは逆に移動する ため、上記触媒の表面に上記原料ガスに由来する炭素が堆積することを防ぐことが できる。一方で、分解が進む方向に移動しすぎないため、上記原料ガス由来の炭素 力 好適な速度で上記触媒に供給され、カーボンナノ構造物の合成に供される。  [0027] According to the above configuration, since the equilibrium of the decomposition reaction moves in the direction opposite to the direction in which the decomposition proceeds, it is possible to prevent carbon derived from the source gas from being deposited on the surface of the catalyst. . On the other hand, since it does not move too much in the direction in which the decomposition proceeds, the carbon power derived from the raw material gas is supplied to the catalyst at a suitable rate and used for the synthesis of the carbon nanostructure.
[0028] 従って、特に上記第 2段階におけるカーボンナノ構造物の成長を持続させることが でき、さらに効率的に行うことが可能となり、高品質のカーボンナノ構造物を効率的に 製造することが可能となる。  [0028] Therefore, in particular, the growth of the carbon nanostructure in the second stage can be sustained, and the carbon nanostructure can be more efficiently produced, and the high-quality carbon nanostructure can be efficiently produced. It becomes.
[0029] 本発明に係るカーボンナノ構造物製造用ガスでは、上記課題を解決するために、 少なくともカーボンナノ構造物の原料となる炭素を含む原料ガス、又は、上記原料ガ スを搬送するキャリアガスと、上記反応室内に水素を供給する還元性ガスとの混合物 を含み、当該混合物が、さらに、酸ィ匕性ガスを含むことを特徴としている。  In the carbon nanostructure-producing gas according to the present invention, in order to solve the above problems, at least a raw material gas containing carbon that is a raw material of the carbon nanostructure, or a carrier gas that conveys the raw material gas And a reducing gas that supplies hydrogen into the reaction chamber, and the mixture further includes an acidic gas.
[0030] 上記の構成によれば、上記カーボンナノ構造物製造用ガスを用いて、カーボンナノ 構造物を製造することで、上記還元性ガスに由来する水素によって、上記原料ガス の分解反応の平衡が、ル=シャトリエの原理により、分解が進む方向とは逆向きに移 動する。そのため、分解の速度が緩やかになる。よって、上記原料ガスに由来する過 剰な炭素の生成を防ぐことができ、上記過剰な炭素が上記触媒の表面に堆積するこ とによる、上記触媒の失活を防ぐことができる。 [0030] According to the above configuration, by producing the carbon nanostructure using the carbon nanostructure production gas, the equilibrium of the decomposition reaction of the raw material gas by hydrogen derived from the reducing gas is achieved. However, it moves in the direction opposite to the direction in which the decomposition proceeds due to the principle of Le Chatelier. Therefore, the speed of decomposition becomes slow. Therefore, excess from the source gas Generation of excess carbon can be prevented, and deactivation of the catalyst due to deposition of the excess carbon on the surface of the catalyst can be prevented.
[0031] 従って、特に上記第 2段階におけるカーボンナノ構造物の成長を持続させることが でき、高品質のカーボンナノ構造物を製造することが可能となる。  [0031] Accordingly, the growth of the carbon nanostructure in the second stage can be continued, and a high-quality carbon nanostructure can be produced.
[0032] また、上記の構成によれば、上記カーボンナノ構造物製造用ガスを用いて、カーボ ンナノ構造物を製造することで、上述した触媒表面に堆積する炭素を酸化、つまり燃 焼、除去することが可能となる。よって、触媒表面の活性が維持される。  [0032] Further, according to the above-described configuration, carbon deposited on the catalyst surface is oxidized, that is, burned and removed by manufacturing the carbon nanostructure using the carbon nanostructure manufacturing gas. It becomes possible to do. Therefore, the activity of the catalyst surface is maintained.
[0033] 従って、カーボンナノ構造物の成長、特に上記第 2段階におけるカーボンナノ構造 物の成長を持続させることができ、より高品質のカーボンナノ構造物を製造することが 可能となる。  [0033] Therefore, the growth of the carbon nanostructure, particularly the growth of the carbon nanostructure in the second stage can be sustained, and a higher quality carbon nanostructure can be produced.
[0034] 本発明に係るカーボンナノ構造物製造用ガスでは、上記課題を解決するために、 上記原料ガスと上記還元性ガスとを、重量比 0. 05 : 1〜0. 6 : 1で、混合した混合物 を含むことが好ましい。  [0034] In the gas for producing carbon nanostructures according to the present invention, in order to solve the above problems, the raw material gas and the reducing gas are mixed in a weight ratio of 0.05: 1 to 0.6: 1. It is preferable to include a mixed mixture.
[0035] 上記の構成によれば、上記カーボンナノ構造物製造用ガスを用いて、カーボンナノ 構造物を製造することで、上記分解反応の平衡が、分解が進む方向とは逆に移動す るため、上記触媒の表面に上記原料ガスに由来する炭素が堆積することを防ぐことが できる。一方で、分解が進む方向に移動しすぎないため、上記原料ガス由来の炭素 力 好適な速度で上記触媒に供給され、カーボンナノ構造物の合成に供される。  [0035] According to the above configuration, by producing the carbon nanostructure using the carbon nanostructure production gas, the equilibrium of the decomposition reaction moves in the direction opposite to the direction in which the decomposition proceeds. Therefore, it is possible to prevent the carbon derived from the raw material gas from being deposited on the surface of the catalyst. On the other hand, since it does not move too much in the direction in which the decomposition proceeds, the carbon power derived from the raw material gas is supplied to the catalyst at a suitable rate and used for synthesis of the carbon nanostructure.
[0036] 従って、特に上記第 2段階におけるカーボンナノ構造物の成長を持続させることが でき、さらに効率的に行うことが可能となり、高品質のカーボンナノ構造物を効率的に 製造することが可能となる。  [0036] Therefore, in particular, the growth of the carbon nanostructures in the second stage can be sustained, and the carbon nanostructures can be efficiently produced, and high-quality carbon nanostructures can be efficiently produced. It becomes.
[0037] 本発明に係るカーボンナノ構造物製造用ガスでは、上記課題を解決するために、 上記原料ガスと上記還元性ガスとを、重量比 0. 05 : 1〜0. 6 : 1で混合し、さらに上記 酸ィ匕性ガスを、上記還元性ガスに 375ppm〜1250ppmの濃度で混合した混合物を 含むことが好ましい。  In the gas for producing carbon nanostructures according to the present invention, in order to solve the above problems, the raw material gas and the reducing gas are mixed at a weight ratio of 0.05: 1 to 0.6: 1. In addition, it is preferable to include a mixture in which the acidic gas is mixed with the reducing gas at a concentration of 375 ppm to 1250 ppm.
[0038] 上記の構成によれば、上記カーボンナノ構造物製造用ガスを用いて、カーボンナノ 構造物を製造することで、上述した触媒表面に堆積した炭素が除去される。一方で、 カーボンナノ構造物の製造に必要な炭素を除去することが無い。よって、上記原料ガ ス由来の炭素が、好適な速度で上記触媒に供給され、カーボンナノ構造物の合成に 供される。 [0038] According to the above configuration, the carbon deposited on the catalyst surface is removed by manufacturing the carbon nanostructure using the carbon nanostructure manufacturing gas. On the other hand, it does not remove the carbon necessary for the production of carbon nanostructures. Therefore, the raw material gas Carbon derived from carbon is supplied to the catalyst at a suitable rate and used for the synthesis of carbon nanostructures.
[0039] 従って、高品質なカーボンナノ構造物を、効率的に製造することが可能となる。  [0039] Therefore, it is possible to efficiently produce high-quality carbon nanostructures.
[0040] 本発明に係るカーボンナノ構造物製造用ガスでは、上記課題を解決するために、 上記原料ガス力 アセチレン、エチレンおよびメタン力もなる群より選ばれる少なくとも[0040] In the gas for producing carbon nanostructures according to the present invention, in order to solve the above problems, at least selected from the group consisting of the above raw material gas power acetylene, ethylene and methane power
1種のガスであることが好まし 、。 It is preferable to be a kind of gas.
[0041] 上記の構成によれば、上記原料ガスは、カーボンナノ構造物の構成元素となる炭 素、水素以外の余分な物質を生成しない。また、安価で容易に手に入り、さらに、上 記触媒との反応性が高い。 [0041] According to the above configuration, the source gas does not generate an extra substance other than carbon and hydrogen, which are constituent elements of the carbon nanostructure. In addition, it is inexpensive and easily available, and is highly reactive with the above catalyst.
[0042] 従って、さらに、高品質のカーボンナノ構造物を製造することが可能となる。 [0042] Therefore, it is possible to produce a high-quality carbon nanostructure.
[0043] 本発明に係るカーボンナノ構造物製造用ガスでは、上記課題を解決するために、 上記還元性ガスが、水素、アンモニア及び硫ィ匕水素からなる群力 選ばれる少なくと も 1種のガスであることが好まし!/、。 [0043] In the gas for producing a carbon nanostructure according to the present invention, in order to solve the above-mentioned problem, the reducing gas is selected from a group power consisting of hydrogen, ammonia and hydrogen sulfide. Gas is preferred!
[0044] 上記の構成によれば、上記還元性ガスは、上記分解反応の平衡を、当該分解が進 まな 、方向へ移動するために必要な水素以外の成分として、上記カーボンナノ構造 物の製造を阻害する余分な物質を生成しな!、。 [0044] According to the above-described configuration, the reducing gas can be used to produce the carbon nanostructure as a component other than hydrogen necessary for moving the equilibrium of the decomposition reaction in the direction in which the decomposition proceeds. Don't produce extra substances that hinder!
[0045] 従って、さらに高品質のカーボンナノ構造物を製造することが可能となる。 [0045] Therefore, it is possible to produce a higher quality carbon nanostructure.
[0046] 本発明に係るカーボンナノ構造物製造用ガスでは、上記課題を解決するために、 上記酸化性ガス力 水、酸素、アセトン、アルコール、ジメチルホルムアミド、 CO、 C [0046] In the gas for producing carbon nanostructures according to the present invention, in order to solve the above problems, the oxidizing gas power water, oxygen, acetone, alcohol, dimethylformamide, CO, C
2 2
0、 O及び H O力 なる群力 選ばれる少なくとも 1種のガスであることが好ましい。 The group force of 0, O and H 2 O forces is preferably at least one gas selected.
3 2 2  3 2 2
[0047] 上記の構成によれば、上記カーボンナノ構造物製造用ガスを用いて、カーボンナノ 構造物を製造することで、上述した触媒表面に堆積した炭素を効率的に除去するこ とがでさる。  [0047] According to the above configuration, carbon deposited on the catalyst surface can be efficiently removed by manufacturing the carbon nanostructure using the carbon nanostructure manufacturing gas. Monkey.
[0048] 従って、さらに高品質のカーボンナノ構造物を、効率的に製造することができる。  [0048] Therefore, a higher quality carbon nanostructure can be efficiently produced.
[0049] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白にな るであろう。 [0049] Other objects, features, and advantages of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明 [0050] [図 1]本実施の形態における、カーボンナノ構造物の製造装置の概略構成図である。 Brief Description of Drawings [0050] FIG. 1 is a schematic configuration diagram of a carbon nanostructure manufacturing apparatus in the present embodiment.
[図 2]本実施の形態における、触媒基板上の触媒の酸化と微粒子化を模式的に示す 図である。  FIG. 2 is a diagram schematically showing oxidation and micronization of a catalyst on a catalyst substrate in the present embodiment.
[図 3]本実施例にぉ 、て、原料ガスの供給量に対する還元性ガスの供給量の比を検 討した結果を示す図である。  FIG. 3 is a diagram showing the results of examining the ratio of the supply amount of reducing gas to the supply amount of raw material gas in this example.
[図 4]本実施例において、原料ガスの供給量に対する酸ィ匕性ガスの供給量の比を検 討した結果を示す図である。  FIG. 4 is a graph showing the results of examining the ratio of the supply amount of the acidic gas to the supply amount of the raw material gas in this example.
[図 5]本実施例において、昇温工程後の保持時間と得られるカーボンナノチューブの 高さとの関係を検討した  [Fig. 5] In this example, the relationship between the holding time after the temperature raising step and the height of the obtained carbon nanotube was examined.
[図 6]本実施例において得たカーボンナノチューブの外観を観察した結果を示す図 である。  FIG. 6 is a diagram showing the results of observing the appearance of carbon nanotubes obtained in this example.
[図 7]本実施例において得たカーボンナノチューブを透過型顕微鏡で観察した結果 を示す図である。  FIG. 7 is a diagram showing the results of observing the carbon nanotubes obtained in this example with a transmission microscope.
符号の説明  Explanation of symbols
[0051] 2 カーボンナノ構造物 [0051] 2 Carbon nanostructure
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0052] 本発明の一実施形態について図 1ないし図 2に基づいて説明すると以下の通りで ある。 One embodiment of the present invention is described below with reference to FIGS. 1 and 2.
[0053] 本実施の形態は、以下に例示するカーボンナノ構造物の製造装置を用いて、後述 する原料ガス、キャリアガス及び還元性ガスをカーボンナノ構造物の成長が行なわれ る反応室に供給することで、カーボンナノ構造物の製造を行うものである。しかし、本 発明の範囲はこれらの説明に拘束されることはなぐ以下の例示以外についても、本 発明の趣旨を損なわない範囲で適宜変更して実施することができる。  In the present embodiment, a raw material gas, a carrier gas, and a reducing gas, which will be described later, are supplied to a reaction chamber in which carbon nanostructures are grown using a carbon nanostructure manufacturing apparatus exemplified below. By doing so, the carbon nanostructure is manufactured. However, the scope of the present invention is not limited by these explanations, and can be implemented with appropriate modifications within the scope of the present invention other than the following examples.
[0054] 図 1は本発明の実施形態に係るカーボンナノ構造物の製造装置の概略構成図で ある。上記製造装置は、 CVD法の一形態である CCVD法を使用してカーボンナノ構 造物を製造するカーボンナノ構造物の製造装置である。上記製造装置は、カーボン ナノ構造物の成長反応が行なわれる反応室 4、及び、上記反応室 4を昇温させるた めの反応ヒータ 1を備えている。上記反応室 4には、カーボンナノ構造物の成長反応 を触媒する触媒体 6が配置される。この触媒体 6の表面にカーボンナノ構造物 2が C CVD法により成長する。つまり、この実施形態では、本発明に係るカーボンナノ構造 物力 カーボンナノ構造物 2として図示されている。 FIG. 1 is a schematic configuration diagram of a carbon nanostructure manufacturing apparatus according to an embodiment of the present invention. The manufacturing apparatus is a carbon nanostructure manufacturing apparatus that manufactures a carbon nanostructure using a CCVD method which is a form of the CVD method. The manufacturing apparatus includes a reaction chamber 4 in which a carbon nanostructure growth reaction is performed, and a reaction heater 1 for raising the temperature of the reaction chamber 4. The reaction chamber 4 has a carbon nanostructure growth reaction. A catalyst body 6 that catalyzes is disposed. Carbon nanostructures 2 grow on the surface of the catalyst body 6 by the CCVD method. That is, in this embodiment, the carbon nanostructure physical force carbon nanostructure 2 according to the present invention is illustrated.
[0055] ここで、本明細書にぉ 、て、「カーボンナノ構造物」とは炭素原子力 構成されるナ ノサイズの物質であり、例えば、カーボンナノチューブ、カーボンナノチューブにビー ズが形成されたビーズ付カーボンナノチューブ、カーボンナノチューブが多数林立し たカーボンナノブラシ、カーボンナノチューブが捩れを有したカーボンナノツイスト、コ ィル状のカーボンナノコイルなどである。本明細書では、これら物質を「カーボンナノ 構造物」と総称する。 [0055] Here, for the purposes of this specification, "carbon nanostructure" is a nano-sized substance that is composed of carbon nuclear power. For example, carbon nanotubes and beads with beads formed on carbon nanotubes are attached. These include carbon nanotubes, carbon nanobrushes with many carbon nanotubes, carbon nanotwists with twisted carbon nanotubes, and coiled carbon nanocoils. In this specification, these substances are collectively referred to as “carbon nanostructures”.
[0056] また、本明細書にお!ヽて「CVD法」とは、反応容器内で原料ガスを分解して目的物 質を成長させる方法を総称しており、その分解手段には熱、電子ビーム、レーザービ ーム、イオンビームなど各種の分解手段を、その意味に包含する。  [0056] Further, in the present specification, the "CVD method" is a general term for a method in which a source gas is decomposed in a reaction vessel to grow a target substance, and the decomposition means includes heat, Various decomposition means such as electron beam, laser beam, and ion beam are included in the meaning.
[0057] 上記反応室 4の一端にはガス排出管路 3が連通されており、ガス排出管路 3に連結 する流路には開閉バルブ 5、 7を介してキャリアガス容器(図示せず)に接続されてい る。  [0057] A gas exhaust line 3 is communicated with one end of the reaction chamber 4, and a carrier gas container (not shown) is connected to the flow path connected to the gas exhaust line 3 via opening and closing valves 5 and 7. It is connected to the.
[0058] キャリアガスとしては、後述する原料ガスを搬送することができ、当該原料ガスや後 述する還元性ガスなどと無反応である限り限定されるものではない。例えば、ヘリウム (He)、アルゴン(Ar)、ネオン、 N、 CO、クリプトン、キセノンなどの不活性ガスまた  [0058] The carrier gas is not limited as long as it can transport a source gas to be described later and does not react with the source gas or a reducing gas to be described later. For example, inert gases such as helium (He), argon (Ar), neon, N, CO, krypton, xenon,
2 2  twenty two
はその混合ガスが利用される。中でもヘリウムとアルゴンとの混合ガスが好ましい。原 料ガスが反応により消耗されるのに対し、キャリアガスは全く無反応で消耗しない特 徴がある。  The mixed gas is used. Of these, a mixed gas of helium and argon is preferable. The source gas is consumed by the reaction, whereas the carrier gas has no reaction and is not consumed.
[0059] 本実施の形態に係る原料ガスとしては、カーボンナノ構造物の原料となる炭素を含 む限り、限定されるものではなぐ炭化水素、硫黄含有有機ガス、リン含有有機ガスな どの有機ガスを用いればょ ヽ。有機ガスの中でも余分な物質を生成しな ヽ炭化水素 が好適である。特に、エチレン H )は安価で容易に手に入り、カーボンナノ構造  [0059] The raw material gas according to the present embodiment is not limited as long as it includes carbon that is a raw material of the carbon nanostructure, and is not limited to organic gases such as hydrocarbons, sulfur-containing organic gases, and phosphorus-containing organic gases. If you use ヽ. Among organic gases, hydrocarbons that do not generate extra substances are preferred. In particular, ethylene H) is cheap and easily available, and carbon nanostructures
2 4  twenty four
物を製造する場合に利用する触媒との反応性が高いことから、上記原料ガスとして好 適に利用できる。  Since it has a high reactivity with the catalyst used when producing a product, it can be suitably used as the raw material gas.
[0060] 炭化水素としては、メタン、ェタンなどのアルカン化合物、エチレン、ブタジエンなど のアルケン化合物、アセチレンなどのアルキン化合物、ベンゼン、トルエン、スチレン などのァリール炭化水素化合物、インデン、ナフタリン、フエナントレンなどの縮合環 を有する芳香族炭化水素、シクロプロパン、シクロへキサンなどのシクロパラフィン化 合物、シクロペンテンなどのシクロォレフイン化合物、ステロイドなどの縮合環を有す る脂環式炭化水素化合物などが利用できる。 [0060] Examples of hydrocarbons include alkane compounds such as methane and ethane, ethylene, butadiene, and the like. Alkene compounds such as alkene compounds, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene and styrene, aromatic hydrocarbons having condensed rings such as indene, naphthalene and phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane Products, cycloolefin compounds such as cyclopentene, and alicyclic hydrocarbon compounds having a condensed ring such as steroids can be used.
[0061] また、上記炭化水素を 2種以上混合した混合炭化水素ガスを使用することも可能で ある。特に、好ましくは炭化水素の中でも低分子、例えば、アセチレン、ァリレン、ェチ レン、ベンゼン、トルエン、メタンなどの内、 2以上のガスを混合した混合炭化水素ガ スが好適である。  [0061] It is also possible to use a mixed hydrocarbon gas in which two or more of the above hydrocarbons are mixed. In particular, a mixed hydrocarbon gas obtained by mixing two or more gases among hydrocarbons, preferably low molecules such as acetylene, arylene, ethylene, benzene, toluene, and methane is preferable.
[0062] 原料ガスは、原料ガス容器(図示せず)から、上記反応室 4の他端に設けた原料ガ ス流入路 9を通じて、上記反応室 4に供給される。上記原料ガス容器では、上記原料 ガスがレギユレータ(図示せず)により所定圧力まで低圧化される。低圧化された上記 原料ガスはマスフローコントローラ(MFC)力 なる原料ガス流量制御器 8により所定 流量に調節される。上記原料ガス流量制御器 8は上記原料ガス流入路 9に連通する 流入路に設けられており、電磁三方弁 10、 12及び開閉バルブ 11を介して原料ガス が供給される。キャリアガスは前記キャリアガス容器力 供給され、ガス流量制御器 2 2、 23が設けられた 2系統の流路を通じて、後述のように、原料ガス流入路 9に合流 するようにキャリアガスが供給される。  The source gas is supplied from the source gas container (not shown) to the reaction chamber 4 through the source gas inflow passage 9 provided at the other end of the reaction chamber 4. In the source gas container, the source gas is reduced in pressure to a predetermined pressure by a regulator (not shown). The above-mentioned source gas whose pressure has been reduced is adjusted to a predetermined flow rate by a source gas flow rate controller 8 having a mass flow controller (MFC) force. The raw material gas flow rate controller 8 is provided in the inflow passage communicating with the raw material gas inflow passage 9, and the raw material gas is supplied through the electromagnetic three-way valves 10, 12 and the opening / closing valve 11. The carrier gas is supplied with the carrier gas container force, and the carrier gas is supplied so as to merge with the raw material gas inflow passage 9 as will be described later through the two flow paths provided with the gas flow controllers 22 and 23. The
[0063] 本実施の形態では、還元性ガスを上記反応室 4に供給する。上記還元性ガスにより 、上記触媒の失活を防ぎ、後述するカーボンナノ構造物の緩慢な成長工程を連続的 、かつ持続的に行うことができる。つまり、上記緩慢な成長工程を、長時間にわたって 持続させることができるため、長 、サイズのカーボンナノ構造物を製造することができ る。例えば、 5〜7mmのカーボンナノ構造物を製造することができる。  In the present embodiment, reducing gas is supplied to the reaction chamber 4. With the reducing gas, it is possible to prevent the catalyst from being deactivated, and to perform a slow growth process of the carbon nanostructure described later continuously and continuously. That is, since the slow growth process can be continued for a long time, a long and sized carbon nanostructure can be manufactured. For example, 5-7 mm carbon nanostructures can be manufactured.
[0064] 上記還元性ガスとしては、上記反応室 4内に水素を供給することが可能なガスであ る限り、限定されるものではないが、水素、アンモニア、硫ィ匕水素が好ましい。これら は単体で用いてもよぐ適宜 2種類以上を混合して用いてもよい。また、さらに好まし い還元性ガスは水素である。水素は、上記分解反応の平衡を、当該分解が進まない 方向へ移動するために必要な水素以外の余分な物質を生成しない。つまり、上記反 応室 4に直接、水素を供給することが最も好ましい。また、上記反応室 4内で、上記原 料ガスとの反応、又は、上記反応室 4内の温度'圧力条件等により、アンモニアゃ硫 化水素から生成される水素が供給されてもょ 、。 [0064] The reducing gas is not limited as long as it is a gas capable of supplying hydrogen into the reaction chamber 4, but hydrogen, ammonia, and hydrogen sulfide are preferable. These may be used alone or as a mixture of two or more. A more preferred reducing gas is hydrogen. Hydrogen does not produce any extra material other than hydrogen necessary to move the equilibrium of the decomposition reaction in the direction in which the decomposition does not proceed. In other words, Most preferably, hydrogen is supplied directly to the reaction chamber 4. In the reaction chamber 4, hydrogen produced from ammonia hydrosulfide may be supplied depending on the reaction with the raw material gas, the temperature in the reaction chamber 4, the pressure condition, or the like.
[0065] 上記原料ガスの供給速度 (g/min)と、上記還元性ガスの供給速度 (g/min)との比は 、 目的とするカーボンナノ構造物のサイズ、生成速度等に応じて適宜設定すればよ いが、重量比で、 0. 05 : 1〜0. 6 : 1であることが好ましく、さらに好ましくは、 0. 1 : 1 〜0. 3 : 1である。さらに、上記原料ガスの供給速度 (g/min)を、上記触媒量 (g)で除 した値が、 100〜100000 (lZmin)であることが好ましい。このとき、後述するカーボ ンナノ構造物の緩慢な成長工程を、より連続的、かつ持続的に行うことができる。  [0065] The ratio of the feed rate of the source gas (g / min) to the feed rate of the reducing gas (g / min) is appropriately determined according to the size, generation rate, etc. of the target carbon nanostructure. Although it may be set, the weight ratio is preferably 0.05: 1 to 0.6: 1, and more preferably 0.1: 1 to 0.3: 1. Further, the value obtained by dividing the feed rate (g / min) of the raw material gas by the catalyst amount (g) is preferably 100 to 100,000 (lZmin). At this time, the slow growth process of the carbon nanostructure described later can be performed more continuously and continuously.
[0066] また、予め、上記還元性ガスと上記原料ガスとを重量比で、 0. 05: 1〜0. 6: 1で混 合したガス (カーボンナノ構造物製造用ガス)を用いてもよぐさらに、上記重量比が 0 . 1 : 1〜0. 3 : 1であるカーボンナノ構造物製造用ガスを用いることが好ましい。  [0066] Alternatively, a gas (carbon nanostructure production gas) in which the reducing gas and the source gas are mixed in a weight ratio of 0.05: 1 to 0.6: 1 in advance may be used. Furthermore, it is preferable to use a carbon nanostructure-producing gas having a weight ratio of 0.1: 1 to 0.3: 1.
[0067] 上記還元性ガスの供給手段は、反応室 4に供給される限り限定するものではない。  The reducing gas supply means is not limited as long as it is supplied to the reaction chamber 4.
つまり、他のガスとは別に、還元性ガスのみを別途反応室 4に供給してもよぐ予め、 上記原料ガスや、上記キャリアガス等の、他のガスに混合して供給してもよい。ただじ 、 O等、上記還元性ガスと反応することで爆発等を起こす恐れのあるガスに混合する That is, apart from other gases, only the reducing gas may be separately supplied to the reaction chamber 4 or may be supplied in advance mixed with other gases such as the above-mentioned source gas or the above carrier gas. . However, it is mixed with gas that may cause explosion by reacting with the reducing gas, such as O.
2 2
ときは、爆発等の恐れが無いよう取り扱いに注意が必要であることは当然である。好 ましくは、上記還元性ガスを、上記キャリアガス、上記原料ガスの少なくとも一方に混 合したガス (カーボンナノ構造物製造用ガス)を、反応室 4に供給することが好まし 、 。つまり、上記反応室 4に供給される前に、上記カーボンナノ構造物製造用ガスが製 造されることが好ましい。  When handling, it is natural to be careful in handling so that there is no risk of explosion. Preferably, a gas (carbon nanostructure production gas) in which the reducing gas is mixed with at least one of the carrier gas and the raw material gas is supplied to the reaction chamber 4. That is, it is preferable that the carbon nanostructure manufacturing gas is manufactured before being supplied to the reaction chamber 4.
[0068] なお、カーボンナノ構造物製造用ガスは、上記製造装置におけるいずれかの工程 において製造されることに限られず、予めキャリアガス又は原料ガスに混合したもの 充填した容器を、上述したキャリアガス容器や原料ガス容器として用いてもよい。この ように上記還元性ガスは、最終的に上記反応室 4に供給される限り、手段は問わない ため、図 1には示していない。  [0068] The carbon nanostructure production gas is not limited to being produced in any of the steps of the production apparatus, and a container previously filled with a carrier gas or a raw material gas is filled with the carrier gas described above. It may be used as a container or a source gas container. Thus, as long as the reducing gas is finally supplied to the reaction chamber 4, any means can be used.
[0069] 本実施形態では、酸ィ匕性ガスを用いる。酸ィ匕性ガスとしては、炭素に対して酸化性 を有するガスである限り限定されるものではないが、水、酸素、アセトン、アルコール、 ジメチルホルムアミド、 CO、 CO、 O及び H Oが好ましぐさらに好ましくは水、酸素 [0069] In the present embodiment, an acidic gas is used. The acidic gas is not limited as long as it is a gas having an oxidizing property with respect to carbon, but water, oxygen, acetone, alcohol, Dimethylformamide, CO, CO, O and HO are preferred, more preferably water, oxygen
2 3 2 2  2 3 2 2
である。これらは単独で用いてもよぐ 2種以上を混合して用いてもよい。酸化性ガス を用いることにより、後述する触媒表面に堆積する炭素(アモルファスカーボン)を酸 ィ匕、つまり燃焼、除去することが可能となる。よって、カーボンナノ構造物を、より連続 的に生成することができる。  It is. These may be used alone or as a mixture of two or more. By using an oxidizing gas, carbon (amorphous carbon) deposited on the catalyst surface, which will be described later, can be oxidized, that is, burned and removed. Therefore, carbon nanostructures can be generated more continuously.
[0070] 上記酸化性ガスの混合量は、 目的とするカーボンナノ構造物のサイズ、生成速度 等に応じて適宜設定すればよいが、上記反応室に供給されるガスの総量の内、 150 ppm〜500ppmであること力 S好ましく、さらに好ましくは 300〜400ppmである。なお 、水と酸素とを混入する場合は、上記の範囲に限らず、水を 0. 05ppm〜3%の範囲 で、酸素を 0. 01ppb〜l%で混入することが好ましい。また、予め、上述した上記還 元性ガスと上記原料ガスとを混合したガスに、さらに上記酸ィ匕性ガスを混合したガス ( カーボンナノ構造物製造用ガス)を用いてもよ ヽ。このとき混合される上記酸化性ガス の量は、用いる上記原料ガスの量に応じて適宜設定されればよい。例えば、上記還 元性ガス力 用いるガスの総量の内、 40%であるときは、上記還元性ガスの 375pp m〜1250ppmとなるように混合するとよく、さらに好ましくは、 750〜1000ppmであ る。 [0070] The mixing amount of the oxidizing gas may be appropriately set according to the size, generation rate, and the like of the target carbon nanostructure. Of the total amount of gas supplied to the reaction chamber, 150 ppm A force of ˜500 ppm S is preferable, more preferably 300 to 400 ppm. In addition, when mixing water and oxygen, it is not restricted to said range, It is preferable to mix water in the range of 0.05 ppm-3%, and oxygen at 0.01 ppb-l%. In addition, a gas (carbon nanostructure production gas) obtained by mixing the above-described reducing gas and the above-described raw material gas with the above-described acidic gas may be used in advance. The amount of the oxidizing gas mixed at this time may be appropriately set according to the amount of the raw material gas used. For example, when it is 40% of the total amount of gas used in the reducing gas power, the reducing gas may be mixed so as to be 375 ppm to 1250 ppm, more preferably 750 to 1000 ppm.
[0071] 本実施形態では、上記酸ィ匕性ガスは、重量法によって所定の濃度に充填された酸 素ボンべ(図示せず)から酸素は MFC力もなる酸素流量制御器 13により所定流量に 調節される。酸素流量制御器 13は原料ガス流入路 9に連通する流入路に設けられ ており、電磁三方弁 14及び開閉バルブ 11を介して反応室 4に酸素が供給される。な お、開閉ノ レブ 11手前のキャリアガスの導入路には酸素分析装置 21が設けられて おり、この酸素分析装置 21には酸素ボンベからの酸素も導入され、反応室 4に適正 濃度の酸素が供給されるように監視して 、る。  [0071] In the present embodiment, the oxygen-containing gas is supplied from an oxygen cylinder (not shown) filled to a predetermined concentration by a gravimetric method to a predetermined flow rate by an oxygen flow controller 13 in which oxygen also has an MFC force. Adjusted. The oxygen flow rate controller 13 is provided in the inflow path communicating with the raw material gas inflow path 9, and oxygen is supplied to the reaction chamber 4 through the electromagnetic three-way valve 14 and the opening / closing valve 11. An oxygen analyzer 21 is provided in the carrier gas introduction path 11 before the open / close valve 11, and oxygen from the oxygen cylinder is also introduced into the oxygen analyzer 21, and oxygen of an appropriate concentration is supplied to the reaction chamber 4. Monitor and ensure that is supplied.
[0072] 水分添加装置 15は加熱ヒータを備えた水容器カゝらなる。精製されたキャリアガスを 、上記ガス流量制御器 16を介して上記水分添加装置 15の加温水中に導入して、流 量混合法により水分を添加した水分とキャリアガスの混合ガスとが電磁三方弁 18及 び開閉バルブ 11を介して反応室 4に供給される。キャリアガスは水分添加装置 15の 出口側でもガス流量制御器 20を介して合流し混合される。水分とキャリアガスの混合 ガス導入路に設けられた監視用バイパス路 19に、水分分析装置 17が設けられてお り、水分分析装置 17により反応室 4に適正濃度の水分が供給されるように監視してい る。 The water adding device 15 is a water container provided with a heater. The purified carrier gas is introduced into the warmed water of the moisture adding device 15 via the gas flow controller 16, and the moisture added by the flow mixing method and the mixed gas of the carrier gas are electromagnetically mixed. It is supplied to the reaction chamber 4 through the valve 18 and the open / close valve 11. The carrier gas is also merged and mixed via the gas flow controller 20 at the outlet side of the moisture addition device 15. Mixing moisture and carrier gas A moisture analyzer 17 is provided in the monitoring bypass 19 provided in the gas introduction channel, and monitoring is performed so that the moisture analyzer 17 supplies water with an appropriate concentration to the reaction chamber 4.
[0073] 触媒体 6は、カーボンナノ構造物の成長反応の触媒を、成膜等により表面に形成し た基体であり、その基体の形状は基板、多層基板、筒体、多面体、ペレット、粉体な ど種々の形態がある(以下、本実施の形態において、上記触媒が表面に形成された 基体を「触媒基板」と表記する。 ) o  [0073] The catalyst body 6 is a substrate on which a carbon nanostructure growth reaction catalyst is formed on the surface by film formation or the like. The shape of the substrate is a substrate, a multilayer substrate, a cylinder, a polyhedron, a pellet, a powder, (Hereinafter, in the present embodiment, the substrate on which the catalyst is formed is referred to as a “catalyst substrate”.) O
[0074] また、使用する上記触媒は鉄元素を含む限り、限定されるものではないが、酸ィ匕鉄 が好ましぐさらに好ましくは四酸化三鉄であり、特に上記四酸化三鉄を主成分とす るマグネタイトが好ましい。また、鉄元素からなる触媒、即ち純鉄を用いて、カーボン ナノ構造物装置に酸化性ガスを供給して、上記純鉄を酸化する手段を具備させて、 上記純鉄をマグネタイトに転ィ匕させてもょ ヽ。 Vヽずれの触媒を用いる場合にお!ヽても 、後述する昇温工程における上記触媒の微粒子化が良好に進む触媒であることが 好ましい。  [0074] The catalyst to be used is not limited as long as it contains an iron element, but iron oxide is more preferable, and triiron tetroxide is more preferable. Magnetite as a component is preferable. Further, a catalyst comprising iron element, that is, pure iron is used to supply an oxidizing gas to the carbon nanostructure device to oxidize the pure iron, thereby converting the pure iron into magnetite. Let me do it. Even when a V-shifted catalyst is used, it is preferable that the catalyst be finely atomized in the temperature raising step described later.
[0075] つまり、本実施形態に係るカーボンナノ構造物製造装置は、反応室 4に予め鉄元 素を含む触媒体 6が配置され、原料ガスを供給して反応室 4に流通させながら、原料 ガスを供給して反応室 4に流通させる前に、キャリアガスとともに酸ィ匕性ガスを反応室 4に供給して、触媒体 6をマグネタイトに転化させる機構を設けてもよい。また、触媒 体 6によるカーボンナノ構造物の成長過程にお 、ても、原料ガス及び酸化性ガスを 反応室 4に流通させるようにしてもよい。  That is, in the carbon nanostructure manufacturing apparatus according to this embodiment, the catalyst body 6 containing iron element is arranged in advance in the reaction chamber 4, and the raw material gas is supplied and circulated through the reaction chamber 4. Before the gas is supplied and circulated into the reaction chamber 4, a mechanism may be provided in which an acidic gas is supplied to the reaction chamber 4 together with the carrier gas to convert the catalyst body 6 into magnetite. Further, in the process of growing the carbon nanostructure by the catalyst body 6, the raw material gas and the oxidizing gas may be circulated into the reaction chamber 4.
[0076] なお、上記触媒基板上に鉄触媒を成膜する方法は、 Arスパッタ、電子ビーム蒸着 法、ディップコーティング法、スピンコート法など成膜する手段は問わないが、均一に ナノメートルオーダーの厚みの触媒膜が形成できることが重要である。粉体にぉ 、て は、液体中に分散された状態でナノメートルオーダーであって均一に液相に分散し ており、昇温過程で現に酸ィ匕鉄の状態で数 nm〜数十應オーダーの触媒微粒子を 形成すれば特に制限はな 、。  [0076] The method for forming the iron catalyst on the catalyst substrate is not limited to any means such as Ar sputtering, electron beam evaporation, dip coating, or spin coating, but it is uniformly in the nanometer order. It is important that a catalyst film having a thickness can be formed. The powder is dispersed in a liquid in the order of nanometers and uniformly dispersed in the liquid phase. There is no particular limitation as long as the catalyst particles of the order are formed.
[0077] 上記触媒基板に用いる基体は、カーボンナノ構造物を合成する反応温度において 、触媒である鉄と、化合物を形成しない材質であることが好ましい。例えば、反応温度 による安定性、表面の平滑性、価格並びに再利用の観点から、シリコン基板又は、特 に、図 2の(2A)に示すように、シリコン基板 S1表面を十分に酸ィ匕させたシリコン酸ィ匕 層 S2を備えたシリコン基板を利用することが好ましい。上記触媒が上記触媒基板と の間でィ匕合物を生成したり、上記触媒基板との間に強い親和力を持ったりする場合 、後述する昇温工程における上記触媒の酸ィ匕ゃ粒子化が、良好に起こらず、カーボ ンナノ構造物の生成確率が落ちる恐れがある。 [0077] The substrate used for the catalyst substrate is preferably a material that does not form a compound with iron as a catalyst at the reaction temperature for synthesizing the carbon nanostructure. For example, reaction temperature From the viewpoints of stability, surface smoothness, cost, and reuse, silicon substrates or, in particular, silicon oxide with a sufficiently oxidized surface of silicon substrate S1 as shown in (2A) of FIG. It is preferable to use a silicon substrate provided with a layer S2. When the catalyst generates a compound with the catalyst substrate or has a strong affinity with the catalyst substrate, the catalyst is oxidized into particles in the heating step described later. This does not occur well, and the carbon nanostructure formation probability may be reduced.
[0078] 次に、ガス流路切換機構について説明する。電磁三方弁 10は自動バルブ制御器( 図示せず)の作用により遮断状態と供給状態に制御される。即ち、原料ガスの遮断状 態では、原料ガスは排気側に排気され、原料ガスの供給状態では、原料ガスは注入 側に供給され、開閉バルブ 11に至る合流部にて原料ガスはキャリアガスと混合される Next, the gas flow path switching mechanism will be described. The electromagnetic three-way valve 10 is controlled to a cut-off state and a supply state by the action of an automatic valve controller (not shown). That is, in the state in which the source gas is shut off, the source gas is exhausted to the exhaust side, and in the source gas supply state, the source gas is supplied to the injection side, and the source gas is separated from the carrier gas at the junction where the on-off valve 11 is reached. Mixed
[0079] 電磁三方弁 10を使用すると、既に原料ガスは所定流量に制御されていることから、 注入側に切換えられても原料ガスの初期揺らぎは存在しな ヽ。しかも電磁作用により 切換えられるため、その切換えは圧力変動無く瞬時に行われ、原料ガスの緩慢な立 ち上がりは無ぐ一気に所定流量の原料ガスが供給される。また、原料ガスを供給状 態力 遮断状態に切換える場合でも、自動バルブ制御器による電磁作用で瞬時に 圧力変動なく原料ガスの流量をゼロに切換えることができ、原料ガスの緩慢な立下り は無い。 [0079] When the electromagnetic three-way valve 10 is used, since the source gas is already controlled to a predetermined flow rate, there is no initial fluctuation of the source gas even if it is switched to the injection side. In addition, since the switching is performed by electromagnetic action, the switching is performed instantaneously without any pressure fluctuation, and the raw material gas is supplied at a predetermined flow rate without any slow rise of the raw material gas. Even when the source gas is switched to a state where the supply state force is shut off, the flow rate of the source gas can be instantaneously switched to zero without pressure fluctuations by electromagnetic action by the automatic valve controller, and there is no slow fall of the source gas. .
[0080] このように、電磁三方弁 10を用いれば、原料ガスの反応室 4への供給と遮断を瞬時 に行うことができ、し力もその変化過程において流量の揺らぎは全く存在しない。従つ て、合計流量が一定であると、反応室 4の内部のガス圧力が一定になる。この全圧力 (ガス圧力)が一定の中で原料ガスが分解されるため、反応室 4の内部に圧力揺らぎ が発生せず、触媒体 8のガス条件を一定にでき、カーボンナノ構造物 2の成長を促進 する作用がある。  [0080] As described above, if the electromagnetic three-way valve 10 is used, the supply and cut-off of the raw material gas to the reaction chamber 4 can be instantaneously performed, and the flow rate does not fluctuate at all in the changing process. Therefore, if the total flow rate is constant, the gas pressure inside the reaction chamber 4 is constant. Since the source gas is decomposed while this total pressure (gas pressure) is constant, pressure fluctuation does not occur inside the reaction chamber 4, the gas conditions of the catalyst body 8 can be made constant, and the carbon nanostructure 2 It has the effect of promoting growth.
[0081] キャリアガスと原料ガスは前記合流部で混合された後、混合流として原料ガス流入 路 9先端に設けたガス供給ノズル(図示せず)から反応室 4に供給される。反応室 4は カーボンナノ構造物を最も生成しやすい温度域に加熱されており、原料ガスは触媒 体 6の近傍で熱分解され、触媒体 6の表面で分解物からカーボンナノ構造物 2が成 長する。 [0081] The carrier gas and the source gas are mixed at the junction, and then supplied to the reaction chamber 4 from a gas supply nozzle (not shown) provided at the tip of the source gas inflow passage 9 as a mixed flow. The reaction chamber 4 is heated to a temperature range where carbon nanostructures are most easily generated, and the raw material gas is thermally decomposed in the vicinity of the catalyst body 6, and carbon nanostructures 2 are formed from the decomposition products on the surface of the catalyst body 6. To be long.
[0082] 本実施形態では、 CVD法にぉ ヽて、原料ガスを分解するのに熱分解法を利用した 力 例えばレーザービーム分解法、電子ビーム分解法、イオンビーム分解法、プラズ マ分解法、その他の分解法が利用できる。いずれにしても、これらの分解物から触媒 体 6の表面にカーボンナノ構造物 2が形成されることになる。触媒体 6の表面では原 料ガスの一部がカーボンナノ構造物に変換され、反応に寄与しなかった未反応の原 料ガスはキャリアガスとともにガス排出管路 3から排出される。  [0082] In the present embodiment, a force that uses the thermal decomposition method to decompose the source gas over the CVD method, such as a laser beam decomposition method, an electron beam decomposition method, an ion beam decomposition method, a plasma decomposition method, Other decomposition methods can be used. In any case, the carbon nanostructure 2 is formed on the surface of the catalyst body 6 from these decomposition products. On the surface of the catalyst body 6, a part of the raw material gas is converted into carbon nanostructures, and the unreacted raw material gas that has not contributed to the reaction is discharged from the gas discharge line 3 together with the carrier gas.
[0083] <昇温工程 >  [0083] <Temperature raising process>
昇温工程では、カーボンナノ構造物の成長反応を開始させる前に、上記反応室 4 内の温度を反応温度まで昇温させる。この反応温度は、目的とするカーボンナノ構造 物のサイズや、用いる原料ガス、キャリアガス、還元性ガスなどにより適宜設定すれば よいが、 600°C 1200°C力 S好ましく、さらに好ましくは、 700°C 900°Cである。  In the temperature raising step, the temperature in the reaction chamber 4 is raised to the reaction temperature before starting the growth reaction of the carbon nanostructure. The reaction temperature may be appropriately set depending on the size of the target carbon nanostructure, the raw material gas used, the carrier gas, the reducing gas, etc., but is preferably 600 ° C 1200 ° C force S, more preferably 700 ° C 900 ° C.
[0084] 上記昇温工程では、図 2の(2A)に示すように、上記触媒を成膜した基板のシリコン 酸ィ匕層 S2上の触媒層 S3において、昇温時に触媒の酸化と微粒子化が同時に起こ る。なお、図 2は触媒基板上の触媒の酸化と微粒子化を模式的に示す図である。  [0084] In the temperature raising step, as shown in FIG. 2 (2A), in the catalyst layer S3 on the silicon oxide layer S2 of the substrate on which the catalyst is formed, the catalyst is oxidized and atomized at the time of temperature rise. Occur at the same time. FIG. 2 is a diagram schematically showing oxidation and fine particle formation of the catalyst on the catalyst substrate.
[0085] そして、適度な酸化を受けた触媒は図 2の(2A)に示したように、成膜工程にて 1 以下のオーダーの微細な多結晶の粒子 Aは合体し、数 nm〜数十 nmオーダーの大き な粒子 B Cを形成する。これがいわゆる、微粒子化過程である。更に、微粒子化過 程お 、て表面近傍にぉ 、て酸化物を形成して 、ることが好ま  [0085] Then, as shown in FIG. 2 (2A), the catalyst that has undergone moderate oxidation combines fine polycrystalline particles A of the order of 1 or less in the film formation step, and is several nanometers to several nanometers. Forms large particles BC on the order of 10 nm. This is the so-called micronization process. Furthermore, it is preferable that the fine particles are formed near the surface to form oxides.
[0086] <原料供給開始後の急速な成長工程 >  [0086] <Rapid growth process after starting raw material supply>
原料ガスであるエチレンガスを供給開始すると、カーボンナノ構造物の合成反応は 、初期の「急速な成長」と、アモルファスカーボンを生成しながら成長する「緩慢な成 長」との 2段階の反応による成長があることが判明している。  When the supply of ethylene gas, which is a raw material gas, is started, the synthesis reaction of carbon nanostructures is based on a two-step reaction: initial “rapid growth” and “slow growth” that grows while producing amorphous carbon. It has been found that there is growth.
[0087] 以下では、原料ガスがエチレンの場合について説明する力 他の原料ガスについ ても同様のメカニズムになる。  [0087] In the following, the force for explaining the case where the source gas is ethylene is the same mechanism for other source gases.
[0088] 初期の上記「急速な成長」は、触媒表面での下記式(1)及び式 (2)を主体とする反 応自体を律速とする反応である。  [0088] The above "rapid growth" in the initial stage is a reaction whose rate is determined by the reaction itself mainly composed of the following formulas (1) and (2) on the catalyst surface.
2Fe O + 2C H→4FeC + 4H O + O · · · (!) 2Fe O + 2C H→2FeO + 4FeC + 4H O + O (2) 2Fe O + 2C H → 4FeC + 4H O + O (!) 2Fe O + 2C H → 2FeO + 4FeC + 4H O + O (2)
3 4 2 4 2 2 …  3 4 2 4 2 2…
この初期の急速な成長は、上記触媒における、上記触媒と上記触媒基板との適度 な親和力、昇温工程における適度な酸化'微粒子化、触媒量に対する十分な量の原 料ガス、原料ガス導入時の揺らぎ抑制の条件をみたせば長さ 50 μ mから 100 μ m程 度のカーボンナノ構造物の生成は達成できる。しかし、従来の技術では、上記「急速 な成長」は、上記触媒の保持する酸素量が反応によって消費されることで停止した後 、後述するように、原料ガス力 供給される過剰なアモルファスカーボンにより上記触 媒の表面が覆われることで、上記触媒と原料ガスとの接触が困難となり、最終的に反 応停止に至る。  This initial rapid growth is due to a moderate affinity between the catalyst and the catalyst substrate in the catalyst, a moderate oxidation of fine particles in the heating process, a sufficient amount of source gas relative to the catalyst amount, and introduction of a source gas. In view of the fluctuation suppression conditions, the formation of carbon nanostructures with a length of 50 μm to 100 μm can be achieved. However, in the conventional technology, after the “rapid growth” is stopped by the oxygen amount held by the catalyst being consumed by the reaction, as described later, due to the excess amorphous carbon supplied with the raw material gas power. By covering the surface of the catalyst, it becomes difficult to contact the catalyst and the raw material gas, and eventually the reaction is stopped.
[0089] 上記触媒の保持する酸素が同程度の場合、カーボンナノ構造物の長さが、ほぼ同 じ長さになることから、再現性があると同時に、初期触媒の酸素の保持量によって力 一ボンナノ構造物の長さが決まるものと理解できる。  [0089] When the oxygen retained by the catalyst is approximately the same, the length of the carbon nanostructure is approximately the same, so that there is reproducibility and at the same time the force depends on the amount of oxygen retained in the initial catalyst. It can be understood that the length of one-bon nanostructure is determined.
[0090] <カーボンナノ構造物の緩慢な成長工程 >  [0090] <Slow growth process of carbon nanostructure>
次に、カーボンナノ構造物を製造するのに不可欠な、アモルファスカーボンを生成 しながら進む、第 2段階目の成長、つまり「緩慢な成長」について説明する。  Next, we will explain the second stage of growth, or “slow growth,” that proceeds while producing amorphous carbon, which is indispensable for manufacturing carbon nanostructures.
[0091] 図 2の(2B)は、カーボンナノ構造物が成長する様子を模式ィ匕した図である。図 2 (2 B)中の、 Dは上記鉄元素を含む触媒の粒子 (触媒粒子)、 Fは成長するカーボンナノ 構造物の多層レイヤを示している。 Eは、上記触媒粒子 D上における、上記触媒粒子 Dと上記原料ガスとの接する領域である。  [0091] (2B) of FIG. 2 is a diagram schematically illustrating the growth of carbon nanostructures. In Fig. 2 (2B), D is a catalyst particle containing the above iron element (catalyst particle), and F is a multilayer layer of carbon nanostructures that grow. E is a region on the catalyst particle D where the catalyst particle D and the source gas are in contact with each other.
[0092] 図 2の(2B)に示すように、エチレンに接触した触媒粒子 Dには、当該エチレン由来 の炭素により炭化された上記触媒粒子 Dの炭化物 (FeC)表面に、カーボンナノ構造 物の壁を構成する多層レイヤ Fが形成される。そして、上記触媒粒子 Dと上記原料ガ スとが反応して生成したアモルファスカーボンが多層レイヤ Fを押し出すことにより力 一ボンナノ構造物が形成される。なお、図 2(2B)に示す矢印はカーボンの拡散方向 を示す。  [0092] As shown in FIG. 2 (2B), the catalyst particles D in contact with ethylene have carbon nanostructures on the surface of the carbide (FeC) of the catalyst particles D carbonized by the ethylene-derived carbon. The multilayer layer F constituting the wall is formed. Then, the amorphous carbon produced by the reaction between the catalyst particles D and the raw material gas pushes out the multilayer layer F, thereby forming a powerful nano structure. Note that the arrows shown in FIG. 2 (2B) indicate the direction of carbon diffusion.
[0093] なお、上記触媒粒子 Dと上記触媒基板との親和力が強い場合、上記触媒粒子 Dは 球状とならず両サイドの多層レイヤ Fは均等な速度で押し出されず、垂直に配向しな い原因となる。また、上記触媒基板と上記触媒粒子 Dとの親和力が全くないと多層レ ィャ Fは基板に向力つて移動していき、触媒粒子 Dはカーボンナノ構造物の先端に 存在してカーボンナノ構造物の成長が起こる。適度な親和力の場合、ある程度多層 レイヤ Fが垂直に伸び、親和力がカーボンの拡散により押し出される力に反して触媒 が浮きあがり、カーボンナノ構造物の長さ方向の中間点に存在する場合もありうる。 [0093] When the affinity between the catalyst particle D and the catalyst substrate is strong, the catalyst particle D is not spherical, and the multilayer layers F on both sides are not extruded at a uniform speed and are not oriented vertically. It becomes. Also, if there is no affinity between the catalyst substrate and the catalyst particles D, the multilayer The carrier F moves toward the substrate while the catalyst particle D exists at the tip of the carbon nanostructure, and the carbon nanostructure grows. In the case of moderate affinity, the multi-layer layer F stretches vertically to some extent, and the catalyst may float against the force pushed out by the diffusion of carbon, and may exist at the midpoint of the length of the carbon nanostructure. .
[0094] ここで、緩慢な成長につ!、ては、下記式(3) [0094] Here, for slow growth!
2FeO + C H→2FeC + 2H O (3)  2FeO + C H → 2FeC + 2H O (3)
2 4 2 …  2 4 2…
及び式 (4)  And formula (4)
Fe + C H→FeC + C + 2H  Fe + C H → FeC + C + 2H
2 …(4)  twenty four)
2 4  twenty four
を主体とする、炭素の表面拡散を律速とする反応であると理解できる。  It can be understood that this reaction is rate-limiting by the surface diffusion of carbon.
[0095] さらに、上記式(3)及び式 (4)における C Hは、下記式(5)  Furthermore, C H in the above formulas (3) and (4) is the following formula (5)
2 4  twenty four
C H→2C+ + 2H … )  C H → 2C + + 2H…)
2 4 2  2 4 2
で示される熱分解が生じていると考えられる。つまり、カーボンナノ構造物の製造ェ 程において、原料ガスは分解され、ラジカル炭素 (C + )及び水素を生成すると考えら れる。  It is thought that thermal decomposition indicated by That is, it is considered that the raw material gas is decomposed in the process of manufacturing the carbon nanostructure to generate radical carbon (C +) and hydrogen.
[0096] そして、上記触媒粒子 Dと、上記原料ガスとの接する反応点 (領域 Ε)にお 、て、上 記式(5)におけるラジカル炭素(C + )が、上記アモルファスカーボンによる多層レイ ャ Fを押出す拡散速度を上回る速度で供給された場合、過剰に生成したァモルファ スカーボンが、上記触媒表面に堆積することにより、上記触媒と上記原料ガスとの接 触が妨げられ、上記「緩慢な成長」における連続的な成長が停止する。  [0096] Then, at the reaction point (region の) where the catalyst particle D and the source gas are in contact with each other, the radical carbon (C +) in the above formula (5) is converted into a multilayered layer composed of the amorphous carbon. When supplied at a rate higher than the diffusion rate for extruding F, excessively generated amorphous carbon accumulates on the surface of the catalyst, thereby preventing contact between the catalyst and the source gas. Continuous growth in "Sustainable growth" stops.
[0097] しかし、本実施の形態にぉ 、ては、上記還元性ガスが、上記反応室 4に供給される 。そして、上記還元性ガスに由来する Ηが多量に存在することにより、上記式(5)に  However, according to the present embodiment, the reducing gas is supplied to the reaction chamber 4. And since there is a large amount of soot derived from the reducing gas, the above formula (5)
2  2
おける Ηが増加することになり、ル=シャトリエの原理により、上記式(5)におけるェ Η will increase, and according to Le Châtelier's principle,
2 2
チレンの熱分解の速度が緩やかになる。その結果、上記アモルファスカーボンの過 剰な生成を防ぐことができる。つまり、上記還元性ガスは、上記アモルファスカーボン の抑制成分として機能する。そのため、極めて効率的に、上記アモルファスカーボン による上記触媒表面への堆積を防ぐことができ、上記触媒の失活を防ぐことができる 。この結果、連続的なカーボンナノ構造物の成長を達成することができるのである。 つまり、本明細書における「還元性ガス」とは、上記原料ガスの熱分解の平衡を、分 解を抑える方向に移動させるガスであると言うことができる。また、上記原料ガスが熱 分解することにより生じるラジカル炭素に水素を与える性質を持つものと言うこともで きる。 The rate of thermal decomposition of tyrene is reduced. As a result, excessive generation of the amorphous carbon can be prevented. That is, the reducing gas functions as a suppression component for the amorphous carbon. Therefore, the deposition on the catalyst surface by the amorphous carbon can be prevented very efficiently, and the deactivation of the catalyst can be prevented. As a result, continuous carbon nanostructure growth can be achieved. That is, the “reducing gas” in this specification means the equilibrium of thermal decomposition of the source gas. It can be said that the gas moves in a direction to suppress the solution. It can also be said that the material gas has the property of giving hydrogen to radical carbon generated by thermal decomposition.
実施例 1  Example 1
[0098] 本発明に係るカーボンナノ構造物の製造方法及び製造ガスを用いてカーボンナノ チューブを製造した実施例を以下に示す。  [0098] Examples of producing carbon nanotubes using the production method and production gas of carbon nanostructures according to the present invention are shown below.
[0099] 本実施例では、原料ガスの供給量を変化させることにより、後述するキャリアガス、 原料ガス、還元性ガス及び酸ィ匕性ガスの供給量の比を変化させて、カーボンナノ構 造物を製造した結果を比較した。 [0099] In this example, by changing the supply amount of the source gas, the ratio of the supply amounts of the carrier gas, the source gas, the reducing gas, and the acidic gas, which will be described later, is changed. The results of manufacturing were compared.
[0100] 製造装置は、上記実施の形態で説明した図 1に係るカーボンナノ構造物製造装置 を用いた。キャリアガスには He (純度 99. 9999%)を用いた。 Heには微量成分とし て酸素が 50ppb含まれて 、た。 [0100] The carbon nanostructure manufacturing apparatus according to Fig. 1 described in the above embodiment was used as the manufacturing apparatus. He (purity 99.9999%) was used as a carrier gas. He contained 50 ppb of oxygen as a minor component.
[0101] 酸化性ガスとしては H Oを用い、当該 H Oを、上記反応室に供給されるガスの全 [0101] H 2 O is used as the oxidizing gas, and the H 2 O is used for the entire gas supplied to the reaction chamber.
2 2  twenty two
量に対して 350ppm含まれるように混合した  Mixed to contain 350ppm of the amount
さらに上記キャリアガスには、還元性ガスとして H (純度 99. 9999%)を混合した。  Further, H (purity 99.9999%) was mixed with the carrier gas as a reducing gas.
2  2
[0102] また、上記原料ガスにはエチレンを用いた。  [0102] Ethylene was used as the source gas.
[0103] 上記カーボンナノ構造物製造装置の反応室に供給するガスの総量は、 1気圧で 20 CKcm /min)とした。  [0103] The total amount of gas supplied to the reaction chamber of the carbon nanostructure manufacturing apparatus was 20 CKcm / min at 1 atm.
[0104] なお、本実施例及び以下の実施例において示す気体の供給量 (単位: cm3/min)に 係る数値は、全て 1気圧、 25°Cにおける値である。 It should be noted that the numerical values relating to the gas supply rate (unit: cm 3 / min) shown in this example and the following examples are all values at 1 atm and 25 ° C.
[0105] 上記反応室は、本実施例及び以下の全ての実施例において、 750°Cまで加熱した [0105] The reaction chamber was heated to 750 ° C in this example and in all the following examples.
(以下、「昇温工程」と表記する。 ) o  (Hereinafter referred to as “heating step”.) O
[0106] 上記反応室が 750°Cに加熱されるまでは、 He (キャリアガス)を 120 (cmVmin)、及 ひ (還元性ガス)を 80 (cm3/min)で供給し、 750°Cに加熱された後、供給する He[0106] Until the above reaction chamber is heated to 750 ° C, He (carrier gas) is supplied at 120 (cmVmin), and (reducing gas) is supplied at 80 (cm 3 / min). Supply He after being heated to
2 2
の一部をエチレンガスに置換した。つまり、本実施例では、ガスの総供給量を、 1気 圧で 200 (cm3/min)とした上で、加熱後、 Heの一部をエチレンに置換することで、各 ガスの供給量の比を変化させた。なお、エチレンの供給量、即ち、昇温工程後に置 換した Heの量は、供給するガスの総量である 200 (cmVmin)の 5%〜25%の範囲で ある。 A part of was replaced with ethylene gas. In other words, in this example, the total gas supply amount was set to 200 (cm 3 / min) at 1 atmospheric pressure, and after heating, a part of He was replaced with ethylene, thereby supplying each gas supply amount. The ratio of was changed. The amount of ethylene supplied, that is, the amount of He replaced after the temperature raising step, is in the range of 5% to 25% of 200 (cmVmin), which is the total amount of gas supplied. is there.
[0107] なお、図 1に示されるように、キャリアガスの供給経路は 2通りある。  [0107] As shown in FIG. 1, there are two carrier gas supply paths.
[0108] 触媒には、 Feを用いた。 Fe触媒は lcm X 1cmの正方形で、厚さが lnmの薄膜状 のものを、表面を酸ィ匕させて酸ィ匕シリコンとしたシリコン基板上に、 lOnmの薄膜 A1 [0108] Fe was used as the catalyst. The Fe catalyst is a lcm x 1cm square, and a thin film with a thickness of lnm.
2 2
Oを介して設置した。 Installed through O.
3  Three
[0109] 原料ガス (エチレン)の供給量に対する還元性ガス (H )の供給量の比を検討した  [0109] The ratio of the supply amount of reducing gas (H) to the supply amount of raw material gas (ethylene) was examined.
2  2
結果を図 3に示す。横軸は、供給したエチレンの量を、 Hの量で除した値である。縦  The results are shown in Figure 3. The horizontal axis is the amount of ethylene supplied divided by the amount of H. Vertical
2  2
軸は、昇温工程後 30分間保持することにより、得られたカーボンナノチューブの高さ である。  The axis is the height of the carbon nanotube obtained by holding for 30 minutes after the temperature raising step.
[0110] 図 3に示されるように、エチレンの供給量力 上記 200 (cm3/min)の内、 7. 5%のと き、すなわち供給したエチレンの量と、 Hの量との重量比が 0. 1875 : 1のとき、得ら [0110] As shown in FIG. 3, when the supply capacity of ethylene is 200% (cm 3 / min) above, 7.5%, that is, the weight ratio between the amount of ethylene supplied and the amount of H is 0. 1875: When 1
2  2
れたカーボンナノチューブの高さ力 最も大きな値となった。  The height force of the obtained carbon nanotube was the largest value.
実施例 2  Example 2
[0111] 本発明に係るカーボンナノ構造物の製造方法及び製造ガスを用いてカーボンナノ チューブを製造した実施例を以下に示す。  [0111] Examples of producing carbon nanotubes using the production method and production gas of carbon nanostructures according to the present invention are shown below.
[0112] 本実施例では、酸ィ匕性ガスの供給量を変化させることにより、キャリアガス、原料ガ ス、還元性ガス及び酸ィ匕性ガスの供給量の比を変化させて、カーボンナノ構造物を 製造した結果を比較した。 [0112] In this example, by changing the supply amount of the acidic gas, the ratio of the supply amounts of the carrier gas, the raw material gas, the reducing gas, and the acidic gas is changed, thereby The results of manufacturing the structure were compared.
[0113] キャリアガス、原料ガス、還元性ガス、酸ィ匕性ガス及び触媒は実施例 1と同じものを 用いた。 [0113] The same carrier gas, raw material gas, reducing gas, acidic gas and catalyst as in Example 1 were used.
[0114] 昇温工程も実施例 1と同様に行い、上記反応室が 750°Cに加熱された後、ガスの 総供給量を 200 (cmVmin)とした上で、加熱後、 Heの 7. 5% (15 (cm3/min) )をェチ レンに置換した。 [0114] The temperature raising step was also performed in the same manner as in Example 1. After the reaction chamber was heated to 750 ° C, the total gas supply rate was set to 200 (cmVmin), and after heating, 7. 5% (15 (cm 3 / min)) was replaced with ethylene.
[0115] 酸ィ匕性ガスは、 H Oを用い、上記反応室に供給されるガスの全量に対する濃度を  [0115] The acidic gas uses H 2 O and has a concentration with respect to the total amount of gas supplied to the reaction chamber.
2  2
、 150ρρπ!〜 500ppmの範囲において、 50ppm単位で変ィ匕させた。  150ρρπ! In the range of ~ 500ppm, it was changed in increments of 50ppm.
[0116] 原料ガス (エチレン)の供給量に対する酸化性ガス (H O)の供給量の比を検討した [0116] The ratio of the supply amount of oxidizing gas (H 2 O) to the supply amount of raw material gas (ethylene) was examined.
2  2
結果を図 4に示す。横軸は、供給したエチレンの量を、 H Oの量で除した値である。  The results are shown in Fig. 4. The horizontal axis is the value obtained by dividing the amount of ethylene supplied by the amount of H 2 O.
2  2
縦軸は、昇温工程後 30分間保持することにより、得られたカーボンナノチューブの高 さである。 The vertical axis shows the height of the obtained carbon nanotubes by holding for 30 minutes after the temperature raising step. That's it.
[0117] 図 4に示されるように、 H Oの供給量力 350ppmのとき、得られたカーボンナノチ  [0117] As shown in FIG. 4, when the supply capacity of H 2 O is 350 ppm,
2  2
ユーブの高さが、最も大きな値となった。  The height of Yub was the largest value.
実施例 3  Example 3
[0118] 次に、昇温工程後の保持時間と得られるカーボンナノチューブの高さとの関係を検 [0118] Next, the relationship between the holding time after the heating step and the height of the obtained carbon nanotubes was examined.
B、Jした。 B, J.
[0119] 本実施例では、原料ガス (エチレン)の供給量を、供給するガスの総量である 200 ( cmVmin)に対して 7. 5% (15 (cmVmin) )とした以外は、実施例 1と同様にした。  [0119] In this example, the supply amount of the raw material gas (ethylene) was set to 7.5% (15 (cmVmin)) with respect to 200 (cmVmin), which is the total amount of gas to be supplied. And so on.
[0120] 上記保持時間は 10分から 12時間の間で変化させた。なお、ガスの供給量の比及 び保持時間以外は実施例 1と同様にした。結果を図 5に示す。  [0120] The retention time was varied between 10 minutes and 12 hours. The same procedure as in Example 1 was performed except for the ratio of gas supply and the holding time. The results are shown in FIG.
[0121] 図 5に示されるように、昇温後 12時間を経過しても、なお、カーボンナノチューブの 高さが増加することが確認された。つまり、 12時間経過後も、上記触媒の活性が保た れていることが示された。また、本実施例において、昇温工程後 12時間後に得られ たカーボンナノチューブは 7mm (以下、説明の簡単のため「7mmカーボンナノチュ ーブ」と表記する)の長さを有していた。これは、これまでに報告の無い長さである。  [0121] As shown in FIG. 5, it was confirmed that the height of the carbon nanotubes increased even after 12 hours had elapsed after the temperature increase. In other words, the activity of the catalyst was maintained even after 12 hours. Further, in this example, the carbon nanotubes obtained 12 hours after the temperature raising step had a length of 7 mm (hereinafter referred to as “7 mm carbon nanotube” for the sake of simplicity). This is an unreported length so far.
[0122] 上記 7mmカーボンナノチューブの外観を観察した結果を図 6に示す。  [0122] Fig. 6 shows the result of observing the appearance of the 7 mm carbon nanotube.
[0123] 図 6の(a)は、 7mmのカーボンナノチューブ群の外観を示す図である。図 6の(a)に より、上記カーボンナノチューブが 7mmの高さを有していることが分かる。  [0123] Fig. 6 (a) is a diagram showing the appearance of a group of 7 mm carbon nanotubes. From FIG. 6 (a), it can be seen that the carbon nanotube has a height of 7 mm.
[0124] 図 6の(b)〜(f)は、上記 7mmカーボンナノチューブの外観を SEMで観察した結 果を示す図である。図 6の(b)は、図 6の(a)に示すカーボンナノチューブ群を上から (カーボンナノチューブの長さ方向に対して垂直な面から) SEMで観察した図である 。これにより、カーボンナノチューブ群の長さ方向に対する垂直な面の表面が滑らか で平らであることが分かる。これは、個々の上記 7mmカーボンナノチューブが等しい 長さで成長したことを示して 、る。  [0124] (b) to (f) of FIG. 6 are diagrams showing the results of observing the appearance of the 7 mm carbon nanotube by SEM. FIG. 6B is a view of the carbon nanotube group shown in FIG. 6A observed from above (from a plane perpendicular to the length direction of the carbon nanotube) by SEM. This reveals that the surface of the surface perpendicular to the length direction of the carbon nanotube group is smooth and flat. This indicates that the individual 7 mm carbon nanotubes have grown to an equal length.
[0125] 図 6の(c)及び図 6の(e)は、それぞれ、上記 7mmカーボンナノチューブの上部(先 端側)、下部を SEMで観察した図である。これにより、上記 7mmカーボンナノチュー ブが密集し、鉛直に整列して 、ることが分かる。  [0125] FIGS. 6 (c) and 6 (e) are views of the upper part (front end side) and the lower part of the 7 mm carbon nanotube observed by SEM, respectively. As a result, it can be seen that the 7 mm carbon nanotubes are dense and aligned vertically.
[0126] 図 6の(d)及び図 6の(f)は、さらに上記 7mmカーボンナノチューブの上部(先端側 ) ,下部をそれぞれ拡大した図である。これにより、上記 7mmカーボンナノチューブ は、ナノスケールでは、湾曲しており、相互に絡まっていることが分かる。 [0126] Fig. 6 (d) and Fig. 6 (f) show the upper part (tip side) of the 7mm carbon nanotube. ) Are enlarged views of the lower part. This shows that the 7mm carbon nanotubes are curved at the nanoscale and entangled with each other.
[0127] 次に上記 7mmカーボンナノチューブを、透過型電子顕微鏡で観察した結果を図 7 に示す。 Next, FIG. 7 shows the result of observation of the 7 mm carbon nanotubes with a transmission electron microscope.
[0128] 図 7の(a)及び (b)から、上記 7mmカーボンナノチューブには、触媒に由来する金 属ナノ粒子が含まれていないことが確認できた。また、ほとんどの上記 7mmカーボン ナノチューブは、二重壁構造を有することが示された。  From (a) and (b) of FIG. 7, it was confirmed that the 7-mm carbon nanotubes did not contain metal nanoparticles derived from the catalyst. Most of the above 7mm carbon nanotubes were also shown to have a double wall structure.
[0129] なお、本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範 囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を 適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 実施例 4  Note that the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and the technical means disclosed in the different embodiments are appropriately combined. Embodiments obtained in this manner are also included in the technical scope of the present invention. Example 4
[0130] 酸化性ガス (H O)を用いないこと以外は、実施例 3と同様にしてカーボンナノ構造  [0130] Carbon nanostructures were obtained in the same manner as in Example 3 except that oxidizing gas (H 2 O) was not used.
2  2
物の製造を行った。  The product was manufactured.
[0131] その結果、 2時間後に得られたカーボンナノチューブの長さは、 500 mであった。  As a result, the length of the carbon nanotube obtained after 2 hours was 500 m.
このように、酸ィ匕性ガスを用いない場合は、ある程度の効果は得られるものの、実施 例 1〜3に示したように、酸ィ匕性ガス及び還元性ガスを共に供給することにより、さらに 優れた効果が発揮されることが示された。  In this way, when an acidic gas is not used, a certain degree of effect can be obtained, but as shown in Examples 1 to 3, by supplying both an acidic gas and a reducing gas, Furthermore, it was shown that an excellent effect is exhibited.
比較例 1  Comparative Example 1
[0132] 還元性ガス (H )を用いず、キャリアガス (He)の供給量を 200 (cmVmin)とした以外  [0132] The reducing gas (H) is not used and the supply amount of the carrier gas (He) is set to 200 (cmVmin)
2  2
は実施例 3と同様にしてカーボンナノ構造物の製造を行った。  Produced carbon nanostructures in the same manner as in Example 3.
[0133] その結果、 2時間後に得られたカーボンナノチューブの長さは、 100 μ m以下であ つた o [0133] As a result, the length of the carbon nanotubes obtained after 2 hours was 100 μm or less.
[0134] 本発明に係るカーボンナノ構造物の製造方法は、以上のように、上記原料ガス、上 記キャリアガスにカ卩えて、さらに上記還元性ガスを、カーボンナノ構造物を製造する 反応室に供給するので、上記還元性ガスに由来する水素によって、上記カーボンナ ノ構造物の製造工程において、上記原料ガスの分解反応を緩やかにする。よって、 上記原料ガスに由来する上記炭素が上記触媒の表面に堆積することによる、上記触 媒の失活を防ぐことができる。さらに、本発明に係るカーボンナノ構造物の製造方法 は、上記反応室に、炭素に対して酸化性を有する酸化性ガスを供給してもよい。この 場合、触媒表面に堆積した炭素を酸化することにより、除去することができる。 [0134] As described above, the method for producing a carbon nanostructure according to the present invention includes a reaction chamber for producing a carbon nanostructure by using the reducing gas in addition to the raw material gas and the carrier gas. Therefore, the hydrogen derived from the reducing gas slows down the decomposition reaction of the raw material gas in the carbon nanostructure manufacturing process. Therefore, the deactivation of the catalyst due to the carbon derived from the source gas being deposited on the surface of the catalyst can be prevented. Furthermore, the method for producing a carbon nanostructure according to the present invention May supply an oxidizing gas having an oxidizing property to carbon to the reaction chamber. In this case, the carbon deposited on the catalyst surface can be removed by oxidation.
[0135] 従って、カーボンナノ構造物の成長、特に上記第 2段階におけるカーボンナノ構造 物の成長を持続させることができ、高品質のカーボンナノ構造物を製造することが可 能となるという効果を奏する。  [0135] Therefore, the growth of carbon nanostructures, particularly the growth of carbon nanostructures in the second stage described above, can be sustained, and it becomes possible to produce high-quality carbon nanostructures. Play.
[0136] また、本発明に係るカーボンナノ構造物製造用ガスは、以上のように、上記原料ガ ス、又は、上記キャリアガスと、上記還元性ガスとの混合物を含むことを特徴としてい る。 [0136] In addition, as described above, the gas for producing carbon nanostructures according to the present invention includes the above-mentioned raw material gas or a mixture of the carrier gas and the reducing gas. .
[0137] 上記の構成によれば、上記カーボンナノ構造物製造用ガスを用いて、カーボンナノ 構造物を製造することで、上記還元性ガスに由来する水素によって、上記原料ガス の分解反応を緩やかにする。よって、上記原料ガスに由来する上記炭素が上記触媒 の表面に堆積することによる、上記触媒の失活を防ぐことができる。さらに、本発明に 係るカーボンナノ構造物製造用ガスは、炭素に対して酸化性を有する酸化性ガスを 含んでもよい。この場合、当該カーボンナノ構造物製造用ガスを用いることで、触媒 表面に堆積した炭素を、酸化すること〖こより除去することができる。  [0137] According to the above configuration, by producing the carbon nanostructure using the carbon nanostructure production gas, the decomposition reaction of the raw material gas is moderated by hydrogen derived from the reducing gas. To. Therefore, the deactivation of the catalyst due to the carbon derived from the source gas being deposited on the surface of the catalyst can be prevented. Furthermore, the carbon nanostructure manufacturing gas according to the present invention may include an oxidizing gas having an oxidizing property with respect to carbon. In this case, by using the carbon nanostructure manufacturing gas, the carbon deposited on the catalyst surface can be removed by oxidizing.
[0138] 従って、カーボンナノ構造物の成長、特に上記第 2段階におけるカーボンナノ構造 物の成長を持続させることができ、高品質のカーボンナノ構造物を製造することが可 能となるという効果を奏する。  [0138] Therefore, the growth of carbon nanostructures, particularly the growth of carbon nanostructures in the second stage described above, can be sustained, and it becomes possible to produce high-quality carbon nanostructures. Play.
[0139] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にお!、て、 、ろ 、ろと変更して実施することができるものである。  [0139] The specific embodiments or examples made in the detailed description section of the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Therefore, the present invention should not be construed in a narrow sense, and can be carried out with modifications within the spirit of the present invention and the scope of the claims described below.
産業上の利用可能性  Industrial applicability
[0140] 本発明によれば、キャリアガス中の微量成分である水素等の還元性ガスの供給量 を触媒量に対して適切に設定することにより、高密度かつ高効率に良質のカーボン ナノ構造物を製造することが可能となるカーボンナノ構造物の製造方法を実現するこ とがでさる。 [0140] According to the present invention, by appropriately setting the supply amount of a reducing gas such as hydrogen, which is a trace component in the carrier gas, with respect to the catalyst amount, high-quality carbon nanostructures with high density and high efficiency can be obtained. It is possible to realize a method for manufacturing a carbon nanostructure that enables manufacturing of a product.

Claims

請求の範囲 The scope of the claims
[1] 少なくともカーボンナノ構造物の原料となる炭素を含む原料ガス、及び、上記原料 ガスを搬送するキャリアガスを、少なくとも鉄元素を含む触媒が配置された反応室に 供給することにより、カーボンナノ構造物を製造する方法において、  [1] By supplying a source gas containing at least carbon as a raw material of the carbon nanostructure and a carrier gas carrying the source gas to a reaction chamber in which a catalyst containing at least an iron element is disposed, In a method of manufacturing a structure,
さらに、上記反応室内に水素を供給する還元性ガスを、上記反応室に供給し、 上記反応室に、炭素に対して酸化性を有する酸化性ガスを供給することを特徴とす るカーボンナノ構造物の製造方法。  Furthermore, a reducing gas for supplying hydrogen into the reaction chamber is supplied to the reaction chamber, and an oxidizing gas having an oxidizing property with respect to carbon is supplied to the reaction chamber. Manufacturing method.
[2] 上記原料ガス、上記キャリアガス及び上記還元性ガスの内、少なくとも 2つのガスを [2] At least two of the source gas, the carrier gas, and the reducing gas are used.
、上記反応室に供給する前に予め混合することを特徴とする請求の範囲第 1項に記 載のカーボンナノ構造物の製造方法。 The method for producing a carbon nanostructure according to claim 1, wherein the carbon nanostructure is mixed in advance before being supplied to the reaction chamber.
[3] 上記原料ガスの供給速度 (g/min)を、上記還元性ガスの供給速度 (g/min)で除し た値が、 0. 05〜0. 6であることを特徴とする請求の範囲第 1項または第 2項に記載 のカーボンナノ構造物の製造方法。 [3] The value obtained by dividing the supply rate (g / min) of the source gas by the supply rate (g / min) of the reducing gas is 0.05 to 0.6. The method for producing a carbon nanostructure according to item 1 or 2 of the above item.
[4] 上記酸化性ガスの供給量は、上記反応室に供給されるガスの総量の内、 150ppm[4] The supply amount of the oxidizing gas is 150 ppm of the total amount of gas supplied to the reaction chamber.
〜500ppmであることを特徴とする請求の範囲第 1項〜第 3項のいずれか 1項に記載 のカーボンナノ構造物の製造方法。 The method for producing a carbon nanostructure according to any one of claims 1 to 3, wherein the carbon nanostructure is -500 ppm.
[5] 上記原料ガスの供給速度を、上記触媒の量で除した値が、 100〜: LOOOOO (lZmi n)であることを特徴とする請求の範囲第 3項または第 4項に記載のカーボンナノ構造 物の製造方法。 [5] The carbon according to claim 3 or 4, wherein a value obtained by dividing the supply rate of the raw material gas by the amount of the catalyst is 100 to: LOOOOO (lZmin) A method for producing a nanostructure.
[6] 少なくともカーボンナノ構造物の原料となる炭素を含む原料ガス、又は、上記原料 ガスを搬送するキャリアガスと、上記反応室内に水素を供給する還元性ガスとの混合 物を含み、当該混合物が、さら〖こ、酸ィ匕性ガスを含むことを特徴とするカーボンナノ 構造物製造用ガス。  [6] A mixture of a source gas containing at least carbon that is a raw material of the carbon nanostructure, or a carrier gas that conveys the source gas and a reducing gas that supplies hydrogen into the reaction chamber, and the mixture However, the gas for producing carbon nanostructures is characterized in that it contains sardine and acidic gas.
[7] 上記原料ガスと上記還元性ガスとを、重量比 0. 05: 1〜0. 6: 1で、混合した混合 物を含むことを特徴とする請求の範囲第 6項に記載のカーボンナノ構造物製造用ガ ス。  [7] The carbon according to claim 6, comprising a mixture in which the raw material gas and the reducing gas are mixed at a weight ratio of 0.05: 1 to 0.6: 1. Gas for manufacturing nanostructures.
[8] 上記原料ガスと上記還元性ガスとを、重量比 0. 05: 1〜0. 6: 1で混合し、  [8] The raw material gas and the reducing gas are mixed at a weight ratio of 0.05: 1 to 0.6: 1,
さらに上記酸ィ匕性ガスを、上記還元性ガスに 375ppm〜1250ppmの濃度で混合 した混合物を含むことを特徴とする請求の範囲第 6項または第 7項に記載のカーボン ナノ構造物製造用ガス。 Furthermore, the above acidic gas is mixed with the reducing gas at a concentration of 375 ppm to 1250 ppm. The carbon nanostructure-producing gas according to claim 6 or 7, wherein the gas for producing carbon nanostructure according to claim 6 is contained.
[9] 上記原料ガス力 アセチレン、エチレン及びメタン力もなる群より選ばれる少なくとも[9] Raw material gas power At least selected from the group consisting of acetylene, ethylene and methane power
1種のガスであることを特徴とする請求の範囲第 6項〜第 8項のいずれか 1項に記載 のカーボンナノ構造物製造用ガス。 The gas for producing carbon nanostructures according to any one of claims 6 to 8, wherein the gas is one kind of gas.
[10] 上記還元性ガスが、水素、アンモニア及び硫ィ匕水素力 なる群力 選ばれる少なく とも 1種のガスであることを特徴とする請求の範囲第 6項〜第 9項のいずれ力 1項に記 載のカーボンナノ構造物製造用ガス。 10. The reducing gas according to any one of claims 6 to 9, wherein the reducing gas is at least one gas selected from the group force consisting of hydrogen, ammonia, and hydrogen sulfide power 1 The carbon nanostructure manufacturing gas described in the paragraph.
[11] 上記酸化性ガス力 水、酸素、アセトン、アルコール、ジメチルホルムアミド、 CO、 [11] Above oxidizing gas power Water, oxygen, acetone, alcohol, dimethylformamide, CO,
2 2
CO、 O及び H O力もなる群力 選ばれる少なくとも 1種のガスであることを特徴とすCO, O, and H 2 O forces are also group forces.
3 2 2 3 2 2
る請求の範囲第 6項〜第 10項のいずれか 1項に記載のカーボンナノ構造物製造用 ガス。  The gas for producing carbon nanostructures according to any one of claims 6 to 10.
PCT/JP2007/063928 2006-07-13 2007-07-12 Process for producing carbon nanostructure and gas for carbon nanostructure production WO2008007750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006193327A JP2009227470A (en) 2006-07-13 2006-07-13 Method for producing carbon nanostructure and gas for carbon nanostructure production
JP2006-193327 2006-07-13

Publications (1)

Publication Number Publication Date
WO2008007750A1 true WO2008007750A1 (en) 2008-01-17

Family

ID=38923306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063928 WO2008007750A1 (en) 2006-07-13 2007-07-12 Process for producing carbon nanostructure and gas for carbon nanostructure production

Country Status (2)

Country Link
JP (1) JP2009227470A (en)
WO (1) WO2008007750A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184871A (en) * 2008-02-06 2009-08-20 Muroran Institute Of Technology Method for producing carbon nanotube
US9611556B2 (en) 2008-02-07 2017-04-04 Mccutchen Co. Radial counterflow shear electrolysis
US10537840B2 (en) 2017-07-31 2020-01-21 Vorsana Inc. Radial counterflow separation filter with focused exhaust

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489631B2 (en) * 2009-10-13 2014-05-14 国立大学法人九州大学 Method for producing carbon nanofiber
JP2013060342A (en) * 2011-09-14 2013-04-04 Fujikura Ltd Carbon nanofiber forming structure, carbon nanofiber structure, and method for manufacturing the same
JP5717860B2 (en) 2011-09-14 2015-05-13 株式会社フジクラ Structure for forming carbon nanofiber, carbon nanofiber structure, manufacturing method thereof, and carbon nanofiber electrode
JP6390888B2 (en) 2013-03-27 2018-09-19 アイシン精機株式会社 Method for producing nanoparticles containing FeO as a main component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145634A (en) * 2005-11-25 2007-06-14 National Institute Of Advanced Industrial & Technology Double-walled carbon nanotube, bulk structure of the same, method and apparatus for producing them, and applications of the nanotube and bulk structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145634A (en) * 2005-11-25 2007-06-14 National Institute Of Advanced Industrial & Technology Double-walled carbon nanotube, bulk structure of the same, method and apparatus for producing them, and applications of the nanotube and bulk structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HATA K. ET AL.: "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes", SCIENCE, 2004, XP002993037, Retrieved from the Internet <URL:http://www.sciencemag.org/cgi/content/full/306/5700/1362/DC1> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184871A (en) * 2008-02-06 2009-08-20 Muroran Institute Of Technology Method for producing carbon nanotube
US9611556B2 (en) 2008-02-07 2017-04-04 Mccutchen Co. Radial counterflow shear electrolysis
US10537840B2 (en) 2017-07-31 2020-01-21 Vorsana Inc. Radial counterflow separation filter with focused exhaust

Also Published As

Publication number Publication date
JP2009227470A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4678687B2 (en) Method and apparatus for producing carbon nanostructure
KR100893437B1 (en) High-efficiency synthetic method for carbon nanostructure, apparatus and carbon nanostructure
JP5409345B2 (en) Catalyst body for producing brush-like carbon nanostructure, method for producing the same, and method for producing brush-like carbon nanostructure
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
WO2008007750A1 (en) Process for producing carbon nanostructure and gas for carbon nanostructure production
US9017634B2 (en) In-line manufacture of carbon nanotubes
JPWO2006013706A1 (en) Method for producing carbon nanostructure with controlled catalyst particle size, production apparatus and carbon nanostructure
JP2010504268A (en) Growth of carbon nanotubes using metal-free nanoparticles
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
US20110091646A1 (en) Orifice chemical vapor deposition reactor
US7597941B2 (en) Tubular carbon nano/micro structures and method of making same
WO2009113195A1 (en) Catalyst material for producing brushy carbon nanostructure, process for producing catalyst material, brushy carbon nanostructure, and process for producing the same
JP5196417B2 (en) Catalyst for producing carbon nanocoil and method for producing carbon nanocoil
KR101287890B1 (en) Method for manufacturing carbon nano tube using liquid catalyst precursor
JP2018016521A (en) Method for producing single layer carbon nanotube-containing composition
JP5791157B2 (en) Synthesis furnace
Mohammad VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism for realizing narrow distributions of chirality and diameters of single-walled carbon nanotubes (SWCNTs)
JP2007169838A (en) Vapor grown carbon fiber and method for producing the same
JP5429876B2 (en) Method for producing carbon nanotube
JP2009018953A (en) Manufacturing process for carbon nanostructure and manufacturing apparatus for carbon nanostructure
JP2004155628A (en) Method and apparatus for producing raw material-circulated carbon structure
Zakaria et al. Factors Affecting Carbon Nanotubes (CNTs) Synthesis via the Chemical Vapour Deposition (CVD) Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790722

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07790722

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)