WO2008004313A1 - Apparatus for heat treatment of powdery/granular substance - Google Patents

Apparatus for heat treatment of powdery/granular substance Download PDF

Info

Publication number
WO2008004313A1
WO2008004313A1 PCT/JP2006/313814 JP2006313814W WO2008004313A1 WO 2008004313 A1 WO2008004313 A1 WO 2008004313A1 JP 2006313814 W JP2006313814 W JP 2006313814W WO 2008004313 A1 WO2008004313 A1 WO 2008004313A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
heat treatment
treatment apparatus
barrel
outlet nozzle
Prior art date
Application number
PCT/JP2006/313814
Other languages
French (fr)
Japanese (ja)
Inventor
Kouji Oogaki
Kazumoto Iinuma
Yutaka Kawachi
Original Assignee
Ricetech Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricetech Corporation filed Critical Ricetech Corporation
Priority to PCT/JP2006/313814 priority Critical patent/WO2008004313A1/en
Publication of WO2008004313A1 publication Critical patent/WO2008004313A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • A23N17/005Apparatus specially adapted for preparing animal feeding-stuffs for shaping by moulding, extrusion, pressing, e.g. pellet-mills
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • B01F27/724Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with a single helix closely surrounded by a casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92561Time, e.g. start, termination, duration or interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92809Particular value claimed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92952Drive section, e.g. gearbox, motor or drive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/9298Start-up, shut-down or parameter setting phase; Emergency shut-down; Material change; Test or laboratory equipment or studies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/268Throttling of the flow, e.g. for cooperating with plasticising elements or for degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/56Screws having grooves or cavities other than the thread or the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • B29C48/686Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having grooves or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • B29C48/693Substantially flat filters mounted at the end of an extruder screw perpendicular to the feed axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • B29C48/694Cylindrical or conical filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible

Definitions

  • TECHNICAL FIELD The present invention relates to a heat treatment apparatus for heating powder or granular grain raw material for a short time.
  • powdery or granular substances such as rice bran and soybeans are heated for a short time, for example, uniformly and accurately for 9 seconds at 1550 degrees Celsius (hereinafter abbreviated as 1550 degrees Celsius).
  • 1550 degrees Celsius 1550 degrees Celsius
  • Patent Document 1 shows an example of heating at 85 degrees Fahrenheit (30 degrees Celsius) for 20 minutes. Electromagnetic and infrared heating methods are suitable for this purpose but have poor energy efficiency and uniformity.
  • the extruder (ex tr ude er) is suitable as a heating device because the raw material itself generates heat due to friction and shear during the raw material extrusion process.
  • FIG. 1 of Patent Document 2 and FIG. 3 of Patent Document 3 show examples.
  • friction and shear were concentrated on the cylinder tube surface of the extruder, resulting in uneven temperature in the raw material, and the intended heat treatment could not be performed uniformly.
  • Patent Literature 1 Japanese Patent Application No. 6-5 1 3 2 0 1 (1 page 4 example 1)
  • Patent Document 2 U.S. Patents U.S.4, 7 4 1, 2 6 4 (Fig. 1)
  • Patent Document 3 Patent Publication No. 2 9 5 6 6 2 2 ( Figure 3 on page 3)
  • Ultra high temperature (UHT) powder sterilizers for this purpose use superheated steam, but not only the equipment and operating costs are high, but also yield loss, Processing costs will be several hundred yen.
  • the raw material cost of rice bran is several to tens of yen per kilogram, so the sterilization cost is about 10 times more than that of the raw material.
  • the present invention is to provide a UHT sterilizer by short-time heating that is realized at a cost equivalent to the raw material cost compared to per kg.
  • the extruder can use the heat generated by the friction and shearing of the raw material itself in the process of extruding the raw material, so that the structure is simple, energy efficient, and suitable as a low-cost heating device. .
  • the product temperature rises due to friction and shear heat at the part in contact with the cylinder surface, but heat is generated at other parts. If the thermal conductivity of the raw material is poor, there will be significant unevenness in the product temperature. For this reason, heat treatment becomes non-uniform and lipase inactivation and sterilization become insufficient.
  • Rice bran has a very poor thermal conductivity, so according to experiments, the product temperature is as high as 50 ° C to 80 ° C.
  • the raw material in the barrel is near the center of the passage and a very narrow passage. By trying to be sheared at a low temperature, it is intended to provide a heat treatment apparatus that eliminates uneven product temperature and is low in cost and energy efficient.
  • a powder or granular raw material extruder is constituted by a barrel that pressurizes and shears a raw material, and an outlet nozzle that controls flow rate and pressure, and a blade is provided on each of the barrel screw outer surface and the cylinder inner surface.
  • the heat treatment apparatus is characterized in that the extruded material is sheared between these blades.
  • the following actions can be obtained.
  • the raw material is rice bran
  • the rice bran to be injected is extruded in the direction of the outlet by the screw blades between the screw and the cylinder. Sheared. If the passage gap is 5 mm and the height of both blades is 2.4 mm respectively, the rice bran will be sheared at the center of the passage instead of the pipe surface. The heat generated here spreads in all directions from the center, so product temperature unevenness is reduced. Furthermore, if the gap between the outlet nozzles is narrowed to 1 mm or less and the rice bran is sheared again, the product temperature will be further reduced.
  • the height of the blade is increased to the full barrel gap near the entrance of the raw material to secure the extrusion force, and it is changed from about 1/2 or 1/3 to about 2/3 toward the exit. If the raw material is configured to be sheared at different positions in the passage, the raw material is agitated during the extrusion process, and the uniformity of the product temperature is further increased.
  • the target heat treatment can be realized at low cost without losing energy efficiency even if the temperature or humidity of the raw material to be injected changes. Can have an effect.
  • FIG. 1 shows the entire mechanism of an extruder as the best mode for carrying out the present invention.
  • the raw material is rice bran
  • the present invention is not limited to this, and the present invention is not limited to rice, wheat, beans, buckwheat, corn, and powders thereof, bran (rice cake), embryos, etc. Applicable. It can also be applied to tea leaves, spices, vegetables, fruits, mushrooms, mushroom culture media, plants, meat, seafood, pet food, and feeds that have been processed into powder or granules other than grains.
  • the purpose of heat treatment of rice bran is to inactivate endogenous lipase and sterilize microorganisms contained in rice bran.
  • FIG. 1 is an overall view of the stabilizer.
  • Rice bran is poured into hopper 3 and through feeder 1 into the extruder barrel.
  • the main part of the extruder consists of a barrel part, an outlet nozzle part and a main motor 1.
  • the barrel part is composed of a cylinder 15 and a squeegee 16 with blades, and the gap between the two becomes the raw material passage 5, and the rice bran is heated by extrusion pressure, friction and shear.
  • the outlet nozzle part is composed of an inner ring 9 and an outer ring 10, and the gap between the two is made narrower than the barrel gap, thereby acting as a valve that regulates the flow rate, and pressure is applied to the raw material passing through the barrel. generate.
  • the screw 16 and the inner ring 9 at the outlet are mechanically coupled, and are driven by the main motor 1 to rotate.
  • the raw rice bran passes through a passage formed by a gap between the cylinder 15 and the screw 16 and is pushed toward the outlet by a screw blade 17.
  • the height of the blade on the inlet side from the screw blade 17 is almost equal to the gap between the passages to ensure a sufficient pushing force.
  • the blade height is lowered, and at the same time, the cylinder blade 18 shown in broken lines is attached to the inner surface of the cylinder.
  • H H 1-2-+ ⁇ 2 + ⁇ .
  • is a clearance for preventing the upper and lower blades from coming into contact with each other, and is usually 0.1 to 0.3 mm.
  • the angle of the cylinder blade and the screw blade intersect each other, and the angle (or pitch) of the cylinder blade is slightly smaller than the angle (or pitch) of the screw blade.
  • the angle of both is the same for simplicity.
  • the amount of heat generated in the barrel at this time is the power of the main motor 1, the structure of the cylinder and screw, shape, material and physical properties of rice bran (Poisson's ratio, specific heat, density, shear coefficient, coefficient of friction with steel, heat (Conductivity, moisture content).
  • heat is generated at the outlet nozzle, and the amount of heat generated varies greatly depending on the structure and shape of the outlet nozzle. Also, since the barrel and outlet nozzle are connected, the internal heat generation varies depending on the combination of these structures and shapes.
  • the shape of the outlet nozzle is a conical shape whose diameter decreases toward the outlet side, that is, a die shape.
  • the feature of this structure is that the exit nozzle gap between the exit nozzle and the inner ring 9 can be easily changed by sliding the exit nozzle outer ring 10.
  • the outlet nozzle outer ring is fixed by screwing into the cylinder inner surface and can be slid by turning the outer ring. If the outer ring is slid in the outlet direction, the exit nozzle gap can be increased as much as possible.
  • the outer ring can be slid while the inner ring is rotating, that is, during operation.
  • the shape of the outlet nozzle can be a conical shape whose diameter increases toward the outlet side, that is, a cone type.
  • the feature of this structure is that the raw material is easy to come out toward the outlet, and the risk of clogging inside the barrel can be reduced.
  • the shape of the outlet nozzle can be cylindrical instead of conical. In this case, the exit nozzle gap is determined at the time of processing, so parts must be replaced to adjust the gap.
  • the physical dimensions of the output nozzle gap are design matters, and the power varies depending on the power of the main motor, the number of revolutions, and the structure and dimensions of the barrel; Can be made.
  • Figure 2 shows the relationship between the barrel and the outlet nozzle.
  • the outlet nozzle is an important part that plays a role in regulating the flow rate and pressure of the raw material.
  • the flow rate and pressure adjustment pass through the nozzle gap.
  • the V-shaped groove 27 shown in Fig. 2 shows an example.
  • the angle and direction of the V-groove is approximately the same spiral as the cylinder blades for the outer ring, and approximately the same spiral as the screw blades for the inner ring.
  • the passing material can be sheared, and the depth of the V groove should be about 1/2 to 1/3 of the nozzle gap.
  • a protrusion may be provided instead of the V-groove.
  • the groove or protrusion added to the outlet nozzle gap in addition to the spiral shape, the groove can be provided in the axial direction and in the circumferential direction. For the rotating inner ring, it is effective to provide a groove in the axial direction in order to suppress the circumferential rotation.
  • the number, depth, height, and spacing of grooves and protrusions are design matters, but the height of the protrusions is 1/2 of the nozzle gap, the number of grooves is 90 degrees, 4 grooves, and circumferential grooves.
  • the guideline is about 5 mm at regular intervals in the axial direction of the outlet slack.
  • the height of the cylinder blade ⁇ 2 is processed so that it becomes ⁇ 2 — ⁇ 1— ”respectively. It is a design matter to determine the size of such a structure. However, for example, it is possible to arrange 2 pitch blades each to make a total pitch of 10. By this method, the position where the raw material is sheared is measured from the inner surface of the cylinder, and 0 in the traveling direction. Since ⁇ / 3, ⁇ / 2, 2 ⁇ / 3, and 2/2 change, the internal heat generation position changes accordingly, and the product temperature becomes more uniform.
  • FIG. 3 is an explanatory view showing the embodiment.
  • the raw material is pushed in the direction of the arrow between the outer ring and the inner ring of the outlet nozzle.
  • a mesh or filter 22 By placing a mesh or filter 22 on the outlet side of the outlet nozzle outer ring, resistance can be given to the flow of the raw material.
  • the resistance of the mesh can be adjusted by combining multiple meshes with different mesh fineness (mesh number).
  • various filters can be used alone or in combination.
  • reference numeral 21 denotes a perforated plate, which is used for the purpose of reinforcing the mechanical strength of the mesh.
  • FIG. 4 is an explanatory view showing another embodiment in which the outlet nozzle is given resistance to the flow of the raw material.
  • Outlet nozzle By arranging the parallel plate panel 23 on the outlet side of the inner ring, resistance can be given to the flow of the raw material. The resistance can be adjusted by combining various thicknesses, materials, and structures of the panel panel.
  • reference numeral 24 denotes a resistance plate, which is used as a lid for the outlet gap. The material is selected in consideration of wear.
  • FIG. 5 is an explanatory view showing another embodiment in which the outlet nozzle is given resistance to the flow of the raw material.
  • the resistance can be adjusted by various combinations of hole size, position, and number.
  • Example 6 Since the extruded discharge is heated and subjected to pressure, it deforms according to the structure and shape of the outlet nozzle.
  • the particle size corresponds to the mesh size
  • in the case of Example 4 it is a thin flake shape
  • these effluents contain water vapor at high temperatures and often require cooling and drying. It is effective to introduce a crushing mechanism as a method of returning the deformed discharge shape to the original granular form and accelerating cooling and drying.
  • FIG. 6 is an explanatory view showing the embodiment.
  • a rotating body arranged substantially in parallel with an appropriate gap is connected to the outside of the porous conical cap of Example 5, and the discharged matter is crushed using the gap and the rotating body.
  • rotation is economically realized because the main motor that drives the screw and the inner ring of the outlet nozzle is used as the power source.
  • the crushing effect can be enhanced by making a plurality of holes in the rotating body or by cutting out a part of it.
  • the discharged product can be passed through a vibrating screen. Vibrating sieves forcibly vibrate the raw material to increase contact with air and break the bond between the raw materials due to collisions between the raw materials and foreign materials. Furthermore, if forced air cooling is performed by blowing air, water vapor is scattered and cooling and drying effects can be enhanced.
  • Fig. 7 shows a control block diagram for automatically controlling the temperature of the discharged material to the target value.
  • the feature of this example is that the temperature sensors indicated by reference numerals 1 2 and 14 in FIGS. 1 and 7 are attached to the extruder, and the sensor information is input to the controller 1 3, and the controller 1 3
  • the target temperature control program is operated, and the processing temperature is controlled to the target value by controlling the extruder through various motors whose outputs are denoted by reference numerals 1, 6, and 10.
  • the inputs of the controller 13 are a temperature sensor 14 near the outlet of the extruder and a temperature sensor 12 at the discharge section.
  • the temperature sensor 14 near the outlet has a steep temperature gradient in this part and is particularly important for control characteristics, so three sensors are mounted side by side in the outlet direction.
  • the output of the controller 13 is controlled by the main motor 1 (Motor A), the number of revolutions of the extruder, the feeder drive motor 6 (Motor B), and the flow rate control motor 8 (Motor C). ) Used to control the amount of processed material discharged.
  • the procedure for realizing the target heat treatment from the mechanism shown in Fig. 1 and the controller shown in Fig. 7 is as follows. First, the condition parameters for heat treatment are determined from preliminary experiments. In other words, the target temperature condition is mainly determined by the main motor speed and the gap between the outlet nozzles.
  • the flow control position is manually changed while rice bran is continuously supplied to the extruder, and the slider position in this case is Measure the values of temperature sensors 1 4 and 1 2 to determine the combination of parameters that achieves a state close to the target.
  • the relationship between these input / output parameters is written to the controller 13 as a target reference value setting program.
  • the difference delta 1 between these input target reference values and the actual sensor value is calculated, and the controller 13 heat processing program is created so that delta 1 becomes zero.
  • the heat treatment program calculates the correction value beta 1 for the output target reference value of the motor A rotation speed control value and the motor C flow rate control value for the input system deviation delta 1, and the rotation speed control And flow control.
  • Fig. 1 also shows a mechanism that prevents the rice bran from being caught in the hopper 3 by effectively using the heat of the discharged raw material.
  • Bridge is a phenomenon in which raw materials are connected together to form a bridge and create a cavity in the hopper. This is a physical phenomenon that often occurs when powder or granular materials are injected. When bridging occurs, the raw material is disturbed by the bridge and cannot be successfully injected into the extruder. In FIG. 1, the heat flow is piped from the exhaust inlet 11, and blown from the bridge prevention jet nozzle 4 attached to the hopper 3 through the pump P toward the raw material.
  • the rice bran has a moisture content of 10 to 13%, and a significant proportion of the drive energy is used for water evaporation.
  • This feedback mechanism contributes greatly to improving energy efficiency.
  • heat can be recirculated using a heat pipe instead of the intake port.
  • the heat processing apparatus of this invention is not limited only to the above-mentioned illustration example, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
  • FIG. 1 is the overall mechanism of the heat treatment equipment
  • FIG. 3 is an explanatory diagram of an embodiment of the output nozzle
  • FIG. 4 is an explanatory diagram of another embodiment of the outlet nozzle
  • FIG. 5 is an explanatory diagram of another embodiment of the outlet nozzle
  • FIG. 7 is a control block diagram of the heat treatment apparatus
  • 1 3 is the controller
  • 1 4 is the outlet temperature sensor
  • 1 7 is the entrance piece j One screw

Abstract

An inexpensive heat treatment apparatus with which a powdery or granular substance which is a raw material to be treated is precisely heated in a short time. The heat treatment apparatus comprises an extruder for a powdery or granular material which comprises a barrel for pressing/shearing the material and an outlet nozzle for regulating flow rate and pressure. The barrel has a constitution in which the outer surface of the screw and the inner surface of the cylinder each has a blade attached thereto so that the material being extruded is sheared between these blades. Thus, a heat treatment apparatus which attains a high energy efficiency and is inexpensive is provided.

Description

明細書 粉粒物質の加熱処理装置  Description Heat treatment equipment for granular materials
【技術分野】 本発明は粉または粒状の穀物原料を短時間加熱する加熱処理装置に関するものである。 【背景技術】 一般に、 米糠や大豆などの粉状または粒状の物質を、 例えば、 摂氏 1 5 0度 (以下 1 5 0 °C と略す) で均一且つ正確に 9秒間加熱するという適切な短時間加熱制御装置がなかった。 例 えば、 米糠の殺菌処理については特許文献 1に華氏 8 5度 (摂氏 3 0度) で 2 0分加熱する 例が示されている。 電磁波や赤外線加熱法はこの目的に適合するがエネルギー効率や均一性 が悪い。 押出し機 (e x t r u d e r ) は原料が押出される過程で摩擦とせん断により原料 自身で熱が発生するので加熱装置として適している。 例えば、 特許文献 2の図 1および特許 文献 3の図 3にその例が示されている。 しカゝし、 摩擦とせん断が押出し機のシリンダー管面 に集中するため、 原料に温度むらが生じ、 目的とする熱処理が均一に出来なかった。 TECHNICAL FIELD The present invention relates to a heat treatment apparatus for heating powder or granular grain raw material for a short time. [Background Art] Generally, powdery or granular substances such as rice bran and soybeans are heated for a short time, for example, uniformly and accurately for 9 seconds at 1550 degrees Celsius (hereinafter abbreviated as 1550 degrees Celsius). There was no heating control device. For example, for sterilization of rice bran, Patent Document 1 shows an example of heating at 85 degrees Fahrenheit (30 degrees Celsius) for 20 minutes. Electromagnetic and infrared heating methods are suitable for this purpose but have poor energy efficiency and uniformity. The extruder (ex tr ude er) is suitable as a heating device because the raw material itself generates heat due to friction and shear during the raw material extrusion process. For example, FIG. 1 of Patent Document 2 and FIG. 3 of Patent Document 3 show examples. As a result, friction and shear were concentrated on the cylinder tube surface of the extruder, resulting in uneven temperature in the raw material, and the intended heat treatment could not be performed uniformly.
【特許文献 1】 特願平 6— 5 1 3 2 0 1 ( 1 4頁 例 1 )  [Patent Literature 1] Japanese Patent Application No. 6-5 1 3 2 0 1 (1 page 4 example 1)
【特許文献 2】 米国特許 U . S . 4 , 7 4 1 , 2 6 4 ( 図 1 )  [Patent Document 2] U.S. Patents U.S.4, 7 4 1, 2 6 4 (Fig. 1)
【特許文献 3】 特許広報第 2 9 5 6 6 2 2号 (3頁 図 3 )  [Patent Document 3] Patent Publication No. 2 9 5 6 6 2 2 (Figure 3 on page 3)
【発明の開示】 DISCLOSURE OF THE INVENTION
【発明が解決しようとする課題】 粉や粒状の穀物を加熱する場合、 調理などで経験するように数分〜数十分といった長い時定 数の熱処理にはいろいろな方法が適用可能であるが数秒間という短時間加熱の制御方法は あまり見当たらない。 例えば、 米糠の酸化腐敗 (酸敗という) の原因であるリパーゼの失活 および微生物の殺菌と米糠に含まれるビタミン等の栄養素の保存を両立させる米糠殺菌処 理過程においては温度と時間の厳密な条件設定と管理が必要になる。 すなわち、 リパーゼを 失活させるにはフライパンなどで数分間 1 5 0 °Cに加熱すれば良いが、 この熱処理過程で米 糠に含まれるビタミンは分解して消失してしまう。 リパーゼを失活させ且つ栄養素や風味を 保存する熱処理条件は、 例えば 1 5 0 °Cで 9秒間加熱するというように短時間且つ正確な制 御が必要になる。 このような目的の超高温 (Ultra High Temperature :UHT) 粉体殺菌装置 として過熱水蒸気を用いたものがあるが、 装置コストおよび運転コストが高いばかりでなく、 収量の損失もあり、 1 k g当たりの処理コストは数百円となる。 米糠の原料コストは 1 k g 当たり数円〜十数円であるから、 これでは殺菌コストは原料の約 1 0倍以上となる。 本発明 は 1 k g当たりで比較して、 原料コストと同等のコス卜で実現する短時間加熱による UHT 殺菌装置を提供することである。  [Problems to be Solved by the Invention] When heating flour or granular cereals, various methods can be applied to a long time constant heat treatment such as several minutes to several tens of minutes as experienced in cooking. There aren't many ways to control heating for a few seconds. For example, in the process of sterilization of rice bran that achieves both the inactivation of lipase, which is the cause of oxidative rot of rice bran (so called ranch), and the sterilization of microorganisms and the preservation of nutrients such as vitamins contained in rice bran, the exact conditions of temperature and time Configuration and management are required. In other words, lipase can be inactivated by heating to 15 ° C. for several minutes with a frying pan or the like, but the vitamin contained in the rice bran decomposes and disappears during this heat treatment process. The heat treatment conditions that inactivate the lipase and preserve nutrients and flavors require a short and accurate control, for example, heating at 150 ° C. for 9 seconds. Ultra high temperature (UHT) powder sterilizers for this purpose use superheated steam, but not only the equipment and operating costs are high, but also yield loss, Processing costs will be several hundred yen. The raw material cost of rice bran is several to tens of yen per kilogram, so the sterilization cost is about 10 times more than that of the raw material. The present invention is to provide a UHT sterilizer by short-time heating that is realized at a cost equivalent to the raw material cost compared to per kg.
【課題を解決するための手段】 押出し機は原料が押出される過程で原料自身の摩擦とせん断による発熱を利用できるので、 構造が簡単でエネルギー効率が良く、低コストの加熱装置として適している。 しカゝしながら、 押出し機の場合は原料がバレル内で圧縮塊となるため、 シリンダ一管面に接する部分では摩 擦とせん断熱により品温が上昇するが、 それ以外の部分では発熱が少ないため原料の熱伝導 率が悪いと品温に著しいむらが発生する。 このため、 熱処理が不均一となり、 リパーゼ失活 や殺菌が不十分になる。 米糠は熱伝導率が極めて悪いため、 実験によれば品温むらは 5 0 °C 〜8 0 °Cと大きい。 本発明はバレル内での原料が通路の中央付近および極めて幅の狭い通路 でせん断されるようにすることで、 品温むらをなく し且つ低コストでエネルギー効率の良い 加熱処理装置を提供しようとするものである。 [Means for Solving the Problems] The extruder can use the heat generated by the friction and shearing of the raw material itself in the process of extruding the raw material, so that the structure is simple, energy efficient, and suitable as a low-cost heating device. . However, in the case of an extruder, since the raw material is compressed into a lump in the barrel, the product temperature rises due to friction and shear heat at the part in contact with the cylinder surface, but heat is generated at other parts. If the thermal conductivity of the raw material is poor, there will be significant unevenness in the product temperature. For this reason, heat treatment becomes non-uniform and lipase inactivation and sterilization become insufficient. Rice bran has a very poor thermal conductivity, so according to experiments, the product temperature is as high as 50 ° C to 80 ° C. In the present invention, the raw material in the barrel is near the center of the passage and a very narrow passage. By trying to be sheared at a low temperature, it is intended to provide a heat treatment apparatus that eliminates uneven product temperature and is low in cost and energy efficient.
【 0 0 0 5】  [0 0 0 5]
本発明は、 粉または粒状原料の押出し機を、 原料の加圧 'せん断を担うバレルと流量と圧力 調節を担う出口ノズルとで構成し、 バレルのスクリュ一外面およびシリンダー内面のそれぞ れに羽根を付け、 押し出される原料がこれらの羽根の間でせん断されるように構成したこと を特徴とする加熱処理装置に関わるものである。 According to the present invention, a powder or granular raw material extruder is constituted by a barrel that pressurizes and shears a raw material, and an outlet nozzle that controls flow rate and pressure, and a blade is provided on each of the barrel screw outer surface and the cylinder inner surface. And the heat treatment apparatus is characterized in that the extruded material is sheared between these blades.
【発明の効果】 本発明によれば、 以下のような作用が得られる。 原料を例えば米糠とした場合、 注入される 米糠はスクリューとシリンダ一で挟まれた通路をスクリユー羽根により出口方向に押出さ れるが、 シリンダー內面に羽根があるために、 これらの羽根の間でせん断される。 もし、 通 路間隙を 5 m mとし、 両方の羽根の高さをそれぞれ 2 . 4 m mにしておけば、 米糠は管面で はなく通路の中央でせん断される。 ここで発生した熱は中央から四方に広がるため品温むら は少なくなる。 さらに出口ノズルの間隙を 1 m m以下と狭く し、 ここでも米糠のせん断が生 じるようにすれば品温むらはさらに少なくなる。 また、 羽根の高さを、 原料の入り口近くで はバレル間隙一杯に高く して押出し力を確保し、 出口に向けては 1 / 2程度または 1 / 3から 2 / 3程度まで変化させて、原料が通路内の異なる位置でせん断されるように構成すれば押出 し過程で原料が攪拌され品温の均一性は更に増す。 According to the present invention, the following actions can be obtained. For example, when the raw material is rice bran, the rice bran to be injected is extruded in the direction of the outlet by the screw blades between the screw and the cylinder. Sheared. If the passage gap is 5 mm and the height of both blades is 2.4 mm respectively, the rice bran will be sheared at the center of the passage instead of the pipe surface. The heat generated here spreads in all directions from the center, so product temperature unevenness is reduced. Furthermore, if the gap between the outlet nozzles is narrowed to 1 mm or less and the rice bran is sheared again, the product temperature will be further reduced. In addition, the height of the blade is increased to the full barrel gap near the entrance of the raw material to secure the extrusion force, and it is changed from about 1/2 or 1/3 to about 2/3 toward the exit. If the raw material is configured to be sheared at different positions in the passage, the raw material is agitated during the extrusion process, and the uniformity of the product temperature is further increased.
また、 本発明の実施例 8および 9に記載のフィードバック制御を加えれば、 注入する原料 の温度や湿度が変化してもエネルギー効率を損なうことなく 目標とする加熱処理を安価に 実現できるという優れた効果を奏し得る。  In addition, if the feedback control described in Examples 8 and 9 of the present invention is added, the target heat treatment can be realized at low cost without losing energy efficiency even if the temperature or humidity of the raw material to be injected changes. Can have an effect.
【発明を実施するための最良の形態】 BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明を実施する最良の形態として押出し機の機構全体を示す。 以下、 原料が米糠の 場合について説明するが、 本発明はこれに限定されることなく、 米、 麦、 豆、 そば、 とうも ろこしおよびこれらの粉状体、 ふすま (糠)、 胚などに適用できる。 また、 穀物以外でも粉 または粒状に加工した茶葉、 香辛料、 野菜、 果物、 キノコ、 キノコ培地、植物、 肉、 魚介類、 ペットフード、 飼料にも適用できる。 なお、 米糠の加熱処理の目的は内因性リパーゼを失活 させ、 米糠に含まれる微生物を殺菌することである. このような目的の押出し機はその用途 にちなんでスタビライザと呼ばれることが多いので、 図 1はスタビライザ全体図としてある。 次に、 上記図示例の作動を説明する。 米糠はホッパー 3に注入されフィーダ一 2を通して押 出し機バレルに注入される。 押出し機の主要部は、 バレル部と出口ノズル部と主モータ 1と で構成される。 バレル部はシリンダー 1 5と羽根の付いたスクリユー 1 6とで構成され、 両 者で挟まれた間隙が原料の通路 5となり、 押出し圧力と摩擦、 せん断により米糠を発熱させ る。 出口ノズル部は内輪 9および外輪 1 0とで構成され、 両者で挟まれた間隙をバレル間隙 よりも狭くすることにより、 流量を調節する弁の役割を果たし、 バレル内を通過する原料に 圧力を発生させる。 スクリユー 1 6と出口のズル内輪 9は機械的に結合しており、 主モータ 一 1により駆動され回転する。 原料米糠はシリンダー 1 5とスクリュー 1 6とで挟まれた間隙で構成される通路を通り、 ス クリュ一羽根 1 7により出口方向に押し出される。 ここで、 スクリュー羽根 1 7より入り口 側にある羽根の高さは通路間隙とほぼ等しく して、 十分な押出し力を確保する。 スクリュー 羽根 1 9から以降は羽根の高さを低く し、 これと同時にシリンダー内面に破線で示すシリン ダ一羽根 1 8を取り付ける。 ここで、 通路間隙を H、 スク リュー羽根の高さを H I、 シリン ダ一羽根の高さを H 2とすると、 H = H 1 - 2 -+Η 2 + αとなるようにそれぞれの羽根を機 械加工する。なお、 αは上下の羽根が接触しないようにするためのクリャランスで通常は 0 . 1 〜 0 . 3 m mとする。 羽根の高さは、 例えば、 原料の進行方向 (スク リューの軸方向) に向かって、 入り口付近で は H 1 = H— αとし、 途中からは Η 1 = (Η - α ) 1 2とする。 また、 シリンダ一羽根とスク リュー羽根の角度は、 互いに交差し、 且つシリンダー羽根の角度 (またはピッチ) はスクリ ユー羽根の角度 (またはピッチ) より若干小さくする。 なお、 図 1では、 簡単のため両者の 角度は同じ場合を示している。 以上のようなバレルを使って、 原料米糠を押し出すと、 米糠は 2つの羽根に挟まれた部分を 通過する際にせん断され、 自身で熱を発生する。発熱する場所が通路のほぼ中央になるため、 熱は中心から四方に伝導し通路内での温度差は小さくなる。 通常の押出し機バレルではシリ ンダ一は中空で、 内面には羽根がついていないため、 摩擦とせん断はシリンダ一管面で集中 的に発生し、 熱はシリンダー鉄管から外部に放出される。 このため、 通路のシリンダー管面 は高温になるが、 内側には熱が伝わらず、 通過する原料に著しい温度むらが生じる。 米糠の 実験によれば、 シリンダー管面が 1 5 0 °Cの場合、 スクリュー面は 8 0 °Cで、 7 0 °Cもの温 度差が生じる。 米糠の温度はバレルの出口付近で急上昇する。 もし、 出口ノズルが完全に閉じていれば、 米 糠は排出されずに押し戻されバレル内で摩擦とせん断を繰り返して髙温加熱され、 焦げる。 出口ノズルの間隙を少し広げると、 米糠は外部に排出される。 この時のバレル内での発熱量 は主モータ一 1の動力、 シリンダ一およびスクリユーの構造、 形状、 材質および米糠の物性 値 (ポアソン比、 比熱、 密度、 せん断係数、 鋼との摩擦係数、 熱伝導率、 含水率) などによ つて決まる。 一方、 発熱は出口ノズル部分でも発生し、 その発熱量は出口ノズルの構造およ び形状により大きく変わる。 また、 バレルと出口ノズルは結合しているので、 内部発熱はこ れらの構造および形状の組み合わせによって変わる。 FIG. 1 shows the entire mechanism of an extruder as the best mode for carrying out the present invention. Hereinafter, the case where the raw material is rice bran will be described. However, the present invention is not limited to this, and the present invention is not limited to rice, wheat, beans, buckwheat, corn, and powders thereof, bran (rice cake), embryos, etc. Applicable. It can also be applied to tea leaves, spices, vegetables, fruits, mushrooms, mushroom culture media, plants, meat, seafood, pet food, and feeds that have been processed into powder or granules other than grains. The purpose of heat treatment of rice bran is to inactivate endogenous lipase and sterilize microorganisms contained in rice bran. Because the extruder for this purpose is often called a stabilizer after its use, Figure 1 is an overall view of the stabilizer. Next, the operation of the illustrated example will be described. Rice bran is poured into hopper 3 and through feeder 1 into the extruder barrel. The main part of the extruder consists of a barrel part, an outlet nozzle part and a main motor 1. The barrel part is composed of a cylinder 15 and a squeegee 16 with blades, and the gap between the two becomes the raw material passage 5, and the rice bran is heated by extrusion pressure, friction and shear. The outlet nozzle part is composed of an inner ring 9 and an outer ring 10, and the gap between the two is made narrower than the barrel gap, thereby acting as a valve that regulates the flow rate, and pressure is applied to the raw material passing through the barrel. generate. The screw 16 and the inner ring 9 at the outlet are mechanically coupled, and are driven by the main motor 1 to rotate. The raw rice bran passes through a passage formed by a gap between the cylinder 15 and the screw 16 and is pushed toward the outlet by a screw blade 17. Here, the height of the blade on the inlet side from the screw blade 17 is almost equal to the gap between the passages to ensure a sufficient pushing force. From the blade blade 19 onwards, the blade height is lowered, and at the same time, the cylinder blade 18 shown in broken lines is attached to the inner surface of the cylinder. Here, if the passage gap is H, the height of the screw blade is HI, and the height of the cylinder blade is H2, then each blade is set so that H = H 1-2-+ Η 2 + α. Machine Machine. Α is a clearance for preventing the upper and lower blades from coming into contact with each other, and is usually 0.1 to 0.3 mm. The height of the blade is, for example, H 1 = H-α near the entrance and Η 1 = (Η-α) 1 2 in the vicinity of the entrance, in the direction of the raw material (screw axial direction). . In addition, the angle of the cylinder blade and the screw blade intersect each other, and the angle (or pitch) of the cylinder blade is slightly smaller than the angle (or pitch) of the screw blade. In Fig. 1, the angle of both is the same for simplicity. When the raw rice bran is pushed out using the barrel as described above, the rice bran is sheared as it passes through the part sandwiched between the two blades and generates heat by itself. Since the place where heat is generated is almost in the center of the passage, heat is conducted from the center to all directions, and the temperature difference in the passage is reduced. In a normal extruder barrel, the cylinder is hollow and has no blades on the inner surface. Therefore, friction and shear are intensively generated on one cylinder surface, and heat is released from the cylinder iron pipe to the outside. For this reason, the cylinder tube surface of the passage becomes hot, but heat is not transferred to the inside, and significant temperature unevenness occurs in the passing material. According to a rice bran experiment, when the cylinder tube surface is 1550 ° C, the screw surface is 80 ° C, and a temperature difference of 70 ° C occurs. The temperature of rice bran rises rapidly near the exit of the barrel. If the outlet nozzle is completely closed, the rice bran is pushed back without being discharged, and is repeatedly heated and burnt by repeatedly rubbing and shearing in the barrel. When the gap between the outlet nozzles is widened slightly, the rice bran is discharged to the outside. The amount of heat generated in the barrel at this time is the power of the main motor 1, the structure of the cylinder and screw, shape, material and physical properties of rice bran (Poisson's ratio, specific heat, density, shear coefficient, coefficient of friction with steel, heat (Conductivity, moisture content). On the other hand, heat is generated at the outlet nozzle, and the amount of heat generated varies greatly depending on the structure and shape of the outlet nozzle. Also, since the barrel and outlet nozzle are connected, the internal heat generation varies depending on the combination of these structures and shapes.
【実施例 1】 [Example 1]
図 1で出口ノズルの形状は出口側に向かって径が小さくなる円錐形、 すなわち、 ダイ型にし てある。 この構造の特長は出口ノズル外輪 1 0をスライ ドさせることによって、 出口ノズル 内輪 9との間の出口ノズル間隙を容易に変化させることが出来ることである。 図において出 口ノズル外輪はシリンダー内面にネジではめ込まれ固定されており、 外輪を回すことにより スライ ドできる。 外輪を出口方向にスライ ドすれば出口ノズル間隙はいくらでも大きくする ことが出来る。 また、 この構造の場合は、 内輪が回転中、 すなわち動作中にも外輪をスライ ドさせることができる。 従って、 手動でスライ ドさせるだけでなく、 図 1に示すようにギア 7を介してモータ一 8に接続することにより、 出口間隙を自動制御することが出来る。 出口ノズルの形状は出口側に向かって径が大きくなる円錐形、 すなわち、 コーン型にするこ とも出来る。 この構造の特長は出口に向かって原料が出易くなることであり、 バレル内部で の目詰まりのリスクを減らすことが出来る。 し力、し、 ノズル外輪 1 0をスライ ドさせるには、 バレルと一体にして動かす必要があり、 ダイ型に比べると構造が複雑になる。 この他、 出口 ノズルの形状としては円錐型ではなく、 円筒型にすることも出来る。 この場合、 出口ノズル 間隙は加工時点で決まってしまうので、 間隙を調節するには部品交換が必要になる。 出ロノ ズル間隙をどのぐらいの物理寸法にするかは、 設計的事項であり、 主モーターの動力、 回転 数、 バレルの構造や寸法によって異なる力;、 バレル間隙の 1 / 5程度を一つの目安にすること が出来る。 バレルと出ロノズルの関係を図 2に示す。 出ロノズルは原料の流量と圧力を調節する役割を 果たす重要な部分である。 流量と圧力の調節は出口ノズル間隙の他に、 ノズル間隙を通過す る原料の動きを邪魔する溝や突起を付ける方法がある。 図 2に示す V字状の溝 2 7はその実 施例を示す。 V溝の角度と方向は、 外輪に対してはシリ ンダーの羽根とほぼ同じに螺旋状に し、 内輪に対してはスク リ ュー羽根とほぼ同じに螺旋状にすることで、 出口ノズル間隙を通 過する原料にせん断を生じせしめることができる、 V溝の深さはノズル間隙の 1 / 2〜 1 / 3 程度が良い。 V溝の代わりに突起をつけても良い。 出口ノズル間隙に付加する溝または突起に関しては、 螺旋状の他に、 軸方向におよび円周方 向に溝を付けることもできる。 回転する内輪に対しては円周方向への連れまわりを抑制する ために、 軸方向に溝を付けるのが効果的である。 溝や突起の数、 深さ、 高さ、 間隔などは設 計的事項であるが、 突起の高さはノズル間隙の 1 / 2、 本数は 9 0度間隔に 4本、 円周方向の 溝は出口のズルの軸方向に等間隔に 5 m m間隔程度を目安とする。 In Fig. 1, the shape of the outlet nozzle is a conical shape whose diameter decreases toward the outlet side, that is, a die shape. The feature of this structure is that the exit nozzle gap between the exit nozzle and the inner ring 9 can be easily changed by sliding the exit nozzle outer ring 10. In the figure, the outlet nozzle outer ring is fixed by screwing into the cylinder inner surface and can be slid by turning the outer ring. If the outer ring is slid in the outlet direction, the exit nozzle gap can be increased as much as possible. In this structure, the outer ring can be slid while the inner ring is rotating, that is, during operation. Therefore, the outlet clearance can be automatically controlled not only by sliding manually but also by connecting to the motor 8 via the gear 7 as shown in FIG. The shape of the outlet nozzle can be a conical shape whose diameter increases toward the outlet side, that is, a cone type. The feature of this structure is that the raw material is easy to come out toward the outlet, and the risk of clogging inside the barrel can be reduced. In order to slide the nozzle outer ring 10, it is necessary to move it integrally with the barrel, which makes the structure complicated compared to the die type. In addition, the shape of the outlet nozzle can be cylindrical instead of conical. In this case, the exit nozzle gap is determined at the time of processing, so parts must be replaced to adjust the gap. The physical dimensions of the output nozzle gap are design matters, and the power varies depending on the power of the main motor, the number of revolutions, and the structure and dimensions of the barrel; Can be made. Figure 2 shows the relationship between the barrel and the outlet nozzle. The outlet nozzle is an important part that plays a role in regulating the flow rate and pressure of the raw material. In addition to the outlet nozzle gap, the flow rate and pressure adjustment pass through the nozzle gap. There is a method of adding grooves and protrusions that obstruct the movement of the raw material. The V-shaped groove 27 shown in Fig. 2 shows an example. The angle and direction of the V-groove is approximately the same spiral as the cylinder blades for the outer ring, and approximately the same spiral as the screw blades for the inner ring. The passing material can be sheared, and the depth of the V groove should be about 1/2 to 1/3 of the nozzle gap. A protrusion may be provided instead of the V-groove. With respect to the groove or protrusion added to the outlet nozzle gap, in addition to the spiral shape, the groove can be provided in the axial direction and in the circumferential direction. For the rotating inner ring, it is effective to provide a groove in the axial direction in order to suppress the circumferential rotation. The number, depth, height, and spacing of grooves and protrusions are design matters, but the height of the protrusions is 1/2 of the nozzle gap, the number of grooves is 90 degrees, 4 grooves, and circumferential grooves. The guideline is about 5 mm at regular intervals in the axial direction of the outlet slack.
【実施例 2】 [Example 2]
バレル内を通過する原料を攪拌することが出来れば、 内部発熱による原料の温度むらをより 軽減することが出来る。 せん断はシリンダー羽根とスクリュウ羽根の間で発生するから、 こ の位置を通路内で出口ノズル方向に変えれば、 発熱位置が変化し、 攪拌効果を得ることがで きる。 これは羽根の高さ HIを進行方向に変えることで実現できる。 すなわち、 バレル入り 口付近では H1 = H— αでスタートし、 次に Η1 = 2 (Η— α ) / 3とし、 次に Η1 = (Η— α ) / 2とし、 次に Hl = (Η— α ) / 3、 次に Η1 = (Η— α ) / 2となるように羽根の高さを変化 させる。 このとき、 シリンダー羽根の高さ Η 2は、 それぞれ、 Η 2 — Η 1—"となるよ うに加工しておく。 このような構造をどの程度の寸法で加工するかは、設計的事項であるが、 例えば、 それぞれを、 スク リ ュー羽根 2ピッチずつ配置し、 全部で 1 0ピッチとすることが できる。 この方法により原料がせん断される位置がシリンダー内面から測定して、 進行方向 に 0、 Η/ 3、 Η/ 2、 2 Η/ 3、 Η/ 2と変化するので、 これに応じて内部の発熱位置が変化し、 品温がより均一化される。 If the raw material passing through the barrel can be stirred, the temperature unevenness of the raw material due to internal heat generation can be further reduced. Since shear occurs between the cylinder blade and screw blade, if this position is changed in the direction of the outlet nozzle in the passage, the heat generation position is changed, and a stirring effect can be obtained. This can be achieved by changing the blade height HI in the direction of travel. That is, near the barrel entrance, start with H1 = H—α, then Η1 = 2 (Η—α) / 3, then Η1 = (Η—α) / 2, and then Hl = (Η— α) / 3, and then change the blade height so that Η1 = (Η-α) / 2. At this time, the height of the cylinder blade 加工 2 is processed so that it becomes Η 2 — Η 1— ”respectively. It is a design matter to determine the size of such a structure. However, for example, it is possible to arrange 2 pitch blades each to make a total pitch of 10. By this method, the position where the raw material is sheared is measured from the inner surface of the cylinder, and 0 in the traveling direction. Since Η / 3, Η / 2, 2 Η / 3, and 2/2 change, the internal heat generation position changes accordingly, and the product temperature becomes more uniform.
【実施例 3】 [Example 3]
バレルを通過する原料の圧力調整は、 押し出される原料の流れに抵抗を与える構造体を出口 側に配置することによつても実行できる。 図 3はその実施例を示す説明図である。 原料は出 口ノズルの外輪と内輪の間を矢印の方向に押し出される。 出ロノズル外輪の出口側に網状体 またはフィルター 2 2を配置することによって、 原料の流れに抵抗を与えることができる。 網状体は既成のステンレスメ ッシュのメ ッシュの細かさ (メッシュ番号) の異なるものを複 数組み合わせるなどにより、 抵抗力を調整することができる。 網状体の他にも各種のフィル ターを単独または併用して用いることができる。 図において符号 2 1は多孔版で、 網状体の 機械的強度を補強する目的で使用する。 The pressure adjustment of the raw material passing through the barrel can also be performed by arranging a structure on the outlet side that gives resistance to the flow of the extruded raw material. FIG. 3 is an explanatory view showing the embodiment. The raw material is pushed in the direction of the arrow between the outer ring and the inner ring of the outlet nozzle. By placing a mesh or filter 22 on the outlet side of the outlet nozzle outer ring, resistance can be given to the flow of the raw material. The resistance of the mesh can be adjusted by combining multiple meshes with different mesh fineness (mesh number). In addition to the network, various filters can be used alone or in combination. In the figure, reference numeral 21 denotes a perforated plate, which is used for the purpose of reinforcing the mechanical strength of the mesh.
【実施例 4】 [Example 4]
図 4は出ロノズルに原料の流れに抵抗を与える他の実施例を示す説明図である。 出ロノズル 内輪の出口側に平行板パネ 2 3を配置することによって、 原料の流れに抵抗を与えることが できる。 板パネの厚さや材質、 構造を種々組み合わせるなどにより、 抵抗力を調整すること ができる。 図において符号 2 4は抵抗板で出口間隙の蓋の役割として使用する。 材質は磨耗 することを考慮して選択する。 FIG. 4 is an explanatory view showing another embodiment in which the outlet nozzle is given resistance to the flow of the raw material. Outlet nozzle By arranging the parallel plate panel 23 on the outlet side of the inner ring, resistance can be given to the flow of the raw material. The resistance can be adjusted by combining various thicknesses, materials, and structures of the panel panel. In the figure, reference numeral 24 denotes a resistance plate, which is used as a lid for the outlet gap. The material is selected in consideration of wear.
【実施例 5】 [Example 5]
図 5は出ロノズルに原料の流れに抵抗を与える他の実施例を示す説明図である。 出口ノズル 内輪の出口側先端を円錐形の中子 (なかご) にし、 出口ノズル外輪先端がそれと適切な間隙 をもってほぼ平行に配置された多孔円錐状キャップ 2 5とで構成する。 孔のサイズ、 位置、 個数を種々組み合わせるなどにより、 抵抗力を調整することができる。 FIG. 5 is an explanatory view showing another embodiment in which the outlet nozzle is given resistance to the flow of the raw material. Outlet nozzle Consists of a conical core at the outlet end of the inner ring and a multi-hole conical cap 25 with the outlet nozzle outer ring tip arranged approximately in parallel with the gap. The resistance can be adjusted by various combinations of hole size, position, and number.
【実施例 6】 押し出された排出物は加熱され圧力を受けるので、 出口ノズルの構造や形状に応じて変形す る。 例えば、 実施例 3の場合はメッシュサイズに相当する粒状、 実施例 4の場合は薄いフレ ーク状、 実施例 5の場合は細長いミミズ状である。 また、 これらの排出物は高温で水蒸気を 含んでいるため、 冷却と乾燥が必要になることが多い。 変形された排出物の形状を元の粉粒 状に戻し、 且つ冷却と乾燥を加速する方法として、 解砕機構を導入するのが有効である。 図 6はその実施例を示す説明図である。 実施例 5の多孔円錐状キャップの外側に適切な間隙 をもってほぼ平行に配置された回転体を接続し、 この間隙と回転体を利用して排出物を解砕 する。 ここで、 回転はスク リューおよび出口ノズル内輪を駆動する主モーターを動力源とす るので経済的に実現できる特長がある。 また、 回転体に複数の孔を空けたり、 一部を切り欠 くなどにより、 解砕効果を高めることができる。 [Example 6] Since the extruded discharge is heated and subjected to pressure, it deforms according to the structure and shape of the outlet nozzle. For example, in the case of Example 3, the particle size corresponds to the mesh size, in the case of Example 4, it is a thin flake shape, and in the case of Example 5, it is an elongated earthworm shape. Also, these effluents contain water vapor at high temperatures and often require cooling and drying. It is effective to introduce a crushing mechanism as a method of returning the deformed discharge shape to the original granular form and accelerating cooling and drying. FIG. 6 is an explanatory view showing the embodiment. A rotating body arranged substantially in parallel with an appropriate gap is connected to the outside of the porous conical cap of Example 5, and the discharged matter is crushed using the gap and the rotating body. Here, rotation is economically realized because the main motor that drives the screw and the inner ring of the outlet nozzle is used as the power source. Moreover, the crushing effect can be enhanced by making a plurality of holes in the rotating body or by cutting out a part of it.
【実施例 7】 [Example 7]
解砕、冷却、乾燥を同時に実現する他の方法として、排出物を振動篩にかけることもできる。 振動篩は原料を強制的に振動させることで、 空気との接触を増やし、 原料同士または異物と の衝突により原料の結合を崩壊させる。 さらに送風により強制空冷すれば、 水蒸気が飛散し 冷却および乾燥効果を高めることができる。 As another method of simultaneously realizing crushing, cooling, and drying, the discharged product can be passed through a vibrating screen. Vibrating sieves forcibly vibrate the raw material to increase contact with air and break the bond between the raw materials due to collisions between the raw materials and foreign materials. Furthermore, if forced air cooling is performed by blowing air, water vapor is scattered and cooling and drying effects can be enhanced.
【実施例 8】 [Example 8]
図 7は排出される原料の品温を目標値に自動制御するための制御ブロック図を示している。 本図示例の特徴とするところは、 図 1および図 7に符号 1 2および 1 4で示した温度センサ を押出し機に装着し、 これらのセンサ情報をコントローラ 1 3に入力し、 コントローラ 1 3 にて目標値制御のプログラムを動作させ、 その出力を符号 1 , 6, 1 0で示す各種モータ一 を通して押出し機を制御することにより処理温度を目標値に制御するように構成した点に ある。 図においてコントローラ 1 3の入力は押出し機の出口近辺の温度センサ 1 4および、 排出部の温度センサ 1 2である。 出口近辺の温度センサ 1 4はこの部分の温度勾配が急峻で あり、 制御特性上特に重要性が高いので出口方向に 3つ並べて取り付けてある。 一方、 コン トローラ 1 3の出力は、 主モーター 1 (モーター A ) による押出し機の回転数制御、 フィー ダー駆動モーター 6 (モーター B ) による原料の供給量制御および流量制御モーター 8 (モ —ター C) による処理原料の排出量制御に使われる。 図 1の機構と図 7に示すコントロ一ラから目標とする加熱処理を実現するための手順は次 のようになる。 まず、 加熱処理の条件パラメータを予備実験から決める。 すなわち、 目標と する温度条件は主として主モーター回転数と出口ノズルの間隙によって決まるので、 米糠を 押出し機に連続的に供給した状態で流量制御位置をマニュアルで変化させ、 この場合のスラ イダ一位置、 温度センサ 1 4および 1 2の値を、 それぞれ実測し、 目標に近い状態を実現す るパラメータの組み合わせを割り出す。 これらの入出力パラメータの関係をコントローラ 1 3に目標基準値設定プログラムとして書き込む。 次に、 これらの入力目標基準値と実際のセ ンサの値のずれデルタ 1を計算し、 デルタ 1がゼロになるようにコントローラ 1 3の加熱処 理プログラムを作成する。 すなわち、 加熱処理プログラムでは、 入力系のずれデルタ 1に対 してモーター Aの回転速度制御値およびモーター Cの流量制御値の出力目標基準値に対す る補正値ベータ 1を計算し、 回転速度制御と流量制御を行う。 次に、 上記の状態での排出量および排出品温を測定すると共にマニュアルでモーター Bの回 転数を変化させ排出量にバランスした供給制御の目標基準値を実測する。 次に、 実際の排出 部温度センサの値と他のセンサの値に対して、 目標基準値からの入力系ずれデルタ 2を計算 し、 デルタ 2がゼロになるようにフィーダ一供給量制御プログラムを作成する。 すなわち、 フィーダ一供給量制御プログラムでは入力系ずれデルタ 2に対してモータ一 Bの回転速度 制御値の出力系目標基準値から補正値ベータ 2を計算し、 供給量制御を行う。 【実施例 9】 Fig. 7 shows a control block diagram for automatically controlling the temperature of the discharged material to the target value. The feature of this example is that the temperature sensors indicated by reference numerals 1 2 and 14 in FIGS. 1 and 7 are attached to the extruder, and the sensor information is input to the controller 1 3, and the controller 1 3 The target temperature control program is operated, and the processing temperature is controlled to the target value by controlling the extruder through various motors whose outputs are denoted by reference numerals 1, 6, and 10. In the figure, the inputs of the controller 13 are a temperature sensor 14 near the outlet of the extruder and a temperature sensor 12 at the discharge section. The temperature sensor 14 near the outlet has a steep temperature gradient in this part and is particularly important for control characteristics, so three sensors are mounted side by side in the outlet direction. On the other hand, the output of the controller 13 is controlled by the main motor 1 (Motor A), the number of revolutions of the extruder, the feeder drive motor 6 (Motor B), and the flow rate control motor 8 (Motor C). ) Used to control the amount of processed material discharged. The procedure for realizing the target heat treatment from the mechanism shown in Fig. 1 and the controller shown in Fig. 7 is as follows. First, the condition parameters for heat treatment are determined from preliminary experiments. In other words, the target temperature condition is mainly determined by the main motor speed and the gap between the outlet nozzles. Therefore, the flow control position is manually changed while rice bran is continuously supplied to the extruder, and the slider position in this case is Measure the values of temperature sensors 1 4 and 1 2 to determine the combination of parameters that achieves a state close to the target. The relationship between these input / output parameters is written to the controller 13 as a target reference value setting program. Next, the difference delta 1 between these input target reference values and the actual sensor value is calculated, and the controller 13 heat processing program is created so that delta 1 becomes zero. In other words, the heat treatment program calculates the correction value beta 1 for the output target reference value of the motor A rotation speed control value and the motor C flow rate control value for the input system deviation delta 1, and the rotation speed control And flow control. Next, measure the discharge amount and discharge temperature in the above state, and manually measure the target reference value for supply control that balances the discharge amount by changing the rotation speed of motor B. Next, the input system deviation delta 2 from the target reference value is calculated for the actual exhaust temperature sensor value and other sensor values, and the feeder one supply amount control program is set so that delta 2 becomes zero. create. That is, in the feeder-one supply amount control program, the correction value Beta2 is calculated from the output system target reference value of the rotational speed control value of the motor B for the input system deviation delta2, and the supply amount control is performed. [Example 9]
図 1には排出される原料の熱を有効利用してホッパー 3における米糠のプリ ッジを防止す る機構も示してある。 ブリッジは原料同士が繋がって橋をつく り、 ホッパー内に空洞を生じ せしめる現象で、 粉や粒状の物質を注入する場合にはよく生じる物理現象である。 ブリッジ が発生すると原料はプリッジに邪魔されて押出し機にうまく注入されない。 図 1において、 熱流は排出部吸気口 1 1からパイプで配管され、 ポンプ Pを介してホッパー 3に取り付けた ブリッジ防止噴気ノズル 4から原料に向けて噴出 '照射される。 これにより、 原料に含まれ る水分を蒸発させ米糠を乾燥させながらブリッジを防止するという一石二鳥の効果が得ら れる。 米糠の水分含有量は 1 0〜1 3 %で、 押出し駆動エネルギーのかなりの割合がこの水 分蒸発に使われるので、 このフィードバック機構はエネルギー効率の向上に大きく貢献する < なお、 吸気口付近にはフィルターや弁を取り付け、 排出物がパイプを通して逆流しないよう に工夫する。 また、 吸気口の代わりにヒートパイプを用いて熱を還流させることもできる。 尚、 本発明の加熱処理装置は、 上述の図示例にのみ限定されるものではなく、 本発明の要旨 を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Fig. 1 also shows a mechanism that prevents the rice bran from being caught in the hopper 3 by effectively using the heat of the discharged raw material. Bridge is a phenomenon in which raw materials are connected together to form a bridge and create a cavity in the hopper. This is a physical phenomenon that often occurs when powder or granular materials are injected. When bridging occurs, the raw material is disturbed by the bridge and cannot be successfully injected into the extruder. In FIG. 1, the heat flow is piped from the exhaust inlet 11, and blown from the bridge prevention jet nozzle 4 attached to the hopper 3 through the pump P toward the raw material. As a result, the effect of two birds with one stone can be obtained, which prevents the bridging while evaporating the water contained in the raw material and drying the rice bran. The rice bran has a moisture content of 10 to 13%, and a significant proportion of the drive energy is used for water evaporation. This feedback mechanism contributes greatly to improving energy efficiency. Install filters and valves to prevent the exhaust from flowing back through the pipe. In addition, heat can be recirculated using a heat pipe instead of the intake port. In addition, the heat processing apparatus of this invention is not limited only to the above-mentioned illustration example, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
【産業上の利用可能性】 風味や栄養を損なわないで、 加熱殺菌するニーズは食品分野で旺盛である。 この目的を実現 するには超高温殺菌が必要であるが、 従来は二軸ェクス 卜ルーダーと過熱水蒸気法が使われ てきた。 これらの欠点は装置が高価でエネルギー効率が悪いことである。 本発明の一軸ェク ス トノ! ^一ダ一で超高温殺菌が実現できれば、 多くの食品原料に適用できる。 また、 米糠やお からは腐敗し易いため有効活用されずに廃棄されている。 しカゝし、 これらの原料は栄養価が 高く食品として優れた健康効果があるので、 その腐敗防止と殺菌を安価な装置で実現できれ ば、 有効活用の道が開かれる。  [Industrial applicability] The need for heat sterilization without sacrificing flavor and nutrition is strong in the food field. To achieve this purpose, ultra-high temperature sterilization is required, but in the past, a biaxial excavator and a superheated steam method have been used. These disadvantages are expensive equipment and poor energy efficiency. One axis of the present invention! If ultra-high temperature sterilization can be realized in one, it can be applied to many food ingredients. In addition, rice bran and okara are discarded without being effectively utilized because they are susceptible to corruption. However, since these raw materials are highly nutritious and have excellent health benefits as foods, if they can be prevented and sterilized with an inexpensive device, the path to effective utilization will be opened.
【図面の簡単な説明】 [Brief description of the drawings]
【図 1】 は加熱処理装置全体の機構図  [Fig. 1] is the overall mechanism of the heat treatment equipment
【図 2】 はバレルと出口ノズルの関係の説明図  [Figure 2] is an explanatory diagram of the relationship between the barrel and the outlet nozzle
【図 3】 は出ロノズルの実施例の説明図  [Fig. 3] is an explanatory diagram of an embodiment of the output nozzle
【図 4】 は出口ノズルの他の実施例の説明図  [Figure 4] is an explanatory diagram of another embodiment of the outlet nozzle
【図 5】 は出口ノズルの他の実施例の説明図  FIG. 5 is an explanatory diagram of another embodiment of the outlet nozzle
【図 6】 は解砕機構の説明図  [Figure 6] is an illustration of the crushing mechanism
【図 7】 は加熱処理装置の制御ブロック図  [Fig. 7] is a control block diagram of the heat treatment apparatus
【符号の説明】 [Explanation of symbols]
1は押出し機の主モーター、  1 is the main motor of the extruder,
2はフィーダ一用押出し機、 2 is an extruder for feeders,
3はホッパー、 3 is a hopper,
4はブリッジ防止噴気ノズル、  4 is a bridge prevention fume nozzle,
5は原料の通路、 5 is raw material passage,
6はフィーダ一用モーター、 6 is a feeder motor,
7はギア、 7 is gear,
8は流量制御モーター、  8 is a flow control motor,
9は出ロノズル内輪、 9 is the output nozzle inner ring,
1 0は出ロノズル外輪、 1 0 is the outer nozzle outer ring,
1 1は吸気口、 1 1 is the inlet,
1 2は排出部温度センサ、 1 2 is the discharge temperature sensor,
1 3はコントローラ、 1 4は出口部温度センサ、 1 3 is the controller, 1 4 is the outlet temperature sensor,
1 5はシリンダ一、  1 5 is the cylinder,
1 6はスクリユー、  1 6 is Skew,
1 7は入り口個 jスクリュ一羽根、 1 7 is the entrance piece j One screw,
1 8はシリンダー羽根、 1 8 is the cylinder blade,
1 9はスク リユー羽根、  1 9 is screw blade,
2 0は排出物  2 0 is emissions
2 1は多孔板  2 1 is perforated plate
2 2は網状体及び/またはフィルター 2 2 is mesh and / or filter
2 3は平行板バネ 2 3 is a parallel leaf spring
2 4は抵抗体  2 4 is a resistor
2 5は多孔円錐キヤップ  2 5 is a porous cone cap
2 6は解砕機構  2 6 is the crushing mechanism
2 7は V字状溝  2 7 is V-shaped groove
である。 It is.

Claims

請求の範囲 The scope of the claims
【請求項 1 】  [Claim 1]
粉または粒状原料の押出し機を、 原料の加圧 ·せん断を担うバレルと流量と圧力調節を担う 出口ノズルとで構成し、 バレルのスクリユー外面およびシリンダー內面のそれぞれに羽根を 付け、 押し出される原料がこれらの羽根の間でせん断されるように構成したことを特徴とす る加熱処理装置。 A powder or granular raw material extruder consists of a barrel that pressurizes and shears the raw material, and an outlet nozzle that controls the flow rate and pressure. The raw material is extruded by attaching blades to the outer surface of the barrel and the cylinder surface. The heat treatment apparatus is characterized in that it is configured to be sheared between these blades.
【請求項 2】  [Claim 2]
請求項 1に記載のバレルにおいて、 スクリュ一外面の羽根の高さとシリンダ一内面の羽根の 高さの和を原料が通過するバレル間隙より僅かに小さく し、 且つ羽根の角度は相互に交差す るようにして原料の押出しとせん断が両立するように構成したことを特徴とする加熱処理 装置。 2. The barrel according to claim 1, wherein the sum of the height of the blade on the outer surface of the screw and the height of the blade on the inner surface of the cylinder is slightly smaller than the barrel gap through which the raw material passes, and the angles of the blades cross each other. Thus, the heat treatment apparatus is configured so that extrusion and shearing of the raw material are compatible.
【請求項 3】  [Claim 3]
請求項 2に記載のスク リ ュー羽根の高さを、 原料の入り口近くではバレル間隙一杯に高く し て押出し力を確保し、 出口に向けては 1 / 2程度または 1 / 3から 2 / 3程度まで変化させて、 原料が通路内の異なる位置でせん断されるように構成したことを特徴とする加熱処理装置。 The height of the screw blade according to claim 2 is raised to the full barrel gap near the raw material entrance to secure the pushing force, and about 1/2 or 1/3 to 2/3 toward the outlet. The heat treatment apparatus is characterized in that the raw material is sheared at different positions in the passage by varying the degree.
【請求項 4】 [Claim 4]
請求項 1に記載の加熱処理装置において、 出口ノズルをスクリユーに結合する内輪とシリン ダ一に結合する外輪とで構成し、 内輪と外輪とで挟まれたノズル間隙の大小により原料の出 力流量と圧力を調節することを特徴とする加熱処理装置。 2. The heat treatment apparatus according to claim 1, wherein the outlet nozzle comprises an inner ring coupled to the screw and an outer ring coupled to the cylinder, and the output flow rate of the raw material is determined by the size of the nozzle gap sandwiched between the inner ring and the outer ring. A heat treatment apparatus characterized by adjusting the pressure.
【請求項 5】  [Claim 5]
請求項 4に記載の出口ノズル内輪と外輪とを、 径が軸方向に拡大または縮小する円錐形にし て、 内輪と外輪の相対位置を手動または自動で変えることによりノズル間隙の大小を調節す ることを特徴とする加熱処理装置。 The outlet nozzle inner ring and outer ring according to claim 4 are formed in a conical shape whose diameter increases or decreases in the axial direction, and the relative position of the inner ring and the outer ring is changed manually or automatically to adjust the size of the nozzle gap. The heat processing apparatus characterized by the above-mentioned.
【請求項 6】  [Claim 6]
請求項 4または請求項 5に記載の出ロノズルの外輪と内輪の一方または両方に、 通過する原 料の円周方向および軸方向の動きを抑制する溝または突起を付け、 出ロノズルで原料のせん 断を生じせしめるようにしたことを特徴とする加熱処理装置。 Grooves or protrusions that suppress the circumferential and axial movement of the passing material are attached to one or both of the outer ring and the inner ring of the outlet nozzle according to claim 4 or claim 5, and the raw nozzle does not feed the raw material. A heat treatment apparatus characterized by causing a disconnection.
【請求項 7】 請求項 1に記載の出口ノズルにおいて、 押し出される原料の流れに抵抗を与え る構造体を出口側に配置することを特徴とする加熱処理装置  7. The heat treatment apparatus according to claim 1, wherein a structure that provides resistance to the flow of the extruded material is disposed on the outlet side.
【請求項 8】 請求項 7の原料の流れに抵抗を与える構造体を、 単一または複数の網状体及び ノ又はフィルター及び ·又は多孔体で構成したことを特徴とする加熱処理装置  8. A heat treatment apparatus characterized in that the structure for imparting resistance to the flow of the raw material according to claim 7 is composed of a single or a plurality of nets, a net or a filter, and / or a porous body.
【請求項 9】 請求項 7の原料の流れに抵抗を与える構造体を、 流れ方向にほぼ直角に配置さ れたばね弾性体で構成したことを特徴とする加熱処理装置  9. The heat treatment apparatus according to claim 7, wherein the structure for imparting resistance to the flow of the raw material is composed of a spring elastic body disposed substantially perpendicular to the flow direction.
【請求項 1 0】 請求項 7の原料の流れに抵抗を与える構造体を、 請求項 4に記載の出口ノズ ル内輪先端が円錐形の中子 (なかご) で、 出口ノズル外輪先端がそれと適切な間隙をもって ほぼ平行に配置された多孔円錐状キャップとで構成したことを特徴とする加熱処理装置 10. The structure for imparting resistance to the flow of raw material according to claim 7, wherein the outlet nozzle inner ring tip is a conical core and the outlet nozzle outer ring tip is the same. A heat treatment apparatus comprising a porous conical cap arranged substantially in parallel with an appropriate gap
【請求項 1 1】 請求項 1において、 押し出される排出物を解砕する機構を設けたことを特徴 とする加熱処理装置 11. The heat treatment apparatus according to claim 1, further comprising a mechanism for crushing the extruded discharge.
【請求項 1 2】 請求項 1 1において、 解砕機構をスク リ ユーに結合させた回転体で構成した ことを特徴とする加熱処理装置  12. The heat treatment apparatus according to claim 11, wherein the crushing mechanism is constituted by a rotating body coupled to a screw.
PCT/JP2006/313814 2006-07-05 2006-07-05 Apparatus for heat treatment of powdery/granular substance WO2008004313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313814 WO2008004313A1 (en) 2006-07-05 2006-07-05 Apparatus for heat treatment of powdery/granular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313814 WO2008004313A1 (en) 2006-07-05 2006-07-05 Apparatus for heat treatment of powdery/granular substance

Publications (1)

Publication Number Publication Date
WO2008004313A1 true WO2008004313A1 (en) 2008-01-10

Family

ID=38894291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313814 WO2008004313A1 (en) 2006-07-05 2006-07-05 Apparatus for heat treatment of powdery/granular substance

Country Status (1)

Country Link
WO (1) WO2008004313A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176837A (en) * 2013-03-14 2014-09-25 Cavitatorsystems Gmbh Mediale Mischsysteme & Anlagen Flow rate adapting method of cavitation mixer for fluid mixture which should be prepared sanitarily
WO2015007906A1 (en) * 2013-07-18 2015-01-22 Compagnie Generale Des Etablissements Michelin Device for extruding elastomer mixtures
CN107362739A (en) * 2017-06-29 2017-11-21 台山市兰宝磨具有限公司 A kind of grinding tool production feeding device
CN108722289A (en) * 2018-06-11 2018-11-02 贺逢宝 A kind of agitating device for animal husbandry feed
CN108851158A (en) * 2018-08-06 2018-11-23 安徽省富邦天成食品有限公司 A kind of rice noodles extrusion equipment
CN109820217A (en) * 2019-03-13 2019-05-31 江苏丰尚智能科技有限公司 A kind of bulking machine particle cutter device
CN110667066A (en) * 2019-09-19 2020-01-10 南安市信隆智能家居有限公司 Melt extruder of masterbatch processing based on data is categorised and material is separated
CN111869909A (en) * 2020-08-03 2020-11-03 倪为勇 Ball food processing equipment
CN116423791A (en) * 2023-06-13 2023-07-14 南昌大学 Gas-liquid auxiliary forming device and method for hydrophilic antibacterial medical microtubes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1285283B (en) * 1963-03-18 1968-12-12 Generale Alimentaire Sa Method and device for the continuous production of masses for sugar confectionery manufacture
JPS5668400A (en) * 1979-11-06 1981-06-09 Wenger Mfg Method and apparatus for extruding high moisture substance of whole or crushed grains
US4741264A (en) * 1986-05-05 1988-05-03 Brady International Inc. Rice bran processing apparatus
JPH0438980Y2 (en) * 1987-09-02 1992-09-11
JPH0690741A (en) * 1992-09-08 1994-04-05 Kobe Steel Ltd Production of malt-preparation raw material and production apparatus
JPH07231751A (en) * 1994-02-24 1995-09-05 Meiji Seika Kaisha Ltd Mold nozzle for producing cylindrical hollow snack
JPH08506720A (en) * 1992-11-12 1996-07-23 ブラン・テック・インコーポレイテッド Method for stabilizing rice bran and rice bran product
JPH08253385A (en) * 1994-09-20 1996-10-01 Kiyobumi Hashimoto Organic raw fertilizer containing implanted vegetable fiber, its production and treating apparatus therefor
JPH09239804A (en) * 1996-03-04 1997-09-16 Japan Steel Works Ltd:The Production of continuous foam and die therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1285283B (en) * 1963-03-18 1968-12-12 Generale Alimentaire Sa Method and device for the continuous production of masses for sugar confectionery manufacture
JPS5668400A (en) * 1979-11-06 1981-06-09 Wenger Mfg Method and apparatus for extruding high moisture substance of whole or crushed grains
US4741264A (en) * 1986-05-05 1988-05-03 Brady International Inc. Rice bran processing apparatus
JPH0438980Y2 (en) * 1987-09-02 1992-09-11
JPH0690741A (en) * 1992-09-08 1994-04-05 Kobe Steel Ltd Production of malt-preparation raw material and production apparatus
JPH08506720A (en) * 1992-11-12 1996-07-23 ブラン・テック・インコーポレイテッド Method for stabilizing rice bran and rice bran product
JPH07231751A (en) * 1994-02-24 1995-09-05 Meiji Seika Kaisha Ltd Mold nozzle for producing cylindrical hollow snack
JPH08253385A (en) * 1994-09-20 1996-10-01 Kiyobumi Hashimoto Organic raw fertilizer containing implanted vegetable fiber, its production and treating apparatus therefor
JPH09239804A (en) * 1996-03-04 1997-09-16 Japan Steel Works Ltd:The Production of continuous foam and die therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176837A (en) * 2013-03-14 2014-09-25 Cavitatorsystems Gmbh Mediale Mischsysteme & Anlagen Flow rate adapting method of cavitation mixer for fluid mixture which should be prepared sanitarily
US10343322B2 (en) 2013-07-18 2019-07-09 Compagnie Generale Des Etablissements Michelin Device for extruding elastomer mixtures
WO2015007906A1 (en) * 2013-07-18 2015-01-22 Compagnie Generale Des Etablissements Michelin Device for extruding elastomer mixtures
FR3008640A1 (en) * 2013-07-18 2015-01-23 Michelin & Cie DEVICE FOR EXTRUSION OF MIXTURES OF ELASTOMERS
CN107362739A (en) * 2017-06-29 2017-11-21 台山市兰宝磨具有限公司 A kind of grinding tool production feeding device
CN108722289A (en) * 2018-06-11 2018-11-02 贺逢宝 A kind of agitating device for animal husbandry feed
CN108851158A (en) * 2018-08-06 2018-11-23 安徽省富邦天成食品有限公司 A kind of rice noodles extrusion equipment
CN109820217A (en) * 2019-03-13 2019-05-31 江苏丰尚智能科技有限公司 A kind of bulking machine particle cutter device
CN109820217B (en) * 2019-03-13 2021-06-11 江苏丰尚智能科技有限公司 Particle cutting device of bulking machine
CN110667066A (en) * 2019-09-19 2020-01-10 南安市信隆智能家居有限公司 Melt extruder of masterbatch processing based on data is categorised and material is separated
CN111869909A (en) * 2020-08-03 2020-11-03 倪为勇 Ball food processing equipment
CN111869909B (en) * 2020-08-03 2021-08-06 泰州市乐太食品有限公司 Ball food processing equipment
CN116423791A (en) * 2023-06-13 2023-07-14 南昌大学 Gas-liquid auxiliary forming device and method for hydrophilic antibacterial medical microtubes
CN116423791B (en) * 2023-06-13 2023-08-29 南昌大学 Gas-liquid auxiliary forming device and method for hydrophilic antibacterial medical microtubes

Similar Documents

Publication Publication Date Title
WO2008004313A1 (en) Apparatus for heat treatment of powdery/granular substance
RU2166712C2 (en) Method and device for prevention of agglomeration of viscous particles at their drying
US9055764B2 (en) System and method for the continuous treatment of solids at non-atmospheric pressure
US20080089987A1 (en) Continuous Intermeshing Agitator Food Cooker
US6079118A (en) Continuous drying system
US20140087044A1 (en) Production of engineered feed or food ingredients by extrusion
JPS61205453A (en) Method and apparatus for preparing food on basis of soft paste
CN206909665U (en) A kind of aquatic feeds granulator
DK2425718T3 (en) A method and device for preparing a food pureed
EP2268150B1 (en) Device and method for microwave treatment of grain
RU2457747C1 (en) Electrophysical heat treatment of fodder
JP4534779B2 (en) Heat treatment equipment for granular materials
JP2008011838A (en) Heat-treating apparatus of granular substance
RU2460404C1 (en) Device for continuous microwave treatment of feed
CN105639405A (en) Continuous electromagnetic baking equipment for cereal germs, and electromagnetic baking method of continuous electromagnetic baking equipment
US7677164B2 (en) Pressurized reactor for food processing
JP2004219032A (en) Heating control device for powder/grain material
JPH1094369A (en) Sterilization of grain flour
KR200346481Y1 (en) Apparatus for manufacturing corn and buckwheat noodles
KR102039481B1 (en) A sterilization apparatus for powdered red pepper
CN116548634A (en) Conditioner for feed production and production method
RU2299387C1 (en) Wet-heat treatment apparatus
CN211558720U (en) Puffed soybean production line
JP7467335B2 (en) Sterilization method and device
Yasa et al. The change of rice bran nutritional composition using microwave heating and vacuum packaging during storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06780984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06780984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP