WO2008007729A1 - Image analyzing method, image analyzing apparatus, inspecting apparatus, image analyzing program and computer readable recording medium - Google Patents

Image analyzing method, image analyzing apparatus, inspecting apparatus, image analyzing program and computer readable recording medium Download PDF

Info

Publication number
WO2008007729A1
WO2008007729A1 PCT/JP2007/063887 JP2007063887W WO2008007729A1 WO 2008007729 A1 WO2008007729 A1 WO 2008007729A1 JP 2007063887 W JP2007063887 W JP 2007063887W WO 2008007729 A1 WO2008007729 A1 WO 2008007729A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
image
luminance
calculating
picture element
Prior art date
Application number
PCT/JP2007/063887
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Nakai
Yasuhiro Ueda
Minoru Yasukawa
Minori Yamataka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008007729A1 publication Critical patent/WO2008007729A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • Image analysis method image analysis apparatus, inspection apparatus, image analysis program, and computer-readable recording medium
  • the present invention relates to a method for inspecting a display panel in which a plurality of same-color picture elements are arranged in a certain direction, an apparatus therefor, an image analysis program for analyzing an image captured from the display panel, and a computer in which the image analysis program is recorded
  • the present invention relates to a readable recording medium.
  • the human eye has very high defect detection sensitivity for the following reasons 1 to 3.
  • the human eye observes not only vertically but also obliquely with respect to the panel surface.
  • human visual processing is analog and the resolution in the luminance direction is high, 3) This is because human visual inspection is performed at a high resolution by using this part intensively when the spatial resolution at the center of the visual field is high.
  • the brightness of each picture element in a line of same color picture elements having a line defect is different from the brightness of the picture element in the other line of same color picture elements.
  • Is used to detect line defects Specifically, as described in Patent Document 4, the luminance value of the picture element is added in the direction in which the same color picture elements are arranged, and the value is added to the value.
  • An algorithm has been used that detects a line having a value different from the surroundings as a line defect compared to the value related to the arrangement of the same color picture elements located in the direction orthogonal to the arrangement direction.
  • one picture element for example, R1 consists of two parts (upper and lower parts).
  • (Rlup) brightness changes
  • the brightness of the lower part (Rllow) changes from 128 to 256
  • the upper and lower parts of the adjacent R pixels are in the same order in the direction of Rlup-Rllow.
  • (ROup—ROlow—Rlup—Rllow—RSup—RSlow) the luminance changes alternately in one line of the same color picture element, with black lighting or white lighting.
  • Patent Document 1 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 04-102830 (Publication Date: April 3, 1992)”
  • Patent Document 2 Japanese Published Patent Publication “JP 07-181451 Publication Date (July 21, 1995)”
  • Patent Document 3 Japanese Patent Publication “Japanese Patent Laid-Open No. 08-184834 (Publication Date: July 16, 1996)”
  • Patent Document 4 Japanese Patent Publication “Japanese Patent Laid-Open No. 10-240933 (Publication Date: September 11, 1998)”
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to detect defects in a display panel, particularly a multi-domain liquid crystal panel, with high detection sensitivity.
  • An object of the present invention is to provide an image analysis method, an image analysis apparatus, and an inspection apparatus.
  • the image analysis method images a display panel in which a plurality of same-color picture elements are arranged in a certain direction by an imaging means having an imaging element, and obtains the obtained image.
  • An image analysis method in an image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the luminance value of a target pixel included in the captured image, and the plurality of In the arrangement direction of the same-color picture element !, the absolute difference calculation process for calculating the absolute value of the difference between the brightness value of the same-color picture element adjacent to the target picture element, and the difference absolute value calculation process.
  • an image analysis apparatus images a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging unit having an imaging element, and obtains the obtained image
  • An image analysis apparatus in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the luminance value of a pixel of interest included in the captured image, and an array of the plurality of same-color pixels
  • a difference absolute value calculating means for calculating an absolute value of a difference value between a luminance value of the same color pixel adjacent to the target picture element in the direction, and an absolute value of the difference value calculated by the difference absolute value calculating means.
  • An average value calculating means for calculating an average value along the arrangement direction of the plurality of same-color picture elements is provided.
  • the absolute difference calculation means calculates the luminance value of the pixel of interest from among the plurality of same-color picture elements arranged in a fixed direction, and the same-color picture element.
  • the absolute value of the difference value from the luminance value of the picture element adjacent to the target picture element in the arrangement direction is calculated for the same color picture element column.
  • the average value calculating means calculates the average value along the arrangement direction of the same color picture elements from the absolute value of the difference value calculated by the difference absolute value calculating means.
  • the image analysis apparatus to an inspection apparatus, it is possible to realize an inspection apparatus that can detect defects in the display panel with high detection sensitivity.
  • the plurality of same color picture elements means a plurality of same color picture elements.
  • a maximum luminance value calculating step of calculating a maximum value of luminance values of a plurality of imaging elements that have captured a target pixel for each column of imaging elements arranged in the arrangement direction.
  • the absolute value of the difference value between the maximum value related to the pixel of interest and the maximum value related to the same color pixel adjacent to the pixel Is preferably calculated for each column of the image sensor.
  • one picture element is imaged by the plurality of image sensors.
  • one picture element is divided into a plurality of pixels in the captured image.
  • the maximum luminance value calculation step the maximum one of the luminance values of the plurality of image sensors (pixels) that captured the target pixel is calculated for each column of the image sensors arranged in the same color pixel arrangement direction.
  • the difference absolute value calculation step the absolute value of the difference value between the maximum value related to the pixel of interest and the maximum value related to the same color pixel adjacent to the pixel is calculated for each column of the image sensor. .
  • the luminance value in the normal luminance pixel and the luminance value in the abnormal luminance pixel are calculated.
  • the ratio can be further increased, and the defect detection sensitivity can be increased as compared with the case of calculating the luminance value of the entire pixel of interest.
  • an image analysis method is obtained by imaging a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging means having an imaging element.
  • An image analysis method in an image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of a captured image, the luminance value of a target pixel included in the captured image, and In the arrangement direction of the plurality of same-color picture elements, a difference value calculation step of calculating a difference value between the luminance values of the same-color picture elements adjacent to the target picture element and the difference value calculation step calculated above And a standard deviation calculating step of calculating a standard deviation of the difference value for each column of the image pickup elements arranged in the arrangement direction of the plurality of same-color picture elements.
  • the image analysis apparatus images a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging unit having an imaging element, and obtains the obtained image
  • An image analysis apparatus included in an inspection device that detects a defect of the display panel by analyzing a luminance value of an image, the luminance value of a pixel of interest included in the captured image, and the plurality of same-color pixel elements
  • a difference value calculating means for calculating a difference value between luminance values of the same color picture element adjacent to the target picture element in the arrangement direction, and a standard deviation of the difference value calculated by the difference value calculating means
  • standard deviation calculating means for calculating for each column of image pickup devices arranged in the arrangement direction of the same color picture elements.
  • the difference value calculating means calculates the difference value between the luminance value of the target picture element and the luminance value of the same color picture element adjacent to the target picture element, and the standard deviation calculating means is Then, the standard deviation of the difference value is calculated for each column of the image sensors arranged in the arrangement direction of the same color picture elements.
  • the ratio between the luminance value of the normal luminance pixel and the luminance value of the defective pixel having a luminance value outside the normal luminance value range can be increased. Therefore, it is possible to detect a defective pixel having a luminance value outside the normal luminance value range with higher sensitivity than the conventional configuration.
  • the image analysis apparatus to an inspection apparatus, it is possible to realize an inspection apparatus that can detect defects in the display panel with high detection sensitivity.
  • the image analysis method images a display panel in which a plurality of same-color picture elements are arranged in a certain direction by an imaging unit having an imaging element, and obtains the obtained image.
  • An image analysis method in an image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image the image analysis method including: The interval between the plurality of same-color picture elements, the portion corresponding to the target portion of the target pixel of the target pixel and the same-color pixel adjacent to the target pixel in the arrangement direction of the plurality of same-color pixels.
  • the luminance value of the image sensor is extracted for each pixel interval along the arrangement direction of the plurality of same-color pixels from the captured image.
  • An extraction step for forming a group of luminance values a standard deviation calculation step for calculating the standard deviation of luminance values included in the luminance value group formed in the extraction step for each group of luminance values, and the calculation of the standard deviation
  • a maximum value calculating step for calculating the maximum value of the standard deviation calculated in the process for each of the plurality of columns of the same color picture element.
  • the image analysis apparatus images a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging means having an imaging element, and obtains the obtained image.
  • An image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the interval between the plurality of same-color picture elements in the captured image, When the interval between the portion and the portion corresponding to the target portion of the same color pixel adjacent to the target pixel in the arrangement direction of the plurality of same color pixels is defined as the pixel interval,
  • the extraction means for forming a group of luminance values by extracting the luminance values of the image sensor at intervals of the pixel elements along the arrangement direction of a plurality of the same color picture elements, and the extraction means Brightness included in the group of luminance values
  • a standard deviation calculating means for calculating the standard deviation of the degree value for each group of the luminance values, and a maximum value for calculating the maximum standard
  • the extraction unit extracts the luminance value of the image sensor (pixel) for each pixel interval along the arrangement direction of the same color pixels from the captured image of the display panel.
  • a group of brightness values is formed.
  • this group of luminance values is a set of luminance values of an image pickup element that has picked up a specific portion of a picture element, and is a set relating to a column of the same color picture element to be noticed.
  • the standard deviation calculating means calculates the standard deviation of the luminance values included in the extracted luminance value group for each luminance value group, and the maximum value calculating means calculates the maximum value of the calculated standard deviation. Calculate for each row of pixels of the same color.
  • the maximum value calculating means calculates the maximum value of the calculated standard deviation. Calculate for each row of pixels of the same color.
  • the image analysis apparatus to an inspection apparatus, it is possible to realize an inspection apparatus that can detect defects in the display panel with high detection sensitivity.
  • a display panel in which a plurality of same-color picture elements are arranged in a certain direction is imaged by an imaging means having an imaging device, and the luminance value of the obtained captured image is analyzed to thereby detect the defect in the display panel.
  • An inspection apparatus including the above is also included in the technical scope of the present invention.
  • the image analysis apparatus may be realized by a computer.
  • the image analysis apparatus that realizes the image analysis apparatus by a computer by causing the computer to operate as the respective means.
  • a control program (image analysis program) and a computer-readable recording medium on which the control program is recorded are also included in the technical scope of the present invention.
  • FIG. 1 is a functional block diagram showing a configuration of a control device included in a liquid crystal display panel inspection device according to an embodiment.
  • FIG. 2 is a schematic diagram showing a configuration of a liquid crystal display panel inspection apparatus according to an embodiment.
  • FIG. 3 is a schematic diagram showing an arrangement of divided picture elements in a multi-domain liquid crystal display panel.
  • FIG. 4 is a diagram showing the allocation of the image sensor of the camera to the pixels of the liquid crystal display panel.
  • FIG. 5 is a graph showing the relationship between the set luminance value of the liquid crystal display panel and the actual luminance value.
  • FIG. 6 is a diagram showing the luminance of each divided picture element when the liquid crystal display panel is lit black.
  • FIG. 7 is a diagram showing the luminance value of each image sensor when a liquid crystal display panel is imaged.
  • FIG. 8 is a diagram showing a result of detection processing of line defects by a conventional inspection method.
  • FIG. 9 is a diagram showing a defect detection result by the first inspection method in the inspection apparatus.
  • FIG. 10 is a flowchart showing the flow of processing for performing the first inspection in the inspection apparatus.
  • FIG. 11 is a diagram showing a defect detection result by a second inspection method in the inspection apparatus.
  • FIG. 12 is a flowchart showing a flow of processing for performing a second inspection in the inspection apparatus.
  • FIG. 13 is a diagram showing a defect detection result by a third inspection method in the inspection apparatus 1
  • FIG. 14 is a flow chart showing a flow of processing for performing a third inspection in the inspection apparatus.
  • FIG. 15 is a diagram showing a defect detection result by a fourth inspection method in the inspection apparatus.
  • FIG. 16 is a flowchart showing the flow of processing for performing a fourth inspection in the inspection apparatus.
  • the liquid crystal display panel inspection apparatus 1 (hereinafter referred to as inspection apparatus 1) captures an image of a display panel in which a plurality of same-color picture elements are arranged in a certain direction by an imaging means having an imaging element, and the brightness of the obtained captured image
  • the display panel defect is detected by analyzing the values, and the display panel defect is detected by the first to fourth inspection methods described later.
  • the display panel defect specifically means a picture element having a luminance value out of a predetermined range force among a plurality of picture elements constituting the display panel.
  • FIG. 2 is a schematic diagram showing a configuration of the liquid crystal display panel inspection apparatus 1 of the present embodiment.
  • the inspection device 1 includes a camera 2 (imaging means) and a control device 3 as main components.
  • the camera 2 is for imaging the liquid crystal display panel 20, and has a plurality of imaging elements arranged in a matrix. Examples of the camera 2 include a CCD camera and a c-MOS camera.
  • the camera 2 is attached to the frame 13 of the inspection apparatus 1 with a jig 14.
  • the control device 3 includes an image conversion unit 4 (image analysis device) having an image reading function, and controls the operation of the inspection device 1.
  • image conversion unit 4 image analysis device
  • the multi-domain liquid crystal display panel 20 to be inspected by the inspection apparatus 1 is placed on the carriage 15 and arranged in the inspection apparatus 1.
  • the liquid crystal display panel 20 is picked up by the camera 2, and the picked-up image is sent to the control device 3 and processed by a predetermined algorithm. It is.
  • the inspection apparatus 1 includes the illumination 11 and the lighting circuit 12. However, these members are omitted in FIG.
  • FIG. 1 is a functional block diagram showing the configuration of the control device 3.
  • the control device 3 includes an image conversion unit 4, a main control unit 5, a storage unit 6, a defect detection unit 7 (defect detection means), a display unit 8, and an input unit 9.
  • the image conversion unit 4 performs processing described later on the captured image of the liquid crystal display panel 20 captured by the camera 2, and calculates a luminance value for defect detection.
  • the configuration of the image conversion unit 4 will be described later.
  • the main control unit 5 controls the camera 2, the illumination 11, and the lighting circuit 12 in addition to each unit of the control device 3.
  • the lighting circuit 12 is connected to the liquid crystal display panel 20, and controls the lighting of the liquid crystal display panel 20.
  • the storage unit 6 stores various setting values used in the inspection apparatus 1.
  • the main controller 5 writes and reads information.
  • the defect detection unit 7 determines the defect of the liquid crystal display panel 20 by comparing the luminance value calculated by the image conversion unit 4 with a predetermined reference value.
  • the display unit 8 displays inspection conditions, inspection results, and the like, and the input unit 9 receives operation of the inspection apparatus 1 by an operator. Which of the first to fourth inspection methods to be described later is used for the inspection is designated by the operator via the input unit 9.
  • the image conversion unit 4 includes a difference absolute value calculation unit 41 (difference absolute value calculation unit), an average value calculation unit 42 (average value calculation unit), a maximum value filter calculation unit 43, a difference value calculation unit. 4 4 (Difference value calculation means), Standard deviation calculation section 45 (Standard deviation calculation means), System division calculation section 4 6 (Extraction means), Maximum value calculation section 47 (Maximum value calculation means) .
  • the difference absolute value calculation unit 41 determines the luminance value of the divided pixel of interest (for example, the R pixel 22a in FIG. 6) and the same-color divided pixel (for example, in FIG. 6) adjacent to the pixel.
  • R picture element 22b The absolute value of the difference value is calculated with respect to the same color picture element sequence (R picture element, G picture element or B picture element sequence).
  • the average value calculation unit 42 calculates the average value of the absolute values of the difference values calculated by the difference absolute value calculation unit 41 along the arrangement direction of the same color picture elements.
  • the maximum value filter calculation unit 43 calculates the maximum value of the luminance values of a plurality of image sensors that have captured the target divided picture element for each column of the image sensors arranged in the arrangement direction of the same color divided picture elements. To do.
  • the difference value calculation unit 44 calculates a difference value between the luminance value of the noticed divided picture element and the luminance value of the same color divided picture element adjacent to the divided picture element.
  • the standard deviation calculation unit 45 calculates the standard deviation of the difference value calculated by the difference value calculation unit 44.
  • the calculation is performed for each column of image sensors arranged in the arrangement direction of the same color picture elements.
  • the system division calculation unit 46 performs the brightness value of the image sensor (the brightness value of the pixel of the captured image) for each pixel interval to be described later along the arrangement direction of the same color picture elements. By extracting, a group of luminance values (system) is formed.
  • the maximum value calculation unit 47 calculates the standard deviation of the luminance values included in the system, which is formed by the system division calculation unit 46, for each system of luminance values.
  • the liquid crystal display panel 20 to be inspected by the inspection apparatus 1 is a display panel in which a plurality of same-color picture elements are arranged in a certain direction. More specifically, this is a multi-domain liquid crystal display panel in which a plurality of divided picture elements are provided in one picture element and the luminance of each divided picture element is changed separately.
  • the inspection target of the inspection apparatus 1 is not limited to a multi-domain liquid crystal display panel as long as it is a display panel in which a plurality of same-color picture elements are arranged in a certain direction.
  • the inspection apparatus 1 is particularly effective for a display panel in which the luminance of picture elements constituting line defects changes alternately.
  • FIG. 3 is a schematic diagram showing the arrangement of divided picture elements in a multi-domain liquid crystal display panel 20 (display panel).
  • the liquid crystal display panel 20 in the liquid crystal display panel 20, one The pixel 21 also has the power of RGB three-color picture elements (R picture element 22, G picture element 23, B picture element 24), and these picture elements are further divided into smaller divided picture elements.
  • R picture element 22 is divided into divided R picture element 22a and divided R picture element 22b
  • G picture element 23 is divided into G picture element 23a, divided G picture element 23b
  • B picture element 24 is divided. It is divided into B picture element 24a and divided B picture element 24b.
  • each divided picture element indicates a divided picture element in which R is red, G is green, and B is blue.
  • R is red
  • G is green
  • B is blue
  • FIG. 4 is a diagram showing the allocation of the image sensor of the camera 2 to the pixel 21 of the liquid crystal display panel 20.
  • the image sensor 25 of the camera 2 images the liquid crystal display panel 20 at a magnification that assigns a predetermined number of image sensors 25 to the pixels 21 of the liquid crystal display panel 20.
  • the image sensor 25 is assigned 6 ⁇ 6 vertically and horizontally per pixel 21.
  • the relationship between the brightness setting value and the actual brightness value in the liquid crystal display panel 20 can be represented by a graph as shown in FIG.
  • FIG. 5 is a graph showing the relationship between the set luminance value of the liquid crystal display panel 20 and the actual luminance value.
  • the brightness value in the intermediate gradation has a steep slope with respect to the brightness setting value. For this reason, in the inspection of liquid crystal display panels that are lit at intermediate gray levels, where the change in the actual luminance value is large relative to the change in the luminance setting, the detection accuracy is relatively high even with conventional inspection algorithms. It is possible to obtain.
  • the conventional method may not have sufficient sensitivity to obtain sufficient defect detection accuracy.
  • the panel inspection method of the present invention can be used alone, but can also be used in combination with a conventional method according to the luminance setting of the liquid crystal display panel to be inspected.
  • FIG. 6 shows a line defect when the liquid crystal display panel 20 shown in FIG. 3 is lit black.
  • FIG. 6 is a diagram showing the luminance of each divided picture element when the liquid crystal display panel is lit black.
  • each divided picture element has a luminance of a value written in the alphabet written on each divided picture element.
  • the divided R picture elements 22a and 22b have the same brightness (luminance value 0). Since only the divided R picture element 22c which is a picture element is lit, the luminance value of the divided R picture element 22c is different from that of the divided R picture element 22d which is the same color picture element adjacent to the divided R picture element 22c. If the luminance of the divided R picture element 22c is R1, and the luminance of the divided R picture element 22d is RO, the pattern of this divided picture element is repeated in the X-axis direction in FIG.
  • FIG. 7 shows an image obtained by imaging the liquid crystal display panel 20 shown in FIG. 6 with the assignment of the image sensor 25 shown in FIG.
  • FIG. 7 is a diagram showing the luminance value of each image sensor 25 when the liquid crystal display panel 20 is imaged.
  • the luminance of each image sensor 25 is shown stepwise (0 to 3) by the value marked on each image sensor 25.
  • the luminance value of the imaging element 25 is a value based on the luminance of the liquid crystal display panel 20 and can be said to be the luminance value of the pixels forming the captured image obtained by imaging the liquid crystal display panel 20.
  • BR denotes an image sensor that captures an area including the divided B picture element and the divided R picture element.
  • RR indicates an image sensor that captures an image area including no picture elements other than the divided R picture element.
  • the image pickup element 25 shown in white is an image of a divided R pixel having a bright spot defect.
  • GBO GO / 9- f BO / 9
  • inspection is performed in the following three stages.
  • a line defect is extracted by comparing the calculated difference value with a predetermined threshold value.
  • FIG. 8 shows the results when the above processing is performed on the image sensor shown in FIG.
  • FIG. 8 is a diagram showing the result of the line defect detection processing by the conventional inspection method.
  • the line indicated by the arrow 27a shows the result of calculating the average of the luminance values in the direction of the same color picture elements (X-axis direction).
  • the row indicated by the arrow 27b is a row of the same-color picture elements located at a position separated by six image sensors in the Y-axis direction from the above-mentioned average value and the same-color picture element row for which the average value was calculated. This is the difference between the average value of the luminance values of the same color picture elements in adjacent pixels. In addition, when the difference value is negative, 0 is indicated. The value of the line indicated by the arrow 27c in the row of the arrow 27b becomes the detected value of the line defect. That is, the average value of the luminance values in the arrangement of the same color picture elements having the line defect is 5 (R0 + R1) Z18, and the difference value is 5 (R1 ⁇ R0) Z18.
  • the first inspection is performed by the following three steps.
  • the difference absolute average value is compared with a predetermined threshold value, and if the difference absolute average value exceeds the threshold value, it is determined that there is a defect.
  • FIG. 9 shows values calculated by the above processing.
  • FIG. 9 is a diagram showing a defect detection result obtained by the first inspection method in the inspection apparatus 1. In the figure, only the line-up and the vicinity of the line defect of the image sensor shown in FIG. 6 are shown.
  • the column indicated by the arrow 28a indicates the luminance value of the image sensor that has captured the divided picture element of interest and the same value adjacent to the divided picture element at a position separated by three image sensors from the image sensor.
  • segmentation pixel of a color is shown.
  • the line indicated by the arrow 28b shows the value obtained by averaging the absolute values of the differences in the direction of the same color picture elements (difference absolute average value).
  • the inspection device 1 detects the location of the line defect.
  • the value is twice that of the conventional method, indicating that the detection sensitivity is improved.
  • the first inspection method corresponds to the luminance value of the imaging element obtained by imaging a part of the divided picture element of interest and the part of the same-color divided picture element adjacent to the divided picture element.
  • a difference absolute value calculation step for calculating the absolute value of the difference value with respect to the luminance value of the imaging element that captured the portion for the plurality of same-color divided pixels, and the difference absolute value calculation step described above.
  • An average value calculating step of calculating an average value of absolute values of the difference values along the arrangement direction of the plurality of same-color divided picture elements.
  • FIG. 10 is a flowchart showing a flow of processing for performing the first inspection in the inspection apparatus 1.
  • the captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the difference absolute value calculation unit 41 of the image conversion unit 4 via the main control unit 5.
  • the difference absolute value calculation unit 41 calculates the absolute value of the difference described above from the brightness value of each pixel of the captured image (the brightness value of each image sensor) (S1), The absolute value of the calculated difference is output to the average value calculator 42.
  • the average value calculation unit 42 Upon receiving the absolute value of the difference, calculates the absolute value of the difference from the absolute value. The calculated absolute difference average is calculated (S2). Then, the average value calculation unit 42 outputs the calculated difference absolute average value to the defect detection unit 7 via the main control unit 5.
  • the defect detector 7 Upon receiving the absolute difference average value, the defect detector 7 compares the absolute difference average value with a predetermined threshold value, and if the absolute difference average value is equal to or greater than the predetermined threshold value, a line defect exists. If it is determined to be good (YES in S3), otherwise it is determined to be non-defective (NO in S3).
  • the second inspection method is the direction in which the same color picture elements of the brightness value of the image sensor that captured the segmented pixel of interest are aligned with the captured image shown in FIG. 7 before the inspection by the first inspection method.
  • a filter function for obtaining the maximum value at is applied.
  • the second inspection method includes the following four stages of processing.
  • the divided pixel power adjacent to the target divided picture element is converted into an image sensor, and is located at a position separated by N image sensors from the divided pixel element.
  • the maximum value of the luminance values of the N image sensors in the X-axis direction of the divided picture element of interest is calculated.
  • the obtained maximum value filter function is applied to the luminance value of each image sensor (maximum luminance value calculation step).
  • the difference absolute average value is compared with a predetermined threshold value, and if the difference absolute average value exceeds the threshold value, it is determined that there is a defect.
  • FIG. 11 is a diagram illustrating a defect detection result obtained by the second inspection method in the inspection apparatus 1.
  • the column indicated by the arrow 29a is the value of each image sensor generated after performing the above-described processing for obtaining the maximum value
  • the column of the arrow 29b is 3 images for the maximum value.
  • This is a value obtained by calculating the absolute value of the difference from the luminance value at the position of the adjacent same-color divided picture element separated by the element.
  • the line indicated by the arrow 29c is the average of the absolute values of the differences calculated along the arrangement of the same color pixels. A specific calculation example will be described below.
  • one divided picture element is picked up by three image pickup elements in the X-axis direction.
  • the central part is imaged by a row of image sensors consisting of RR2, RR3, and RR2.
  • the maximum value of the luminance values of the three image sensors in the X-axis direction of the divided picture element is the luminance value (R1) possessed by RR3. Therefore, the brightness values of RR2, RR3, and RR2 are all converted to R1.
  • ) of the line defect indicated by the arrow 29c is larger than the detected value (5 I Rl ⁇ RO I / 9) shown in FIG. I understand that.
  • the second inspection method is as follows: 1) An image sensor that arranges the maximum luminance value of a plurality of imaging elements that have captured the target divided picture element in the arrangement direction of the divided picture elements. 2) calculating the absolute value of the difference between the maximum value relating to the segmented pixel of interest and the maximum value relating to the same color segmented pixel adjacent to the segmented pixel; And a difference absolute value calculating step for calculating for each column of the image sensor.
  • FIG. 12 is a flowchart showing a flow of processing for performing the second inspection in the inspection apparatus 1.
  • the captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the maximum value filter calculation unit 43 of the image conversion unit 4 via the main control unit 5.
  • the maximum value filter calculation unit 43 Upon receiving this captured image, the maximum value filter calculation unit 43 performs the above-described maximum value filter function on the luminance value of each pixel forming the captured image (the luminance value of each image sensor) (
  • the difference value between the luminance values of the image pickup elements corresponding to the divided picture elements adjacent in the direction in which the same color picture elements are arranged in the picked-up image of the liquid crystal display panel 20 is calculated.
  • the standard deviation of the difference value is calculated and compared with a predetermined threshold value.
  • the third inspection method includes the following processes.
  • the difference value between the luminances of the image pickup elements corresponding to the divided picture elements adjacent in the direction in which the same color picture elements are arranged is calculated (difference value calculating step).
  • the standard deviation value is compared with a predetermined threshold value, and if the standard deviation value exceeds the threshold value V, it is determined that there is a defect.
  • FIG. 13 is a diagram showing a defect detection result obtained by the third inspection method in the inspection apparatus 1.
  • the standard deviation of the difference values in the image sensor columns (RR2, RR3, RR2, RRO, RR1, and RRO repetition force) arranged in the X-axis direction, including the image sensor columns, is Calculated.
  • the value of this standard deviation is used as a detection value for the line defect portion.
  • the detected value of the line defect part by the third inspection method indicated by the arrow 30c (the value obtained by multiplying the square root of 33 by (R1-RO) divided by 9) is It can be seen that the detection value is larger than the detection value (5 (R1-R0) Z18) shown in FIG. 8, and the detection sensitivity is improved.
  • the difference value calculation step of calculating the difference value between the luminance value of the noticed divided picture element and the luminance value of the same color divided picture element adjacent to the divided picture element.
  • a standard deviation calculation step of calculating the standard deviation of the difference values calculated in the difference value calculation step for each column of the image pickup elements arranged in the arrangement direction of the same color picture elements.
  • FIG. 14 is a flowchart showing a flow of processing for performing the third inspection in the inspection apparatus 1.
  • the captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the difference value calculation unit 44 of the image conversion unit 4 via the main control unit 5.
  • the difference value calculation unit 44 calculates the difference value with respect to the luminance value (the luminance value of each image sensor) of each pixel forming the captured image (S21). The difference value is output to the standard deviation calculator 45.
  • the standard deviation calculation unit 45 calculates the standard deviation of the difference value.
  • the defect detection unit 7 determines that the standard deviation value and a predetermined threshold value are used. If the standard deviation value is equal to or greater than the specified threshold value, it is determined that a line defect exists (YES in S23), otherwise it is determined to be a non-defective product (NO in S23). .
  • the brightness value of the image sensor is extracted from the captured image of the liquid crystal display panel 20 at each pixel interval, which will be described later, with respect to the arrangement of the same-color picture elements, and the standard deviation of the extracted brightness values is calculated.
  • the maximum value of the standard deviation is calculated.
  • the picture element interval is a part of the divided picture element of interest (the first part of the first divided picture element) and another divided adjacent to the arrangement direction of the same color picture elements (X-axis direction). This is the distance to the part of the picture element corresponding to the first part (the first part of the second divided picture element), and is the distance expressed by the number of image sensors.
  • one divided picture element is imaged by nine image sensors, and the number of these image sensors in the X-axis direction is three. Therefore, in this case, the pixel interval means the distance of three image sensors.
  • the fourth inspection method includes the following processes.
  • the maximum value of the standard deviation is compared with a predetermined threshold, and if the maximum value exceeds the threshold, it is determined that there is a defect.
  • FIG. 15 shows the result of applying the above inspection method to the image sensor shown in FIG.
  • FIG. 15 is a diagram illustrating a defect detection result obtained by the fourth inspection method in the inspection apparatus 1. In the figure, only the image sensor corresponding to the image pickup device that images the defective portion shown in FIG. 7 and its periphery are shown.
  • the columns indicated by the arrows 31a, 31b, and 31c indicate the adjacent divided picture elements.
  • the brightness of image sensors separated by three image sensors, which are distances, is extracted and shown in each column.
  • the row of arrow 31d shows the result of calculating the standard deviation of the brightness values of each system. is there.
  • the line of arrow 31e is the maximum of three standard deviations derived from the three systems.
  • the value indicated by the arrow 31f is a detected value of the line defect portion. A specific calculation example is described below.
  • the pixel interval is 3, and a group of three image sensors is formed.
  • RR2 and RRO form a first system
  • RR3 and RR1 form a second system power
  • a third system is formed by RR2 and RRO.
  • the standard deviation of the luminance values of each extracted system is calculated.
  • the standard deviation (R1-RO) Z6 is calculated from the luminance value of RR2 (R1Z3) and the luminance value of RRO (ROZ3).
  • the maximum value ((Rl-RO) / 2) of the standard deviation calculated in the first to third systems is calculated. This maximum value is used as the detection value of the line defect portion.
  • the fourth inspection method there is an interval between a plurality of same-color divided picture elements in a captured image obtained by imaging the liquid crystal display panel 20, and a certain part of the noticed divided picture element (first The interval between the first part of one divided picture element) and the part corresponding to the first part of the same-color divided picture element adjacent to the first divided picture element (first part of the second divided picture element) It is a prime interval.
  • the fourth detection method includes an extraction step of forming a luminance value system by extracting the luminance value of the imaging element for each pixel interval along the arrangement direction of the same color pixels from the captured image, and In the extraction process, the standard deviation calculation step for calculating the standard deviation of the luminance values included in the luminance value system formed for each luminance value system, and the standard deviation calculated in the standard deviation calculation process are calculated. And a maximum value calculating step for calculating a maximum value for each array of the same color picture elements.
  • FIG. 16 is a flowchart showing a flow of processing for performing the fourth inspection in the inspection apparatus 1.
  • the captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the system division calculation unit 46 of the image conversion unit 4 via the main control unit 5.
  • the system division calculation unit 46 Upon receiving this captured image, the system division calculation unit 46 extracts the luminance value of the group of image sensors (pixels of the captured image) at positions separated by the pixel interval, thereby representing the above system.
  • the same number as the prime interval (three systems in the above example) is formed (S31), and the luminance value of each formed system is output to the standard deviation calculator 45.
  • the standard deviation calculation unit 45 calculates the standard deviation of the luminance values for each system (S32), and outputs the calculated standard deviation value to the maximum value calculation unit 47. .
  • the maximum value calculation unit 47 selects the maximum one of the standard deviation values (S33), and the maximum value is sent via the main control unit 5. Output to defect detection unit 7.
  • the defect detection unit 7 Upon receiving the maximum value, the defect detection unit 7 compares the maximum value with a predetermined threshold value, and determines that a line defect exists if the maximum value is equal to or greater than the predetermined threshold value (in S34). YE S), otherwise, it is determined to be a non-defective product (NO in S34).
  • the ratio between the luminance value of the normal divided picture element and the luminance value of the divided picture element having a defect can be increased, which is higher than the defect detection by the conventional inspection method.
  • Line defects can be detected with detection sensitivity.
  • inspection is performed not only from the direction perpendicular to the panel surface but also from an oblique direction.
  • the visual recognition performance by oblique observation may be higher, so from the viewpoint of inspection sensitivity, the detection sensitivity of the inspection apparatus 1 may not reach the visual inspection sensitivity.
  • inspection sensitivity equal to or better than visual inspection sensitivity can be achieved. It is possible to obtain.
  • the second inspection method in which the detected value of the line defect portion is the largest is most preferable.
  • the image conversion unit 4 includes a difference absolute value calculation unit 41, an average value calculation unit 42, a maximum value filter calculation unit 43, a difference value calculation unit 44, a standard deviation calculation unit 45, a system division calculation unit 46, and a maximum value calculation. It is not necessary to have all of part 47.
  • the image conversion unit 4 only needs to include a combination of functional blocks that can perform processing for realizing at least one of the first to fourth inspection methods. For example, in order to realize the first inspection method, the image conversion unit 4 only needs to include a difference absolute value calculation unit 41 and an average value calculation unit 42.
  • the present invention can also be applied when one picture element has three divided picture element forces.
  • the luminance value of the middle divided picture element is determined from the processing target in the first to fourth inspection methods. May be removed. With this configuration, the amount of calculation can be reduced, and the ratio between the luminance value of a normal divided picture element and the luminance value of a divided picture element having a defect can be increased.
  • Each block of the inspection apparatus 1 described above, particularly each block of the image conversion unit 4, may be configured by hardware logic, or realized by software using a CPU as follows. May be.
  • the inspection apparatus 1 has a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) in the upper d program, A RAM (random access memory) for developing the program and a storage device (recording medium) such as a memory for storing the program and various data are provided.
  • the object of the present invention is to read the program code (execution format program, intermediate code program, source program) of the control program (image analysis program) of the inspection apparatus 1, which is software that realizes the functions described above, with a computer. This can also be achieved by supplying a recording medium recorded as possible to the inspection apparatus 1 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • the recording medium includes, for example, a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy disk Z hard disk, and an optical disk such as CD-ROMZMOZ MD / DVD / CD-R.
  • Disk systems IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
  • the inspection apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • wired communication such as IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, and terrestrial digital network can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the method for inspecting a liquid crystal display panel according to the present invention is the same for a picked-up image in a multi-domain liquid crystal display panel inspection in which a plurality of divided pixels of the same color are arranged in the same pixel.
  • Execute difference calculation processing to calculate the absolute value of the luminance difference between adjacent pixels of the same color in the line direction, then execute calculation processing to calculate the average of the calculated values, and then the average
  • a comparison process for comparing values in a direction orthogonal to the direction of the arrangement is executed to extract line defects in the arrangement direction of the same color picture elements.
  • the inspection method is arranged in the arrangement direction when adjacent same-color picture elements are separated from the captured image by N elements. Therefore, it is preferable to execute the maximum value detection process for neighboring N elements before the difference calculation process.
  • the difference calculation process is a process of calculating a luminance difference with the same color picture element adjacent in the direction of the same color picture element, and the calculation process calculates a standard deviation of the calculated values. It is preferable that
  • the same color picture elements are adjacent to the picked-up image in the direction in which the same color picture elements are arranged, they are separated from the picked-up image by N elements. Further, an extraction process for extracting the value of the imaging element for each N elements in the arrangement direction and dividing it into N element groups is performed, and then the standard deviation of each of the extracted element groups is calculated. Next, a maximum value detection process is performed to obtain the maximum standard deviation force of the N element groups extracted with the same alignment force. Finally, the detected value is directly intersected with the direction of the alignment. The line defect in the direction of the arrangement of the same color picture elements is extracted by executing a comparison process in which the comparison is made in the direction in which the pixels are aligned.
  • the image analysis method is the absolute value of the difference value between the luminance value of the pixel of interest included in the captured image and the luminance value of the same color pixel adjacent to the pixel.
  • the difference absolute value calculation step for calculating the same color picture element sequence and the average value of the absolute values of the difference values calculated in the difference absolute value calculation step along the arrangement direction of a plurality of the same color picture elements And an average value calculating step for calculating.
  • the image analysis apparatus has the luminance value of the target picture element included in the captured image and the same color picture adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements.
  • a difference absolute value calculation means for calculating an absolute value of a difference value from the luminance value of the elementary element, and an average value of the absolute values of the difference values calculated by the difference absolute value calculation means are arranged in a plurality of arrangement directions of the same color pixels.
  • the image analysis method is a pixel of interest included in the captured image.
  • a standard deviation calculating step for calculating the standard deviation of the difference values for each of the imaging element columns arranged in the arrangement direction of the plurality of same-color picture elements.
  • the image analysis apparatus has the luminance value of the target picture element included in the captured image and the same color picture adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements.
  • a difference value calculating means for calculating a difference value with respect to the luminance value of the element, and an image sensor for arranging the standard deviation of the difference value calculated by the difference value calculating means in an arrangement direction of the plurality of same-color picture elements
  • a standard deviation calculating means for calculating each column.
  • the image analysis method according to the present invention is an interval between the plurality of same-color picture elements in the captured image, and includes an attention portion of the target picture element and a method of arranging the plurality of same-color picture elements.
  • the interval between the same color pixel adjacent to the target pixel in the direction and the portion corresponding to the target portion is defined as the pixel interval, from the captured image, along the arrangement direction of the plurality of same color pixels.
  • Extracting the luminance value of the image sensor for each pixel interval to form a group of luminance values, and the standard deviation of the luminance values included in the group of luminance values formed in the extracting step A standard deviation calculation step for calculating the luminance value for each group of luminance values, and a maximum value calculation step for calculating the maximum value of the standard deviation calculated in the standard deviation calculation step for each row of the plurality of same-color picture elements. It is the composition which includes.
  • the image analysis apparatus is an interval between the plurality of same-color picture elements in the captured image, and includes an attention portion of the target picture element and a method of arranging the plurality of same-color picture elements.
  • the interval between the same color pixel adjacent to the target pixel in the direction and the portion corresponding to the target portion is defined as the pixel interval, from the captured image, along the arrangement direction of the plurality of same color pixels.
  • a luminance value of the image sensor for each pixel interval to extract a luminance value group, and a standard deviation of luminance values included in the luminance value group formed by the extraction means.
  • a standard deviation calculating means for calculating the luminance value for each group of luminance values, and a maximum value calculating means for calculating the maximum value of the standard deviation calculated by the standard deviation calculating means for each of the plurality of columns of the same color picture element. It is a configuration.
  • the detection sensitivity is higher than that of the defect detection apparatus to which the conventional defect detection method is applied. There is an effect that the defect of the display panel can be detected.
  • the present invention can be applied to inspection apparatuses that inspect these display panels.

Abstract

A liquid crystal display panel inspecting apparatus (1) is provided with a differential absolute value calculating section (41) for calculating the absolute value of a differential value of the luminance value of a target pixel included in a picked up image and the luminance value of a same color pixel adjacent to the target pixel; and an average value calculating section (42), for calculating the average value of the absolute values of the differential values calculated by the differential absolute value calculating section (41) along an arranging direction of a plurality of the same color pixels. Thus, an image analyzing method, an image analyzing apparatus and an inspecting apparatus which can detect defects of the display panel at a high detection sensitivity are provided.

Description

明 細 書  Specification
画像解析方法、画像解析装置、検査装置、画像解析プログラムおよびコ ンピュータ読み取り可能な記録媒体  Image analysis method, image analysis apparatus, inspection apparatus, image analysis program, and computer-readable recording medium
技術分野  Technical field
[0001] 本発明は、複数の同色絵素が一定方向に配列した表示パネルを検査する方法、そ の装置、表示パネルを撮像した画像を解析する画像解析プログラム、当該画像解析 プログラムを記録したコンピュータ読み取り可能な記録媒体に関するものである。 背景技術  The present invention relates to a method for inspecting a display panel in which a plurality of same-color picture elements are arranged in a certain direction, an apparatus therefor, an image analysis program for analyzing an image captured from the display panel, and a computer in which the image analysis program is recorded The present invention relates to a readable recording medium. Background art
[0002] 近年、液晶表示パネルの大型化に伴 、自動検査の重要性が増してきて 、る。自動 検査装置においては、少なくとも人間の目で見える欠陥は検出しなければならない ため、人間の目と同等以上の検出感度が要求される。  In recent years, with the increase in size of liquid crystal display panels, the importance of automatic inspection has increased. In automatic inspection equipment, at least defects that are visible to the human eye must be detected, so detection sensitivity equivalent to or higher than that of the human eye is required.
[0003] しかし、人間の目は以下の 1〜3の理由により欠陥の検出感度は非常に高い。すな わち、 1)人間の目は、パネル表面に対して鉛直方向のみでなく斜方からも観察を行 うため、 2)人間の視覚処理がアナログであり輝度方向の分解能が高いため、 3)人間 の視覚は視野の中央部の空間分解能が高ぐ検査時にはその部分を集中的に用い て高 、分解能で検査を行うためである。  However, the human eye has very high defect detection sensitivity for the following reasons 1 to 3. In other words, 1) The human eye observes not only vertically but also obliquely with respect to the panel surface. 2) Because human visual processing is analog and the resolution in the luminance direction is high, 3) This is because human visual inspection is performed at a high resolution by using this part intensively when the spatial resolution at the center of the visual field is high.
[0004] それゆえ、カメラを用いた自動検査装置では装置構成やアルゴリズムを工夫するこ とによりできるだけ検出感度を向上させる必要がある。  [0004] Therefore, in an automatic inspection apparatus using a camera, it is necessary to improve detection sensitivity as much as possible by devising a device configuration and an algorithm.
[0005] さらに、従来、液晶表示パネルは RGBからなる 1画素の中にそれぞれの色の絵素 が各 1つずつ配置される構成であった力 パネルの大型化に伴い、特許文献 1〜3に 記載されているように、 1つの絵素の中に複数の分割絵素を設け、それぞれの分割 絵素の輝度を別々に変化させることにより画素の中間階調の輝度をより細力べ表現す るマルチドメイン方式の液晶表示パネルが用いられるようになってきて 、る。  [0005] Further, conventional liquid crystal display panels have been configured such that each pixel of each color is arranged in one pixel consisting of RGB. As described in the above, a plurality of divided picture elements are provided in one picture element, and the brightness of the intermediate gray level of the pixel is expressed more vigorously by changing the brightness of each divided picture element separately. Multi-domain liquid crystal display panels are now being used.
[0006] 線欠陥の検出に関しては、従来の液晶表示パネルの場合、線欠陥がある同色絵素 の並びにおいて各絵素の輝度がそれ以外の同色絵素の並びにおける絵素の輝度と 異なることを利用して線欠陥の検出を行っている。具体的には、特許文献 4に記載さ れているように、同色絵素が並んだ方向に絵素の輝度値を足し込み、その値をその 並びの方向と直交する方向に位置する同色絵素の並びに関する値と比較して、周囲 と異なる値を持つラインを線欠陥として検出するアルゴリズムが用いられてきた。 [0006] Regarding the detection of line defects, in the case of a conventional liquid crystal display panel, the brightness of each picture element in a line of same color picture elements having a line defect is different from the brightness of the picture element in the other line of same color picture elements. Is used to detect line defects. Specifically, as described in Patent Document 4, the luminance value of the picture element is added in the direction in which the same color picture elements are arranged, and the value is added to the value. An algorithm has been used that detects a line having a value different from the surroundings as a line defect compared to the value related to the arrangement of the same color picture elements located in the direction orthogonal to the arrangement direction.
[0007] しかし、マルチドメイン方式の液晶パネルにぉ ヽては、線欠陥部の分割絵素の輝度 力 それぞれの分割絵素で異なる。マルチドメイン方式の液晶パネルの例として、ひ とつの絵素(例えば、 R1)が 2つの部分 (上段部および下段部)からなり、合わせて 25 6階調表示するとき、 0から 127までは上段部 (Rlup)の輝度が変化し、 128— 256ま では下段部(Rllow)の輝度が変化し、 Rlup— Rllowの並びの方向に、隣接の R絵 素の上段部と下段部とが同じ順序で配置されているタイプ (ROup— ROlow— Rlup- Rllow—RSup—RSlow)がある。この場合、線欠陥があると、黒点灯または白点灯で 、ひとつの同色絵素の並びにおいて交互に輝度が変わることになる。  [0007] However, for a multi-domain liquid crystal panel, the luminance power of the divided picture elements in the line defect portion is different for each divided picture element. As an example of a multi-domain liquid crystal panel, one picture element (for example, R1) consists of two parts (upper and lower parts). (Rlup) brightness changes, the brightness of the lower part (Rllow) changes from 128 to 256, and the upper and lower parts of the adjacent R pixels are in the same order in the direction of Rlup-Rllow. (ROup—ROlow—Rlup—Rllow—RSup—RSlow). In this case, if there is a line defect, the luminance changes alternately in one line of the same color picture element, with black lighting or white lighting.
[0008] そのため、同色絵素が並んだ方向に絵素の輝度値を足し合わせるだけでなぐ線 欠陥部において絵素を構成する分割絵素の輝度パターンが異なることを利用して線 欠陥を検出する方法が考えられる。  [0008] Therefore, a line defect is detected by using the fact that the luminance pattern of the divided picture elements constituting the picture element is different in the line defect part that is obtained by simply adding the luminance values of the picture elements in the direction in which the same color picture elements are arranged. A way to do this is conceivable.
特許文献 1 :日本国公開特許公報「特開平 04— 102830号公報 (公開日: 1992年 4 月 3日)」  Patent Document 1: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 04-102830 (Publication Date: April 3, 1992)”
特許文献 2 :日本国公開特許公報「特開平 07— 181451号公報 (公開日: 1995年 7 月 21日)」  Patent Document 2: Japanese Published Patent Publication “JP 07-181451 Publication Date (July 21, 1995)”
特許文献 3 :日本国公開特許公報「特開平 08— 184834号公報 (公開日: 1996年 7 月 16日)」  Patent Document 3: Japanese Patent Publication “Japanese Patent Laid-Open No. 08-184834 (Publication Date: July 16, 1996)”
特許文献 4:日本国公開特許公報「特開平 10— 240933号公報 (公開日: 1998年 9 月 11日)」  Patent Document 4: Japanese Patent Publication “Japanese Patent Laid-Open No. 10-240933 (Publication Date: September 11, 1998)”
発明の開示  Disclosure of the invention
[0009] ところが、上記従来の線欠陥検出アルゴリズムでは、欠陥部と良品部の検出値の差 力 、さぐさらに良品部においても絵素毎の輝度値にばらつきがあるため、欠陥を抽 出するための検出感度が得られず欠陥を分離できないことがあるという問題が生じる  [0009] However, in the conventional line defect detection algorithm described above, the difference between the detected values of the defective portion and the non-defective portion and the luminance value of each non-defective portion also vary, so that the defect is extracted. The problem is that the detection sensitivity is not obtained and defects cannot be separated.
[0010] 本発明は、上記の問題点を解決するためになされたもので、その目的は、表示パネ ル、特にマルチドメイン方式の液晶パネルの欠陥を高 、検出感度で検出することが できる画像解析方法および画像解析装置、検査装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to detect defects in a display panel, particularly a multi-domain liquid crystal panel, with high detection sensitivity. An object of the present invention is to provide an image analysis method, an image analysis apparatus, and an inspection apparatus.
[0011] 本発明に係る画像解析方法は、上記の課題を解決するために、複数の同色絵素 が一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られ た撮像画像の輝度値を解析することにより上記表示パネルの欠陥を検出する検査装 置が有する画像解析装置における画像解析方法であって、上記撮像画像に含まれ る注目絵素の輝度値と、上記複数の同色絵素の配列方向にお!、て当該注目絵素に 隣接する同色絵素の輝度値との差分値の絶対値を算出する差分絶対値算出工程と 、上記差分絶対値算出工程において算出された上記差分値の絶対値の平均値を、 上記複数の同色絵素の配列方向に沿って算出する平均値算出工程とを含むことを 特徴としている。  [0011] In order to solve the above problems, the image analysis method according to the present invention images a display panel in which a plurality of same-color picture elements are arranged in a certain direction by an imaging means having an imaging element, and obtains the obtained image. An image analysis method in an image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the luminance value of a target pixel included in the captured image, and the plurality of In the arrangement direction of the same-color picture element !, the absolute difference calculation process for calculating the absolute value of the difference between the brightness value of the same-color picture element adjacent to the target picture element, and the difference absolute value calculation process. And an average value calculating step of calculating an average value of absolute values of the difference values along the arrangement direction of the plurality of same-color picture elements.
[0012] 本発明に係る画像解析装置は、上記の課題を解決するために、複数の同色絵素 が一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られ た撮像画像の輝度値を解析することにより上記表示パネルの欠陥を検出する検査装 置における画像解析装置であって、上記撮像画像に含まれる注目絵素の輝度値と、 上記複数の同色絵素の配列方向において当該注目絵素に隣接する同色絵素の輝 度値との差分値の絶対値を算出する差分絶対値算出手段と、上記差分絶対値算出 手段によって算出された上記差分値の絶対値の平均値を、上記複数の同色絵素の 配列方向に沿って算出する平均値算出手段とを備えることを特徴としている。  In order to solve the above problems, an image analysis apparatus according to the present invention images a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging unit having an imaging element, and obtains the obtained image An image analysis apparatus in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the luminance value of a pixel of interest included in the captured image, and an array of the plurality of same-color pixels A difference absolute value calculating means for calculating an absolute value of a difference value between a luminance value of the same color pixel adjacent to the target picture element in the direction, and an absolute value of the difference value calculated by the difference absolute value calculating means. An average value calculating means for calculating an average value along the arrangement direction of the plurality of same-color picture elements is provided.
[0013] 従来の構成では、 1)表示パネルを撮像した画像において、注目する同色絵素の列 における絵素の輝度値の平均値 (第 1平均値)を算出し、 2)上記第 1平均値を算出し た同色絵素の列とは異なる、同色絵素の列における輝度値の平均値 (第 2平均値)を 算出し、第 1平均値と第 2平均値との差分値を算出する。  [0013] In the conventional configuration, 1) calculate the average value (first average value) of the luminance values of the pixels in the same color pixel row of interest in the image captured from the display panel, and 2) the first average Calculate the average value (second average value) of the luminance values in the same color pixel column that is different from the same color pixel column for which the value was calculated, and calculate the difference value between the first average value and the second average value To do.
[0014] これに対し、上記本発明の構成によれば、差分絶対値算出手段は、一定方向に配 列した複数の同色絵素のうちの、注目絵素の輝度値と、同色絵素の配列方向におい て当該注目絵素に隣接する絵素の輝度値との差分値の絶対値を、同色絵素の列に 関して算出する。そして、平均値算出手段は、差分絶対値算出手段が算出した差分 値の絶対値から、それらの平均値を、同色絵素の配列方向に沿って算出する。  [0014] On the other hand, according to the configuration of the present invention, the absolute difference calculation means calculates the luminance value of the pixel of interest from among the plurality of same-color picture elements arranged in a fixed direction, and the same-color picture element. The absolute value of the difference value from the luminance value of the picture element adjacent to the target picture element in the arrangement direction is calculated for the same color picture element column. Then, the average value calculating means calculates the average value along the arrangement direction of the same color picture elements from the absolute value of the difference value calculated by the difference absolute value calculating means.
[0015] 同色絵素の列に線欠陥が生じる場合には、その列は、線欠陥でない正常な列と比 較すると輝度が正常な絵素と輝度が異常な絵素とが混在した状態となっている。 [0015] When a line defect occurs in a column of the same color picture element, the column is compared with a normal column that is not a line defect. In comparison, a picture element with normal luminance and a picture element with abnormal luminance are mixed.
[0016] それゆえ、或る同色絵素の列に線欠陥がある場合には、上記の構成のように、当該 列において、正常輝度の絵素における輝度値と異常輝度の絵素における輝度値と の差分を算出することにより、それらの輝度値間の比を高めることができ、その結果、 当該列全体の輝度値の平均値を算出する場合よりも欠陥検出感度を高めることがで きる。  [0016] Therefore, when there is a line defect in a column of a certain same-color picture element, the luminance value in the normal luminance picture element and the luminance value in the abnormal luminance picture element in the column as described above. By calculating the difference between and, the ratio between the luminance values can be increased, and as a result, the defect detection sensitivity can be increased as compared with the case of calculating the average value of the luminance values of the entire column.
[0017] 従って、上記画像解析装置を検査装置に適用することにより、表示パネルの欠陥を 高い検出感度で検出することができる検査装置を実現することができる。  Therefore, by applying the image analysis apparatus to an inspection apparatus, it is possible to realize an inspection apparatus that can detect defects in the display panel with high detection sensitivity.
[0018] なお、 1つの絵素の中に複数の分割絵素を設けるマルチドメイン方式の液晶表示 パネルにおいては、上記複数の同色絵素は、複数の同色分割絵素を意味する。  [0018] In a multi-domain liquid crystal display panel in which a plurality of divided picture elements are provided in one picture element, the plurality of same color picture elements means a plurality of same color picture elements.
[0019] また、上記画像解析方法は、注目絵素を撮像した複数の撮像素子が有する輝度値 の最大値を、上記配列方向に配列する撮像素子の列ごとに算出する最大輝度値算 出工程を上記差分絶対値算出工程の前に含み、上記差分絶対値算出工程におい て、注目絵素に関する上記最大値と、当該絵素に隣接する同色絵素に関する上記 最大値との差分値の絶対値を、上記撮像素子の列ごとに算出することが好ましい。  [0019] Further, in the image analysis method, a maximum luminance value calculating step of calculating a maximum value of luminance values of a plurality of imaging elements that have captured a target pixel for each column of imaging elements arranged in the arrangement direction. Before the difference absolute value calculating step, and in the difference absolute value calculating step, the absolute value of the difference value between the maximum value related to the pixel of interest and the maximum value related to the same color pixel adjacent to the pixel. Is preferably calculated for each column of the image sensor.
[0020] 上記の構成によれば、ひとつの絵素は、複数の撮像素子によって撮像される。換言 すれば、ひとつの絵素は、その撮像画像において複数の画素に分割される。そして 、最大輝度値算出工程では、注目絵素を撮像した複数の撮像素子 (画素)が有する 輝度値のうち、最大のものを、同色絵素の配列方向に配列する撮像素子の列ごとに 算出する。そして、差分絶対値算出工程では、撮像素子の列ごとに、注目絵素に関 する上記最大値と、当該絵素に隣接する同色絵素に関する上記最大値との差分値 の絶対値を算出する。  [0020] According to the above configuration, one picture element is imaged by the plurality of image sensors. In other words, one picture element is divided into a plurality of pixels in the captured image. Then, in the maximum luminance value calculation step, the maximum one of the luminance values of the plurality of image sensors (pixels) that captured the target pixel is calculated for each column of the image sensors arranged in the same color pixel arrangement direction. To do. In the difference absolute value calculation step, the absolute value of the difference value between the maximum value related to the pixel of interest and the maximum value related to the same color pixel adjacent to the pixel is calculated for each column of the image sensor. .
[0021] 上記のように、注目絵素を撮像した複数の撮像素子が有する輝度値の最大値を求 めることにより、正常輝度の絵素における輝度値と異常輝度の絵素における輝度値 の比をより一層高めることができ、注目絵素全体の輝度値を算出する場合よりも欠陥 検出感度を高めることができる。  [0021] As described above, by obtaining the maximum value of the luminance values of a plurality of imaging elements that have imaged the target pixel, the luminance value in the normal luminance pixel and the luminance value in the abnormal luminance pixel are calculated. The ratio can be further increased, and the defect detection sensitivity can be increased as compared with the case of calculating the luminance value of the entire pixel of interest.
[0022] 本発明に係る画像解析方法は、上記の課題を解決するために、複数の同色絵素 が一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られ た撮像画像の輝度値を解析することにより上記表示パネルの欠陥を検出する検査装 置が有する画像解析装置における画像解析方法であって、上記撮像画像に含まれ る注目絵素の輝度値と、上記複数の同色絵素の配列方向にお!、て当該注目絵素に 隣接する同色絵素の輝度値との差分値を算出する差分値算出工程と、上記差分値 算出工程において算出された上記差分値の標準偏差を、上記複数の同色絵素の配 列方向に配列する撮像素子の列ごとに算出する標準偏差算出工程とを含むことを特 徴としている。 [0022] In order to solve the above problems, an image analysis method according to the present invention is obtained by imaging a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging means having an imaging element. An image analysis method in an image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of a captured image, the luminance value of a target pixel included in the captured image, and In the arrangement direction of the plurality of same-color picture elements, a difference value calculation step of calculating a difference value between the luminance values of the same-color picture elements adjacent to the target picture element and the difference value calculation step calculated above And a standard deviation calculating step of calculating a standard deviation of the difference value for each column of the image pickup elements arranged in the arrangement direction of the plurality of same-color picture elements.
[0023] 本発明に係る画像解析装置は、上記の課題を解決するために、複数の同色絵素 が一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られ た撮像画像の輝度値を解析することにより上記表示パネルの欠陥を検出する検査装 置が有する画像解析装置であって、上記撮像画像に含まれる注目絵素の輝度値と、 上記複数の同色絵素の配列方向において当該注目絵素に隣接する同色絵素の輝 度値との差分値を算出する差分値算出手段と、上記差分値算出手段によって算出さ れた上記差分値の標準偏差を、上記複数の同色絵素の配列方向に配列する撮像 素子の列ごとに算出する標準偏差算出手段とを備えることを特徴としている。  In order to solve the above-described problem, the image analysis apparatus according to the present invention images a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging unit having an imaging element, and obtains the obtained image An image analysis apparatus included in an inspection device that detects a defect of the display panel by analyzing a luminance value of an image, the luminance value of a pixel of interest included in the captured image, and the plurality of same-color pixel elements A difference value calculating means for calculating a difference value between luminance values of the same color picture element adjacent to the target picture element in the arrangement direction, and a standard deviation of the difference value calculated by the difference value calculating means, And standard deviation calculating means for calculating for each column of image pickup devices arranged in the arrangement direction of the same color picture elements.
[0024] 上記の構成によれば、差分値算出手段は、注目絵素の輝度値と、当該注目絵素に 隣接する同色絵素の輝度値との差分値を算出し、標準偏差算出手段は、当該差分 値の標準偏差を、同色絵素の配列方向に配列する撮像素子の列ごとに算出する。  [0024] According to the above configuration, the difference value calculating means calculates the difference value between the luminance value of the target picture element and the luminance value of the same color picture element adjacent to the target picture element, and the standard deviation calculating means is Then, the standard deviation of the difference value is calculated for each column of the image sensors arranged in the arrangement direction of the same color picture elements.
[0025] 上記のように、差分値の標準偏差を求めることにより、正常輝度の絵素における輝 度値と、正常な輝度値の範囲から外れる輝度値を有する欠陥絵素の輝度値との比を 高めることができる。それゆえ、正常な輝度値の範囲から外れる輝度値を有する欠陥 絵素を、上記従来の構成よりも高い感度で検出することができる。  [0025] By calculating the standard deviation of the difference value as described above, the ratio between the luminance value of the normal luminance pixel and the luminance value of the defective pixel having a luminance value outside the normal luminance value range. Can be increased. Therefore, it is possible to detect a defective pixel having a luminance value outside the normal luminance value range with higher sensitivity than the conventional configuration.
[0026] 従って、上記画像解析装置を検査装置に適用することにより、表示パネルの欠陥を 高い検出感度で検出することができる検査装置を実現することができる。  Therefore, by applying the image analysis apparatus to an inspection apparatus, it is possible to realize an inspection apparatus that can detect defects in the display panel with high detection sensitivity.
[0027] 本発明に係る画像解析方法は、上記の課題を解決するために、複数の同色絵素 が一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られ た撮像画像の輝度値を解析することにより上記表示パネルの欠陥を検出する検査装 置が有する画像解析装置における画像解析方法であって、上記撮像画像における 上記複数の同色絵素の間隔であって、注目絵素の注目部分と、上記複数の同色絵 素の配列方向において当該注目絵素に隣接する同色絵素の、上記注目部分に対 応する部分との間隔を絵素間隔とした場合に、上記撮像画像から、上記複数の同色 絵素の配列方向に沿って、上記絵素間隔ごとに上記撮像素子の輝度値を抽出する ことにより、輝度値の群を形成する抽出工程と、上記抽出工程において形成された、 輝度値の群に含まれる輝度値の標準偏差を上記輝度値の群ごとに算出する標準偏 差算出工程と、上記標準偏差算出工程において算出された標準偏差の最大値を上 記複数の同色絵素の列ごとに算出する最大値算出工程とを含むことを特徴としてい る。 [0027] In order to solve the above-described problem, the image analysis method according to the present invention images a display panel in which a plurality of same-color picture elements are arranged in a certain direction by an imaging unit having an imaging element, and obtains the obtained image. An image analysis method in an image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the image analysis method including: The interval between the plurality of same-color picture elements, the portion corresponding to the target portion of the target pixel of the target pixel and the same-color pixel adjacent to the target pixel in the arrangement direction of the plurality of same-color pixels. When the pixel interval is defined as the pixel interval, the luminance value of the image sensor is extracted for each pixel interval along the arrangement direction of the plurality of same-color pixels from the captured image. An extraction step for forming a group of luminance values, a standard deviation calculation step for calculating the standard deviation of luminance values included in the luminance value group formed in the extraction step for each group of luminance values, and the calculation of the standard deviation And a maximum value calculating step for calculating the maximum value of the standard deviation calculated in the process for each of the plurality of columns of the same color picture element.
[0028] 本発明に係る画像解析装置は、上記の課題を解決するために、複数の同色絵素 が一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られ た撮像画像の輝度値を解析することにより上記表示パネルの欠陥を検出する検査装 置が有する画像解析装置であって、上記撮像画像における上記複数の同色絵素の 間隔であって、注目絵素の注目部分と、上記複数の同色絵素の配列方向において 当該注目絵素に隣接する同色絵素の、上記注目部分に対応する部分との間隔を絵 素間隔とした場合に、上記撮像画像から、上記複数の同色絵素の配列方向に沿つ て、上記絵素間隔ごとに上記撮像素子の輝度値を抽出することにより、輝度値の群 を形成する抽出手段と、上記抽出手段によって形成された、輝度値の群に含まれる 輝度値の標準偏差を上記輝度値の群ごとに算出する標準偏差算出手段と、上記標 準偏差算出手段によって算出された標準偏差の最大値を上記複数の同色絵素の列 ごとに算出する最大値算出手段とを備えることを特徴としている。  [0028] In order to solve the above problems, the image analysis apparatus according to the present invention images a display panel in which a plurality of same-color picture elements are arranged in a certain direction with an imaging means having an imaging element, and obtains the obtained image. An image analysis apparatus included in an inspection apparatus that detects a defect of the display panel by analyzing a luminance value of an image, the interval between the plurality of same-color picture elements in the captured image, When the interval between the portion and the portion corresponding to the target portion of the same color pixel adjacent to the target pixel in the arrangement direction of the plurality of same color pixels is defined as the pixel interval, The extraction means for forming a group of luminance values by extracting the luminance values of the image sensor at intervals of the pixel elements along the arrangement direction of a plurality of the same color picture elements, and the extraction means Brightness included in the group of luminance values A standard deviation calculating means for calculating the standard deviation of the degree value for each group of the luminance values, and a maximum value for calculating the maximum standard deviation calculated by the standard deviation calculating means for each of the plurality of columns of the same color And a value calculating means.
[0029] 上記の構成によれば、抽出手段は、表示パネルの撮像画像から、同色絵素の配列 方向に沿って、絵素間隔ごとに撮像素子 (画素)の輝度値を抽出することにより、輝 度値の群を形成する。すなわち、この輝度値の群とは、絵素の特定の部分を撮像し た撮像素子の輝度値の集合であって、注目する同色絵素の列に関する集合である。  [0029] According to the above configuration, the extraction unit extracts the luminance value of the image sensor (pixel) for each pixel interval along the arrangement direction of the same color pixels from the captured image of the display panel. A group of brightness values is formed. In other words, this group of luminance values is a set of luminance values of an image pickup element that has picked up a specific portion of a picture element, and is a set relating to a column of the same color picture element to be noticed.
[0030] 標準偏差算出手段は、抽出された輝度値の群に含まれる輝度値の標準偏差を輝 度値の群ごとに算出し、最大値算出手段は、算出された標準偏差の最大値を同色 絵素の列ごとに算出する。 [0031] 上記のように、輝度値の群に含まれる輝度値の標準偏差の最大値を求めることによ り、正常輝度値の絵素における輝度値と、正常な輝度値の範囲力 外れる輝度値を 有する欠陥絵素の輝度値との比を高めることができる。それゆえ、正常な輝度値の範 囲から外れる輝度値を有する欠陥絵素を、上記従来の構成よりも高い感度で検出す ることがでさる。 [0030] The standard deviation calculating means calculates the standard deviation of the luminance values included in the extracted luminance value group for each luminance value group, and the maximum value calculating means calculates the maximum value of the calculated standard deviation. Calculate for each row of pixels of the same color. [0031] As described above, by obtaining the maximum value of the standard deviation of the luminance values included in the luminance value group, the luminance value in the pixel of the normal luminance value and the luminance deviating from the normal luminance value range power. The ratio with the luminance value of the defective pixel having the value can be increased. Therefore, it is possible to detect a defective pixel having a luminance value outside the normal luminance value range with higher sensitivity than the conventional configuration.
[0032] 従って、上記画像解析装置を検査装置に適用することにより、表示パネルの欠陥を 高い検出感度で検出することができる検査装置を実現することができる。  Therefore, by applying the image analysis apparatus to an inspection apparatus, it is possible to realize an inspection apparatus that can detect defects in the display panel with high detection sensitivity.
[0033] また、複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮 像手段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネル の欠陥を検出する検査装置であって、上記画像解析装置と、当該画像解析装置によ つて算出された絵素の輝度値と所定の閾値とを比較することにより欠陥の有無を判 定する欠陥検出手段とを備える検査装置も本発明の技術的範囲に含まれる。  [0033] Further, a display panel in which a plurality of same-color picture elements are arranged in a certain direction is imaged by an imaging means having an imaging device, and the luminance value of the obtained captured image is analyzed to thereby detect the defect in the display panel. An inspection apparatus for detecting the image analysis apparatus, and a defect detection means for determining the presence / absence of a defect by comparing a luminance value of a pixel calculated by the image analysis apparatus with a predetermined threshold value. An inspection apparatus including the above is also included in the technical scope of the present invention.
[0034] なお、上記画像解析装置は、コンピュータによって実現してもよぐこの場合には、 コンピュータを上記各手段として動作させることにより上記画像解析装置をコンビユー タにて実現させる上記画像解析装置の制御プログラム (画像解析プログラム)、およ びそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の技術的範囲に 含まれる。  [0034] In this case, the image analysis apparatus may be realized by a computer. In this case, the image analysis apparatus that realizes the image analysis apparatus by a computer by causing the computer to operate as the respective means. A control program (image analysis program) and a computer-readable recording medium on which the control program is recorded are also included in the technical scope of the present invention.
[0035] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白にな るであろう。  [0035] Other objects, features, and advantages of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]一実施形態の液晶表示パネル検査装置が備える制御装置の構成を示す機能 ブロック図である。  FIG. 1 is a functional block diagram showing a configuration of a control device included in a liquid crystal display panel inspection device according to an embodiment.
[図 2]—実施形態の液晶表示パネル検査装置の構成を示す概略図である。  FIG. 2 is a schematic diagram showing a configuration of a liquid crystal display panel inspection apparatus according to an embodiment.
[図 3]マルチドメイン方式の液晶表示パネルにおける分割絵素の配置を示す概略図 である。  FIG. 3 is a schematic diagram showing an arrangement of divided picture elements in a multi-domain liquid crystal display panel.
[図 4]カメラが有する撮像素子の、液晶表示パネルの画素に対する割当を示す図で ある。 [図 5]液晶表示パネルの設定輝度値と実際の輝度値との関係を示すグラフである。 FIG. 4 is a diagram showing the allocation of the image sensor of the camera to the pixels of the liquid crystal display panel. FIG. 5 is a graph showing the relationship between the set luminance value of the liquid crystal display panel and the actual luminance value.
[図 6]液晶表示パネル黒点灯時の各分割絵素の輝度を示す図である。  FIG. 6 is a diagram showing the luminance of each divided picture element when the liquid crystal display panel is lit black.
[図 7]液晶表示パネルを撮像した時の各撮像素子の輝度値を示す図である。  FIG. 7 is a diagram showing the luminance value of each image sensor when a liquid crystal display panel is imaged.
[図 8]従来の検査方法による線欠陥の検出処理結果を示す図である。  FIG. 8 is a diagram showing a result of detection processing of line defects by a conventional inspection method.
[図 9]上記検査装置における第 1の検査方法による欠陥検出結果を示す図である。  FIG. 9 is a diagram showing a defect detection result by the first inspection method in the inspection apparatus.
[図 10]上記検査装置において第 1の検査を行うための処理の流れを示すフローチヤ ートである。  FIG. 10 is a flowchart showing the flow of processing for performing the first inspection in the inspection apparatus.
[図 11]検査装置における第 2の検査方法による欠陥検出結果を示す図である。  FIG. 11 is a diagram showing a defect detection result by a second inspection method in the inspection apparatus.
[図 12]上記検査装置において第 2の検査を行うための処理の流れを示すフローチヤ ートである。  FIG. 12 is a flowchart showing a flow of processing for performing a second inspection in the inspection apparatus.
[図 13]上記検査装置 1における第 3の検査方法による欠陥検出結果を示す図である  FIG. 13 is a diagram showing a defect detection result by a third inspection method in the inspection apparatus 1
[図 14]上記検査装置において第 3の検査を行うための処理の流れを示すフローチヤ ートである。 FIG. 14 is a flow chart showing a flow of processing for performing a third inspection in the inspection apparatus.
[図 15]上記検査装置における第 4の検査方法による欠陥検出結果を示す図である。  FIG. 15 is a diagram showing a defect detection result by a fourth inspection method in the inspection apparatus.
[図 16]上記検査装置において第 4の検査を行うための処理の流れを示すフローチヤ ートである。 FIG. 16 is a flowchart showing the flow of processing for performing a fourth inspection in the inspection apparatus.
符号の説明 Explanation of symbols
1 液晶表示パネル検査装置  1 LCD panel inspection equipment
2 カメラ (撮像手段)  2 Camera (imaging means)
4 画像変換部 (画像解析装置)  4 Image converter (image analyzer)
7 欠陥検出部 (欠陥検出手段)  7 Defect detection unit (defect detection means)
20 液晶表示パネル(表示パネル)  20 LCD panel (display panel)
21 画素  21 pixels
22a 分割 R絵素(同色絵素) 22a Split R picture element (same color picture element)
22c 分割 R絵素(同色絵素) 22c Split R picture element (same color picture element)
22d 分割 R絵素(同色絵素) 22d Split R picture element (same color picture element)
25 撮像素子 41 差分絶対値演算部 (差分絶対値算出手段) 25 Image sensor 41 Difference absolute value calculation section (Absolute difference calculation means)
42 平均値演算部 (平均値算出手段)  42 Average value calculator (mean value calculation means)
44 差分値演算部 (差分値算出手段)  44 Difference value calculation unit (Difference value calculation means)
45 標準偏差演算部 (標準偏差算出手段)  45 Standard deviation calculator (Standard deviation calculation means)
46 系統分割演算部 (抽出手段)  46 System division calculation unit (extraction means)
47 最大値演算部 (最大値算出手段)  47 Maximum value calculator (Maximum value calculation means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 本発明の実施の一形態について図 1〜図 16に基づいて説明すれば、以下のとお りである。 [0038] An embodiment of the present invention will be described with reference to Figs. 1 to 16 as follows.
[0039] (液晶表示パネル検査装置 1の構成)  [0039] (Configuration of Liquid Crystal Display Panel Inspection Apparatus 1)
液晶表示パネル検査装置 1 (以下、検査装置 1と称する。 )は、複数の同色絵素が 一定方向に配列した表示パネルを、撮像素子を有する撮像手段で撮像し、得られた 撮像画像の輝度値を解析することにより表示パネルの欠陥を検出するものであり、後 述する第 1〜4の検査方法により表示パネルの欠陥を検出するものである。  The liquid crystal display panel inspection apparatus 1 (hereinafter referred to as inspection apparatus 1) captures an image of a display panel in which a plurality of same-color picture elements are arranged in a certain direction by an imaging means having an imaging element, and the brightness of the obtained captured image The display panel defect is detected by analyzing the values, and the display panel defect is detected by the first to fourth inspection methods described later.
[0040] なお、以下では、表示パネルの欠陥とは、具体的には、表示パネルを構成する複 数の絵素のうち、所定の範囲力も外れた輝度値を有する絵素を意味する。  [0040] In the following description, the display panel defect specifically means a picture element having a luminance value out of a predetermined range force among a plurality of picture elements constituting the display panel.
[0041] 図 2は、本実施形態の液晶表示パネル検査装置 1の構成を示す概略図である。図 2に示すように、検査装置 1は、カメラ 2 (撮像手段)および制御装置 3を主たる構成と して備えている。  FIG. 2 is a schematic diagram showing a configuration of the liquid crystal display panel inspection apparatus 1 of the present embodiment. As shown in FIG. 2, the inspection device 1 includes a camera 2 (imaging means) and a control device 3 as main components.
[0042] カメラ 2は、液晶表示パネル 20を撮像するためのものであり、マトリクス状に配置さ れた複数の撮像素子を有している。カメラ 2として、例えば、 CCDカメラ、 c-MOSカメ ラを挙げることができる。カメラ 2は、検査装置 1のフレーム 13に、治具 14によって取り 付けられている。  [0042] The camera 2 is for imaging the liquid crystal display panel 20, and has a plurality of imaging elements arranged in a matrix. Examples of the camera 2 include a CCD camera and a c-MOS camera. The camera 2 is attached to the frame 13 of the inspection apparatus 1 with a jig 14.
[0043] 制御装置 3は、画像読み込み機能を有する画像変換部 4 (画像解析装置)を備えて おり、検査装置 1の動作を制御するものである。  [0043] The control device 3 includes an image conversion unit 4 (image analysis device) having an image reading function, and controls the operation of the inspection device 1.
[0044] 検査装置 1の検査対象であるマルチドメイン方式の液晶表示パネル 20は、台車 15 に乗せられて検査装置 1内に配置されている。この液晶表示パネル 20はカメラ 2によ つて撮像され、その撮像画像は、制御装置 3に送られて所定のアルゴリズムで処理さ れる。 The multi-domain liquid crystal display panel 20 to be inspected by the inspection apparatus 1 is placed on the carriage 15 and arranged in the inspection apparatus 1. The liquid crystal display panel 20 is picked up by the camera 2, and the picked-up image is sent to the control device 3 and processed by a predetermined algorithm. It is.
[0045] なお、検査装置 1は、後述するように、照明 11および点灯回路 12を備えているが、 図 2にお!/、てこれらの部材は省略されて!、る。  As will be described later, the inspection apparatus 1 includes the illumination 11 and the lighting circuit 12. However, these members are omitted in FIG.
[0046] (制御装置 3の構成) [0046] (Configuration of control device 3)
図 1は、制御装置 3の構成を示す機能ブロック図である。図 1に示すように、制御装 置 3は、画像変換部 4、主制御部 5、記憶部 6、欠陥検出部 7 (欠陥検出手段)、表示 部 8、入力部 9を備えている。  FIG. 1 is a functional block diagram showing the configuration of the control device 3. As shown in FIG. 1, the control device 3 includes an image conversion unit 4, a main control unit 5, a storage unit 6, a defect detection unit 7 (defect detection means), a display unit 8, and an input unit 9.
[0047] 画像変換部 4は、カメラ 2によって撮像された、液晶表示パネル 20の撮像画像に対 して後述する処理を行い、欠陥検出のための輝度値を算出する。この画像変換部 4 の構成については、後述する。 [0047] The image conversion unit 4 performs processing described later on the captured image of the liquid crystal display panel 20 captured by the camera 2, and calculates a luminance value for defect detection. The configuration of the image conversion unit 4 will be described later.
[0048] 主制御部 5は、制御装置 3の各部の他、カメラ 2、照明 11、点灯回路 12の制御を行 う。なお、点灯回路 12は、液晶表示パネル 20に接続されており、この液晶表示パネ ル 20の点灯制御を行うものである。 The main control unit 5 controls the camera 2, the illumination 11, and the lighting circuit 12 in addition to each unit of the control device 3. The lighting circuit 12 is connected to the liquid crystal display panel 20, and controls the lighting of the liquid crystal display panel 20.
[0049] 記憶部 6は、検査装置 1において用いられる各種の設定値等を記憶するものであり[0049] The storage unit 6 stores various setting values used in the inspection apparatus 1.
、主制御部 5によって情報の書き込みおよび読み出しが行われる。 The main controller 5 writes and reads information.
[0050] 欠陥検出部 7は、画像変換部 4によって算出された輝度値と、所定の基準値とを比 較することにより、液晶表示パネル 20の欠陥判定を行う。 The defect detection unit 7 determines the defect of the liquid crystal display panel 20 by comparing the luminance value calculated by the image conversion unit 4 with a predetermined reference value.
[0051] 表示部 8は、検査条件や検査結果等を表示するものであり、入力部 9は、オペレー タによる検査装置 1の操作を受け付けるものである。後述する第 1〜4の検査方法の いずれの検査方法で検査を行うのかは、入力部 9を介してオペレータによって指定さ れる。 [0051] The display unit 8 displays inspection conditions, inspection results, and the like, and the input unit 9 receives operation of the inspection apparatus 1 by an operator. Which of the first to fourth inspection methods to be described later is used for the inspection is designated by the operator via the input unit 9.
[0052] (画像変換部 4の構成)  [0052] (Configuration of Image Conversion Unit 4)
図 1に示すように、画像変換部 4は、差分絶対値演算部 41 (差分絶対値算出手段) 、平均値演算部 42 (平均値算出手段)、最大値フィルタ演算部 43、差分値演算部 4 4 (差分値算出手段)、標準偏差演算部 45 (標準偏差算出手段)、系統分割演算部 4 6 (抽出手段)、最大値演算部 47 (最大値算出手段)を備えて!/、る。  As shown in FIG. 1, the image conversion unit 4 includes a difference absolute value calculation unit 41 (difference absolute value calculation unit), an average value calculation unit 42 (average value calculation unit), a maximum value filter calculation unit 43, a difference value calculation unit. 4 4 (Difference value calculation means), Standard deviation calculation section 45 (Standard deviation calculation means), System division calculation section 4 6 (Extraction means), Maximum value calculation section 47 (Maximum value calculation means) .
[0053] 差分絶対値演算部 41は、注目する分割絵素(例えば、図 6にて R絵素 22a)の輝度 値と、当該絵素に隣接する同色分割絵素 (例えば、図 6にて R絵素 22b)の輝度値と の差分値の絶対値を、同色絵素の並び (R絵素、 G絵素または B絵素の列)に関して 算出する。 [0053] The difference absolute value calculation unit 41 determines the luminance value of the divided pixel of interest (for example, the R pixel 22a in FIG. 6) and the same-color divided pixel (for example, in FIG. 6) adjacent to the pixel. R picture element 22b) The absolute value of the difference value is calculated with respect to the same color picture element sequence (R picture element, G picture element or B picture element sequence).
[0054] 平均値演算部 42は、差分絶対値演算部 41によって算出された、差分値の絶対値 の平均値を同色絵素の配列方向に沿って算出する。  The average value calculation unit 42 calculates the average value of the absolute values of the difference values calculated by the difference absolute value calculation unit 41 along the arrangement direction of the same color picture elements.
[0055] 最大値フィルタ演算部 43は、注目する分割絵素を撮像した複数の撮像素子が有 する輝度値の最大値を、同色分割絵素の配列方向に配列する撮像素子の列ごとに 算出する。 [0055] The maximum value filter calculation unit 43 calculates the maximum value of the luminance values of a plurality of image sensors that have captured the target divided picture element for each column of the image sensors arranged in the arrangement direction of the same color divided picture elements. To do.
[0056] 差分値演算部 44は、注目する分割絵素の輝度値と、当該分割絵素に隣接する同 色分割絵素の輝度値との差分値を算出する。  The difference value calculation unit 44 calculates a difference value between the luminance value of the noticed divided picture element and the luminance value of the same color divided picture element adjacent to the divided picture element.
[0057] 標準偏差演算部 45は、差分値演算部 44によって算出された差分値の標準偏差を[0057] The standard deviation calculation unit 45 calculates the standard deviation of the difference value calculated by the difference value calculation unit 44.
、同色絵素の配列方向に配列する撮像素子の列ごとに算出する。 The calculation is performed for each column of image sensors arranged in the arrangement direction of the same color picture elements.
[0058] 系統分割演算部 46は、液晶表示パネル 20の撮像画像から、同色絵素の配列方向 に沿って、後述する絵素間隔ごとに撮像素子の輝度値 (撮像画像の画素の輝度値) を抽出することにより、輝度値の群 (系統)を形成する。 [0058] From the captured image of the liquid crystal display panel 20, the system division calculation unit 46 performs the brightness value of the image sensor (the brightness value of the pixel of the captured image) for each pixel interval to be described later along the arrangement direction of the same color picture elements. By extracting, a group of luminance values (system) is formed.
[0059] 最大値演算部 47は、系統分割演算部 46によって形成された、系統に含まれる輝 度値の標準偏差を輝度値の系統ごとに算出する。 [0059] The maximum value calculation unit 47 calculates the standard deviation of the luminance values included in the system, which is formed by the system division calculation unit 46, for each system of luminance values.
[0060] 画像変換部 4が備える各部の詳細については、後述する。 Details of each unit included in the image conversion unit 4 will be described later.
[0061] (液晶表示パネルの構成) [0061] (Configuration of liquid crystal display panel)
検査装置 1の検査対象となる液晶表示パネル 20は、複数の同色絵素が一定方向 に配列した表示パネルである。より具体的には、 1つの絵素の中に複数の分割絵素 を設け、それぞれの分割絵素の輝度を別々に変化させるマルチドメイン方式の液晶 表示パネルである。  The liquid crystal display panel 20 to be inspected by the inspection apparatus 1 is a display panel in which a plurality of same-color picture elements are arranged in a certain direction. More specifically, this is a multi-domain liquid crystal display panel in which a plurality of divided picture elements are provided in one picture element and the luminance of each divided picture element is changed separately.
[0062] なお、検査装置 1の検査対象は、複数の同色絵素が一定方向に配列した表示パネ ルであればよぐマルチドメイン方式の液晶表示パネルに限定されない。検査装置 1 は、特に、線欠陥を構成する絵素の輝度が交互に変化する表示パネルに対してその 効果が得られる。  Note that the inspection target of the inspection apparatus 1 is not limited to a multi-domain liquid crystal display panel as long as it is a display panel in which a plurality of same-color picture elements are arranged in a certain direction. The inspection apparatus 1 is particularly effective for a display panel in which the luminance of picture elements constituting line defects changes alternately.
[0063] 図 3は、マルチドメイン方式の液晶表示パネル 20 (表示パネル)における分割絵素 の配置を示す概略図である。同図に示すように、液晶表示パネル 20において、 1つ の画素 21は RGBの 3色の絵素(R絵素 22、 G絵素 23、 B絵素 24)力もなり、さらにそ れらの絵素はより小さな分割絵素に分割されている。具体的には、 R絵素 22は、分割 R絵素 22a、分割 R絵素 22bに、 G絵素 23は、分割 G絵素 23a、分割 G絵素 23bに、 B絵素 24は、分割 B絵素 24a、分割 B絵素 24bに、それぞれ分割されている。 FIG. 3 is a schematic diagram showing the arrangement of divided picture elements in a multi-domain liquid crystal display panel 20 (display panel). As shown in the figure, in the liquid crystal display panel 20, one The pixel 21 also has the power of RGB three-color picture elements (R picture element 22, G picture element 23, B picture element 24), and these picture elements are further divided into smaller divided picture elements. Specifically, R picture element 22 is divided into divided R picture element 22a and divided R picture element 22b, G picture element 23 is divided into G picture element 23a, divided G picture element 23b, and B picture element 24 is divided. It is divided into B picture element 24a and divided B picture element 24b.
[0064] 同色の分割絵素は、一定方向(図 3において X軸方向)に配列しており、同色絵素 の並び (R絵素、 G絵素および B絵素の列)を形成して 、る。  [0064] Divided picture elements of the same color are arranged in a certain direction (X-axis direction in Fig. 3), and form an array of the same color picture elements (rows of R picture element, G picture element, and B picture element). RU
[0065] なお、図 3において各分割絵素上にアルファベットを記している力 各分割絵素は それぞれ Rが赤色、 Gが緑色、 Bが青色の分割絵素を指す。また、以下の説明では、 1絵素が 2つの分割絵素からなる場合について述べるが、分割絵素が 3つ以上の場 合でも同様のアルゴリズムを用いることが可能である。  [0065] In FIG. 3, the powers in which alphabets are written on each divided picture element. Each divided picture element indicates a divided picture element in which R is red, G is green, and B is blue. In the following explanation, the case where one picture element consists of two divided picture elements will be described, but the same algorithm can be used even when there are three or more divided picture elements.
[0066] (撮像素子 25と画素 21との対応関係)  [0066] (Correspondence between image sensor 25 and pixel 21)
図 4は、カメラ 2が有する撮像素子の、液晶表示パネル 20の画素 21に対する割当 を示す図である。同図に示すように、カメラ 2の撮像素子 25は、液晶表示パネル 20の 画素 21に対して所定の数の撮像素子 25が割り当てられる倍率で液晶表示パネル 2 0を撮像する。図 4に示す場合では、画素 21あたり縦横に 6 X 6で撮像素子 25が割り 当てられている。 1つの絵素が N個の分割画素に分かれている場合には、少なくとも N X Nの撮像素子の割当が必要であり、それ以上の数の撮像素子が割り当てられる ことが好ましい。  FIG. 4 is a diagram showing the allocation of the image sensor of the camera 2 to the pixel 21 of the liquid crystal display panel 20. As shown in the figure, the image sensor 25 of the camera 2 images the liquid crystal display panel 20 at a magnification that assigns a predetermined number of image sensors 25 to the pixels 21 of the liquid crystal display panel 20. In the case shown in FIG. 4, the image sensor 25 is assigned 6 × 6 vertically and horizontally per pixel 21. When one picture element is divided into N divided pixels, it is necessary to allocate at least N × N image sensors, and it is preferable that a larger number of image sensors be allocated.
[0067] (従来の検査方法の問題点)  [0067] (Problems of conventional inspection methods)
ここで、従来の検査方法の問題点について説明する。  Here, problems of the conventional inspection method will be described.
[0068] 液晶表示パネル 20における輝度設定値と実際の輝度の値との関係は、図 5に示す ようなグラフで表すことができる。図 5は、液晶表示パネル 20の設定輝度値と実際の 輝度値との関係を示すグラフである。同図に示すように、中間階調における輝度値は 、輝度設定値に対して勾配が急である。そのため、輝度設定の変化に対して実際の 輝度値の変化も大きぐ中間階調の輝度で点灯させる液晶表示パネルの検査にお V、ては、従来の検査アルゴリズムでも比較的高 、検出精度を得ることが可能である。  The relationship between the brightness setting value and the actual brightness value in the liquid crystal display panel 20 can be represented by a graph as shown in FIG. FIG. 5 is a graph showing the relationship between the set luminance value of the liquid crystal display panel 20 and the actual luminance value. As shown in the figure, the brightness value in the intermediate gradation has a steep slope with respect to the brightness setting value. For this reason, in the inspection of liquid crystal display panels that are lit at intermediate gray levels, where the change in the actual luminance value is large relative to the change in the luminance setting, the detection accuracy is relatively high even with conventional inspection algorithms. It is possible to obtain.
[0069] これに対して黒点灯検査や白点灯検査では輝度設定値に対する輝度値の勾配が 小さぐ輝度値の変化も小さいため、輝度設定の微小な変化を検出することが難しく なり、従来の方法では感度が不足して十分な欠陥検出精度が得られないことがある。 [0069] In contrast, in the black lighting inspection and the white lighting inspection, since the gradient of the luminance value with respect to the luminance setting value is small and the change in the luminance value is small, it is difficult to detect a minute change in the luminance setting. Therefore, the conventional method may not have sufficient sensitivity to obtain sufficient defect detection accuracy.
[0070] そのため、本発明におけるパネル検査方法は、単独で用いることも可能であるが、 検査する液晶表示パネルの輝度設定に応じて従来の方法と組み合わせて使用する ことも可能である。  Therefore, the panel inspection method of the present invention can be used alone, but can also be used in combination with a conventional method according to the luminance setting of the liquid crystal display panel to be inspected.
[0071] (黒点灯検査における従来の検査方法)  [0071] (Conventional inspection method in black lighting inspection)
次に、黒点灯検査における従来の検査方法について説明する。  Next, a conventional inspection method in the black lighting inspection will be described.
[0072] 図 3に示した液晶表示パネル 20の黒点灯時の線欠陥を図 6に示す。図 6は、液晶 表示パネル黒点灯時の各分割絵素の輝度を示す図である。同図において、それぞ れの分割絵素は、各分割絵素上に記載されたアルファベットに併記された値の輝度 を有していることを示している。同図に示すように、黒点灯時には分割 R絵素 22a、 2 2bは同輝度 (輝度値 0)である力 線欠陥がある場合の液晶表示パネル 20において は、線欠陥部 26では輝点欠陥絵素である分割 R絵素 22cのみが点灯するので、分 割 R絵素 22cと、この分割 R絵素 22cに隣接する同色絵素である分割 R絵素 22dとの 輝度値が異なる。分割 R絵素 22cの輝度を R1とし、分割 R絵素 22dの輝度を ROとす ると、線欠陥部 26ではこの分割絵素のパターンが図 6における X軸方向に繰り返され る。  FIG. 6 shows a line defect when the liquid crystal display panel 20 shown in FIG. 3 is lit black. FIG. 6 is a diagram showing the luminance of each divided picture element when the liquid crystal display panel is lit black. In the figure, each divided picture element has a luminance of a value written in the alphabet written on each divided picture element. As shown in the figure, when the black R is lit, the divided R picture elements 22a and 22b have the same brightness (luminance value 0). Since only the divided R picture element 22c which is a picture element is lit, the luminance value of the divided R picture element 22c is different from that of the divided R picture element 22d which is the same color picture element adjacent to the divided R picture element 22c. If the luminance of the divided R picture element 22c is R1, and the luminance of the divided R picture element 22d is RO, the pattern of this divided picture element is repeated in the X-axis direction in FIG.
[0073] 図 6に示す液晶表示パネル 20を、図 4に示す撮像素子 25の割り当てで撮像したも のを図 7に示す。図 7は、液晶表示パネル 20を撮像した時の各撮像素子 25の輝度 値を示す図である。同図において、それぞれの撮像素子 25の輝度は、各撮像素子 2 5に標記された値によって段階的(0〜3)に示されている。撮像素子 25の輝度値は、 液晶表示パネル 20の輝度に基づく値であり、液晶表示パネル 20を撮像した撮像画 像を形成する画素の輝度値であるともいえる。また、 BRは、分割 B絵素と分割 R絵素 と含む領域を撮像した撮像素子を示している。 RRは、分割 R絵素以外の絵素は含ま な ヽ領域を撮像した撮像素子を示して ヽる。  FIG. 7 shows an image obtained by imaging the liquid crystal display panel 20 shown in FIG. 6 with the assignment of the image sensor 25 shown in FIG. FIG. 7 is a diagram showing the luminance value of each image sensor 25 when the liquid crystal display panel 20 is imaged. In the figure, the luminance of each image sensor 25 is shown stepwise (0 to 3) by the value marked on each image sensor 25. The luminance value of the imaging element 25 is a value based on the luminance of the liquid crystal display panel 20 and can be said to be the luminance value of the pixels forming the captured image obtained by imaging the liquid crystal display panel 20. BR denotes an image sensor that captures an area including the divided B picture element and the divided R picture element. RR indicates an image sensor that captures an image area including no picture elements other than the divided R picture element.
[0074] また、図 7において、白抜きで示される撮像素子 25は、輝点欠陥を有する分割 R絵 素を撮像したものである。  In FIG. 7, the image pickup element 25 shown in white is an image of a divided R pixel having a bright spot defect.
[0075] 各分割絵素の縦の長さと、横の長さと、分割絵素を隔てるブラックマトリクス部分の 幅との比が 7 :4 : 2である場合、各撮像素子の輝度値は下記の式で表される。 BR0 = = BO/94 -RO/9 [0075] When the ratio of the vertical length of each divided picture element, the horizontal length, and the width of the black matrix portion separating the divided picture elements is 7: 4: 2, the luminance value of each image sensor is It is expressed by a formula. BR0 = = BO / 94 -RO / 9
BR1 = = BO/64 -R0/6  BR1 = = BO / 64 -R0 / 6
RR0 = =RO/3  RR0 = = RO / 3
RR1 = =RO  RR1 = = RO
RGO =RO/9- hGO/9  RGO = RO / 9- hGO / 9
RGl : =R0/6- hG0/6  RGl: = R0 / 6- hG0 / 6
GGO = GO/3  GGO = GO / 3
GG1 =GO  GG1 = GO
GBO: = GO/9- f BO/9  GBO: = GO / 9- f BO / 9
GBl : = G0/6- f BO/6  GBl: = G0 / 6- f BO / 6
BBO = = BO/3  BBO = = BO / 3
BB1 = =BO  BB1 = = BO
BR2 = = BO/94 -Rl/9  BR2 = = BO / 94 -Rl / 9
BR3 = = BO/64 -Rl/6  BR3 = = BO / 64 -Rl / 6
RR2 = =Rl/3  RR2 = = Rl / 3
RR3 = =R1  RR3 = = R1
RG2: =Rl/9- hRO/9  RG2: = Rl / 9- hRO / 9
RG3 =Rl/6- hR0/6  RG3 = Rl / 6- hR0 / 6
従来の検査方法では、次の 3段階の処理で検査が行われる。  In the conventional inspection method, inspection is performed in the following three stages.
1)撮像された画像において同色絵素が並ぶ方向 (X軸方向)における撮像素子の輝 度値の平均値 (第 1平均値)を算出する。  1) Calculate the average value (first average value) of the brightness values of the image sensor in the direction in which the same color picture elements are lined up in the captured image (X-axis direction).
2)上記の並びの方向と直交する方向(Y軸方向)において隣接する画素における同 色絵素の並びに対応する輝度値の平均値 (第 2平均値)を算出し、第 1平均値と第 2 平均値との差分を算出する。  2) Calculate the average value (second average value) of the corresponding luminance values of the same color pixels in adjacent pixels in the direction (Y-axis direction) orthogonal to the above-mentioned arrangement direction. The difference from the average value is calculated.
3)算出された差分値を所定の閾値と比較することにより線欠陥を抽出する。  3) A line defect is extracted by comparing the calculated difference value with a predetermined threshold value.
なお、上記の処理では、輝度値の平均値を算出しているが、同色絵素が並ぶ方向 (X軸方向)における撮像素子の輝度値を足し合わせてもよい。これらは処理として同 等である。 [0078] 図 7に示す撮像素子に対して、上記の処理を行った場合の結果を図 8に示す。図 8 は、従来の検査方法による線欠陥の検出処理結果を示す図である。同図において、 矢印 27aで示された行は、同色絵素の並び方向 (X軸方向)に輝度値の平均を計算 した結果を示すものである。また、矢印 27bで示された行は、上記平均値と、当該平 均値を算出した同色絵素の並びから Y軸方向へ 6撮像素子だけ離れた位置にある 同色絵素の並び、すなわち、隣接する画素における同色絵素の並び、の輝度値の 平均値との差を計算したものである。なお、その差分値が負である場合には、 0と表 記している。矢印 27bの行における矢印 27cに示される並びの値が線欠陥の検出値 となる。すなわち、線欠陥を有する同色絵素の並びにおける輝度値の平均値は、 5 ( R0+R1) Z18であり、上記差分値は、 5 (R1— R0) Z18である。 In the above processing, the average value of the luminance values is calculated, but the luminance values of the image sensor in the direction in which the same color picture elements are arranged (X-axis direction) may be added. These are the same as processing. FIG. 8 shows the results when the above processing is performed on the image sensor shown in FIG. FIG. 8 is a diagram showing the result of the line defect detection processing by the conventional inspection method. In the figure, the line indicated by the arrow 27a shows the result of calculating the average of the luminance values in the direction of the same color picture elements (X-axis direction). The row indicated by the arrow 27b is a row of the same-color picture elements located at a position separated by six image sensors in the Y-axis direction from the above-mentioned average value and the same-color picture element row for which the average value was calculated. This is the difference between the average value of the luminance values of the same color picture elements in adjacent pixels. In addition, when the difference value is negative, 0 is indicated. The value of the line indicated by the arrow 27c in the row of the arrow 27b becomes the detected value of the line defect. That is, the average value of the luminance values in the arrangement of the same color picture elements having the line defect is 5 (R0 + R1) Z18, and the difference value is 5 (R1−R0) Z18.
[0079] (検査装置 1の第 1の検査方法)  [0079] (First inspection method of inspection apparatus 1)
一方、検査装置 1では、次の 3段階の処理により第 1の検査が行われる。 On the other hand, in the inspection apparatus 1, the first inspection is performed by the following three steps.
1)液晶表示パネル 20の撮像画像にぉ 、て、注目する分割絵素を撮像した撮像素 子の有する輝度と、同色絵素が並ぶ方向 (X軸方向)において当該分割絵素に隣接 する分割絵素を撮像した撮像素子の有する輝度との差分の絶対値を計算する (差分 絶対値算出工程)。 1) In the captured image of the liquid crystal display panel 20, the brightness of the imaging element that captured the target divided picture element and the division adjacent to the divided picture element in the direction in which the same color picture elements are arranged (X-axis direction) The absolute value of the difference from the brightness of the image sensor that picked up the picture element is calculated (difference absolute value calculating step).
2)次に、上記差分の絶対値の平均値であって、当該分割絵素の並びの方向(X軸 方向)における平均値 (差分絶対平均値)を算出する (平均値算出工程)。  2) Next, an average value (absolute difference average value) in the direction in which the divided picture elements are arranged (X-axis direction), which is an average value of the absolute values of the differences, is calculated (average value calculation step).
3)上記差分絶対平均値と所定の閾値とを比較し、当該差分絶対平均値が閾値を超 えて 、る場合に欠陥があると判定する。  3) The difference absolute average value is compared with a predetermined threshold value, and if the difference absolute average value exceeds the threshold value, it is determined that there is a defect.
[0080] 上記処理により算出された値を図 9に示す。図 9は、検査装置 1における第 1の検査 方法による欠陥検出結果を示す図である。なお、同図では図 6に示す撮像素子の線 欠陥がある並びとその付近のみにっ 、て図示して 、る。  FIG. 9 shows values calculated by the above processing. FIG. 9 is a diagram showing a defect detection result obtained by the first inspection method in the inspection apparatus 1. In the figure, only the line-up and the vicinity of the line defect of the image sensor shown in FIG. 6 are shown.
[0081] 矢印 28aで示される列は、注目する分割絵素を撮像した撮像素子の輝度値と、当 該撮像素子から 3撮像素子分だけ離れた位置にある、上記分割絵素に隣接する同 色の分割絵素に対応する撮像素子の輝度値との差分の絶対値を示している。矢印 2 8bで示される行は、上記差分の絶対値を同色絵素の並びの方向において平均した 値 (差分絶対平均値)を示すものである。この矢印 28bの行における矢印 28cによつ て示される並びの値、すなわち、 5 | R1 -RO | /9が線欠陥の検出値である。換言 すれば、注目する分割絵素を撮像した複数の撮像素子のうち、当該分割絵素を撮像 した領域が最も大きい撮像素子の輝度値力 線欠陥の検出値を算出することが好ま しい。 [0081] The column indicated by the arrow 28a indicates the luminance value of the image sensor that has captured the divided picture element of interest and the same value adjacent to the divided picture element at a position separated by three image sensors from the image sensor. The absolute value of the difference with the luminance value of the image pick-up element corresponding to the division | segmentation pixel of a color is shown. The line indicated by the arrow 28b shows the value obtained by averaging the absolute values of the differences in the direction of the same color picture elements (difference absolute average value). The arrow 28c in the row of this arrow 28b That is, the line value indicated by 5 | R1−RO | / 9 is the detected value of the line defect. In other words, it is preferable to calculate the detected value of the luminance value line defect of the image sensor that has the largest area in which the divided picture element is imaged among a plurality of image sensors that have imaged the divided picture element of interest.
[0082] 図 8における検出値(5 (R1— R0) Z18)と図 9における検出値(5 | R1 -RO | /9 )とを比較すると、線欠陥がある箇所の、検査装置 1による検出値は、従来の方法と比 較して 2倍の値を持ち、検出感度が向上していることがわかる。  [0082] Comparing the detection value in FIG. 8 (5 (R1—R0) Z18) with the detection value in FIG. 9 (5 | R1 -RO | / 9), the inspection device 1 detects the location of the line defect. The value is twice that of the conventional method, indicating that the detection sensitivity is improved.
[0083] 白点灯、中間階調の場合には、液晶表示パネル 20における分割絵素の輝度 RO、 GO、 BOおよび R1の実際の値が変化するのみであるので、それぞれの検出値の式 は黒点灯の場合と同じとなる。そのため、白点灯、中間階調の場合にも、黒点灯の場 合と同様に、検査装置 1における検査方法により欠陥検出感度を向上させることがで きる。  [0083] In the case of white lighting and intermediate gradation, only the actual values of the brightness RO, GO, BO, and R1 of the divided picture elements in the liquid crystal display panel 20 change. The same as in the case of black lighting. Therefore, in the case of white lighting and intermediate gradation, the defect detection sensitivity can be improved by the inspection method in the inspection apparatus 1 as in the case of black lighting.
[0084] 以上のように、第 1の検査方法は、注目する分割絵素の一部分を撮像した撮像素 子の輝度値と、当該分割絵素に隣接する同色分割絵素の、上記一部分に対応する 部分を撮像した撮像素子の輝度値との差分値の絶対値を、上記複数の同色分割絵 素に対して算出する差分絶対値算出工程と、この差分絶対値算出工程において算 出された上記差分値の絶対値の平均値を、複数の同色分割絵素の配列方向に沿つ て算出する平均値算出工程とを含むものである。  [0084] As described above, the first inspection method corresponds to the luminance value of the imaging element obtained by imaging a part of the divided picture element of interest and the part of the same-color divided picture element adjacent to the divided picture element. A difference absolute value calculation step for calculating the absolute value of the difference value with respect to the luminance value of the imaging element that captured the portion for the plurality of same-color divided pixels, and the difference absolute value calculation step described above. An average value calculating step of calculating an average value of absolute values of the difference values along the arrangement direction of the plurality of same-color divided picture elements.
[0085] (第 1の検査を行うための処理の流れ)  [0085] (Processing flow for performing the first inspection)
次に、検査装置 1、特に画像変換部 4において、上述した第 1の検査を行うための 処理の流れについて図 10を参照しつつ説明する。図 10は、検査装置 1において第 1の検査を行うための処理の流れを示すフローチャートである。  Next, a flow of processing for performing the above-described first inspection in the inspection apparatus 1, particularly the image conversion unit 4, will be described with reference to FIG. FIG. 10 is a flowchart showing a flow of processing for performing the first inspection in the inspection apparatus 1.
[0086] カメラ 2が撮像した液晶表示パネル 20の撮像画像は、主制御部 5を介して画像変 換部 4の差分絶対値演算部 41へ入力される。  The captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the difference absolute value calculation unit 41 of the image conversion unit 4 via the main control unit 5.
[0087] この撮像画像を受け取ると、差分絶対値演算部 41は、当該撮像画像の各画素の 輝度値 (各撮像素子の輝度値)から、上述した差分の絶対値を算出し (S1)、算出し た差分の絶対値を平均値演算部 42へ出力する。  [0087] Upon receiving this captured image, the difference absolute value calculation unit 41 calculates the absolute value of the difference described above from the brightness value of each pixel of the captured image (the brightness value of each image sensor) (S1), The absolute value of the calculated difference is output to the average value calculator 42.
[0088] この差分の絶対値を受け取ると、平均値演算部 42は、当該差分の絶対値から上述 した差分絶対平均値を算出する(S2)。そして、平均値演算部 42は、算出した差分 絶対平均値を主制御部 5を介して欠陥検出部 7へ出力する。 [0088] Upon receiving the absolute value of the difference, the average value calculation unit 42 calculates the absolute value of the difference from the absolute value. The calculated absolute difference average is calculated (S2). Then, the average value calculation unit 42 outputs the calculated difference absolute average value to the defect detection unit 7 via the main control unit 5.
[0089] 差分絶対平均値を受け取ると、欠陥検出部 7は、当該差分絶対平均値と所定の閾 値とを比較し、当該差分絶対平均値が所定の閾値以上であれば、線欠陥が存在す ると判定し(S3にて YES)、そうでなければ良品であると判定する(S3にて NO)。 [0089] Upon receiving the absolute difference average value, the defect detector 7 compares the absolute difference average value with a predetermined threshold value, and if the absolute difference average value is equal to or greater than the predetermined threshold value, a line defect exists. If it is determined to be good (YES in S3), otherwise it is determined to be non-defective (NO in S3).
[0090] (検査装置 1の第 2の検査方法) [0090] (Second inspection method of inspection apparatus 1)
次に、検査装置 1における第 2の検査方法にっ 、て図 11〜図 12を参照しつつ説 明する。第 2の検査方法は、第 1の検査方法による検査の前に、図 7に示す撮像画像 に対して、注目する分割絵素を撮像した撮像素子の輝度値の、同色絵素が並ぶ方 向における最大値を求めるフィルタ関数を施すものである。  Next, the second inspection method in the inspection apparatus 1 will be described with reference to FIGS. The second inspection method is the direction in which the same color picture elements of the brightness value of the image sensor that captured the segmented pixel of interest are aligned with the captured image shown in FIG. 7 before the inspection by the first inspection method. A filter function for obtaining the maximum value at is applied.
[0091] 具体的には、第 2の検査方法は、次の 4段階の処理を含んでいる。 [0091] Specifically, the second inspection method includes the following four stages of processing.
1)同色絵素が並ぶ方向 (X軸方向)に対し、注目する分割絵素に隣接する分割画素 力 撮像素子に換算して、当該分割絵素カゝら N撮像素子だけ離れた位置にあるとき 1) With respect to the direction in which the same color picture elements are lined up (X-axis direction), the divided pixel power adjacent to the target divided picture element is converted into an image sensor, and is located at a position separated by N image sensors from the divided pixel element. When
、すなわち、ひとつの分割絵素が、 X軸方向に関して N個の撮像素子によって撮像さ れているとき、注目する分割絵素の、 X軸方向に関する N個の撮像素子の輝度値の 最大値を求める最大値フィルタ関数を各撮像素子の輝度値に対して施す (最大輝度 値算出工程)。 In other words, when one divided picture element is captured by N image sensors in the X-axis direction, the maximum value of the luminance values of the N image sensors in the X-axis direction of the divided picture element of interest is calculated. The obtained maximum value filter function is applied to the luminance value of each image sensor (maximum luminance value calculation step).
2)上記最大値フィルタ関数を施した輝度値を有する撮像画像に関して、注目する分 割絵素を撮像した撮像素子の有する輝度と、同色絵素が並ぶ方向 (X軸方向)にお いて当該分割絵素に隣接する分割絵素を撮像した撮像素子の有する輝度との差分 の絶対値を計算する (差分絶対値算出工程)。  2) For a captured image having a luminance value subjected to the maximum value filter function, the segmentation in the direction in which the same color picture elements are lined up (X-axis direction) with the luminance of the image sensor that captured the segmented pixel of interest. The absolute value of the difference from the luminance of the image sensor that captured the divided picture element adjacent to the picture element is calculated (difference absolute value calculating step).
3)上記差分の絶対値の平均値であって、当該分割絵素の並びの方向(X軸方向)に おける平均値 (差分絶対平均値)を算出する。  3) Calculate the average value (absolute difference average value) of the absolute values of the above differences in the direction (X-axis direction) of the divided picture elements.
4)上記差分絶対平均値と所定の閾値とを比較し、当該差分絶対平均値が閾値を超 えて 、る場合に欠陥があると判定する。  4) The difference absolute average value is compared with a predetermined threshold value, and if the difference absolute average value exceeds the threshold value, it is determined that there is a defect.
[0092] 上記処理により算出された値を図 11に示す。図 11は、検査装置 1における第 2の 検査方法による欠陥検出結果を示す図である。なお、同図では図 7に示す撮像素子 の線欠陥がある並びとその付近のみにっ 、て図示して 、る。 [0093] 図 11において、矢印 29aによって示される列は上記の最大値を求める処理を施し た後に生成される各撮像素子の値であり、矢印 29bの列は、その最大値に対して 3 撮像素子だけ離れた、隣接する同色分割絵素の位置における輝度値との差分の絶 対値を計算した値である。さらに矢印 29cによって示される行は、その差分の絶対値 の平均値を同色絵素の並びに沿って算出したものである。具体的な計算例にっ 、て 以下に説明する。 The values calculated by the above process are shown in FIG. FIG. 11 is a diagram illustrating a defect detection result obtained by the second inspection method in the inspection apparatus 1. In the same figure, only the line with the line defect of the image sensor shown in FIG. 7 and the vicinity thereof are shown. [0093] In FIG. 11, the column indicated by the arrow 29a is the value of each image sensor generated after performing the above-described processing for obtaining the maximum value, and the column of the arrow 29b is 3 images for the maximum value. This is a value obtained by calculating the absolute value of the difference from the luminance value at the position of the adjacent same-color divided picture element separated by the element. Furthermore, the line indicated by the arrow 29c is the average of the absolute values of the differences calculated along the arrangement of the same color pixels. A specific calculation example will be described below.
[0094] 図 7に示す撮像画像では、ひとつの分割絵素は、 X軸方向に関して 3個の撮像素 子によって撮像されている。例えば、輝点欠陥を有する分割 R絵素の場合、その中央 部分は、 RR2、 RR3、 RR2からなる撮像素子の列によって撮像されている。この場合 、当該分割絵素の、 X軸方向に関する 3個の撮像素子の輝度値の最大値は、 RR3が 有する輝度値 (R1)となる。そのため、 RR2、 RR3、 RR2の輝度値は、すべて R1に変 換される。  In the captured image shown in FIG. 7, one divided picture element is picked up by three image pickup elements in the X-axis direction. For example, in the case of a divided R picture element having a bright spot defect, the central part is imaged by a row of image sensors consisting of RR2, RR3, and RR2. In this case, the maximum value of the luminance values of the three image sensors in the X-axis direction of the divided picture element is the luminance value (R1) possessed by RR3. Therefore, the brightness values of RR2, RR3, and RR2 are all converted to R1.
[0095] そして、 RR3の場合は、 RR3の輝度値 (R1)と、当該 RR3から 3撮像素子だけ X軸 方向に離れた位置にある撮像素子である RR1の輝度値 (RO)との差分の絶対値( I Rl -RO I )が算出される。  [0095] In the case of RR3, the difference between the luminance value (R1) of RR3 and the luminance value (RO) of RR1, which is an image sensor located at a position away from the RR3 by three image sensors in the X-axis direction. The absolute value (I Rl -RO I) is calculated.
[0096] さらに、 X軸方向に配列した撮像素子の列における上記差分の絶対値の平均値(  [0096] Further, the average value of the absolute values of the differences in the row of imaging elements arranged in the X-axis direction (
I Rl -RO I )を算出する。この平均値が線欠陥部の検出値として利用される。  I Rl -RO I) is calculated. This average value is used as a detection value of the line defect portion.
[0097] 図 11において、矢印 29cによって示される線欠陥部の検出値( I Rl— RO | )は、 図 9に示す検出値(5 I Rl -RO I /9)よりもさらに大きくなつていることが分かる。  In FIG. 11, the detected value (I Rl—RO |) of the line defect indicated by the arrow 29c is larger than the detected value (5 I Rl −RO I / 9) shown in FIG. I understand that.
[0098] 以上のように、第 2の検査方法は、 1)注目する分割絵素を撮像した複数の撮像素 子が有する輝度値の最大値を、分割絵素の配列方向に配列する撮像素子の列ごと に算出する最大輝度値算出工程と、 2)注目する分割絵素に関する上記最大値と、 当該分割絵素に隣接する同色分割絵素に関する上記最大値との差分値の絶対値を 、上記撮像素子の列ごとに算出する差分絶対値算出工程とを含むものである。  [0098] As described above, the second inspection method is as follows: 1) An image sensor that arranges the maximum luminance value of a plurality of imaging elements that have captured the target divided picture element in the arrangement direction of the divided picture elements. 2) calculating the absolute value of the difference between the maximum value relating to the segmented pixel of interest and the maximum value relating to the same color segmented pixel adjacent to the segmented pixel; And a difference absolute value calculating step for calculating for each column of the image sensor.
[0099] (第 2の検査を行うための処理の流れ)  [0099] (Process flow for performing second inspection)
次に、検査装置 1、特に画像変換部 4において、上述した第 2の検査を行うための 処理の流れについて図 12を参照しつつ説明する。図 12は、検査装置 1において第 2の検査を行うための処理の流れを示すフローチャートである。 [0100] カメラ 2が撮像した液晶表示パネル 20の撮像画像は、主制御部 5を介して画像変 換部 4の最大値フィルタ演算部 43へ入力される。 Next, the flow of processing for performing the above-described second inspection in the inspection apparatus 1, particularly the image conversion unit 4, will be described with reference to FIG. FIG. 12 is a flowchart showing a flow of processing for performing the second inspection in the inspection apparatus 1. The captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the maximum value filter calculation unit 43 of the image conversion unit 4 via the main control unit 5.
[0101] この撮像画像を受け取ると、最大値フィルタ演算部 43は、上記最大値フィルタ関数 を当該撮像画像を形成する各画素の輝度値 (各撮像素子の輝度値)に対して施し([0101] Upon receiving this captured image, the maximum value filter calculation unit 43 performs the above-described maximum value filter function on the luminance value of each pixel forming the captured image (the luminance value of each image sensor) (
S11)、算出した輝度値を差分絶対値演算部 41へ出力する。 S11), and outputs the calculated luminance value to the difference absolute value calculation unit 41.
[0102] これ以降の処理の流れは、上述した第 1の検査を行うための処理の流れと同様のた め、その説明を省略する。 [0102] Since the subsequent processing flow is the same as the processing flow for performing the first inspection described above, description thereof is omitted.
[0103] (検査装置 1の第 3の検査方法) [0103] (Third inspection method of inspection apparatus 1)
次に、検査装置 1における第 3の検査方法について図 13〜図 14を参照しつつ説 明する。この第 3の検査方法は、液晶表示パネル 20の撮像画像において、同色絵素 が並ぶ方向に隣接する分割絵素に対応する撮像素子の持つ輝度値どうしの差分値 を算出し、そして算出された差分値の標準偏差を算出して所定の閾値と比較するも のである。  Next, a third inspection method in the inspection apparatus 1 will be described with reference to FIGS. In the third inspection method, the difference value between the luminance values of the image pickup elements corresponding to the divided picture elements adjacent in the direction in which the same color picture elements are arranged in the picked-up image of the liquid crystal display panel 20 is calculated. The standard deviation of the difference value is calculated and compared with a predetermined threshold value.
[0104] 具体的には、第 3の検査方法は、以下の処理を含んでいる。  [0104] Specifically, the third inspection method includes the following processes.
1)撮像画像において、同色絵素が並ぶ方向 (X軸方向)に隣接する分割絵素に対応 する撮像素子の持つ輝度どうしの差分値を算出する (差分値算出工程)。  1) In the captured image, the difference value between the luminances of the image pickup elements corresponding to the divided picture elements adjacent in the direction in which the same color picture elements are arranged (X-axis direction) is calculated (difference value calculating step).
2)次に X軸方向に並ぶ撮像素子の上記差分値の平均値を計算し、上記差分値の標 準偏差を計算する (標準偏差算出工程)。  2) Next, the average value of the difference values of the image sensors arranged in the X-axis direction is calculated, and the standard deviation of the difference value is calculated (standard deviation calculation step).
3)上記標準偏差の値と所定の閾値とを比較し、当該標準偏差の値が閾値を超えて V、る場合に欠陥があると判定する。  3) The standard deviation value is compared with a predetermined threshold value, and if the standard deviation value exceeds the threshold value V, it is determined that there is a defect.
[0105] 第 3の検査方法によれば、図 7に示す撮像画像の輝度値に基づいて上記の計算を 行った結果は図 13に示すようになる。図 13は、検査装置 1における第 3の検査方法 による欠陥検出結果を示す図である。  [0105] According to the third inspection method, the result of the above calculation based on the luminance value of the captured image shown in FIG. 7 is as shown in FIG. FIG. 13 is a diagram showing a defect detection result obtained by the third inspection method in the inspection apparatus 1.
[0106] なお、同図では図 7に示す、欠陥部を撮像した撮像素子に相当するもの及びその 周辺のみ図示している。図 13において、矢印 30aの示す列は、 3撮像素子だけ離れ た隣接する分割絵素との差分を示すものであり、矢印 30bの示す行は、その同色絵 素の並びの方向に標準偏差を計算した結果を示すものである。具体的な計算例に ついて以下に説明する。 [0107] 図 7に示す撮像画像では、ひとつの分割絵素は、 X軸方向に関して 3個の撮像素 子によって撮像されている。例えば、輝点欠陥を有する分割 R絵素の場合、その中央 部分は、 RR2、 RR3、 RR2からなる撮像素子の列によって撮像されている。 [0106] In the drawing, only the image sensor corresponding to the imaging device shown in Fig. 7 and the periphery thereof are shown. In FIG. 13, the column indicated by the arrow 30a indicates the difference from the adjacent divided picture elements separated by three image sensors, and the row indicated by the arrow 30b indicates the standard deviation in the direction of the arrangement of the same color pixels. The result of calculation is shown. A specific calculation example is described below. In the captured image shown in FIG. 7, one divided picture element is picked up by three image pickup elements in the X-axis direction. For example, in the case of a divided R picture element having a bright spot defect, the central part is imaged by a row of image sensors consisting of RR2, RR3, and RR2.
[0108] RR3の場合は、 RR3の輝度値 (R1)と、当該 RR3から 3撮像素子だけ X軸方向に 離れた位置にある撮像素子である RR1の輝度値 (RO)との差分値 (RO— R1)が算出 される。  [0108] In the case of RR3, the difference value (RO) between the luminance value (R1) of RR3 and the luminance value (RO) of RR1, which is an image sensor located at a position away from the RR3 by three image sensors in the X-axis direction. — R1) is calculated.
[0109] そして、上記撮像素子の列を含む、 X軸方向に配列した撮像素子の列 (RR2、 RR 3、 RR2、 RRO、 RR1、 RROの繰り返し力 なる列)における上記差分値の標準偏差 が算出される。この標準偏差の値が線欠陥部の検出値として利用される。  [0109] Then, the standard deviation of the difference values in the image sensor columns (RR2, RR3, RR2, RRO, RR1, and RRO repetition force) arranged in the X-axis direction, including the image sensor columns, is Calculated. The value of this standard deviation is used as a detection value for the line defect portion.
[0110] 図 13に示すように、矢印 30cの示す、第 3の検査方法による線欠陥部の検出値(3 3の平方根に (R1—RO)をかけた値を 9で割った値)は、図 8に示す検出値(5 (R1— R0) Z18)よりも、大きくなつており、検出感度が向上していることが分かる。  [0110] As shown in FIG. 13, the detected value of the line defect part by the third inspection method indicated by the arrow 30c (the value obtained by multiplying the square root of 33 by (R1-RO) divided by 9) is It can be seen that the detection value is larger than the detection value (5 (R1-R0) Z18) shown in FIG. 8, and the detection sensitivity is improved.
[0111] 以上のように、第 3の検査方法は、注目する分割絵素の輝度値と、当該分割絵素に 隣接する同色分割絵素の輝度値との差分値を算出する差分値算出工程と、差分値 算出工程において算出された差分値の標準偏差を、同色絵素の配列方向に配列す る撮像素子の列ごとに算出する標準偏差算出工程とを含むものである。  As described above, in the third inspection method, the difference value calculation step of calculating the difference value between the luminance value of the noticed divided picture element and the luminance value of the same color divided picture element adjacent to the divided picture element. And a standard deviation calculation step of calculating the standard deviation of the difference values calculated in the difference value calculation step for each column of the image pickup elements arranged in the arrangement direction of the same color picture elements.
[0112] (第 3の検査を行うための処理の流れ)  [0112] (Process flow for performing the third inspection)
次に、検査装置 1、特に画像変換部 4において、上述した第 3の検査を行うための 処理の流れについて図 14を参照しつつ説明する。図 14は、検査装置 1において第 3の検査を行うための処理の流れを示すフローチャートである。  Next, the flow of processing for performing the above-described third inspection in the inspection apparatus 1, particularly the image conversion unit 4, will be described with reference to FIG. FIG. 14 is a flowchart showing a flow of processing for performing the third inspection in the inspection apparatus 1.
[0113] カメラ 2が撮像した液晶表示パネル 20の撮像画像は、主制御部 5を介して画像変 換部 4の差分値演算部 44へ入力される。  [0113] The captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the difference value calculation unit 44 of the image conversion unit 4 via the main control unit 5.
[0114] この撮像画像を受け取ると、差分値演算部 44は、撮像画像を形成する各画素の輝 度値 (各撮像素子の輝度値)に関して、上記差分値を算出し (S21)、算出した差分 値を標準偏差演算部 45へ出力する。  [0114] Upon receiving this captured image, the difference value calculation unit 44 calculates the difference value with respect to the luminance value (the luminance value of each image sensor) of each pixel forming the captured image (S21). The difference value is output to the standard deviation calculator 45.
[0115] この差分値を受け取ると、標準偏差演算部 45は、当該差分値の標準偏差を算出し  [0115] Upon receiving this difference value, the standard deviation calculation unit 45 calculates the standard deviation of the difference value.
(S22)、算出した標準偏差の値を主制御部 5を介して欠陥検出部 7へ出力する。  (S22) The calculated standard deviation value is output to the defect detection unit 7 via the main control unit 5.
[0116] この標準偏差の値を受け取ると、欠陥検出部 7は、当該標準偏差の値と所定の閾 値とを比較し、当該標準偏差の値が所定の閾値以上であれば、線欠陥が存在すると 判定し(S23にて YES)、そうでなければ良品であると判定する(S23にて NO)。 [0116] Upon receiving this standard deviation value, the defect detection unit 7 determines that the standard deviation value and a predetermined threshold value are used. If the standard deviation value is equal to or greater than the specified threshold value, it is determined that a line defect exists (YES in S23), otherwise it is determined to be a non-defective product (NO in S23). .
[0117] (検査装置 1の第 4の検査方法)  [0117] (Fourth inspection method for inspection apparatus 1)
次に、検査装置 1における第 4の検査方法について図 15〜図 16を参照しつつ説 明する。この第 4の検査方法は、液晶表示パネル 20の撮像画像から、各同色絵素の 並びに関して、後述する絵素間隔ごとに撮像素子の輝度値を抽出し、抽出した輝度 値の標準偏差を算出し、その標準偏差の最大値を算出するものである。ここで、上記 絵素間隔とは、注目する分割絵素の或る部分 (第 1分割絵素の第 1部分)から、同色 絵素の並びの方向 (X軸方向)に隣接する別の分割絵素の、上記第 1部分に対応す る部分 (第 2分割絵素の第 1部分)までの距離であり、撮像素子の数によって表現さ れる距離である。図 4および図 7に示す例では、ひとつの分割絵素は 9個の撮像素子 によって撮像されており、これらの撮像素子の X軸方向における数は 3である。それゆ え、この場合、絵素間隔とは、 3撮像素子分の距離を意味する。  Next, a fourth inspection method in the inspection apparatus 1 will be described with reference to FIGS. In the fourth inspection method, the brightness value of the image sensor is extracted from the captured image of the liquid crystal display panel 20 at each pixel interval, which will be described later, with respect to the arrangement of the same-color picture elements, and the standard deviation of the extracted brightness values is calculated. The maximum value of the standard deviation is calculated. Here, the picture element interval is a part of the divided picture element of interest (the first part of the first divided picture element) and another divided adjacent to the arrangement direction of the same color picture elements (X-axis direction). This is the distance to the part of the picture element corresponding to the first part (the first part of the second divided picture element), and is the distance expressed by the number of image sensors. In the example shown in FIGS. 4 and 7, one divided picture element is imaged by nine image sensors, and the number of these image sensors in the X-axis direction is three. Therefore, in this case, the pixel interval means the distance of three image sensors.
[0118] 具体的には、第 4の検査方法は、以下の処理を含む。  [0118] Specifically, the fourth inspection method includes the following processes.
1)撮像画像において同色絵素が並ぶ方向に、絵素間隔だけ離れた位置にある一群 の撮像素子の有する輝度値を抽出する。同様の抽出を X軸方向に隣接する撮像素 子についても行い、この処理を、少なくとも、次に抽出される撮像素子が最初に抽出 されたものと同じになるまで繰り返す。以下では、上記一群の撮像素子を系統と称す る。上記の処理により、上記絵素間隔と同数の系統が形成される。  1) Extract the luminance values of a group of image sensors at a position separated by the pixel interval in the direction in which the same color picture elements are arranged in the captured image. The same extraction is performed for image pickup elements adjacent in the X-axis direction, and this process is repeated at least until the next image pickup element is the same as the one extracted first. Hereinafter, the group of image pickup devices is referred to as a system. By the above processing, the same number of systems as the pixel interval are formed.
2)抽出されたそれぞれの系統の輝度値の標準偏差を算出する。  2) Calculate the standard deviation of the brightness values of each extracted system.
3)各系統について算出された標準偏差のうち最大のものを選択する。  3) Select the largest standard deviation calculated for each system.
4)上記標準偏差の最大値と所定の閾値とを比較し、当該最大値が閾値を超えてい る場合に欠陥があると判定する。  4) The maximum value of the standard deviation is compared with a predetermined threshold, and if the maximum value exceeds the threshold, it is determined that there is a defect.
[0119] 上記の検査方法を図 7に示す撮像素子に対して適用した結果を図 15に示す。図 1 5は、検査装置 1における第 4の検査方法による欠陥検出結果を示す図である。なお 、同図では、図 7に示す、欠陥部を撮像した撮像素子に相当するもの及びその周辺 のみ図示している。  FIG. 15 shows the result of applying the above inspection method to the image sensor shown in FIG. FIG. 15 is a diagram illustrating a defect detection result obtained by the fourth inspection method in the inspection apparatus 1. In the figure, only the image sensor corresponding to the image pickup device that images the defective portion shown in FIG. 7 and its periphery are shown.
[0120] 図 15において、矢印 31a、 31b、および 31cが示す列は、隣接する分割絵素までの 距離である 3撮像素子分だけ離れた撮像素子が持つ輝度を抽出し、系統別に示した 列であり、矢印 31dの行は、各系統の輝度値の標準偏差をそれぞれ計算した結果を 示すものである。さらに矢印 31eの行は、 3つの系統に由来する 3つの標準偏差の最 大値である。また、矢印 31fが示す値は、線欠陥部の検出値である。具体的な計算 例について以下に説明する。 [0120] In FIG. 15, the columns indicated by the arrows 31a, 31b, and 31c indicate the adjacent divided picture elements. The brightness of image sensors separated by three image sensors, which are distances, is extracted and shown in each column. The row of arrow 31d shows the result of calculating the standard deviation of the brightness values of each system. is there. Furthermore, the line of arrow 31e is the maximum of three standard deviations derived from the three systems. The value indicated by the arrow 31f is a detected value of the line defect portion. A specific calculation example is described below.
[0121] 図 7に示す撮像画像では、ひとつの分割絵素は、 X軸方向に関して 3個の撮像素 子によって撮像されている。そのため、絵素間隔は 3となり、 3系統の撮像素子の群が 形成される。例えば、 RR2、 RR3、 RR2、 RRO、 RR1、 RROの繰り返しからなる撮像 素子の列の場合、 RR2と RROとによって第 1の系統が形成され、 RR3と RR1とによつ て第 2の系統力 RR2と RROとによって第 3の系統が形成される。  In the captured image shown in FIG. 7, one divided picture element is picked up by three image pickup elements in the X-axis direction. Therefore, the pixel interval is 3, and a group of three image sensors is formed. For example, in the case of an image sensor array consisting of repetition of RR2, RR3, RR2, RRO, RR1, and RRO, RR2 and RRO form a first system, and RR3 and RR1 form a second system power. A third system is formed by RR2 and RRO.
[0122] そして、抽出された各系統の輝度値の標準偏差が算出される。第 1の系統の場合 には、 RR2の輝度値 (R1Z3)と RROの輝度値 (ROZ3)とから標準偏差 (R1— RO) Z6が算出される。  [0122] Then, the standard deviation of the luminance values of each extracted system is calculated. In the case of the first system, the standard deviation (R1-RO) Z6 is calculated from the luminance value of RR2 (R1Z3) and the luminance value of RRO (ROZ3).
[0123] さらに、第 1〜3の系統にっ 、て算出された標準偏差の最大値( (Rl -RO) /2)が 算出される。この最大値が線欠陥部の検出値として利用される。  [0123] Further, the maximum value ((Rl-RO) / 2) of the standard deviation calculated in the first to third systems is calculated. This maximum value is used as the detection value of the line defect portion.
[0124] 図 15に示す結果から、線欠陥部の検出値((R1— R0) Z2)力 図 8に示す検出値  [0124] From the results shown in FIG. 15, the detected value ((R1-R0) Z2) force of the line defect part is detected as shown in FIG.
(5 (R1— R0) Z18)よりも、大きくなつており、検出感度が向上していることが分かる  It is larger than (5 (R1-R0) Z18), and it can be seen that the detection sensitivity is improved.
[0125] 以上のように、第 4の検査方法では、液晶表示パネル 20を撮像した撮像画像にお ける複数の同色分割絵素の間隔であって、注目する分割絵素の或る部分 (第 1分割 絵素の第 1部分)と、当該第 1分割絵素に隣接する同色分割絵素の、上記第 1部分 に対応する部分 (第 2分割絵素の第 1部分)との間隔を絵素間隔とする。この第 4の検 查方法は、撮像画像から、同色絵素の配列方向に沿って、絵素間隔ごとに撮像素子 の輝度値を抽出することにより、輝度値の系統を形成する抽出工程と、抽出工程に ぉ 、て形成された、輝度値の系統に含まれる輝度値の標準偏差を輝度値の系統ご とに算出する標準偏差算出工程と、標準偏差算出工程において算出された標準偏 差の最大値を同色絵素の配列ごとに算出する最大値算出工程とを含んでいる。 [0125] As described above, in the fourth inspection method, there is an interval between a plurality of same-color divided picture elements in a captured image obtained by imaging the liquid crystal display panel 20, and a certain part of the noticed divided picture element (first The interval between the first part of one divided picture element) and the part corresponding to the first part of the same-color divided picture element adjacent to the first divided picture element (first part of the second divided picture element) It is a prime interval. The fourth detection method includes an extraction step of forming a luminance value system by extracting the luminance value of the imaging element for each pixel interval along the arrangement direction of the same color pixels from the captured image, and In the extraction process, the standard deviation calculation step for calculating the standard deviation of the luminance values included in the luminance value system formed for each luminance value system, and the standard deviation calculated in the standard deviation calculation process are calculated. And a maximum value calculating step for calculating a maximum value for each array of the same color picture elements.
[0126] (第 4の検査を行うための処理の流れ) 次に、検査装置 1、特に画像変換部 4において、上述した第 4の検査を行うための 処理の流れについて図 16を参照しつつ説明する。図 16は、検査装置 1において第 4の検査を行うための処理の流れを示すフローチャートである。 [0126] (Process flow for performing the fourth inspection) Next, a flow of processing for performing the above-described fourth inspection in the inspection apparatus 1, particularly the image conversion unit 4, will be described with reference to FIG. FIG. 16 is a flowchart showing a flow of processing for performing the fourth inspection in the inspection apparatus 1.
[0127] カメラ 2が撮像した液晶表示パネル 20の撮像画像は、主制御部 5を介して画像変 換部 4の系統分割演算部 46へ入力される。  [0127] The captured image of the liquid crystal display panel 20 captured by the camera 2 is input to the system division calculation unit 46 of the image conversion unit 4 via the main control unit 5.
[0128] この撮像画像を受け取ると、系統分割演算部 46は、絵素間隔だけ離れた位置にあ る一群の撮像素子 (撮像画像の画素)の有する輝度値を抽出することにより上記系統 を絵素間隔と同数 (上記の例では 3系統)形成し (S31)、形成した各系統の輝度値を 標準偏差演算部 45へ出力する。  [0128] Upon receiving this captured image, the system division calculation unit 46 extracts the luminance value of the group of image sensors (pixels of the captured image) at positions separated by the pixel interval, thereby representing the above system. The same number as the prime interval (three systems in the above example) is formed (S31), and the luminance value of each formed system is output to the standard deviation calculator 45.
[0129] これらの輝度値を受け取ると、標準偏差演算部 45は、当該輝度値の標準偏差を系 統ごとに算出し (S32)、算出した標準偏差の値を最大値演算部 47へ出力する。  [0129] Upon receiving these luminance values, the standard deviation calculation unit 45 calculates the standard deviation of the luminance values for each system (S32), and outputs the calculated standard deviation value to the maximum value calculation unit 47. .
[0130] これらの標準偏差の値を受け取ると、最大値演算部 47は、当該標準偏差の値のう ち、最大のものを選択し (S33)、その最大値を主制御部 5を介して欠陥検出部 7へ出 力する。  [0130] Upon receiving these standard deviation values, the maximum value calculation unit 47 selects the maximum one of the standard deviation values (S33), and the maximum value is sent via the main control unit 5. Output to defect detection unit 7.
[0131] 上記最大値を受け取ると、欠陥検出部 7は、当該最大値と所定の閾値とを比較し、 当該最大値が所定の閾値以上であれば、線欠陥が存在すると判定し (S34にて YE S)、そうでなければ良品であると判定する(S34にて NO)。  [0131] Upon receiving the maximum value, the defect detection unit 7 compares the maximum value with a predetermined threshold value, and determines that a line defect exists if the maximum value is equal to or greater than the predetermined threshold value (in S34). YE S), otherwise, it is determined to be a non-defective product (NO in S34).
[0132] (検査装置 1の効果)  [0132] (Effect of inspection device 1)
以上のように、検査装置 1においては、正常な分割絵素の輝度値と欠陥を有する分 割絵素の輝度値との比を高めることができ、従来の検査方法による欠陥検出よりも高 い検出感度で線欠陥を検出することができる。  As described above, in the inspection apparatus 1, the ratio between the luminance value of the normal divided picture element and the luminance value of the divided picture element having a defect can be increased, which is higher than the defect detection by the conventional inspection method. Line defects can be detected with detection sensitivity.
[0133] 検査装置 1では、液晶表示パネル 20の表面に対する鉛直方向からの検出感度に 関しては、人間の目視以上の検出感度が得られる。  In the inspection apparatus 1, regarding the detection sensitivity from the vertical direction with respect to the surface of the liquid crystal display panel 20, a detection sensitivity higher than that of human eyes can be obtained.
[0134] 人間の目視検査ではパネル表面に対して鉛直方向のみ力 ではなく斜方からも検 查を行う。線欠陥の輝度によっては斜方観察による視認性能の方が高い場合もある ため、検査感度の点から見ると、検査装置 1の検出感度は、目視検査感度に達しな い場合もある。しかし、この場合、カメラ 2と液晶表示パネル 20との位置関係を変化さ せて斜方観察が可能な構成にすることで、目視検査感度と同等以上の検査感度を 得ることが可能である。 [0134] In human visual inspection, inspection is performed not only from the direction perpendicular to the panel surface but also from an oblique direction. Depending on the brightness of the line defect, the visual recognition performance by oblique observation may be higher, so from the viewpoint of inspection sensitivity, the detection sensitivity of the inspection apparatus 1 may not reach the visual inspection sensitivity. However, in this case, by changing the positional relationship between the camera 2 and the liquid crystal display panel 20 so that oblique observation is possible, inspection sensitivity equal to or better than visual inspection sensitivity can be achieved. It is possible to obtain.
[0135] なお、第 1〜4の検査方法のうち、線欠陥部の検出値が最も大きくなる第 2の検査方 法が最も好ましい。  [0135] Of the first to fourth inspection methods, the second inspection method in which the detected value of the line defect portion is the largest is most preferable.
[0136] (変更例) [0136] (Modification example)
本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み 合わせて得られる実施形態についても本発明の技術的範囲に含まれる。  The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims. Embodiments obtained by appropriately combining technical means disclosed in the embodiments respectively. Is also included in the technical scope of the present invention.
[0137] 画像変換部 4は、差分絶対値演算部 41、平均値演算部 42、最大値フィルタ演算 部 43、差分値演算部 44、標準偏差演算部 45、系統分割演算部 46、最大値演算部 47のすベてを備えている必要はない。画像変換部 4は、これら各機能ブロックのうち 、第 1〜4の検査方法のうちの少なくともひとつを実現するための処理を行える機能ブ ロックの組み合わせを備えていればよい。例えば、第 1の検査方法を実現するために は、画像変換部 4は、差分絶対値演算部 41と平均値演算部 42とを備えていればよ い。 [0137] The image conversion unit 4 includes a difference absolute value calculation unit 41, an average value calculation unit 42, a maximum value filter calculation unit 43, a difference value calculation unit 44, a standard deviation calculation unit 45, a system division calculation unit 46, and a maximum value calculation. It is not necessary to have all of part 47. Of these functional blocks, the image conversion unit 4 only needs to include a combination of functional blocks that can perform processing for realizing at least one of the first to fourth inspection methods. For example, in order to realize the first inspection method, the image conversion unit 4 only needs to include a difference absolute value calculation unit 41 and an average value calculation unit 42.
[0138] 制御装置 3の画像処理ボード上に専用の検査用回路を構成することで、ハードゥエ ァで並列処理を行ってもよい。これにより従来の検査方法のように平均値のみを計算 する場合も、第 1の検査方法のように差分を計算後、絶対値を計算し、その平均値を 計算する場合もほとんど同じ時間で処理することができる。  [0138] By configuring a dedicated inspection circuit on the image processing board of the control device 3, parallel processing may be performed with a hard- er. As a result, when calculating only the average value as in the conventional inspection method, the absolute value is calculated after calculating the difference as in the first inspection method, and the average value is calculated in almost the same time. can do.
[0139] また、ひとつの絵素が 3つの分割絵素力もなつている場合にも本発明は適用できる 。この場合、同色絵素の並び方向に配列する、上段分割絵素、中段分割絵素、下段 分割絵素のうち、中段分割絵素の輝度値を第 1〜4の検査方法における処理対象か ら外してもよい。この構成により、計算量を低減できるとともに、正常な分割絵素の輝 度値と欠陥を有する分割絵素の輝度値との比を高めることができる。  [0139] The present invention can also be applied when one picture element has three divided picture element forces. In this case, out of the upper divided picture element, middle divided picture element, and lower divided picture element that are arranged in the same color picture element arrangement direction, the luminance value of the middle divided picture element is determined from the processing target in the first to fourth inspection methods. May be removed. With this configuration, the amount of calculation can be reduced, and the ratio between the luminance value of a normal divided picture element and the luminance value of a divided picture element having a defect can be increased.
[0140] また、上述した検査装置 1の各ブロック、特に画像変換部 4の各ブロックは、ハード ウェアロジックによって構成してもよ 、し、次のように CPUを用いてソフトウェアによつ て実現してもよい。  [0140] Each block of the inspection apparatus 1 described above, particularly each block of the image conversion unit 4, may be configured by hardware logic, or realized by software using a CPU as follows. May be.
[0141] すなわち、検査装置 1は、各機能を実現する制御プログラムの命令を実行する CP U central processing unit)、上 dプログフム 格糸内した ROM (read only memory)、 上記プログラムを展開する RAM (random access memory) ,上記プログラムおよび各 種データを格納するメモリ等の記憶装置 (記録媒体)などを備えている。そして、本発 明の目的は、上述した機能を実現するソフトウェアである検査装置 1の制御プロダラ ム(画像解析プログラム)のプログラムコード (実行形式プログラム、中間コードプログ ラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記 検査装置 1に供給し、そのコンピュータ (または CPUや MPU)が記録媒体に記録さ れているプログラムコードを読み出し実行することによつても、達成可能である。 [0141] That is, the inspection apparatus 1 has a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) in the upper d program, A RAM (random access memory) for developing the program and a storage device (recording medium) such as a memory for storing the program and various data are provided. The object of the present invention is to read the program code (execution format program, intermediate code program, source program) of the control program (image analysis program) of the inspection apparatus 1, which is software that realizes the functions described above, with a computer. This can also be achieved by supplying a recording medium recorded as possible to the inspection apparatus 1 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
[0142] 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッ ピー(登録商標)ディスク Zハードディスク等の磁気ディスクや CD— ROMZMOZ MD/DVD/CD—R等の光ディスクを含むディスク系、 ICカード (メモリカードを含 む) Z光カード等のカード系、あるいはマスク ROMZEPROMZEEPROMZフラッ シュ ROM等の半導体メモリ系などを用いることができる。 [0142] The recording medium includes, for example, a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy disk Z hard disk, and an optical disk such as CD-ROMZMOZ MD / DVD / CD-R. Disk systems, IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
[0143] また、検査装置 1を通信ネットワークと接続可能に構成し、上記プログラムコードを 通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定さ れず、例えば、インターネット、イントラネット、エキストラネット、 LAN, ISDN, VAN, CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網 、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体とし ては、特に限定されず、例えば、 IEEE1394、 USB、電力線搬送、ケーブル TV回 線、電話線、 ADSL回線等の有線でも、 IrDAやリモコンのような赤外線、 Bluetooth (登録商標)、 802. 11無線、 HDR、携帯電話網、衛星回線、地上波デジタル網等 の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送 で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現さ れ得る。 [0143] The inspection apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication A net or the like is available. In addition, the transmission medium constituting the communication network is not particularly limited. For example, in the case of wired communication such as IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, and terrestrial digital network can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
[0144] なお、本発明は以下のようにも表現できる。  [0144] The present invention can also be expressed as follows.
[0145] 本発明の、液晶表示パネルの検査方法は、同一絵素内に同色の分割絵素を複数 配置したマルチドメイン方式の液晶表示パネル検査にぉ 、て、撮像画像に対して同 色絵素の並び方向に、隣接する同色絵素との輝度の差分の絶対値を計算する差分 計算処理を実行し、次に計算値の平均を計算する計算処理を実行し、次にその平均 値を前記並びの方向と直交する方向に比較する比較処理を実行して前記同色絵素 の並びの方向の線欠陥を抽出するものである。 [0145] The method for inspecting a liquid crystal display panel according to the present invention is the same for a picked-up image in a multi-domain liquid crystal display panel inspection in which a plurality of divided pixels of the same color are arranged in the same pixel. Execute difference calculation processing to calculate the absolute value of the luminance difference between adjacent pixels of the same color in the line direction, then execute calculation processing to calculate the average of the calculated values, and then the average A comparison process for comparing values in a direction orthogonal to the direction of the arrangement is executed to extract line defects in the arrangement direction of the same color picture elements.
[0146] また、前記検査方法は、前記同色絵素の並びの方向において、隣接する同色絵素 が撮像画像にぉ ヽて N素子だけ離れて ヽる場合に、前記並びの方向にお!ヽて近傍 N素子に対する最大値検出処理を前記差分計算処理の前に実行することが好まし い。  [0146] Further, in the arrangement direction of the same-color picture elements, the inspection method is arranged in the arrangement direction when adjacent same-color picture elements are separated from the captured image by N elements. Therefore, it is preferable to execute the maximum value detection process for neighboring N elements before the difference calculation process.
[0147] また、前記差分計算処理が同色絵素の並びの方向に隣接する同色絵素との輝度 の差を計算する処理であり、前記計算処理がそれらの計算値の標準偏差を計算する 処理であることが好ましい。  [0147] Further, the difference calculation process is a process of calculating a luminance difference with the same color picture element adjacent in the direction of the same color picture element, and the calculation process calculates a standard deviation of the calculated values. It is preferable that
[0148] 本発明の、液晶表示パネルの検査方法は、撮像画像に対して同色絵素の並びの 方向に、隣接する同色絵素が前記撮像画像にぉ 、て N素子だけ離れて 、る場合に 、前記並びの方向に N素子毎に前記撮像素子の値を抽出して N個の素子群に分け る抽出処理を実施し、次に抽出されたそれぞれの素子群の標準偏差を計算する計 算処理を実施し、次に同一の並び力 抽出された N個の素子群の標準偏差力 最 大値を求める最大値検出処理を実施し、最後にその検出値を前記並びの方向と直 交する方向に比較する比較処理を実行して前記同色絵素の並びの方向の線欠陥を 抽出するものである。  [0148] In the liquid crystal display panel inspection method of the present invention, when the same color picture elements are adjacent to the picked-up image in the direction in which the same color picture elements are arranged, they are separated from the picked-up image by N elements. Further, an extraction process for extracting the value of the imaging element for each N elements in the arrangement direction and dividing it into N element groups is performed, and then the standard deviation of each of the extracted element groups is calculated. Next, a maximum value detection process is performed to obtain the maximum standard deviation force of the N element groups extracted with the same alignment force. Finally, the detected value is directly intersected with the direction of the alignment. The line defect in the direction of the arrangement of the same color picture elements is extracted by executing a comparison process in which the comparison is made in the direction in which the pixels are aligned.
[0149] 本発明に係る画像解析方法は、以上のように、上記撮像画像に含まれる注目絵素 の輝度値と、当該絵素に隣接する同色絵素の輝度値との差分値の絶対値を、上記 同色絵素の列に関して算出する差分絶対値算出工程と、上記差分絶対値算出工程 において算出された上記差分値の絶対値の平均値を、複数の同色絵素の配列方向 に沿って算出する平均値算出工程とを含む構成である。  [0149] As described above, the image analysis method according to the present invention is the absolute value of the difference value between the luminance value of the pixel of interest included in the captured image and the luminance value of the same color pixel adjacent to the pixel. The difference absolute value calculation step for calculating the same color picture element sequence and the average value of the absolute values of the difference values calculated in the difference absolute value calculation step along the arrangement direction of a plurality of the same color picture elements And an average value calculating step for calculating.
[0150] 本発明に係る画像解析装置は、以上のように、上記撮像画像に含まれる注目絵素 の輝度値と、上記複数の同色絵素の配列方向において当該注目絵素に隣接する同 色絵素の輝度値との差分値の絶対値を算出する差分絶対値算出手段と、上記差分 絶対値算出手段によって算出された上記差分値の絶対値の平均値を、複数の同色 絵素の配列方向に沿って算出する平均値算出手段とを備える構成である。  [0150] As described above, the image analysis apparatus according to the present invention has the luminance value of the target picture element included in the captured image and the same color picture adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements. A difference absolute value calculation means for calculating an absolute value of a difference value from the luminance value of the elementary element, and an average value of the absolute values of the difference values calculated by the difference absolute value calculation means are arranged in a plurality of arrangement directions of the same color pixels. The average value calculating means for calculating along
[0151] 本発明に係る画像解析方法は、以上のように、上記撮像画像に含まれる注目絵素 の輝度値と、上記複数の同色絵素の配列方向において当該注目絵素に隣接する同 色絵素の輝度値との差分値を算出する差分値算出工程と、上記差分値算出工程に おいて算出された上記差分値の標準偏差を、上記複数の同色絵素の配列方向に配 列する撮像素子の列ごとに算出する標準偏差算出工程とを含む構成である。 [0151] As described above, the image analysis method according to the present invention is a pixel of interest included in the captured image. A difference value calculating step of calculating a difference value between the luminance value of the same color pixel and the luminance value of the same color pixel adjacent to the target pixel in the arrangement direction of the plurality of same color pixels, and calculating in the difference value calculating step And a standard deviation calculating step for calculating the standard deviation of the difference values for each of the imaging element columns arranged in the arrangement direction of the plurality of same-color picture elements.
[0152] 本発明に係る画像解析装置は、以上のように、上記撮像画像に含まれる注目絵素 の輝度値と、上記複数の同色絵素の配列方向において当該注目絵素に隣接する同 色絵素の輝度値との差分値を算出する差分値算出手段と、上記差分値算出手段に よって算出された上記差分値の標準偏差を、上記複数の同色絵素の配列方向に配 列する撮像素子の列ごとに算出する標準偏差算出手段とを備える構成である。  [0152] As described above, the image analysis apparatus according to the present invention has the luminance value of the target picture element included in the captured image and the same color picture adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements. A difference value calculating means for calculating a difference value with respect to the luminance value of the element, and an image sensor for arranging the standard deviation of the difference value calculated by the difference value calculating means in an arrangement direction of the plurality of same-color picture elements And a standard deviation calculating means for calculating each column.
[0153] 本発明に係る画像解析方法は、以上のように、上記撮像画像における上記複数の 同色絵素の間隔であって、注目絵素の注目部分と、上記複数の同色絵素の配列方 向において当該注目絵素に隣接する同色絵素の、上記注目部分に対応する部分と の間隔を絵素間隔とした場合に、上記撮像画像から、上記複数の同色絵素の配列 方向に沿って、上記絵素間隔ごとに上記撮像素子の輝度値を抽出することにより、 輝度値の群を形成する抽出工程と、上記抽出工程において形成された、輝度値の 群に含まれる輝度値の標準偏差を上記輝度値の群ごとに算出する標準偏差算出ェ 程と、上記標準偏差算出工程において算出された標準偏差の最大値を上記複数の 同色絵素の列ごとに算出する最大値算出工程とを含む構成である。  [0153] As described above, the image analysis method according to the present invention is an interval between the plurality of same-color picture elements in the captured image, and includes an attention portion of the target picture element and a method of arranging the plurality of same-color picture elements. When the interval between the same color pixel adjacent to the target pixel in the direction and the portion corresponding to the target portion is defined as the pixel interval, from the captured image, along the arrangement direction of the plurality of same color pixels. Extracting the luminance value of the image sensor for each pixel interval to form a group of luminance values, and the standard deviation of the luminance values included in the group of luminance values formed in the extracting step A standard deviation calculation step for calculating the luminance value for each group of luminance values, and a maximum value calculation step for calculating the maximum value of the standard deviation calculated in the standard deviation calculation step for each row of the plurality of same-color picture elements. It is the composition which includes.
[0154] 本発明に係る画像解析装置は、以上のように、上記撮像画像における上記複数の 同色絵素の間隔であって、注目絵素の注目部分と、上記複数の同色絵素の配列方 向において当該注目絵素に隣接する同色絵素の、上記注目部分に対応する部分と の間隔を絵素間隔とした場合に、上記撮像画像から、上記複数の同色絵素の配列 方向に沿って、上記絵素間隔ごとに上記撮像素子の輝度値を抽出することにより、 輝度値の群を形成する抽出手段と、上記抽出手段によって形成された、輝度値の群 に含まれる輝度値の標準偏差を上記輝度値の群ごとに算出する標準偏差算出手段 と、上記標準偏差算出手段によって算出された標準偏差の最大値を上記複数の同 色絵素の列ごとに算出する最大値算出手段とを備える構成である。  [0154] As described above, the image analysis apparatus according to the present invention is an interval between the plurality of same-color picture elements in the captured image, and includes an attention portion of the target picture element and a method of arranging the plurality of same-color picture elements. When the interval between the same color pixel adjacent to the target pixel in the direction and the portion corresponding to the target portion is defined as the pixel interval, from the captured image, along the arrangement direction of the plurality of same color pixels. A luminance value of the image sensor for each pixel interval to extract a luminance value group, and a standard deviation of luminance values included in the luminance value group formed by the extraction means. A standard deviation calculating means for calculating the luminance value for each group of luminance values, and a maximum value calculating means for calculating the maximum value of the standard deviation calculated by the standard deviation calculating means for each of the plurality of columns of the same color picture element. It is a configuration.
[0155] それゆえ、従来の欠陥検出方法を適用した欠陥検出装置よりも高い検出感度で表 示パネルの欠陥を検出することができるという効果を奏する。 [0155] Therefore, the detection sensitivity is higher than that of the defect detection apparatus to which the conventional defect detection method is applied. There is an effect that the defect of the display panel can be detected.
[0156] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にお!、て、 、ろ 、ろと変更して実施することができるものである。  [0156] The specific embodiments or examples made in the detailed description section of the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Therefore, the present invention should not be construed in a narrow sense, and can be carried out with modifications within the spirit of the present invention and the scope of the claims described below.
産業上の利用可能性  Industrial applicability
[0157] 表示パネル、特にマルチドメイン方式の液晶パネルの欠陥を高い検出感度で検出 することができるため、これらの表示パネルを検査する検査装置に適用できる。 [0157] Since defects in display panels, particularly multi-domain liquid crystal panels, can be detected with high detection sensitivity, the present invention can be applied to inspection apparatuses that inspect these display panels.

Claims

請求の範囲 The scope of the claims
[1] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置が有する画像解析装置における画像解析方法であって、 上記撮像画像に含まれる注目絵素の輝度値と、上記複数の同色絵素の配列方向 において当該注目絵素に隣接する同色絵素の輝度値との差分値の絶対値を算出す る差分絶対値算出工程と、  [1] Detect a defect in the display panel by capturing a display panel in which multiple pixels of the same color are arranged in a certain direction with an imaging device that has an image sensor and analyzing the luminance value of the captured image. An image analysis method in an image analysis apparatus included in an inspection apparatus, the luminance value of a target picture element included in the captured image and the same color picture element adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements A difference absolute value calculating step of calculating an absolute value of a difference value from the luminance value of
上記差分絶対値算出工程において算出された上記差分値の絶対値の平均値を、 上記複数の同色絵素の配列方向に沿って算出する平均値算出工程とを含むことを 特徴とする画像解析方法。  An average value calculation step of calculating an average value of the absolute values of the difference values calculated in the difference absolute value calculation step along an arrangement direction of the plurality of same-color picture elements. .
[2] 注目絵素を撮像した複数の撮像素子が有する輝度値の最大値を、上記配列方向 に配列する撮像素子の列ごとに算出する最大輝度値算出工程を上記差分絶対値算 出工程の前に含み、  [2] The maximum luminance value calculation step of calculating the maximum value of the luminance values of a plurality of image sensors that have captured the target picture element for each column of the image sensors arranged in the arrangement direction is the difference absolute value calculation step. Including before
上記差分絶対値算出工程において、注目絵素に関する上記最大値と、当該絵素 に隣接する同色絵素に関する上記最大値との差分値の絶対値を、上記撮像素子の 列ごとに算出することを特徴とする請求の範囲第 1項に記載の画像解析方法。  In the difference absolute value calculation step, the absolute value of the difference value between the maximum value related to the pixel of interest and the maximum value related to the same color pixel adjacent to the pixel is calculated for each column of the image sensor. The image analysis method according to claim 1, wherein the image analysis method is characterized.
[3] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置が有する画像解析装置における画像解析方法であって、 上記撮像画像に含まれる注目絵素の輝度値と、上記複数の同色絵素の配列方向 において当該注目絵素に隣接する同色絵素の輝度値との差分値を算出する差分値 算出工程と、 [3] Detecting defects in the display panel by capturing a display panel in which multiple pixels of the same color are arranged in a certain direction with an imaging device that has an image sensor and analyzing the luminance value of the captured image An image analysis method in an image analysis apparatus included in an inspection apparatus, the luminance value of a target picture element included in the captured image and the same color picture element adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements A difference value calculating step for calculating a difference value from the luminance value of
上記差分値算出工程において算出された上記差分値の標準偏差を、上記複数の 同色絵素の配列方向に配列する撮像素子の列ごとに算出する標準偏差算出工程と を含むことを特徴とする画像解析方法。  A standard deviation calculating step of calculating a standard deviation of the difference value calculated in the difference value calculating step for each column of image pickup devices arranged in an arrangement direction of the plurality of same-color picture elements. analysis method.
[4] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置が有する画像解析装置における画像解析方法であって、 上記撮像画像における上記複数の同色絵素の間隔であって、注目絵素の注目部 分と、上記複数の同色絵素の配列方向において当該注目絵素に隣接する同色絵素 の、上記注目部分に対応する部分との間隔を絵素間隔とした場合に、 [4] A display panel in which a plurality of pixels of the same color are arranged in a fixed direction is imaged by an imaging device having an image sensor, and the luminance of the obtained captured image is analyzed to detect a defect in the display panel. An image analysis method in an image analysis apparatus included in an inspection apparatus, The interval between the plurality of same-colored pixels in the captured image, and the target portion of the target pixel of the target pixel and the same-color pixel adjacent to the target pixel in the arrangement direction of the plurality of same-color pixels. When the interval between the part corresponding to is the pixel interval,
上記撮像画像から、上記複数の同色絵素の配列方向に沿って、上記絵素間隔ごと に上記撮像素子の輝度値を抽出することにより、輝度値の群を形成する抽出工程と 上記抽出工程において形成された、輝度値の群に含まれる輝度値の標準偏差を 上記輝度値の群ごとに算出する標準偏差算出工程と、  In the extraction step of forming a group of luminance values by extracting the luminance value of the imaging element for each pixel interval along the arrangement direction of the plurality of same-color pixels from the captured image, and in the extraction step A standard deviation calculating step of calculating the standard deviation of the luminance values included in the formed luminance value group for each of the luminance value groups;
上記標準偏差算出工程において算出された標準偏差の最大値を上記複数の同色 絵素の列ごとに算出する最大値算出工程とを含むことを特徴とする画像解析方法。  An image analysis method comprising: a maximum value calculation step of calculating a maximum value of the standard deviation calculated in the standard deviation calculation step for each of the plurality of columns of the same color picture element.
[5] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置における画像解析装置であって、 [5] A display panel in which a plurality of pixels of the same color are arranged in a certain direction is imaged by an imaging device having an image sensor, and a defect in the display panel is detected by analyzing the luminance value of the obtained captured image. An image analysis apparatus in an inspection apparatus that performs
上記撮像画像に含まれる注目絵素の輝度値と、上記複数の同色絵素の配列方向 において当該注目絵素に隣接する同色絵素の輝度値との差分値の絶対値を算出す る差分絶対値算出手段と、  Absolute difference that calculates the absolute value of the difference between the luminance value of the pixel of interest included in the captured image and the luminance value of the same color pixel adjacent to the pixel of interest in the arrangement direction of the plurality of pixels of the same color A value calculating means;
上記差分絶対値算出手段によって算出された上記差分値の絶対値の平均値を、 上記複数の同色絵素の配列方向に沿って算出する平均値算出手段とを備えることを 特徴とする画像解析装置。  An image analysis apparatus comprising: an average value calculating means for calculating an average value of the absolute values of the difference values calculated by the difference absolute value calculating means along an arrangement direction of the plurality of same-color picture elements. .
[6] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置が有する画像解析装置であって、 [6] A display panel in which a plurality of pixels of the same color are arranged in a certain direction is imaged by an imaging device having an image sensor, and the luminance value of the obtained captured image is analyzed to detect defects in the display panel. An image analysis apparatus included in the inspection apparatus,
上記撮像画像に含まれる注目絵素の輝度値と、上記複数の同色絵素の配列方向 において当該注目絵素に隣接する同色絵素の輝度値との差分値を算出する差分値 算出手段と、  A difference value calculating means for calculating a difference value between a luminance value of the target picture element included in the captured image and a luminance value of the same color picture element adjacent to the target picture element in the arrangement direction of the plurality of same color picture elements;
上記差分値算出手段によって算出された上記差分値の標準偏差を、上記複数の 同色絵素の配列方向に配列する撮像素子の列ごとに算出する標準偏差算出手段と を備えることを特徴とする画像解析装置。 A standard deviation calculating means for calculating a standard deviation of the difference value calculated by the difference value calculating means for each column of the image pickup elements arranged in an arrangement direction of the plurality of same-color picture elements. Analysis device.
[7] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置が有する画像解析装置であって、 [7] A display panel in which a plurality of pixels of the same color are arranged in a certain direction is imaged by an imaging device having an image sensor, and the luminance of the obtained captured image is analyzed to detect a defect in the display panel. An image analysis apparatus included in the inspection apparatus,
上記撮像画像における上記複数の同色絵素の間隔であって、注目絵素の注目部 分と、上記複数の同色絵素の配列方向において当該注目絵素に隣接する同色絵素 の、上記注目部分に対応する部分との間隔を絵素間隔とした場合に、  The interval between the plurality of same-colored pixels in the captured image, and the target portion of the target pixel of the target pixel and the same-color pixel adjacent to the target pixel in the arrangement direction of the plurality of same-color pixels. When the interval between the part corresponding to is the pixel interval,
上記撮像画像から、上記複数の同色絵素の配列方向に沿って、上記絵素間隔ごと に上記撮像素子の輝度値を抽出することにより、輝度値の群を形成する抽出手段と 上記抽出手段によって形成された、輝度値の群に含まれる輝度値の標準偏差を上 記輝度値の群ごとに算出する標準偏差算出手段と、  By extracting the luminance value of the imaging element for each pixel interval along the arrangement direction of the plurality of same-color picture elements from the captured image, an extraction unit that forms a group of luminance values, and the extraction unit A standard deviation calculating means for calculating the standard deviation of the luminance values included in the formed luminance value group for each of the luminance value groups;
上記標準偏差算出手段によって算出された標準偏差の最大値を上記複数の同色 絵素の列ごとに算出する最大値算出手段とを備えることを特徴とする画像解析装置  An image analyzing apparatus comprising: a maximum value calculating unit that calculates a maximum value of the standard deviation calculated by the standard deviation calculating unit for each of the plurality of columns of the same color picture element.
[8] 複数の同色絵素が一定方向に配列した表示パネルを、撮像素子を有する撮像手 段で撮像し、得られた撮像画像の輝度値を解析することにより上記表示パネルの欠 陥を検出する検査装置であって、 [8] A display panel in which a plurality of same-color picture elements are arranged in a certain direction is imaged by an imaging device having an image sensor, and the luminance value of the obtained captured image is analyzed to detect defects in the display panel. An inspection device for
請求の範囲第 5項〜第 7項のいずれか 1項に記載の画像解析装置と、  The image analysis device according to any one of claims 5 to 7,
上記画像解析装置によって算出された絵素の輝度値と所定の閾値とを比較するこ とにより欠陥の有無を判定する欠陥検出手段とを備えることを特徴とする検査装置。  An inspection apparatus comprising: defect detection means for determining the presence or absence of a defect by comparing a luminance value of a picture element calculated by the image analysis apparatus with a predetermined threshold value.
[9] 請求の範囲第 5項〜第 7項の 、ずれか 1項に記載の画像解析装置の上記各手段と してコンピュータを機能させるための画像解析プログラム。 [9] An image analysis program for causing a computer to function as each of the above means of the image analysis device according to any one of claims 5 to 7.
[10] 請求の範囲第 9項に記載の画像解析プログラムを記録したコンピュータ読み取り可 能な記録媒体。 [10] A computer-readable recording medium in which the image analysis program according to claim 9 is recorded.
PCT/JP2007/063887 2006-07-13 2007-07-12 Image analyzing method, image analyzing apparatus, inspecting apparatus, image analyzing program and computer readable recording medium WO2008007729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006193340A JP4143660B2 (en) 2006-07-13 2006-07-13 Image analysis method, image analysis apparatus, inspection apparatus, image analysis program, and computer-readable recording medium
JP2006-193340 2006-07-13

Publications (1)

Publication Number Publication Date
WO2008007729A1 true WO2008007729A1 (en) 2008-01-17

Family

ID=38923285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063887 WO2008007729A1 (en) 2006-07-13 2007-07-12 Image analyzing method, image analyzing apparatus, inspecting apparatus, image analyzing program and computer readable recording medium

Country Status (2)

Country Link
JP (1) JP4143660B2 (en)
WO (1) WO2008007729A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180315363A1 (en) * 2017-04-26 2018-11-01 Honeywell International Inc. Intermittent display issue monitoring system
CN108885180A (en) * 2017-04-12 2018-11-23 意力(广州)电子科技有限公司 A kind of detection method and device of display screen
CN109887470A (en) * 2019-01-30 2019-06-14 惠科股份有限公司 A kind of driving method and drive system of display panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838702B2 (en) * 2011-02-23 2016-01-06 コニカミノルタ株式会社 Radiation imaging system
JP5453372B2 (en) * 2011-10-26 2014-03-26 シャープ株式会社 Inspection method and inspection apparatus for polysilicon crystal film
CN109859707B (en) * 2019-01-30 2021-01-08 惠科股份有限公司 Driving method and driving system of display panel
CN109637490B (en) * 2019-01-30 2020-12-25 惠科股份有限公司 Driving method and driving system of display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168103A (en) * 2001-11-30 2003-06-13 Seiko Epson Corp Method and device for detecting line defect of picture, and method for correcting image data
JP2005181250A (en) * 2003-12-24 2005-07-07 Sharp Takaya Denshi Kogyo Kk Method and device for inspecting liquid crystal display panel
JP2006084188A (en) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Inspection device and inspection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168103A (en) * 2001-11-30 2003-06-13 Seiko Epson Corp Method and device for detecting line defect of picture, and method for correcting image data
JP2005181250A (en) * 2003-12-24 2005-07-07 Sharp Takaya Denshi Kogyo Kk Method and device for inspecting liquid crystal display panel
JP2006084188A (en) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Inspection device and inspection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885180A (en) * 2017-04-12 2018-11-23 意力(广州)电子科技有限公司 A kind of detection method and device of display screen
CN108885180B (en) * 2017-04-12 2021-03-23 意力(广州)电子科技有限公司 Display screen detection method and device
US20180315363A1 (en) * 2017-04-26 2018-11-01 Honeywell International Inc. Intermittent display issue monitoring system
EP3404645A1 (en) * 2017-04-26 2018-11-21 Honeywell International Inc. Intermittent display issue monitoring system
US10460638B2 (en) 2017-04-26 2019-10-29 Honeywell International Inc. Intermittent display issue monitoring system
CN109887470A (en) * 2019-01-30 2019-06-14 惠科股份有限公司 A kind of driving method and drive system of display panel
CN109887470B (en) * 2019-01-30 2021-01-08 惠科股份有限公司 Driving method and driving system of display panel

Also Published As

Publication number Publication date
JP2008020369A (en) 2008-01-31
JP4143660B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
US7978903B2 (en) Defect detecting method and defect detecting device
JP4399494B2 (en) Defect detection apparatus, defect detection method, image sensor device, and image sensor module
WO2008007729A1 (en) Image analyzing method, image analyzing apparatus, inspecting apparatus, image analyzing program and computer readable recording medium
KR100241504B1 (en) Display screen inspection method
JP2007315967A (en) Defect detection apparatus, defect detection method, defect detection program, and computer-readable recording medium stored with the progtram
JP5236241B2 (en) Defect inspection apparatus, defect inspection method, image processing apparatus, program, and computer-readable recording medium recording the program
JP2005172559A (en) Method and device for detecting line defect on panel
JP4520880B2 (en) Blot inspection method and blot inspection apparatus
JPH09101236A (en) Method and apparatus for detecting defect of display
JP3695120B2 (en) Defect inspection method
KR20210016247A (en) Spot detecting apparatus, method of detecting spot, and display device
JP4053571B2 (en) Luminance calculation method, luminance calculation device, inspection device, luminance calculation program, and computer-readable recording medium
JP5239275B2 (en) Defect detection method and defect detection apparatus
JP2007198850A (en) Irregularity inspection method and apparatus
JPH08327497A (en) Method for inspecting color liquid crystal display panel
JP5846100B2 (en) Display device defect inspection method
JPH08178797A (en) Display defect extraction method for flat panel display and apparatus therefor
US11538149B2 (en) Spot detection device, spot detection method, and display device
US20230194915A1 (en) Method of detecting defective pixels in electronic displays
JP2006322757A (en) Stain inspection method and stain inspection device
JP4893938B2 (en) Defect inspection equipment
JP2000221111A (en) Method and equipment for inspecting display screen
JP3604974B2 (en) Screen inspection method
JP4597079B2 (en) Image unevenness inspection apparatus and method
CN117475804A (en) Display panel detection method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790681

Country of ref document: EP

Kind code of ref document: A1