WO2008004433A1 - Ozone generating device - Google Patents

Ozone generating device Download PDF

Info

Publication number
WO2008004433A1
WO2008004433A1 PCT/JP2007/062240 JP2007062240W WO2008004433A1 WO 2008004433 A1 WO2008004433 A1 WO 2008004433A1 JP 2007062240 W JP2007062240 W JP 2007062240W WO 2008004433 A1 WO2008004433 A1 WO 2008004433A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone generator
discharge electrode
inductance
frequency noise
ozone
Prior art date
Application number
PCT/JP2007/062240
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Nakanishi
Masaki Nieda
Original Assignee
Ohnit Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohnit Co., Ltd. filed Critical Ohnit Co., Ltd.
Publication of WO2008004433A1 publication Critical patent/WO2008004433A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • C01B13/115Preparation of ozone by electric discharge characterised by the electrical circuits producing the electrical discharge

Definitions

  • the present invention relates to an ozone generator that reduces high-frequency noise (several hundred MHz to several GHz) generated by silent discharge.
  • An ozone generator generates silent discharge by applying an alternating high voltage to a discharge electrode, and ionizes a raw material gas (oxygen or air containing oxygen) by the silent discharge to generate ozone.
  • the silent discharge is a large number of minute pulse discharges that repeatedly generate and disappear in a short time (2n Sec or less).
  • the minute pulse discharge generates a high-frequency current, and radiates high-frequency noise (several hundred MHz to several GHz) using a connection line for applying a high voltage to the ozone generator as an antenna.
  • This high-frequency noise is in the frequency band used for mobile phones and wireless LANs, for example, reducing the quality of mobile phone calls. Therefore, when using ozone generators, measures against high frequency noise are required.
  • the simplest countermeasure against high frequency noise is a method in which an ozone generator is surrounded by an electromagnetic shield.
  • a large industrial ozone generator has a configuration in which a raw material gas is supplied to an ozone generator through a metal pipe and the generated ozone is separately released through the metal pipe. For this reason, it is easy to enclose only the compartment where the ozone generator is placed with an electromagnetic shield, and the increase in manufacturing cost due to the addition of the electromagnetic seal is not a problem.
  • small-sized ozone generators for consumer use are aimed at miniaturization and low cost, it is usual to have a configuration in which ambient air is directly brought into contact with an ozone generator as raw material gas to generate ozone. It is. From this, it is not desirable to surround the ozone generator with an electromagnetic shield, and the increase in manufacturing cost due to the addition of the electromagnetic shield cannot be ignored, so it is not practical.
  • connection line As an easy countermeasure against high-frequency noise, it is conceivable to use a coaxial cable or a twisted pair cable that hardly emits high-frequency noise as a connection line.
  • one end of the connection line is not grounded, even if it is a coaxial cable or twisted pair cable. Difficult to reduce wave noise radiation.
  • the high-frequency current flows back to the drive circuit, and there is a possibility that high-frequency noise is emitted from the drive circuit side.
  • the applied voltage which is a high voltage, deteriorates the coating of the coaxial cable over time, causing current leakage due to dielectric breakdown.
  • Patent Document 1 forms a capacitor from the relationship between the discharge electrode and the dielectric electrode by forming a discharge electrode on a dielectric substrate and providing the dielectric electrode with respect to the discharge electrode.
  • the capacitor composed of the discharge electrode and the dielectric electrode has an impedance for a high-frequency current of a small applied voltage of several pF, which is relatively small compared to the resistance, so that the high-frequency current is consumed by the resistor.
  • Patent Document 1 Japanese Patent No. 3339590 ([Claim 1], [0010], [0019])
  • the resistance that can withstand an applied voltage that normally reaches several kV is special, and as described above, it is not practical to use in an ozone generator aiming at miniaturization and cost reduction. . Therefore, prevent high-frequency current generated at the discharge electrode from flowing into the connection line.
  • an ozone generator that does not decrease the ozone generation amount by reducing the influence of the applied voltage by preventing the high-frequency current from flowing into the connection line while reducing the emission of high-frequency noise from the connection line. Considered to develop.
  • a device developed as a result of the study was developed by applying a high voltage from the drive circuit to the discharge electrode and generating ozone by silent discharge of the discharge electrode, and then inducting an inductance at the connection terminal of the discharge electrode.
  • an ozone generator in which a connection line extending from the drive circuit cable is connected to the discharge electrode via the inductance.
  • a coil can be cited.
  • the “drive circuit” of the present invention is an electric circuit that supplies a high voltage to the ozone generator. For example, a control circuit that switches the frequency of the commercial AC voltage and a booster circuit that boosts the commercial AC voltage ( Transformer).
  • the ozone generator is applied with an alternating high voltage from the secondary side of the booster circuit.
  • the present invention consumes only a high-frequency current due to an inductance that hardly affects an applied voltage having a relatively low frequency while having a high impedance to the high-frequency current generated at the discharge electrode. As a result, the emission of high-frequency noise from the connection line is reduced. Since the high-frequency current generated at the discharge electrode does not flow toward the drive circuit (secondary side of the booster circuit in the above example configuration), the inductance is provided as close to the discharge electrode as possible. It is desirable. That is, the inductance is preferably connected in series with the connection terminal of the discharge electrode or configured as the connection terminal of the discharge electrode.
  • the ozone generator Since the ozone generator has a configuration in which the discharge electrode or the connection terminal or connection line of the discharge electrode is connected to the inductance, the ozone generator rejects the high-frequency current force s leaking from the connection portion between the above-mentioned portions and the inductance. I can't. Therefore, the inductance is configured such that the discharge electrode or the connection portion of the discharge electrode with the connection terminal or the connection line is covered with an insulator, and preferably the connection portion and the inductance are integrally covered with the insulator.
  • the inductance is composed of a coil, the entire coil including the discharge electrode or the connection terminal of the discharge electrode and the connection line is covered with an insulator.
  • an ozone which consumes only a high-frequency current and reduces the influence of the high-frequency noise on the ozone generation amount as much as possible while reducing the emission of high-frequency noise mainly from the connection line.
  • the generator can be provided.
  • the coil that forms the inductance does not have to consider the withstand voltage against high voltage, so it can be used with a small coil for surface mounting that is easily available. Realization of cost reduction and cost reduction, as well as downsizing and low cost of the ozone generator.
  • the present invention has the effect of providing an easy and inexpensive high-frequency noise countermeasure in an ozone generator that applies a high voltage to the discharge electrode.
  • FIG. 1 is a block diagram simply showing the configuration of an ozone generator using an ozone generator to which the present invention is applied.
  • FIG. 2 is a perspective view showing an example of an ozone generator to which the present invention is applied.
  • FIG. 3 This is a spectrum analyzer screen that measured the high-frequency noise of Comparative Example 1 in which the inductance was not connected in series with the ozone generator.
  • FIG. 4 This is a screen of a spectrum analyzer that measured the high-frequency noise of Example 1 in which an inductance of 1000 ⁇ H (lmH) was connected in series with an ozone generator.
  • FIG. 5 is a spectrum analyzer screen for measuring high-frequency noise in Example 2 in which an inductance of 2000 mH (2 mH) is connected in series to an ozone generator.
  • FIG. 1 is a block diagram simply showing the configuration of an ozone generator 1 using an ozone generator 4 to which the present invention is applied
  • FIG. 2 is a perspective view showing an example of the ozone generator 4 to which the present invention is applied.
  • FIG. The ozone generator 1 shown in this example is a standard configuration that is commonly found in the past.
  • the ozone generator 1 of the present example comprises a drive circuit 2 from a control circuit 21 and a booster circuit 22, and the control circuit 21 is connected to a commercial power source 3 so that the booster
  • the secondary side 222 of the circuit 22 is connected to the ozone generator 4 by a connection line 5.
  • the product surrounds the ozone generator 4 with a metal cover 23, grounds the control circuit 21, and shorts the primary side 221 and the secondary side 222 of the booster circuit 2 2 (in Fig. 1). (See dashed line).
  • the ozone generator 4 of this example is not a creeping discharge method in which silent discharge is performed at the edge of the plate-like discharge electrode.
  • the present invention can be applied to a silent discharge type ozone generator in which there is no difference in the effect of reducing high frequency noise due to the difference in specific discharge method. From this, even the creeping discharge type ozone generator can reduce high-frequency noise by the configuration shown in FIG.
  • the ozone generator 4 of this example is melted in a state where a pair of glass tubes 42, 42, through which rod-shaped discharge electrodes 41, 41 are inserted, are arranged in parallel.
  • the discharge electrode 41 is hermetically sealed to each glass tube 42 and the glass tubes 42 and 42 are integrated in close contact with each other, and an inductance (coil element with a lead wire) 43 is connected to the discharge electrode 41 protruding from each glass tube 42.
  • the lead wire of the inductance 43 is used as the connection terminal 44.
  • the ductance 43 may be a surface mount coil element.
  • the glass tube 42 is a relatively easily available and inexpensive insulator, and as described above, the discharge electrode 41 is melted and the glass tubes 42 and 42 are easily connected to each other. Is excellent.
  • the discharge electrode 41 when the glass tube 42 is heated and melted after the discharge electrode 41 is inserted, the discharge electrode 41 also thermally expands. Therefore, it is desirable that the thermal expansion coefficients of the glass tube 42 and the discharge electrode 41 are approximate.
  • the discharge electrode 41 was constituted by a tungsten wire, because of its thermal expansion force 10- 6 / K tungsten, the glass tube 42 is the use of borosilicate glass thermal expansion coefficient is 3.8 X 10- kappa Good.
  • the discharge electrode 41 when the glass tube 42 inserted through the discharge electrode 41 is heated to 950 ° C. to 1000 ° C., the discharge electrode 41 can be sealed and the glass tubes 42 and 42 can be connected to each other by melting.
  • both discharge electrodes 41 and 41 are electrically cut off by the glass tube 42 enclosing each discharge electrode 41, and silent discharge is generated between the surfaces of the opposing glass tube 42. Then, ozone is generated from the supplied raw material gas (oxygen or air containing oxygen).
  • the high frequency noise is radiated from the connection line 5 when the high frequency current resulting from the silent discharge attempts to return to the secondary side 222 of the booster circuit 22 in the drive circuit 2 through the connection line 5.
  • the inductance 43 connected in series to the ozone generator 4 consumes a high-frequency current that tends to flow from the discharge electrode 41 to the connection line 5, thereby reducing the flow of the high-frequency current to the connection line 5. The high frequency noise radiated by the high frequency current flowing through 5 is reduced.
  • the drive circuit (control circuit and booster circuit), connection line, and ozone generator are equivalent to the above block diagram (see Fig. 1).
  • the measurement circuit was assembled and the received intensity of high frequency noise radiated from the measurement circuit was measured.
  • the ozone generator used was configured as shown in the above example (Fig. 2), the glass tube was 40 mm long, 1.0 mm diameter borosilicate glass, and the discharge electrode was 0.5 mm diameter tungsten wire. .
  • the ozone generator of the above specifications uses the ambient air as the raw material gas and is a booster circuit of the drive circuit. When AC high voltage of 30kHz, 5.6kV ⁇ 5.8kV is applied, 10mg / l! Generates ⁇ 12mg / h ozone.
  • the measurement circuit is configured such that the ozone generator is not surrounded by a metal cover, and the primary side and the secondary side of the drive circuit and the booster circuit are not grounded.
  • the length of the connecting line is 180mm.
  • the measuring device used a 150 mm diameter loop antenna installed at a distance of ozone generating strength of 40 mm as a probe, and displayed the high frequency noise received by the probe on the spectrum analyzer screen.
  • the high frequency noise was measured by reading the display value at a specific frequency from the waveform displayed on the spectrum analyzer screen as the received intensity including the high frequency noise.
  • Example 1 has no inductance (that is, as usual), Example 1 has 1000 H (lmH) inductance (one coil element with 1000 ⁇ 1000 lead wire), and Example 2 has 2000 mH (2 mH) ) Inductance (two 1000 ⁇ lead coil elements).
  • the coil elements with lead wires which are separate from the ozone generator, are connected in series by clips, etc. for the convenience of changing the inductance capacity.
  • Each spectrum analyzer screen has a frequency of 0Hz to 2GHz on the horizontal axis.
  • the vertical axis is -100 dB to OdB in signal strength.
  • the lower band is the reception intensity of the ambient noise displayed in real time
  • the upper line is the reception intensity of the high-frequency noise.
  • Measure 3 Short circuit on primary side and secondary side of booster circuit It is.
  • the metal cover in Measure 1 is a SUS cover formed in the same way as an actual product. Since the raw material gas flows into the ozone generator and the generated ozone is discharged together with the remaining air, it has an opening that communicates with the outside and has almost no electromagnetic shielding effect.
  • the short circuit on the primary side and secondary side of the booster circuit in Measure 3 is also grounded on the secondary side via the primary side that is grounded together with the grounded drive circuit.
  • Example 1 was measured again.
  • Example 3 in which Measure 1 was applied to Example 1 Example 4 in which Measure 2 was added to Example 3 and Example 3 in which Measure 3 was added to Example 4
  • Example 5 was measured respectively.
  • the above Comparative Example 1 was measured again as a reference for comparison, and the Comparative Example 1 was compared with Countermeasure 1.
  • Example 2 Comparative Example 3 in which Countermeasure 2 was added to Comparative Example 2 and Comparative Example 4 in which Countermeasure 3 was added to Comparative Example 3 were also measured.
  • Example 3 The measurement results of Examples 3 to 5 are shown in Table 2, and the measurement results of Comparative Examples 1 to 4 are shown in Table 3, respectively.
  • Tables 2 and 3 “frequency (MHz)” and “noise (dB)” are the same as in Table 1 above.
  • Example 1 and Examples 3 to 5 are compared and contrasted, measures are taken in addition to inductance. Even if measures 1 to 3 are applied, the high frequency noise reduction effect does not appear to have been improved.
  • Comparative Example 1 and Comparative Examples 2 to 4 are compared and contrasted, it is confirmed that Measure 1 to Measure 3 certainly have an effect of reducing high-frequency noise.
  • Example 3 and Comparative Example 2 where Countermeasure 1 was applied
  • Example 4 and Comparative Example 3 where Countermeasure 1 and Countermeasure 2 were applied
  • Example 5 and Comparative Example 4 where Countermeasures 1 to 3 were applied, respectively.
  • the effect of reducing high-frequency noise is clearly improved by adding inductance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The amount of ozone generated is not reduced while reducing the radiation of high-frequency noise from connection lines by preventing a high-frequency current generated in discharge electrodes from flowing into the connection lines and while reducing the effect of an applied voltage by preventing the high-frequency current from flowing into the connection lines. In an ozone generating device (4) for applying a high voltage from a drive circuit to discharge electrodes (41) to generate ozone by the silent discharge of the discharge electrodes (41), inductances (43) are provided to connection terminals (44) of the discharge electrodes (41) to obtain the ozone generating device (4) in which the connection lines extending from the drive circuit are connected to the discharge electrodes (41) through the inductances (43).

Description

明 細 書  Specification
オゾン生成体  Ozone generator
技術分野  Technical field
[0001] 本発明は、無声放電により発生する高周波ノイズ (数 100MHz〜数 GHz)を低減する オゾン生成体に関する。  The present invention relates to an ozone generator that reduces high-frequency noise (several hundred MHz to several GHz) generated by silent discharge.
背景技術  Background art
[0002] オゾン生成体は、放電電極に交流の高電圧を印加して無声放電を生起し、前記無 声放電により原料気体 (酸素又は酸素を含む空気)を電離させてオゾンを生成する。 ここで、前記無声放電は、電極めて短時間(2nSec以下)に生成及び消滅を繰り返す 多数の微小パルス放電である。そして、前記微小パルス放電が高周波電流を作り出 し、オゾン生成体に高電圧を印加する接続線をアンテナとして、高周波ノイズ (数 100 MHz〜数 GHz)を放射させる。この高周波ノイズは、携帯電話や無線 LANの使用周 波数帯であることから、例えば携帯電話の通話品質を低下させていた。そこで、ォゾ ン生成体の使用に際しては、高周波ノイズ対策が必要になる。 An ozone generator generates silent discharge by applying an alternating high voltage to a discharge electrode, and ionizes a raw material gas (oxygen or air containing oxygen) by the silent discharge to generate ozone. Here, the silent discharge is a large number of minute pulse discharges that repeatedly generate and disappear in a short time (2n Sec or less). The minute pulse discharge generates a high-frequency current, and radiates high-frequency noise (several hundred MHz to several GHz) using a connection line for applying a high voltage to the ozone generator as an antenna. This high-frequency noise is in the frequency band used for mobile phones and wireless LANs, for example, reducing the quality of mobile phone calls. Therefore, when using ozone generators, measures against high frequency noise are required.
[0003] 最も簡易な高周波ノイズ対策は、オゾン生成体を電磁シールドで囲ってしまう方法 である。例えば、工業用の大型オゾン発生装置は、金属管路を通じて原料気体をォ ゾン生成体まで供給し、生成されたオゾンを別途金属管路を通じて放出する構成で ある。このため、オゾン生成体を配した区画のみを電磁シールドで囲ってしまうことも 容易であり、電磁シールを追加することによる製造コストの上昇も問題にならない。し かし、民生用の小型オゾン発生装置は、小型化及び低廉ィ匕を目指しているので、周 辺環境の空気を原料気体として直接オゾン生成体に接触させ、オゾンを生成する構 成が通例である。これから、オゾン生成体を電磁シールドで囲むことは望ましくなぐ また電磁シールドを追加することによる製造コストの増加は無視できな 、ため、現実 的でない。  [0003] The simplest countermeasure against high frequency noise is a method in which an ozone generator is surrounded by an electromagnetic shield. For example, a large industrial ozone generator has a configuration in which a raw material gas is supplied to an ozone generator through a metal pipe and the generated ozone is separately released through the metal pipe. For this reason, it is easy to enclose only the compartment where the ozone generator is placed with an electromagnetic shield, and the increase in manufacturing cost due to the addition of the electromagnetic seal is not a problem. However, since small-sized ozone generators for consumer use are aimed at miniaturization and low cost, it is usual to have a configuration in which ambient air is directly brought into contact with an ozone generator as raw material gas to generate ozone. It is. From this, it is not desirable to surround the ozone generator with an electromagnetic shield, and the increase in manufacturing cost due to the addition of the electromagnetic shield cannot be ignored, so it is not practical.
[0004] 次に容易な高周波ノイズ対策として、高周波ノイズを放射しにくい同軸ケーブル又 はツイストペアケーブルを接続線として使用することが考えられる。しかし、一端が接 地されな ヽ接続線は、たとえ同軸ケーブル又はツイストペアケーブルであっても高周 波ノイズの放射を低減しずらい。また、接続線から高周波ノイズが放射することを低減 できた場合、高周波電流が駆動回路に還流することになり、駆動回路側から高周波 ノイズが放射される虞がある。更に、高電圧である印加電圧が経時的に同軸ケープ ルの被覆を劣化させて 、き、絶縁破壊による電流のリークが生ずる危険性がある。 [0004] Next, as an easy countermeasure against high-frequency noise, it is conceivable to use a coaxial cable or a twisted pair cable that hardly emits high-frequency noise as a connection line. However, one end of the connection line is not grounded, even if it is a coaxial cable or twisted pair cable. Difficult to reduce wave noise radiation. In addition, when it is possible to reduce the emission of high-frequency noise from the connection line, the high-frequency current flows back to the drive circuit, and there is a possibility that high-frequency noise is emitted from the drive circuit side. Furthermore, there is a risk that the applied voltage, which is a high voltage, deteriorates the coating of the coaxial cable over time, causing current leakage due to dielectric breakdown.
[0005] ここで、高周波ノイズの放射を妨げるノイズフィルタを接続線に装着することも考えら れる力 通常のノイズフィルタは低電圧の信号電圧に混入する高周波ノイズに有効で あっても、放電電極に高電圧を印加するオゾン生成体の接続線から放射される高周 波ノイズの放射を十分に低減できない。そこで、特許文献 1は、放電電極を誘電体基 板上に形成し、前記放電電極に対する誘電電電極を設けることにより、この放電電極 及び誘電電電極の関係からコンデンサを構成すると共に、前記放電電極に対して直 列に抵抗を接続し、印加電圧の高周波電流を前記抵抗により消費することで、無声 放電による高周波ノイズの発生を低減する技術を提案して!/、る。放電電極及び誘電 電電極が構成するコンデンサは数 pFと小さぐ印加電圧の高周波電流に対するイン ピーダンスは抵抗と比較して相対的に小さくなるため、前記高周波電流が抵抗で消 費されるとしている。  [0005] Here, it is conceivable that a noise filter that prevents radiation of high-frequency noise is attached to the connection line. Even though a normal noise filter is effective for high-frequency noise mixed in a low-voltage signal voltage, the discharge electrode The emission of high-frequency noise radiated from the connecting line of the ozone generator that applies high voltage to cannot be reduced sufficiently. Therefore, Patent Document 1 forms a capacitor from the relationship between the discharge electrode and the dielectric electrode by forming a discharge electrode on a dielectric substrate and providing the dielectric electrode with respect to the discharge electrode. We propose a technology that reduces the occurrence of high-frequency noise due to silent discharge by connecting a resistor in series and consuming the high-frequency current of the applied voltage through the resistor. The capacitor composed of the discharge electrode and the dielectric electrode has an impedance for a high-frequency current of a small applied voltage of several pF, which is relatively small compared to the resistance, so that the high-frequency current is consumed by the resistor.
[0006] 特許文献 1 :特許第 3339590号公報([請求項 1]、 [0010]、 [0019])  [0006] Patent Document 1: Japanese Patent No. 3339590 ([Claim 1], [0010], [0019])
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 確かに、特許文献 1の構成によれば、印加電圧に対してコンデンサよりも抵抗のィ ンピーダンスが相対的に大きくなることから、前記高周波電流を抵抗により消費し、高 周波ノイズの発生を低減できると考えられる。しかし、抵抗は高周波電流だけではな ぐ無声放電を発生させる高電圧全体にインピーダンスとして働くことから、印加する 高電圧そのものを消費してしまう虞が否めない。すなわち、放電電極に印加する高電 圧における無声放電の発生に寄与する量を減らし、オゾン生成の効率を低下させる 結果、オゾン生成量を低下させる問題がある。  [0007] Certainly, according to the configuration of Patent Document 1, since the impedance of the resistor is relatively larger than the capacitor with respect to the applied voltage, the high-frequency current is consumed by the resistor, and high-frequency noise is generated. Can be reduced. However, since the resistor acts as an impedance for the entire high voltage that generates silent discharge as well as the high-frequency current alone, there is a risk that the applied high voltage itself will be consumed. That is, there is a problem in that the amount of ozone generation is reduced as a result of reducing the amount of contribution to generation of silent discharge at a high voltage applied to the discharge electrode and reducing the efficiency of ozone generation.
[0008] このほか、通常数 kVに及ぶ印加電圧に耐えうる抵抗は特殊であり、上述したように 、小型化及び低廉化を目指すオゾン発生装置に用いることは現実的でな 、問題もあ る。そこで、放電電極で発生した高周波電流が接続線に流れ込むことを防止すること により、接続線から高周波ノイズが放射されることを低減しつつ、前記高周波電流の 接続線への流れ込みを防止することによる印加電圧の影響を低減して、オゾン生成 量を低下させないオゾン生成体を開発するため、検討した。 [0008] In addition, the resistance that can withstand an applied voltage that normally reaches several kV is special, and as described above, it is not practical to use in an ozone generator aiming at miniaturization and cost reduction. . Therefore, prevent high-frequency current generated at the discharge electrode from flowing into the connection line. Thus, an ozone generator that does not decrease the ozone generation amount by reducing the influence of the applied voltage by preventing the high-frequency current from flowing into the connection line while reducing the emission of high-frequency noise from the connection line. Considered to develop.
課題を解決するための手段  Means for solving the problem
[0009] 検討の結果開発したものが、駆動回路から放電電極に高電圧を印加し、前記放電 電極の無声放電によりオゾンを生成するオゾン生成体にぉ 、て、放電電極の接続端 子にインダクタンスを設け、駆動回路カゝら延びる接続線を、前記インダクタンスを介し て放電電極に接続したオゾン生成体である。インダクタンスとなる具体的な素子として は、コイルを挙げることができる。ここで、本願発明の「駆動回路」は、オゾン生成体に 対して高電圧を供給する電機回路であり、例えば商用交流電圧の周波数を切り換え る制御回路と前記商用交流電圧を昇圧する昇圧回路(トランス)とから構成される。ォ ゾン生成体は、前記昇圧回路の 2次側から交流高電圧が印加される。  [0009] A device developed as a result of the study was developed by applying a high voltage from the drive circuit to the discharge electrode and generating ozone by silent discharge of the discharge electrode, and then inducting an inductance at the connection terminal of the discharge electrode. And an ozone generator in which a connection line extending from the drive circuit cable is connected to the discharge electrode via the inductance. As a specific element that becomes an inductance, a coil can be cited. Here, the “drive circuit” of the present invention is an electric circuit that supplies a high voltage to the ozone generator. For example, a control circuit that switches the frequency of the commercial AC voltage and a booster circuit that boosts the commercial AC voltage ( Transformer). The ozone generator is applied with an alternating high voltage from the secondary side of the booster circuit.
[0010] 本発明は、放電電極で発生する高周波電流に対して高いインピーダンスとなりなが ら、相対的に低周波である印加電圧にはほとんど影響を与えないインダクタンスによ り、高周波電流のみを消費して、接続線から高周波ノイズが放射されることを低減す る。放電電極で発生する高周波電流は、インダクタンスカも駆動回路 (上述の例示構 成では昇圧回路の 2次側)に向けて流れ出ないことになるため、インダクタンスはでき るだけ放電電極に近い位置に設けることが望ましい。すなわち、インダクタンスは、放 電電極の接続端子と直列に接続させる又は放電電極の接続端子として構成するとよ い。  [0010] The present invention consumes only a high-frequency current due to an inductance that hardly affects an applied voltage having a relatively low frequency while having a high impedance to the high-frequency current generated at the discharge electrode. As a result, the emission of high-frequency noise from the connection line is reduced. Since the high-frequency current generated at the discharge electrode does not flow toward the drive circuit (secondary side of the booster circuit in the above example configuration), the inductance is provided as close to the discharge electrode as possible. It is desirable. That is, the inductance is preferably connected in series with the connection terminal of the discharge electrode or configured as the connection terminal of the discharge electrode.
[0011] オゾン生成体は、放電電極又は放電電極の接続端子や接続線と、インダクタンスと を接続する構成になるため、前記各部とインダクタンスとの接続部分から高周波電流 力 sリークする虡を否定しきれない。そこで、インダクタンスは、放電電極又は放電電極 の接続端子や接続線との接続部分が絶縁体で被覆される構成、好ましくは前記接続 部分及びインダクタンスを一体に絶縁体で被覆される構成にするとよい。ここで、イン ダクタンスをコイルから構成した場合、放電電極又は放電電極の接続端子や接続線 との接続部分を含めたコイル全体を絶縁体で被覆する。  [0011] Since the ozone generator has a configuration in which the discharge electrode or the connection terminal or connection line of the discharge electrode is connected to the inductance, the ozone generator rejects the high-frequency current force s leaking from the connection portion between the above-mentioned portions and the inductance. I can't. Therefore, the inductance is configured such that the discharge electrode or the connection portion of the discharge electrode with the connection terminal or the connection line is covered with an insulator, and preferably the connection portion and the inductance are integrally covered with the insulator. Here, when the inductance is composed of a coil, the entire coil including the discharge electrode or the connection terminal of the discharge electrode and the connection line is covered with an insulator.
発明の効果 [0012] 本発明により、あくまで高周波電流のみを消費して、主に接続線から高周波ノイズ が放射されることを低減しながら、前記高周波ノイズの低減によるオゾン生成量への 影響をできるだけ小さくしたオゾン生成体が提供できるようになる。また、特許文献 1 の抵抗と異なり、インダクタンスを構成するコイルは高電圧に対する耐圧を考えなくて もよいから、容易に入手可能な表面実装用の小型なコイルでも利用可能で、オゾン 生成体の小型化及び低廉化、ひ 、てはオゾン発生装置の小型化及び低廉ィ匕を実現 する。 The invention's effect [0012] According to the present invention, an ozone which consumes only a high-frequency current and reduces the influence of the high-frequency noise on the ozone generation amount as much as possible while reducing the emission of high-frequency noise mainly from the connection line. The generator can be provided. In addition, unlike the resistor of Patent Document 1, the coil that forms the inductance does not have to consider the withstand voltage against high voltage, so it can be used with a small coil for surface mounting that is easily available. Realization of cost reduction and cost reduction, as well as downsizing and low cost of the ozone generator.
[0013] 例えばインダクタンスとして 100 H〜数 mHのコイルを用いた場合、最も低減される 高周波ノイズの周波数が異なるものの、数 100MHz〜数 GHzにわたつて数 dB〜10数 dBの低減効果が確認されており、利用の容易さや低廉な製造コストを鑑みた場合、 費用対効果は大きい。このように、本発明は高電圧を放電電極に印加するオゾン生 成体における容易かつ低廉な高周波ノイズ対策をもたらす効果を有する。  [0013] For example, when a coil of 100 H to several mH is used as the inductance, although the frequency of the most reduced high frequency noise is different, a reduction effect of several dB to several tens dB over several hundred MHz to several GHz is confirmed. In view of ease of use and low manufacturing costs, cost effectiveness is great. Thus, the present invention has the effect of providing an easy and inexpensive high-frequency noise countermeasure in an ozone generator that applies a high voltage to the discharge electrode.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明を適用したオゾン生成体を用いたオゾン発生装置の構成を簡易に表す ブロック図である。  FIG. 1 is a block diagram simply showing the configuration of an ozone generator using an ozone generator to which the present invention is applied.
[図 2]本発明を適用したオゾン生成体の一例を表わした斜視図である。  FIG. 2 is a perspective view showing an example of an ozone generator to which the present invention is applied.
[図 3]インダクタンスをオゾン生成体に直列接続しない比較例 1の高周波ノイズを測定 したスペクトラムアナライザの画面である。  [Fig. 3] This is a spectrum analyzer screen that measured the high-frequency noise of Comparative Example 1 in which the inductance was not connected in series with the ozone generator.
[図 4]1000 μ H (lmH)のインダクタンスをオゾン生成体に直列接続した実施例 1の高 周波ノイズを測定したスペクトラムアナライザの画面である。  [Fig. 4] This is a screen of a spectrum analyzer that measured the high-frequency noise of Example 1 in which an inductance of 1000 μH (lmH) was connected in series with an ozone generator.
[図 5]2000mH (2mH)のインダクタンスをオゾン生成体に直列接続した実施例 2の高 周波ノイズを測定したスペクトラムアナライザの画面である。  FIG. 5 is a spectrum analyzer screen for measuring high-frequency noise in Example 2 in which an inductance of 2000 mH (2 mH) is connected in series to an ozone generator.
符号の説明  Explanation of symbols
[0015] 1 オゾン発生装置 [0015] 1 Ozone generator
2 駆動回路  2 Drive circuit
21 制御回路  21 Control circuit
22 昇圧回路  22 Booster circuit
221 1次側 222 2次側 221 Primary side 222 Secondary side
23 金属製カバー  23 Metal cover
3 商用電源  3 Commercial power
4 オゾン生成体  4 Ozone generator
41 放電電極  41 Discharge electrode
42 ガラス管  42 glass tubes
43 インダクタンス(リード線付きコイル素子)  43 Inductance (Coil element with lead wire)
44 接続端子  44 Connection terminal
5 接続線  5 Connection line
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施形態について図を参照しながら説明する。図 1は本発明を適 用したオゾン生成体 4を用いたオゾン発生装置 1の構成を簡易に表すブロック図であ り、図 2は本発明を適用したオゾン生成体 4の一例を表わした斜視図である。本例が 示すオゾン発生装置 1は、従来カゝら見られる標準的な構成である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram simply showing the configuration of an ozone generator 1 using an ozone generator 4 to which the present invention is applied, and FIG. 2 is a perspective view showing an example of the ozone generator 4 to which the present invention is applied. FIG. The ozone generator 1 shown in this example is a standard configuration that is commonly found in the past.
[0017] 本例のオゾン発生装置 1は、図 1に見られるように、制御回路 21及び昇圧回路 22か ら駆動回路 2を構成し、前記制御回路 21を商用電源 3に接続し、前記昇圧回路 22の 2次側 222をオゾン生成体 4に接続線 5で接続している。製品は、高周波ノイズ対策と して、オゾン生成体 4を金属製カバー 23に囲み、制御回路 21を接地させ、昇圧回路 2 2の 1次側 221及び 2次側 222を短絡させる(図 1中破線参照)。本例のオゾン生成体 4 は、板状の放電電極の縁部で無声放電させる沿面放電方式ではない。しかし、本発 明は、具体的な放電方式の違いにより高周波ノイズの低減効果に差異はなぐおよ そ無声放電方式のオゾン生成体に対して適用できる。これから、沿面放電方式のォ ゾン生成体でも、図 1に見られる構成により、高周波ノイズを低減できる。  As shown in FIG. 1, the ozone generator 1 of the present example comprises a drive circuit 2 from a control circuit 21 and a booster circuit 22, and the control circuit 21 is connected to a commercial power source 3 so that the booster The secondary side 222 of the circuit 22 is connected to the ozone generator 4 by a connection line 5. As a countermeasure against high-frequency noise, the product surrounds the ozone generator 4 with a metal cover 23, grounds the control circuit 21, and shorts the primary side 221 and the secondary side 222 of the booster circuit 2 2 (in Fig. 1). (See dashed line). The ozone generator 4 of this example is not a creeping discharge method in which silent discharge is performed at the edge of the plate-like discharge electrode. However, the present invention can be applied to a silent discharge type ozone generator in which there is no difference in the effect of reducing high frequency noise due to the difference in specific discharge method. From this, even the creeping discharge type ozone generator can reduce high-frequency noise by the configuration shown in FIG.
[0018] 本例のオゾン生成体 4は、図 2に見られるように、それぞれに棒状の放電電極 41, 41 を挿通した一対のガラス管 42,42を平行に並ばせた状態で溶融し、前記放電電極 41 を各ガラス管 42に密封かつガラス管 42,42相互を密着状態で一体化して、各ガラス管 42から突出する放電電極 41にインダクタンス(リード線付きコイル素子) 43を導電性ボ ンドにより接続した構成で、インダクタンス 43のリード線を接続端子 44としている。イン ダクタンス 43は、表面実装用コイル素子を用いてもよい。また、放電電極 41及び接続 線 5とインダクタンス 43との接続部位力ゝらの漏れ電流を防止するため、絶縁性榭脂等 で前記接続部位及びインダクタンス 43を一体に被覆することが望ましい。 [0018] As shown in FIG. 2, the ozone generator 4 of this example is melted in a state where a pair of glass tubes 42, 42, through which rod-shaped discharge electrodes 41, 41 are inserted, are arranged in parallel. The discharge electrode 41 is hermetically sealed to each glass tube 42 and the glass tubes 42 and 42 are integrated in close contact with each other, and an inductance (coil element with a lead wire) 43 is connected to the discharge electrode 41 protruding from each glass tube 42. In this configuration, the lead wire of the inductance 43 is used as the connection terminal 44. Inn The ductance 43 may be a surface mount coil element. In addition, in order to prevent leakage current due to the force of the connection portion between the discharge electrode 41 and the connection wire 5 and the inductance 43, it is desirable to cover the connection portion and the inductance 43 integrally with insulating grease or the like.
[0019] ガラス管 42は、比較的入手容易で安価な絶縁物であり、前述したように、溶融によ る放電電極 41の封止やガラス管 42,42相互の接続が容易など、加工性に優れている 。ここで、放電電極 41を挿通した後にガラス管 42を加熱、溶融すると前記放電電極 41 も熱膨張することから、ガラス管 42と放電電極 41との熱膨張率が近似していることが 望ましい。例えば、放電電極 41をタングステン線材で構成した場合、タングステンの 熱膨張率力 10— 6/Kであることから、ガラス管 42は熱膨張率が 3.8 X 10— Κである 硼珪酸ガラスを用いるとよい。この場合、放電電極 41を挿通したガラス管 42を 950°C 〜 1000°Cに加熱すると、溶融により放電電極 41の封止やガラス管 42,42相互の接続 ができる。 [0019] The glass tube 42 is a relatively easily available and inexpensive insulator, and as described above, the discharge electrode 41 is melted and the glass tubes 42 and 42 are easily connected to each other. Is excellent. Here, when the glass tube 42 is heated and melted after the discharge electrode 41 is inserted, the discharge electrode 41 also thermally expands. Therefore, it is desirable that the thermal expansion coefficients of the glass tube 42 and the discharge electrode 41 are approximate. For example, if the discharge electrode 41 was constituted by a tungsten wire, because of its thermal expansion force 10- 6 / K tungsten, the glass tube 42 is the use of borosilicate glass thermal expansion coefficient is 3.8 X 10- kappa Good. In this case, when the glass tube 42 inserted through the discharge electrode 41 is heated to 950 ° C. to 1000 ° C., the discharge electrode 41 can be sealed and the glass tubes 42 and 42 can be connected to each other by melting.
[0020] 本例のオゾン生成体 4は、各放電電極 41を包み込むガラス管 42により両放電電極 4 1,41が電気的に遮断されており、対向するガラス管 42表面間で無声放電を発生させ 、供給される原料気体 (酸素又は酸素を含む空気)からオゾンを生成する。高周波ノ ィズは、前記無声放電に起因する高周波電流が接続線 5を通じて駆動回路 2におけ る昇圧回路 22の 2次側 222に還流しょうとする際、前記接続線 5から放射される。ォゾ ン生成体 4に直列接続したインダクタンス 43は、放電電極 41から接続線 5に流れ込も うとする高周波電流を消費することで、接続線 5への高周波電流の流れ込みを低減し 、接続線 5に高周波電流が流れることにより放射される高周波ノイズを低減する。 実施例  [0020] In the ozone generator 4 of this example, both discharge electrodes 41 and 41 are electrically cut off by the glass tube 42 enclosing each discharge electrode 41, and silent discharge is generated between the surfaces of the opposing glass tube 42. Then, ozone is generated from the supplied raw material gas (oxygen or air containing oxygen). The high frequency noise is radiated from the connection line 5 when the high frequency current resulting from the silent discharge attempts to return to the secondary side 222 of the booster circuit 22 in the drive circuit 2 through the connection line 5. The inductance 43 connected in series to the ozone generator 4 consumes a high-frequency current that tends to flow from the discharge electrode 41 to the connection line 5, thereby reducing the flow of the high-frequency current to the connection line 5. The high frequency noise radiated by the high frequency current flowing through 5 is reduced. Example
[0021] オゾン生成体に直列接続したインダクタンスによる高周波ノイズの低減効果を確認 するため、上記ブロック図(図 1参照)相当に駆動回路 (制御回路及び昇圧回路)、接 続線及びオゾン生成体を組み付けて測定回路とし、前記測定回路から放射される高 周波ノイズの受信強度を測定した。  [0021] In order to confirm the effect of reducing high-frequency noise due to the inductance connected in series with the ozone generator, the drive circuit (control circuit and booster circuit), connection line, and ozone generator are equivalent to the above block diagram (see Fig. 1). The measurement circuit was assembled and the received intensity of high frequency noise radiated from the measurement circuit was measured.
[0022] 使用したオゾン生成体は、上記例示(図 2)に示す構成で、ガラス管は 40mm長、 1.0 mm径の硼珪酸ガラス、放電電極として 0.5mm径のタングステン線材を用いて構成し た。前記仕様のオゾン生成体は、周辺空気を原料気体とし、駆動回路の昇圧回路よ り 30kHz、 5.6kV〜5.8kVの交流高電圧を印加すると、 10mg/l!〜 12mg/hのオゾンを生 成する。 [0022] The ozone generator used was configured as shown in the above example (Fig. 2), the glass tube was 40 mm long, 1.0 mm diameter borosilicate glass, and the discharge electrode was 0.5 mm diameter tungsten wire. . The ozone generator of the above specifications uses the ambient air as the raw material gas and is a booster circuit of the drive circuit. When AC high voltage of 30kHz, 5.6kV ~ 5.8kV is applied, 10mg / l! Generates ~ 12mg / h ozone.
[0023] 測定回路は、オゾン生成体を金属製カバーで囲むことなぐまた駆動回路や昇圧 回路の 1次側及び 2次側を接地させない構成とした。接続線の長さは、 180mmである 。測定装置は、オゾン生成体力 40mmの距離に設置した 150mm径のループアンテ ナをプローブとし、前記プローブが受信した高周波ノイズをスペクトラムアナライザの 画面に表示させた。高周波ノイズは、前記スペクトラムアナライザの画面に表示され た波形から、特定周波数における表示値を、高周波ノイズを含む受信強度として読 み取って測定した。  [0023] The measurement circuit is configured such that the ozone generator is not surrounded by a metal cover, and the primary side and the secondary side of the drive circuit and the booster circuit are not grounded. The length of the connecting line is 180mm. The measuring device used a 150 mm diameter loop antenna installed at a distance of ozone generating strength of 40 mm as a probe, and displayed the high frequency noise received by the probe on the spectrum analyzer screen. The high frequency noise was measured by reading the display value at a specific frequency from the waveform displayed on the spectrum analyzer screen as the received intensity including the high frequency noise.
[0024] まず、インダクタンスの容量の違いに基づく高周波ノイズの低減効果を測定した。基 準となる比較例 1はインダクタンスなし (つまり従来通り)、実施例 1は 1000 H (lmH) のインダクタンス(1000 μ Ηのリード線付きコイル素子を 1つ)、実施例 2は 2000mH (2 mH)のインダクタンス(1000 μ Ηのリード線付きコイル素子を 2つ)である。この度の測 定では、インダクタンスの容量を変化させる都合から、オゾン生成体と別体の各リード 線付きコイル素子をクリップ等により直列接続している。  [0024] First, the effect of reducing high-frequency noise based on the difference in inductance capacity was measured. Reference Comparative Example 1 has no inductance (that is, as usual), Example 1 has 1000 H (lmH) inductance (one coil element with 1000 μ1000 lead wire), and Example 2 has 2000 mH (2 mH) ) Inductance (two 1000 μΗ lead coil elements). In this measurement, the coil elements with lead wires, which are separate from the ozone generator, are connected in series by clips, etc. for the convenience of changing the inductance capacity.
[0025] [表 1]  [0025] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
測定結果を表 1、比較例 1のスペクトラムアナライザの画面を図 3、実施例 1のスぺク トラムアナライザの画面を図 4,そして実施例 2のスペクトラムアナライザの画面を図 5 にそれぞれ示す。各スペクトラムアナライザの画面は、横軸が周波数で 0Hz〜2GHz 、縦軸が信号強度で- 100dB〜OdBである。各画面中、下段の帯がリアルタイムで表 示された周辺ノイズの受信強度、上段のラインが前記高周波ノイズの受信強度である 。表 1中、「周波数 (MHz)」は高周波ノイズとして測定した受信強度の周波数、「ノイズ (dB)」は高周波ノイズとして測定された受信強度の最大値、そして「低減量 (dB)」は 比較例 1の平均値又は最大値から低減された受信強度の絶対値を表している。 The measurement results are shown in Table 1, the spectrum analyzer screen of Comparative Example 1 is shown in Fig. 3, the spectrum analyzer screen of Example 1 is shown in Fig. 4, and the spectrum analyzer screen of Example 2 is shown in Fig. 5. Each spectrum analyzer screen has a frequency of 0Hz to 2GHz on the horizontal axis. The vertical axis is -100 dB to OdB in signal strength. In each screen, the lower band is the reception intensity of the ambient noise displayed in real time, and the upper line is the reception intensity of the high-frequency noise. In Table 1, “Frequency (MHz)” is the frequency of the received intensity measured as high-frequency noise, “Noise (dB)” is the maximum value of the received intensity measured as high-frequency noise, and “Reduction (dB)” is a comparison. Represents the absolute value of the received power reduced from the average or maximum value in Example 1.
[0027] 基準となる比較例 1では平均値 =-36.4dB、最大値 =_25.7dBの高周波ノイズが測 定されたが、実施例 1では平均値 =-40.7dB、最大値 =-29.8dBの高周波ノイズが測 定され、比較例 1に対して平均値で 4.3dB、最大値で 4. ldBの低減効果が確認された 。同様に、実施例 2では平均値 =-45.0dB、最大値 =— 33.5dBの高周波ノイズが測 定され、比較例 1に対して平均値で 8.6dB、最大値で 7.8dBの低減効果が確認された 。このほか、同種測定を繰り返した結果、平均値で 10dB以上の低減効果も確認され た。 [0027] In Comparative Example 1 as a reference, high-frequency noise with an average value = -36.4 dB and a maximum value = _25.7 dB was measured, but in Example 1, the average value = -40.7 dB and the maximum value = -29.8 dB. The high frequency noise was measured and a reduction effect of 4.3 dB on average and 4. ldB on the maximum was confirmed for Comparative Example 1. Similarly, in Example 2, high-frequency noise with an average value of −45.0 dB and a maximum value of 33.5 dB was measured, and a reduction effect of 8.6 dB with an average value and 7.8 dB with a maximum value was confirmed compared to Comparative Example 1. Was done. In addition, as a result of repeating the same type of measurement, a reduction effect of 10 dB or more on average was confirmed.
[0028] 上記測定結果より、インダクタンスを追加することで高周波ノイズが低減されることは 明らかである。ここで、図 3〜図 5中、リアルタイムの受信強度の帯において、周波数 8 0編 Hzでピークが見られるが、これは測定場所近傍で使用された携帯電話の送受信 信号である。この携帯電話の送受信信号と比較すれば、オゾン発生装置から放射さ れる高周波ノイズの大きさが把握され、また本発明による高周波ノイズの低減効果の 程度が理解される。また、完全な比例関係ではないが、インダクタンスが大きいほど 高周波ノイズの低減効果は大きくなることも確認された。現実には、インダクタンスを 大きくするとコイル素子も大型化することから、オゾン生成体又はオゾン発生装置に 組み込める範囲で、できる限り大きなインダクタンスを有するコイル素子を用いるとよ い。  [0028] From the above measurement results, it is clear that high-frequency noise is reduced by adding inductance. Here, in FIGS. 3 to 5, a peak is observed at a frequency of 80 Hz in the real-time reception intensity band, which is a transmission / reception signal of a mobile phone used in the vicinity of the measurement location. Compared with the transmission / reception signal of this cellular phone, the magnitude of the high-frequency noise radiated from the ozone generator can be grasped, and the degree of the high-frequency noise reduction effect of the present invention can be understood. It was also confirmed that the effect of reducing high-frequency noise increases with increasing inductance, although it is not completely proportional. In reality, when the inductance is increased, the coil element also becomes larger. Therefore, it is preferable to use a coil element having as large an inductance as possible within a range that can be incorporated into an ozone generator or an ozone generator.
[0029] 次に、本発明と併用できるその他の高周波ノイズ対策を上記測定回路に施し、本発 明とその他の高周波ノイズ対策との相乗効果が認められる力 また認められる場合は どの程度であるかを測定した。この度の測定に用いたその他の高周波ノイズ対策は、 対策 1 オゾン生成体を囲む金属製カバー  [0029] Next, other high-frequency noise countermeasures that can be used in combination with the present invention are applied to the measurement circuit, and the synergistic effect of the present invention and other high-frequency noise countermeasures is recognized. Was measured. Other high-frequency noise countermeasures used for this measurement are: Countermeasure 1 Metal cover surrounding ozone generator
対策 2 駆動回路の接地  Countermeasure 2 Grounding the drive circuit
対策 3 昇圧回路の 1次側及び 2次側の短絡 である。対策 1における金属製カバーは、実際の製品同様に形成された SUS製カバ 一である。原料気体となる空気をオゾン生成体まで流入させ、また生成したオゾンを 残存する空気と共に排出するため、外部に連通する開口を有し、ほとんど電磁遮蔽 の効果を有しない構成である。また、対策 3における昇圧回路の 1次側及び 2次側の 短絡は、接地された駆動回路と共に接地される 1次側を介して、 2次側も接地される。 Measure 3 Short circuit on primary side and secondary side of booster circuit It is. The metal cover in Measure 1 is a SUS cover formed in the same way as an actual product. Since the raw material gas flows into the ozone generator and the generated ozone is discharged together with the remaining air, it has an opening that communicates with the outside and has almost no electromagnetic shielding effect. In addition, the short circuit on the primary side and secondary side of the booster circuit in Measure 3 is also grounded on the secondary side via the primary side that is grounded together with the grounded drive circuit.
[0030] 基準として、上記実施例 1を再度測定した。また、前記実施例 1に対策 1を施した実 施例 3,前記実施例 3に対策 2を追加して施した実施例 4、そして前記実施例 4に対 策 3を追加して施した実施例 5をそれぞれ測定した。このほか、インダクタンスの有無 とその他の高周波ノイズ対策との組み合わせの有効性を判断するため、比較対照す る基準として上記比較例 1を再度測定したほか、前記比較例 1に対策 1を施した比較 例 2,前記比較例 2に対策 2を追加して施した比較例 3、そして前記比較例 3に対策 3 を追加して施した比較例 4もそれぞれ測定した。  [0030] As a reference, Example 1 was measured again. Example 3 in which Measure 1 was applied to Example 1, Example 4 in which Measure 2 was added to Example 3 and Example 3 in which Measure 3 was added to Example 4 Example 5 was measured respectively. In addition, in order to determine the effectiveness of the combination of the presence / absence of inductance and other countermeasures against high-frequency noise, the above Comparative Example 1 was measured again as a reference for comparison, and the Comparative Example 1 was compared with Countermeasure 1. Example 2, Comparative Example 3 in which Countermeasure 2 was added to Comparative Example 2 and Comparative Example 4 in which Countermeasure 3 was added to Comparative Example 3 were also measured.
[0031] [表 2]  [0031] [Table 2]
Figure imgf000011_0001
Figure imgf000011_0001
[0032] [表 3]  [0032] [Table 3]
Figure imgf000011_0002
Figure imgf000011_0002
[0033] 実施例 実施例 3〜実施例 5の測定結果を表 2に、比較例 1〜比較例 4の測定結 果を表 3にそれぞれ示す。表 2及び表 3中、「周波数 (MHz)」及び「ノイズ (dB)」の表 記は上記表 1と同じである。  Example The measurement results of Examples 3 to 5 are shown in Table 2, and the measurement results of Comparative Examples 1 to 4 are shown in Table 3, respectively. In Tables 2 and 3, “frequency (MHz)” and “noise (dB)” are the same as in Table 1 above.
[0034] 実施例 1と実施例 3〜実施例 5とを比較対照する限り、インダクタンスに加えて対策 1〜対策 3を施しても、高周波ノイズの低減効果が改善されたように見えない。ここで 、比較例 1と比較例 2〜比較例 4とを比較対照すれば、対策 1〜対策 3は確かに高周 波ノイズの低減効果を有することが確認される。また、対策 1を施した実施例 3及び比 較例 2,対策 1及び対策 2を施した実施例 4及び比較例 3、そして対策 1〜対策 3を施 した実施例 5及び比較例 4をそれぞれ比較対照すれば分力る通り、明らかにインダク タンスを追加することにより高周波ノイズの低減効果が向上している。これから、従来 公知の対策 1〜対策 3を施せば、確かに高周波ノイズを低減することはできるものの、 本発明のようにインダクタンスを設けることによる低減効果に及ばず、またインダクタン スを設ければ、前記対策 1〜対策 3を施さなくても、高い低減効果のあることが理解さ れる。 [0034] As long as Example 1 and Examples 3 to 5 are compared and contrasted, measures are taken in addition to inductance. Even if measures 1 to 3 are applied, the high frequency noise reduction effect does not appear to have been improved. Here, if Comparative Example 1 and Comparative Examples 2 to 4 are compared and contrasted, it is confirmed that Measure 1 to Measure 3 certainly have an effect of reducing high-frequency noise. In addition, Example 3 and Comparative Example 2 where Countermeasure 1 was applied, Example 4 and Comparative Example 3 where Countermeasure 1 and Countermeasure 2 were applied, and Example 5 and Comparative Example 4 where Countermeasures 1 to 3 were applied, respectively. In comparison, as can be seen, the effect of reducing high-frequency noise is clearly improved by adding inductance. From now on, if the conventionally known measures 1 to 3 are taken, the high frequency noise can be surely reduced, but it does not reach the reduction effect by providing the inductance as in the present invention, and if the inductance is provided. Therefore, it is understood that there is a high reduction effect without taking measures 1 to 3.

Claims

請求の範囲 The scope of the claims
[1] 駆動回路から放電電極に高電圧を印加し、前記放電電極の無声放電によりオゾンを 生成するオゾン生成体において、放電電極の接続端子にインダクタンスを設け、駆 動回路カゝら延びる接続線を、前記インダクタンスを介して放電電極に接続したことを 特徴とするオゾン生成体。  [1] In an ozone generator that applies high voltage from the drive circuit to the discharge electrode and generates ozone by silent discharge of the discharge electrode, an inductance is provided at the connection terminal of the discharge electrode, and the connection line extends from the drive circuit Is connected to the discharge electrode through the inductance.
[2] インダクタンスは、放電電極の接続端子と直列に接続させた請求項 1記載のオゾン生 成体。  [2] The ozone generator according to claim 1, wherein the inductance is connected in series with the connection terminal of the discharge electrode.
[3] インダクタンスは、放電電極の接続端子として構成された請求項 1記載のオゾン生成 体。  [3] The ozone generator according to claim 1, wherein the inductance is configured as a connection terminal of the discharge electrode.
[4] インダクタンスは、少なくとも放電電極又は放電電極の接続端子や接続線との接続 部分が絶縁体で被覆された請求項 1〜3いずれか記載のオゾン生成体。  [4] The ozone generator according to any one of claims 1 to 3, wherein the inductance is at least a discharge electrode or a connection portion of the discharge electrode connected to a connection terminal or a connection line.
PCT/JP2007/062240 2006-07-04 2007-06-18 Ozone generating device WO2008004433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-184490 2006-07-04
JP2006184490A JP2009221023A (en) 2006-07-04 2006-07-04 Ozone generating body

Publications (1)

Publication Number Publication Date
WO2008004433A1 true WO2008004433A1 (en) 2008-01-10

Family

ID=38894404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062240 WO2008004433A1 (en) 2006-07-04 2007-06-18 Ozone generating device

Country Status (2)

Country Link
JP (1) JP2009221023A (en)
WO (1) WO2008004433A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002533A (en) * 2014-06-19 2016-01-12 オーニット株式会社 Production apparatus and method of ozone water using dissolved oxygen contained in raw water as raw material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62841B2 (en) * 1975-03-13 1987-01-09 Grace W R & Co
JP2001213613A (en) * 2000-01-27 2001-08-07 Kobe Steel Ltd Ozone generating apparatus
JP2005001991A (en) * 2004-08-02 2005-01-06 Toshiba It & Control Systems Corp Ozonizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62841B2 (en) * 1975-03-13 1987-01-09 Grace W R & Co
JP2001213613A (en) * 2000-01-27 2001-08-07 Kobe Steel Ltd Ozone generating apparatus
JP2005001991A (en) * 2004-08-02 2005-01-06 Toshiba It & Control Systems Corp Ozonizer

Also Published As

Publication number Publication date
JP2009221023A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US8698413B1 (en) RF induction lamp with reduced electromagnetic interference
US10580619B2 (en) Circuit assembly for providing high-frequency energy, and system for generating an electric discharge
US20140145609A1 (en) Rf induction lamp with reduced electromagnetic interference
US8528531B2 (en) Ignition apparatus of plasma jet ignition plug
JP2010001827A (en) Ignition device for internal combustion engine
US6225876B1 (en) Feed-through EMI filter with a metal flake composite magnetic material
US8063580B2 (en) Circuit arrangement and method of driving a high-pressure gas discharge lamp
EP3933290A1 (en) Electrical device and air conditioner
WO2008004433A1 (en) Ozone generating device
KR20080086709A (en) Burial electromagnetic interference filter
US20220190453A1 (en) Microwave system and method
JP2010246350A (en) Lightning-protection coaxial cable
JP2002022790A (en) Partial discharge detecting device for gas insulating equipment
JPWO2016075956A1 (en) Antenna device
JP4385104B2 (en) Steep wave suppression device
CN220191340U (en) Gallium nitride radio frequency power device
WO1982001101A1 (en) Magnetron
CN210742432U (en) Portable frequency conversion voltage regulation test device
JP4479562B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
CN114830435B (en) High frequency high voltage current conductor apparatus
US7460353B2 (en) High-voltage capacitor, high-voltage capacitor device and magnetron
Zamchii et al. Effect of RF Fields on Electrical Breakdowns Produced by High-Voltage Pulses in Air at Ambient Conditions
JP4730185B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP3339590B2 (en) Ozone generator
JPH09178789A (en) Detector and detecting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP