WO2008007436A1 - Image coding controller and image coding control method - Google Patents

Image coding controller and image coding control method Download PDF

Info

Publication number
WO2008007436A1
WO2008007436A1 PCT/JP2006/314036 JP2006314036W WO2008007436A1 WO 2008007436 A1 WO2008007436 A1 WO 2008007436A1 JP 2006314036 W JP2006314036 W JP 2006314036W WO 2008007436 A1 WO2008007436 A1 WO 2008007436A1
Authority
WO
WIPO (PCT)
Prior art keywords
code amount
bit rate
frame
code
image
Prior art date
Application number
PCT/JP2006/314036
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Ohkawa
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/314036 priority Critical patent/WO2008007436A1/en
Publication of WO2008007436A1 publication Critical patent/WO2008007436A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/15Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Definitions

  • the present invention relates to an image coding control apparatus and an image coding control method, and more specifically
  • the present invention relates to an image code control device and an image code control method capable of controlling the bit rate to a predetermined value or less even when a large amount of code occurs during compression encoding of moving image data It is.
  • the compression code method for moving images uses an intra-frame code method that uses a spatial correlation in one frame, and a frame that uses a temporal correlation between consecutive frames.
  • the amount of code generated when compressing a moving image according to continuously input image data may increase or decrease on the order of several hundred times, so the bit rate of the moving image data that has been compression encoded It is relatively difficult to control the value below a certain value.
  • the variable bit rate can be allocated more effectively than the fixed bit rate method in which the code amount is fixed to a fixed value. The system is said to be advantageous in terms of image quality.
  • variable bit rate when used, it is necessary to pay attention to the following points.
  • the peak bit rate must not exceed the range of the standard specified by each device.
  • the maximum code amount per frame must not exceed the standard range defined by each device.
  • the code bit rate must not exceed the possible recording rate of recording media such as SD memory cards.
  • bit rate and the amount of code may increase drastically when there is a sudden scene change, white noise and! / is assumed.
  • the bit rate of compression-coded moving images is generally controlled by quantization parameters.
  • the amount of code is also suppressed by control using quantization parameters. Since it is difficult to do this, a method of forcibly suppressing the amount of code by using the uncoded information as described above is often employed.
  • This first conventional image compression apparatus performs discrete cosine transform (hereinafter simply referred to as “DCT”) processing on the input digital data of block-unit moving images to obtain time.
  • DCT unit 600 that converts domain data into frequency domain coefficient data (hereinafter referred to as “DCT coefficient”), and a quantum that quantizes the DCT coefficient converted by DCT unit 600 with a predetermined quantum step width.
  • the zigzag scanning unit 602 that rearranges the DCT coefficients quantized by the quantization unit 601 (hereinafter, “quantization coefficient” t ⁇ ⁇ .) In the zigzag scanning order, and the zigzag scanning unit 602 Run-length on the quantum coefficient VLC unit 603 that performs variable length coding (hereinafter referred to simply as “VLC”) processing and outputs the compressed bit stream thus obtained to an output canoffer (not shown).
  • VLC variable length coding
  • the first conventional image compression apparatus further includes an adjustment value determination unit 604 that determines a reduction level of the quantization coefficient corresponding to the frequency component from the quantization coefficients rearranged by the zigzag scanning unit 602, and an adjustment value determination unit 604.
  • the coefficient adjustment unit 605 forcibly reduces the code amount by changing the quantization coefficient after zigzag scanning from the highest corresponding frequency component to 0 according to the reduction level of the quantization coefficient corresponding to the frequency component determined by
  • the adjustment value determination unit 604 suppresses the code amount of one frame to a predetermined value based on the free capacity of the output canoffer that inputs the compressed bit stream output from the VLC unit 603. As described above, the reduction level of the quantization coefficient corresponding to the frequency component is determined, and the overflow of the encoding buffer is prevented.
  • FIG. 8 there is also known an image compression apparatus that suppresses the code amount by reducing the quantization coefficient in accordance with the complexity of the image (see, for example, Patent Document 2).
  • the same reference numerals as those of the first image compression device shown in FIG. 7 are used for the configurations similar to the configurations of the first image compression device. Detailed description will be omitted.
  • This second conventional image compression apparatus includes a DCT unit 600, a quantization unit 601, a zigzag scanning unit 602, a VLC unit 603, an adjustment value determination unit 604, and a coefficient adjustment unit 605.
  • a distribution value calculation unit 706 that calculates the image complexity by calculating the pixel dispersion value in each block in the frame from the input digital data
  • the adjustment value determination unit 604 includes the distribution value calculation unit 604.
  • the reduction level of the quantization coefficient corresponding to the frequency component is determined. The larger the variance value calculated by the variance value calculation unit 706, the more complex the image, and the more the code amount that is generated tends to increase.
  • the reduction level of the quantization coefficient corresponding to the frequency component determined by the unit 604 increases.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-23427
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-259376
  • the technique of reducing the high-frequency component power of the quantization coefficient corresponding to the frequency component based on the free capacity of the output buffer is very effective.
  • the first conventional image compression apparatus can suppress the maximum code amount within a predetermined standard range and avoid buffer overflow, but has only means for suppressing the code amount of the frame. For this reason, there has been a problem that the bit rate cannot be appropriately suppressed when the code amount changes abruptly at the time of compression encoding.
  • the second conventional image compression apparatus a method of reducing the quantization coefficient corresponding to the frequency component from the high frequency component according to the complexity of the digital data of the input moving image is very effective.
  • the second image compression apparatus has a large amount of processing to calculate the complexity of the image, so that it is difficult to apply it to compression encoding processing of moving images that require high-speed processing.
  • the present invention has been made to solve such a problem, predicts a code amount generated from the processing frame, predicts a bit rate using a past code amount, By reducing the quantization coefficient corresponding to the frequency component when it is predicted to exceed the value, an image code controller and image code that realizes bit rate suppression with a simple configuration and a small amount of computation.
  • An object is to provide a dredge control method.
  • An image coding control apparatus for compressing and coding a moving image includes a code amount storage unit for storing a code amount generated in a past frame and a frame being processed, and a frame being processed.
  • a predictive code amount calculating means for calculating a predictive code amount that is finally expected to be generated in the frame being processed based on the generated code amount; and a past code amount stored in the code amount storage unit.
  • a bit rate calculating unit that calculates a bit rate based on a code amount generated in the frame and a predicted code amount predicted to be generated in a currently processed frame calculated by the predicted code amount calculating unit; Bit The bit rate calculated by the rate calculation means is compared with a predetermined threshold value, and the reduction code amount determination means for determining the reduction amount of the quantization coefficient corresponding to the frequency component and the reduction code amount determination means A code amount adjusting means for reducing a quantum coefficient corresponding to a frequency component based on the determined reduction amount is provided.
  • the image code controller of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and exceeds a predetermined value. If the quantization coefficient corresponding to the frequency component is reduced, the bit rate can be suppressed with a simple configuration and a small amount of calculation.
  • the image coding control apparatus of the present invention may further include a configuration including a reduction code amount adjusting means for adjusting the predetermined threshold.
  • the image code control device of the present invention adjusts the predetermined threshold so as to accelerate the convergence of the bit rate when a change in the code amount is predicted abruptly, and conversely
  • the predetermined threshold can be adjusted so that the control of the code amount is not suddenly controlled by the method of the present invention, so that the code amount changes abruptly during compression encoding.
  • the bit rate can be appropriately suppressed.
  • the prediction code amount calculation means refers to the code amount generated in a predetermined number of past frames stored in the code amount storage unit.
  • the code amount may be calculated, and the image coding control device may further include a reference frame number adjusting unit that adjusts the predetermined number.
  • the image coding control apparatus of the present invention can suppress deterioration of image quality stably and adaptively by performing bit rate control more accurately and more appropriately for the situation.
  • the prediction code amount calculation means includes a macroblock that exceeds a predetermined number of code amounts predicted to be generated in a currently processed frame. Further, the image coding control apparatus may be configured to include a reference macroblock number adjusting unit that adjusts the predetermined number.
  • the image code control device of the present invention can suppress deterioration of image quality stably and adaptively by performing bit rate control more accurately and more suitable for the situation.
  • the predicted code amount calculation means calculates a code amount predicted to occur in a currently processed frame by skipping a predetermined number of macroblocks. Furthermore, the image coding control apparatus may have a configuration including skipped macroblock number adjusting means for adjusting the predetermined number.
  • the reduction code amount determination means can calculate the reduction level of the quantization coefficient corresponding to the frequency component more quickly and with a load.
  • the image code key control device of the present invention can suppress the deterioration of the image quality stably and adaptively by performing the bit rate control more accurately and more suitable for the situation.
  • the reduction code amount determination means determines a reduction amount of the quantization coefficient corresponding to the frequency component based on a predetermined increase / decrease amount, and further, the image code
  • the key control device may have a configuration including an increase / decrease amount determining means for adjusting the predetermined number.
  • the image code control device of the present invention adjusts the predetermined increase / decrease amount so as to accelerate the convergence of the bit rate when a change in the code amount is predicted suddenly, and reversely
  • the predetermined increase / decrease amount can be adjusted so that the control of the code amount is not suddenly controlled. Even in this case, the bit rate can be appropriately suppressed.
  • the image coding control method of the present invention includes a code amount storage step for storing the code amount generated in the past frame and the frame being processed, and a code amount storing step in the frame being processed. Based on the generated code amount! /, A predicted code amount calculating step for calculating a predicted code amount that is expected to occur finally in the frame being processed, and a past frame stored in the code amount storing step A bit rate calculating step for calculating a bit rate based on the generated code amount and a predicted code amount predicted to be generated in the currently processed frame calculated in the predicted code amount calculating step; and the bit rate calculating step.
  • the bit rate calculated in step (b) is compared with a predetermined threshold value to determine a reduction amount of a quantization coefficient corresponding to a frequency component, and a reduction code amount determination step determined by the reduction code amount determination step. It has a configuration including a code amount adjustment step for reducing the quantization coefficient corresponding to the frequency component based on the reduction amount.
  • the image coding control method of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and exceeds a predetermined value.
  • the bit rate can be suppressed with a simple configuration and a small amount of calculation.
  • the image code key control method of the present invention may further include a configuration including a reduction code amount adjustment step for adjusting the predetermined threshold value.
  • the image coding control method of the present invention adjusts the predetermined threshold so as to accelerate the convergence of the bit rate when a change in the code amount is predicted abruptly.
  • the predetermined threshold value can be adjusted by the method of the present invention so that the control of the code amount suppression is not abruptly applied. Even in this case, the bit rate can be appropriately suppressed.
  • the image code key control method of the present invention in the prediction code amount calculation step, the code amount generated in a predetermined number of past frames stored in the code amount storage unit is referred to The prediction code amount is calculated, and the image coding control method may further include a reference frame number adjustment step of adjusting the predetermined number.
  • the image code key control device of the present invention can control the deterioration of image quality stably and adaptively by performing the bit rate control more accurately and more suitable for the situation. Togashi.
  • the prediction code amount calculation step A code amount predicted to occur in a frame being processed is calculated based on a code amount generated in a macro block exceeding a predetermined number, and the image encoding control method further includes a reference macro for adjusting the predetermined number. You may have the structure provided with the block number adjustment step.
  • the image coding control method of the present invention suppresses deterioration of image quality stably and adaptively by performing bit rate control more accurately and more appropriately for the situation. It is out.
  • the predictive code amount calculation step a code amount predicted to occur in a currently processed frame is calculated by skipping a predetermined number of macroblocks. Furthermore, the image coding control method may include a skipped macroblock number adjustment step for adjusting the predetermined number.
  • the image coding control method of the present invention suppresses deterioration of image quality stably and adaptively by performing bit rate control more accurately and more appropriately for the situation. It is out.
  • the reduction code amount determination step determines a reduction amount of a quantization coefficient corresponding to a frequency component based on a predetermined increase / decrease amount, and further, the image The sign control method may have a configuration including an increase / decrease amount determining step for adjusting the predetermined number.
  • the image coding control method of the present invention adjusts the predetermined increase / decrease amount so as to accelerate the convergence of the bit rate when a change in the code amount is predicted abruptly, and conversely If the change in code amount is small, the predetermined increase / decrease amount can be adjusted so that the control of the code amount suppression is not performed suddenly, so that the code amount changes rapidly during compression encoding. In addition, the bit rate can be appropriately suppressed.
  • the recording medium of the present invention has a configuration in which an image code key control program for causing a computer to execute the processing procedure of the image code key control method described above is stored.
  • the recording medium storing the image coding control program of the present invention predicts the code amount generated by the processing frame force, and uses the past code amount to change the bit rate.
  • the bit rate can be suppressed with a simple configuration and a small amount of calculation.
  • a mobile communication system of the present invention has a configuration in which the image code key control device described above is provided.
  • the mobile communication system of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and is predicted to exceed a predetermined value.
  • the bit rate can be suppressed with a simple configuration and a small amount of calculation.
  • the present invention can provide an image coding control apparatus and an image coding control method that can suppress the bit rate with a simple configuration and a simple configuration with a simple configuration.
  • FIG. 1 shows an image code key control apparatus according to a first embodiment of the present invention.
  • the image coding control apparatus performs discrete cosine transform (hereinafter simply referred to as “DCT”) on input digital data of block-unit moving images. ) Performs processing and converts the time domain data into frequency domain coefficient data (hereinafter referred to as “DCT coefficient”), and the DCT coefficient converted by the DCT section 100 has a predetermined quantization step width.
  • DCT discrete cosine transform
  • quantization coefficients t ⁇ ⁇ .
  • VLC Variable length coding
  • the code amount memory unit 104 constituting the code amount storage unit of the present invention for saving the signal amount, and the current processing based on the accumulated generated code amount generated in the currently processed frame saved in the code amount memory unit 104
  • Predictive code amount calculation means 105 that predicts the final code amount that is predicted to be finally generated in the middle frame, and the code amount and predictive code amount calculation means that were generated in the past frame saved
  • the DCT unit 100 performs DCT conversion that is performed in a generally known moving image encoding process such as MPEG, and converts the input digital data of the moving image in the spatial domain to the DCT coefficient in the frequency domain. Convert.
  • the encoding process is performed in units of a plurality of blocks called macroblocks for one frame image. For example, in MPEG-4, processing is performed in units of 16 ⁇ 16 pixel macroblocks.
  • MPEG-4 processing is performed in units of 16 ⁇ 16 pixel macroblocks.
  • the DCT processing and the processing such as quantization, zigzag scanning, and VLC described later are basically performed in units of macroblocks.
  • Quantization section 101 divides each DCT coefficient in the macroblock transformed by DCT section 100 by the quantization parameter. Since the specific method follows a general encoding method, detailed description is omitted. Since the compression rate, that is, the amount of code after quantization, is determined by the large quantization parameter, it is one of the important processes in bit rate control. However, depending on the input data, it may not be possible to suppress the amount of code by using only the quantization parameter. In this case, generally, skipping of frames, reduction of the quantization coefficient corresponding to the frequency component, non-signed data When the data with the smallest amount of code called (NotCoded) is output, the method is adopted.
  • the zigzag scanning unit 102 quantizes the quantized quantized coefficients in order from the quantized coefficient corresponding to the DC component to the quantized coefficient corresponding to the higher frequency component, in order of decreasing corresponding frequency components. This is a process of rearranging the coefficients.
  • the specific method follows the general coding method, and after quantization, a lot of high-frequency components remain, so the subsequent run-length coding is performed to increase the compression efficiency.
  • quantization coefficient prediction processing corresponding to frequency components may be performed to further increase the compression efficiency. In such a case, special horizontal and vertical priority scans (reordering) are performed. Do.
  • the VLC unit 103 performs variable-length coding processing by run length that assigns a short code to frequently-occurring coefficient data for the quantized coefficient group rearranged by the zigzag scan unit 102.
  • variable length code encoding processing by run length may be forced to assign a long code to coefficient data that occurs less frequently. For this reason, depending on the input coefficient data, there is a power S that can reduce the compression efficiency. Generally, when the input moving image data is complex, the compression efficiency tends to decrease.
  • the code amount memory unit 104 saves the data amount after VLC processing currently being processed, for example, the cumulative generated code amount of the currently processed frame and the code amount of the past frame.
  • the accumulated code amount of the frame currently being processed and the code amount of the past frame are used to calculate the bit rate.
  • the data configuration of the code amount memory unit 104 is facilitated in order to facilitate data management and bit rate calculation.
  • a ring buffer data structure is preferable.
  • the present invention is not limited to this.
  • the code amount memory unit 104 may be used as a rate control code amount buffer based on a quantum parameter, or may be provided independently.
  • the predicted code amount calculation means 105 predicts the final code amount of the frame currently being processed.
  • the following formula is used as a specific prediction method.
  • PB is the predicted code amount
  • CB is the cumulative code amount generated up to the current processing macroblock
  • NM is the total number of macroblocks in one frame
  • CM is the macroblock number currently being processed, That is, it represents the number of processed macroblocks of the frame.
  • the predicted code amount PB Since the predicted code amount PB is used to calculate the instantaneous bit rate, it may be saved in the code amount memory unit 104.
  • One or more macro blocks may be skipped and calculated at an appropriate timing. In addition, this timing may be determined and determined independently according to the system. As the number of macroblocks to be skipped increases, the adjustment value determining unit 107 can calculate the reduction level quickly with a reduced load.
  • the method for calculating the prediction code amount is not limited to Equation 1 described above, and the prediction code amount may be calculated using another generally known prediction method. Yes.
  • the bit rate calculation means 106 is based on the code amount PB of the past frame stored in the code quantity memory unit 104 and the prediction code quantity PB calculated by the prediction code quantity calculation means 105. Is calculated.
  • the instantaneous bit rate is calculated based on a predetermined number saved in the code amount memory unit 104, that is, the code amount of the past frame of the reference frame number and the current predicted code amount. Specifically, it is calculated as follows.
  • MR represents the instantaneous bit rate, that is, the number of bits per second, where n is the number of frames from the past of the bit rate calculation target to the currently processed frame, and BF is the reference number of frames for bit rate calculation.
  • FR represents the frame rate, ie the number of frames per second,
  • the bit rate calculation reference frame number BF increases as the value of BF increases, and the calculated instantaneous bit rate MR becomes closer to the average bit rate, that is, the target bit rate, and a sudden change in the bit rate is reflected. Also, the smaller the bit rate calculation reference frame number, BF, the smaller the calculated instantaneous bit rate MR will tend to reflect a sudden change in the bit rate, but conversely the control of the amount of code to be reduced may become unstable. There is sex. From this, it is necessary to set the bit rate calculation reference frame number BF to a value suitable for the system. BF may be determined according to the system to be applied.
  • the adjustment value determination unit 107 determines the reduction level of the quantization coefficient corresponding to the frequency component according to the instantaneous bit rate MR calculated by the bit rate calculation means 106. Specifically, it is determined whether or not the instantaneous bit rate MR calculated by the bit rate calculating means 106 exceeds a specific bit rate, that is, a reference threshold value. When it is determined that the instantaneous bit rate MR calculated by the bit rate calculation means 106 exceeds a predetermined threshold, the reduction amount of the quantization coefficient corresponding to the frequency component is increased. Specifically, the quantization coefficient reduction level parameter corresponding to the frequency component is increased.
  • the quantization coefficient output by the zigzag scan unit 102 is only the quantization coefficient corresponding to the direct current component, for example, if there is no reduction coefficient, the current level is maintained. To do. On the contrary, when the instantaneous bit rate MR is smaller than the threshold value, the reduction amount of the quantization coefficient corresponding to the frequency component is reduced. Specifically, the quantization coefficient reduction level parameter corresponding to the frequency component is reduced. If the quantization coefficient corresponding to the frequency component is reduced! / ⁇ ⁇ , that is, if the quantization coefficient reduction level power SO corresponding to the frequency component is SO, the current level is maintained and nothing is done.
  • FIG. 2 shows an image of quantization coefficient reduction corresponding to the frequency component. Fig.
  • the increase / decrease amount of the quantization coefficient reduction level corresponding to the frequency component determined by the adjustment value determination unit 107 is
  • the amount of increase / decrease may be increased in order to accelerate the convergence rate determined according to the system.
  • the coefficient adjustment unit 108 according to the reduction level of the quantization coefficient corresponding to the frequency component determined by the adjustment value determination unit 107, the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component Set to 0.
  • the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component By reducing the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component, the amount of code after VLC processing can be suppressed.
  • the present invention is not limited to setting the quantization coefficient value to be reduced to 0.
  • the code capacity allocated at the time of VLC processing by the VLC unit 103 may be set to any value other than 0 as long as the value can be reduced efficiently.
  • the predicted code amount is not calculated until the currently processed macro block number CM reaches a predetermined start macro block number. Further, in order to facilitate understanding, in the following description, it is assumed that the number of past frames satisfying the bit rate calculation reference frame number BF is already stored in the code amount memory unit 104.
  • step ST300 various initializations are performed at the beginning of the sequence (step ST300). Specifically, the code amount memory unit 104 is initialized and various system variables are initialized. Next Initialize and update the cycle processing for each frame (ST301). Here, necessary initialization is performed for each frame. For example, when the adjustment value determination unit 107 changes the reduction level of the quantization coefficient corresponding to the frequency component, the increase / decrease amount is initialized or updated, and the start macroblock number is initialized or updated. Next, initialization and updating of the process in units of macroblocks are performed (ST302). For example, initialization or updating of the macro block number, initialization or updating of the accumulated code amount (CB) up to the currently processed macro block, and one when the prediction code amount calculation means 105 calculates the prediction code amount. When skipping the above macroblocks, initialize or update the number of macroblocks to skip.
  • CB accumulated code amount
  • the currently processed macroblock is a macroblock to be subjected to code amount prediction (ST303). Specifically, it is determined whether or not the macro block number CM currently being processed is greater than or equal to a predetermined start macro block number, and if the macro block number CM currently being processed is greater than or equal to the start macro block number. If it is determined, the macro block currently being processed is assumed to be a macro block subject to code amount prediction. Furthermore, if the code amount prediction is set to be performed by skipping one or more macroblocks, the current processing is also performed based on the number of macroblocks to be skipped that are initialized or updated in step ST302. It is determined whether or not the macroblock is the target macroblock for code amount prediction.
  • step ST303 When it is determined in step ST303 that the currently processed macroblock is not a macroblock subject to code amount prediction, that is, the currently processed macroblock number CM is less than the start macroblock number.
  • Step ST303 If it is determined in step ST303 that the currently processed macroblock is a macroblock to be subjected to code amount prediction, the current process saved in the code amount memory unit 104 by the prediction code amount calculation unit 105 Prediction code amount calculation processing is performed for predicting the final code amount PB of the currently processed frame based on the accumulated generated code amount CB generated up to the currently processed macroblock of the current frame (ST304). Next, based on the code amount of the past frame saved in the code amount memory unit 104 by the bit rate calculation unit 106 and the final prediction code amount PB of the currently processed frame calculated by the prediction code amount calculation unit 105. Moment A trait is calculated (ST305).
  • the instantaneous bit rate MB power adjustment value thus calculated is determined by the determination unit 107 to determine whether or not the reference threshold is exceeded (ST306), and it is determined that the instantaneous bit rate MB exceeds the reference threshold. In this case, the reduction level of the quantum coefficient corresponding to the frequency component is increased (ST307). Conversely, if it is determined that the instantaneous bit rate MB is less than the reference threshold, the quantization corresponding to the frequency component is performed. Reduce the coefficient reduction level (ST308). Next, normal macroblock processing by the DCT unit 100, the quantization unit 101, and the zigzag scanning unit 102 is executed.
  • the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component by the coefficient adjustment unit 108 Is set to 0, and the sign key processing is executed by the VLC unit 103 (ST 309).
  • step ST310 it is determined whether or not processing of one frame is completed. If it is determined that the processing is not completed, the number of the currently processed macroblock is determined. After the increment, step ST303 is returned again to perform macro block periodic processing. If it is determined in step ST310 that the processing of one frame has been completed, the code amount is saved in the code amount memory unit 104 (ST311), and then the process returns to step ST300 and the above processing is performed again until the sequence is completed. continue.
  • the graph shown in FIG. 4 shows the instantaneous bit rate measured by the image coding control apparatus of the present embodiment and the conventional image coding apparatus when the target bit rate is 384 kbps. This is a comparison with the series, and shows the effect of bit rate suppression by the image code key control apparatus of the present embodiment.
  • FIG. 5 shows a comparison between the input image and the image re-decoded after compression encoding in the image encoding control device of this embodiment and the image encoding device of the conventional method. This shows the effect of improving the image quality of a moving image in the image code control device of the present embodiment.
  • the conventional image coding apparatus reduces the quantization coefficient corresponding to the frequency component in particular and performs rate control only on the ⁇ quantization parameter, and when the code amount is extremely increased.
  • the use of uncoded data is assumed.
  • the input image is extremely severe when the first few frames of the black image shown in Fig. 5-A are continuous and the white noise image shown in Fig. 5-B is displayed from the middle.
  • the simulation is performed in the case.
  • Fig. 5-C shows an image that is decoded when using uncoded data, that is, NotCoded, in order to keep the code size of one frame at a specified value. The lower part of the frame leaves uncoded data, that is, a black image that is the previous frame due to NotCoded, which is an unnatural result.
  • the graph shown by the solid line in FIG. 4 shows the instantaneous bit rate measured at the time of compression coding in the image coding control device of the present embodiment.
  • the bit rate is suppressed near the target bit rate even in the case of a white noise image scene where almost no code amount is generated. Recognize.
  • An image decoded again after compression coding by the image code controller of this embodiment is shown in Fig. 5-D. Blurred parts can be seen due to the quantization coefficient reduction corresponding to the frequency components (high frequency component reduction), but there is also a little movement due to frame skipping, and there is no influence of forced code amount suppression due to uncoded data. It can be seen that the impression given to the user has been improved. In actual use, however, the simulation is more severe than the simulation using a human image, and the effect of image quality deterioration is less when the natural image is a target with fewer cases.
  • the present embodiment has been described as the configuration in which the coefficient adjustment unit 108 reduces the quantization coefficient corresponding to the frequency component for the data after the zigzag scan by the zigzag scan unit 102,
  • the present invention is not limited to this.
  • the coefficient adjustment unit reduces the quantization coefficient corresponding to the frequency component with respect to the quantization coefficient quantized by the quantization unit 101, and then the zigzag scanning unit performs zigzag scanning. The same effect can be obtained.
  • the adjustment value determination unit 107 performs quantization corresponding to the frequency component. Initialization or updating of the increase / decrease amount when changing the coefficient reduction level, initialization or updating of the start macroblock number, etc. are performed in step ST301, and the cumulative amount of code generated up to the currently processed macroblock (CB) Initialization or updating of the code, the code amount calculation unit 105 adjusts the start macroblock number for starting the code amount calculation process, or skips one or more macroblocks when calculating the code amount to be predicted.
  • the ability to initialize or update the number of macroblocks to be performed in step ST302 is not limited to this.
  • step ST302 performs initialization or update of the increase / decrease amount when the adjustment value determining unit 107 changes the reduction level of the quantization coefficient corresponding to the frequency component, and initialization or update of the Z or start macroblock number.
  • the increase / decrease in the reduction level and the start block number can be changed in the macro block processing cycle, not the frame processing cycle, so the bit rate control can be performed quickly in response to the input video data. Can be performed.
  • initialization or updating of the accumulated code amount (CB) up to the currently processed macroblock, and one or more macroblocks are calculated when the Z or predictive code amount calculation means 105 calculates the predictive code amount.
  • the number of macroblocks to be skipped may be initialized or updated in step ST301. In this case, the system stably controls the bit rate.
  • the image coding control apparatus predicts the code amount of the frame from the code amount up to the currently processed macroblock, and calculates the instantaneous bit rate from the past code amount and the current code amount. If it exceeds the reference value, it suppresses the amount of code generated by increasing the reduction amount of the quantization coefficient corresponding to the frequency component after quantization, and conversely if it falls below the reference value, the frequency The amount of generated code is increased by reducing the amount of reduction of the quantization coefficient corresponding to the component, so a rapid increase in bit rate is suppressed and the bit rate is controlled so that it falls within the rate specified by the standard. Is possible. If the moving image data exceeds the bit rate and cannot be played back by another device, it is possible to avoid problems such as a malfunction or exceeding the recording rate of the media.
  • the image coding control apparatus of the present embodiment can keep the quantization coefficient range corresponding to the frequency component to be reduced to a minimum by constantly monitoring the instantaneous bit rate, and the bit rate. If there is a margin, reducing the coefficient will minimize image quality degradation. Therefore, frame skipping, which has been used to reduce the bit rate, has a great merit for users with less image quality degradation compared to the case of outputting unsigned data.
  • the code amount is predicted and rate control is performed early, it is possible to prevent a frame with a large code amount from being output suddenly and to stabilize the rate control.
  • the present invention can provide a large effect with a very simple configuration and calculation amount, can provide a low-cost image code control device, and is used in combination with rate control by a general quantization parameter. It is also possible to do.
  • the image code key control device can be incorporated as a mobile terminal, for example, and can be realized as a mobile communication system including the mobile terminal device, for example.
  • the image coding control apparatus can also be realized as a method by software, and the image medium key control according to the present embodiment is read out by reading the recording medium force storing this software. It is also possible to realize an image code key control method executed by the apparatus.
  • the configuration of the image coding control apparatus according to the present embodiment is substantially the same as the configuration of the image coding control apparatus according to the first embodiment, and therefore the first embodiment shown in FIG.
  • the detailed description will be omitted by using the same reference numerals as those of the configuration of the image code control device of the embodiment.
  • the operation of the image coding control apparatus according to the present embodiment is almost the same as the operation of the image coding control apparatus according to the first embodiment, and therefore the image of the first embodiment shown in FIG.
  • the detailed description will be omitted by using the same reference numerals as the steps of the sign control device.
  • the configuration of the image coding control device of the present embodiment is such that the image coding control device of the first embodiment uses the reference frame number adjusting means, the reference macro of the present invention, and the like.
  • the configuration is the same as that provided with a parameter adjustment unit 509 that constitutes a block number adjustment unit, a skipped macroblock number adjustment unit, and an increase / decrease amount determination unit.
  • the parameter adjustment unit 509 refers to the information saved in the code amount memory unit 104 and the like, and operates the predictive code amount calculation unit 105, the bit rate calculation unit 106, and the adjustment value determination unit 107.
  • the prediction code amount calculation means 105 adjusts the position of the macroblock where the prediction code amount calculation processing starts, that is, the adjustment of the start macroblock number, or calculates the prediction code amount.
  • skipping one or more macroblocks adjustment of the number of macroblocks to be skipped, adjustment of the bit rate calculation reference frame number BF in the bit rate calculation means 106, and the quantum value corresponding to the frequency component in the adjustment value determination unit 107
  • the threshold value for reducing the quantization factor and the amount of increase / decrease in the quantization factor reduction level are adjusted! By adjusting these parameters, the optimal quality for the system can be obtained.
  • the parameter adjustment unit 509 observes the transition of the past code amount saved in the code amount memory unit 104, and if a change in the code amount is predicted suddenly, the bit rate convergence The parameter is adjusted so that the amount of code changes little, and conversely, if the change in the amount of code is small, the parameter is adjusted so that the control of the amount of code is not suddenly controlled by the method of the present invention.
  • a difference value is taken every predetermined time with respect to the past code amount saved in the code amount memory unit 104, and when it is determined that the difference value exceeds a predetermined threshold, the bit rate MR
  • the adjustment value determination unit 107 may adjust the threshold value and the reduction level that are used as a reference for reducing the quantization coefficient corresponding to the frequency component so as to accelerate the convergence.
  • bit rate calculation reference frame number BF is simply set to 0.
  • the bit rate calculation means 106 may calculate the instantaneous bit rate MR smaller than the actual bit rate.
  • the parameter adjustment unit 509 performs correction by adjusting the bit rate calculation reference frame number BF.
  • the parameter adjustment unit 509 can stabilize the bit rate control by adjusting the start macroblock number, the number of macroblocks to be skipped, and the like. Even in environments where bit rate control is essential at the expense of image quality due to hardware limitations, it is possible to execute precise bit rate control at any time and focus on the target value in a short time. .
  • the prediction code amount calculation unit 105 uses the prediction code.
  • adjusting the position of the macroblock where the amount calculation process is started that is, adjusting the start macroblock number, or when skipping one or more macroblocks when calculating the prediction code amount, adjusting the number of macroblocks to be skipped
  • Parameter adjustment for adjusting the number of bit rate calculation reference frames BF in the bit rate calculation means 106 and adjusting the threshold value and the reduction level of the quantization coefficient corresponding to the frequency coefficient reduction reference in the adjustment value determination unit 107 By providing the unit 509, in addition to the effect of the image coding control device of the first embodiment, the bit rate control more accurately and more suitable for the situation is performed, so that the image quality can be adaptively adjusted. Can be prevented.
  • the image code control device of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and determines a predetermined value.
  • the bit rate can be suppressed with a simple configuration and a small amount of calculation.
  • the image coding control apparatus of the present invention can control the bit rate so as not to exceed the level defined in the standard, this maintains compatibility with other devices.
  • the recording rate of SD media can be protected, it is possible to avoid problems as a system, and the bit rate is reduced by reducing the quantization coefficient corresponding to the frequency component. Degradation can be minimized.
  • the image code key control device of the present invention can be incorporated as a mobile terminal, for example, and can also be realized as a mobile communication system including the mobile terminal device, for example.
  • the image coding control apparatus of the present invention can be realized as a method by software, and the image coding key control apparatus according to the present embodiment reads out the recording medium force storing this software. It is also possible to implement an image code key control method to be executed.
  • the present invention predicts the amount of code generated by the processing frame force with a simple configuration and the amount of calculation, predicts the bit rate using the past amount of code, and determines the predetermined amount.
  • an image coding control apparatus and a picture control device that realizes bit rate suppression with a simple configuration by reducing the quantization coefficient corresponding to the frequency component.
  • An image code key control method can be provided and can be applied to various devices such as a digital camera and a portable terminal camera.
  • FIG. 1 is a block diagram showing a configuration of an image coding control apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a frequency executed by the image coding key control apparatus according to the first embodiment. Explanatory drawing showing an image of the quantization coefficient reduction processing corresponding to the component
  • FIG. 3 is a flowchart showing an image code key control method executed by the image code key control device of the first embodiment.
  • FIG. 4 is a graph showing the effect of bit rate suppression in the image code control device of the first embodiment.
  • FIG. 5 is a diagram showing the effect of improving the image quality of a moving image decoded after compression code input by the image code key control device of the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of an image code key control device according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram of a first conventional image compression device.
  • FIG. 8 is a block diagram of a second conventional image compression apparatus.
  • Code amount memory unit (Code amount storage unit)
  • Adjustment value determination unit (reduction code amount determination means)
  • Parameter adjustment unit (reference frame number adjustment means, reference macroblock number adjustment means, skipped macroblock number adjustment means, increase / decrease amount determination means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

[PROBLEMS] To provide an image coding controller for realizing reduction of the bit rate by low computational complexity with a simple constitution. [MEANS FOR SOLVING PROBLEMS] An image coding controller for compression-coding a moving picture comprises a number-of-bits memory section (104) for storing the numbers-of-bits occurring in the past frames and the frame being processed, prediction number-of-bits computing means (105) for computing a prediction number-of-bits predicted to finally occur in the frame being processed from the number-of-bits which has occurred in the frame being processed, bit rate computing means (106) for computing the instantaneous bit rate from the number-of-bits which has occurred in the past frames and the prediction number-of-bits predicted to occur in the frame being currently processed, an adjustment value determining section (107) for comparing the instantaneous bit rate with a predetermined threshold and determining the reduction of the quantization coefficient corresponding to the frequency component, and a coefficient adjusting section (108) for reducing the quantization coefficient corresponding to the frequency component according to the determined reduction.

Description

明 細 書  Specification
画像符号化制御装置および画像符号化制御方法  Image coding control apparatus and image coding control method
技術分野  Technical field
[0001] 本発明は、画像符号化制御装置および画像符号化制御方法に関し、より詳細には The present invention relates to an image coding control apparatus and an image coding control method, and more specifically
、動画像データの圧縮符号化時に膨大な符号量が発生した場合においても、ビット レートを所定の値以下に制御することが可能な画像符号ィ匕制御装置および画像符 号ィ匕制御方法に関するものである。 The present invention relates to an image code control device and an image code control method capable of controlling the bit rate to a predetermined value or less even when a large amount of code occurs during compression encoding of moving image data It is.
背景技術  Background art
[0002] 近年、携帯端末や DV (Digital Video)、デジタルカメラ等で MPEG— 4 (Movin g Picture Expert Group Phase 4)などの圧縮符号化方式を用いて動画像を撮 影できる機器が普及している。 SD (Secure Digital)メモリカードといったリムーパブ ル記録メディアの急速な大容量ィ匕によって、このような圧縮符号化された動画像を記 録できるポータブル機器に対するユーザのニーズは一層高まっている。圧縮符号ィ匕 された動画像はリムーバブル記録メディアを媒介として他の装置で再生も可能である ことから、今後は新しい圧縮符号ィ匕方式や高い記録レートへの対応のために、動画 像を圧縮符号ィ匕して記録できるポータブル機器は更に発展していく技術であると予 想される。  [0002] In recent years, devices that can capture moving images using a compression coding method such as MPEG-4 (Moving Picture Expert Group Phase 4) on mobile terminals, DV (Digital Video), digital cameras, etc. have become widespread. Yes. Due to the rapid mass storage of removable recording media such as SD (Secure Digital) memory cards, user needs for portable devices capable of recording such compressed and encoded moving images are increasing. Since moving images that have been compressed and encoded can be played back on other devices via removable recording media, in the future, moving images will be compressed to support new compression encoding methods and higher recording rates. Portable devices that can record with a sign are expected to be a further developing technology.
[0003] ところで、一般的に動画像の圧縮符号ィ匕方式は 1フレーム内における空間的な相 関を利用したフレーム内符号ィ匕方式と、連続したフレーム間の時間的な相関を利用 したフレーム間符号ィ匕方式を組み合わせて 、る。連続して入力される画像データに 応じて動画像を圧縮符号ィ匕する際に発生する符号量は数 100倍のオーダーで増減 することもあり、圧縮符号ィ匕された動画像データのビットレートを一定の値以下に制御 することは比較的難しい技術である。圧縮符号化処理では、時間的に発生する符号 量のばらつきが大きいため、一般的に符号量を一定の値に固定する固定ビットレート 方式よりも、符号量を有効に割り当てることのできる可変ビットレート方式が画質の面 で有利であると言われて 、る。  [0003] By the way, in general, the compression code method for moving images uses an intra-frame code method that uses a spatial correlation in one frame, and a frame that uses a temporal correlation between consecutive frames. In combination with the inter-code system. The amount of code generated when compressing a moving image according to continuously input image data may increase or decrease on the order of several hundred times, so the bit rate of the moving image data that has been compression encoded It is relatively difficult to control the value below a certain value. In compression coding, the amount of code that occurs over time varies greatly, so in general, the variable bit rate can be allocated more effectively than the fixed bit rate method in which the code amount is fixed to a fixed value. The system is said to be advantageous in terms of image quality.
[0004] し力しながら可変ビットレート方式を用いた場合、以下の点に注意する必要がある。 (1)動画像データを再生する他の機器との互換性を考慮するとピークのビットレート が各機器の定める規格の範囲を超えてはならない。また、 1フレームの最大符号量も 各機器の定める規格の範囲を超えてはならない。(2)符号ィ匕ビットレートが、 SDメモ リカード等の記録メディアの可能記録レートを超えてはならない。 [0004] However, when the variable bit rate method is used, it is necessary to pay attention to the following points. (1) In consideration of compatibility with other devices that play moving image data, the peak bit rate must not exceed the range of the standard specified by each device. In addition, the maximum code amount per frame must not exceed the standard range defined by each device. (2) The code bit rate must not exceed the possible recording rate of recording media such as SD memory cards.
[0005] ビットレートが急激に変動して、符号量が増加した場合、一般的にはフレームスキッ プ (駒落とし)制御によってビットレートを抑える方法や、直流成分に対応する量子化 係数のみを符号化する方法や、 NotCodedと呼ばれる、前のフレームとの差分がな いことを示す非符号ィ匕情報等によって符号量を強制的に抑制する方法がよく知られ ている。しカゝしながらこれらの方法では、圧縮符号化された動画像を再生するとフレ ームレートの低下による動きのぎこちなさや、極端な画質劣化が発生してユーザに不 快感を与えやすくなるという欠点がある。  [0005] When the bit rate suddenly fluctuates and the amount of code increases, generally the method of suppressing the bit rate by frame skip (frame drop) control, or coding only the quantization coefficient corresponding to the DC component There are well-known methods for reducing the amount of code by using a non-signed information or the like, which is called NotCoded, which indicates that there is no difference from the previous frame. However, these methods have the disadvantages that when a compressed and encoded video is played back, the movement becomes awkward due to a decrease in the frame rate, and extreme image quality degradation occurs, which tends to cause discomfort to the user. .
[0006] 動画像データにおいてビットレートや符号量が極端に増加するケースとしては急激 なシーンチェンジや、白色雑音と!/、つた符号ィ匕の難 、画像データが連続して入力 された場合が想定される。圧縮符号化された動画像のビットレートの制御は一般的に は量子化パラメータによって行うが、符号ィ匕の難しい画像データが連続して入力され たケースでは量子化パラメータによる制御でも符号量を抑制することは困難であるた め、前述のような非符号化情報等によって強制的に符号量を抑制する手法が採られ ることが多い。  [0006] In video data, the bit rate and the amount of code may increase drastically when there is a sudden scene change, white noise and! / is assumed. The bit rate of compression-coded moving images is generally controlled by quantization parameters. However, in the case where image data that is difficult to code is input continuously, the amount of code is also suppressed by control using quantization parameters. Since it is difficult to do this, a method of forcibly suppressing the amount of code by using the uncoded information as described above is often employed.
[0007] これらの課題を解決するため、図 7に示すように周波数成分に対応する量子化係数 を削減することで符号量を抑制する画像圧縮装置が知られて ヽる(例えば特許文献 1参照)。  In order to solve these problems, there is known an image compression apparatus that suppresses the code amount by reducing the quantization coefficient corresponding to the frequency component as shown in FIG. 7 (see, for example, Patent Document 1). ).
[0008] この第 1の従来の画像圧縮装置は、入力されるブロック単位の動画像のデジタルデ ータに離散コサイン変換(Discrete Cosine Transform,以下単に「DCT」という。)処 理を行い、時間領域のデータを周波数領域の係数データ(以後、「DCT係数」と言う 。)に変換する DCT部 600と、 DCT部 600により変換された DCT係数を所定の量子 ィ匕ステップ幅で量子化する量子化部 601と、量子化部 601により量子化された DCT 係数 (以後、「量子化係数」 t ヽぅ。)をジグザグスキャン順に並び替えるジグザグスキ ヤン部 602と、ジグザグスキャン部 602により並び替えられた量子ィ匕係数にランレング スによる可変長符号化 (Variable Length Coding,以後単に「VLC」とう。)処理を行い 、こうして得られた圧縮されたビットストリームを、図示されていない出カノ ッファに出 力する VLC部 603とを備えている。 DCT部 600、量子化部 601、ジグザグスキャン部 602、 VLC部 603は、一般的に知られている MPEG圧縮符号ィ匕方式と同一の機能 であるので、詳細な説明は省略する。第 1の従来の画像圧縮装置はさらに、ジグザグ スキャン部 602により並び替えられた量子化係数から周波数成分に対応する量子化 係数の削減レベルを決定する調整値決定部 604と、調整値決定部 604によって決 定された周波数成分に対応する量子化係数の削減レベルに従ってジグザグスキャン 後の量子化係数を対応する周波数成分の高いものから 0にして、符号量を強制的に 削減する係数調整部 605とを備えており、調整値決定部 604は、 VLC部 603から出 力される圧縮されたビットストリームを入力する出カノッファの空き容量に基づいて、 1フレームの符号量が所定の値に抑制されるように、周波数成分に対応する量子化 係数の削減レベルを決定し、符号化バッファのオーバーフローを防ぐようになつてい る。 [0008] This first conventional image compression apparatus performs discrete cosine transform (hereinafter simply referred to as "DCT") processing on the input digital data of block-unit moving images to obtain time. DCT unit 600 that converts domain data into frequency domain coefficient data (hereinafter referred to as “DCT coefficient”), and a quantum that quantizes the DCT coefficient converted by DCT unit 600 with a predetermined quantum step width. 601, the zigzag scanning unit 602 that rearranges the DCT coefficients quantized by the quantization unit 601 (hereinafter, “quantization coefficient” t ヽ ぅ.) In the zigzag scanning order, and the zigzag scanning unit 602 Run-length on the quantum coefficient VLC unit 603 that performs variable length coding (hereinafter referred to simply as “VLC”) processing and outputs the compressed bit stream thus obtained to an output canoffer (not shown). I have. The DCT unit 600, the quantization unit 601, the zigzag scan unit 602, and the VLC unit 603 have the same functions as the generally known MPEG compression coding method, and thus detailed description thereof is omitted. The first conventional image compression apparatus further includes an adjustment value determination unit 604 that determines a reduction level of the quantization coefficient corresponding to the frequency component from the quantization coefficients rearranged by the zigzag scanning unit 602, and an adjustment value determination unit 604. The coefficient adjustment unit 605 forcibly reduces the code amount by changing the quantization coefficient after zigzag scanning from the highest corresponding frequency component to 0 according to the reduction level of the quantization coefficient corresponding to the frequency component determined by The adjustment value determination unit 604 suppresses the code amount of one frame to a predetermined value based on the free capacity of the output canoffer that inputs the compressed bit stream output from the VLC unit 603. As described above, the reduction level of the quantization coefficient corresponding to the frequency component is determined, and the overflow of the encoding buffer is prevented.
[0009] さらに、図 8に示すように、画像の複雑さに応じて量子化係数を削減することで符号 量を抑制する画像圧縮装置も知られて ヽる(例えば特許文献 2参照)。  Further, as shown in FIG. 8, there is also known an image compression apparatus that suppresses the code amount by reducing the quantization coefficient in accordance with the complexity of the image (see, for example, Patent Document 2).
[0010] この第 2の従来の画像圧縮装置の構成のうち、第 1の画像圧縮装置の構成と同様 な構成については、図 7に示す第 1の画像圧縮装置の構成と同一の符号を使用して 詳細な説明を省略する。  Among the configurations of the second conventional image compression device, the same reference numerals as those of the first image compression device shown in FIG. 7 are used for the configurations similar to the configurations of the first image compression device. Detailed description will be omitted.
[0011] この第 2の従来の画像圧縮装置は、 DCT部 600と、量子化部 601と、ジグザグスキ ヤン部 602と、 VLC部 603と、調整値決定部 604と、係数調整部 605の他に、さら〖こ 、入力されるデジタルデータから、フレーム内の各ブロックにおける画素の分散値を 計算して画像の複雑さを求める分散値計算部 706を備え、調整値決定部 604は、分 散値計算部 706により計算された分散値に基づいて周波数成分に対応する量子化 係数の削減レベルを決定するようになっている。分散値計算部 706により計算される 分散値が大きいほど画像は複雑であり、結果的に生成される符号量が増加する傾向 にあることから、分散値が大き!/、場合には調整値決定部 604により決定される周波数 成分に対応する量子化係数の削減レベルは大きくなる。 特許文献 1:特開平 9— 23427号公報 This second conventional image compression apparatus includes a DCT unit 600, a quantization unit 601, a zigzag scanning unit 602, a VLC unit 603, an adjustment value determination unit 604, and a coefficient adjustment unit 605. In addition, a distribution value calculation unit 706 that calculates the image complexity by calculating the pixel dispersion value in each block in the frame from the input digital data, and the adjustment value determination unit 604 includes the distribution value calculation unit 604. Based on the dispersion value calculated by the value calculation unit 706, the reduction level of the quantization coefficient corresponding to the frequency component is determined. The larger the variance value calculated by the variance value calculation unit 706, the more complex the image, and the more the code amount that is generated tends to increase. The reduction level of the quantization coefficient corresponding to the frequency component determined by the unit 604 increases. Patent Document 1: Japanese Patent Laid-Open No. 9-23427
特許文献 2:特開 2003 - 259376号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-259376
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 第 1の従来の画像圧縮装置において、出力バッファの空き容量に基づいて周波数 成分に対応する量子化係数を高周波成分力 削減する手法は非常に有効である。 第 1の従来の画像圧縮装置は、しかしながら、所定の規格の範囲に最大符号量を抑 圧することやバッファのオーバーフローを回避することができるが、当該フレームの符 号量を抑制する手段しか持たないため、圧縮符号ィ匕時に符号量が急激に変化した 場合にビットレートを適宜に抑制することができないという問題があった。  [0012] In the first conventional image compression apparatus, the technique of reducing the high-frequency component power of the quantization coefficient corresponding to the frequency component based on the free capacity of the output buffer is very effective. The first conventional image compression apparatus, however, can suppress the maximum code amount within a predetermined standard range and avoid buffer overflow, but has only means for suppressing the code amount of the frame. For this reason, there has been a problem that the bit rate cannot be appropriately suppressed when the code amount changes abruptly at the time of compression encoding.
[0013] 第 2の従来の画像圧縮装置において、入力される動画像のデジタルデータの複雑 さに応じて周波数成分に対応する量子化係数を高周波成分から削減する手法は非 常に有効である。第 2の画像圧縮装置は、し力しながら、画像の複雑さを演算する処 理が膨大になるため、高速な処理が要求される動画像の圧縮符号化処理に適用す ることは困難であり、また、分散値の算出部のコストが大きくなるという問題があった。  [0013] In the second conventional image compression apparatus, a method of reducing the quantization coefficient corresponding to the frequency component from the high frequency component according to the complexity of the digital data of the input moving image is very effective. The second image compression apparatus, however, has a large amount of processing to calculate the complexity of the image, so that it is difficult to apply it to compression encoding processing of moving images that require high-speed processing. In addition, there is a problem in that the cost of the variance value calculation unit is increased.
[0014] 本発明はこのような問題を解決するためになされたものであり、当該処理フレームか ら発生する符号量を予測し、過去の符号量を使用してビットレートを予測し、所定の 値を超えると予測される場合に周波数成分に対応する量子化係数を削減すること〖こ より、簡易な構成で少ない演算量によってビットレートの抑制を実現する画像符号ィ匕 制御装置および画像符号ィ匕制御方法を提供することを目的とする。  The present invention has been made to solve such a problem, predicts a code amount generated from the processing frame, predicts a bit rate using a past code amount, By reducing the quantization coefficient corresponding to the frequency component when it is predicted to exceed the value, an image code controller and image code that realizes bit rate suppression with a simple configuration and a small amount of computation. An object is to provide a dredge control method.
課題を解決するための手段  Means for solving the problem
[0015] 本発明の動画像を圧縮符号化する画像符号化制御装置は、過去のフレームおよ び処理中のフレームにおいて発生した符号量を格納する符号量格納部と、処理中の フレームにお 、て発生した符号量に基づ 、て処理中のフレームにお 、て最終的に 発生すると予想される予測符号量を算出する予測符号量算出手段と、前記符号量 格納部に格納された過去のフレームにお 、て発生した符号量および前記予測符号 量算出手段により算出された現在処理中のフレームにおいて発生すると予測される 予測符号量に基づいてビットレートを算出するビットレート算出手段と、前記ビットレ ート算出手段により算出された前記ビットレートを所定の閾値と比較して、周波数成 分に対応する量子化係数の削減量を決定する削減符号量決定手段と、前記削減符 号量決定手段により決定された前記削減量に基づいて周波数成分に対応する量子 ィ匕係数を削減する符号量調整手段を備えた構成を有している。 [0015] An image coding control apparatus for compressing and coding a moving image according to the present invention includes a code amount storage unit for storing a code amount generated in a past frame and a frame being processed, and a frame being processed. A predictive code amount calculating means for calculating a predictive code amount that is finally expected to be generated in the frame being processed based on the generated code amount; and a past code amount stored in the code amount storage unit. A bit rate calculating unit that calculates a bit rate based on a code amount generated in the frame and a predicted code amount predicted to be generated in a currently processed frame calculated by the predicted code amount calculating unit; Bit The bit rate calculated by the rate calculation means is compared with a predetermined threshold value, and the reduction code amount determination means for determining the reduction amount of the quantization coefficient corresponding to the frequency component and the reduction code amount determination means A code amount adjusting means for reducing a quantum coefficient corresponding to a frequency component based on the determined reduction amount is provided.
[0016] この構成により、本発明の画像符号ィ匕制御装置は、当該処理フレームから発生す る符号量を予測し、過去の符号量を使用してビットレートを予測し、所定の値を超える と予測される場合に周波数成分に対応する量子化係数を削減することにより、簡易 な構成で少ない演算量によってビットレートの抑制を実現することができる。  With this configuration, the image code controller of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and exceeds a predetermined value. If the quantization coefficient corresponding to the frequency component is reduced, the bit rate can be suppressed with a simple configuration and a small amount of calculation.
[0017] また、本発明の画像符号化制御装置は、更に、前記所定の閾値を調整する削減符 号量調整手段を備えた構成を有しても良い。  [0017] Further, the image coding control apparatus of the present invention may further include a configuration including a reduction code amount adjusting means for adjusting the predetermined threshold.
[0018] この構成により、本発明の画像符号ィ匕制御装置は、急激に符号量の変化が予測さ れる場合には、ビットレートの収束を早めるように前記所定の閾値を調整し、逆に符 号量の変化が少ない場合には本発明の手法によって急激に符号量抑制の制御がか 力 ないように前記所定の閾値を調整することができるので、圧縮符号化時に符号量 が急激に変化した場合にもビットレートを適宜に抑制することができる。  [0018] With this configuration, the image code control device of the present invention adjusts the predetermined threshold so as to accelerate the convergence of the bit rate when a change in the code amount is predicted abruptly, and conversely When the change in the code amount is small, the predetermined threshold can be adjusted so that the control of the code amount is not suddenly controlled by the method of the present invention, so that the code amount changes abruptly during compression encoding. In this case, the bit rate can be appropriately suppressed.
[0019] また、本発明の画像符号化制御装置は、前記予測符号量算出手段は、前記符号 量格納部に格納された所定の数の過去のフレームにおいて発生した符号量を参照 して前記予測符号量を算出し、更に、前記画像符号化制御装置は、前記所定の数 を調整する基準フレーム数調整手段を備えた構成を有しても良い。  [0019] Also, in the image coding control device according to the present invention, the prediction code amount calculation means refers to the code amount generated in a predetermined number of past frames stored in the code amount storage unit. The code amount may be calculated, and the image coding control device may further include a reference frame number adjusting unit that adjusts the predetermined number.
[0020] 参照する過去のフレームの数が大きいほど、算出されるビットレートは、平均ビットレ ート、すなわちターゲットビットレートに近くなり、ビットレートの急激な変化は反映され にくくなる。一方で、参照する過去のフレーム数が小さいほど、算出されるビットレート はビットレートの急激な変化を反映しやすくなるが、逆に削減する符号量の制御が不 安定になる可能性がある。この構成により、本発明の画像符号化制御装置は、より正 確に、かつより状況に適したビットレート制御を行うことにより、安定して、かつ適応的 に画質の劣化を抑えることができる。  [0020] The larger the number of past frames to be referred to, the closer the calculated bit rate is to the average bit rate, that is, the target bit rate, and it is less likely that a sudden change in the bit rate is reflected. On the other hand, the smaller the number of past frames to be referenced, the easier it is for the calculated bit rate to reflect a rapid change in the bit rate, but conversely, the control of the code amount to be reduced may become unstable. With this configuration, the image coding control apparatus of the present invention can suppress deterioration of image quality stably and adaptively by performing bit rate control more accurately and more appropriately for the situation.
[0021] また、本発明の画像符号化制御装置は、前記予測符号量算出手段は、現在処理 中のフレームにおいて発生すると予測される符号量を所定の数を越えるマクロブロッ クにおいて発生した符号量を基準として算出し、更に、前記画像符号化制御装置は 、前記所定の数を調整する基準マクロブロック数調整手段を備えた構成を備えても 良い。 [0021] Further, in the image coding control apparatus according to the present invention, the prediction code amount calculation means includes a macroblock that exceeds a predetermined number of code amounts predicted to be generated in a currently processed frame. Further, the image coding control apparatus may be configured to include a reference macroblock number adjusting unit that adjusts the predetermined number.
[0022] 予測符号量算出手段が発生すると予測される符号量を算出する際、対象とするマ クロブロック力 S、フレームの最初のマクロブロックに近いほど算出される予測符号量の 誤差は大きくなる。この構成により、本発明の画像符号ィ匕制御装置は、より正確に、 かつより状況に適したビットレート制御を行うことにより、安定して、かつ適応的に画質 の劣化を抑えることができる。  [0022] When the code amount predicted to be generated by the prediction code amount calculation means is calculated, the error of the predicted code amount that is calculated becomes larger as the target macroblock force S and the first macroblock of the frame are closer to each other. . With this configuration, the image code control device of the present invention can suppress deterioration of image quality stably and adaptively by performing bit rate control more accurately and more suitable for the situation.
[0023] また、本発明の画像符号化制御装置は、前記予測符号量算出手段は、現在処理 中のフレームにおいて発生すると予測される符号量を所定の数のマクロブロックをス キップして算出し、更に、前記画像符号化制御装置は、前記所定の数を調整するス キップされるマクロブロック数調整手段を備えた構成を有しても良 、。  [0023] Further, in the image coding control apparatus according to the present invention, the predicted code amount calculation means calculates a code amount predicted to occur in a currently processed frame by skipping a predetermined number of macroblocks. Furthermore, the image coding control apparatus may have a configuration including skipped macroblock number adjusting means for adjusting the predetermined number.
[0024] スキップするマクロブロックの数が多いほど、削減符号量決定手段は、周波数成分 に対応する量子化係数の削減レベルを少な 、負荷で迅速に算出できるようになる。 この構成により、本発明の画像符号ィ匕制御装置は、より正確に、かつより状況に適し たビットレート制御を行うことにより、安定して、かつ適応的に画質の劣化を抑えること ができる。  [0024] As the number of macroblocks to be skipped increases, the reduction code amount determination means can calculate the reduction level of the quantization coefficient corresponding to the frequency component more quickly and with a load. With this configuration, the image code key control device of the present invention can suppress the deterioration of the image quality stably and adaptively by performing the bit rate control more accurately and more suitable for the situation.
[0025] また、本発明の画像符号化制御装置は、前記削減符号量決定手段は周波数成分 に対応する量子化係数の削減量を所定の増減量に基づいて決定し、更に、前記画 像符号ィ匕制御装置は、前記所定の数を調整する増減量決定手段を備えた構成を有 しても良い。  [0025] Further, in the image coding control apparatus according to the present invention, the reduction code amount determination means determines a reduction amount of the quantization coefficient corresponding to the frequency component based on a predetermined increase / decrease amount, and further, the image code The key control device may have a configuration including an increase / decrease amount determining means for adjusting the predetermined number.
[0026] この構成により、本発明の画像符号ィ匕制御装置は、急激に符号量の変化が予測さ れる場合には、ビットレートの収束を早めるように前記所定の増減量を調整し、逆に 符号量の変化が少な 、場合には急激に符号量抑制の制御が力からな 、ように前記 所定の増減量を調整することができるので、圧縮符号化時に符号量が急激に変化し た場合にもビットレートを適宜に抑制することができる。  With this configuration, the image code control device of the present invention adjusts the predetermined increase / decrease amount so as to accelerate the convergence of the bit rate when a change in the code amount is predicted suddenly, and reversely In the case where there is little change in the code amount, the predetermined increase / decrease amount can be adjusted so that the control of the code amount is not suddenly controlled. Even in this case, the bit rate can be appropriately suppressed.
[0027] 本発明の画像符号化制御方法は、過去のフレームおよび処理中のフレームにおい て発生した符号量を格納する符号量格納ステップと、処理中のフレームにおいて発 生した符号量に基づ!/、て処理中のフレームにおいて最終的に発生すると予想される 予測符号量を算出する予測符号量算出ステップと、前記符号量格納ステップで格納 された過去のフレームにおいて発生した符号量および前記予測符号量算出ステップ で算出された現在処理中のフレームにおいて発生すると予測される予測符号量に基 づいてビットレートを算出するビットレート算出ステップと、前記ビットレート算出ステツ プにより算出された前記ビットレートを所定の閾値と比較して、周波数成分に対応す る量子化係数の削減量を決定する削減符号量決定ステップと、前記削減符号量決 定ステップにより決定された前記削減量に基づいて周波数成分に対応する量子化 係数を削減する符号量調整ステップを備えた構成を有している。 [0027] The image coding control method of the present invention includes a code amount storage step for storing the code amount generated in the past frame and the frame being processed, and a code amount storing step in the frame being processed. Based on the generated code amount! /, A predicted code amount calculating step for calculating a predicted code amount that is expected to occur finally in the frame being processed, and a past frame stored in the code amount storing step A bit rate calculating step for calculating a bit rate based on the generated code amount and a predicted code amount predicted to be generated in the currently processed frame calculated in the predicted code amount calculating step; and the bit rate calculating step. The bit rate calculated in step (b) is compared with a predetermined threshold value to determine a reduction amount of a quantization coefficient corresponding to a frequency component, and a reduction code amount determination step determined by the reduction code amount determination step. It has a configuration including a code amount adjustment step for reducing the quantization coefficient corresponding to the frequency component based on the reduction amount.
[0028] この構成により、本発明の画像符号化制御方法は、当該処理フレームから発生す る符号量を予測し、過去の符号量を使用してビットレートを予測し、所定の値を超える と予測される場合に周波数成分に対応する量子化係数を削減することにより、簡易 な構成で少ない演算量によってビットレートの抑制を実現することができる。  [0028] With this configuration, the image coding control method of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and exceeds a predetermined value. By reducing the quantization coefficient corresponding to the frequency component when predicted, the bit rate can be suppressed with a simple configuration and a small amount of calculation.
[0029] また、本発明の画像符号ィ匕制御方法は、更に、前記所定の閾値を調整する削減符 号量調整ステップを備えた構成を有しても良い。  In addition, the image code key control method of the present invention may further include a configuration including a reduction code amount adjustment step for adjusting the predetermined threshold value.
[0030] この構成により、本発明の画像符号化制御方法は、急激に符号量の変化が予測さ れる場合には、ビットレートの収束を早めるように前記所定の閾値を調整し、逆に符 号量の変化が少ない場合には本発明の手法によって急激に符号量抑制の制御がか 力 ないように前記所定の閾値を調整することができるので、圧縮符号化時に符号量 が急激に変化した場合にもビットレートを適宜に抑制することができる。  [0030] With this configuration, the image coding control method of the present invention adjusts the predetermined threshold so as to accelerate the convergence of the bit rate when a change in the code amount is predicted abruptly. When the change in the signal amount is small, the predetermined threshold value can be adjusted by the method of the present invention so that the control of the code amount suppression is not abruptly applied. Even in this case, the bit rate can be appropriately suppressed.
[0031] また、本発明の画像符号ィ匕制御方法は、前記予測符号量算出ステップでは、前記 符号量格納部に格納された所定の数の過去のフレームにおいて発生した符号量を 参照して前記予測符号量を算出し、更に、前記画像符号化制御方法は、前記所定 の数を調整する基準フレーム数調整ステップを備えた構成を有しても良い。  [0031] Further, in the image code key control method of the present invention, in the prediction code amount calculation step, the code amount generated in a predetermined number of past frames stored in the code amount storage unit is referred to The prediction code amount is calculated, and the image coding control method may further include a reference frame number adjustment step of adjusting the predetermined number.
[0032] この構成により、本発明の画像符号ィ匕制御装置は、より正確に、かつより状況に適 したビットレート制御を行うことにより、安定して、かつ適応的に画質の劣化を抑えるこ とがでさる。  [0032] With this configuration, the image code key control device of the present invention can control the deterioration of image quality stably and adaptively by performing the bit rate control more accurately and more suitable for the situation. Togashi.
[0033] また、本発明の画像符号ィ匕制御方法は、前記予測符号量算出ステップでは、現在 処理中のフレームにおいて発生すると予測される符号量を所定の数を越えるマクロ ブロックにおいて発生した符号量を基準として算出し、更に、前記画像符号化制御 方法は、前記所定の数を調整する基準マクロブロック数調整ステップを備えた構成を 有しても良い。 [0033] Further, in the image code key control method of the present invention, in the prediction code amount calculation step, A code amount predicted to occur in a frame being processed is calculated based on a code amount generated in a macro block exceeding a predetermined number, and the image encoding control method further includes a reference macro for adjusting the predetermined number. You may have the structure provided with the block number adjustment step.
[0034] この構成により、本発明の画像符号化制御方法は、より正確に、かつより状況に適 したビットレート制御を行うことにより、安定して、かつ適応的に画質の劣化を抑えるこ とがでさる。  [0034] With this configuration, the image coding control method of the present invention suppresses deterioration of image quality stably and adaptively by performing bit rate control more accurately and more appropriately for the situation. It is out.
[0035] また、本発明の画像符号ィ匕制御方法は、前記予測符号量算出ステップでは、現在 処理中のフレームにおいて発生すると予測される符号量を所定の数のマクロブロック をスキップして算出し、更に、前記画像符号化制御方法は、前記所定の数を調整す るスキップされるマクロブロック数調整ステップを備えた構成を有しても良 、。  In the image code key control method of the present invention, in the predictive code amount calculation step, a code amount predicted to occur in a currently processed frame is calculated by skipping a predetermined number of macroblocks. Furthermore, the image coding control method may include a skipped macroblock number adjustment step for adjusting the predetermined number.
[0036] この構成により、本発明の画像符号化制御方法は、より正確に、かつより状況に適 したビットレート制御を行うことにより、安定して、かつ適応的に画質の劣化を抑えるこ とがでさる。  [0036] With this configuration, the image coding control method of the present invention suppresses deterioration of image quality stably and adaptively by performing bit rate control more accurately and more appropriately for the situation. It is out.
[0037] また、本発明の画像符号ィ匕制御方法は、前記削減符号量決定ステップでは周波数 成分に対応する量子化係数の削減量を所定の増減量に基づいて決定し、更に、前 記画像符号ィ匕制御方法は、前記所定の数を調整する増減量決定ステップを備えた 構成を有しても良い。  In the image code key control method of the present invention, the reduction code amount determination step determines a reduction amount of a quantization coefficient corresponding to a frequency component based on a predetermined increase / decrease amount, and further, the image The sign control method may have a configuration including an increase / decrease amount determining step for adjusting the predetermined number.
[0038] この構成により、本発明の画像符号化制御方法は、急激に符号量の変化が予測さ れる場合には、ビットレートの収束を早めるように前記所定の増減量を調整し、逆に 符号量の変化が少な 、場合には急激に符号量抑制の制御が力からな 、ように前記 所定の増減量を調整することができるので、圧縮符号化時に符号量が急激に変化し た場合にもビットレートを適宜に抑制することができる。  [0038] With this configuration, the image coding control method of the present invention adjusts the predetermined increase / decrease amount so as to accelerate the convergence of the bit rate when a change in the code amount is predicted abruptly, and conversely If the change in code amount is small, the predetermined increase / decrease amount can be adjusted so that the control of the code amount suppression is not performed suddenly, so that the code amount changes rapidly during compression encoding. In addition, the bit rate can be appropriately suppressed.
[0039] 本発明の記録媒体は、上述の何れかに記載の画像符号ィ匕制御方法の処理手順を コンピュータに実行させるための画像符号ィ匕制御プログラムが格納された構成を有し ている。  The recording medium of the present invention has a configuration in which an image code key control program for causing a computer to execute the processing procedure of the image code key control method described above is stored.
[0040] この構成により、本発明の画像符号化制御プログラムが格納された記録媒体は、当 該処理フレーム力 発生する符号量を予測し、過去の符号量を使用してビットレート を予測し、所定の値を超えると予測される場合に周波数成分に対応する量子化係数 を削減することにより、簡易な構成で少ない演算量によってビットレートの抑制を実現 することができる。 [0040] With this configuration, the recording medium storing the image coding control program of the present invention predicts the code amount generated by the processing frame force, and uses the past code amount to change the bit rate. By reducing the quantization coefficient corresponding to the frequency component when predicted to exceed a predetermined value, the bit rate can be suppressed with a simple configuration and a small amount of calculation.
[0041] 本発明の移動体通信システムは、上述の何れかに記載の画像符号ィ匕制御装置が 具備された構成を有して 、る。  [0041] A mobile communication system of the present invention has a configuration in which the image code key control device described above is provided.
[0042] この構成により、本発明の移動体通信システムは、当該処理フレームから発生する 符号量を予測し、過去の符号量を使用してビットレートを予測し、所定の値を超えると 予測される場合に周波数成分に対応する量子化係数を削減することにより、簡易な 構成で少ない演算量によってビットレートの抑制を実現することができる。  With this configuration, the mobile communication system of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and is predicted to exceed a predetermined value. In this case, by reducing the quantization coefficient corresponding to the frequency component, the bit rate can be suppressed with a simple configuration and a small amount of calculation.
発明の効果  The invention's effect
[0043] 本発明は、簡単な構成および演算量によって簡易な構成でビットレートの抑制を実 現する画像符号化制御装置および画像符号化制御方法を提供することができるもの である。  The present invention can provide an image coding control apparatus and an image coding control method that can suppress the bit rate with a simple configuration and a simple configuration with a simple configuration.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下、本発明の実施の形態について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第 1の実施の形態)  (First embodiment)
本発明の第 1の形態の画像符号ィ匕制御装置を図 1に示す。  FIG. 1 shows an image code key control apparatus according to a first embodiment of the present invention.
[0045] まず、本実施の形態の画像符号ィ匕制御装置の構成について説明する。 First, the configuration of the image code key control apparatus according to the present embodiment will be described.
[0046] 図 1に示すように、本実施の形態の画像符号化制御装置は、入力されるブロック単 位の動画像のデジタルデータに離散コサイン変換(Discrete Cosine Transform,以下 単に「DCT」という。)処理を行い、時間領域のデータを周波数領域の係数データ( 以後、「DCT係数」と言う。)に変換する DCT部 100と、 DCT部 100により変換された DCT係数を所定の量子化ステップ幅で量子化する量子化部 101と、量子化部 101 により量子化された DCT係数 (以後、「量子化係数」 t ヽぅ。)をジグザグスキャン順に 並び替えるジグザグスキャン部 102と、ジグザグスキャン部 102により並び替えられた 量子ィ匕係数にランレングスによる可変長符号化 (Variable Length Coding,以後単に「 VLC」という。)処理を行い、こうして得られた圧縮されたビットストリームを出力する V LC部 103と、現在処理中のフレームの累積発生符号量および過去のフレームの符 号量を退避する本発明の符号量格納部を構成する符号量メモリ部 104と、符号量メ モリ部 104に退避された、現在処理中のフレームにおいて発生した累積発生符号量 に基づいて現在処理中のフレームにおいて最終的に発生すると予測される最終符 号量を予測する予測符号量算出手段 105と、符号量メモリ部 104に退避された過去 のフレームにおいて発生した符号量および予測符号量算出手段 105により算出され た現在処理中のフレームにおいて最終的に発生すると予測される予測符号量に基 づいて現在の瞬間ビットレートを算出するビットレート算出手段 106と、ビットレート算 出手段 106により算出された瞬間ビットレートに基づいて周波数成分に対応する量 子化係数の削減レベルを決定する本発明の削減符号量決定手段を構成する調整 値決定部 107と、調整値決定部 107により決定された削減レベルに基づいて、ジグ ザグスキャン部 102により並び替えられた量子化係数を、高い周波数成分に対応す るものから順に削減する本発明の符号量調整手段を構成する係数調整部 108とを 備えている。 As shown in FIG. 1, the image coding control apparatus according to the present embodiment performs discrete cosine transform (hereinafter simply referred to as “DCT”) on input digital data of block-unit moving images. ) Performs processing and converts the time domain data into frequency domain coefficient data (hereinafter referred to as “DCT coefficient”), and the DCT coefficient converted by the DCT section 100 has a predetermined quantization step width. A quantization unit 101 that performs quantization in step S102, a zigzag scan unit 102 that rearranges the DCT coefficients quantized by the quantization unit 101 (hereinafter, “quantization coefficients” t ヽ ぅ.) In the zigzag scan order, and a zigzag scan unit 102 Variable length coding (Variable Length Coding, hereinafter simply referred to as “VLC”) processing is performed on the quantized coefficients rearranged by, and the resulting compressed bitstream is output V The LC unit 103 and the accumulated code amount of the frame currently being processed and the code of the past frame The code amount memory unit 104 constituting the code amount storage unit of the present invention for saving the signal amount, and the current processing based on the accumulated generated code amount generated in the currently processed frame saved in the code amount memory unit 104 Predictive code amount calculation means 105 that predicts the final code amount that is predicted to be finally generated in the middle frame, and the code amount and predictive code amount calculation means that were generated in the past frame saved in the code amount memory unit 104 The bit rate calculation means 106 that calculates the current instantaneous bit rate based on the prediction code amount that is predicted to be finally generated in the currently processed frame calculated by 105, and the bit rate calculation means 106. Determination of the adjustment value constituting the reduction code amount determination means of the present invention for determining the reduction level of the quantization coefficient corresponding to the frequency component based on the instantaneous bit rate Code amount of the present invention for reducing the quantization coefficients rearranged by the zigzag scanning unit 102 in order from those corresponding to the higher frequency components based on the reduction levels determined by the unit 107 and the adjustment value determining unit 107 And a coefficient adjustment unit 108 constituting adjustment means.
[0047] DCT部 100は、一般に知られた MPEGなどの動画像の符号化処理で行われる D CT変換を行 ヽ、入力された空間領域の動画像のデジタルデータを周波数領域の D CT係数へ変換する。符号ィ匕処理は 1フレームの画像に対してマクロブロックと呼ば れる複数のブロックの単位で実施される。例えば MPEG— 4では 16 X 16画素のマク ロブロック単位に処理を行うようになっている。本実施の形態において、 DCT処理も 、後で説明する量子化、ジグザグスキャン、 VLC等の処理も基本的にマクロブロック 単位で行うものとする。  [0047] The DCT unit 100 performs DCT conversion that is performed in a generally known moving image encoding process such as MPEG, and converts the input digital data of the moving image in the spatial domain to the DCT coefficient in the frequency domain. Convert. The encoding process is performed in units of a plurality of blocks called macroblocks for one frame image. For example, in MPEG-4, processing is performed in units of 16 × 16 pixel macroblocks. In the present embodiment, it is assumed that the DCT processing and the processing such as quantization, zigzag scanning, and VLC described later are basically performed in units of macroblocks.
[0048] 量子化部 101は、 DCT部 100により変換されたマクロブロック内の各 DCT係数に 量子化パラメータで除算を行う。具体的な方法は一般の符号化方法に従うので詳細 な説明を省略する。量子化パラメータの大ききによって圧縮率、つまり量子化後の符 号量が決まるため、ビットレートの制御における重要な処理の一つである。ところが入 力されるデータによっては量子化パラメータのみでは符号量を抑制できない場合が あり、その場合には一般的にフレームのスキップ、周波数成分に対応する量子化係 数の削減、非符号ィ匕データ (NotCoded)と呼ばれる最も符号量の小さいデータを出 力するといつた方法が採られる。 [0049] ジグザグスキャン部 102は、量子化後の量子化係数を、直流成分に対応する量子 ィ匕係数からより高い周波数成分に対応する量子化係数まで、対応する周波数成分 の低 、順に量子化係数を並び替える処理である。具体的な方法は一般の符号化方 法に従い、量子化後は高周波成分に 0が多く残るので、続くランレングス符号化によ つて圧縮効率が高まるように実施する。 MPEG— 4などではさらに圧縮効率を高める ために周波数成分に対応する量子化係数予測処理が実施されることがあり、その場 合には特殊な水平方向、垂直方向優先のスキャン (並び替え)を行う。 [0048] Quantization section 101 divides each DCT coefficient in the macroblock transformed by DCT section 100 by the quantization parameter. Since the specific method follows a general encoding method, detailed description is omitted. Since the compression rate, that is, the amount of code after quantization, is determined by the large quantization parameter, it is one of the important processes in bit rate control. However, depending on the input data, it may not be possible to suppress the amount of code by using only the quantization parameter. In this case, generally, skipping of frames, reduction of the quantization coefficient corresponding to the frequency component, non-signed data When the data with the smallest amount of code called (NotCoded) is output, the method is adopted. [0049] The zigzag scanning unit 102 quantizes the quantized quantized coefficients in order from the quantized coefficient corresponding to the DC component to the quantized coefficient corresponding to the higher frequency component, in order of decreasing corresponding frequency components. This is a process of rearranging the coefficients. The specific method follows the general coding method, and after quantization, a lot of high-frequency components remain, so the subsequent run-length coding is performed to increase the compression efficiency. In MPEG-4, for example, quantization coefficient prediction processing corresponding to frequency components may be performed to further increase the compression efficiency. In such a case, special horizontal and vertical priority scans (reordering) are performed. Do.
[0050] VLC部 103は、ジグザグスキャン部 102によって並びかえられた量子化係数群に 対して、頻出する係数データに短い符号を割り当てるランレングスによる可変長符号 化処理を行う。詳細な方法は一般の符号化方法に従うが、ランレングスによる可変長 符号ィ匕処理は、発生する頻度の少ない係数データには長い符号を割り当てざるをえ ない場合もある。このため、入力する係数データによっては、圧縮効率が低下するこ と力 Sある。一般的に、入力される動画像のデータが複雑な場合には圧縮効率が低下 する傾向がある。  [0050] The VLC unit 103 performs variable-length coding processing by run length that assigns a short code to frequently-occurring coefficient data for the quantized coefficient group rearranged by the zigzag scan unit 102. Although the detailed method follows a general encoding method, variable length code encoding processing by run length may be forced to assign a long code to coefficient data that occurs less frequently. For this reason, depending on the input coefficient data, there is a power S that can reduce the compression efficiency. Generally, when the input moving image data is complex, the compression efficiency tends to decrease.
[0051] 符号量メモリ部 104は、現在処理中の VLC処理後のデータ量、例えば、現在処理 中のフレームの累積発生符号量や、過去のフレームの符号量を退避する。現在処理 中のフレームの累積発生符号量および過去のフレームの符号量はビットレートを算 出するために使用される。本実施の形態では、所定の数の過去のフレームの累積符 号量を基にビットレートを算出するので、データ管理とビットレートの算出を容易にす るため、符号量メモリ部 104のデータ構成としては、例えばリングバッファデータ構造 が好ましい。しかし、本発明はこれに限定されない。また、符号量メモリ部 104は量子 ィ匕パラメータによるレート制御用符号量バッファと兼用しても良いし、独立して具備し ても良い。  [0051] The code amount memory unit 104 saves the data amount after VLC processing currently being processed, for example, the cumulative generated code amount of the currently processed frame and the code amount of the past frame. The accumulated code amount of the frame currently being processed and the code amount of the past frame are used to calculate the bit rate. In this embodiment, since the bit rate is calculated based on the accumulated code amount of a predetermined number of past frames, the data configuration of the code amount memory unit 104 is facilitated in order to facilitate data management and bit rate calculation. For example, a ring buffer data structure is preferable. However, the present invention is not limited to this. Also, the code amount memory unit 104 may be used as a rate control code amount buffer based on a quantum parameter, or may be provided independently.
[0052] 予測符号量算出手段 105は、現在処理中のフレームの最終符号量を予測する。本 実施の形態では、具体的な予測方法として、以下の数式を用いる。  The predicted code amount calculation means 105 predicts the final code amount of the frame currently being processed. In the present embodiment, the following formula is used as a specific prediction method.
[0053] PB = ( CB / CM ) X NM (数式 1)  [0053] PB = (CB / CM) X NM (Formula 1)
ここで、 PBは予測符号量、 CBは現在処理マクロブロックまでの累積発生符号量、 NMは 1フレームの総マクロブロック数、 CMは現在処理中のマクロブロック番号、す なわち、当該フレームの処理済のマクロブロックの数を表すものとする。 Where PB is the predicted code amount, CB is the cumulative code amount generated up to the current processing macroblock, NM is the total number of macroblocks in one frame, CM is the macroblock number currently being processed, That is, it represents the number of processed macroblocks of the frame.
[0054] 予測符号量 PBは、瞬間ビットレートを算出するために使用されるため、前記符号量 メモリ部 104に退避しておいても良い。現在処理中のマクロブロック番号 CMの値が 小さい、すなわち、フレームの最初のマクロブロックに近いほど算出される予測符号 量 PBの誤差は大きくなる。したがって適当な閾値を設けて、本手段における予測符 号量算出処理を開始するマクロブロックの位置、すなわち開始マクロブロック番号を 定めて、現在処理中のマクロブロック番号 CMが開始マクロブロック番号より小さい場 合に予測しないような制御を行っても良い。なお、予測符号量の算出は各マクロプロ ックごとに行う必要はなぐ 1つ以上のマクロブロックをスキップして、適当なタイミング で算出するようにしても良い。また、このタイミングはシステムに応じて独自に定めて 決定しても良い。スキップするマクロブロックの数が多いほど、調整値決定部 107は、 削減レベルを少な 、負荷で迅速に算出できるようになる。  Since the predicted code amount PB is used to calculate the instantaneous bit rate, it may be saved in the code amount memory unit 104. The smaller the value of the macro block number CM currently being processed, that is, the closer to the first macro block of the frame, the larger the error in the predicted code amount PB calculated. Therefore, an appropriate threshold value is set, and the position of the macroblock at which the predictive code amount calculation processing in this means is started, that is, the start macroblock number is determined. In some cases, control that is not predicted may be performed. Note that it is not necessary to calculate the predicted code amount for each macro block. One or more macro blocks may be skipped and calculated at an appropriate timing. In addition, this timing may be determined and determined independently according to the system. As the number of macroblocks to be skipped increases, the adjustment value determining unit 107 can calculate the reduction level quickly with a reduced load.
[0055] また、本発明において、予測符号量を算出する方法は、上述の数式 1に限定され ず、その他一般的に知られている予測方法を用いて予測符号量を算出しても構わな い。  Further, in the present invention, the method for calculating the prediction code amount is not limited to Equation 1 described above, and the prediction code amount may be calculated using another generally known prediction method. Yes.
[0056] ビットレート算出手段 106は、符号量メモリ部 104に保存された過去のフレームの符 号量および予測符号量算出手段 105により算出された予測符号量 PBに基づいて現 在の瞬間ビットレートを算出する。瞬間ビットレートは符号量メモリ部 104に退避して ある所定の数、すなわち、基準フレーム数の過去フレームの符号量と、現在の予測 符号量を基に算出する。具体的には以下のように算出する。  The bit rate calculation means 106 is based on the code amount PB of the past frame stored in the code quantity memory unit 104 and the prediction code quantity PB calculated by the prediction code quantity calculation means 105. Is calculated. The instantaneous bit rate is calculated based on a predetermined number saved in the code amount memory unit 104, that is, the code amount of the past frame of the reference frame number and the current predicted code amount. Specifically, it is calculated as follows.
[0057] [数 1]  [0057] [Equation 1]
(数式 2 )
Figure imgf000014_0001
(Formula 2)
Figure imgf000014_0001
[0058] ここで、ビットレート算出対象の過去から現在処理中のフレームまでのフレーム数を nとして、 MRは瞬間ビットレート、すなわち単位秒あたりのビット数を表し、 BFはビット レート算出基準フレーム数を表し、 FRはフレームレート、すなわち単位秒あたりのフ レーム数を表し、 [0058] Here, MR represents the instantaneous bit rate, that is, the number of bits per second, where n is the number of frames from the past of the bit rate calculation target to the currently processed frame, and BF is the reference number of frames for bit rate calculation. FR represents the frame rate, ie the number of frames per second,
[0059] [数 2] i=n-\ [0059] [Equation 2] i = n- \
[0060] はビットレート算出対象の過去のフレームから現在処理中のフレームの直前のフレー ムまでに発生した符号量を表し、 PBは予測符号量を表すものとする。また、 BFは瞬 間ビットレート算出に用いる過去フレームの数であるので、n=BFとなる。 [0060] represents the amount of code generated from the past frame subject to bit rate calculation to the frame immediately before the frame currently being processed, and PB represents the predicted code amount. Also, since BF is the number of past frames used for instantaneous bit rate calculation, n = BF.
[0061] ビットレート算出基準フレーム数 BFの値が大きいほど算出される瞬間ビットレート M Rは平均ビットレート、すなわちターゲットビットレートに近くなり、ビットレートの急激な 変化は反映されに《なる。また、ビットレート算出基準フレーム数 BFの値が小さいほ ど算出される瞬間ビットレート MRはビットレートの急激な変化を反映しやすくなるが、 逆に削減する符号量の制御が不安定になる可能性がある。これから、ビットレート算 出基準フレーム数 BFの値はシステムに適した値とすることが必要である。 BFは適用 するシステムに応じて決定しても良 、。  [0061] The bit rate calculation reference frame number BF increases as the value of BF increases, and the calculated instantaneous bit rate MR becomes closer to the average bit rate, that is, the target bit rate, and a sudden change in the bit rate is reflected. Also, the smaller the bit rate calculation reference frame number, BF, the smaller the calculated instantaneous bit rate MR will tend to reflect a sudden change in the bit rate, but conversely the control of the amount of code to be reduced may become unstable. There is sex. From this, it is necessary to set the bit rate calculation reference frame number BF to a value suitable for the system. BF may be determined according to the system to be applied.
[0062] 調整値決定部 107は、ビットレート算出手段 106によって算出された瞬間ビットレー ト MRに応じて、周波数成分に対応する量子化係数の削減レベルを決定する。具体 的には、前記ビットレート算出手段 106で算出した瞬間ビットレート MRが、特定のビ ットレート、すなわち、基準とする閾値を超えているかどうかを判定する。前記ビットレ ート算出手段 106で算出した瞬間ビットレート MRが所定の閾値を超えていると判断 された場合は周波数成分に対応する量子化係数の削減量を大きくする。具体的に は周波数成分に対応する量子化係数削減レベルのパラメータを大きくする。ジグザ グスキャン部 102により出力された量子化係数が、例えば、既に直流成分に対応す る量子化係数のみの場合など、すなわち削減可能な量子化係数が存在しな 、場合 には現状のレベルを維持する。逆に、瞬間ビットレート MRが閾値よりも小さい場合に は、周波数成分に対応する量子化係数の削減量を小さくするようにする。具体的に は周波数成分に対応する量子化係数の削減レベルのパラメータを小さくする。周波 数成分に対応する量子化係数の削減を行って!/ヽな ヽ場合、すなわち周波数成分に 対応する量子化係数削減レベル力 SOの場合には現状のレベルを維持して何もしない [0063] 図 2に周波数成分に対応する量子化係数削減のイメージを示す。図 2— Aに削減 レベル 2の場合にぉ 、て、瞬間ビットレート MRが所定の閾値を超えたと調整値決定 部 107により判断された場合、図 2— Bに示すように削減レベルを 3に増加して高周 波成分に対応する量子化係数の削減量を大きくする。逆に調整値決定部 107により 瞬間ビットレート MRが閾値に満たない場合と判断された図 2— Cに示すように削減レ ベルを 1に減らす。 The adjustment value determination unit 107 determines the reduction level of the quantization coefficient corresponding to the frequency component according to the instantaneous bit rate MR calculated by the bit rate calculation means 106. Specifically, it is determined whether or not the instantaneous bit rate MR calculated by the bit rate calculating means 106 exceeds a specific bit rate, that is, a reference threshold value. When it is determined that the instantaneous bit rate MR calculated by the bit rate calculation means 106 exceeds a predetermined threshold, the reduction amount of the quantization coefficient corresponding to the frequency component is increased. Specifically, the quantization coefficient reduction level parameter corresponding to the frequency component is increased. If the quantization coefficient output by the zigzag scan unit 102 is only the quantization coefficient corresponding to the direct current component, for example, if there is no reduction coefficient, the current level is maintained. To do. On the contrary, when the instantaneous bit rate MR is smaller than the threshold value, the reduction amount of the quantization coefficient corresponding to the frequency component is reduced. Specifically, the quantization coefficient reduction level parameter corresponding to the frequency component is reduced. If the quantization coefficient corresponding to the frequency component is reduced! / ヽ ヽ, that is, if the quantization coefficient reduction level power SO corresponding to the frequency component is SO, the current level is maintained and nothing is done. FIG. 2 shows an image of quantization coefficient reduction corresponding to the frequency component. Fig. 2- A reduction in level 2 When the adjustment bit determining unit 107 determines that the instantaneous bit rate MR has exceeded a predetermined threshold, the reduction level is set to 3 as shown in Fig. 2-B. Increase the amount of quantization coefficient reduction corresponding to high frequency components. Conversely, the adjustment value decision unit 107 determines that the instantaneous bit rate MR is less than the threshold, and reduces the reduction level to 1 as shown in Fig. 2-C.
[0064] ここで、調整値決定部 107が決定する周波数成分に対応する量子化係数削減レべ ルの増減量を 1として説明した力 本発明はこれに限定されない。調整値決定部 107 が決定する周波数成分に対応する量子化係数削減レベルの増減量は、  [0064] Here, the power described with the increase / decrease amount of the quantization coefficient reduction level corresponding to the frequency component determined by adjustment value determination unit 107 as 1, the present invention is not limited to this. The increase / decrease amount of the quantization coefficient reduction level corresponding to the frequency component determined by the adjustment value determination unit 107 is
はシステムに応じて定めてよぐ収束率を早めるために増減量を大きくしても良いこと は言うまでもない。  It goes without saying that the amount of increase / decrease may be increased in order to accelerate the convergence rate determined according to the system.
[0065] 係数調整部 108は、前記調整値決定部 107で定まった周波数成分に対応する量 子化係数の削減レベルに応じて、対応する周波数成分の高い順に周波数成分に対 応する量子化係数を 0に設定する。周波数成分に対応する量子化係数を対応する 周波数成分の高い順に削減することによって、 VLC処理後の符号量を抑えることが できる。なお、本発明は、削減する量子化係数値を 0に設定することに限定されない 。 VLC部 103では、発生する頻度の少ない係数データには長い符号が割り当てられ て複雑な入力画像の場合に圧縮効率が低下する場合がある。このため、 VLC部 10 3による VLC処理時に割り当てられる符号量力 例えば効率的に削減できるような値 となるのであれば、 0以外の如何なる値に設定しても良い。  [0065] The coefficient adjustment unit 108, according to the reduction level of the quantization coefficient corresponding to the frequency component determined by the adjustment value determination unit 107, the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component Set to 0. By reducing the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component, the amount of code after VLC processing can be suppressed. Note that the present invention is not limited to setting the quantization coefficient value to be reduced to 0. In the VLC unit 103, a long code is assigned to coefficient data that is generated less frequently, and the compression efficiency may decrease in the case of a complex input image. For this reason, the code capacity allocated at the time of VLC processing by the VLC unit 103 may be set to any value other than 0 as long as the value can be reduced efficiently.
[0066] 次に、本実施の形態の画像符号化制御装置の動作について、図 3のフローチヤ一 トを参照して詳細に説明する。  [0066] Next, the operation of the image coding control apparatus according to the present embodiment will be described in detail with reference to the flowchart of FIG.
[0067] 本実施の形態では、現在処理中のマクロブロック番号 CMが所定の開始マクロブロ ック番号に達するまで、予測符号量を算出しないものとする。また、理解を容易にす るため以下の説明において、符号量メモリ部 104にはビットレート算出基準フレーム 数 BFを満たす数の過去フレームがすでに保存されているものとする。  In this embodiment, it is assumed that the predicted code amount is not calculated until the currently processed macro block number CM reaches a predetermined start macro block number. Further, in order to facilitate understanding, in the following description, it is assumed that the number of past frames satisfying the bit rate calculation reference frame number BF is already stored in the code amount memory unit 104.
[0068] まず、シーケンスの先頭で各種初期化を実施する (ステップ ST300)。具体的には 、符号量メモリ部 104の初期化や、各種システム変数などの初期化を行う。次にフレ ーム単位の周期処理の初期化、更新を行う(ST301)。ここではフレーム単位で必要 な初期化を行う。例えば前記調整値決定部 107が周波数成分に対応する量子化係 数の削減レベルを変更する場合の増減量の初期化または更新、開始マクロブロック の番号の初期化または更新などを行う。次に、マクロブロック単位の処理の初期化、 更新を行う(ST302)。例えば、マクロブロック番号の初期化または更新、現在処理中 のマクロブロックまでの累積発生符号量 (CB)の初期化または更新、予測符号量算 出手段 105が予測符号量を算出する際に 1つ以上のマクロブロックをスキップする場 合は、スキップするマクロブロックの数の初期化または更新を行う。 First, various initializations are performed at the beginning of the sequence (step ST300). Specifically, the code amount memory unit 104 is initialized and various system variables are initialized. Next Initialize and update the cycle processing for each frame (ST301). Here, necessary initialization is performed for each frame. For example, when the adjustment value determination unit 107 changes the reduction level of the quantization coefficient corresponding to the frequency component, the increase / decrease amount is initialized or updated, and the start macroblock number is initialized or updated. Next, initialization and updating of the process in units of macroblocks are performed (ST302). For example, initialization or updating of the macro block number, initialization or updating of the accumulated code amount (CB) up to the currently processed macro block, and one when the prediction code amount calculation means 105 calculates the prediction code amount. When skipping the above macroblocks, initialize or update the number of macroblocks to skip.
次に、現在処理中のマクロブロックが符号量予測の対象とするマクロブロックかどう かを判定する(ST303)。具体的には、現在処理中のマクロブロックの番号 CMが所 定の開始マクロブロック番号以上であるかどうかを判断し、現在処理中のマクロブロッ ク番号 CMが、開始マクロブロック番号以上であると判断された場合に、現在処理中 のマクロブロックは符号量予測の対象とするマクロブロックであるとする。さらに、符号 量予測を 1つ以上のマクロブロックをスキップして行うように設定されている場合は、ス テツプ ST302で初期化または更新されたスキップするマクロブロックの数にも基づい て現在処理中のマクロブロックが符号量予測の対象とするマクロブロックかどうかが判 定される。ステップ ST303で、現在処理中のマクロブロックが符号量予測の対象とす るマクロブロックでない、すなわち、現在処理中のマクロブロックの番号 CMが開始マ クロブロック番号を下回っていると判断された場合には通常のマクロブロック処理を実 施する(ST309)。すなわち、調整値決定部 107により決定された削減レベルに基づ V、て高 、周波数成分に対応するものから順に量子化係数の削減を行って 、く。ステ ップ ST303で、現在処理中のマクロブロックが符号量予測対象のマクロブロックであ ると判断された場合、予測符号量算出手段 105により、符号量メモリ部 104に退避さ れた、現在処理中のフレームの現在処理中のマクロブロックまでに発生した累積発 生符号量 CBに基づいて現在処理中のフレームの最終符号量 PBを予測する予測符 号量算出処理が行われる(ST304)。次に、ビットレート算出手段 106により、符号量 メモリ部 104に退避された過去のフレームの符号量および予測符号量算出手段 10 5により算出された現在処理中のフレームの最終予測符号量 PBに基づいて瞬間ビッ トレートが算出される(ST305)。こうして算出された瞬間ビットレート MB力 調整値 決定部 107によって、基準とする閾値を超えたかどうかの判定が行われ (ST306)、 瞬間ビットレート MBが基準とする閾値を超えていると判断された場合には周波数成 分に対応する量子ィ匕係数の削減レベルを増やし(ST307)、逆に瞬間ビットレート M Bが基準とする閾値に満たないと判断された場合には周波数成分に対応する量子化 係数の削減レベルを下げる(ST308)。次に、 DCT部 100、量子化部 101、ジグザグ スキャン部 102による通常のマクロブロック処理が実行される。このときに、前記調整 値決定部 107により決定された周波数成分に対応する量子化係数の削減レベルに 応じて、係数調整部 108によって対応する周波数成分の高い順に周波数成分に対 応する量子化係数が 0に設定され、 VLC部 103により符号ィ匕処理が実行される (ST 309)。 Next, it is determined whether or not the currently processed macroblock is a macroblock to be subjected to code amount prediction (ST303). Specifically, it is determined whether or not the macro block number CM currently being processed is greater than or equal to a predetermined start macro block number, and if the macro block number CM currently being processed is greater than or equal to the start macro block number. If it is determined, the macro block currently being processed is assumed to be a macro block subject to code amount prediction. Furthermore, if the code amount prediction is set to be performed by skipping one or more macroblocks, the current processing is also performed based on the number of macroblocks to be skipped that are initialized or updated in step ST302. It is determined whether or not the macroblock is the target macroblock for code amount prediction. When it is determined in step ST303 that the currently processed macroblock is not a macroblock subject to code amount prediction, that is, the currently processed macroblock number CM is less than the start macroblock number. Performs normal macroblock processing (ST309). That is, based on the reduction level determined by the adjustment value determination unit 107, the quantization coefficient is reduced in order from the one corresponding to V, high, and frequency component. Step ST303: If it is determined in step ST303 that the currently processed macroblock is a macroblock to be subjected to code amount prediction, the current process saved in the code amount memory unit 104 by the prediction code amount calculation unit 105 Prediction code amount calculation processing is performed for predicting the final code amount PB of the currently processed frame based on the accumulated generated code amount CB generated up to the currently processed macroblock of the current frame (ST304). Next, based on the code amount of the past frame saved in the code amount memory unit 104 by the bit rate calculation unit 106 and the final prediction code amount PB of the currently processed frame calculated by the prediction code amount calculation unit 105. Moment A trait is calculated (ST305). The instantaneous bit rate MB power adjustment value thus calculated is determined by the determination unit 107 to determine whether or not the reference threshold is exceeded (ST306), and it is determined that the instantaneous bit rate MB exceeds the reference threshold. In this case, the reduction level of the quantum coefficient corresponding to the frequency component is increased (ST307). Conversely, if it is determined that the instantaneous bit rate MB is less than the reference threshold, the quantization corresponding to the frequency component is performed. Reduce the coefficient reduction level (ST308). Next, normal macroblock processing by the DCT unit 100, the quantization unit 101, and the zigzag scanning unit 102 is executed. At this time, according to the reduction level of the quantization coefficient corresponding to the frequency component determined by the adjustment value determination unit 107, the quantization coefficient corresponding to the frequency component in descending order of the corresponding frequency component by the coefficient adjustment unit 108 Is set to 0, and the sign key processing is executed by the VLC unit 103 (ST 309).
[0070] 上述の通常のマクロブロック処理が終了すると 1フレームの処理が完了したかどうか が判断され (ST310)、完了していないと判断された場合、現在処理中のマクロプロ ックの番号がインクリメントされた後、再びステップ ST303〖こ戻り、マクロブロックの周 期処理が実施される。ステップ ST310において、 1フレームの処理が完了していると 判断された場合、符号量メモリ部 104に符号量を退避した後(ST311)、ステップ ST 300に戻り、シーケンスの完了まで再び上述の処理を継続する。  [0070] When the above normal macroblock processing is completed, it is determined whether or not processing of one frame is completed (ST310). If it is determined that the processing is not completed, the number of the currently processed macroblock is determined. After the increment, step ST303 is returned again to perform macro block periodic processing. If it is determined in step ST310 that the processing of one frame has been completed, the code amount is saved in the code amount memory unit 104 (ST311), and then the process returns to step ST300 and the above processing is performed again until the sequence is completed. continue.
[0071] 図 4に示すグラフは、ターゲットビットレートを 384kbpsとした場合に、本実施の形態 の画像符号化制御装置と従来手法の画像符号化装置とで、測定される瞬間ビットレ ートを時系列に比較したものであり、本実施の形態の画像符号ィ匕制御装置によるビッ トレート抑制の効果を表している。また、図 5は本実施の形態の画像符号ィ匕制御装置 と従来手法の画像符号化装置とで、それぞれ入力された画像と圧縮符号化後に再 び復号された画像を比較したものであり、本実施の形態の画像符号ィ匕制御装置にお ける動画像の画質改善の効果を表している。ここで、従来手法の画像符号化装置は 特に周波数成分に対応する量子化係数の削減を実施して ヽな ヽ量子化パラメータ のみのレート制御を行い、さらに符号量が極端に増加した場合には非符号化データ の使用を想定している。入力される画像は図 5— Aに示す黒画像を最初の数フレー ムが連続し、途中から図 5— Bに示すような白色雑音画像となった場合の、極端に厳 し 、ケースでシミュレーションを行って 、る。 The graph shown in FIG. 4 shows the instantaneous bit rate measured by the image coding control apparatus of the present embodiment and the conventional image coding apparatus when the target bit rate is 384 kbps. This is a comparison with the series, and shows the effect of bit rate suppression by the image code key control apparatus of the present embodiment. FIG. 5 shows a comparison between the input image and the image re-decoded after compression encoding in the image encoding control device of this embodiment and the image encoding device of the conventional method. This shows the effect of improving the image quality of a moving image in the image code control device of the present embodiment. Here, the conventional image coding apparatus reduces the quantization coefficient corresponding to the frequency component in particular and performs rate control only on the ヽ quantization parameter, and when the code amount is extremely increased. The use of uncoded data is assumed. The input image is extremely severe when the first few frames of the black image shown in Fig. 5-A are continuous and the white noise image shown in Fig. 5-B is displayed from the middle. However, the simulation is performed in the case.
[0072] 図 4に示すグラフにおいて、破線は従来手法の画像符号ィ匕装置において、圧縮符 号ィ匕時に測定される瞬間ビットレートを示して 、る。最初の黒画像のシーンではほと んど符号量は発生しないが、白色雑音画像のシーンになった場合には急激にビット レートが増加し、約 1. 5Mbpsにも及ぶことがわかる。ターゲットとするビットレートであ る 384kbpsを大幅に超えてしまうため、これを回避するためにはフレームスキップな どの対策が必要となる。また、 1フレームの符号量サイズを規定値に抑えるために、非 符号化データ、すなわち、 NotCodedを使用した場合に復号される画像を図 5— Cに 示す。フレームの下の部分が非符号化データ、すなわち NotCodedによって前のフ レームである黒画像が残ってしま ヽ不自然な結果となって 、る。  In the graph shown in FIG. 4, the broken line indicates the instantaneous bit rate measured when the compression code is input in the conventional image encoding apparatus. In the first black image scene, almost no code is generated, but in the case of a white noise image scene, the bit rate increases rapidly, reaching about 1.5 Mbps. Since the target bit rate of 384kbps is significantly exceeded, measures such as frame skip are necessary to avoid this. In addition, Fig. 5-C shows an image that is decoded when using uncoded data, that is, NotCoded, in order to keep the code size of one frame at a specified value. The lower part of the frame leaves uncoded data, that is, a black image that is the previous frame due to NotCoded, which is an unnatural result.
[0073] これに対して、図 4の実線で示すグラフが本実施の形態の画像符号ィ匕制御装置に おいて、圧縮符号ィ匕時に測定される瞬間ビットレートを示している。最初の黒画像の シーンでは従来手法と同様に、ほとんど符号量は発生していないだけでなぐ白色雑 音画像のシーンになった場合においてもビットレートはターゲットビットレート付近で 抑制されていることがわかる。本実施の形態の画像符号ィ匕制御装置による圧縮符号 化後に再び復号された画像を図 5— Dに示す。周波数成分に対応する量子化係数 削減 (高周波成分削減)の影響によってぼやけた部分が見られるが、フレームスキッ プによる動きがぎこちなさや、非符号ィ匕データによる強制的な符号量抑制の影響もな いので、ユーザに与える印象は改善されていることがわかる。し力も、実使用上は人 ェ画像を用いたシミュレーションほど厳し 、ケースは少なぐ自然画像が対象となる場 合には画質劣化の影響はより少なくなる。  On the other hand, the graph shown by the solid line in FIG. 4 shows the instantaneous bit rate measured at the time of compression coding in the image coding control device of the present embodiment. In the first black image scene, as with the conventional method, the bit rate is suppressed near the target bit rate even in the case of a white noise image scene where almost no code amount is generated. Recognize. An image decoded again after compression coding by the image code controller of this embodiment is shown in Fig. 5-D. Blurred parts can be seen due to the quantization coefficient reduction corresponding to the frequency components (high frequency component reduction), but there is also a little movement due to frame skipping, and there is no influence of forced code amount suppression due to uncoded data. It can be seen that the impression given to the user has been improved. In actual use, however, the simulation is more severe than the simulation using a human image, and the effect of image quality deterioration is less when the natural image is a target with fewer cases.
[0074] なお、本実施の形態では、ジグザグスキャン部 102によるジグザグスキャンの後の データに対して係数調整部 108により周波数成分に対応する量子化係数の削減を 行う構成として説明しているが、本発明はこれに限定されない。例えば、量子化部 10 1により量子化された後の量子化係数に対して係数調整手段が周波数成分に対応 する量子化係数を削減し、その後でジグザグスキャン部がジグザグスキャンを実施す る構成としても同様の効果を得ることができる。  [0074] Although the present embodiment has been described as the configuration in which the coefficient adjustment unit 108 reduces the quantization coefficient corresponding to the frequency component for the data after the zigzag scan by the zigzag scan unit 102, The present invention is not limited to this. For example, as a configuration in which the coefficient adjustment unit reduces the quantization coefficient corresponding to the frequency component with respect to the quantization coefficient quantized by the quantization unit 101, and then the zigzag scanning unit performs zigzag scanning. The same effect can be obtained.
[0075] また、本実施の形態で、前記調整値決定部 107が周波数成分に対応する量子化 係数の削減レベルを変更する場合の増減量の初期化または更新、開始マクロブロッ クの番号の初期化または更新などをステップ ST301で行い、現在処理中のマクロブ ロックまでの累積発生符号量 (CB)の初期化または更新、予測符号量算出手段 105 が予測符号量算出処理を開始する開始マクロブロック番号の調整や、予測符号量を 算出する際に 1つ以上のマクロブロックをスキップする場合は、スキップするマクロブ ロックの数の初期化または更新をステップ ST302で行うとした力 本発明はこれに限 定されない。例えば、前記調整値決定部 107が周波数成分に対応する量子化係数 の削減レベルを変更する場合の増減量の初期化または更新、および Zまたは開始 マクロブロックの番号の初期化または更新などをステップ ST302で行っても良!、。こ の場合、フレーム処理の周期ではなぐマクロブロック処理の周期で削減レベルの増 減量、開始ブロック番号を変更可能になるため、入力されてくる動画像データに迅速 に対応して、ビットレートの制御を行うことが可能となる。同様に、現在処理中のマクロ ブロックまでの累積発生符号量 (CB)の初期化または更新、および Zまたは予測符 号量算出手段 105が予測符号量を算出する際に 1つ以上のマクロブロックをスキップ する場合は、スキップするマクロブロックの数の初期化または更新をステップ ST301 で行っても良い。この場合、システムはビットレートの制御を安定して行うことになる。 [0075] Also, in the present embodiment, the adjustment value determination unit 107 performs quantization corresponding to the frequency component. Initialization or updating of the increase / decrease amount when changing the coefficient reduction level, initialization or updating of the start macroblock number, etc. are performed in step ST301, and the cumulative amount of code generated up to the currently processed macroblock (CB) Initialization or updating of the code, the code amount calculation unit 105 adjusts the start macroblock number for starting the code amount calculation process, or skips one or more macroblocks when calculating the code amount to be predicted. The ability to initialize or update the number of macroblocks to be performed in step ST302 is not limited to this. For example, step ST302 performs initialization or update of the increase / decrease amount when the adjustment value determining unit 107 changes the reduction level of the quantization coefficient corresponding to the frequency component, and initialization or update of the Z or start macroblock number. You can go there! In this case, the increase / decrease in the reduction level and the start block number can be changed in the macro block processing cycle, not the frame processing cycle, so the bit rate control can be performed quickly in response to the input video data. Can be performed. Similarly, initialization or updating of the accumulated code amount (CB) up to the currently processed macroblock, and one or more macroblocks are calculated when the Z or predictive code amount calculation means 105 calculates the predictive code amount. When skipping, the number of macroblocks to be skipped may be initialized or updated in step ST301. In this case, the system stably controls the bit rate.
[0076] 本実施の形態の画像符号化制御装置は、現在処理中のマクロブロックまでの符号 量から当該フレームの符号量を予測し、過去の符号量と現在の符号量から瞬間ビッ トレートを算出し、基準値を超えていた場合には量子化後の周波数成分に対応する 量子化係数の削減量を大きくして発生する符号量を抑制し、逆に基準値を下回って いた場合には周波数成分に対応する量子化係数の削減量を小さくして発生する符 号量を増加させるので、急激なビットレートの増加を抑制し、規格で定められたレート に収まるようにビットレートを制御することが可能となる。動画像のデータがビットレート をオーバーするために他の装置で再生できな 、と 、つた不具合やメディアの記録レ ートを超えてしまう問題を回避できる。  [0076] The image coding control apparatus according to the present embodiment predicts the code amount of the frame from the code amount up to the currently processed macroblock, and calculates the instantaneous bit rate from the past code amount and the current code amount. If it exceeds the reference value, it suppresses the amount of code generated by increasing the reduction amount of the quantization coefficient corresponding to the frequency component after quantization, and conversely if it falls below the reference value, the frequency The amount of generated code is increased by reducing the amount of reduction of the quantization coefficient corresponding to the component, so a rapid increase in bit rate is suppressed and the bit rate is controlled so that it falls within the rate specified by the standard. Is possible. If the moving image data exceeds the bit rate and cannot be played back by another device, it is possible to avoid problems such as a malfunction or exceeding the recording rate of the media.
[0077] さらに、本実施の形態の画像符号化制御装置は、常時瞬間ビットレートを監視する ことで、削減する周波数成分に対応する量子化係数の範囲を最低限にとどめること ができ、ビットレートに余裕がある場合には係数を戻すことで画質の劣化も最低限と することができるため、これまでビットレートを抑えるために採っていたフレームスキッ プゃ非符号ィ匕データを出力していた場合と比較しても画質の劣化が少なぐユーザ に対するメリットが大きい。また、符号量を予測して早めにレート制御を行うので、急 激に符号量の大きいフレームが出力されることを防ぎ、レート制御を安定させることが できる効果も有する。 本発明は非常に簡易な構成と演算量で大きな効果を得られ、 低コストな画像符号ィ匕制御装置を提供することができ、さらに一般的な量子化パラメ ータによるレート制御と組み合わせて使用することも可能である。 [0077] Furthermore, the image coding control apparatus of the present embodiment can keep the quantization coefficient range corresponding to the frequency component to be reduced to a minimum by constantly monitoring the instantaneous bit rate, and the bit rate. If there is a margin, reducing the coefficient will minimize image quality degradation. Therefore, frame skipping, which has been used to reduce the bit rate, has a great merit for users with less image quality degradation compared to the case of outputting unsigned data. In addition, since the code amount is predicted and rate control is performed early, it is possible to prevent a frame with a large code amount from being output suddenly and to stabilize the rate control. The present invention can provide a large effect with a very simple configuration and calculation amount, can provide a low-cost image code control device, and is used in combination with rate control by a general quantization parameter. It is also possible to do.
[0078] また、本実施の形態の画像符号ィ匕制御装置は例えば携帯端末として組み込むこと が可能であり、例えば前記携帯端末装置を具備した移動体通信システムとして実現 することも可會である。  In addition, the image code key control device according to the present embodiment can be incorporated as a mobile terminal, for example, and can be realized as a mobile communication system including the mobile terminal device, for example.
[0079] さらに、本実施の形態の画像符号化制御装置は、ソフトウェアにより方法として実現 することも可能であり、このソフトウェアを収めた記録媒体力 読み出して本実施の形 態の画像符号ィ匕制御装置が実行する画像符号ィ匕制御方法を実現することも可能で ある。  Furthermore, the image coding control apparatus according to the present embodiment can also be realized as a method by software, and the image medium key control according to the present embodiment is read out by reading the recording medium force storing this software. It is also possible to realize an image code key control method executed by the apparatus.
(第 2の実施の形態)  (Second embodiment)
まず、第 2の実施の形態の画像符号ィ匕制御装置の構成について説明する。  First, the configuration of the image code key control device according to the second embodiment will be described.
[0080] なお、本実施の形態の画像符号化制御装置の構成は、第 1の実施の形態の画像 符号ィ匕制御装置の構成とほぼ同様であるので、図 1で示した第 1の実施の形態の画 像符号ィ匕制御装置の構成と同一の符号を使用して詳細な説明を省略する。また、本 実施の形態の画像符号化制御装置の動作は、第 1の実施の形態の画像符号化制御 装置の動作とほぼ同様であるので、図 3で示した第 1の実施の形態の画像符号ィ匕制 御装置のステップと同一の符号を使用して詳細な説明を省略する。  [0080] The configuration of the image coding control apparatus according to the present embodiment is substantially the same as the configuration of the image coding control apparatus according to the first embodiment, and therefore the first embodiment shown in FIG. The detailed description will be omitted by using the same reference numerals as those of the configuration of the image code control device of the embodiment. The operation of the image coding control apparatus according to the present embodiment is almost the same as the operation of the image coding control apparatus according to the first embodiment, and therefore the image of the first embodiment shown in FIG. The detailed description will be omitted by using the same reference numerals as the steps of the sign control device.
[0081] 図 6に示すように、本実施の形態の画像符号ィ匕制御装置の構成は、第 1の実施の 形態の画像符号化制御装置が、本発明の基準フレーム数調整手段、基準マクロプロ ック数調整手段、スキップされるマクロブロック数調整手段、増減量決定手段を構成 するパラメータ調整部 509を備えた構成と同一である。  As shown in FIG. 6, the configuration of the image coding control device of the present embodiment is such that the image coding control device of the first embodiment uses the reference frame number adjusting means, the reference macro of the present invention, and the like. The configuration is the same as that provided with a parameter adjustment unit 509 that constitutes a block number adjustment unit, a skipped macroblock number adjustment unit, and an increase / decrease amount determination unit.
[0082] ここで、パラメータ調整部 509は、符号量メモリ部 104に退避された情報などを参照 して、予測符号量算出手段 105、ビットレート算出手段 106、調整値決定部 107の動 作を決定するパラメータを制御して、例えば、予測符号量算出手段 105が予測符号 量算出処理を開始するマクロブロックの位置、すなわち開始マクロブロック番号の調 整や、予測符号量を算出する際に 1つ以上のマクロブロックをスキップする場合は、 スキップするマクロブロックの数の調整、ビットレート算出手段 106におけるビットレー ト算出基準フレーム数 BFの調整、および調整値決定部 107において周波数成分に 対応する量子化係数削減の基準となる閾値および量子化係数の削減レベルの増減 量の調整を行うようになって!/、る。これらのパラメータを調整することでシステムに最 適な品質を得ることができる。 Here, the parameter adjustment unit 509 refers to the information saved in the code amount memory unit 104 and the like, and operates the predictive code amount calculation unit 105, the bit rate calculation unit 106, and the adjustment value determination unit 107. For example, when the prediction code amount calculation means 105 adjusts the position of the macroblock where the prediction code amount calculation processing starts, that is, the adjustment of the start macroblock number, or calculates the prediction code amount. When skipping one or more macroblocks, adjustment of the number of macroblocks to be skipped, adjustment of the bit rate calculation reference frame number BF in the bit rate calculation means 106, and the quantum value corresponding to the frequency component in the adjustment value determination unit 107 The threshold value for reducing the quantization factor and the amount of increase / decrease in the quantization factor reduction level are adjusted! By adjusting these parameters, the optimal quality for the system can be obtained.
[0083] 具体的に、パラメータ調整部 509は、符号量メモリ部 104に退避された過去の符号 量の遷移を観測し、急激に符号量の変化が予測される場合には、ビットレートの収束 を早めるようにパラメータを調整し、逆に符号量の変化が少ない場合には本発明の 手法によって急激に符号量抑制の制御が力からな 、ようにパラメータを調整する。例 えば、符号量メモリ部 104に退避された過去の符号量に対して所定の時間ごとに差 分値を取り、差分値が所定の閾値を越えたと判断された場合には、ビットレート MRの 収束を早めるように、例えば、調整値決定部 107において周波数成分に対応する量 子化係数削減の基準となる閾値および削減レベルの調整を調整しても良い。  [0083] Specifically, the parameter adjustment unit 509 observes the transition of the past code amount saved in the code amount memory unit 104, and if a change in the code amount is predicted suddenly, the bit rate convergence The parameter is adjusted so that the amount of code changes little, and conversely, if the change in the amount of code is small, the parameter is adjusted so that the control of the amount of code is not suddenly controlled by the method of the present invention. For example, a difference value is taken every predetermined time with respect to the past code amount saved in the code amount memory unit 104, and when it is determined that the difference value exceeds a predetermined threshold, the bit rate MR For example, the adjustment value determination unit 107 may adjust the threshold value and the reduction level that are used as a reference for reducing the quantization coefficient corresponding to the frequency component so as to accelerate the convergence.
[0084] また、圧縮符号化処理の開始時、符号量メモリ部 104には過去のフレームで発生し た符号量が退避されていないため、ビットレート算出基準フレーム数 BFを単純に 0に してしまうと、ビットレート算出手段 106は瞬間ビットレートを実際のビットレートよりも瞬 間ビットレート MRを小さく計算してしまう可能性がある。例えば、このような場合に、パ ラメータ調整部 509は、ビットレート算出基準フレーム数 BFを調整して補正を行う。  [0084] Also, since the code amount generated in the past frame is not saved in the code amount memory unit 104 at the start of the compression encoding process, the bit rate calculation reference frame number BF is simply set to 0. In this case, the bit rate calculation means 106 may calculate the instantaneous bit rate MR smaller than the actual bit rate. For example, in such a case, the parameter adjustment unit 509 performs correction by adjusting the bit rate calculation reference frame number BF.
[0085] さらに、極端に符号量の増減が変動する状況では、逆に細かい制御をかけてしまう とレートが安定せずに画質劣化を招く可能性もある。このような場合に、ノ ラメータ調 整部 509は、開始マクロブロック番号、スキップするマクロブロックの数等を調整して、 ビットレート制御を安定させることができる。ハードウェアなどの制限から、画質を犠牲 にしてもビットレートの抑制が必須な環境においても、随時きめの細かいビットレート 制御を実行して、短い時間で目標値に集束させすることが可能となる。  [0085] Further, in a situation where the increase / decrease of the code amount fluctuates extremely, conversely, if fine control is applied, the rate may not be stable and image quality may be deteriorated. In such a case, the parameter adjustment unit 509 can stabilize the bit rate control by adjusting the start macroblock number, the number of macroblocks to be skipped, and the like. Even in environments where bit rate control is essential at the expense of image quality due to hardware limitations, it is possible to execute precise bit rate control at any time and focus on the target value in a short time. .
[0086] 本実施の形態の画像符号化制御装置は、予測符号量算出手段 105が予測符号 量算出処理を開始するマクロブロックの位置、すなわち開始マクロブロック番号の調 整や、予測符号量を算出する際に 1つ以上のマクロブロックをスキップする場合は、 スキップするマクロブロックの数の調整、ビットレート算出手段 106におけるビットレー ト算出基準フレーム数 BFの調整、および調整値決定部 107において周波数成分に 対応する量子化係数削減の基準となる閾値および量子化係数の削減レベルの調整 を行うパラメータ調整部 509を備えたことにより、第 1の実施の形態の画像符号ィ匕制 御装置の効果に加えて、より正確に、かつより状況に適したビットレート制御を行うこと により、適応的に画質の劣化を抑えることができる。 [0086] In the image coding control apparatus according to the present embodiment, the prediction code amount calculation unit 105 uses the prediction code. When adjusting the position of the macroblock where the amount calculation process is started, that is, adjusting the start macroblock number, or when skipping one or more macroblocks when calculating the prediction code amount, adjusting the number of macroblocks to be skipped, Parameter adjustment for adjusting the number of bit rate calculation reference frames BF in the bit rate calculation means 106 and adjusting the threshold value and the reduction level of the quantization coefficient corresponding to the frequency coefficient reduction reference in the adjustment value determination unit 107 By providing the unit 509, in addition to the effect of the image coding control device of the first embodiment, the bit rate control more accurately and more suitable for the situation is performed, so that the image quality can be adaptively adjusted. Can be prevented.
[0087] 以上説明したように、本発明の画像符号ィ匕制御装置は、当該処理フレームから発 生する符号量を予測し、過去の符号量を使用してビットレートを予測し、所定の値を 超えると予測される場合に周波数成分に対応する量子化係数を削減することにより、 簡易な構成で少ない演算量によってビットレートの抑制を実現することができる。さら に、本発明の画像符号化制御装置は、ビットレートを規格で定められたレベルを超え な 、ように制御することが可能であるので、これによつて他の機器との互換性を保つと ともに、 SDメディアなどの記録レートも守ることができるので、システムとしての問題を 回避することが可能であり、周波数成分に対応する量子化係数を削減してビットレー トを抑制するため、画質の劣化を最小限とすることができる。  [0087] As described above, the image code control device of the present invention predicts the code amount generated from the processing frame, predicts the bit rate using the past code amount, and determines a predetermined value. By reducing the quantization coefficient corresponding to the frequency component when the frequency is predicted to exceed, the bit rate can be suppressed with a simple configuration and a small amount of calculation. Furthermore, since the image coding control apparatus of the present invention can control the bit rate so as not to exceed the level defined in the standard, this maintains compatibility with other devices. At the same time, since the recording rate of SD media can be protected, it is possible to avoid problems as a system, and the bit rate is reduced by reducing the quantization coefficient corresponding to the frequency component. Degradation can be minimized.
[0088] 本発明の画像符号ィ匕制御装置は例えば携帯端末として組み込むことが可能であり 、例えば前記携帯端末装置を具備した移動体通信システムとして実現することも可 能である。  The image code key control device of the present invention can be incorporated as a mobile terminal, for example, and can also be realized as a mobile communication system including the mobile terminal device, for example.
[0089] また、本発明の画像符号化制御装置は、ソフトウェアにより方法として実現すること も可能であり、このソフトウェアを収めた記録媒体力 読み出して本実施の形態の画 像符号ィ匕制御装置が実行する画像符号ィ匕制御方法を実現することも可能である。 産業上の利用可能性  Further, the image coding control apparatus of the present invention can be realized as a method by software, and the image coding key control apparatus according to the present embodiment reads out the recording medium force storing this software. It is also possible to implement an image code key control method to be executed. Industrial applicability
[0090] 以上説明したように、本発明は簡単な構成および演算量によって、当該処理フレー ム力 発生する符号量を予測し、過去の符号量を使用してビットレートを予測し、所 定の値を超えると予測される場合に周波数成分に対応する量子化係数を削減するこ とにより、簡易な構成でビットレートの抑制を実現する画像符号ィヒ制御装置および画 像符号ィ匕制御方法を提供することができ、携帯端末カゝらデジタルカメラなど様々な機 器に応用することが可能である。 [0090] As described above, the present invention predicts the amount of code generated by the processing frame force with a simple configuration and the amount of calculation, predicts the bit rate using the past amount of code, and determines the predetermined amount. When it is predicted that the value will be exceeded, an image coding control apparatus and a picture control device that realizes bit rate suppression with a simple configuration by reducing the quantization coefficient corresponding to the frequency component. An image code key control method can be provided and can be applied to various devices such as a digital camera and a portable terminal camera.
図面の簡単な説明  Brief Description of Drawings
[0091] [図 1]本発明の第 1の実施の形態の画像符号化制御装置の構成を示すブロック図 [図 2]第 1の実施の形態の画像符号ィ匕制御装置により実行される周波数成分に対応 する量子化係数削減処理のイメージを示す説明図  FIG. 1 is a block diagram showing a configuration of an image coding control apparatus according to a first embodiment of the present invention. FIG. 2 is a frequency executed by the image coding key control apparatus according to the first embodiment. Explanatory drawing showing an image of the quantization coefficient reduction processing corresponding to the component
[図 3]第 1の実施の形態の画像符号ィ匕制御装置により実行される画像符号ィ匕制御方 法を示すフロー図  FIG. 3 is a flowchart showing an image code key control method executed by the image code key control device of the first embodiment.
[図 4]第 1の実施の形態の画像符号ィ匕制御装置におけるビットレート抑制の効果を示 すグラフ  FIG. 4 is a graph showing the effect of bit rate suppression in the image code control device of the first embodiment.
[図 5]第 1の実施の形態の画像符号ィ匕制御装置による圧縮符号ィ匕後に復号された動 画像の画質改善の効果を示す図  FIG. 5 is a diagram showing the effect of improving the image quality of a moving image decoded after compression code input by the image code key control device of the first embodiment.
[図 6]本発明の第 2の実施の形態の画像符号ィ匕制御装置の構成を示すブロック図 [図 7]第 1の従来の画像圧縮装置のブロック図  FIG. 6 is a block diagram showing a configuration of an image code key control device according to a second embodiment of the present invention. FIG. 7 is a block diagram of a first conventional image compression device.
[図 8]第 2の従来の画像圧縮装置のブロック図  FIG. 8 is a block diagram of a second conventional image compression apparatus.
符号の説明  Explanation of symbols
[0092] 100 DCT部 [0092] 100 DCT section
101 量子化部  101 Quantizer
102 ジグザグスキャン咅  102 Zigzag scan
103 VLC部  103 VLC section
104 符号量メモリ部 (符号量格納部)  104 Code amount memory unit (Code amount storage unit)
105 予測符号量算出手段  105 Predictive code amount calculation means
106 ビットレート算出手段  106 Bit rate calculation means
107 調整値決定部 (削減符号量決定手段)  107 Adjustment value determination unit (reduction code amount determination means)
108 係数調整部 (符号量調整手段)  108 Coefficient adjustment unit (Code amount adjustment means)
509 ノ ラメータ調整部(基準フレーム数調整手段、基準マクロブロック数調整 手段、スキップされるマクロブロック数調整手段、増減量決定手段)  509 Parameter adjustment unit (reference frame number adjustment means, reference macroblock number adjustment means, skipped macroblock number adjustment means, increase / decrease amount determination means)
ST300 シーケンス初期化ステップ ST301 フレーム単位の処理の初期化ステップST300 Sequence initialization step ST301 Initialization step of frame unit processing
ST302 マクロブロックの単位の処理の初期化ステップST302 Macroblock unit processing initialization step
ST303 符号量予測対象判定ステップ ST303 Code amount prediction target determination step
ST304 予測符号量算出ステップ  ST304 Predictive code amount calculation step
ST305 瞬間ビットレート算出ステップ  ST305 Instantaneous bit rate calculation step
ST306 ビットレート判定ステップ  ST306 Bit rate judgment step
ST307 削減レベル増加ステップ  ST307 Reduction level increase step
ST308 削減レベル減少ステップ  ST308 Reduction level reduction step
ST309 マクロブロック符号ィ匕ステップ  ST309 Macroblock code step
ST310 フレーム処理完了判定ステップ  ST310 Frame processing completion judgment step
ST311 符号量退避ステップ  ST311 Code amount saving step
600 DCT咅  600 DCT 咅
601 量子化部  601 Quantizer
602 ジグザグスキャン部  602 Zigzag scan section
603 VLC咅  603 VLC 咅
604 調整値決定部  604 Adjustment value determination unit
605 係数調整部  605 Coefficient adjustment unit
706 分散値計算手部  706 Variance calculation part

Claims

請求の範囲 The scope of the claims
[1] 過去のフレームおよび処理中のフレームにおいて発生した符号量を格納する符号 量格納部と、処理中のフレームにおいて発生した符号量に基づいて処理中のフレー ムにおいて最終的に発生すると予想される予測符号量を算出する予測符号量算出 手段と、前記符号量格納部に格納された過去のフレームにおいて発生した符号量お よび前記予測符号量算出手段により算出された現在処理中のフレームにおいて発 生すると予測される予測符号量に基づいてビットレートを算出するビットレート算出手 段と、前記ビットレート算出手段により算出された前記ビットレートを所定の閾値と比 較して、周波数成分に対応する量子化係数の削減量を決定する削減符号量決定手 段と、前記削減符号量決定手段により決定された前記削減量に基づいて周波数成 分に対応する量子化係数を削減する符号量調整手段を備えた動画像を圧縮符号化 する画像符号化制御装置。  [1] It is expected that the code amount storage unit stores the code amount generated in the past frame and the frame being processed, and finally occurs in the frame being processed based on the code amount generated in the frame being processed. A predictive code amount calculating means for calculating a predictive code amount, a code amount generated in a past frame stored in the code amount storage unit, and a code amount generated in the currently processed frame calculated by the predictive code amount calculating means. A bit rate calculation means for calculating a bit rate based on a predicted code amount that is predicted to be generated, and the bit rate calculated by the bit rate calculation means is compared with a predetermined threshold value to correspond to a frequency component. A reduction code amount determination means for determining a reduction amount of the quantization coefficient and a frequency based on the reduction amount determined by the reduction code amount determination means. Picture coding control apparatus for compression encoding a moving picture having a coding amount adjusting means for reducing the quantization coefficients corresponding to SuNaru minute.
[2] 更に、前記所定の閾値を調整する削減符号量調整手段を備えたことを特徴とする 請求項 1に記載の画像符号化制御装置。  2. The image coding control apparatus according to claim 1, further comprising a reduced code amount adjusting means for adjusting the predetermined threshold.
[3] 前記予測符号量算出手段は、前記符号量格納部に格納された所定の数の過去の フレームにおいて発生した符号量を参照して前記予測符号量を算出し、更に、前記 画像符号ィ匕制御装置は、前記所定の数を調整する基準フレーム数調整手段を備え たことを特徴とする請求項 1に記載の画像符号化制御装置。  [3] The predictive code amount calculating means calculates the predictive code amount with reference to a code amount generated in a predetermined number of past frames stored in the code amount storage unit, and further 2. The image coding control apparatus according to claim 1, wherein the eyelid control apparatus includes a reference frame number adjusting unit that adjusts the predetermined number.
[4] 前記予測符号量算出手段は、現在処理中のフレームにおいて発生すると予測され る符号量を所定の数を越えるマクロブロックにおいて発生した符号量を基準として算 出し、更に、前記画像符号化制御装置は、前記所定の数を調整する基準マクロプロ ック数調整手段を備えたことを特徴とする請求項 1に記載の画像符号化制御装置。  [4] The predicted code amount calculation means calculates a code amount predicted to be generated in the currently processed frame on the basis of a code amount generated in a macroblock exceeding a predetermined number, and further performs the image encoding control. 2. The image coding control apparatus according to claim 1, wherein the apparatus comprises reference macro-block number adjusting means for adjusting the predetermined number.
[5] 前記予測符号量算出手段は、現在処理中のフレームにおいて発生すると予測され る符号量を所定の数のマクロブロックをスキップして算出し、更に、前記画像符号ィ匕 制御装置は、前記所定の数を調整するスキップされるマクロブロック数調整手段を備 えたことを特徴とする請求項 1に記載の画像符号化制御装置。  [5] The predictive code amount calculation means calculates a code amount that is predicted to occur in a currently processed frame by skipping a predetermined number of macroblocks. 2. The image coding control apparatus according to claim 1, further comprising skipped macroblock number adjusting means for adjusting a predetermined number.
[6] 前記削減符号量決定手段は周波数成分に対応する量子化係数の削減量を所定 の増減量に基づいて決定し、更に、前記画像符号化制御装置は、前記所定の数を 調整する増減量決定手段を備えたことを特徴とする請求項 1に記載の画像符号化制 御装置。 [6] The reduction code amount determination means determines a reduction amount of the quantization coefficient corresponding to the frequency component based on a predetermined increase / decrease amount, and the image encoding control device further determines the predetermined number. 2. The image coding control apparatus according to claim 1, further comprising an increase / decrease amount determining means for adjustment.
[7] 過去のフレームおよび処理中のフレームにおいて発生した符号量を格納する符号 量格納ステップと、処理中のフレームにお 、て発生した符号量に基づ!/、て処理中の フレームにおいて最終的に発生すると予想される予測符号量を算出する予測符号 量算出ステップと、前記符号量格納ステップで格納された過去のフレームにお!/、て 発生した符号量および前記予測符号量算出ステップで算出された現在処理中のフ レームにおいて発生すると予測される予測符号量に基づいてビットレートを算出する ビットレート算出ステップと、前記ビットレート算出ステップにより算出された前記ビット レートを所定の閾値と比較して、周波数成分に対応する量子化係数の削減量を決定 する削減符号量決定ステップと、前記削減符号量決定ステップにより決定された前 記削減量に基づいて周波数成分に対応する量子化係数を削減する符号量調整ステ ップを備えた動画像を圧縮符号化する画像符号化制御方法。  [7] A code amount storing step for storing the code amount generated in the past frame and the frame being processed, and the last in the frame being processed based on the code amount generated in the frame being processed! A prediction code amount calculation step for calculating a prediction code amount expected to occur automatically, and a past frame stored in the code amount storage step! A bit rate calculating step for calculating a bit rate based on the generated code amount and the predicted code amount predicted to be generated in the currently processed frame calculated in the predicted code amount calculating step; and the bit rate The bit rate calculated in the calculation step is compared with a predetermined threshold value, and a reduction code amount determination step for determining a reduction amount of the quantization coefficient corresponding to the frequency component, and a previous determination by the reduction code amount determination step. An image encoding control method for compressing and encoding a moving image including a code amount adjustment step for reducing a quantization coefficient corresponding to a frequency component based on the reduction amount.
[8] 更に、前記所定の閾値を調整する削減符号量調整ステップを備えたことを特徴とす る請求項 7に記載の画像符号ィ匕制御方法。  8. The image code key control method according to claim 7, further comprising a reduction code amount adjustment step for adjusting the predetermined threshold value.
[9] 前記予測符号量算出ステップでは、前記符号量格納部に格納された所定の数の 過去のフレームにおいて発生した符号量を参照して前記予測符号量を算出し、更に 、前記画像符号化制御方法は、前記所定の数を調整する基準フレーム数調整ステツ プを備えたことを特徴とする請求項 7に記載の画像符号化制御方法。  [9] In the predictive code amount calculation step, the predictive code amount is calculated with reference to a code amount generated in a predetermined number of past frames stored in the code amount storage unit, and further, the image encoding 8. The image encoding control method according to claim 7, wherein the control method includes a reference frame number adjustment step for adjusting the predetermined number.
[10] 前記予測符号量算出ステップでは、現在処理中のフレームにおいて発生すると予 測される符号量を所定の数を越えるマクロブロックにおいて発生した符号量を基準と して算出し、更に、前記画像符号化制御方法は、前記所定の数を調整する基準マク ロブロック数調整ステップを備えたことを特徴とする請求項 7に記載の画像符号化制 御方法。  [10] In the predictive code amount calculating step, a code amount predicted to occur in a currently processed frame is calculated on the basis of a code amount generated in a macroblock exceeding a predetermined number. 8. The image encoding control method according to claim 7, wherein the encoding control method includes a reference macroblock number adjustment step of adjusting the predetermined number.
[11] 前記予測符号量算出ステップでは、現在処理中のフレームにおいて発生すると予 測される符号量を所定の数のマクロブロックをスキップして算出し、更に、前記画像符 号化制御方法は、前記所定の数を調整するスキップされるマクロブロック数調整ステ ップを備えたことを特徴とする請求項 7に記載の画像符号ィ匕制御方法。 [11] In the predicted code amount calculation step, a code amount predicted to occur in the currently processed frame is calculated by skipping a predetermined number of macroblocks, and the image encoding control method further includes: 8. The image code key control method according to claim 7, further comprising a skipped macroblock number adjustment step for adjusting the predetermined number.
[12] 前記削減符号量決定ステップでは周波数成分に対応する量子化係数の削減量を 所定の増減量に基づいて決定し、更に、前記画像符号化制御方法は、前記所定の 数を調整する増減量決定ステップを備えたことを特徴とする請求項 7に記載の画像 符号化制御方法。 [12] In the reduction code amount determination step, a reduction amount of the quantization coefficient corresponding to the frequency component is determined based on a predetermined increase / decrease amount, and the image encoding control method further increases / decreases the predetermined number. 8. The image encoding control method according to claim 7, further comprising an amount determining step.
[13] 請求項 7から請求項 12までの何れかに記載の画像符号ィ匕制御方法の処理手順を コンピュータに実行させるための画像符号ィ匕制御プログラムが格納されていることを 特徴とする記録媒体。  [13] An image code control program for causing a computer to execute the processing procedure of the image code control method according to any one of claims 7 to 12 is stored. Medium.
[14] 請求項 1から請求項 6までの何れかに記載の画像符号ィ匕制御装置が具備されるこ とを特徴とする移動体通信システム。  [14] A mobile communication system comprising the image code control device according to any one of [1] to [6].
PCT/JP2006/314036 2006-07-14 2006-07-14 Image coding controller and image coding control method WO2008007436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314036 WO2008007436A1 (en) 2006-07-14 2006-07-14 Image coding controller and image coding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314036 WO2008007436A1 (en) 2006-07-14 2006-07-14 Image coding controller and image coding control method

Publications (1)

Publication Number Publication Date
WO2008007436A1 true WO2008007436A1 (en) 2008-01-17

Family

ID=38923008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314036 WO2008007436A1 (en) 2006-07-14 2006-07-14 Image coding controller and image coding control method

Country Status (1)

Country Link
WO (1) WO2008007436A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272790A (en) * 1986-05-21 1987-11-26 Mitsubishi Electric Corp Coding control circuit
JPH0418857A (en) * 1990-04-23 1992-01-23 Ricoh Co Ltd Picture data compression system
JPH0479587A (en) * 1990-07-20 1992-03-12 Kokusai Denshin Denwa Co Ltd <Kdd> Variable rate video encoding control system
JPH06205393A (en) * 1993-01-08 1994-07-22 Nippon Steel Corp Controller for quantity of generated encoding information for dynamic image
JPH06296274A (en) * 1993-04-09 1994-10-21 Matsushita Electric Ind Co Ltd Image encoding device
JPH0730889A (en) * 1993-06-28 1995-01-31 Ricoh Co Ltd Picture data encoder
JPH07322254A (en) * 1994-05-25 1995-12-08 Sony Corp Coder
JPH0923427A (en) * 1995-07-06 1997-01-21 Sony Corp Method and device for picture compression
JPH11215497A (en) * 1998-01-29 1999-08-06 Hitachi Ltd Image data compression system adopting variable bit-rate coding system
JP2000032449A (en) * 1998-07-09 2000-01-28 Sony Corp Image information processing unit, its method and serving medium
JP2000134617A (en) * 1998-10-22 2000-05-12 Matsushita Electric Ind Co Ltd Image encoding device
JP2004336103A (en) * 2003-04-30 2004-11-25 Texas Instr Japan Ltd Image information compression apparatus
JP2006148502A (en) * 2004-11-19 2006-06-08 Matsushita Electric Ind Co Ltd Code amount control method and encoding device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272790A (en) * 1986-05-21 1987-11-26 Mitsubishi Electric Corp Coding control circuit
JPH0418857A (en) * 1990-04-23 1992-01-23 Ricoh Co Ltd Picture data compression system
JPH0479587A (en) * 1990-07-20 1992-03-12 Kokusai Denshin Denwa Co Ltd <Kdd> Variable rate video encoding control system
JPH06205393A (en) * 1993-01-08 1994-07-22 Nippon Steel Corp Controller for quantity of generated encoding information for dynamic image
JPH06296274A (en) * 1993-04-09 1994-10-21 Matsushita Electric Ind Co Ltd Image encoding device
JPH0730889A (en) * 1993-06-28 1995-01-31 Ricoh Co Ltd Picture data encoder
JPH07322254A (en) * 1994-05-25 1995-12-08 Sony Corp Coder
JPH0923427A (en) * 1995-07-06 1997-01-21 Sony Corp Method and device for picture compression
JPH11215497A (en) * 1998-01-29 1999-08-06 Hitachi Ltd Image data compression system adopting variable bit-rate coding system
JP2000032449A (en) * 1998-07-09 2000-01-28 Sony Corp Image information processing unit, its method and serving medium
JP2000134617A (en) * 1998-10-22 2000-05-12 Matsushita Electric Ind Co Ltd Image encoding device
JP2004336103A (en) * 2003-04-30 2004-11-25 Texas Instr Japan Ltd Image information compression apparatus
JP2006148502A (en) * 2004-11-19 2006-06-08 Matsushita Electric Ind Co Ltd Code amount control method and encoding device

Similar Documents

Publication Publication Date Title
JP4256574B2 (en) Image signal encoding method and image signal encoding apparatus
KR100850705B1 (en) Method for adaptive encoding motion image based on the temperal and spatial complexity and apparatus thereof
US7653129B2 (en) Method and apparatus for providing intra coding frame bit budget
US8031769B2 (en) Method and device for controlling quantization scales of a video encoding bit stream
KR100850706B1 (en) Method for adaptive encoding and decoding motion image and apparatus thereof
US9077968B2 (en) Image processing apparatus and method, and program
US20100098169A1 (en) Method and apparatus for motion estimation using compressed reference frame
JP2001169281A (en) Device and method for encoding moving image
JP2001501429A (en) Variable bit rate video encoding method and corresponding video encoding device
JPH07184196A (en) Picture coder
JP4221655B2 (en) Encoding apparatus, encoding method, program, and recording medium
EP1350394A2 (en) Method of performing video encoding rate control using bit budget
JP2005328183A (en) Moving image coding apparatus and method, computer program, and computer readable storage medium
JP2000197049A (en) Dynamic image variable bit rate encoding device and method therefor
EP1077000A1 (en) Conditional masking for video encoder
JP4736619B2 (en) Image processing apparatus and image processing method
KR100708182B1 (en) Rate control apparatus and method in video encoder
JP4407249B2 (en) Data processing apparatus, method and encoding apparatus, method and program
WO2008007436A1 (en) Image coding controller and image coding control method
JP3425130B2 (en) Encoding device and encoding method
JP2002354484A (en) Rate transforming method for encoded image and rate transforming apparatus for encoded image
KR100949755B1 (en) A method and an apparatus for controlling the rate of a video sequence, a video encoding device
WO2005104561A1 (en) Data processing device, method thereof, and encoding device
JP2002232894A (en) Data rate converter
KR20040046055A (en) Method for electrical transmission bit rate control of moving picture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06781110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP