WO2008004473A1 - Novel protein complex, method for maturation of cobalt-type low-molecular-weight nitrile hydratase using the protein complex, matured cobalt-type low-molecular-weight nitrile hydratase, and method using the nitrile hydratase - Google Patents

Novel protein complex, method for maturation of cobalt-type low-molecular-weight nitrile hydratase using the protein complex, matured cobalt-type low-molecular-weight nitrile hydratase, and method using the nitrile hydratase Download PDF

Info

Publication number
WO2008004473A1
WO2008004473A1 PCT/JP2007/062872 JP2007062872W WO2008004473A1 WO 2008004473 A1 WO2008004473 A1 WO 2008004473A1 JP 2007062872 W JP2007062872 W JP 2007062872W WO 2008004473 A1 WO2008004473 A1 WO 2008004473A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nitrile hydratase
type low
protein complex
nhase
Prior art date
Application number
PCT/JP2007/062872
Other languages
French (fr)
Japanese (ja)
Inventor
Michihiko Kobayashi
Yoshiteru Hashimoto
Kentaro Shiraki
Original Assignee
University Of Tsukuba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Tsukuba filed Critical University Of Tsukuba
Priority to JP2008523654A priority Critical patent/JP5120852B2/en
Publication of WO2008004473A1 publication Critical patent/WO2008004473A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes

Definitions

  • Novel protein complex cobalt type low molecular weight nitrile hydratase maturation method using the protein complex, matured cobalt type low molecular weight nitryl hydratase, and method using the nitrile hydratase
  • the present invention relates to a novel protein complex and the like. More specifically, a novel protein complex involved in the maturation of a cobalt-type low molecular weight nitrile hydratase, a cobalt-type low molecular weight nitrile hydratase maturation method using the protein complex, a matured cobalt-type low molecular weight nitrile Background art relating to hydratase and methods using the nitrile hydratase
  • a nitrile hydratase is an enzyme having a nitrile hydration activity that hydrates a nitrile group and converts it into an amide group. For example, it is used as an enzyme in the conversion of acrylic nitrile to acrylamide. Currently, tens of thousands of tons of acrylamide are produced annually using this method. Nitrilehydratase is also used as an enzyme in the production of nicotinamide (NAD), which is a kind of vitamin.
  • NAD nicotinamide
  • the nitrile hydratase is classified into an iron type in which the active center metal causing the enzyme reaction is iron and a cobalt type in which the active center metal is cobalt.
  • the iron type has low stability, and the Kobanoleto type has high stability. For this reason, cobalt-type nitrile hydratase is widely used industrially.
  • H type high molecular weight
  • L type low molecular weight
  • H type high molecular weight
  • H type low molecular weight
  • H type has high stability and high reactivity, so industrially, cobalt type high molecular weight (H type) nitrile hydratase is often used.
  • L-form is not widely used industrially at present because it is relatively difficult to purify a mature (activated) enzyme.
  • Patent Document 2 discloses a technique for activating nitrile hydratase using a metabolic inhibitor and the like
  • Patent Document 3 includes cells containing nitrile hydratase, etc.
  • a technique for improving the nitrile hydration activity of nitrile hydratase by contact with an oxidizing agent is disclosed in Non-Patent Document 1, which discloses a gene for ripening iron-type nitrile hydratase.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-253168.
  • Patent Document 2 JP 2005-295815 A.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-350573.
  • Non-Patent Document 1 FEBS Letters 553 (2003) 391-396.
  • the present invention provides a protein complex of a protein having the amino acid sequence shown in SEQ ID NO: 1, two proteins each having the amino acid sequence shown in SEQ ID NO: 2, and a force-formed trimer. To do.
  • the matured cobalt-type low molecular weight nitrile hydratase can be used for the production of various amide compounds.
  • it can be used as an enzyme converting acrylonitrile to acrylamide. It can also be used as an enzyme that converts 3-cyanopyridine to nicotinamide.
  • the cobalt-type low molecular weight nitrile hydratase is formed from an ⁇ subunit and a ⁇ subunit.
  • the ⁇ subunit is a protein constituting the protein complex according to the present invention and having the amino acid sequence shown in SEQ ID NO: 1.
  • Imature cobalt type low molecular weight nitryl hydratase means a cobalt type low molecular weight nitryl hydratase having incomplete structural conversion and low enzyme activity.
  • the "matured cobalt type low molecular weight nitryl hydratase” means a cobalt type low molecular weight nitryl hydratase activated by structural transformation.
  • novel protein complex according to the present invention will be described below with reference to FIG.
  • FIG. 1 is a diagram schematically showing a protein complex according to the present invention.
  • the protein complex according to the present invention is a protein having the amino acid sequence IJ shown in SEQ ID NO: 1 (hereinafter referred to as “NhlA protein”, see “ ⁇ ” in the figure). It is a trimer formed from two proteins each having the amino acid sequence shown in SEQ ID NO: 2 (hereinafter referred to as “NhlE protein”, see “e” in the figure).
  • NhlA protein is a protein that constitutes the ⁇ subunit of cobalt-type low molecular weight nitrile hydratase (hereinafter referred to as “L-NHas ej”). NhlA protein is also composed of NhlE protein and trimer as described above. It has a function to mature immature L NHase.
  • the NhlA protein according to the present invention has the amino acid sequence shown in SEQ ID NO: 1 as long as it retains the above-mentioned function, but is not limited to a narrow range. That is, a protein having an amino acid sequence in which a part of the amino acid sequence shown in SEQ ID NO: 1 is substituted, deleted, inserted, etc. is also included in the NhlA protein according to the present invention.
  • the NhlE protein has a function of maturing immature L-NHase by forming a trimer with the NhlA protein.
  • the NhlE protein according to the present invention has the amino acid sequence shown in SEQ ID NO: 2 as long as it retains the above-described function, but is not limited to a narrow range. That is, a protein having an amino acid sequence in which a part of the amino acid sequence shown in SEQ ID NO: 2 is substituted, deleted, inserted, etc. is also included in the NhlE protein according to the present invention.
  • nhlE gene A gene encoding NhlE protein (hereinafter referred to as "nhlE gene”) is a gene encoding nitrile hydratase (ie, the ⁇ subunit and ⁇ subunit of this enzyme).
  • the gene to encode hereinafter, they are referred to as “nhlA gene” and “nhlB gene”, respectively. ).
  • FIG. 2 is a schematic diagram showing a structural example of a plasmid according to the present invention.
  • this plasmid has a sequence encoding the nhlA gene (of the nucleotide sequence shown in SEQ ID NO: 3, the 745th position is also the 1368th position lj, see “nhlA” in the figure). And a sequence encoding the nhlE gene (the 1370th to 1816th sequences of the nucleotide sequence shown in SEQ ID NO: 3; see “nhlE” in the figure).
  • the protein complex according to the present invention can be obtained easily and in large quantities by transfecting this plasmid into a predetermined cultured cell, expressing it in a large amount in the cell, and then purifying it.
  • a preparation means of the protein complex based on this invention a well-known method is widely applicable, The said preparation means is not limited narrowly only to the said means.
  • the plasmid shown in FIG. 2 can be prepared by a known method. For example, DNAs having the same sequence as the nhlA gene and nhlE gene are prepared, and those DNAs (including those linked in advance) and plasmid DNAs are restricted with restriction enzymes (see, for example, “Xba I” and “Sac I” in the figure).
  • the plasmid according to the present invention can be prepared by treating with a ligating enzyme after the treatment with a.), That is, by incorporating the DNA into the plasmid DNA.
  • FIG. 3 shows a method for maturation of L NHase using the protein complex ae according to the present invention.
  • FIG. 3 The tetramer ⁇ ⁇ and dimer ct shown in (I) of Fig. 3 have low enzyme activity.
  • the protein complex e according to the present invention is immaturely purified L
  • FIG. 4 schematically shows a state in which plasmid 123 having three ⁇ RFs of nhlE gene 1, nhlA gene 2, and nhlB gene 3 was introduced into the host.
  • L NHase is expressed.
  • the inventors' research has shown that these enzyme activities are low and immature (see Example 3).
  • the protein complex 5 e) according to the present invention is expressed from nhlE gene 1 and nhlA gene 2.
  • the protein complex 5 (ct e) according to the present invention is immature L NHase (4
  • STEP 1 shows in vivo (inside the host) and STEP 2 shows in vitro.
  • plasmid 12 having two ⁇ RFs, nhlE gene 1 and nhlA gene 2 is introduced into a host, and the protein complex 5 (iii) according to the present invention is purified.
  • NhlA gene 2 and nhl Introducing plasmid 23 with two ⁇ RFs of B gene 3 into the host, tetramer 41 ( ⁇ ), and
  • the method for producing a matured L_NHase according to the present invention is not limited as long as protein complex 5 (iii) is used.
  • Ripening L NHase can be produced.
  • the maturation L NHase production method according to the present invention is not limited to the form shown in FIG. 5, and includes a step of maturating immature L NHase using protein complex 5 (ae).
  • the matured L_NHase obtained by the production method has high reactivity, it can be used for industrial production of all amide compounds.
  • matured L_NHase according to the present invention is used in industrial production of acrylamide.
  • the acrylamide production method according to the present invention includes all methods including the step of using matured L_NHase as the converting enzyme.
  • the matured L NHase according to the present invention can be used as an enzyme for converting 3-cyanpyridine to nicotinamide in the industrial production of nicotinamide.
  • the method for producing nicotinamide according to the present invention includes all methods including a step of using matured L NHase as the converting enzyme.
  • Example 1 the plasmids used in Examples 2 to 8 below were constructed.
  • Plasmid pL JK60 (J. Biol. Chem.,) Containing a cobalt-type low molecular weight nitrile hydratase (hereinafter referred to as "L NHase") gene derived from Rhodococcus rhodochrous Jl (see JP 05-219972). 271, 15796-15802 (1996) was used as a saddle type PCR, and the obtained PCR product was ligated to the plasmid PREIT19 (Japanese Patent Application No. 2004-380940) previously invented by the present inventor.
  • Fig. 6 (m) schematically shows the gene site present in plasmid pLJK60.
  • plasmids (I) to (V) below were constructed.
  • the gene sites of these plasmids are schematically shown in FIGS. 6 (I) to (V).
  • nhlA gene (the 745th power of the nucleotide sequence shown in SEQ ID NO: 3 is also 1368th, see “nhlA” in FIG. 6; the same shall apply hereinafter), nhlB gene (the first of the nucleotide sequences shown in SEQ ID NO: 3) No. 681, No. 681, see “nhlB” in FIG. 6, the same shall apply hereinafter), and nhlE gene (1370, No. 1816 in the nucleotide sequence shown in SEQ ID NO: 3, see “nhlE” in FIG. 6, and so on) Z) Plasmid pREIT-nhlBAE with three ⁇ RFs.
  • Example 2 the NhlE protein constituting the protein complex ct e (see Fig. 1) according to the present invention is used.
  • the constructed plasmid pREIT-nhlBAE (I) was introduced using Rhodococcus fascians DSM43985 as a host to express L NHase. Then, a large amount of NhlE protein encoded by the nhlE gene was confirmed in addition to the ⁇ , 3 subunits. The result of SDS-PAGE is shown in Fig. 71ane3.
  • the enzyme activity of L-NHase was 8.6 U. / mg markedly increased. The enzyme activity is shown in Table 2.
  • Example 3 using Rhodococcus fascians DSM43985 as a host, L-NHase expressed when plasmid pREIT-n hlBAE (I) is introduced and expressed when plasmid pREIT-nhlBA (II) is introduced The difference in subunit structure and enzyme activity from L NHase was investigated.
  • Fig. 8 (1) shows the retention capacity of 2 2 2 2 in gel filtration chromatography
  • Fig. 91anel shows the results of SDS-PAGE.
  • the specific activity of L-NHase was 320 U / mg. Specific activities are shown in Table 3.
  • Rhodococcus fascians DSM43985 and others introduced the plasmid pREIT-nhlBA (II) have two types of tetramer (H ⁇ ) _ ⁇ «1 ⁇ 236 and dimer (HJ3) L_NHase.
  • H ⁇ tetramer
  • HJ3 dimer
  • Figure 8 (2) shows the retention capacity in Fig. 1, and Fig. 91ane2 shows the results of SDS-PAGE.
  • the retention capacity of the dimer ( ⁇ / 3) and the gel filtration chromatography of the gel 36 is shown in FIG. 8 (3), and the result of SDS-PAGE is shown in FIG. 91ane3.
  • Example 5 the subunit structure of the complex purified in Example 4 was examined.
  • Example 4 the mobility of other proteins complexed with the NhlE protein coincided with those of the subunits on SDS-PAGE.
  • the result of SDS-PAGE is shown in Fig. 91ane4.
  • the N-terminal amino acid sequences of the NhlE protein and the protein that formed a complex were determined, they completely matched the subunit.
  • the molecular weight of this complex was found to be 55.3 kDa by gel filtration.
  • the molecular weights of the subunit and NhlE protein are 22.8 kDa and 16.9 kDa, respectively.
  • Example 7 the effect of the protein complex a e in vitro was examined.
  • Rhodococcus fascians DSM43985 introduced with plasmid pREIT-nhlBA (II) Low specific activity, tetramer ( ⁇ ) enzyme (specific activity 83U / mg), and dimer with very low specific activity (II)
  • Enzyme (specific activity 4U / mg) was purified.
  • a protein complex was mixed with each of the obtained enzymes, and the mixed solution was fractionated using a gel filtration column.
  • Fig. 10A shows the retention capacity of gel composite chromatography in gel filtration chromatography.
  • the retention capacity at 1 is shown in FIG. 10B.
  • Each specific activity is shown in Table 4. This is the same level as the specific activity of the tetramer ( ⁇ ) enzyme purified from Rhodococcus fascians DSM43985 introduced with plasmid pREIT-BAE (I).
  • Figure 10C shows the retention capacity of tetramer ( ⁇ ⁇ ) enzyme and protein complex 12 hours after mixing.
  • the specific activity of the monomeric ( ⁇ ) enzyme was 326.2 U / mg. Specific activity is shown in Table 4. This too
  • the protein complex according to the present invention has an enzyme activity in vitro.
  • Example 8 the cobalt ion content of the following enzyme purified using Rhodococcus fascians DSM43985 as a host was measured.
  • Tetramer (symbol ⁇ ) enzyme Tetramer (symbol ⁇ ) enzyme.
  • the purified dimer (a i3) enzyme contained only 0.036 mol (0.072 mol / min ⁇ ) and 0.030 mol cobalt ions per a i3 subunit, respectively. (B) with the enzyme
  • Both 2 2 cobalt ion contents were 0.92 mol per e subunit.
  • the cobalt ion content of the body (H / 3) enzyme (d) and (e) is
  • N The contents of N were reduced to 0.40 mol and 0.42 mol per ⁇ ⁇ subunit, respectively.
  • the protein complex e has a low cobalt ion content and a specific activity.
  • FIG. 1 is a diagram schematically showing a protein complex ct e according to the present invention.
  • FIG. 2 is a diagram schematically showing a plasmid 12 according to the present invention.
  • FIG. 3 is a diagram schematically showing an L NHase maturation method according to the present invention.
  • FIG. 4 is a diagram schematically showing the mechanism of L NHase maturation.
  • FIG. 5 is a diagram schematically showing an example of a method for producing mature L NHase according to the present invention.
  • FIG. 6 is a diagram schematically showing the gene site of the plasmid used and prepared in Example 1.
  • FIG. 7 is a drawing-substituting photograph showing the results of SDS-PAGE for the sample purified in Example 2.
  • FIG. 8 is a graph showing the retention capacity in the gel filtration chromatograph for the samples purified in Example 3 and Example 4.
  • FIG. 9 is a drawing-substituting photograph showing the results of SDS-PAGE for the samples purified in Example 3 and Example 4.
  • FIG. 10 is a graph showing the retention capacity in gel filtration chromatography of the sample purified in Example 7.

Abstract

[PROBLEMS] To provide a novel protein complex involved in the maturation of a cobalt-type low-molecular-weight nitrile hydratase. [MEANS FOR SOLVING PROBLEMS] A trimeric protein complex αe2 formed by an NhlA protein molecule having the amino acid sequence depicted in SEQ ID NO:1 (α-subunit of cobalt-type low-molecular-weight nitrile hydratase) and two NhlE protein molecules each having the amino acid sequence depicted in SEQ ID NO:2. The protein complex can be used for maturing a cobalt-type low-molecular-weight nitrile hydratase which has been purified in an immature state. The matured cobalt-type low-molecular-weight nitrile hydratase is highly reactive, and therefore can be used for the production of an amide compound on an industrial scale.

Description

明 細 書  Specification
新規タンパク質複合体、該タンパク質複合体を用いたコバルト型低分子 量二トリルヒドラターゼ成熟化方法、成熟化コバルト型低分子量二トリルヒドラター ゼ、及び該ニトリルヒドラターゼを用いた方法  Novel protein complex, cobalt type low molecular weight nitrile hydratase maturation method using the protein complex, matured cobalt type low molecular weight nitryl hydratase, and method using the nitrile hydratase
技術分野  Technical field
[0001] 本発明は、新規タンパク質複合体などに関する。より詳しくは、コバルト型低分子量 二トリルヒドラターゼの成熟化に関与する新規タンパク質複合体、該タンパク質複合 体を用いたコバルト型低分子量二トリルヒドラターゼ成熟化方法、成熟化コバルト型 低分子量二トリルヒドラターゼ、及び該ニトリルヒドラターゼを用いた方法などに関する 背景技術  [0001] The present invention relates to a novel protein complex and the like. More specifically, a novel protein complex involved in the maturation of a cobalt-type low molecular weight nitrile hydratase, a cobalt-type low molecular weight nitrile hydratase maturation method using the protein complex, a matured cobalt-type low molecular weight nitrile Background art relating to hydratase and methods using the nitrile hydratase
[0002] 二トリルヒドラターゼは、二トリル基を水和しアミド基に変換する二トリル水和活性を有 する酵素である。例えば、アクリル二トリルからアクリルアミドへの変換に酵素として用 レ、られている。現在では、この方法を使ってアクリルアミドが年数万トン生産されてい る。また、二トリルヒドラターゼは、ビタミンの一種であるニコチンアミド(NAD)等の生 産にも酵素として用いられてレ、る。  [0002] A nitrile hydratase is an enzyme having a nitrile hydration activity that hydrates a nitrile group and converts it into an amide group. For example, it is used as an enzyme in the conversion of acrylic nitrile to acrylamide. Currently, tens of thousands of tons of acrylamide are produced annually using this method. Nitrilehydratase is also used as an enzyme in the production of nicotinamide (NAD), which is a kind of vitamin.
[0003] 二トリルヒドラターゼは、酵素反応を起こす活性中心金属が鉄である鉄型と、活性中 心金属がコバルトであるコバルト型に分けられる。一般に鉄型は安定性が低ぐコバ ノレト型は安定性が高レ、。このため、コバルト型の二トリルヒドラターゼの方力 工業的 に多く利用されている。  [0003] The nitrile hydratase is classified into an iron type in which the active center metal causing the enzyme reaction is iron and a cobalt type in which the active center metal is cobalt. In general, the iron type has low stability, and the Kobanoleto type has high stability. For this reason, cobalt-type nitrile hydratase is widely used industrially.
[0004] コバルト型二トリルヒドラターゼは、高分子量 (以下「H型」とする。 )と低分子量 (以下 「L型」とする。)のものに分けられる。一般に、 H型は安定性が高く反応性も高いため 、工業的には、コバルト型高分子量 (H型)二トリルヒドラターゼが多く用いられている  [0004] Cobalt type nitrile hydratase is classified into high molecular weight (hereinafter referred to as "H type") and low molecular weight (hereinafter referred to as "L type"). In general, H type has high stability and high reactivity, so industrially, cobalt type high molecular weight (H type) nitrile hydratase is often used.
[0005] 一方、 L型は、成熟化 (活性化)した酵素の精製が比較的難しいことから、現時点で は、工業的にあまり利用されていない。 [0005] On the other hand, L-form is not widely used industrially at present because it is relatively difficult to purify a mature (activated) enzyme.
[0006] なお、特許文献 1では、シユードノカルディア 'サーモフイラ JCM3095 (Pseudonosar dia thermophilaJCM3095)由来の二トリルヒドラターゼの活性化に関与する遺伝子が 開示されている。この遺伝子は、前記二トリルヒドラターゼ構造遺伝子 、 βサブュ ニット)とは異なる第 3のオープンリーディングフレーム(ORF)であることが開示されて いる。 [0006] It should be noted that, in Patent Document 1, Syudonocardia 'thermofila JCM3095 (Pseudonosar A gene involved in the activation of nitrile hydratase from dia thermophila (JCM3095) has been disclosed. It is disclosed that this gene is a third open reading frame (ORF) different from the nitrile hydratase structural gene (β subunit).
[0007] その他、関連文献として、特許文献 2には、代謝阻害剤等を用いた二トリルヒドラタ ーゼを活性化する技術が、特許文献 3には、二トリルヒドラターゼを含有する細胞等を 、酸化剤と接触させることにより、二トリルヒドラターゼのニトリル水和活性を向上させる 技術が、非特許文献 1には、鉄型二トリルヒドラターゼを成熟化させる遺伝子が開示さ れている。  [0007] In addition, as related documents, Patent Document 2 discloses a technique for activating nitrile hydratase using a metabolic inhibitor and the like, and Patent Document 3 includes cells containing nitrile hydratase, etc. A technique for improving the nitrile hydration activity of nitrile hydratase by contact with an oxidizing agent is disclosed in Non-Patent Document 1, which discloses a gene for ripening iron-type nitrile hydratase.
特許文献 1 :特開平 11— 253168号公報。  Patent Document 1: Japanese Patent Laid-Open No. 11-253168.
特許文献 2 :特開 2005— 295815号公報。  Patent Document 2: JP 2005-295815 A.
特許文献 3:特開 2004— 350573号公報。  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-350573.
非特許文献 1 : FEBS Letters 553(2003)391-396。  Non-Patent Document 1: FEBS Letters 553 (2003) 391-396.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上述のように、二トリルヒドラターゼ成熟化に関与する遺伝子については、一部報告 があるが、二トリルヒドラターゼ成熟化のメカニズムについては、ほとんど解明されてい ない。 [0008] As described above, there are some reports on genes involved in nitrile hydratase maturation, but the mechanism of nitrile hydratase maturation has not been elucidated.
[0009] そこで、本発明では、コバルト型低分子量二トリルヒドラターゼ成熟化のメカニズムを 解明し、該手段を用いて成熟化コバルト型低分子量二トリルヒドラターゼの工業的利 用を可能とすることを主目的とする。  [0009] Therefore, in the present invention, the mechanism of maturation of cobalt-type low molecular weight nitryl hydratase is elucidated, and the industrial use of matured cobalt-type low molecular weight nitryl hydratase is made possible using the means. The main purpose.
課題を解決するための手段  Means for solving the problem
[0010] 本願発明者らは、 Rhodococcus rhodochrous Jl菌由来のコバルト型低分子量ニト リルヒドラターゼを用いて、二トリルヒドラターゼ成熟化について研究した結果、以下の ことを見出した。 [0010] As a result of studying maturation of nitrile hydratase using cobalt-type low molecular weight nitryl hydratase derived from Rhodococcus rhodochrous Jl, the present inventors have found the following.
[0011] (1)コバルト型低分子量二トリルヒドラターゼ構造遺伝子(同酵素のひサブユニット、 及び /3サブユニットをコードする遺伝子)の近傍に、コバルト型低分子量二トリルヒドラ ターゼ成熟化に関与する遺伝子が存在すること。 (2)該遺伝子がコードするタンパク質は、単独では精製できず、コバルト型低分子量 二トリルヒドラターゼの αサブユニットと複合体を形成した状態で精製すること。 [0011] (1) Involved in the maturation of cobalt-type low molecular weight nitrile hydratase in the vicinity of the structural gene of cobalt-type low molecular weight nitryl hydratase (the gene encoding the subunit of the enzyme and the / 3 subunit) The presence of a gene. (2) The protein encoded by the gene cannot be purified by itself, but must be purified in the form of a complex with the α subunit of cobalt-type low molecular weight nitrile hydratase.
(3)前記タンパク質と前記 αサブユニットからなるタンパク質複合体力 コバルト型低 分子量二トリルヒドラターゼ成熟化に関与していること。  (3) Protein complex strength consisting of the protein and the α subunit. Cobalt type low molecular weight nitrile hydratase must be involved in maturation.
[0012] そこで、本発明では、配列番号 1に示すアミノ酸配列を有するタンパク質と、配列番 号 2に示すアミノ酸配列をそれぞれ有する 2つのタンパク質と、力 形成された 3量体 のタンパク質複合体を提供する。  Therefore, the present invention provides a protein complex of a protein having the amino acid sequence shown in SEQ ID NO: 1, two proteins each having the amino acid sequence shown in SEQ ID NO: 2, and a force-formed trimer. To do.
[0013] 該タンパク質複合体を用いることにより、未成熟コバルト型低分子量二トリルヒドラタ ーゼを成熟化させることができる。  [0013] By using the protein complex, immature cobalt-type low molecular weight nitrile hydratase can be matured.
[0014] また、コバルト型低分子量二トリルヒドラターゼ作製過程で、前記タンパク質複合体 を用いることにより、成熟化コバルト型低分子量二トリルヒドラターゼを大量に作製す ること力 Sできる。 [0014] In addition, the use of the protein complex in the process of preparing a cobalt-type low molecular weight nitrile hydratase can produce a large amount of matured cobalt-type low molecular weight nitryl hydratase.
[0015] 前記成熟化コバルト型低分子量二トリルヒドラターゼは、様々なアミド化合物の生産 に用いることができる。例えば、アクリル二トリルからアクリルアミドへの変換酵素として 用いることができる。また、 3—シァノピリジンからニコチンアミドへの変換酵素としても 用いることができる。  [0015] The matured cobalt-type low molecular weight nitrile hydratase can be used for the production of various amide compounds. For example, it can be used as an enzyme converting acrylonitrile to acrylamide. It can also be used as an enzyme that converts 3-cyanopyridine to nicotinamide.
[0016] 以下、本発明で使用する技術用語等を説明する。  [0016] Technical terms used in the present invention will be described below.
[0017] コバルト型低分子量二トリルヒドラターゼは、 αサブユニット、及び βサブユニットか ら形成される。前記 αサブユニットは、本発明に係るタンパク質複合体を構成するタ ンパク質であって、配列番号 1に示すアミノ酸配列を有するタンパク質である。  [0017] The cobalt-type low molecular weight nitrile hydratase is formed from an α subunit and a β subunit. The α subunit is a protein constituting the protein complex according to the present invention and having the amino acid sequence shown in SEQ ID NO: 1.
[0018] 「未成熟コバルト型低分子量二トリルヒドラターゼ」とは、構造変換が不完全で、酵素 活性の低いコバルト型低分子量二トリルヒドラターゼを意味する。  [0018] "Immature cobalt type low molecular weight nitryl hydratase" means a cobalt type low molecular weight nitryl hydratase having incomplete structural conversion and low enzyme activity.
[0019] 「成熟化コバルト型低分子量二トリルヒドラターゼ」とは、構造変換により、活性化し た状態のコバルト型低分子量二トリルヒドラターゼを意味する。  [0019] The "matured cobalt type low molecular weight nitryl hydratase" means a cobalt type low molecular weight nitryl hydratase activated by structural transformation.
発明の効果  The invention's effect
[0020] 本発明に係るタンパク質複合体を用いることにより、未成熟コバルト型低分子量ニト リルヒドラターゼを成熟化させることができ、コバルト型低分子量二トリルヒドラターゼの 酵素活性を上昇させることができる。 発明を実施するための最良の形態 [0020] By using the protein complex according to the present invention, immature cobalt type low molecular weight nitryl hydratase can be matured, and the enzymatic activity of cobalt type low molecular weight nitryl hydratase can be increased. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を実施するための好適な形態について図面を参照しながら説明する 。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したも のであり、これにより本発明の範囲が狭く解釈されることはない。  Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The embodiments described below are examples of typical embodiments of the present invention, and the scope of the present invention is not construed to be narrow.
[0022] <タンパク質複合体について >  [0022] <About protein complex>
本発明に係る新規タンパク質複合体について、図 1を用いて、以下説明する。  The novel protein complex according to the present invention will be described below with reference to FIG.
[0023] 図 1は、本発明に係るタンパク質複合体を模式的に示した図である。  FIG. 1 is a diagram schematically showing a protein complex according to the present invention.
[0024] 図 1に示す通り、本発明に係るタンパク質複合体は、配列番号 1に示すアミノ酸配 歹 IJを有するタンパク質(以下「NhlAタンパク質」とする。図中符号「α」参照。)と、配 列番号 2に示すアミノ酸配列をそれぞれ有する 2つのタンパク質 (以下、「NhlEタンパ ク質」とする。図中符号「e」参照。)とから形成された 3量体である。  As shown in FIG. 1, the protein complex according to the present invention is a protein having the amino acid sequence IJ shown in SEQ ID NO: 1 (hereinafter referred to as “NhlA protein”, see “α” in the figure). It is a trimer formed from two proteins each having the amino acid sequence shown in SEQ ID NO: 2 (hereinafter referred to as “NhlE protein”, see “e” in the figure).
[0025] 上述の通り、二トリルヒドラターゼは、 αサブユニット及び βサブユニットから形成さ れる。 NhlAタンパク質は、コバルト型低分子量二トリルヒドラターゼ(以下「L— NHas ejとする。 )の αサブユニットを構成するタンパク質である。また、 NhlAタンパク質は、 上述の通り、 NhlEタンパク質と三量体を形成することにより、未成熟 L NHaseを成 熟化させる機能を有する。  [0025] As described above, nitrile hydratase is formed from an α subunit and a β subunit. NhlA protein is a protein that constitutes the α subunit of cobalt-type low molecular weight nitrile hydratase (hereinafter referred to as “L-NHas ej”). NhlA protein is also composed of NhlE protein and trimer as described above. It has a function to mature immature L NHase.
[0026] なお、本発明に係る NhlAタンパク質は、上述の機能を保持しているものであれば、 配列番号 1に示すアミノ酸配列を有するものの実に狭く限定されない。即ち、配列番 号 1に示すアミノ酸配列の一部が置換、欠損、揷入等されたアミノ酸配列を有するタ ンパク質も、本発明に係る NhlAタンパク質に包含される。  [0026] It should be noted that the NhlA protein according to the present invention has the amino acid sequence shown in SEQ ID NO: 1 as long as it retains the above-mentioned function, but is not limited to a narrow range. That is, a protein having an amino acid sequence in which a part of the amino acid sequence shown in SEQ ID NO: 1 is substituted, deleted, inserted, etc. is also included in the NhlA protein according to the present invention.
[0027] NhlEタンパク質は、上述の通り、 NhlAタンパク質と三量体を形成することにより、 未成熟 L一 NHaseを成熟化させる機能を有する。  [0027] As described above, the NhlE protein has a function of maturing immature L-NHase by forming a trimer with the NhlA protein.
[0028] なお、本発明に係る NhlEタンパク質は、上述の機能を保持しているものであれば、 配列番号 2に示すアミノ酸配列を有するものの実に狭く限定されない。即ち、配列番 号 2に示すアミノ酸配列の一部が置換、欠損、挿入等されたアミノ酸配列を有するタ ンパク質も、本発明に係る NhlEタンパク質に包含される。  [0028] It should be noted that the NhlE protein according to the present invention has the amino acid sequence shown in SEQ ID NO: 2 as long as it retains the above-described function, but is not limited to a narrow range. That is, a protein having an amino acid sequence in which a part of the amino acid sequence shown in SEQ ID NO: 2 is substituted, deleted, inserted, etc. is also included in the NhlE protein according to the present invention.
[0029] NhlEタンパク質をコードする遺伝子(以下、「nhlE遺伝子」とする。 )は、二トリルヒド ラターゼをコードする遺伝子(即ち、この酵素の αサブユニット及び βサブユニットを コードする遺伝子。以下、それぞれ、「nhlA遺伝子」、及び「nhlB遺伝子」とする。)の 近傍に位置する。 [0029] A gene encoding NhlE protein (hereinafter referred to as "nhlE gene") is a gene encoding nitrile hydratase (ie, the α subunit and β subunit of this enzyme). The gene to encode. Hereinafter, they are referred to as “nhlA gene” and “nhlB gene”, respectively. ).
[0030] これらの遺伝子を有するものとして、例えば、 Achromobacter属、 Acinetobacter属、 Aeromonasj¾、 Agrobactermm禹、 Bacillus j¾、 し itrobacterj¾、 し orynebactermmj¾、 E nterobacter属、 Erwima属、 Klebsiella禹、 Micrococcus属、 Nocardiaj¾、 Pseudomonas 属、 Pseudonocardia属、 Rhodococcus属 Streptomyces属、 Thermophila属、 Rhizobium 属、 Xanthobacter属などの微生物を挙げることができる。代表例として、 Rhodococcus rhodochrous Jl菌における塩基配列を配列表(配列番号 3)に示す。  [0030] As those having these genes, for example, Achromobacter, Acinetobacter, Aeromonasj¾, Agrobactermm 禹, Bacillus j¾, itrobacterj¾, orynebactermmj¾, Enterobacter, Erwima, Klebsiella, Micrococcus, Nosediaj And microorganisms such as Pseudonocardia, Rhodococcus, Streptomyces, Thermophila, Rhizobium, and Xanthobacter. As a representative example, the nucleotide sequence in Rhodococcus rhodochrous Jl is shown in the sequence listing (SEQ ID NO: 3).
[0031] く本発明に係るプラスミドなどにっレ、て > [0031] The plasmid according to the present invention, etc.>
続いて、本発明に係るプラスミドの例などについて、以下、図 2などを用いて説明す る。  Subsequently, examples of the plasmid according to the present invention will be described below with reference to FIG.
[0032] 図 2は、本発明に係るプラスミドの構成例を示す模式図である。  [0032] Fig. 2 is a schematic diagram showing a structural example of a plasmid according to the present invention.
[0033] 図 2に示す通り、このプラスミドは、 nhlA遺伝子をコードする配列(配列番号 3に示 す塩基配列のうち第 745番目力も第 1368番目の配歹 lj、図中「nhlA」参照。)と nhlE 遺伝子をコードする配列(配列番号 3に示す塩基配列のうち第 1370番目から第 181 6番目の配列、図中「nhlE」参照。)を少なくとも含む。  [0033] As shown in Fig. 2, this plasmid has a sequence encoding the nhlA gene (of the nucleotide sequence shown in SEQ ID NO: 3, the 745th position is also the 1368th position lj, see "nhlA" in the figure). And a sequence encoding the nhlE gene (the 1370th to 1816th sequences of the nucleotide sequence shown in SEQ ID NO: 3; see “nhlE” in the figure).
[0034] 例えば、このプラスミドを、所定の培養細胞などにトランスフエクシヨンし、細胞内で 大量発現させた後、精製することにより、本発明に係るタンパク質複合体を簡易かつ 大量に取得できる。なお、本発明に係るタンパク質複合体の調製手段としては、公知 の方法が広く適用可能であり、同調製手段は、前記手段のみに狭く限定されない。  [0034] For example, the protein complex according to the present invention can be obtained easily and in large quantities by transfecting this plasmid into a predetermined cultured cell, expressing it in a large amount in the cell, and then purifying it. In addition, as a preparation means of the protein complex based on this invention, a well-known method is widely applicable, The said preparation means is not limited narrowly only to the said means.
[0035] 図 2に示すプラスミドは、公知の方法により、作製できる。例えば、 nhlA遺伝子及び nhlE遺伝子と同じ配列を有する DNAを調製し、それらの DNA (予め連結したものを 含む)とプラスミド DNAとを制限酵素(例えば、図中「Xba I」及び「Sac I」参照。)で 処理した後、連結酵素で処理することにより、即ち、プラスミド DNAにそれらの DNA を組み込むことにより、本発明に係るプラスミドを作製できる。  [0035] The plasmid shown in FIG. 2 can be prepared by a known method. For example, DNAs having the same sequence as the nhlA gene and nhlE gene are prepared, and those DNAs (including those linked in advance) and plasmid DNAs are restricted with restriction enzymes (see, for example, “Xba I” and “Sac I” in the figure). The plasmid according to the present invention can be prepared by treating with a ligating enzyme after the treatment with a.), That is, by incorporating the DNA into the plasmid DNA.
[0036] < L_NHaseの成熟化方法について >  [0036] <About the maturation method of L_NHase>
本発明に係るタンパク質複合体ひ eを用いて、 L_NHaseを成熟化する方法を、  A method for maturating L_NHase using the protein complex according to the present invention,
2  2
図 3を用いて説明する。 [0037] 図 3は、本発明に係るタンパク質複合体 a eを用いた L NHase成熟化方法を模 This will be described with reference to FIG. [0037] FIG. 3 shows a method for maturation of L NHase using the protein complex ae according to the present invention.
2  2
式的に示す図である。図 3中(I)に示す 4量体 α β と 2量体 ct は、酵素活性の低  FIG. The tetramer α β and dimer ct shown in (I) of Fig. 3 have low enzyme activity.
2 2  twenty two
い未成熟なまま精製された L NHaseを示している。これらの 4量体ひ β 、 2量体  L NHase purified without being immature is shown. These tetramers are β, dimers
2 2 βは、本発明に係るタンパク質複合体ひ eを用いることにより、酵素活性の高い 4  2 2 β is high in enzyme activity by using the protein complex according to the present invention.
2  2
量体ひ β へと成熟化する(図 2中(Π)参照)。  It matures into a monomeric β (see (Π) in Fig. 2).
2 2  twenty two
[0038] このようにして、本発明に係るタンパク質複合体ひ eは、未成熟なまま精製された L  [0038] In this way, the protein complex e according to the present invention is immaturely purified L
2  2
- NHase (4量体ひ β 、 2量体ひ /3 )を、精製後(翻訳後)に成熟化させることがで  -NHase (tetramer β, dimer β / 3) can be matured after purification (translation)
2 2  twenty two
きる。  wear.
[0039] < L _ NHase成熟化のメカニズムについて >  [0039] <L _ NHase maturation mechanism>
ここで、本願発明者らが新たに見出した、 L_ NHase成熟化のメカニズムを、図 4を 用いて説明する。  Here, the mechanism of maturation of L_NHase newly found by the present inventors will be described with reference to FIG.
[0040] 図 4では、 nhlE遺伝子 1、 nhlA遺伝子 2、及び nhlB遺伝子 3の 3つの〇RFを持つ プラスミド 123を宿主に導入した様子を模式的に示す。  [0040] FIG. 4 schematically shows a state in which plasmid 123 having three ○ RFs of nhlE gene 1, nhlA gene 2, and nhlB gene 3 was introduced into the host.
[0041] nhlA遺伝子 2、及び nhlB遺伝子 3からは、 4量体 41 ( α β )と 2量体 42 ( α β )の [0041] From the nhlA gene 2, and nhlB gene 3, tetramer 41 (α β) and dimer 42 (alpha beta)
2 2  twenty two
L NHaseが発現する。発明者らの研究の結果、これらの酵素活性は低ぐ未成熟 であることが分かっている(実施例 3参照)。一方、 nhlE遺伝子 1、及び nhlA遺伝子 2 からは、本発明に係るタンパク質複合体 5 e )が発現する。  L NHase is expressed. The inventors' research has shown that these enzyme activities are low and immature (see Example 3). On the other hand, the protein complex 5 e) according to the present invention is expressed from nhlE gene 1 and nhlA gene 2.
2  2
[0042] 次に、タンパク質複合体 5 ( a e )力 4量体 41 ( α β )及び 2量体 42 ( α )の L  [0042] Next, protein complex 5 (ae) force tetramer 41 (αβ) and dimer 42 (α) L
2 2 2  2 2 2
NHaseに作用する。その結果、酵素活性の高レ、 4量体 6 ( α β )のL NHaseが出  Acts on NHase. As a result, L NHase of tetramer 6 (α β) was released with high enzyme activity.
2 2  twenty two
現する。  Appear.
[0043] このようにして、本発明に係るタンパク質複合体 5 ( ct e )が、未成熟 L NHase (4  [0043] In this manner, the protein complex 5 (ct e) according to the present invention is immature L NHase (4
2  2
量体 41 (ひ β )、 2量体42 (ひ ))を、酵素活性の高ぃ 一^^1½36 (4量体6 (ひ β  Dimer 41 (hi β), dimer 42 (hi)), high enzyme activity ^^ 1½36 (tetramer 6 (hi β)
2 2 2 2 2 2
) )へと成熟化させる。 ) Mature to).
2  2
[0044] <成熟化 L一 NHase生産方法について >  [0044] <Maturation L-One NHase production method>
成熟化 L _ NHase生産方法の一例を、図 5を用いて説明する。図 5中 STEP 1は、 i n vivo (宿主内)、 STEP2は、 in vitroでの様子を示す。  An example of the maturation L_NHase production method will be described with reference to FIG. In Fig. 5, STEP 1 shows in vivo (inside the host) and STEP 2 shows in vitro.
[0045] まず、 nhlE遺伝子 1と nhlA遺伝子 2の 2つの〇RFを持つプラスミド 12を宿主に導 入し、本発明に係るタンパク質複合体 5 (ひ e )を精製する。また、 nhlA遺伝子 2と nhl B遺伝子 3の 2つの〇RFを持つプラスミド 23を宿主に導入し、 4量体 41 ( α β )、及 [0045] First, plasmid 12 having two ◯ RFs, nhlE gene 1 and nhlA gene 2, is introduced into a host, and the protein complex 5 (iii) according to the present invention is purified. NhlA gene 2 and nhl Introducing plasmid 23 with two 〇RFs of B gene 3 into the host, tetramer 41 (αβ), and
2 2 び 2量体 42 ( α β )の L— NHaseを精製する。前記と同様、このときの 4量体 41 ( a  2 Purify L-NHase of 2 and dimer 42 (α β). As above, the tetramer 41 (a
2 β )、及び 2量体 42 ( ct β )の L NHaseは、酵素活性が低ぐ未成熟である。  L βase of 2β) and dimer 42 (ctβ) are immature with low enzymatic activity.
2  2
[0046] そして、精製したタンパク質複合体 5 (ひ e )と、未成熟 L一 NHase (4量体 41 ( a  [0046] Then, the purified protein complex 5 (iii) and immature L-NHase (tetramer 41 (a
2 2 β )、 2量体 42 (ひ j3 ) )とを、 in vitroにおいて混合する。その結果、未成熟 L_NHa 2 2 β) and dimer 42 (ひ j3)) are mixed in vitro. As a result, immature L_NHa
2 2
se (4量体 41 ( α β )、 2量体 42 ( α 力 酵素活性の高い L— ^^½36 (4量体6 ( s e (tetramer 41 (α β), dimer 42 (α force L— ^^ ½36 (tetramer 6 (
2 2  twenty two
β ) )へと成熟化する。  Maturates to β)).
2 2  twenty two
[0047] このように、本発明に係るタンパク質複合体 5 (ひ e )を用いて、成熟化 L_NHase  [0047] Thus, using the protein complex 5 (iii) according to the present invention, matured L_NHase
2  2
を生産することができる。本発明に係る成熟化 L_NHase生産方法は、タンパク質複 合体 5 (ひ e )を用いていれば、その方法は限定されず、前記混合以外にも、添加、  Can be produced. The method for producing a matured L_NHase according to the present invention is not limited as long as protein complex 5 (iii) is used.
2  2
滴下など、タンパク質複合体 5 (ひ e )を用いる方法全てを包含する。  It includes all methods using protein complex 5 (iii) such as dripping.
2  2
[0048] 従来、成熟化二トリルヒドラターゼを生産するには、二トリルヒドラターゼ構造遺伝子 と共に、前記遺伝子を同一の宿主内に導入し、成熟化二トリルヒドラターゼとして精製 する必要があった。  [0048] Conventionally, in order to produce mature nitrile hydratase, it was necessary to introduce the gene together with the nitrile hydratase structural gene into the same host and purify it as mature nitrile hydratase.
[0049] しかし、本発明に係るタンパク質複合体 5 ( a e )を用いることで、一旦、未成熟なま  [0049] However, by using the protein complex 5 (ae) according to the present invention, it is once immature.
2  2
ま精製された L— NHaseであっても、精製後に成熟化させることが可能となった。従 つて、未成熟 L NHaseから、別に精製したタンパク質複合体 5 ( a e )を用いて、成  Even purified L-NHase can be matured after purification. Therefore, using immature L NHase and separately purified protein complex 5 (ae),
2  2
熟化 L NHaseを生産することができる。  Ripening L NHase can be produced.
[0050] 本発明に係る成熟化 L NHase生産方法は、図 5で示した形態に限定されず、タ ンパク質複合体 5 ( a e )を用いて未成熟 L NHaseを成熟化する工程を含む方法 [0050] The maturation L NHase production method according to the present invention is not limited to the form shown in FIG. 5, and includes a step of maturating immature L NHase using protein complex 5 (ae).
2  2
を全て包含する。  Is included.
[0051] <成熟化 L_NHaseの工業的利用について > [0051] <Industrial use of matured L_NHase>
前記産生方法で得られた成熟化 L_NHaseは、反応性が高いため、あらゆるアミド 化合物の工業的生産に用いることができる。  Since the matured L_NHase obtained by the production method has high reactivity, it can be used for industrial production of all amide compounds.
[0052] 例えば、本発明に係る成熟化 L_NHaseは、アクリルアミドの工業的生産において[0052] For example, matured L_NHase according to the present invention is used in industrial production of acrylamide.
、アクリル二トリルからアクリルアミドへの変換酵素として、用レ、ることができる。本発明 に係るアクリルアミド生産方法は、成熟化 L_NHaseを前記変換酵素として用いるェ 程を含む方法を全て包含する。 [0053] また、本発明に係る成熟化 L NHaseは、ニコチンアミドの工業的生産において、 3—シァノピリジンからニコチンアミドへの変換酵素として、用いることができる。本発 明に係るニコチンアミド生産方法は、成熟化 L NHaseを前記変換酵素として用い る工程を含む方法を全て包含する。 It can be used as a conversion enzyme from acrylonitrile to acrylamide. The acrylamide production method according to the present invention includes all methods including the step of using matured L_NHase as the converting enzyme. [0053] Further, the matured L NHase according to the present invention can be used as an enzyme for converting 3-cyanpyridine to nicotinamide in the industrial production of nicotinamide. The method for producing nicotinamide according to the present invention includes all methods including a step of using matured L NHase as the converting enzyme.
実施例 1  Example 1
[0054] 実施例 1では、以下実施例 2から実施例 8において使用するプラスミドを構築した。  [0054] In Example 1, the plasmids used in Examples 2 to 8 below were constructed.
[0055] Rhodococcus rhodochrous Jl菌(特開平 05— 219972号参照)由来のコバルト型 低分子量二トリルヒドラターゼ(以下「L NHase」とする。)遺伝子を含むプラスミド pL JK60 (J.Biol.Chem., 271, 15796-15802 1996)を铸型として PCRを行レヽ、得られた PCR 産物を本願発明者が先に発明したプラスミド PREIT19 (特願 2004-380940)に連結し た。図 6 (m)にプラスミド pLJK60に存在する遺伝子部位を模式的に示す。 [0055] Plasmid pL JK60 (J. Biol. Chem.,) Containing a cobalt-type low molecular weight nitrile hydratase (hereinafter referred to as "L NHase") gene derived from Rhodococcus rhodochrous Jl (see JP 05-219972). 271, 15796-15802 (1996) was used as a saddle type PCR, and the obtained PCR product was ligated to the plasmid PREIT19 (Japanese Patent Application No. 2004-380940) previously invented by the present inventor. Fig. 6 (m) schematically shows the gene site present in plasmid pLJK60.
[0056] そして、以下(I)から (V)のプラスミドを構築した。これらのプラスミドの遺伝子部位を 、図 6 (I)から (V)に、模式的に示す。 [0056] Then, plasmids (I) to (V) below were constructed. The gene sites of these plasmids are schematically shown in FIGS. 6 (I) to (V).
(I) nhlA遺伝子(配列番号 3に示す塩基配列のうち第 745番目力も第 1368番目、図 6中「nhlA」参照、以下同じ)、 nhlB遺伝子(配列番号 3に示す塩基配列のうち第 1番 目力、ら第 681番目、図 6中「nhlB」参照、以下同じ)、及び nhlE遺伝子(配列番号 3 に示す塩基配列のうち第 1370番目力 第 1816番目、図 6中「nhlE」参照、以下同 じ)の 3つの〇RFを持つプラスミド pREIT- nhlBAE。  (I) nhlA gene (the 745th power of the nucleotide sequence shown in SEQ ID NO: 3 is also 1368th, see “nhlA” in FIG. 6; the same shall apply hereinafter), nhlB gene (the first of the nucleotide sequences shown in SEQ ID NO: 3) No. 681, No. 681, see “nhlB” in FIG. 6, the same shall apply hereinafter), and nhlE gene (1370, No. 1816 in the nucleotide sequence shown in SEQ ID NO: 3, see “nhlE” in FIG. 6, and so on) Z) Plasmid pREIT-nhlBAE with three 〇RFs.
(II) nhlA遺伝子,及び nhlB遺伝子の 2つの〇RFを持つプラスミド pREIT_nhlBA。  (II) Plasmid pREIT_nhlBA with two ○ RFs of nhlA gene and nhlB gene.
(III) nhlA遺伝子,及び nhlE遺伝子の 2つの ORFを持つプラスミド pREIT-nhlAE。  (III) Plasmid pREIT-nhlAE having two ORFs of nhlA gene and nhlE gene.
(IV) nhlE遺伝子のみの ORFを持つプラスミド pREIT-nhlE。  (IV) Plasmid pREIT-nhlE having ORF of nhlE gene only.
(V) L_NHaseのひサブユニットの N末端 24アミノ酸を欠損させ 25番目の Met力、ら始 まる〇RFと、 nhlE遺伝子の 2つの ORFを持つプラスミド pREIT-nhl AAE。  (V) Plasmid pREIT-nhl AAE, which lacks the N-terminal 24 amino acids of the subunit of L_NHase and has the 25th Met force, starting with RF and two ORFs of the nhlE gene.
実施例 2  Example 2
[0057] 実施例 2では、本発明に係るタンパク質複合体 ct e (図 1参照)を構成する NhlEタ  [0057] In Example 2, the NhlE protein constituting the protein complex ct e (see Fig. 1) according to the present invention is used.
2  2
ンパク質の、 L NHase成熟化への関与について調べた。具体的には、実施例 1で 構築したプラスミド pREIT-nhlBA (II)を宿主に導入したときに発現する L— NHaseの 比活性と、プラスミド pREIT-nhlBAE (I)を宿主に導入したときに発現する L_NHase の比活性を比較した。なお、 L NHaseの活性測定は、以下のように行った(以下同 様)。 We investigated the involvement of proteins in L NHase maturation. Specifically, the specific activity of L-NHase expressed when the plasmid pREIT-nhlBA (II) constructed in Example 1 is introduced into the host, and the expression when the plasmid pREIT-nhlBAE (I) is introduced into the host. L_NHase The specific activities of were compared. The L NHase activity was measured as follows (the same applies hereinafter).
[0058] 水で希釈した無細胞抽出液、 50mMリン酸カリウム緩衝液(pH7.5)、 20mM 3_シァノ ピリジンを含む 0.5mL中で、 20°Cにて 20分間反応後、ァセトニトリルを 0.5mLカ卩えること により反応を停止させた。酵素反応により生成したニコチンアミドを HPLCにより分析し た。 HPLCの解析条件は表 1の通りである。 1分間に l x molの安息香酸を生成する酵 素量を limitとした。  [0058] Cell-free extract diluted with water, 50 mM potassium phosphate buffer (pH 7.5), 20 mM 3_cyanopyridine In 0.5 mL, reacted at 20 ° C for 20 minutes, then 0.5 mL of acetonitrile The reaction was stopped by raising. Nicotinamide produced by the enzymatic reaction was analyzed by HPLC. Table 1 shows the HPLC analysis conditions. The amount of enzyme that produces l x mol of benzoic acid per minute was defined as limit.
[表 1]  [table 1]
解 析 条 件  Analysis conditions
Figure imgf000011_0001
Figure imgf000011_0001
[0059] まず、 Rhodococcus fascians DSM43985を宿主として、プラスミド pREIT- nhlBA (II) を導入し、 L_NHaseを発現させた。すると、 ひ、 /3両サブユニットの大量発現が SDS -PA E (sodium dodecyl sulrate-polyacrylamidegel electropnoresis)て、、確百忍でさ 7こ。  [0059] First, using Rhodococcus fascians DSM43985 as a host, plasmid pREIT-nhlBA (II) was introduced to express L_NHase. Then, the large-scale expression of both subunits of / 3 is SDS-PAE (sodium dodecyl sulrate-polyacrylamide gel electropnoresis).
DS-PAGEの結果を図 71anelに示す。しかし、 α、 ;3両サブユニットの発現量に対し て無細胞抽出液の L— NHaseの酵素活性は 0. 1 U/mgと非常に低かった。酵素活 性を表 2に示す。  The results of DS-PAGE are shown in Fig. 71anel. However, the enzyme activity of L-NHase in the cell-free extract was very low, 0.1 U / mg, relative to the expression level of both α and 3 subunits. Table 2 shows the enzyme activities.
[0060] 同様に Rhodococcus fascians DSM43985を宿主として、構築したプラスミド pREIT- nhlBAE (I)を導入し、 L NHaseを発現させた。すると、 α、 ;3両サブユニットの他に nhlE遺伝子にコードされる NhlEタンパク質の大量発現が確認された。 SDS-PAGEの 結果を図 71ane3に示す。また、無細胞抽出液の α、 β両サブユニットの発現量は、 前記のプラスミド pREIT-nhlBA (II)の場合とほぼ同じであるにもかかわらず、 L— NHa seの酵素活性は 8. 6U/mgと著しく上昇した。酵素活性を表 2に示す。  Similarly, the constructed plasmid pREIT-nhlBAE (I) was introduced using Rhodococcus fascians DSM43985 as a host to express L NHase. Then, a large amount of NhlE protein encoded by the nhlE gene was confirmed in addition to the α, 3 subunits. The result of SDS-PAGE is shown in Fig. 71ane3. In addition, although the expression levels of both α and β subunits in the cell-free extract were almost the same as in the case of the plasmid pREIT-nhlBA (II), the enzyme activity of L-NHase was 8.6 U. / mg markedly increased. The enzyme activity is shown in Table 2.
[0061] [表 2] プラスミド 発現 L—NHase酵素活性 pREIT-nhlBA(II) 0. 1 U/mg pREIT-nhlBAEil) 8. 6U/mg [0061] [Table 2] Plasmid expression L-NHase enzyme activity pREIT-nhlBA (II) 0.1 U / mg pREIT-nhlBAEil) 8.6 U / mg
[0062] 以上の結果から、酵素活性が高い成熟化 L_NHaseを発現させるには、 ひ、 /3両 サブユニットの発現のみならず、 NhlEタンパク質の存在が重要であることが分かった [0062] From the above results, it was found that in order to express mature L_NHase with high enzymatic activity, not only the expression of both subunits / 3 but also the presence of NhlE protein is important.
実施例 3 Example 3
[0063] 実施例 3では、 Rhodococcus fascians DSM43985を宿主として、プラスミド pREIT-n hlBAE (I)を導入した場合に発現する L— NHaseと、プラスミド pREIT-nhlBA (II)を導 入した場合に発現する L NHaseとのサブユニット構造、及び酵素活性の違いを調 ベた。  [0063] In Example 3, using Rhodococcus fascians DSM43985 as a host, L-NHase expressed when plasmid pREIT-n hlBAE (I) is introduced and expressed when plasmid pREIT-nhlBA (II) is introduced The difference in subunit structure and enzyme activity from L NHase was investigated.
[0064] プラスミド pREIT-nhlBAE (I)を導入した Rhodococcus fascians DSM43985からは、 4 量体(α β )のし NHaseが精製できた。精製された 4量体(α β )のし NHase  [0064] From Rhodococcus fascians DSM43985 into which plasmid pREIT-nhlBAE (I) was introduced, tetramer (α β) and NHase could be purified. Purified tetramer (α β) and NHase
2 2 2 2 のゲル濾過クロマトグラフィーにおける保持容量を図 8 (1)に、 SDS-PAGEの結果を 図 91anelに示す。この L— NHaseの比活性は 320U/mgであった。比活性を表 3に示 す。  Fig. 8 (1) shows the retention capacity of 2 2 2 2 in gel filtration chromatography, and Fig. 91anel shows the results of SDS-PAGE. The specific activity of L-NHase was 320 U / mg. Specific activities are shown in Table 3.
[0065] 一方、プラスミド pREIT-nhlBA (II)を導入した Rhodococcus fascians DSM43985力 らは、 4量体(ひ β )のし_ ^«½36と、 2量体(ひ j3 )の L_NHaseの 2種の L_NHa  [0065] On the other hand, Rhodococcus fascians DSM43985 and others introduced the plasmid pREIT-nhlBA (II) have two types of tetramer (Hβ) _ ^ «½36 and dimer (HJ3) L_NHase. L_NHa
2 2  twenty two
seが精製できた。精製された 4量体(ひ β )のし_1«½36のゲル濾過クロマトグラフ  se could be purified. Gel filtration chromatograph of purified tetramer (β) _1 «½36
2 2  twenty two
ィ一における保持容量を図 8 (2)に、 SDS-PAGEの結果を図 91ane2に示す。また、 2 量体(ひ /3 )のし_ ^«½36のゲル濾過クロマトグラフィーにぉける保持容量を図8 (3) に、 SDS-PAGEの結果を図 91ane3に示す。  Figure 8 (2) shows the retention capacity in Fig. 1, and Fig. 91ane2 shows the results of SDS-PAGE. In addition, the retention capacity of the dimer (ひ / 3) and the gel filtration chromatography of the gel 36 is shown in FIG. 8 (3), and the result of SDS-PAGE is shown in FIG. 91ane3.
[0066] これらの比活性について調べると、 4量体(ひ β )の L_NHaseの比活性は 83U/ [0066] When these specific activities were examined, the specific activity of L_NHase of the tetramer (β) was 83U /
2 2  twenty two
mgと低く、 2量体(α )の L— NHaseの比活性は 4U/mgと非常に低かった。比活性 を表 3に示す。  The specific activity of L-NHase in dimer (α) was as low as 4U / mg. The specific activity is shown in Table 3.
[0067] [表 3] プラスミド 発現 L一 NHase酵素 発現 L— NHase酵素活性 pREIT-nhlBAE (I) 4量体(a 2 jS 2) 320U/mg [0067] [Table 3] Plasmid expression L 1 NHase enzyme expression L—NHase enzyme activity pREIT-nhlBAE (I) Tetramer (a 2 jS 2 ) 320 U / mg
4量体(ひ 2 jS 2) 83U/mg Tetramer (Hi 2 jS 2 ) 83U / mg
pRE【T-nWBA(II)  pRE 【T-nWBA (II)
2量体( ) 4U/mg  Dimer () 4U / mg
[0068] 以上の結果、及び実施例 2の結果も踏まえると、成熟化した完全な L NHaseには NhlEタンパク質が必須であることが分かった。 [0068] Based on the above results and the results of Example 2, it was found that NhlE protein is essential for mature complete L NHase.
実施例 4  Example 4
[0069] 実施例 4では、 NhlEタンパク質の精製を試みた。  [0069] In Example 4, purification of NhlE protein was attempted.
[0070] プラスミド pREIT-nhlBAE (I)を導入した Rhodococcus fascians DSM43985から、 SD S-PAGE上のバンドを指標に NhlEタンパク質の精製を試みた。その結果、 NhlEタン パク質は、単独での精製は確認されず、他のタンパク質と複合体を形成した状態で 精製できた。精製した複合体の液体クロマトグラフィーにおける保持容量を図 8 (4)に 示す。  [0070] From Rhodococcus fascians DSM43985 into which plasmid pREIT-nhlBAE (I) was introduced, purification of NhlE protein was attempted using the band on SD S-PAGE as an index. As a result, the NhlE protein was not confirmed to be purified alone, and could be purified in the form of a complex with other proteins. Figure 8 (4) shows the retention capacity of the purified complex in liquid chromatography.
実施例 5  Example 5
[0071] 実施例 5では、実施例 4で精製した複合体のサブユニット構造を調べた。  In Example 5, the subunit structure of the complex purified in Example 4 was examined.
[0072] 実施例 4におレ、て、 NhlEタンパク質と複合体を形成した他のタンパク質は、 ひサブ ユニットと SDS-PAGE上で移動度が一致した。 SDS-PAGEの結果を図 91ane4に示す。  [0072] In Example 4, the mobility of other proteins complexed with the NhlE protein coincided with those of the subunits on SDS-PAGE. The result of SDS-PAGE is shown in Fig. 91ane4.
[0073] そこで、 NhlEタンパク質と、複合体を形成したタンパク質の N末端アミノ酸配列を決 定したところ、 ひサブユニットと完全に一致した。また、この複合体の分子量は、ゲル 濾過により 55.3kDaであることが分かった。ここで、 ひサブユニットと NhlEタンパク質の 分子量はそれぞれ 22.8kDa, 16.9kDaである。 [0073] Thus, when the N-terminal amino acid sequences of the NhlE protein and the protein that formed a complex were determined, they completely matched the subunit. The molecular weight of this complex was found to be 55.3 kDa by gel filtration. Here, the molecular weights of the subunit and NhlE protein are 22.8 kDa and 16.9 kDa, respectively.
[0074] 以上の結果から、この複合体のサブユニット構造はひ eと考えられる。なお、この複 [0074] From the above results, the subunit structure of this complex is considered to be e. This compound
2  2
合体には、 L_NHase活性はなかった。  The coalescence did not have L_NHase activity.
実施例 6  Example 6
[0075] 実施例 6では、 NhlEタンパク質単独での発現を試みた。  [0075] In Example 6, expression with NhlE protein alone was attempted.
[0076] Rhodococcus fascians DSM43985を宿主として、実施例 1で構築した nhlE遺伝子 のみの ORFを持つプラスミド pREIT-nhlE (IV)を導入し、 NhlEタンパク質の発現を試 みたが、発現は確認できなかった。 [0076] nhlE gene constructed in Example 1 using Rhodococcus fascians DSM43985 as a host Plasmid pREIT-nhlE (IV) with only ORF was introduced and expression of NhlE protein was tried, but no expression was confirmed.
[0077] 一方、 Rhodococcus fascians DSM43985を宿主として、実施例 1で構築した nhlA 遺伝子,及び nhlE遺伝子の 2つの ORFを持つプラスミド pREIT-nhlAE (III)を導入し たところ、タンパク質複合体ひ eの発現が確認できた。 [0077] On the other hand, when the plasmid pREIT-nhlAE (III) having two ORFs of the nhlA gene and the nhlE gene constructed in Example 1 was introduced using Rhodococcus fascians DSM43985 as the host, expression of the protein complex e Was confirmed.
2  2
[0078] さらに、 Rhodococcus fascians DSM43985を宿主として、実施例 1で構築した L_N Haseのひサブユニットの N末端 24アミノ酸を欠損させ 25番目の Metから始まる〇RF と、 nhlE遺伝子の 2つの ORFを持つプラスミド pREIT-nhl A AE (V)を導入した力 Nh IEタンパク質単独での発現は確認できな力 た。  [0078] Furthermore, with Rhodococcus fascians DSM43985 as the host, the N-terminal 24 amino acids of the L_N Hase subunit constructed in Example 1 were deleted, and the ORF of the nhlE gene and the ○ RF starting from the 25th Met Force introduced with plasmid pREIT-nhl A AE (V) Expression with Nh IE protein alone was not confirmed.
[0079] 以上の結果より、 NhlEタンパク質の発現にはひサブユニットが必要、あるいは発現 した NhlEタンパク質の安定化にはひサブユニットが必要であることが分かった。 実施例 7  [0079] From the above results, it was found that the subunit is required for the expression of the NhlE protein, or the subunit is required for the stabilization of the expressed NhlE protein. Example 7
[0080] 実施例 7では、 in vitroにおけるタンパク質複合体 a eの作用効果について調べた  [0080] In Example 7, the effect of the protein complex a e in vitro was examined.
2  2
[0081] プラスミド pREIT-nhlBA (II)を導入した Rhodococcus fascians DSM43985から比活 性の低レ、4量体(ひ β )酵素(比活性 83U/mg)、及び比活性の非常に低い 2量体( [0081] Rhodococcus fascians DSM43985 introduced with plasmid pREIT-nhlBA (II) Low specific activity, tetramer (β) enzyme (specific activity 83U / mg), and dimer with very low specific activity (
2 2  twenty two
a /3 )酵素(比活性 4U/mg)を精製した。得られたこれらの酵素に、それぞれ、タンパ ク質複合体ひ eを混合し、ゲル濾過カラムを用いて混合溶液を分画した。  a / 3) Enzyme (specific activity 4U / mg) was purified. A protein complex was mixed with each of the obtained enzymes, and the mixed solution was fractionated using a gel filtration column.
2  2
[0082] まず、比活性の低い 4量体(ひ )酵素とタンパク質複合体ひ eとの混合溶液を分  [0082] First, a mixed solution of a tetrameric enzyme having a low specific activity and a protein complex is separated.
2 2 2  2 2 2
画した。その結果、 4量体(ひ β )酵素の大きさはそのままであった力 S、この酵素の  I drew it. As a result, the size of the tetramer (ひ β) enzyme remained unchanged.
2 2  twenty two
比活性は、 328.4U/mgまで上昇した。混合時(0時間)の 4量体(ひ /3 )酵素とタンパ  Specific activity increased to 328.4 U / mg. Tetramer (3/3) enzyme and tamper when mixed (0 hours)
2 2  twenty two
ク質複合体ひ eのゲル濾過クロマトグラフィーにおける保持容量を図 10Aに、混合後  Fig. 10A shows the retention capacity of gel composite chromatography in gel filtration chromatography.
2  2
12時間後の 4量体(ひ β )酵素とタンパク質複合体ひ eのゲル濾過クロマトグラフィ  Gel filtration chromatography of tetramer (β) enzyme and protein complex after 12 hours
2 2 2  2 2 2
一における保持容量を図 10Bに示す。また、それぞれの比活性を表 4に示す。これ は、プラスミド pREIT-BAE (I)を導入した Rhodococcus fascians DSM43985から精製 した 4量体(α β )酵素の比活性と同じレベルである。  The retention capacity at 1 is shown in FIG. 10B. Each specific activity is shown in Table 4. This is the same level as the specific activity of the tetramer (αβ) enzyme purified from Rhodococcus fascians DSM43985 introduced with plasmid pREIT-BAE (I).
2 2  twenty two
[0083] 一方、比活性の非常に低い 2量体( α )酵素とタンパク質複合体 α eとの混合溶 [0083] On the other hand, very low dimer specific activity (alpha) mixed solvent of the enzyme and protein complex alpha e
2  2
液を分画した。その結果、新たに 4量体( α )酵素が生成した。混合時(0時間)の 2量体(α )酵素とタンパク質複合体 a eのゲル濾過クロマトグラフィーにおける保 The liquid was fractionated. As a result, a new tetramer (α) enzyme was produced. During mixing (0 hours) Retention of dimer (α) enzyme and protein complex ae in gel filtration chromatography
2  2
持容量を図 10Cに、混合後 12時間後の 4量体(α β )酵素とタンパク質複合体 a e  Figure 10C shows the retention capacity of tetramer (α β) enzyme and protein complex 12 hours after mixing.
2 2  twenty two
のゲル濾過クロマトグラフィーにおける保持容量を図 10Dに示す。新たに生成した 4 The retention capacity in gel filtration chromatography is shown in FIG. 10D. Newly generated 4
2 2
量体(ひ β )酵素の比活性は、 326.2U/mgであった。比活性を表 4に示す。これも、 The specific activity of the monomeric (β) enzyme was 326.2 U / mg. Specific activity is shown in Table 4. This too
2 2 twenty two
プラスミド pREIT-BAE (I)を導入した Rhodococcus fascians DSM43985から精製した 4量体(ひ β )酵素の比活性と同じレベルである。  This is the same level as the specific activity of the tetramer (β) enzyme purified from Rhodococcus fascians DSM43985 introduced with plasmid pREIT-BAE (I).
2 2  twenty two
[表 4]  [Table 4]
Figure imgf000015_0001
Figure imgf000015_0001
[0085] 以上の結果より、本発明に係るタンパク質複合体ひ eは、 in vitroにおいて、酵素活  [0085] From the results described above, the protein complex according to the present invention has an enzyme activity in vitro.
2  2
性の低い未成熟な状態で発現した L一 NHaseを、翻訳後に酵素活性の高い成熟化 した L_NHaseと変化させることが分かった。  It was found that L-NHase expressed in an immature state with low sex was changed to matured L_NHase with high enzymatic activity after translation.
実施例 8  Example 8
[0086] 実施例 8では、 Rhodococcus fascians DSM43985を宿主として精製した、以下の酵 素について、コバルトイオン含有量の測定を行った。  [0086] In Example 8, the cobalt ion content of the following enzyme purified using Rhodococcus fascians DSM43985 as a host was measured.
(a) pREIT-nhlBAE (I)を導入して精製した 4量体(ひ β )酵素。  (a) A tetramer (symbol β) enzyme purified by introducing pREIT-nhlBAE (I).
2 2  twenty two
(b) pREIT-nhlBA (II)を導入して精製した 4量体(ひ β )酵素。  (b) Tetramer (β) enzyme purified by introducing pREIT-nhlBA (II).
2 2  twenty two
(c) pREIT-nhlBA (II)を導入して精製した 2量体(ひ /3 )酵素。  (c) Dimer (H / 3) enzyme purified by introducing pREIT-nhlBA (II).
(d) (b)の 4量体酵素を in vitroにおいて、タンパク質複合体ひ eで処理した後の 4量  (d) 4 amounts after treatment of the tetrameric enzyme in (b) with a protein complex in vitro
2  2
体(α β )酵素。 Body ( α β) enzyme.
2 2  twenty two
(e) (c)の 2量体酵素を in vitroにおいて、タンパク質複合体ひ eで処理した後に生成  (e) Dimeric enzyme of (c) produced in vitro after treatment with protein complex e
2  2
した 4量体(ひ β )酵素。  Tetramer (symbol β) enzyme.
2 2  twenty two
[0087] (a)から(e)のそれぞれの酵素と、タンパク質複合体ひ eのコバルトイオン含有量を  [0087] The cobalt ion content of each of the enzymes (a) to (e) and the protein complex e
2  2
測定した。その結果を表 5に示す。  It was measured. The results are shown in Table 5.
[0088] [表 5] 発現 l_- NHase ae2処理後の プラスミド Coイオン含有量 [0088] [Table 5] Expression l_- Plasmid Co ion content after NHase ae 2 treatment
酵素 Coイオン含有量 Enzyme Co ion content
(a) 4量体 ^.06mo\/ β (a) Tetramer ^ .06mo \ / β
pl¾EIT-nhlBAEE(I)  pl¾EIT-nhlBAEE (I)
(a2JS2) (2.12mol/Qf2/S2) (a 2J S 2 ) (2.12mol / Qf 2 / S 2 )
(b)4量体 0.0360101/0()5 (ά)1.16ιηοΙ/ο; β (a2i82) (0.072mol/o;2/S2) (2.32mol/a2i82) pREIT-nWBA(II) (b) Tetramer 0.0360101 / 0 () 5 (ά) 1.16ιηοΙ / ο; β (a 2i 8 2 ) (0.072mol / o; 2 / S2) (2.32mol / a 2i 8 2 ) pREIT-nWBA ( II)
(c)2量体 (e)1.18mol/Qf ^  (c) Dimer (e) 1.18mol / Qf ^
0.030mol/ひ β  0.030mol / h β
ί β) (2.36mol/or2^2)ί β) (2.36mol / or 2 ^ 2 )
(b)と処理する 0.92mol/ae2 0.40mol/ae2 pREIT-nhlAE(HI) Treat with (b) 0.92mol / ae 2 0.40mol / ae 2 pREIT-nhlAE (HI)
(c)と処理する Process with ( c )
0.92mol/ae2 0.42mol/ae2 ae 0.92mol / ae 2 0.42mol / ae 2 ae
[0089] (a) pREIT-BAE (I)を導入して精製した 4量体 )酵素は α βサブユニットあた [0089] (a) Tetramer purified by introducing pREIT-BAE (I))
2 2  twenty two
り 1.06モル(2.12モル/ひ β )のコバルトイオンを含有しているのに対し、 (b)pREIT- It contains 1.06 mol (2.12 mol / β) of cobalt ions, while (b) pREIT-
2 2 twenty two
ΒΑ(Π)を導入して精製した 4量体(α β )酵素、及び(c)pREIT-BA(II)を導入して  A tetramer (α β) enzyme purified by introducing ΒΑ (ΒΑ) and (c) pREIT-BA (II) was introduced.
2 2  twenty two
精製した 2量体(a i3)酵素は、それぞれ a i3サブユニットあたり 0.036モル(0.072モ ル /ひ β )、 0.030モルのコバルトイオンしか含有していなかった。なお、(b)の酵素と The purified dimer (a i3) enzyme contained only 0.036 mol (0.072 mol / min β) and 0.030 mol cobalt ions per a i3 subunit, respectively. (B) with the enzyme
2 2 twenty two
処理するタンパク質複合体ひ e、及び(c)の酵素と処理するタンパク質複合体ひ eの  The protein complex to be processed e and the protein complex to be processed with the enzyme of (c)
2 2 コバルトイオン含有量は、どちらもひ eサブユニットあたり 0.92モルであった。  Both 2 2 cobalt ion contents were 0.92 mol per e subunit.
2  2
[0090] しかし、(b)、及び (c)の酵素をそれぞれタンパク質複合体ひ eと処理した後の 4量  [0090] However, the amount of 4b after treating the enzyme of (b) and (c) with protein complex e, respectively.
2  2
体(ひ /3 )酵素(d),及び (e)のコバルトイオン含有量は、それぞれ、 ひ j3サブュニ The cobalt ion content of the body (H / 3) enzyme (d) and (e) is
2 2 twenty two
ットあたり 1.16モル(2.32モル/ひ β )、 1.18モル(2.36モル/ひ β )と増加した。  It increased to 1.16 mol (2.32 mol / β) and 1.18 mol (2.36 mol / β) per tablet.
2 2 2 2  2 2 2 2
[0091] 一方で、(b)、及び(c)の酵素を処理した後のタンパク質複合体ひ eのコバルトィォ  [0091] On the other hand, the cobalt complex of the protein complex e after treatment with the enzymes (b) and (c)
2  2
ン含有量は、それぞれ、 α β サブユニットあたり 0.40モル、 0.42モルと減少していた。  The contents of N were reduced to 0.40 mol and 0.42 mol per α β subunit, respectively.
2  2
[0092] 以上の結果より、タンパク質複合体ひ eは、コバルトイオン含量が少なく比活性の  [0092] From the above results, the protein complex e has a low cobalt ion content and a specific activity.
2  2
低い酵素 L NHaseに対し、 自身のコバルトイオンを受け渡すことにより、酵素活性 を上昇させることが分かった。  Low enzyme L NHase was found to increase enzyme activity by passing its own cobalt ions.
産業上の利用可能性  Industrial applicability
[0093] これまで工業的な使用が難しかった未成熟コバルト型低分子量二トリルヒドラターゼ を、酵素活性の高い状態へ成熟化させることにより、種々のアミド化合物の工業的生 産に利用することが可能となる。また、本発明に係るタンパク質複合体を使ったコバ ルト型低分子量二トリルヒドラターゼの成熟化方法は、 in vivo,及び in vitroにかかわ らず、行うことができるため、様々な状況に応じて、コバルト型低分子量二トリルヒドラ ターゼの工業的生産過程、更には、あらゆるァミノ化合物の工業的生産過程の一過 程として用いることができる。 [0093] By immature immature cobalt-type low molecular weight nitrile hydratase, which has heretofore been difficult to use industrially, to mature state of high enzyme activity, It can be used for production. In addition, the method for maturation of cobalt type low molecular weight nitrile hydratase using the protein complex according to the present invention can be carried out regardless of in vivo or in vitro, so that it can be used according to various situations. In addition, it can be used as a process for industrial production of cobalt-type low molecular weight nitrile hydratase, and for industrial production of all amino compounds.
図面の簡単な説明  Brief Description of Drawings
[0094] [図 1]本発明に係るタンパク質複合体 ct eを模式的に示した図である。 [0094] Fig. 1 is a diagram schematically showing a protein complex ct e according to the present invention.
2  2
[図 2]本発明に係るプラスミド 12を模式的に示した図である。  FIG. 2 is a diagram schematically showing a plasmid 12 according to the present invention.
[図 3]本発明に係る L NHase成熟化方法を模式的に示す図である。  FIG. 3 is a diagram schematically showing an L NHase maturation method according to the present invention.
[図 4]L NHase成熟化のメカニズムを模式的に示す図である。  FIG. 4 is a diagram schematically showing the mechanism of L NHase maturation.
[図 5]本発明に係る成熟 L NHase生産方法の一例を模式的に示す図である。  FIG. 5 is a diagram schematically showing an example of a method for producing mature L NHase according to the present invention.
[図 6]実施例 1で使用、及び作成したプラスミドの遺伝子部位を模式的に示した図で ある。  FIG. 6 is a diagram schematically showing the gene site of the plasmid used and prepared in Example 1.
[図 7]実施例 2において精製した試料について、 SDS-PAGEの結果を示す図面代用 写真である。  FIG. 7 is a drawing-substituting photograph showing the results of SDS-PAGE for the sample purified in Example 2.
[図 8]実施例 3、及び実施例 4において精製した試料について、ゲル濾過クロマトダラ フィ一での保持容量を示す図である。  FIG. 8 is a graph showing the retention capacity in the gel filtration chromatograph for the samples purified in Example 3 and Example 4.
[図 9]実施例 3、及び実施例 4において精製した試料について、 SDS-PAGEの結果を 示す図面代用写真である。  FIG. 9 is a drawing-substituting photograph showing the results of SDS-PAGE for the samples purified in Example 3 and Example 4.
[図 10]実施例 7において精製した試料について、ゲル濾過クロマトグラフィーでの保 持容量を示す図である。  FIG. 10 is a graph showing the retention capacity in gel filtration chromatography of the sample purified in Example 7.
符号の説明  Explanation of symbols
[0095] e NhlEタンパク質 [0095] e NhlE protein
a aサブユニット  a a subunit
1 nhlE遺 to子  1 nhlE to child
2 nhlA遺伝子  2 nhlA gene
3 nhlB遺伝子  3 nhlB gene
12 nhlE遺伝子、及び nhlA遺伝子の 2つの ORFを持つプラスミド 3 nhlE遺伝子、 nhlA遺伝子、及び nhlB遺伝子の 3つの ORFを持つプラスミド 4量体の未成熟 L— NHase 12 Plasmid with two ORFs of nhlE gene and nhlA gene 3 Plasmid tetramer immature L—NHase with three ORFs of nhlE, nhlA, and nhlB genes
2量体の未成熟 L— NHase  Dimer immature L— NHase
タンパク質複合体ひ e Protein complex e
2  2
成熟 L_NHase Mature L_NHase
nhlA遺伝子、及び nhlB遺伝子の 2つの ORFを持つプラスミド  Plasmid with two ORFs of nhlA gene and nhlB gene

Claims

請求の範囲 The scope of the claims
[1] 配列番号 1に示すアミノ酸配歹' Jを有するタンパク質と、  [1] a protein having an amino acid sequence 'J shown in SEQ ID NO: 1,
配列番号 2に示すアミノ酸配列をそれぞれ有する 2つのタンパク質と、 力 形成された 3量体のタンパク質複合体。  A protein complex of two proteins each having the amino acid sequence shown in SEQ ID NO: 2 and a force-formed trimer.
[2] 請求の範囲第 1項記載のタンパク質複合体を用いて、未成熟コバルト型低分子量 二トリルヒドラターゼを成熟化させる手順を少なくとも含むコバルト型低分子量二トリル ヒドラターゼ成熟化方法。 [2] A cobalt type low molecular weight nitrile hydratase maturation method comprising at least a step of maturing immature cobalt type low molecular weight nitrile hydratase using the protein complex according to claim 1.
[3] 請求の範囲第 1項記載のタンパク質複合体を用いて、未成熟コバルト型低分子量 二トリルヒドラターゼを成熟化させる工程を少なくとも含む成熟化コバルト型低分子量 二トリルヒドラターゼ作製方法。 [3] A method for producing a matured cobalt-type low molecular weight nitrile hydratase comprising at least a step of maturing an immature cobalt-type low molecular weight nitrile hydratase using the protein complex according to claim 1.
[4] 請求の範囲第 3項記載の方法により産生された、成熟化コバルト型低分子量二トリ ノレヒドラターゼ。 [4] A matured cobalt-type low molecular weight nitrinohydratase produced by the method according to claim 3.
[5] 請求の範囲第 4項記載の成熟化コバルト型低分子量二トリルヒドラターゼを、 アクリル二トリルからアクリルアミドへの変換酵素として用いる工程を少なくとも含む アクリルアミド生産方法。  [5] A method for producing acrylamide comprising at least a step of using the matured cobalt-type low molecular weight nitrile hydratase according to claim 4 as an enzyme converting acrylonitrile to acrylamide.
[6] 請求の範囲第 4項記載の成熟化コバルト型低分子量二トリルヒドラターゼを、 [6] The matured cobalt-type low molecular weight nitrile hydratase according to claim 4,
3_シァノピリジンからニコチンアミドへの変換酵素として用いる工程を少なくとも含 むニコチンアミド生産方法。  3_ A method for producing nicotinamide comprising at least a step of using it as a converting enzyme from cyanopyridine to nicotinamide.
[7] 配列番号 3に示す塩基配列のうち第 1370番目から第 1816番目の配列と、  [7] From the 1370th to 1816th sequence among the base sequence shown in SEQ ID NO: 3,
配列番号 3に示す塩基配列のうち第 745番目から第 1368番目の配列と、 を少なくとも含むプラスミド。  A plasmid comprising at least the 745th to 1368th sequences of the base sequence shown in SEQ ID NO: 3, and
PCT/JP2007/062872 2006-07-06 2007-06-27 Novel protein complex, method for maturation of cobalt-type low-molecular-weight nitrile hydratase using the protein complex, matured cobalt-type low-molecular-weight nitrile hydratase, and method using the nitrile hydratase WO2008004473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008523654A JP5120852B2 (en) 2006-07-06 2007-06-27 Novel protein complex, cobalt type low molecular weight nitrile hydratase maturation method using the protein complex, matured cobalt type low molecular weight nitrile hydratase, and method using the nitrile hydratase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006186662 2006-07-06
JP2006-186662 2006-07-06

Publications (1)

Publication Number Publication Date
WO2008004473A1 true WO2008004473A1 (en) 2008-01-10

Family

ID=38894444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062872 WO2008004473A1 (en) 2006-07-06 2007-06-27 Novel protein complex, method for maturation of cobalt-type low-molecular-weight nitrile hydratase using the protein complex, matured cobalt-type low-molecular-weight nitrile hydratase, and method using the nitrile hydratase

Country Status (2)

Country Link
JP (1) JP5120852B2 (en)
WO (1) WO2008004473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187660A (en) * 2009-01-21 2010-09-02 Tatsuhiko Kobayashi Method for maturing nitrile hydratase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211379A (en) * 1990-02-28 1992-08-03 Teruhiko Beppu Gene dna coding polypeptide having nitrile hydratase activity and transformant containing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408737B2 (en) * 1998-03-16 2003-05-19 三井化学株式会社 Protein involved in nitrile hydratase activation and gene encoding the same
JP4108095B2 (en) * 2003-06-10 2008-06-25 旭化成株式会社 Novel nitrile hydratase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211379A (en) * 1990-02-28 1992-08-03 Teruhiko Beppu Gene dna coding polypeptide having nitrile hydratase activity and transformant containing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] KOMEDA H. ET AL., XP003020624, accession no. EMBL Database accession no. (D83695) *
KOBAYASHI M. ET AL.: "Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1", BIOCHIM. BIOPHYS. ACTA, vol. 1129, 1991, pages 23 - 33, XP000653047 *
KOMEDA H. ET AL.: "A novel transporter involved in cobalt uptake", PROC. NATL. ACAD. SCI. U.S.A., vol. 94, 1997, pages 36 - 41, XP009050024 *
PNAS USA, vol. 94, no. 1, 1997, pages 36 - 41 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187660A (en) * 2009-01-21 2010-09-02 Tatsuhiko Kobayashi Method for maturing nitrile hydratase

Also Published As

Publication number Publication date
JPWO2008004473A1 (en) 2009-12-03
JP5120852B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
AU2005312165B2 (en) Method for producing carboxy-terminal amidified peptides
CN103975069B (en) Method for oxidizing alkanes by using AlkB alkane 1-monooxygenase
CN108358800B (en) Method for better separation of hydrophobic organic solutions from aqueous media
CN109593750B (en) Nitrile hydratase mutant, genetic engineering bacterium containing same and application thereof
Cheng et al. Recent advances and promises in nitrile hydratase: From mechanism to industrial applications
WO2003066863A1 (en) α-SUBSTITUTED-α,β-UNSATURATED CARBONYL COMPOUND REDUCTASE GENE
EP3564368A1 (en) Mutant nitrile hydratase, nucleic acid coding said mutant nitrile hydratase, expression vector and transformant including said nucleic acid, production method for said mutant nitrile hydratase, and production method for amide compound
CN104271739A (en) Modified leucine dehydrogenase
WO2001030994A1 (en) Novel rhodococcus, rhodococcus-origin nitrilase gene, nitrilehydratase gene and amidase gene and process for producing carboxylic acids by using the same
EP2840138B1 (en) Process for production of cis-4-hydroxy-L-proline
CN115806947A (en) Enzyme and application thereof
EP3974523A1 (en) Transaminase mutant and use thereof
CN104450762B (en) The biological synthesis method of alpha lipoic acid, engineered strain and preparation method thereof
WO2008004473A1 (en) Novel protein complex, method for maturation of cobalt-type low-molecular-weight nitrile hydratase using the protein complex, matured cobalt-type low-molecular-weight nitrile hydratase, and method using the nitrile hydratase
AU2007333395A1 (en) Improved expression system for recombinant human arginase I
Nishiya et al. A purification method of the diagnostic enzyme Bacillus uricase using magnetic beads and non-specific protease
Nojiri et al. Improved efficiency of asymmetric hydrolysis of 3‐substituted glutaric acid diamides with an engineered amidase
Hanson et al. Enzymatic preparation of 5-hydroxy-L-proline, N-Cbz-5-hydroxy-L-proline, and N-Boc-5-hydroxy-L-proline from (α-N-protected)-L-ornithine using a transaminase or an amine oxidase
JP2018085962A (en) METHOD OF PRODUCING L-LYSINE α-OXIDASE
JP5654739B2 (en) Nitrile hydratase maturation method
JP4959059B2 (en) Method for purifying amide compounds
JP5080787B2 (en) Protein modification method, nitrile hydratase maturation method, mature nitrile hydratase production method, amide compound production method using mature nitrile hydratase
JPS62262994A (en) D-amino acid oxidase gene
KR102527903B1 (en) 3-Hydroxypropionic acid-producing recombinant microorganism and method for production of 3-hydroxypropionic acid using the strain
CN112680487B (en) Method for synthesizing L-2-aminobutyric acid by catalyzing long-side-chain aromatic amine and 2-ketobutyric acid

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523654

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767675

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)