WO2008007686A1 - Cooling controller of internal combustion engine - Google Patents

Cooling controller of internal combustion engine Download PDF

Info

Publication number
WO2008007686A1
WO2008007686A1 PCT/JP2007/063791 JP2007063791W WO2008007686A1 WO 2008007686 A1 WO2008007686 A1 WO 2008007686A1 JP 2007063791 W JP2007063791 W JP 2007063791W WO 2008007686 A1 WO2008007686 A1 WO 2008007686A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
cooling
cylinder
crank angle
stop
Prior art date
Application number
PCT/JP2007/063791
Other languages
French (fr)
Japanese (ja)
Inventor
Shigenori Takahashi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07790595.8A priority Critical patent/EP2045452B1/en
Publication of WO2008007686A1 publication Critical patent/WO2008007686A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/30Cooling after the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/021Engine crank angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/023Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]

Definitions

  • the present invention relates to a cooling control device for an internal combustion engine.
  • An internal combustion engine mounted on a vehicle such as an automobile is required to complete starting in a short time.
  • fuel is combusted in the cylinder that first becomes the compression stroke after the start of the start or the cylinder that becomes the compression stroke the second time after the start of the start, and after the start of the start in the compression stroke
  • the first bombing is greeted.
  • the internal combustion engine stops in a state where the plurality of cylinders are in the initial stages of the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke due to the pressure in the combustion chamber in each cylinder. Therefore, when the engine stop is completed, the cylinder that is initially in the compression stroke after the start of the next start is the cylinder that has stopped at the beginning of the compression stroke, and the cylinder that is in the compression stroke the second time after the start of the next start is the intake cylinder This cylinder is stopped at the beginning of the stroke.
  • the cylinder that reaches the compression stroke first after the start of the engine and the cylinder that reaches the compression stroke for the second time are in the initial state of the compression stroke and the initial stage of the intake stroke while the engine is stopped.
  • the gas existing in the combustion chamber during the stop is compressed after starting. If the engine is started without a sufficient cooling period after the completion of the engine shutdown, the temperature of the gas present in the combustion chamber remains elevated by the engine heat, and the first compression stroke and the second The compression process begins. For this reason, the temperature of the gas in the combustion chamber increases during these compression strokes. This causes fuel self-ignition (pre-ignition) in the combustion chamber.
  • Patent Document 1 discloses a cooling device that is driven by a driving source different from the internal combustion engine and cools the engine with cooling water.
  • the cooling water temperature which is a value corresponding to the engine temperature
  • the cooling water temperature does not reach the predetermined value while the engine is stopped.
  • the cooling device is driven until it is full.
  • the predetermined value is set appropriately.
  • the piston position of the cylinder at the completion of the engine stop is closest to the bottom dead center, and the engine temperature can be lowered while the engine is stopped to a value that does not cause pre-ignition at the start of the engine start.
  • the predetermined value is set. In this way, it can be thought that the ability to avoid play-dance at the start of engine startup can be avoided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-182580
  • An object of the present invention is to cool an internal combustion engine that can suppress unnecessarily cooling of the internal combustion engine while the engine is stopped while accurately suppressing the play-dance at the start of the engine start. It is to provide a rejection control device.
  • a plurality of cylinders having pistons are provided, and one of a first compression stroke after the start of engine start and a second compression stroke is performed.
  • the cooling control device includes a cooling device that is driven by a drive source different from the engine to cool the engine, and a pre-ignition when the engine temperature is at the start of the engine at and after the stop of the engine.
  • a control unit that drives the cooling device when the value is equal to or greater than a predetermined value that may be incurred, and a setting unit that sets the predetermined value according to a crank angle when the stop of the engine is completed.
  • the crank angle at the completion of the engine stop is the crank angle at which the piston position of the cylinder that reaches the first explosion after the next engine start is near the top dead center
  • the crank angle at the completion of the engine stop is The predetermined value is set to a higher value than when the piston position of the cylinder that reaches the first explosion after the next engine start is a crank angle that is close to bottom dead center.
  • FIG. 1 is a schematic diagram showing an overall configuration of an engine and a cooling device according to a first embodiment of the present invention.
  • FIG. 2 is a time chart showing changes in the stroke of the combustion cycle of each cylinder, changes in the coolant temperature, changes in the driving state of the electric water pump, and changes in the driving state of the electric cooling fan.
  • FIG. 3 (a) and (b) are schematic diagrams showing piston positions at the time of completion of engine stop for a cylinder that first reaches the compression stroke after the start of the next start.
  • FIG. 4 is a graph showing a change in threshold value with respect to a change in piston position when the engine stop is completed.
  • FIG. 5 is a flowchart showing an execution procedure of engine cooling control by the cooling device.
  • FIG. 6 is a graph showing changes in the flow rate of the electric water pump with respect to changes in the temperature difference of the cooling water temperature relative to the threshold value.
  • FIG. 7 is a graph showing changes in the air flow rate of the electric cooling fan with respect to changes in the temperature difference of the cooling water temperature relative to the threshold value.
  • FIG. 8 is a time chart showing changes in the combustion cycle stroke of each cylinder, changes in cooling water temperature, changes in the driving state of the electric water pump, and changes in the driving state of the electric cooling fan in the second embodiment of the present invention.
  • FIG. 9 (a) and (b) are schematic diagrams showing the piston position when the engine stop is completed for the cylinder that reaches the compression stroke for the second time after the start of the next start.
  • FIG. 10 is a graph showing a change in threshold value with respect to a change in piston position when the engine stop is completed.
  • FIG. 11 A graph showing another example of the change in the threshold value with respect to the change in the piston position when the engine stop is completed.
  • FIG. 12 is a graph showing another example of the change in the threshold value with respect to the change in the piston position when the engine stop is completed.
  • the engine 1 shown in Fig. 1 is a series four-cylinder engine that is installed in a car and automatically stopped and restarted.
  • fuel is injected from each fuel injection valve 2 into the corresponding combustion chamber 3 during operation.
  • the piston 4 reciprocates due to the combustion of fuel in each combustion chamber 3, whereby the crankshaft 5 that is the output shaft of the engine 1 rotates.
  • the rotation of the crankshaft 5 is transmitted to the camshaft 6 through a belt or the like, and the opening and closing drive of the engine valves such as the intake valve 7 and the exhaust valve 8 is performed through the rotation of the camshaft 6.
  • a combustion cycle including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke is repeated.
  • the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke are performed in the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder (see FIG. 2).
  • the fuel injection is performed with the crankshaft 5 forcedly rotated (cranking) through the drive of the starter 15 connected to the crankshaft 5.
  • Fuel is injected from the valve 2 into the combustion chamber 3.
  • a rotor 9 made of a magnetic material is fixed to the crankshaft 5 of the engine 1, and a large number of protrusions 9 a are formed at equal intervals in the circumferential direction on the outer peripheral edge of the rotor 9.
  • Two crank position sensors 11 and 12 are provided in the vicinity of the rotor 9. When the rotor 9 rotates together with the crankshaft 5, signals corresponding to the protrusions 9a are output from the crank position sensors 11 and 12. In these crank position sensors 11 and 12, the rotational speed of the rotor 9 is extremely slow, such as immediately before the stop of the engine 1 is completed. Even in this case, a sensor capable of outputting a noise signal corresponding to the protrusion 9a, for example, a magnetoresistive element (MRE) sensor is used.
  • MRE magnetoresistive element
  • a rotor 13 made of a magnetic material is also fixed to the camshaft 6, and a plurality of protrusions 13 a having different circumferential lengths are arranged on the outer peripheral edge of the rotor 13 at different circumferential intervals V, It is formed!
  • a cam position sensor 14 is provided in the vicinity of the rotor 13! /.
  • the cam position sensor 14 can output a noise signal corresponding to the protrusion 13a even when the rotational speed of the rotor 13 is extremely slow, such as immediately before the stop of the engine 1 is completed.
  • the magnetoresistive element (MRE) sensor is used in the same manner as the crank position sensors 11 and 12.
  • crank angle of the engine 1 is grasped. Since the MRE sensors that can output pulse signals corresponding to the protrusions 9a and 13a of the rotors 9 and 13 immediately before the completion of the stop of the engine 1 are used as the sensors 1 1, 12 and 14, the stop of the engine 1 is completed. The crank angle can be reliably grasped immediately before the end. Therefore, it is possible to grasp the crank angle when the stop of the engine 1 is completed based on the pulse signals from the crank position sensors 11 and 12 and the pulse signal from the cam position sensor 14.
  • This cooling device includes a circulation path 16 for flowing cooling water to the engine 1.
  • An electric water pump 17 and a radiator 18 are provided on the circulation path 16, and an electric cooling fan 19 is provided in the vicinity of the radiator 18.
  • the electric water pump 17 and the electric cooling fan 19 are driven by a motor through power feeding from the battery 20 of the automobile, that is, driven by a driving source different from the engine 1.
  • the cooling efficiency of the engine 1 by this cooling device is increased as the flow rate of the electric water pump 17 is increased to increase the amount of cooling water passing through the engine 1, and the air flow rate of the electric cooling fan 19 is increased. Increasing the amount of heat exchange between the cooling water and the outside air in the radiator 18 increases.
  • This cooling control device is an electronic control that drives and controls various on-board equipment such as the engine 1 in the automobile. Equipped with equipment (ECU) 21!
  • the ECU 21 functioning as a control unit and a setting unit temporarily stores a CPU that executes various arithmetic processes related to the drive control of the various mounted devices, a ROM that stores programs and data necessary for the control, and CPU calculation results. It has a RAM to store, and an input / output port for inputting / outputting signals to / from the outside.
  • an accelerator pedal position sensor 22 that detects the amount of depression of the accelerator pedal and an automobile speed are detected at the input port of the ECU 21.
  • Various sensors such as a vehicle speed sensor 23 and a water temperature sensor 26 for detecting the cooling water temperature in the circulation path 16 are connected.
  • the ECU 21's input port includes a brake switch 24 that detects whether the brake pedal is depressed, and “off”, “accessory”, “on”, and “start” depending on the driver of the car.
  • the switch 25 is connected to the switch 25 which is switched to one of the four switching positions and outputs a signal corresponding to the current switching position.
  • a drive circuit for driving the fuel injection valve 2, the electric water pump 17, the electric cooling fan 19 and the starter 15 is connected to the output port of the ECU 21.
  • the ECU 21 detects the vehicle and the vehicle that are grasped from the detection signals input from the sensors. Command signals are output to the drive circuit of each device connected to the output port according to the operating state of engine 1. In this way, control of fuel injection from the fuel injection valve 2, starter 15 drive control at engine start, engine 1 automatic stop / restart control, electric water pump 17 and electric cooling fan 19 drive control, etc. Control is performed by ECU21
  • the ECU 21 cools the engine 1 through, for example, drive control of the electric water pump 17 and the electric cooling fan 19 as follows, for example. That is, during normal combustion operation of the engine 1, the cooling water temperature in the circulation path 16 detected by the water temperature sensor 26 is used as a value corresponding to the engine temperature, and the cooling water temperature is below a target value (for example, 95 ° C). Thus, the electric water pump 17 and the electric cooling fan 19 are controlled. When the cooling water temperature falls below the target value, the drive of the electric water pump 17 and the electric cooling fan 19 is stopped. As a result, the engine 1 is properly cooled during normal combustion operation of the engine 1 so that the engine temperature does not rise excessively.
  • a target value for example, 95 ° C
  • the engine 1 is started and stopped based on the operation of the idle switch 25 by the driver. In addition to this, for the purpose of improving fuel consumption of the engine 1, the engine 1 is automatically stopped and restarted in response to an output request to the engine 1.
  • the procedures for starting and stopping the engine 1 will be described separately for [starting and stopping based on the operation of the idle switch 25] and [automatic stopping and restarting based on whether or not the engine output is requested].
  • the switch 25 When engine 1 is stopped, the switch 25 is switched to “Start” when the switch 25 is switched from “Off” to “Accessory”, “On” and “Start”. At that point, the engine 1 start command is issued. Based on this start command, the starter 15 is driven to start cranking of the engine 1, and fuel is injected and supplied from the fuel injection valve 2 to the combustion chamber 3 during the cranking. Then, by burning the fuel in the combustion chamber 3 and causing the engine 1 to operate independently, the engine 1 is started. Also the luck of engine 1 When the switch 25 is switched from “On” to “Accessories” and “Off” in turn, the engine 1 stop command is issued when the switch 25 is switched to “Accessories”. Made. Based on this stop command, the combustion of fuel in the combustion chamber 3 is stopped, and the engine 1 is stopped. Thereafter, the engine speed decreases from the idle speed to “0”, and the engine 1 is stopped.
  • the output request to engine 1 is, for example, (A) accelerator pedal depression amount force S “0”, (B) brake pedal depressed, (C) vehicle speed is a predetermined value close to “0” Judgment is made based on whether or not all conditions such as less than a are met! When these conditions (A) to (C) are all satisfied, it is determined that there is no output request to the engine 1, in other words, it is not necessary to keep the engine 1 running, and a stop command for the engine 1 is issued. The engine 1 is automatically stopped.
  • a start command is issued. Based on this start command, the starter 15 is driven to start cranking of the engine 1, and fuel is injected and supplied from the fuel injection valve 2 to the combustion chamber 3 during the cranking. The engine 1 is automatically restarted by burning the fuel in the combustion chamber 3 and starting the self-sustaining operation of the engine 1.
  • first explosion cylinder the cylinder that is first in the compression stroke after the start of the engine 1 is referred to as “first explosion cylinder” as necessary.
  • the cooling power S of the engine 1 by the cooling device described above is performed not only during normal combustion operation but also when the engine 1 is stopped and thereafter.
  • the cooling water temperature in the circulation path 16 representing the temperature of the engine 1 is preliminarily set at and after the stop of the engine 1 (after time T1).
  • the electric water pump 17 is driven as shown in FIG. 2 (c)
  • the electric cooling fan 19 is driven as shown in FIG. 2 (d). .
  • the engine 1 is cooled, and it is possible to suppress the occurrence of play dandelion in the first compression stroke after the start of the next start.
  • the electric water pump 17 and the electric cooling fan 19 are stopped, and the cooling of the engine 1 by the cooling device is stopped.
  • the above-described threshold value is variably set according to the crank angle when the stop of the engine 1 is completed. More specifically, when the crank angle at the completion of the stop of the engine 1 is the crank angle at which the position of the piston 4 of the cylinder (first explosion cylinder) that becomes the compression stroke first after the start of the next start becomes the bottom dead center.
  • the above threshold value is set to the lowest value (cooling water temperature) that can accurately suppress the occurrence of play dandelion in the first explosion cylinder at the start of the next start.
  • crank angle at the completion of the stop of the engine 1 is such that the position of the piston 4 of the cylinder (first explosion cylinder) that becomes the compression stroke first after the start of the next start is closer to the top dead center than the bottom dead center.
  • the threshold value is gradually set higher as the crank angle at which the piston 4 is closer to the top dead center.
  • FIG. 4 shows the relationship between the position of the piston 4 of the cylinder 4 in the first compression stroke after the start of the next start (first explosion cylinder) when the engine stop is completed and the above-described threshold value. That is, the first explosion cylinder
  • the above threshold value is a low value that can accurately suppress the reproduction in the first explosion cylinder at the next start.
  • the threshold value gradually becomes higher as the position of piston 4 is closer to the top dead center. Can be changed. For this reason, the threshold value will not be too low to accurately suppress the occurrence of play dandruff in the first explosion cylinder at the next engine start. Therefore, the cooling of the engine 1 by the cooling device is not performed more than necessary.
  • This cooling control routine is periodically executed through the ECU 21 by, for example, a time interruption every predetermined time.
  • step S101 the ECU 21 determines whether or not it is the time when the stop of the engine 1 is completed. When it is determined that it is the time when the stop of the engine 1 is completed, the ECU 21 proceeds to step S102.
  • step S102 the ECU 21 detects the crank angle at the completion of the engine stop based on the signals from the crank position sensors 11, 12 and the cam position sensor 14, and sets the above-described threshold based on the crank angle.
  • step S103 the ECU 21 determines whether or not the engine 1 is stopped. If the determination is negative, engine 1 is performing normal combustion operation.
  • step S109 the ECU 21 proceeds to step S109 to perform normal cooling control, i.e., the electric water pump 17 and the electric cooling fan 19 are set so that the cooling water temperature is equal to or lower than the target value (95 ° C in this embodiment). Drive control.
  • normal cooling control i.e., the electric water pump 17 and the electric cooling fan 19 are set so that the cooling water temperature is equal to or lower than the target value (95 ° C in this embodiment).
  • step S103 if a negative determination is made in step S103, it means that the engine 1 has been stopped and has been stopped thereafter.
  • the ECU 21 is based on the condition that the coolant temperature is equal to or higher than the above threshold value (S104: YES) and that the remaining battery level, which is the stored amount of the battery 20, is equal to or higher than the lower limit (S105: YES).
  • S104: YES the above threshold value
  • S105 the remaining battery level
  • the process for driving the cooling device while the engine is stopped includes the process of step S106 for calculating the temperature difference of the cooling water temperature with respect to the threshold value, the flow rate of the electric water pump 17 and the electric motor pump according to the temperature difference. And the process of step S107 for controlling the air flow rate of the cooling fan 19. More specifically, as the temperature difference becomes larger, the pump 17 is controlled so that the flow rate of the electric water pump 17 gradually increases as shown in FIG. 6, and the electric cooling as shown in FIG. The fan 19 is controlled so that the air flow rate of the fan 19 gradually increases. Thereby, the cooling of the engine 1 by the cooling water while the engine is stopped is performed more strongly as the cooling water temperature is higher than the threshold value, and is decreased as the cooling water temperature approaches the threshold value.
  • step S104 As a result of cooling the engine 1 with the cooling water as described above, if the cooling water temperature becomes lower than the threshold value in step S104, the ECU 21 proceeds to step S108, and the electric water pump 17 and the electric cooling fan 19 are driven. Stop.
  • crank angle at the completion of the stop of engine 1 is the crank angle at which piston 4 of the cylinder (first explosion cylinder) that is first in the compression stroke after the start of the next start is located at the bottom dead center
  • the above threshold value is At the start of the next start, no pre-dansion occurs in the first-explosion cylinder! / And the cooling water temperature (lower limit) is set, so the occurrence of pre-dansion can be suppressed accurately.
  • the crank angle at the completion of the stop of the engine 1 is the crank angle at which the position of the piston 4 of the cylinder that is first in the compression stroke after the start of the next start is closer to the top dead center than the bottom dead center
  • the threshold value is set to a value higher than the lower limit value as the crank angle at which the piston 4 is closer to the top dead center.
  • the fuel in order to complete the start-up of the engine 1 in a short time, the fuel is burned in the cylinder that becomes the compression stroke for the second time after the start of the start, and the first explosion after the start of the start is reached during the compression stroke. It is a thing.
  • Fig. 8 (a) shows the fuel injection mode and the fuel combustion mode in the first to fourth cylinders of the engine 1 from the start of the stop of the engine 1 to the start of the next start in this embodiment. It is a time chart.
  • engine 1 has been stopped when the first cylinder has transitioned from the intake stroke to the compression stroke and the third cylinder has transitioned from the exhaust stroke to the intake stroke (time Tl).
  • time Tl time Tl
  • the fuel injection in the intake stroke immediately before the completion of the stop is not performed in the cylinder that is in the compression stroke when the stop of the engine 1 is completed (the first cylinder in FIG. 8A).
  • the engine 1 when the engine 1 is instructed to start (time ⁇ 3), the engine 1 starts to start and the fuel injection valve 2 in the cylinder (first cylinder in FIG. 8 (a)) that is the first in the intake stroke after the start is started.
  • the fuel injection valve 2 in the cylinder first cylinder in FIG. 8 (a)
  • the third cylinder reaches the compression stroke, that is, when the second compression stroke after the start of the start is reached, the fuel existing in the combustion chamber 3 of the third cylinder burns, and the engine 1 It will be the first explosion after starting.
  • the cylinder that is in the compression stroke for the second time after the start of the engine 1 will be referred to as “first explosion cylinder” as necessary.
  • the above threshold value prevents the engine 1 from being cooled more than necessary by the cooling device while the engine is stopped, while accurately suppressing the occurrence of play dandy at the start of starting. It is set according to the crank angle at the time of completion.
  • FIG. 9 (a) shows the position of the piston 4 of the cylinder (first explosion cylinder) in which the crank angle when the stop of the engine 1 is completed becomes the compression stroke for the second time after the start of the next start.
  • the above threshold is the lowest value, and the value that can accurately suppress the occurrence of play dandruff in the first explosion cylinder at the start of the next start.
  • FIG. 9 (b) the position of the piston 4 of the cylinder (first explosion cylinder) in which the crank angle at the completion of the stop of the engine 1 is the second compression stroke after the start of the next start is shown.
  • the crank angle is closer to the top dead center than the position closest to the bottom dead center (Fig. 9 (a))
  • gradually set the threshold value to a higher value. This is because when the position of the piston 4 is closer to the top dead center than the position closest to the bottom dead center (FIG. 9 (a)) as shown in FIG. ! /,
  • FIG. 10 shows the piston of the cylinder (first explosion cylinder) that is in the compression stroke for the second time after the start of the next start.
  • 4 shows the relationship between the position when the engine stop is completed and the threshold value described above.
  • the threshold value is a low value that can accurately suppress the play-dance in the first explosion cylinder at the next start.
  • the threshold value gradually increases as the position of the piston 4 approaches the top dead center. It can be changed to a higher value. For this reason, the threshold value will not be too low to accurately suppress the occurrence of play dans in the first explosion cylinder at the next engine start. Engine 1 will not be cooled more than necessary.
  • crank angle force S at the completion of the stop of engine 1 is the crank angle at which piston 4 of the cylinder (first explosion cylinder) that is in the compression stroke for the second time after the start of the next start is located closest to the bottom dead center
  • the above threshold is set to the first explosion cylinder at the start of the next start so that no play Danish occurs! /
  • the cooling water temperature (lower limit) is set, so that the occurrence of play Danish is accurately suppressed. That power S.
  • the crank angle at the completion of the stop of the engine 1 is such that the position of the piston 4 of the cylinder that becomes the compression stroke for the second time after the start of the next start is closer to the top dead center than the position closest to the bottom dead center.
  • the threshold value is set to a value higher than the lower limit value as the crank angle at which the position of the piston 4 approaches the top dead center.
  • each said embodiment can also be changed as follows, for example.
  • the force S is linearly changed as shown in FIG. 4, and the threshold value may be changed stepwise instead.
  • the threshold value may be changed in two steps as shown in FIG. 11 or may be changed in three steps or more.
  • the same advantage as (1) of the first embodiment can be obtained. If the threshold value is changed linearly as in the first embodiment, cooling of the engine 1 is suppressed more than necessary while the engine 1 is stopped. Therefore, it is possible to more appropriately achieve both the control of the play and the suppression of the occurrence of play dandy at the start of the start of the engine 1 next time.
  • the force S is linearly changed as shown in FIG. 10, and the threshold value may be changed stepwise instead.
  • the threshold value may be changed in two steps as shown in FIG. 12, or may be changed in three steps or more.
  • the same advantage as (4) of the second embodiment can be obtained. If the threshold is changed to linear as in the second embodiment, the cooling of the engine 1 is suppressed more than necessary when the engine 1 is stopped, and the next time the start-up of the engine 1 is started. Suppression of generation can be more suitably achieved.
  • the flow rate of the electric water pump 17 while the engine 1 is stopped does not necessarily need to be gradually changed according to the temperature difference of the cooling water temperature with respect to the threshold as shown in FIG. May be changed.
  • the amount of air blown by the electric cooling fan 19 when the engine 1 is stopped is not necessarily changed gradually according to the temperature difference as shown in FIG. 7, but may be changed stepwise according to the temperature difference. Good.
  • force using the cooling water temperature in the circulation path 16 may be replaced with another parameter such as the lubricating oil temperature of the engine 1.
  • the present invention may be applied to a port injection type engine in which fuel is injected into a force intake port 1 in which the present invention is applied to a direct injection type engine 1 that injects fuel into the combustion chamber 3.
  • the present invention may be applied to engines of types other than four cylinders, such as in-line six cylinders, V type six cylinders, and V type eight cylinders.

Abstract

If the cooling water temperature is above a threshold during stoppage of an engine (1), a cooler is driven to cool the engine (1). The threshold is set as follows. If the crank angle of the engine (1) upon completion of stoppage becomes a crank angle at which the piston (4) of a cylinder (initial explosion cylinder) that is moved to a compression stroke for the first time after the next time start is located at the bottom dead center, the threshold is set at such a cooling water temperature (lower limit value) that preignition does not take place in the initial explosion cylinder at the next time start. If the crank angle of the engine (1) upon completion of stoppage becomes a crank angle where the position of the initial explosion cylinder piston (4) is located closer to the top dead center than to the bottom dead center, the threshold is set at a value higher than the above lower limit value as the position of that piston (4) provided by an crank angle becomes closer to the top dead center.

Description

明 細 書  Specification
内燃機関の冷却制御装置  Cooling control device for internal combustion engine
技術分野  Technical field
[0001] 本発明は、内燃機関の冷却制御装置に関するものである。  [0001] The present invention relates to a cooling control device for an internal combustion engine.
背景技術  Background art
[0002] 自動車などの車両に搭載される内燃機関には、短時間で始動が完了することが要 望されている。こうした要望に応えるベぐ一般的な内燃機関では、始動開始後に最 初に圧縮行程となる気筒または始動開始後に二回目に圧縮行程となる気筒で燃料 を燃焼させ、当該圧縮行程中に始動開始後の初爆を迎えるようにしている。  [0002] An internal combustion engine mounted on a vehicle such as an automobile is required to complete starting in a short time. In general internal combustion engines that meet these demands, fuel is combusted in the cylinder that first becomes the compression stroke after the start of the start or the cylinder that becomes the compression stroke the second time after the start of the start, and after the start of the start in the compression stroke The first bombing is greeted.
[0003] なお、内燃機関は、各気筒における燃焼室内の圧力に起因して、複数の気筒がそ れぞれ吸気行程、圧縮行程、膨張行程及び排気行程の初期にある状態で停止する 。従って、機関の停止完了時、次回の始動開始後に最初に圧縮行程となる気筒は圧 縮行程の初期で停止している気筒であり、次回の始動開始後に二回目に圧縮行程 となる気筒は吸気行程の初期で停止している気筒である。  [0003] Note that the internal combustion engine stops in a state where the plurality of cylinders are in the initial stages of the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke due to the pressure in the combustion chamber in each cylinder. Therefore, when the engine stop is completed, the cylinder that is initially in the compression stroke after the start of the next start is the cylinder that has stopped at the beginning of the compression stroke, and the cylinder that is in the compression stroke the second time after the start of the next start is the intake cylinder This cylinder is stopped at the beginning of the stroke.
[0004] 機関の始動開始後に最初に圧縮行程を迎える気筒及び二回目に圧縮行程を迎え る気筒では、同機関の停止中に各々圧縮行程初期や吸気行程初期の状態にあるた め、同機関の停止中に燃焼室内に存在しているガスが始動開始後に圧縮される。機 関の停止完了後に十分な冷却期間をおかずに同機関を始動させると、燃焼室内に 存在するガスの温度が機関の熱によって上昇させられた状態のまま、最初の圧縮行 程や二回目の圧縮行程を迎える。そのため、それら圧縮行程中において燃焼室内 のガスの温度が高くなる。これは、当該燃焼室内にて燃料の自己着火(プレイグニッ シヨン)を生じさせる原因となる。特に、燃費改善のために車両の走行状態等に応じ て自動的に燃焼運転が停止 ·再開される内燃機関にあっては、機関の停止完了後に 十分な冷却期間をおかずに同機関を再始動させるという状況が生じやすいため、上 述したプレイダニッシヨン発生の機会が多くなる。  [0004] The cylinder that reaches the compression stroke first after the start of the engine and the cylinder that reaches the compression stroke for the second time are in the initial state of the compression stroke and the initial stage of the intake stroke while the engine is stopped. The gas existing in the combustion chamber during the stop is compressed after starting. If the engine is started without a sufficient cooling period after the completion of the engine shutdown, the temperature of the gas present in the combustion chamber remains elevated by the engine heat, and the first compression stroke and the second The compression process begins. For this reason, the temperature of the gas in the combustion chamber increases during these compression strokes. This causes fuel self-ignition (pre-ignition) in the combustion chamber. Especially for an internal combustion engine that automatically stops and restarts combustion operation according to the running state of the vehicle to improve fuel efficiency, restart the engine without a sufficient cooling period after the engine stops. Since the situation is likely to occur, there will be more opportunities for the occurrence of the above-mentioned play dansions.
[0005] なお、機関の始動開始後に三回目以降に圧縮行程を迎える気筒では、吸気通路 力、ら燃焼室に吸入された冷たい空気が当該圧縮行程で圧縮されるため、その圧縮 行程中に燃焼室内のガスの温度が高くなり過ぎることはなぐ上記プレイダニッシヨン の発生する可能性は低い。 [0005] It should be noted that in the cylinder that reaches the compression stroke after the third start after the start of the engine, the cold air sucked into the combustion chamber is compressed in the compression stroke due to the intake passage force. It is unlikely that the above-mentioned pre-dansion will occur as the temperature of the gas in the combustion chamber becomes too high during the stroke.
[0006] また、機関の始動開始後の最初の圧縮行程や二回目の圧縮行程では、燃焼室内 の圧力が機関の通常の燃焼運転時における圧縮行程でのそれに比べて高くなること が確認されており、これもプレイダニッシヨン発生の原因となる。以下、始動開始後の 最初の圧縮行程や二回目の圧縮行程で、燃焼室内の圧力が高くなる理由について 説明する。 [0006] In addition, in the first compression stroke after the start of the engine and the second compression stroke, it has been confirmed that the pressure in the combustion chamber is higher than that in the compression stroke during the normal combustion operation of the engine. This also causes the occurrence of play dansions. Hereinafter, the reason why the pressure in the combustion chamber increases in the first compression stroke after the start of start and the second compression stroke will be described.
[0007] 内燃機関における停止前の通常の燃焼運転時、すなわちアイドル運転時には、吸 気行程にてピストンが燃焼室を拡大させる方向に移動しつつ吸気バルブが開いた状 態にあるとき、燃焼室内の圧力が大気圧よりも低い値 (負圧)となり、吸気通路から燃 焼室内への空気の吸引が行われる。その後、ピストンが燃焼室を拡大させる方向に 移動している最中に吸気バルブが閉じられて圧縮行程へと移行する。よって、吸気 行程時及び圧縮行程初期には、燃焼室内の圧力が大気圧よりも低い値 (負圧)とな る。従って、機関の停止完了時、圧縮行程の初期で停止している気筒、及び吸気行 程の初期で停止している気筒では、燃焼室内の圧力が大気圧よりも低い値になる。  [0007] During normal combustion operation before stopping in the internal combustion engine, that is, during idling operation, when the intake valve is in an open state while the piston moves in the direction of expanding the combustion chamber in the intake stroke, The air pressure is lower than the atmospheric pressure (negative pressure), and air is sucked from the intake passage into the combustion chamber. After that, the intake valve is closed while the piston is moving in the direction of expanding the combustion chamber, and the compression stroke is started. Therefore, the pressure in the combustion chamber is lower than the atmospheric pressure (negative pressure) during the intake stroke and at the beginning of the compression stroke. Therefore, when the engine stop is completed, the pressure in the combustion chamber is lower than the atmospheric pressure in the cylinder stopped at the initial stage of the compression stroke and the cylinder stopped at the initial stage of the intake stroke.
[0008] しかし、機関停止完了後にある程度の時間(例えば 1、 2秒)が経過すると、機関の バルブ周りやピストンリング周りから燃焼室内にガスが侵入し、燃焼室内の圧力が負 圧の状態から大気圧まで上昇する。このような状態で機関が始動開始され、圧縮行 程の初期にある気筒及び吸気行程の初期にある気筒で燃焼室内のガスの圧縮が開 始されると、その時点では燃焼室内の圧力が大気圧にまで上昇していることから、圧 縮開始後の燃焼室内の圧力が機関の通常の燃焼運転時におけるそれよりも高くなる [0008] However, when a certain amount of time (for example, 1 or 2 seconds) elapses after the engine stop is completed, gas enters the combustion chamber from around the valve of the engine or around the piston ring, and the pressure in the combustion chamber is changed from a negative pressure state. Rise to atmospheric pressure. In such a state, when the engine is started and the compression of the gas in the combustion chamber is started in the cylinder in the initial stage of the compression stroke and the cylinder in the initial stage of the intake stroke, the pressure in the combustion chamber becomes large at that time. Since the pressure has increased to atmospheric pressure, the pressure in the combustion chamber after the start of compression becomes higher than that during normal combustion operation of the engine.
Yes
[0009] 以上のことから、始動開始後における最初の圧縮行程または二回目の圧縮行程で 初爆を迎える機関にあっては、機関の停止完了後に十分な冷却期間をおかずに同 機関を始動させると、プレイダニッシヨンが発生するおそれがあるのである。  [0009] Based on the above, in an engine that reaches the first explosion in the first compression stroke after the start of the start or the second compression stroke, the engine is started without a sufficient cooling period after the engine stoppage is completed. If this happens, there is a risk of play dani- sion.
[0010] 特許文献 1には、内燃機関とは別の駆動源により駆動されて冷却水により同機関を 冷却する冷却装置が開示されている。機関停止完了時に、機関温度に対応した値と なる冷却水温が所定値よりも高いときには、機関停止中に当該冷却水温が所定値未 満となるまで冷却装置が駆動される。この場合、上記所定値を低い値に設定しておく ことで機関停止中に機関温度が下げられるため、次回の機関始動開始時のプレイグ ニッシヨン発生を抑制することができる。ただし、そのプレイダニッシヨンを的確に抑制 するためには、上記所定値の設定が適切に行われている必要がある。 Patent Document 1 discloses a cooling device that is driven by a driving source different from the internal combustion engine and cools the engine with cooling water. When the cooling water temperature, which is a value corresponding to the engine temperature, is higher than a predetermined value when the engine stop is completed, the cooling water temperature does not reach the predetermined value while the engine is stopped. The cooling device is driven until it is full. In this case, since the engine temperature is lowered while the engine is stopped by setting the predetermined value to a low value, occurrence of pre-ignition at the start of the next engine start can be suppressed. However, in order to accurately suppress the play descent, it is necessary that the predetermined value is set appropriately.
[0011] すなわち、次回の機関始動開始後に初爆を迎える気筒では、機関停止完了時の 当該気筒でのピストン位置が下死点に近いほど、初爆を迎えるときの圧縮行程での 燃焼室内のガスの温度及び圧力が高くなり、プレイダニッシヨンが発生しやすくなる。 これは、上記気筒における機関停止完了時のピストン位置が下死点に近いほど、機 関停止中に燃焼室内で暖められるガスの量が多くなるとともに、機関停止完了時の 燃焼室内の負圧が大となって機関始動開始までに生じる燃焼室内の圧力の大気圧 への上昇量が大きくなるためである。このため、機関停止完了時における上記気筒 のピストン位置が最も下死点寄りであると仮定したうえで、機関始動開始時のプレイグ ニッシヨンを生じさせない値まで機関停止中に機関温度を低下し得るよう、上記所定 値を設定する。このようにすれば、機関始動開始時のプレイダニッシヨンを的確に回 避すること力 Sできると考えられる。 [0011] That is, in the cylinder that reaches the first explosion after the start of the next engine start, the closer the piston position in the cylinder at the time of the engine stop is closer to the bottom dead center, the more the inside of the combustion chamber in the compression stroke when the first explosion is reached. The temperature and pressure of the gas are increased, and predancy is likely to occur. This is because the closer the piston position at the completion of the engine stop in the above cylinder is to the bottom dead center, the more gas is warmed in the combustion chamber during the engine stop, and the negative pressure in the combustion chamber at the completion of the engine stop is This is because the amount of increase in the pressure in the combustion chamber to the atmospheric pressure that occurs before the engine starts is increased. For this reason, it is assumed that the piston position of the cylinder at the completion of the engine stop is closest to the bottom dead center, and the engine temperature can be lowered while the engine is stopped to a value that does not cause pre-ignition at the start of the engine start. The predetermined value is set. In this way, it can be thought that the ability to avoid play-dance at the start of engine startup can be avoided.
[0012] しかしながら、このように所定値を設定すると、機関停止完了時における上記気筒 のピストン位置力 最も下死点寄りの位置よりも上死点寄りの位置であるときには、プ レイダニッシヨンの発生を抑制するうえで必要以上に機関を冷却することになる。これ は、上記ピストン位置が上死点寄りの位置であるときには、下死点寄りの位置であると きに比べて、機関始動開始後に初爆を迎えるときの圧縮行程での燃焼室内のガスの 温度及び圧力が低ぐプレイダニッシヨンの発生し易さが低減されるためである。そし て、上述したように機関が必要以上に冷却されると、冷却装置を駆動するためのエネ ルギが無駄に消費されるとともに、機関停止中に必要以上に長く冷却装置が駆動さ れて車両の運転者に違和感を与える。  [0012] However, when the predetermined value is set in this way, the occurrence of play precision is suppressed when the piston position force of the cylinder at the completion of the engine stop is closer to the top dead center than the position closest to the bottom dead center. The engine will be cooled more than necessary. This is because when the piston position is close to the top dead center, the gas in the combustion chamber during the compression stroke when the first explosion is started after the start of the engine is compared to when the piston is close to the bottom dead center. This is because the ease of occurrence of pre-daniation with low temperature and pressure is reduced. As described above, when the engine is cooled more than necessary, the energy for driving the cooling device is wasted and the cooling device is driven longer than necessary while the engine is stopped. Give the driver a sense of incongruity.
特許文献 1:特開 2001— 182580公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-182580
発明の開示  Disclosure of the invention
[0013] 本発明の目的は、機関始動開始時のプレイダニッシヨンを的確に抑制しつつ、機関 停止中における内燃機関の必要以上の冷却を抑制することのできる内燃機関の冷 却制御装置を提供することにある。 [0013] An object of the present invention is to cool an internal combustion engine that can suppress unnecessarily cooling of the internal combustion engine while the engine is stopped while accurately suppressing the play-dance at the start of the engine start. It is to provide a rejection control device.
[0014] 上記の目的を達成するため、本発明の一態様に従い、ピストンを有する複数の気 筒を備え、機関始動開始後の初回の圧縮行程と二回目の圧縮行程とのいずれか一 方で初爆を迎える内燃機関に適用される冷却制御装置が提供される。その冷却制 御装置は、前記機関とは別の駆動源により駆動されて同機関を冷却する冷却装置と 、前記機関の停止完了時及びそれ以後であって機関温度が機関始動時のプレイグ ニッシヨンを招くおそれのある所定値以上であるときに、前記冷却装置を駆動する制 御部と、前記所定値を前記機関の停止完了時のクランク角に応じて設定する設定部 とを備える。同設定部は、機関停止完了時のクランク角が次回の機関始動後に初爆 を迎える気筒のピストン位置が上死点寄りの位置となるクランク角であるときには、機 関停止完了時のクランク角が次回の機関始動後に初爆を迎える気筒のピストン位置 が下死点寄りの位置となるクランク角であるときに比べ、前記所定値を高い値に設定 する。 [0014] In order to achieve the above object, according to one aspect of the present invention, a plurality of cylinders having pistons are provided, and one of a first compression stroke after the start of engine start and a second compression stroke is performed. There is provided a cooling control device that is applied to an internal combustion engine that is in an initial explosion. The cooling control device includes a cooling device that is driven by a drive source different from the engine to cool the engine, and a pre-ignition when the engine temperature is at the start of the engine at and after the stop of the engine. A control unit that drives the cooling device when the value is equal to or greater than a predetermined value that may be incurred, and a setting unit that sets the predetermined value according to a crank angle when the stop of the engine is completed. When the crank angle at the completion of the engine stop is the crank angle at which the piston position of the cylinder that reaches the first explosion after the next engine start is near the top dead center, the crank angle at the completion of the engine stop is The predetermined value is set to a higher value than when the piston position of the cylinder that reaches the first explosion after the next engine start is a crank angle that is close to bottom dead center.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の第 1実施形態に係るエンジン及び冷却装置の全体構成を示す略図。  FIG. 1 is a schematic diagram showing an overall configuration of an engine and a cooling device according to a first embodiment of the present invention.
[図 2]各気筒の燃焼サイクルの行程変化、冷却水温の変化、電動ウォータポンプの駆 動状態の変化、及び電動冷却ファンの駆動状態の変化を示すタイムチャート。  FIG. 2 is a time chart showing changes in the stroke of the combustion cycle of each cylinder, changes in the coolant temperature, changes in the driving state of the electric water pump, and changes in the driving state of the electric cooling fan.
[図 3] (a)及び (b)は、次回の始動開始後に最初に圧縮行程を迎える気筒について、 エンジン停止完了時におけるピストン位置を示す略図。  [FIG. 3] (a) and (b) are schematic diagrams showing piston positions at the time of completion of engine stop for a cylinder that first reaches the compression stroke after the start of the next start.
[図 4]エンジン停止完了時のピストン位置の変化に対する閾値の変化を示すグラフ。  FIG. 4 is a graph showing a change in threshold value with respect to a change in piston position when the engine stop is completed.
[図 5]冷却装置によるエンジンの冷却制御の実行手順を示すフローチャート。  FIG. 5 is a flowchart showing an execution procedure of engine cooling control by the cooling device.
[図 6]閾値に対する冷却水温の温度差の変化に対する電動ウォータポンプの流量の 変化を示すグラフ。  FIG. 6 is a graph showing changes in the flow rate of the electric water pump with respect to changes in the temperature difference of the cooling water temperature relative to the threshold value.
[図 7]閾値に対する冷却水温の温度差の変化に対する電動冷却ファンの送風量の変 化を示すグラフ。  FIG. 7 is a graph showing changes in the air flow rate of the electric cooling fan with respect to changes in the temperature difference of the cooling water temperature relative to the threshold value.
[図 8]本発明の第 2実施形態において、各気筒の燃焼サイクルの行程変化、冷却水 温の変化、電動ウォータポンプの駆動状態の変化、及び電動冷却ファンの駆動状態 の変化を示すタイムチャート。 [図 9] (a)及び (b)は、次回の始動開始後に二回目に圧縮行程を迎える気筒につい て、エンジン停止完了時におけるピストン位置を示す略図。 FIG. 8 is a time chart showing changes in the combustion cycle stroke of each cylinder, changes in cooling water temperature, changes in the driving state of the electric water pump, and changes in the driving state of the electric cooling fan in the second embodiment of the present invention. . [FIG. 9] (a) and (b) are schematic diagrams showing the piston position when the engine stop is completed for the cylinder that reaches the compression stroke for the second time after the start of the next start.
[図 10]エンジン停止完了時のピストン位置の変化に対する閾値の変化を示すグラフ。  FIG. 10 is a graph showing a change in threshold value with respect to a change in piston position when the engine stop is completed.
[図 11]エンジン停止完了時のピストン位置の変化に対する閾値の変化の他の例を示 すグラフ。  [Fig. 11] A graph showing another example of the change in the threshold value with respect to the change in the piston position when the engine stop is completed.
[図 12]エンジン停止完了時のピストン位置の変化に対する閾値の変化の他の例を示 すグラフ。  FIG. 12 is a graph showing another example of the change in the threshold value with respect to the change in the piston position when the engine stop is completed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を具体化した第 1実施形態を図 1〜図 7に従って説明する。  Hereinafter, a first embodiment embodying the present invention will be described with reference to FIGS.
図 1に示されるエンジン 1は、 自動車に搭載されて自動的に停止 ·再始動される直 列四気筒エンジンである。このエンジン 1では、その運転時に各燃料噴射弁 2から対 応する燃焼室 3への燃料噴射が行われる。各燃焼室 3内での燃料の燃焼によりピスト ン 4が往復移動し、それによりエンジン 1の出力軸であるクランクシャフト 5が回転する 。クランクシャフト 5の回転はベルト等を介してカムシャフト 6に伝達され、このカムシャ フト 6の回転を通じて吸気バルブ 7や排気バルブ 8といった機関バルブの開閉駆動が 行われる。こうしたエンジン 1の運転時には、吸気行程、圧縮行程、膨張行程及び排 気行程を含む燃焼サイクルが繰り返される。吸気行程、圧縮行程、膨張行程及び排 気行程の各々は、一番気筒、三番気筒、四番気筒、二番気筒の順で行われる(図 2 参照)。なお、停止中のエンジン 1の自立運転 (燃焼運転)を開始する際には、クラン クシャフト 5に連結されたスタータ 15の駆動を通じてクランクシャフト 5を強制回転(クラ ンキング)させた状態で、燃料噴射弁 2から燃焼室 3への燃料噴射が行われる。  The engine 1 shown in Fig. 1 is a series four-cylinder engine that is installed in a car and automatically stopped and restarted. In this engine 1, fuel is injected from each fuel injection valve 2 into the corresponding combustion chamber 3 during operation. The piston 4 reciprocates due to the combustion of fuel in each combustion chamber 3, whereby the crankshaft 5 that is the output shaft of the engine 1 rotates. The rotation of the crankshaft 5 is transmitted to the camshaft 6 through a belt or the like, and the opening and closing drive of the engine valves such as the intake valve 7 and the exhaust valve 8 is performed through the rotation of the camshaft 6. During the operation of the engine 1, a combustion cycle including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke is repeated. The intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke are performed in the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder (see FIG. 2). When starting the self-sustaining operation (combustion operation) of the stopped engine 1, the fuel injection is performed with the crankshaft 5 forcedly rotated (cranking) through the drive of the starter 15 connected to the crankshaft 5. Fuel is injected from the valve 2 into the combustion chamber 3.
[0017] 次に、エンジン 1のクランク角を把握するための機器について説明する。  Next, a device for grasping the crank angle of the engine 1 will be described.
エンジン 1のクランクシャフト 5には磁性体からなるロータ 9が固定されており、その口 ータ 9の外周縁には周方向に等間隔をおいて多数の突起 9aが形成されている。また 、ロータ 9の近傍には二つのクランクポジションセンサ 11 , 12が設けられている。クラ ンクシャフト 5とともにロータ 9が回転するときには、クランクポジションセンサ 11 , 12か ら各突起 9aに対応した信号が出力される。これらクランクポジションセンサ 11 , 12とし ては、エンジン 1の停止完了直前などロータ 9の回転速度が極めてゆっくりとした状態 にあっても、突起 9aに応じたノ ルス状の信号を出力することの可能なもの、例えば磁 気抵抗素子(MRE)センサが用いられている。また、クランクポジションセンサ 11とク ランクポジションセンサ 12とのロータ 9の周方向についての相対位置は、それらセン サ 11 , 12から出力されるパルス信号の位相が互いにずれた状態となるよう設定され ている。 A rotor 9 made of a magnetic material is fixed to the crankshaft 5 of the engine 1, and a large number of protrusions 9 a are formed at equal intervals in the circumferential direction on the outer peripheral edge of the rotor 9. Two crank position sensors 11 and 12 are provided in the vicinity of the rotor 9. When the rotor 9 rotates together with the crankshaft 5, signals corresponding to the protrusions 9a are output from the crank position sensors 11 and 12. In these crank position sensors 11 and 12, the rotational speed of the rotor 9 is extremely slow, such as immediately before the stop of the engine 1 is completed. Even in this case, a sensor capable of outputting a noise signal corresponding to the protrusion 9a, for example, a magnetoresistive element (MRE) sensor is used. The relative positions of the crank position sensor 11 and the crank position sensor 12 in the circumferential direction of the rotor 9 are set so that the phases of the pulse signals output from the sensors 11 and 12 are shifted from each other. Yes.
[0018] 一方、カムシャフト 6にも磁性体からなるロータ 13が固定されており、そのロータ 13 の外周縁には互いに周方向長さの異なる複数の突起 13aが異なる周方向間隔をお V、て形成されて!/、る。ロータ 13の近傍にはカムポジションセンサ 14が設けられて!/、る 。カムシャフト 6とともにロータ 13が回転するときには、カムポジションセンサ 14力も口 ータ 13の各突起 13aに対応した信号が出力される。このカムポジションセンサ 14とし ては、エンジン 1の停止完了直前などロータ 13の回転速度が極めてゆっくりとした状 態にあっても、突起 13aに応じたノ ルス状の信号を出力することの可能なもの、例え ばクランクポジションセンサ 11 , 12と同じく磁気抵抗素子(MRE)センサが用いられ ている。  On the other hand, a rotor 13 made of a magnetic material is also fixed to the camshaft 6, and a plurality of protrusions 13 a having different circumferential lengths are arranged on the outer peripheral edge of the rotor 13 at different circumferential intervals V, It is formed! A cam position sensor 14 is provided in the vicinity of the rotor 13! /. When the rotor 13 rotates together with the camshaft 6, a signal corresponding to each projection 13 a of the port 13 is output as well as the force of the cam position sensor 14. The cam position sensor 14 can output a noise signal corresponding to the protrusion 13a even when the rotational speed of the rotor 13 is extremely slow, such as immediately before the stop of the engine 1 is completed. For example, the magnetoresistive element (MRE) sensor is used in the same manner as the crank position sensors 11 and 12.
[0019] 上記クランクポジションセンサ 11 , 12からのパルス信号、及びカムポジションセンサ 14からのノ ルス信号に基づき、エンジン 1のクランク角が把握される。上記各センサ 1 1 , 12, 14としてエンジン 1の停止完了直前にもロータ 9, 13の突起 9a, 13aに対応 したパルス信号を出力可能な MREセンサを用いていることから、エンジン 1の停止完 了直前においてもクランク角を確実に把握することができる。従って、上記クランクポ ジシヨンセンサ 11 , 12からのパルス信号、及びカムポジションセンサ 14からのパルス 信号に基づき、エンジン 1の停止完了時のクランク角を把握することが可能になる。  Based on the pulse signals from the crank position sensors 11 and 12 and the pulse signal from the cam position sensor 14, the crank angle of the engine 1 is grasped. Since the MRE sensors that can output pulse signals corresponding to the protrusions 9a and 13a of the rotors 9 and 13 immediately before the completion of the stop of the engine 1 are used as the sensors 1 1, 12 and 14, the stop of the engine 1 is completed. The crank angle can be reliably grasped immediately before the end. Therefore, it is possible to grasp the crank angle when the stop of the engine 1 is completed based on the pulse signals from the crank position sensors 11 and 12 and the pulse signal from the cam position sensor 14.
[0020] 次に、エンジン 1を冷却するための冷却装置について説明する。  [0020] Next, a cooling device for cooling the engine 1 will be described.
この冷却装置は、冷却水をエンジン 1に流すための循環経路 16を備えている。循 環経路 16上には電動ウォータポンプ 17及びラジェータ 18が設けられており、ラジェ ータ 18の近傍には電動冷却ファン 19が設けられている。電動ウォータポンプ 17及び 電動冷却ファン 19は、自動車のバッテリ 20からの給電を通じてモータにより駆動され る、つまりエンジン 1とは別の駆動源により駆動される。  This cooling device includes a circulation path 16 for flowing cooling water to the engine 1. An electric water pump 17 and a radiator 18 are provided on the circulation path 16, and an electric cooling fan 19 is provided in the vicinity of the radiator 18. The electric water pump 17 and the electric cooling fan 19 are driven by a motor through power feeding from the battery 20 of the automobile, that is, driven by a driving source different from the engine 1.
[0021] 電動ウォータポンプ 17が駆動されると、循環経路 16内の冷却水に流れが生じ、冷 却水がラジェータ 18及びエンジン 1を通過するように循環経路 16を循環する。この 冷却水は、ラジェータ 18を通過する際に外気との間の熱交換を通じて冷却される。 また、電動冷却ファン 19が駆動されてラジェータ 18に向けて風が送られると、そのラ ジエータ 18での冷却水と外気との熱交換が促進される。ラジェータ 18にて冷却され た冷却水は、エンジン 1内を通過するときに同エンジン 1との間の熱交換を通じて熱 を奪い、エンジン 1を冷却する。 [0021] When the electric water pump 17 is driven, a flow is generated in the cooling water in the circulation path 16, and the cooling water is cooled. Circulate the circulation path 16 so that the reject water passes through the radiator 18 and the engine 1. This cooling water is cooled through heat exchange with the outside air when passing through the radiator 18. Further, when the electric cooling fan 19 is driven and wind is sent toward the radiator 18, heat exchange between the cooling water and the outside air in the radiator 18 is promoted. The cooling water cooled by the radiator 18 takes heat through the heat exchange with the engine 1 when passing through the engine 1 and cools the engine 1.
[0022] この冷却装置によるエンジン 1の冷却効率は、電動ウォータポンプ 17の流量を多く してエンジン 1内を通過する冷却水の量を多くするほど高められるとともに、電動冷却 ファン 19の送風量を多くしてラジェータ 18での冷却水と外気との熱交換量を多くす るほど高められる。 [0022] The cooling efficiency of the engine 1 by this cooling device is increased as the flow rate of the electric water pump 17 is increased to increase the amount of cooling water passing through the engine 1, and the air flow rate of the electric cooling fan 19 is increased. Increasing the amount of heat exchange between the cooling water and the outside air in the radiator 18 increases.
[0023] 次に、上記冷却装置を駆動制御する冷却制御装置の電気的構成につ!/、て説明す この冷却制御装置は、自動車におけるエンジン 1等の各種搭載機器を駆動制御す る電子制御装置 (ECU) 21を備えて!/、る。制御部及び設定部として機能する ECU2 1は、上記各種搭載機器の駆動制御に係る各種演算処理を実行する CPU、その制 御に必要なプログラムやデータを記憶した ROM、 CPUの演算結果等を一時記憶す る RAM、外部との間で信号を入出力するための入出力ポートを備えている。  Next, the electrical configuration of the cooling control device that drives and controls the cooling device will be described. This cooling control device is an electronic control that drives and controls various on-board equipment such as the engine 1 in the automobile. Equipped with equipment (ECU) 21! The ECU 21 functioning as a control unit and a setting unit temporarily stores a CPU that executes various arithmetic processes related to the drive control of the various mounted devices, a ROM that stores programs and data necessary for the control, and CPU calculation results. It has a RAM to store, and an input / output port for inputting / outputting signals to / from the outside.
[0024] ECU21の入力ポートには、上述したクランクポジションセンサ 11 , 12及びカムポジ シヨンセンサ 14からの信号に加え、アクセルペダル踏込量を検出するアクセルぺダ ノレポジションセンサ 22、自動車の速度を検出する車速センサ 23、及び循環経路 16 内の冷却水温を検出する水温センサ 26等の各種センサが接続されている。更に、 E CU21の入力ポートには、ブレーキペダルの踏み込みの有無を検出するブレーキス イッチ 24、並びに、自動車の運転者により「オフ」、 [アクセサリ]、「オン」、及び「スタ ート」といった四つの切換位置のいずれかに切り換え操作され、現在の切換位置に 対応した信号を出力するイダニッシヨンスィッチ 25も接続されている。一方、 ECU21 の出力ポートには、上記燃料噴射弁 2、電動ウォータポンプ 17、電動冷却ファン 19 及びスタータ 15を駆動するための駆動回路が接続されている。  [0024] In addition to the signals from the crank position sensors 11 and 12 and the cam position sensor 14 described above, an accelerator pedal position sensor 22 that detects the amount of depression of the accelerator pedal and an automobile speed are detected at the input port of the ECU 21. Various sensors such as a vehicle speed sensor 23 and a water temperature sensor 26 for detecting the cooling water temperature in the circulation path 16 are connected. In addition, the ECU 21's input port includes a brake switch 24 that detects whether the brake pedal is depressed, and “off”, “accessory”, “on”, and “start” depending on the driver of the car. The switch 25 is connected to the switch 25 which is switched to one of the four switching positions and outputs a signal corresponding to the current switching position. On the other hand, a drive circuit for driving the fuel injection valve 2, the electric water pump 17, the electric cooling fan 19 and the starter 15 is connected to the output port of the ECU 21.
[0025] ECU21は、上記各センサ類から入力される検出信号より把握される自動車及びェ ンジン 1の運転状態に応じて、上記出力ポートに接続された各機器の駆動回路に指 令信号を出力する。こうして、上記燃料噴射弁 2からの燃料噴射の制御、エンジン始 動時のスタータ 15の駆動制御、エンジン 1の自動停止.再始動制御、電動ウォータポ ンプ 17及び電動冷却ファン 19の駆動制御等の各種制御が ECU21により実施され [0025] The ECU 21 detects the vehicle and the vehicle that are grasped from the detection signals input from the sensors. Command signals are output to the drive circuit of each device connected to the output port according to the operating state of engine 1. In this way, control of fuel injection from the fuel injection valve 2, starter 15 drive control at engine start, engine 1 automatic stop / restart control, electric water pump 17 and electric cooling fan 19 drive control, etc. Control is performed by ECU21
[0026] ECU21は、電動ウォータポンプ 17及び電動冷却ファン 19等の駆動制御を通じて 、エンジン 1の冷却を例えば次のようにして行う。すなわち、エンジン 1の通常の燃焼 運転時において、水温センサ 26によって検出される循環経路 16内の冷却水温をェ ンジン温度に対応する値として用い、その冷却水温が目標値 (例えば 95°C)以下とな るよう、電動ウォータポンプ 17及び電動冷却ファン 19が制御される。冷却水温が上 記目標値以下になると、電動ウォータポンプ 17及び電動冷却ファン 19の駆動が停 止される。これにより、エンジン 1の通常の燃焼運転中に同エンジン 1が適切に冷却さ れ、エンジン温度が過上昇しないようにされる。 The ECU 21 cools the engine 1 through, for example, drive control of the electric water pump 17 and the electric cooling fan 19 as follows, for example. That is, during normal combustion operation of the engine 1, the cooling water temperature in the circulation path 16 detected by the water temperature sensor 26 is used as a value corresponding to the engine temperature, and the cooling water temperature is below a target value (for example, 95 ° C). Thus, the electric water pump 17 and the electric cooling fan 19 are controlled. When the cooling water temperature falls below the target value, the drive of the electric water pump 17 and the electric cooling fan 19 is stopped. As a result, the engine 1 is properly cooled during normal combustion operation of the engine 1 so that the engine temperature does not rise excessively.
[0027] 次に、 ECU21による燃料噴射弁 2及びスタータ 15等の駆動制御を通じて行われる エンジン 1の始動及び停止について説明する。  Next, starting and stopping of the engine 1 performed through drive control of the fuel injection valve 2 and the starter 15 by the ECU 21 will be described.
こうしたエンジン 1の始動及び停止は、運転者によるイダニッシヨンスィッチ 25の操 作に基づいて行われる。また、これ以外に、エンジン 1の燃費改善という目的のもとに 、エンジン 1への出力要求に応じてエンジン 1を自動的に停止 ·再始動することも行わ れる。以下、エンジン 1を始動及び停止する手順について、 [イダニッシヨンスィッチ 2 5の操作に基づく始動及び停止]と [エンジン出力要求の有無に基づく自動停止及 び再始動]とで別々に述べる。  The engine 1 is started and stopped based on the operation of the idle switch 25 by the driver. In addition to this, for the purpose of improving fuel consumption of the engine 1, the engine 1 is automatically stopped and restarted in response to an output request to the engine 1. Hereinafter, the procedures for starting and stopping the engine 1 will be described separately for [starting and stopping based on the operation of the idle switch 25] and [automatic stopping and restarting based on whether or not the engine output is requested].
[0028] [イダニッシヨンスィッチ 25の操作に基づく始動及び停止]  [0028] [Starting and stopping based on operation of the idle switch 25]
エンジン 1の停止中、運転者によりイダニッシヨンスィッチ 25が「オフ」から「ァクセサ リ」、「オン」、 「スタート」へと順次切り換えられると、同スィッチ 25が「スタート」に切り換 えられた時点でエンジン 1の始動指令がなされる。この始動指令に基づきスタータ 15 が駆動されてエンジン 1のクランキングが開始され、そのクランキング中に燃料噴射弁 2から燃焼室 3に燃料が噴射供給される。そして、燃焼室 3内で燃料を燃焼させてェ ンジン 1を自立運転させることで、同エンジン 1が始動完了する。また、エンジン 1の運 転中、運転者によりイダニッシヨンスィッチ 25が「オン」から、「アクセサリ」、「オフ」へと 順次切り換えられると、同スィッチ 25が「アクセサリ」に切り換えられた時点でエンジン 1の停止指令がなされる。この停止指令に基づき燃焼室 3内での燃料の燃焼が停止 され、エンジン 1が停止開始される。その後、エンジン回転速度がアイドル回転速度 から「0」まで低下し、エンジン 1の停止完了に至る。 When engine 1 is stopped, the switch 25 is switched to “Start” when the switch 25 is switched from “Off” to “Accessory”, “On” and “Start”. At that point, the engine 1 start command is issued. Based on this start command, the starter 15 is driven to start cranking of the engine 1, and fuel is injected and supplied from the fuel injection valve 2 to the combustion chamber 3 during the cranking. Then, by burning the fuel in the combustion chamber 3 and causing the engine 1 to operate independently, the engine 1 is started. Also the luck of engine 1 When the switch 25 is switched from “On” to “Accessories” and “Off” in turn, the engine 1 stop command is issued when the switch 25 is switched to “Accessories”. Made. Based on this stop command, the combustion of fuel in the combustion chamber 3 is stopped, and the engine 1 is stopped. Thereafter, the engine speed decreases from the idle speed to “0”, and the engine 1 is stopped.
[0029] [エンジン出力要求の有無に基づく自動停止及び再始動]  [0029] [Automatic stop and restart based on engine output request]
エンジン 1の運転中、エンジン 1の出力要求がない場合には、燃焼室 3内での燃料 の燃焼を停止させ、エンジン 1を自動的に停止させる。エンジン 1への出力要求の有 無は、例えば (A)アクセルペダル踏込量力 S「0」である、(B)ブレーキペダルが踏み込 まれている、(C)車速が「0」に近い所定値 a未満である、といった条件が全て成立し て!/、るか否かに基づき判断される。これら (A)〜(C)の条件がすべて成立したとき、 エンジン 1への出力要求がない、言い換えればエンジン 1を運転させておく必要はな い旨判断され、エンジン 1の停止指令がなされて同エンジン 1が自動的に停止される 。エンジン 1の自動停止がなされた後、エンジン 1への出力要求が生じた場合、即ち 上記 (A)〜(C)の条件のうちの一つ以上が不成立となった場合には、エンジン 1の 始動指令がなされる。この始動指令に基づきスタータ 15が駆動されてエンジン 1のク ランキングが開始されるとともに、同クランキング中に燃料噴射弁 2から燃焼室 3に燃 料が噴射供給される。そして、燃焼室 3内で燃料が燃焼してエンジン 1の自立運転が 開始されることで、エンジン 1が自動的に再始動される。  When the engine 1 is not in operation while the engine 1 is in operation, the combustion of fuel in the combustion chamber 3 is stopped and the engine 1 is automatically stopped. The output request to engine 1 is, for example, (A) accelerator pedal depression amount force S “0”, (B) brake pedal depressed, (C) vehicle speed is a predetermined value close to “0” Judgment is made based on whether or not all conditions such as less than a are met! When these conditions (A) to (C) are all satisfied, it is determined that there is no output request to the engine 1, in other words, it is not necessary to keep the engine 1 running, and a stop command for the engine 1 is issued. The engine 1 is automatically stopped. If an output request to engine 1 is made after engine 1 is automatically stopped, that is, if one or more of the above conditions (A) to (C) is not satisfied, A start command is issued. Based on this start command, the starter 15 is driven to start cranking of the engine 1, and fuel is injected and supplied from the fuel injection valve 2 to the combustion chamber 3 during the cranking. The engine 1 is automatically restarted by burning the fuel in the combustion chamber 3 and starting the self-sustaining operation of the engine 1.
[0030] なお近年では、エンジン 1の始動がィグニッシヨンスィッチ 25の操作によるものであ れ、エンジン 1の出力要求に応じた自動的なものであれ、始動開始後の早期に始動 が完了することが要望されている。こうした要望に応えるベぐ上記エンジン 1では始 動開始後に最初に圧縮行程となる気筒で燃料を燃焼させ、当該圧縮行程中に始動 開始後の初爆を迎えるようにしている。ここで、エンジン 1の停止開始後から次回の始 動開始後までの同エンジン 1の一番〜四番気筒における燃料噴射態様及び燃料燃 焼態様を図 2の(a)に示す。  [0030] In recent years, even if the engine 1 is started by the operation of the ignition switch 25 or automatically according to the output request of the engine 1, the start is completed early after the start of the engine. It is requested. In response to these demands, the above-mentioned engine 1 combusts fuel in the cylinder that first becomes the compression stroke after the start of the start, and reaches the first explosion after the start of the start in the compression stroke. Here, the fuel injection mode and the fuel combustion mode in the first to fourth cylinders of the engine 1 from the start of the stop of the engine 1 to the start of the next start are shown in FIG.
[0031] この図から分かるように、燃料噴射弁 2から燃焼室 3への燃料噴射は吸気行程中に 行われ、続く圧縮行程で燃焼室 3内の燃料が燃焼して膨張行程へと移行する。図 2 の(a)の例では、一番気筒の吸気行程で燃料噴射弁 2から燃焼室 3への燃料噴射が 行われた後、同一番気筒が圧縮行程に移行した状態でエンジン 1が停止完了してい る(時刻 Tl)。その後、エンジン 1の始動指令がなされると(時刻 Τ3)、エンジン 1が始 動開始され、始動開始後に最初に圧縮行程となる一番気筒において燃焼室 3内に 存在する燃料が燃焼し、エンジン 1の始動開始後の初爆を迎えることとなる。このよう にエンジン 1の始動開始後に最初に圧縮行程となる気筒にて初爆を迎えるようにする ことで、始動開始後の早期にエンジン 1を自立運転させることができる。なお、以下に おいて、エンジン 1の始動開始後に最初に圧縮行程となる気筒を、必要に応じて「初 爆気筒」と称する。 [0031] As can be seen from this figure, the fuel injection from the fuel injection valve 2 to the combustion chamber 3 is performed during the intake stroke, and the fuel in the combustion chamber 3 is combusted in the subsequent compression stroke and shifts to the expansion stroke. . Figure 2 In the example of (a), after the fuel injection from the fuel injection valve 2 to the combustion chamber 3 is performed in the intake stroke of the first cylinder, the engine 1 is stopped when the same cylinder shifts to the compression stroke. (Time Tl). After that, when the engine 1 start command is issued (time Τ3), the engine 1 starts to start, and the fuel present in the combustion chamber 3 burns in the first cylinder that is in the compression stroke first after the start of the engine. The first explosion after the start of 1 will start. In this way, by starting the first explosion in the cylinder that is in the compression stroke first after the start of the engine 1, the engine 1 can be operated independently at an early stage after the start of the start. In the following, the cylinder that is first in the compression stroke after the start of the engine 1 is referred to as “first explosion cylinder” as necessary.
[0032] ところで、エンジン 1の始動開始後の初回の圧縮行程では、燃焼室 3内のガスの温 度及び同燃焼室 3内の圧力がエンジン 1の通常の燃焼運転時におけるそれに比べ、 [背景技術]の欄に記載した理由によって高くなる。このため、始動開始後に最初に 圧縮行程を迎える気筒では、燃焼室 3内での燃料の自己着火(プレイダニッシヨン) が発生するおそれがある。  [0032] By the way, in the first compression stroke after the start of the engine 1, the temperature of the gas in the combustion chamber 3 and the pressure in the combustion chamber 3 are compared with those during normal combustion operation of the engine 1. High for the reasons listed in the "Technology" column. For this reason, in the cylinder that first reaches the compression stroke after starting, there is a risk that self-ignition (prediction) of the fuel in the combustion chamber 3 may occur.
[0033] このため、上述した冷却装置によるエンジン 1の冷却力 S、通常の燃焼運転時だけで なくエンジン 1の停止完了時及びそれ以後にも実施される。具体的には、図 2の (b) に示されるように、エンジン 1の停止完了時及びそれ以後(時刻 T1以後)であって、 エンジン 1の温度を表す循環経路 16内の冷却水温が予め定められた閾値以上であ るときには、図 2の(c)に示されるように電動ウォータポンプ 17が駆動されるとともに、 図 2の(d)に示されるように電動冷却ファン 19が駆動される。これにより、エンジン 1が 冷却され、次回の始動開始後における最初の圧縮行程でのプレイダニッシヨン発生 の抑制が図られる。その後、冷却水温が上記閾値未満になると(時刻 T2)、電動ゥォ ータポンプ 17及び電動冷却ファン 19が駆動停止され、冷却装置によるエンジン 1の 冷却が停止される。  [0033] Therefore, the cooling power S of the engine 1 by the cooling device described above is performed not only during normal combustion operation but also when the engine 1 is stopped and thereafter. Specifically, as shown in FIG. 2 (b), the cooling water temperature in the circulation path 16 representing the temperature of the engine 1 is preliminarily set at and after the stop of the engine 1 (after time T1). When it is equal to or greater than the predetermined threshold, the electric water pump 17 is driven as shown in FIG. 2 (c), and the electric cooling fan 19 is driven as shown in FIG. 2 (d). . As a result, the engine 1 is cooled, and it is possible to suppress the occurrence of play dandelion in the first compression stroke after the start of the next start. Thereafter, when the cooling water temperature becomes lower than the above threshold (time T2), the electric water pump 17 and the electric cooling fan 19 are stopped, and the cooling of the engine 1 by the cooling device is stopped.
[0034] エンジン 1の始動開始後に最初に圧縮行程となる気筒(初爆気筒)でのプレイダニ ッシヨンの発生のしゃすさ力 S、その始動開始直前のエンジン 1の停止完了時における 初爆気筒のピストン 4の位置に応じて変わってくることは、 [背景技術]の欄で述べた とおりである。すなわち、初爆気筒のピストン 4の位置が図 3 (a)に示されるように下死 点の位置であるときには、上記最初の圧縮行程での燃焼室 3内のガスの温度及び同 燃焼室 3内の圧力が最も高くなることから、上記プレイダニッシヨンの発生しやすさが 最も大となる。また、初爆気筒のピストン 4の位置が図 3 (b)に示されるように下死点よ りも上死点寄りの位置であるときには、同上死点に近い位置であるほど上記最初の圧 縮行程での燃焼室 3内のガスの温度及び同燃焼室 3内の圧力が低くなって、上記プ レイダニッシヨンの発生しやすさが徐々に小となってゆく。従って、初爆気筒のピスト ン 4の位置が下死点にあると仮定したうえで上記プレイダニッシヨンを回避し得るよう 上記閾値を低!/、値に設定すれば、上記プレイダニッシヨンの的確な抑制を実現する ことはでさる。 [0034] Splaying force S of play mushroom generation in the cylinder (first explosion cylinder) that is first in the compression stroke after the start of engine 1 is started, piston of the first explosion cylinder at the time of completion of stop of engine 1 immediately before the start of the start What changes depending on the position of 4 is as described in the [Background Technology] column. That is, the position of the piston 4 of the first explosion cylinder is dead as shown in Fig. 3 (a). At the point position, the temperature of the gas in the combustion chamber 3 and the pressure in the combustion chamber 3 in the first compression stroke are the highest, so the predancy is most likely to occur. It becomes. In addition, when the position of piston 4 of the first explosion cylinder is closer to the top dead center than the bottom dead center as shown in FIG. The temperature of the gas in the combustion chamber 3 and the pressure in the combustion chamber 3 during the contraction stroke are lowered, and the ease of occurrence of the above-mentioned regeneration is gradually reduced. Therefore, assuming that the position of piston 4 of the first explosion cylinder is at the bottom dead center, if the threshold value is set to a low value to avoid the above-mentioned play-dance, It is not possible to achieve accurate control.
[0035] しかし、初爆気筒のピストン 4の実際の位置が下死点よりも上死点寄りである場合に は、当該閾値が上記プレイダニッシヨンを的確に抑制するうえで低くすぎる値になり、 エンジン 1の停止完了時及びそれ以後において、冷却装置の駆動による同エンジン 1の冷却が必要以上に行われることになる。これは、電動ウォータポンプ 17及び電動 冷却ファン 19の駆動のために無駄に電力が消費される結果となる。更には、ェンジ ン 1の冷却水温を当該閾値未満まで低下させるために長!/、時間がかかるため、電動 ウォータポンプ 17及び電動冷却ファン 19の駆動停止タイミング(図 2の時亥 ijT2)が遅 くなるとともに、それが運転者に違和感を与える原因となる。  [0035] However, when the actual position of the piston 4 of the first explosion cylinder is closer to the top dead center than the bottom dead center, the threshold value is too low to accurately suppress the play-dance. Thus, at the completion of the stop of the engine 1 and thereafter, the cooling of the engine 1 by driving the cooling device is performed more than necessary. This results in wasteful power consumption for driving the electric water pump 17 and the electric cooling fan 19. Furthermore, since it takes a long time to lower the coolant temperature of engine 1 below the threshold value, it takes time, so the drive stop timing of the electric water pump 17 and the electric cooling fan 19 (time ijT2 in FIG. 2) is delayed. As a result, the driver feels uncomfortable.
[0036] そこで本実施形態では、上述した閾値をエンジン 1の停止完了時のクランク角に応 じて可変設定する。より詳しくは、エンジン 1の停止完了時のクランク角が、次回の始 動開始後に最初に圧縮行程となる気筒(初爆気筒)のピストン 4の位置が下死点とな るクランク角であるとき、上記閾値を最も低い値であって、次回の始動開始時の初爆 気筒でのプレイダニッシヨン発生を的確に抑制し得る値 (冷却水温)に設定する。また 、エンジン 1の停止完了時のクランク角が、次回の始動開始後に最初に圧縮行程とな る気筒(初爆気筒)のピストン 4の位置が下死点よりも上死点寄りの位置となるクランク 角であるときには、そのピストン 4の位置が上死点に近い位置となるクランク角である ほど、上記閾値を徐々に高い値に設定する。  Therefore, in the present embodiment, the above-described threshold value is variably set according to the crank angle when the stop of the engine 1 is completed. More specifically, when the crank angle at the completion of the stop of the engine 1 is the crank angle at which the position of the piston 4 of the cylinder (first explosion cylinder) that becomes the compression stroke first after the start of the next start becomes the bottom dead center. The above threshold value is set to the lowest value (cooling water temperature) that can accurately suppress the occurrence of play dandelion in the first explosion cylinder at the start of the next start. In addition, the crank angle at the completion of the stop of the engine 1 is such that the position of the piston 4 of the cylinder (first explosion cylinder) that becomes the compression stroke first after the start of the next start is closer to the top dead center than the bottom dead center. When the crank angle is reached, the threshold value is gradually set higher as the crank angle at which the piston 4 is closer to the top dead center.
[0037] 図 4は、次回の始動開始後に最初に圧縮行程となる気筒(初爆気筒)のピストン 4の エンジン停止完了時の位置と上述した閾値との関係を示す。すなわち、初爆気筒の ピストン 4の位置が下死点のときには、上記閾値が次回の始動時の初爆気筒でのプ レイダニッシヨンを的確に抑制し得る低い値になる。また、初爆気筒のピストン 4の位 置が下死点よりも上死点寄りの位置にあるときには、ピストン 4の位置が上死点に近い 位置になるほど、上記閾値が徐々に高い値へと変化させられる。このため、閾値が次 回のエンジン始動時における初爆気筒でのプレイダニッシヨン発生を的確に抑制す るうえで低すぎる値になることはなくなり、エンジン 1の停止完了時及びそれ以後にお いて、冷却装置による同エンジン 1の冷却が必要以上に行われることもなくなる。 FIG. 4 shows the relationship between the position of the piston 4 of the cylinder 4 in the first compression stroke after the start of the next start (first explosion cylinder) when the engine stop is completed and the above-described threshold value. That is, the first explosion cylinder When the position of the piston 4 is at the bottom dead center, the above threshold value is a low value that can accurately suppress the reproduction in the first explosion cylinder at the next start. In addition, when the position of piston 4 of the first explosion cylinder is closer to the top dead center than the bottom dead center, the threshold value gradually becomes higher as the position of piston 4 is closer to the top dead center. Can be changed. For this reason, the threshold value will not be too low to accurately suppress the occurrence of play dandruff in the first explosion cylinder at the next engine start. Therefore, the cooling of the engine 1 by the cooling device is not performed more than necessary.
[0038] 以上により、次回のエンジン始動時における初爆気筒でのプレイダニッシヨン発生 を的確に抑制しつつ、エンジン停止中の冷却装置によるエンジン 1の必要以上の冷 却を抑制することができ、ひいては上述した不具合の発生を回避することができるよう になる。 [0038] With the above, it is possible to suppress the cooling of the engine 1 more than necessary by the cooling device while the engine is stopped, while accurately suppressing the occurrence of play dandelion in the first explosion cylinder at the next engine start. As a result, the occurrence of the above-described problems can be avoided.
[0039] 次に、冷却装置の駆動制御の手順について、冷却制御ルーチンを示す図 5のフロ 一チャートを参照して説明する。この冷却制御ルーチンは、 ECU21を通じて、例え ば所定時間毎の時間割り込みにて周期的に実行される。  Next, the drive control procedure of the cooling device will be described with reference to the flowchart of FIG. 5 showing the cooling control routine. This cooling control routine is periodically executed through the ECU 21 by, for example, a time interruption every predetermined time.
[0040] ステップ S101において、 ECU21は、エンジン 1の停止完了時点であるか否かを判 断し、エンジン 1の停止完了時点であると判断すると、ステップ S 102に移行する。ス テツプ S 102において、 ECU21は、クランクポジションセンサ 11 , 12及びカムポジシ ヨンセンサ 14からの信号に基づきエンジン停止完了時のクランク角を検出し、そのク ランク角に基づき上述した閾値を設定する。続くステップ S 103において、 ECU21は 、エンジン 1が停止状態であるか否かを判断する。ここで否定判定であれば、ェンジ ン 1において通常の燃焼運転が行われていることになる。この場合、 ECU21はステツ プ S109に移行して、通常の冷却制御を実施する、すなわち冷却水温が目標値 (この 実施形態では 95°C)以下となるよう電動ウォータポンプ 17及び電動冷却ファン 19を 駆動制御する。  [0040] In step S101, the ECU 21 determines whether or not it is the time when the stop of the engine 1 is completed. When it is determined that it is the time when the stop of the engine 1 is completed, the ECU 21 proceeds to step S102. In step S102, the ECU 21 detects the crank angle at the completion of the engine stop based on the signals from the crank position sensors 11, 12 and the cam position sensor 14, and sets the above-described threshold based on the crank angle. In subsequent step S103, the ECU 21 determines whether or not the engine 1 is stopped. If the determination is negative, engine 1 is performing normal combustion operation. In this case, the ECU 21 proceeds to step S109 to perform normal cooling control, i.e., the electric water pump 17 and the electric cooling fan 19 are set so that the cooling water temperature is equal to or lower than the target value (95 ° C in this embodiment). Drive control.
[0041] 一方、ステップ S103で否定判定であれば、エンジン 1の停止完了時及びそれ以後 の停止中であることになる。この場合、 ECU21は、冷却水温が上記閾値以上である こと(S 104: YES)、及びバッテリ 20の蓄電量であるバッテリ残量が下限値以上であ ること(S 105: YES)を条件に、エンジン停止中に冷却装置を駆動するための処理( S 106、 S107)を実行する。なお、上記バッテリ残量は、自動車に搭載された発電機 によるバッテリ 20の充電量、及び自動車に搭載された電気機器を作動させる際のバ ッテリ 20からの放電量等に基づき求められる。 [0041] On the other hand, if a negative determination is made in step S103, it means that the engine 1 has been stopped and has been stopped thereafter. In this case, the ECU 21 is based on the condition that the coolant temperature is equal to or higher than the above threshold value (S104: YES) and that the remaining battery level, which is the stored amount of the battery 20, is equal to or higher than the lower limit (S105: YES). , A process to drive the cooling device while the engine is stopped ( S106 and S107) are executed. The battery remaining amount is obtained based on the amount of charge of the battery 20 by the generator mounted on the vehicle, the amount of discharge from the battery 20 when operating the electric device mounted on the vehicle, and the like.
[0042] エンジン停止中に冷却装置を駆動するための処理は、上記閾値に対する冷却水 温の温度差を算出するステップ S 106の処理と、その温度差に応じて電動ウォータポ ンプ 17の流量及び電動冷却ファン 19の送風量を制御するステップ S107の処理とを 含む。より詳しくは、上記温度差が大となるほど、図 6に示されるように電動ウォータポ ンプ 17の流量が徐々に多くなるよう同ポンプ 17が制御されるとともに、図 7に示され るように電動冷却ファン 19の送風量が徐々に多くなるよう同ファン 19が制御される。 これにより、エンジン停止中における冷却水によるエンジン 1の冷却は、上記閾値に 対し冷却水温が高いほど強力に行われ、上記閾値に対し冷却水温が近づくほど弱 められる。 [0042] The process for driving the cooling device while the engine is stopped includes the process of step S106 for calculating the temperature difference of the cooling water temperature with respect to the threshold value, the flow rate of the electric water pump 17 and the electric motor pump according to the temperature difference. And the process of step S107 for controlling the air flow rate of the cooling fan 19. More specifically, as the temperature difference becomes larger, the pump 17 is controlled so that the flow rate of the electric water pump 17 gradually increases as shown in FIG. 6, and the electric cooling as shown in FIG. The fan 19 is controlled so that the air flow rate of the fan 19 gradually increases. Thereby, the cooling of the engine 1 by the cooling water while the engine is stopped is performed more strongly as the cooling water temperature is higher than the threshold value, and is decreased as the cooling water temperature approaches the threshold value.
[0043] こうした冷却水によるエンジン 1の冷却を行った結果、ステップ S 104において冷却 水温が上記閾値未満になると、 ECU21はステップ S108に移行して、電動ウォータ ポンプ 17及び電動冷却ファン 19の駆動を停止する。  [0043] As a result of cooling the engine 1 with the cooling water as described above, if the cooling water temperature becomes lower than the threshold value in step S104, the ECU 21 proceeds to step S108, and the electric water pump 17 and the electric cooling fan 19 are driven. Stop.
[0044] 以上詳述した本実施形態は、以下に示す利点を有する。  The embodiment described above in detail has the following advantages.
( 1 )エンジン 1の停止完了時のクランク角が、次回の始動開始後に最初に圧縮行程 となる気筒(初爆気筒)のピストン 4が下死点に位置するクランク角である場合、上記 閾値が次回の始動開始時に初爆気筒でプレイダニッシヨンの発生しな!/、冷却水温( 下限値)に設定されるため、そのプレイダニッシヨンの発生を的確に抑制することがで きる。更に、エンジン 1の停止完了時のクランク角が、次回の始動開始後に最初に圧 縮行程となる気筒のピストン 4の位置が下死点よりも上死点寄りの位置となるクランク 角であるときには、そのピストン 4の位置が上死点に近くなるクランク角であるほど、上 記閾値が上述した下限値よりも高い値に設定される。これにより、上記プレイダニッシ ヨンの発生を的確に抑制しながらも、上記閾値が同プレイダニッシヨンを的確に抑制 するうえで低すぎる値になることを抑制でき、エンジン 1の停止中における同エンジン 1の必要以上の冷却を抑制することができる。  (1) When the crank angle at the completion of the stop of engine 1 is the crank angle at which piston 4 of the cylinder (first explosion cylinder) that is first in the compression stroke after the start of the next start is located at the bottom dead center, the above threshold value is At the start of the next start, no pre-dansion occurs in the first-explosion cylinder! / And the cooling water temperature (lower limit) is set, so the occurrence of pre-dansion can be suppressed accurately. Furthermore, when the crank angle at the completion of the stop of the engine 1 is the crank angle at which the position of the piston 4 of the cylinder that is first in the compression stroke after the start of the next start is closer to the top dead center than the bottom dead center The threshold value is set to a value higher than the lower limit value as the crank angle at which the piston 4 is closer to the top dead center. As a result, while the occurrence of the above-mentioned playanch is accurately suppressed, it is possible to suppress the above threshold value from being too low for accurately suppressing the playaidness, and the engine 1 while the engine 1 is stopped. The cooling more than necessary can be suppressed.
[0045] (2)停止中のエンジン 1を冷却する際、上記閾値に対し冷却水温が高いときには電 動ウォータポンプ 17の流量及び電動冷却ファン 19の送風量を多くし、上記閾値に対 し冷却水温が近くなるほど電動ウォータポンプ 17の流量及び電動冷却ファン 19の送 風量を徐々に少なくなるようにした。このため、停止中のエンジン 1の冷却は、上記閾 値に対し冷却水温が高いほど強力に行われ、上記閾値に対し冷却水温が近づくほ ど弱められる。従って、無駄に電動ウォータポンプ 17及び電動冷却ファンを駆動する ことなく、速やかに冷却水温を閾値未満とすることができる。 [0045] (2) When cooling the stopped engine 1, if the cooling water temperature is higher than the threshold value, The flow rate of the dynamic water pump 17 and the airflow rate of the electric cooling fan 19 were increased, and the flow rate of the electric water pump 17 and the airflow rate of the electric cooling fan 19 were gradually decreased as the cooling water temperature became closer to the above threshold. . For this reason, the cooling of the stopped engine 1 is performed more strongly as the cooling water temperature is higher than the threshold value, and is decreased as the cooling water temperature approaches the threshold value. Therefore, the cooling water temperature can be quickly made lower than the threshold without driving the electric water pump 17 and the electric cooling fan unnecessarily.
[0046] (3)燃焼運転を自動的に停止 ·再開するエンジン 1においては、エンジン 1の停止 完了後あまり時間をおかずに始動開始される機会が多くなり、その始動開始時にお けるプレイダニッシヨン発生の機会も多くなる。しかし、こうしたプレイダニッシヨンの発 生を的確に抑制しつつ、停止中のエンジン 1の必要以上の冷却を抑制することがで きる。 [0046] (3) Engine 1 that automatically stops and restarts combustion operation has more opportunities to start without taking too much time after the completion of stop of engine 1, and play Danish at the start of the start There will be more opportunities for Yong. However, it is possible to suppress the cooling of the stopped engine 1 more than necessary while appropriately suppressing the occurrence of such playdansion.
[0047] 次に、本発明の第 2実施形態を図 8及び図 10に基づき説明する。  Next, a second embodiment of the present invention will be described based on FIG. 8 and FIG.
この実施形態は、エンジン 1の始動を短時間で完了させるため、始動開始後に二回 目に圧縮行程となる気筒で燃料を燃焼させ、当該圧縮行程中に始動開始後の初爆 を迎えるようにしたものである。  In this embodiment, in order to complete the start-up of the engine 1 in a short time, the fuel is burned in the cylinder that becomes the compression stroke for the second time after the start of the start, and the first explosion after the start of the start is reached during the compression stroke. It is a thing.
[0048] 図 8の(a)は、この実施形態におけるエンジン 1の停止開始後から次回の始動開始 後までの同エンジン 1の一番〜四番気筒における燃料噴射態様及び燃料燃焼態様 を示したタイムチャートである。この図の例では、一番気筒が吸気行程から圧縮行程 に移行した状態で且つ三番気筒が排気行程から吸気行程に移行した状態で、ェン ジン 1が停止完了している(時刻 Tl)。なお、この実施形態では、エンジン 1の停止完 了時に圧縮行程となる気筒(図 8の(a)では一番気筒)において、その停止完了直前 の吸気行程での燃料噴射は行われない。その後、エンジン 1の始動指令がなされる と(時刻 Τ3)、エンジン 1が始動開始され、始動開始後に最初に吸気行程となる気筒 (図 8の(a)では三番気筒)で燃料噴射弁 2から燃焼室 3への燃料噴射が行われる。 そして、当該三番気筒が圧縮行程を迎えたとき、すなわち始動開始後の二回目の圧 縮行程を迎えたとき、同三番気筒の燃焼室 3内に存在する燃料が燃焼し、エンジン 1 の始動開始後の初爆を迎えることとなる。なお、以下において、エンジン 1の始動開 始後に二回目に圧縮行程となる気筒を、必要に応じて「初爆気筒」と称する。 [0049] ところで、エンジン 1の始動開始後の二回目の圧縮行程でも、燃焼室 3内のガスの 温度及び同燃焼室 3内の圧力がエンジン 1の通常の燃焼運転時におけるそれに比 ベ、 [背景技術]の欄に記載した理由によって高くなる。このため、始動開始後に二回 目に圧縮行程を迎える気筒でも、燃焼室 3内でのプレイダニッシヨンが発生するおそ れがある。こうしたプレイダニッシヨンを抑制すベぐエンジン 1の停止完了時及びそ れ以後において図 8に示されるようにエンジン 1の冷却水温が閾値未満となるよう冷 却装置が駆動される。 [0048] Fig. 8 (a) shows the fuel injection mode and the fuel combustion mode in the first to fourth cylinders of the engine 1 from the start of the stop of the engine 1 to the start of the next start in this embodiment. It is a time chart. In the example in this figure, engine 1 has been stopped when the first cylinder has transitioned from the intake stroke to the compression stroke and the third cylinder has transitioned from the exhaust stroke to the intake stroke (time Tl). . In this embodiment, the fuel injection in the intake stroke immediately before the completion of the stop is not performed in the cylinder that is in the compression stroke when the stop of the engine 1 is completed (the first cylinder in FIG. 8A). After that, when the engine 1 is instructed to start (time Τ3), the engine 1 starts to start and the fuel injection valve 2 in the cylinder (first cylinder in FIG. 8 (a)) that is the first in the intake stroke after the start is started. To the combustion chamber 3. When the third cylinder reaches the compression stroke, that is, when the second compression stroke after the start of the start is reached, the fuel existing in the combustion chamber 3 of the third cylinder burns, and the engine 1 It will be the first explosion after starting. In the following, the cylinder that is in the compression stroke for the second time after the start of the engine 1 will be referred to as “first explosion cylinder” as necessary. [0049] By the way, even in the second compression stroke after the start of the engine 1, the temperature of the gas in the combustion chamber 3 and the pressure in the combustion chamber 3 are compared with those in the normal combustion operation of the engine 1, It becomes high for the reason described in the “Background Art” column. For this reason, even in a cylinder that reaches the compression stroke for the second time after the start of start-up, there is a possibility that pre-danimation in the combustion chamber 3 may occur. The cooling device is driven so that the cooling water temperature of the engine 1 becomes less than the threshold value as shown in FIG. 8 when the stop of the engine 1 that suppresses such play dandy is completed and thereafter.
[0050] そして、上記閾値は、始動開始時のプレイダニッシヨン発生を的確に抑制しつつ、 エンジン停止中の冷却装置によるエンジン 1の必要以上の冷却を抑制すベぐェン ジン 1の停止完了時のクランク角に応じて設定される。  [0050] Then, the above threshold value prevents the engine 1 from being cooled more than necessary by the cooling device while the engine is stopped, while accurately suppressing the occurrence of play dandy at the start of starting. It is set according to the crank angle at the time of completion.
[0051] より詳しくは、エンジン 1の停止完了時のクランク角が、次回の始動開始後に二回目 に圧縮行程となる気筒(初爆気筒)のピストン 4の位置が図 9 (a)に示されるように最も 下死点寄りの位置となるクランク角であるとき、上記閾値を最も低い値であって、次回 の始動開始時の初爆気筒でのプレイダニッシヨン発生を的確に抑制し得る値 (冷却 水温)に設定する。これは、初爆気筒上記ピストン 4の位置が図 9 (a)に示されるように 最も下死点寄りの位置であるときには、上記二回目の圧縮行程での燃焼室 3内のガ スの温度及び同燃焼室 3内の圧力が最も高くなり、上記プレイダニッシヨンの発生し やすさが最も大となるためである。  [0051] More specifically, FIG. 9 (a) shows the position of the piston 4 of the cylinder (first explosion cylinder) in which the crank angle when the stop of the engine 1 is completed becomes the compression stroke for the second time after the start of the next start. When the crank angle is closest to the bottom dead center, the above threshold is the lowest value, and the value that can accurately suppress the occurrence of play dandruff in the first explosion cylinder at the start of the next start. Set to (cooling water temperature). This is because the temperature of the gas in the combustion chamber 3 during the second compression stroke when the position of the piston 4 above the first explosion cylinder is closest to the bottom dead center as shown in FIG. 9 (a). This is because the pressure in the combustion chamber 3 is the highest and the predancy is most likely to occur.
[0052] また、エンジン 1の停止完了時のクランク角が、次回の始動開始後に二回目に圧縮 行程となる気筒(初爆気筒)のピストン 4の位置が図 9 (b)に示されるように最も下死点 寄りの位置(図 9 (a) )よりも上死点寄りの位置となるクランク角であるときには、そのピ ストン 4の位置が上死点に近い位置となるクランク角であるほど、上記閾値を徐々に 高い値に設定する。これは、上記ピストン 4の位置が図 9 (b)に示されるように最も下 死点寄りの位置(図 9 (a) )よりも上死点寄りの位置であるときには、同上死点に近!/、 位置であるほど上記二回目の圧縮行程での燃焼室 3内のガスの温度及び同燃焼室 3内の圧力が低くなり、上記プレイダニッシヨンの発生しやすさが徐々に小となってゆ くためである。  [0052] Further, as shown in FIG. 9 (b), the position of the piston 4 of the cylinder (first explosion cylinder) in which the crank angle at the completion of the stop of the engine 1 is the second compression stroke after the start of the next start is shown. When the crank angle is closer to the top dead center than the position closest to the bottom dead center (Fig. 9 (a)), the higher the crank angle the piston 4 is closer to the top dead center. Then, gradually set the threshold value to a higher value. This is because when the position of the piston 4 is closer to the top dead center than the position closest to the bottom dead center (FIG. 9 (a)) as shown in FIG. ! /, The lower the position, the lower the gas temperature in the combustion chamber 3 and the pressure in the combustion chamber 3 in the second compression stroke, so It is for becoming.
[0053] 図 10は、次回の始動開始後に二回目に圧縮行程となる気筒(初爆気筒)のピストン 4のエンジン停止完了時の位置と上述した閾値との関係を示す。すなわち、初爆気 筒のピストン 4の位置が最も下死点寄りの位置のときには、上記閾値が次回の始動時 の初爆気筒でのプレイダニッシヨンを的確に抑制し得る低い値になる。また、初爆気 筒のピストン 4の位置が最も下死点寄りの位置よりも上死点寄りの位置であるときには 、ピストン 4の位置が上死点に近い位置になるほど、上記閾値が徐々に高い値へと変 化させられる。このため、閾値が次回のエンジン始動時における初爆気筒でのプレイ ダニッシヨン発生を的確に抑制するうえで低すぎる値になることはなくなり、エンジン 1 の停止完了時及びそれ以後において、冷却装置による同エンジン 1の冷却が必要以 上に行われることもなくなる。 [0053] FIG. 10 shows the piston of the cylinder (first explosion cylinder) that is in the compression stroke for the second time after the start of the next start. 4 shows the relationship between the position when the engine stop is completed and the threshold value described above. In other words, when the position of the piston 4 of the first explosion cylinder is closest to the bottom dead center, the threshold value is a low value that can accurately suppress the play-dance in the first explosion cylinder at the next start. Further, when the position of the piston 4 of the first explosion cylinder is closer to the top dead center than the position closest to the bottom dead center, the threshold value gradually increases as the position of the piston 4 approaches the top dead center. It can be changed to a higher value. For this reason, the threshold value will not be too low to accurately suppress the occurrence of play dans in the first explosion cylinder at the next engine start. Engine 1 will not be cooled more than necessary.
[0054] 以上詳述した本実施形態は、以下に示す利点を有する。 The embodiment described in detail above has the following advantages.
(4)エンジン 1の停止完了時のクランク角力 S、次回の始動開始後に二回目に圧縮行 程となる気筒(初爆気筒)のピストン 4が最も下死点寄りに位置するクランク角である場 合、上記閾値が次回の始動開始時に初爆気筒でプレイダニッシヨンの発生しな!/、冷 却水温(下限値)に設定されるため、そのプレイダニッシヨンの発生を的確に抑制する こと力 Sできる。更に、エンジン 1の停止完了時のクランク角が、次回の始動開始後に二 回目に圧縮行程となる気筒のピストン 4の位置が最も下死点寄りの位置よりも上死点 寄りの位置となるクランク角であるときには、そのピストン 4の位置が上死点に近くなる クランク角であるときほど、上記閾値が上述した下限値よりも高い値に設定される。こ れにより、上記プレイダニッシヨンの発生を的確に抑制しながらも、上記閾値が同プレ イダニッシヨンを的確に抑制するうえで低すぎる値になることを抑制でき、エンジン 1の 停止中における同エンジン 1の必要以上の冷却を抑制することができる。  (4) When the crank angle force S at the completion of the stop of engine 1 is the crank angle at which piston 4 of the cylinder (first explosion cylinder) that is in the compression stroke for the second time after the start of the next start is located closest to the bottom dead center In this case, the above threshold is set to the first explosion cylinder at the start of the next start so that no play Danish occurs! /, And the cooling water temperature (lower limit) is set, so that the occurrence of play Danish is accurately suppressed. That power S. Furthermore, the crank angle at the completion of the stop of the engine 1 is such that the position of the piston 4 of the cylinder that becomes the compression stroke for the second time after the start of the next start is closer to the top dead center than the position closest to the bottom dead center. When the angle is an angle, the threshold value is set to a value higher than the lower limit value as the crank angle at which the position of the piston 4 approaches the top dead center. As a result, it is possible to prevent the occurrence of the above-mentioned playanchion while suppressing the threshold value from being too low for accurately suppressing the above-mentioned playaidness. Cooling more than necessary can be suppressed.
[0055] (5)第 1実施形態の(2)及び(3)と同様の利点を得ることができる。 [0055] (5) The same advantages as (2) and (3) of the first embodiment can be obtained.
なお、上記各実施形態は、例えば以下のように変更することもできる。  In addition, each said embodiment can also be changed as follows, for example.
第 1実施形態では、閾値を図 4に示されるようにリニアに変化させた力 S、これに代え て閾値を段階的に変化させてもよい。例えば閾値を図 1 1に示されるように二段階に 変化させたり、あるいは三段階以上に変化させたりしてもよい。この場合も第 1実施形 態の(1 )と同等の利点を得ることができる。なお、第 1実施形態のように閾値をリニア に変化させれば、エンジン 1の停止中における必要以上の同エンジン 1の冷却の抑 制と、次回のエンジン 1の始動開始時におけるプレイダニッシヨン発生の抑制とを、よ り好適に両立させることができる。 In the first embodiment, the force S is linearly changed as shown in FIG. 4, and the threshold value may be changed stepwise instead. For example, the threshold value may be changed in two steps as shown in FIG. 11 or may be changed in three steps or more. In this case, the same advantage as (1) of the first embodiment can be obtained. If the threshold value is changed linearly as in the first embodiment, cooling of the engine 1 is suppressed more than necessary while the engine 1 is stopped. Therefore, it is possible to more appropriately achieve both the control of the play and the suppression of the occurrence of play dandy at the start of the start of the engine 1 next time.
[0056] 第 2実施形態では、閾値を図 10に示されるようにリニアに変化させた力 S、これに代 えて閾値を段階的に変化させてもよい。例えば閾値を図 12に示されるように二段階 に変化させたり、あるいは三段階以上に変化させたりしてもよい。この場合も第 2実施 形態の(4)と同等の利点を得ることができる。なお、第 2実施形態のように閾値をリニ ァに変化させれば、エンジン 1の停止中における必要以上の同エンジン 1の冷却の 抑制と、次回のエンジン 1の始動開始時におけるプレイダニッシヨン発生の抑制とを、 より好適に両立させることができる。  In the second embodiment, as shown in FIG. 10, the force S is linearly changed as shown in FIG. 10, and the threshold value may be changed stepwise instead. For example, the threshold value may be changed in two steps as shown in FIG. 12, or may be changed in three steps or more. In this case, the same advantage as (4) of the second embodiment can be obtained. If the threshold is changed to linear as in the second embodiment, the cooling of the engine 1 is suppressed more than necessary when the engine 1 is stopped, and the next time the start-up of the engine 1 is started. Suppression of generation can be more suitably achieved.
[0057] エンジン 1の停止中における電動ウォータポンプ 17の流量に関しては、必ずしも図 6に示されるように閾値に対する冷却水温の温度差に応じて徐々に変化させる必要 はなぐ上記温度差に応じて段階的に変化させてもよい。  [0057] The flow rate of the electric water pump 17 while the engine 1 is stopped does not necessarily need to be gradually changed according to the temperature difference of the cooling water temperature with respect to the threshold as shown in FIG. May be changed.
[0058] 上記電動ウォータポンプ 17の流量は固定されて!/、てもよ!/、。  [0058] The flow rate of the electric water pump 17 is fixed! /, Or! /.
エンジン 1の停止中における電動冷却ファン 19の送風量に関しても、必ずしも図 7 に示されるように上記温度差に応じて徐々に変化させる必要はなぐ上記温度差に 応じて段階的に変化させてもよい。  The amount of air blown by the electric cooling fan 19 when the engine 1 is stopped is not necessarily changed gradually according to the temperature difference as shown in FIG. 7, but may be changed stepwise according to the temperature difference. Good.
[0059] 電動冷却ファン 19の送風量は固定されて!/、てもよ!/、。  [0059] The amount of air blown by the electric cooling fan 19 is fixed! /!
エンジン 1の温度を表すパラメータとして循環経路 16内の冷却水温を用いた力 こ れに代えてエンジン 1の潤滑油温などの他のパラメータを用いてもよい。  As a parameter representing the temperature of the engine 1, force using the cooling water temperature in the circulation path 16 may be replaced with another parameter such as the lubricating oil temperature of the engine 1.
[0060] 出力要求に応じて自動的に停止 ·再始動するエンジン 1に本発明を適用した力 停 止 ·始動が運転者によるイダニッシヨンスィッチ 25のみによって行われるエンジンに本 発明を適用してもよい。  [0060] Stopping automatically in response to an output request · Power stop applying the present invention to the engine 1 to be restarted · Applying the present invention to an engine that is started only by the idance switch 25 by the driver Also good.
[0061] 燃焼室 3に燃料を噴射する直噴式のエンジン 1に本発明を適用した力 吸気ポート に燃料を噴射するポート噴射式のエンジンに本発明を適用してもよい。  The present invention may be applied to a port injection type engine in which fuel is injected into a force intake port 1 in which the present invention is applied to a direct injection type engine 1 that injects fuel into the combustion chamber 3.
直列六気筒、 V型六気筒、 V型八気筒など、四気筒以外の形式のエンジンに本発 明を適用してもよい。  The present invention may be applied to engines of types other than four cylinders, such as in-line six cylinders, V type six cylinders, and V type eight cylinders.

Claims

請求の範囲 The scope of the claims
[1] ピストンを有する複数の気筒を備え、機関始動開始後の初回の圧縮行程と二回目 の圧縮行程とのいずれか一方で初爆を迎える内燃機関に適用される冷却制御装置 において、  [1] A cooling control device that is applied to an internal combustion engine that includes a plurality of cylinders having pistons and that undergoes an initial explosion in one of a first compression stroke after the start of engine start and a second compression stroke.
前記機関とは別の駆動源により駆動されて同機関を冷却する冷却装置と、 前記機関の停止完了時及びそれ以後であって機関温度が機関始動時のプレイグ ニッシヨンを招くおそれのある所定値以上であるときに、前記冷却装置を駆動する制 御部と、  A cooling device that is driven by a driving source other than the engine to cool the engine, and a predetermined value that may cause pre-ignition when starting the engine at and after the completion of the stop of the engine. A control unit for driving the cooling device, and
前記所定値を前記機関の停止完了時のクランク角に応じて設定する設定部であつ て、同設定部は、機関停止完了時のクランク角が次回の機関始動後に初爆を迎える 気筒のピストン位置が上死点寄りの位置となるクランク角であるときには、機関停止完 了時のクランク角が次回の機関始動後に初爆を迎える気筒のピストン位置が下死点 寄りの位置となるクランク角であるときに比べ、前記所定値を高い値に設定することと を備える冷却制御装置。  A setting unit that sets the predetermined value in accordance with a crank angle at the time when the engine stop is completed. The setting unit is configured such that the crank angle at the completion of the engine stop reaches the first explosion after the next engine start. Is the crank angle at the position close to top dead center, the crank angle at the completion of engine stop is the crank angle at which the piston position of the cylinder that reaches the first explosion after the next engine start is close to bottom dead center A cooling control device comprising: setting the predetermined value to a higher value than sometimes.
[2] 前記設定部は、機関の停止完了時のクランク角が次回の機関始動後に初爆を迎え る気筒のピストンが上死点に近い位置となるクランク角であるほど、前記所定値を徐 々に高!/、値に設定する請求項 1に記載の冷却制御装置。  [2] The setting unit gradually increases the predetermined value as the crank angle at the completion of the engine stop is a crank angle at which the piston of the cylinder that reaches the first explosion after the next engine start is positioned near the top dead center. 2. The cooling control device according to claim 1, wherein the cooling control device is set to a high value.
[3] 前記冷却装置は前記機関に冷却水を供給する電動ポンプを含み、前記制御部は[3] The cooling device includes an electric pump that supplies cooling water to the engine, and the control unit includes
、前記所定値に対し機関温度が高!/、ほど前記電動ポンプの流量を多くする請求項 1 又は 2に記載の冷却制御装置。 3. The cooling control device according to claim 1, wherein the flow rate of the electric pump is increased as the engine temperature is higher / lower than the predetermined value.
[4] 前記冷却装置は、前記機関を通過するように冷却水を循環させる電動ポンプと、そ の冷却水を送風により冷却する電動ファンとを含み、前記制御部は、前記所定値に 対し機関温度が高いほど前記電動ファンの送風量を多くする請求項 1又は 2に記載 の冷却制御装置。 [4] The cooling device includes an electric pump that circulates cooling water so as to pass through the engine, and an electric fan that cools the cooling water by blowing air, and the control unit is configured to change the engine to the predetermined value. The cooling control device according to claim 1 or 2, wherein the amount of air blown by the electric fan is increased as the temperature is higher.
[5] 前記機関は、その燃焼運転の実行中における自動停止条件の成立をもって自動 的に燃焼運転が停止され、その燃焼運転の停止中における自動始動条件の成立を もって自動的に燃焼運転が再開されるものである請求項 1〜4のいずれか一項に記 載の冷却制御装置。  [5] The engine is automatically stopped when the automatic stop condition is satisfied during execution of the combustion operation, and is automatically restarted when the automatic start condition is satisfied while the combustion operation is stopped. The cooling control device according to any one of claims 1 to 4, wherein the cooling control device is provided.
PCT/JP2007/063791 2006-07-11 2007-07-11 Cooling controller of internal combustion engine WO2008007686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07790595.8A EP2045452B1 (en) 2006-07-11 2007-07-11 Cooling controller of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-190205 2006-07-11
JP2006190205A JP4327826B2 (en) 2006-07-11 2006-07-11 Cooling control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2008007686A1 true WO2008007686A1 (en) 2008-01-17

Family

ID=38923242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063791 WO2008007686A1 (en) 2006-07-11 2007-07-11 Cooling controller of internal combustion engine

Country Status (3)

Country Link
EP (1) EP2045452B1 (en)
JP (1) JP4327826B2 (en)
WO (1) WO2008007686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016174A (en) * 2011-09-22 2013-04-03 马自达汽车株式会社 Device and method for controlling start of compression self-ignition engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944236B1 (en) * 2009-04-09 2012-10-19 Renault Sas COOLING DEVICE FOR MOTOR VEHICLE
FR2944235B1 (en) * 2009-04-09 2012-10-19 Renault Sas COOLING DEVICE FOR MOTOR VEHICLE
JP5381675B2 (en) * 2009-12-14 2014-01-08 トヨタ自動車株式会社 Exhaust-driven supercharger cooling apparatus and internal combustion engine control apparatus having the same
CN102191991A (en) * 2010-03-03 2011-09-21 株式会社电装 Controller for engine cooling system
JP5818610B2 (en) * 2011-09-27 2015-11-18 株式会社クボタ Work vehicle
JP2013079040A (en) * 2011-10-05 2013-05-02 Kubota Corp Riding type work vehicle
EP2813695B1 (en) * 2012-02-06 2017-05-17 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5891925B2 (en) * 2012-04-20 2016-03-23 トヨタ自動車株式会社 Cooling device for internal combustion engine
US9828932B2 (en) * 2013-03-08 2017-11-28 GM Global Technology Operations LLC System and method for controlling a cooling system of an engine equipped with a start-stop system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215811A (en) * 1987-03-05 1988-09-08 Toyota Motor Corp Speed control method for cooling fan of internal combustion engine
JP2001032714A (en) * 1999-07-23 2001-02-06 Honda Motor Co Ltd Cooling control device for engine
JP2001173488A (en) * 1999-12-17 2001-06-26 Mitsubishi Motors Corp Starting device for direct cylinder injection type internal combustion engine
JP2001182580A (en) 1999-12-24 2001-07-06 Fuji Heavy Ind Ltd Idling control device for engine
JP2003083127A (en) * 2001-09-11 2003-03-19 Toyota Motor Corp Starting time control device and stopping time control device for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772947B2 (en) * 1999-03-18 2006-05-10 三菱自動車工業株式会社 Starter for in-cylinder injection internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215811A (en) * 1987-03-05 1988-09-08 Toyota Motor Corp Speed control method for cooling fan of internal combustion engine
JP2001032714A (en) * 1999-07-23 2001-02-06 Honda Motor Co Ltd Cooling control device for engine
JP2001173488A (en) * 1999-12-17 2001-06-26 Mitsubishi Motors Corp Starting device for direct cylinder injection type internal combustion engine
JP2001182580A (en) 1999-12-24 2001-07-06 Fuji Heavy Ind Ltd Idling control device for engine
JP2003083127A (en) * 2001-09-11 2003-03-19 Toyota Motor Corp Starting time control device and stopping time control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016174A (en) * 2011-09-22 2013-04-03 马自达汽车株式会社 Device and method for controlling start of compression self-ignition engine
CN103016174B (en) * 2011-09-22 2015-07-15 马自达汽车株式会社 Device and method for controlling start of compression self-ignition engine

Also Published As

Publication number Publication date
EP2045452A1 (en) 2009-04-08
EP2045452B1 (en) 2017-10-25
EP2045452A4 (en) 2016-08-24
JP2008019733A (en) 2008-01-31
JP4327826B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4327826B2 (en) Cooling control device for internal combustion engine
JP4696765B2 (en) Engine starting method and engine starting device
US8109092B2 (en) Methods and systems for engine control
EP2634397B1 (en) Control apparatus for internal combustion engine
US8439002B2 (en) Methods and systems for engine control
JP2006242082A (en) Stop control method and stop control device for internal combustion engine
JP5660143B2 (en) Control device for internal combustion engine
JP2004036429A (en) Control device for internal combustion engine
JP5109752B2 (en) Automatic stop device for diesel engine
JP2007177792A (en) Internal combustion engine equipped with compression ratio change mechanism and method for controlling internal combustion engine
JP2007146701A (en) Internal combustion engine changeable in compression ratio
JP2004225561A (en) Variable cylinder system of internal combustion engine
JP4743139B2 (en) Fuel injection amount control device for internal combustion engine
JP2010168939A (en) High expansion ratio internal combustion engine
JP4826543B2 (en) Control device for vehicle engine
EP1342900A2 (en) Stop controller for an internal combustion engine
JP4341475B2 (en) Engine starter
JP2010084516A (en) Control device for engine with supercharger
JP2009209722A (en) Start control device and start control method for engine
CN113464304B (en) Temperature acquisition device for internal combustion engine
JP2004076706A (en) Variable valve mechanism control system for internal combustion engine
US11002163B2 (en) Valve timing controller and valve timing control method
JP2005188486A (en) Control device of engine with motor-driven supercharger
JP2013083185A (en) Internal combustion engine, and control method of piston stop position thereof
JP2012136980A (en) Engine rotation stop control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790595

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007790595

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007790595

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)