WO2008004302A1 - Solid-state imaging device and method of controlling the same - Google Patents

Solid-state imaging device and method of controlling the same Download PDF

Info

Publication number
WO2008004302A1
WO2008004302A1 PCT/JP2006/313541 JP2006313541W WO2008004302A1 WO 2008004302 A1 WO2008004302 A1 WO 2008004302A1 JP 2006313541 W JP2006313541 W JP 2006313541W WO 2008004302 A1 WO2008004302 A1 WO 2008004302A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
liquid crystal
crystal shutter
solid
imaging device
Prior art date
Application number
PCT/JP2006/313541
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Inoue
Katsuyoshi Yamamoto
Original Assignee
Fujitsu Microelectronics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Microelectronics Limited filed Critical Fujitsu Microelectronics Limited
Priority to PCT/JP2006/313541 priority Critical patent/WO2008004302A1/en
Priority to JP2008523579A priority patent/JPWO2008004302A1/en
Publication of WO2008004302A1 publication Critical patent/WO2008004302A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to a solid-state imaging device and a control method thereof.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • CMOS image sensor there are a rolling shutter method (also known as a line shutter method!) And a global shutter method (also known as a simultaneous shutter method or a batch shutter method) as exposure methods.
  • rolling shutter method also known as a line shutter method
  • global shutter method also known as a simultaneous shutter method or a batch shutter method
  • the rolling shutter method is a method in which a series of imaging sequences of reset, exposure, and readout are sequentially performed for each line, and is the most common method among CMOS image sensors.
  • the exposure timing is different in the vertical direction of the image, so when shooting a moving subject, the shot subject is unnaturally distorted.
  • the global shutter method is a method in which all pixels are reset at the same time, exposed at the same time, and simultaneously transferred to a shielded node, which enables simultaneous exposure in all pixels.
  • the exposure timing is the same for all pixels, so even if a moving subject is shot, the shot subject will not be distorted.
  • each pixel circuit includes a photodiode that generates an electric charge by light irradiation, and a photodiode.
  • a first transfer transistor that transfers charge from the charge holding region to the charge holding region
  • a second transfer transistor that transfers charge to the reading node that is the location where the charge holding region force signal is read, and a reset that resets the reading node.
  • the solid-state imaging device is a digital camera equipped with a mechanical shutter
  • exposure is performed simultaneously for all pixels by changing the mechanical shutter from a closed state to an open state.
  • the global shutter function can be realized by closing the mechanical shutter and reading.
  • a mechanical shutter in this way, regardless of whether the image sensor is a CMOS or a CCD, low noise, smearing can be prevented, and a global shutter function can be realized.
  • an object of the present invention is to provide a solid-state imaging device having a global shutter function for moving image shooting that requires a high frame rate and a control method therefor.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-78954
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-332546
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-14802
  • a solid-state imaging device includes a solid-state imaging device having a plurality of pixels, A liquid crystal shutter in a state where light is incident on the plurality of pixels or a state in which the plurality of pixels are shielded, and during the exposure, light is incident on the plurality of pixels by the liquid crystal shutter. Except for the inside, moving image shooting is performed with the liquid crystal shutters shielding the plurality of pixels.
  • the liquid crystal shutter can function as a high-speed continuous shutter, and all pixels can be exposed simultaneously. Therefore, a global shutter function for moving image shooting that requires a high frame rate is provided.
  • the apparatus which it has can be provided.
  • the solid-state imaging device is the above-described first aspect, wherein the pixel control means for controlling the plurality of pixels and the signal output from the pixels are read out.
  • light is incident on the plurality of pixels by the liquid crystal shutter, and the plurality of pixels are exposed simultaneously, and then the plurality of pixels are shielded from light by the liquid crystal shutter.
  • the control means controls each of the means and the liquid crystal shutter so as to read a signal output from a pixel.
  • each of the plurality of pixels includes a photoelectric conversion element, a transfer element, a reset element, and an amplification element.
  • An element and a selection element wherein the plurality of pixels are shielded from light by the liquid crystal shutter at the time of moving image shooting, and the reset element and the transfer element are provided in each pixel of the plurality of pixels.
  • the photoelectric conversion element is reset by control, the light is then incident on the plurality of pixels by the liquid crystal shutter, and the plurality of pixels are simultaneously exposed, and then the liquid crystal shutter is used.
  • the reset element and the selection element are controlled and read out, and then the first signal is read.
  • the control means controls the means and the liquid crystal shutter so as to read out the second signal output by controlling the selection element, and then subtract the first signal from the second signal. It is characterized by that.
  • the first and second signals are read for one reset and the latter force is subtracted, so the kTC noise is not limited to noise due to element variation of the amplifying element. (Reset noise) can also be canceled, reducing noise and increasing SZN.
  • the control unit performs reset of the photoelectric conversion element that is performed first. It is characterized by controlling so that it may perform simultaneously by the pixel of this.
  • the solid-state imaging device is the first aspect, wherein the first charge transfer means provided corresponding to each pixel of the plurality of pixels and the plurality of pixels are provided.
  • a second charge transfer means provided corresponding to each column of the first charge transfer means, a third charge transfer means connected to each of the second charge transfer means, an amplification means for converting the charge into an electric signal,
  • Each of the means and a control means for controlling the liquid crystal shutter, and a state power for shielding the plurality of pixels by the liquid crystal shutter during the moving image shooting so that light is incident on the plurality of pixels,
  • the pixels are simultaneously exposed to light, and then the plurality of pixels are shielded from light by the liquid crystal shutter, and the second charges corresponding to the charges generated in the pixels by the first transfer means are respectively associated.
  • the control means controls the means and the liquid crystal shutter so that the charge is further transferred to the amplifying means by the second and third charge transferring means and converted into an electric signal by the amplifying means.
  • the present invention provides a method for controlling a solid-state imaging device It can be configured as a law.
  • FIG. 1 is a diagram showing the mounting structure of an image sensor chip and a liquid crystal shutter provided in the solid-state imaging device according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a circuit configuration of an image sensor chip on which a liquid crystal shutter is mounted according to the first embodiment.
  • FIG. 3 is a timing chart showing an operation during moving image shooting according to the first embodiment.
  • FIG. 4 is a timing chart showing an operation at the time of moving image shooting according to a modification of the first embodiment.
  • FIG. 5 is a diagram showing a circuit configuration of an image sensor chip on which a liquid crystal shutter is mounted according to Example 2.
  • FIG. 6 is a timing chart showing the operation during moving image shooting according to the second embodiment.
  • FIG. 1 is a diagram illustrating a mounting structure of an imaging element chip and a liquid crystal shutter that are included in the solid-state imaging device according to Embodiment 1 of the present invention.
  • the liquid crystal shutter 2 is mounted on the imaging element chip 1 by being adhered by the conductive adhesive 3.
  • the bonding force by the conductive adhesive 3 The liquid crystal shutter 2 is placed on the image sensor chip 1 by bonding with solder bumps that can be processed at a low temperature that does not affect the liquid crystal shutter 2. It can also be implemented.
  • the image pickup device chip 1 is a Si substrate LSI, and includes a CMOS image sensor (CMOS solid-state image pickup device) in which each pixel is configured by a 4Tr type pixel circuit, a readout circuit, a control circuit, and the like. Yes.
  • CMOS image sensor CMOS solid-state image pickup device
  • the liquid crystal shutter 2 is a transmissive liquid crystal shutter, and the liquid crystal is controlled to be transparent and opaque under the control of a control circuit mounted on the image sensor chip 1, and light ( (Image light) is incident, or all pixels are shielded.
  • the liquid crystal can be switched between light and dark according to the moving image as already used in displays of televisions, computers, workstations, and the like. By using it as a shutter for an imaging device, it realizes a high-speed continuous shutter and enables high frame rate movie shooting. It is assumed that the liquid crystal shutter 2 is capable of high-speed operation that can express a moving image of television.
  • FIG. 2 is a diagram showing a circuit configuration of the image sensor chip 1 on which the liquid crystal shutter 2 is mounted.
  • the CMOS image sensor 4 is composed of a plurality of pixels in N rows (lines) and XM columns (columns), and the pixel circuit of each pixel is composed of a 4Tr type pixel circuit as shown in frame 5.
  • the 4Tr pixel circuit consists of a photodiode (hereinafter referred to as “PD” t), which is a photoelectric conversion element that generates charges when irradiated with light, and a reading node (hereinafter referred to as “FD” t, where PD force is also a signal readout location).
  • PD photodiode
  • FD reading node
  • FD Floating Diffiision
  • TG-Tr Transfer transistor
  • RST-Tr FD Transistor
  • SF—Tr SF
  • SLCT-Tr CMOS image sensor 4
  • RST-Tr, TG-Tr, SF-Tr, and SL CT-Tr are n-channel MOS transistors.
  • RST is a signal for controlling RST-Tr
  • TG is a signal for controlling TG-Tr
  • SLCT is a signal for controlling SLCT-Tr
  • V DD is a power supply voltage
  • VR is a reset voltage.
  • a line control circuit (an example of pixel control means) 6 controls each pixel circuit of the CMOS image sensor 4 for each line.
  • a readout circuit (an example of readout means) 7 reads out the signal of each pixel output from each column of the CMOS image sensor 4. Further, the readout circuit 7 includes a CDS circuit, and from the signal read out when the charge force FD generated by exposure is present, A difference signal obtained by subtracting the signal read at the time of the output is output.
  • the ADC (AD converter) 8 converts the analog signal output from the readout circuit 7 into a digital signal and outputs it.
  • the drive circuit 9 drives the liquid crystal shutter 2.
  • Control circuit (an example of control means) 10 controls each circuit of the line control circuit 6, the read circuit 7, the ADC 8, and the drive circuit 9.
  • the control circuit 10 has an exposure time control unit 10a that controls the exposure time according to the exposure time obtained by the AE (Automatic Exposure) function provided in the solid-state imaging device, and is controlled by the exposure time control unit 10a. Each circuit is also controlled accordingly.
  • the exposure time required by the AE function is determined according to the brightness of the subject.
  • the AE function can be mounted on the image sensor chip 1 or can be mounted outside the image sensor chip 1.
  • FIG. 3 is a timing chart showing an operation during moving image shooting according to the present embodiment.
  • the “shutter control signal” is a signal output from the control circuit 10 to the drive circuit 9 in order to control the liquid crystal shutter 2.
  • the drive circuit 9 drives the liquid crystal shutter 2 so as to make it transparent Z opaque in accordance with the shutter control signal.
  • control signals of “first row control signal”, “second row control signal”,..., “J row control signal”, are output from the line control circuit 6 to the pixel circuits of the pixels of the CMOS image sensor 4 under the control of the control circuit 10.
  • Each of these control signals is a “reset signal” (RST) that controls the RST-Tr and a “transfer signal” that controls the TG-Tr in the pixel circuit (see frame 5 in FIG. 2).
  • RST reset signal
  • TG-Tr a “transfer signal” that controls the TG-Tr in the pixel circuit (see frame 5 in FIG. 2).
  • TG and “selection signal” (SLCT) which is a signal for controlling S LCT-Tr.
  • read circuit CDS circuit operation indicates the operation of the read circuit 7 including the CDS circuit.
  • ADC circuit operation indicates the operation of ADC8.
  • the shutter control signal makes the liquid crystal shutter 2 opaque and blocks all pixels of the CMOS image sensor 4.
  • (S2) 1 of the CMOS image sensor 4 is controlled by a control signal from the line control circuit 6.
  • the following operation (S2a) is performed in the pixel circuit of each pixel in each line in order up to the Nth row.
  • the time during which the liquid crystal shutter 2 is made transparent in this (S3) is determined according to the exposure time obtained by the AE function of the solid-state imaging device, and the exposure time control unit Controlled by 10a.
  • (S5d) Turn ON / OFF the selection signal to turn on SLCT-Tr, and output the signal when the charge accumulated in PD is transferred to FD, such as SF-Tr force (read out selected row signal: A6) .
  • the signal output here is read out by the readout circuit 7 (signal readout: A7), and reset by the CDS circuit of the readout circuit 7 in the above (S5b) for each column.
  • the hour signal is subtracted and the difference signal is output. This makes it possible to simultaneously cancel the reset noise (kTC noise), which is slightly different each time the signal level at the time of resetting, and the noise due to SF-Tr element noise for each column.
  • the difference signal output from the readout circuit (CDS circuit) 7 is converted into a digital signal by the ADC 8 and output.
  • moving image shooting is performed by repeating exposure and output for one frame.
  • the liquid crystal shutter 2 mounted on the imaging element chip 1 uses the CMOS image sensor in which each pixel is configured by a 4Tr type pixel circuit.
  • a global shutter function that enables simultaneous exposure of all pixels can be realized, so that even if a moving subject is shot, the shot subject will not be distorted.
  • each pixel is a 4Tr type pixel circuit. Since it is configured, it is possible to reduce the size and cost.
  • a PD can be embedded in the substrate (inside the imaging device chip 1) by using a 4Tr type pixel circuit as the pixel circuit of each pixel. Therefore, the influence of dark current noise caused by a large number of crystal defects on the substrate surface can be reduced.
  • a 4Tr type pixel circuit is used as the pixel circuit of each pixel, and the reset level of (S5b) is compared to the single readout reset of (S5a). Signal reading and the above signal reading (S5d) are performed.
  • KTC noise reset noise
  • SZN can be increased by reducing noise.
  • a force using a 4Tr type pixel circuit as a pixel circuit for example, a 3Tr type pixel circuit without TG-Tr, or two pixels, RST-Tr and SF— It is also possible to use a 4Tr-Tr shared pixel circuit that shares Tr and SLCT-Tr. For example, if a 3Tr type pixel circuit is used, reset the liquid crystal shutter 2 with the liquid crystal shutter 2 opaque, then perform the exposure with the transparency, and then read with the opaque Thus, all pixels can be exposed simultaneously.
  • the operation at the time of moving image shooting has been described using the timing chart shown in FIG. 3.
  • the operation of (S2) to be performed the operation of (S2a) is performed in the pixel circuit of each pixel in each line in order for each line up to the first line Nth line of the CMOS image sensor 4.
  • the timing chart of FIG. 4 it is also possible to perform the above operation (S2a) in the pixel circuit of each pixel in each line simultaneously with all the lines of the CMOS image sensor 4.
  • the first reset for the pixel circuits of all the pixels, which is performed first can be performed in a short time, and the frame rate can be further increased.
  • the image sensor chip 1 is further provided with an image processing circuit such as color processing, gamma processing, contour correction processing, and AWB (Automatic White Balance) processing. It is also possible to configure.
  • image processing circuit such as color processing, gamma processing, contour correction processing, and AWB (Automatic White Balance) processing. It is also possible to configure.
  • the solid-state imaging device is an aspect in which a CCD image sensor is used instead of the CMOS image sensor in the solid-state imaging device according to the first embodiment. That is, in the solid-state imaging device according to the present embodiment, a liquid crystal shutter is mounted on the image sensor chip on which the CCD image sensor is mounted, and light to the CCD image sensor is driven by driving the liquid crystal shutter. (Image light) is switched between incident and shading.
  • FIG. 5 is a diagram showing a circuit configuration of an imaging element chip on which a liquid crystal shutter is mounted in the solid-state imaging device according to the present embodiment.
  • the same elements as shown in FIG. are denoted by the same reference numerals.
  • a CCD image sensor 21 is an IT (Interline Transfer) type CCD image sensor having a plurality of pixels of N rows (lines) XM columns (columns), and each pixel has a PD.
  • a vertical transfer CCD (an example of the second charge transfer means) 22 is provided adjacent to each column PD, and each vertical transfer CCD 22 has a horizontal transfer CCD (of the third charge transfer means).
  • Example) 23 is connected.
  • PD is a photodiode, which is a photoelectric conversion element that generates charges when irradiated with light.
  • the vertical transfer CCD 22 is charge transfer means for transferring charges in the vertical direction (the direction of the horizontal transfer CCD 23).
  • the horizontal transfer CCD 23 is charge transfer means for transferring charges in the horizontal direction (in the direction of the output amplifier 26).
  • the vertical transfer CCD 22 and the horizontal transfer CCD 23 are schematically shown by bold arrows including the transfer direction. However, for the vertical transfer CCD 22, only the first column, the second force ram, and the last column are shown.
  • each PD is connected to an adjacent vertical transfer CCD via a transfer gate (an example of first charge transfer means, hereinafter referred to as “TGP”). In the figure, only some TGPs are shown as “TG P”.
  • the line driving circuit 24 applies a positive voltage pulse to each TGP as a transfer signal (Tf) to transfer the charge accumulated in each PD to the adjacent vertical transfer CCD 22, and for vertical transfer.
  • Tf transfer signal
  • Tf transfer signal
  • the column drive circuit 25 determines the positive pulse phase of the voltage applied as a horizontal transfer signal to the transfer gate group (hereinafter “TGH” t ⁇ ⁇ ) of the CCD 23 for horizontal transfer as ⁇ ⁇ 1, ⁇ ⁇ 2, ⁇ ⁇ Change to the order of 3 to transfer the charge in the horizontal direction (in the direction of output amplifier 26). In the figure, only a part of TGH is shown as “TGH”.
  • the output amplifier 26 is an amplifying means for converting the transferred charge into an electric signal, and generates a voltage corresponding to the transferred charge by the parasitic capacitance of the input node and outputs it.
  • the control circuit 27 includes a line drive circuit 24, a column drive circuit 25, an output amplifier 26, and a drive. Controls each circuit of the dynamic circuit 9. Similarly to the first embodiment, the control circuit 27 has an exposure time control unit 27a that controls the exposure time according to the exposure time obtained by the AE function provided in the solid-state imaging device, and the exposure time control unit 27a Each circuit is also controlled according to the control by.
  • FIG. 6 is a timing chart showing an operation during moving image shooting according to the present embodiment.
  • the “shutter control signal” is a signal output from the control circuit 27 to the drive circuit 9 in order to control the liquid crystal shutter 2 as in the first embodiment.
  • the “transfer signal Tf” is a transfer pulse signal that is output from the line drive circuit 24 to each TGP under the control of the control circuit 27 and transfers charges from the PD to the vertical transfer CCD 22.
  • the “vertical transfer signals V ⁇ 1”, “V ⁇ 2”, and “V ⁇ 3” are output from the line drive circuit 24 to the TGV of each vertical transfer CCD 22 under the control of the control circuit 27 for vertical transfer. This is a pulse signal that transfers charges along the CCD22.
  • the “horizontal transfer signals ⁇ ⁇ 1”, “ ⁇ ⁇ 2”, and “H ⁇ 3” are output from the column drive circuit 25 to the TGH of the horizontal transfer CCD 23 under the control of the control circuit 27, and the horizontal transfer CCD 23 Is a pulse signal for transferring charges along the line.
  • RST is a signal that resets the charge sensing node that converts the charge that is output from the control circuit 27 to the output amplifier 26 and transferred to the output amplifier into a voltage.
  • the charge sensing node is an input node of an amplifier having a parasitic capacitance, and more specifically, a gate terminal of an amplifying transistor.
  • Output is an output signal of the output amplifier 26.
  • the time during which the liquid crystal shutter 2 is made transparent in this (S11), that is, the exposure time is determined according to the exposure time obtained by the AE function of the solid-state imaging device, and the exposure time control unit Controlled by 27a.
  • the liquid crystal shutter 2 is used except for the exposure during moving image shooting. Since all pixels can be shielded from light, it is possible to prevent smear. Therefore, high-speed movie shooting without smear is possible while using a CCD image sensor as the image sensor.
  • the conventional apparatus does not include shutter means, so all pixels are exposed even during exposure. Light continues to be incident on the PD, and a large amount of charge continues to be generated in the PD. At this time, in pixels where the brightness is high, such as the sun, the charge generated in the PD exceeds TGP and overflows to the CCD 22 for vertical transfer. As a result, the overflowing charge is sent to the output amplifier 26, and white vertical lines, or smears, appear in the image. In contrast, in the solid-state imaging device according to the present embodiment, all pixels are shielded by the liquid crystal shutter 2 except during exposure, so that no light enters the PD and smear does not occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

A solid-state imaging device has a solid-state imaging element (4) having pixels and also has a liquid crystal shutter (2) for setting the imaging element (4) to either a state where light enters into all the pixels of the imaging element (4) or a state where all the pixels of the imaging element (4) are shielded from light. During exposure to light, the liquid crystal shutter (2) allows light to enter all the pixels, and in other cases, a moving image is taken with all the pixels shielded from light by the liquid crystal shutter (2).

Description

明 細 書  Specification
固体撮像装置及びその制御方法  Solid-state imaging device and control method thereof
技術分野  Technical field
[0001] 本発明は、固体撮像装置及びその制御方法に関する。  The present invention relates to a solid-state imaging device and a control method thereof.
背景技術  Background art
[0002] 従来より、固体撮像装置に用いられるイメージセンサとして、 CMOS (Complementa ry Metal Oxide Semiconductor)イメージセンサや、 CCD (Charge Coupled Device)ィ メージセンサが知られて 、る。  Conventionally, CMOS (Complementary Metal Oxide Semiconductor) image sensors and CCD (Charge Coupled Device) image sensors are known as image sensors used in solid-state imaging devices.
[0003] CMOSイメージセンサにおいては、露光方式として、ローリングシャッター方式(ライ ンシャッター方式とも!、う)とグローバルシャッター方式(同時シャッター方式或いは一 括シャッター方式とも 、う)がある。  In the CMOS image sensor, there are a rolling shutter method (also known as a line shutter method!) And a global shutter method (also known as a simultaneous shutter method or a batch shutter method) as exposure methods.
[0004] ローリングシャッター方式は、リセット、露光、読み出しという一連の撮像シーケンス を、ライン毎に順番に行う方式であり、 CMOSイメージセンサの中で最も一般的な方 式である。この方式では、画像の上下方向において露光タイミングが異なるため、動 いている被写体を撮影すると、撮影された被写体が不自然にゆがむという問題がある  [0004] The rolling shutter method is a method in which a series of imaging sequences of reset, exposure, and readout are sequentially performed for each line, and is the most common method among CMOS image sensors. In this method, the exposure timing is different in the vertical direction of the image, so when shooting a moving subject, the shot subject is unnaturally distorted.
[0005] 一方、グローバルシャッター方式は、全画素において、同時にリセットし、同時に露 光し、遮光されたノードへ同時に電荷転送する方式であって、全画素での同時露光 を可能にした方式である。この方式では、全画素で露光タイミングが一致するため、 動!、て 、る被写体を撮影しても、撮影された被写体がゆがむことはな 、。 [0005] On the other hand, the global shutter method is a method in which all pixels are reset at the same time, exposed at the same time, and simultaneously transferred to a shielded node, which enables simultaneous exposure in all pixels. . In this method, the exposure timing is the same for all pixels, so even if a moving subject is shot, the shot subject will not be distorted.
[0006] グローバルシャッター方式の CMOSイメージセンサにおいて、例えば、各画素が 5 Tr型画素回路で構成されたものである場合、各画素回路は、光の照射により電荷を 発生するフォトダイオードと、フォトダイオードから電荷保持領域へ電荷を転送する第 1の転送用トランジスタと、電荷保持領域力 信号の読み出し箇所となる読み出しノ ードへ電荷を転送する第 2の転送用トランジスタと、読み出しノードをリセットするリセ ット用トランジスタと、増幅用トランジスタと、ライン選択を行う選択用トランジスタとを有 している。このような構成の CMOSイメージセンサでは、全画素回路において同時に フォトダイオードから電荷保持領域に電荷転送されるので、全画素で露光タイミング がー致し、グローバルシャッター機能を実現することができる。し力しながら、画素回 路を構成する回路要素が多くなるので画素を小さくできず、小型化,低コストィ匕できな いという問題がある。 [0006] In a global shutter type CMOS image sensor, for example, when each pixel is configured by a 5 Tr type pixel circuit, each pixel circuit includes a photodiode that generates an electric charge by light irradiation, and a photodiode. A first transfer transistor that transfers charge from the charge holding region to the charge holding region, a second transfer transistor that transfers charge to the reading node that is the location where the charge holding region force signal is read, and a reset that resets the reading node. A switching transistor, an amplifying transistor, and a selection transistor for performing line selection. In a CMOS image sensor with such a configuration, all pixel circuits are simultaneously Since the charge is transferred from the photodiode to the charge holding area, the exposure timing is the same for all pixels, and the global shutter function can be realized. However, there is a problem that the number of circuit elements constituting the pixel circuit increases, so that the pixel cannot be reduced, and the size and cost cannot be reduced.
[0007] CCDイメージセンサにおいては、フレームを構成する全画素で同時に電荷転送し た後に順次読み出すようにしているので、電荷転送するまでの露光時間が全画素で 一致し、グローバルシャッター機能を実現している。しかしながら、 CMOSイメージセ ンサに比べて、チップコストが高価であること、スミアが発生すること、及び、デジタル 回路の 1チップィ匕が困難であること、等の欠点がある。尚、スミアが発生するとは、太 陽等の高輝度物体を撮影した場合に、転送方向に余剰電荷が移動してしまい、得ら れた画像に真つ白な縦線が生じてしまう現象をいう。  [0007] In CCD image sensors, all pixels that make up the frame are simultaneously read out after charge transfer at the same time, so the exposure time until charge transfer is the same for all pixels, realizing a global shutter function. ing. However, there are drawbacks such as high chip cost, smearing, and difficulty in one-chip digital circuit compared to CMOS image sensors. The occurrence of smear is a phenomenon in which when a high-luminance object such as the sun is photographed, surplus charges move in the transfer direction, and a solid white vertical line is generated in the obtained image. Say.
[0008] また、固体撮像装置が、メカ-カルシャッターを備えたデジタルカメラである場合に は、メカ-カルシャッターを閉じた状態から開いた状態にして全画素で同時に露光を 行い、露光時間経過後にメカ-カルシャッターを閉じて読み出しを行うことにより、グ ローバルシャッター機能を実現することができる。このようにメカ-カルシャッターを用 いれば、イメージセンサが CMOSであっても CCDであっても、低ノイズで、スミアの発 生を防止し、グローバルシャッター機能を実現することができる。しかしながら、メカ- カルシャッターを高速且つ連続的に開閉することは技術的に非常に困難で、それを 無理に製作したとしても、サイズ、消費電力、及びコストが著しく増大するという問題 がある。  [0008] When the solid-state imaging device is a digital camera equipped with a mechanical shutter, exposure is performed simultaneously for all pixels by changing the mechanical shutter from a closed state to an open state. The global shutter function can be realized by closing the mechanical shutter and reading. Using a mechanical shutter in this way, regardless of whether the image sensor is a CMOS or a CCD, low noise, smearing can be prevented, and a global shutter function can be realized. However, it is technically difficult to open and close the mechanical shutter at high speed and continuously, and even if it is forcibly manufactured, there is a problem that the size, power consumption, and cost are significantly increased.
[0009] 本発明は、上記実情に鑑み、高いフレームレートが要求される動画撮影向けのグロ 一バルシャッター機能を有する個体撮像装置及びその制御方法を提供することを目 的とする。  In view of the above circumstances, an object of the present invention is to provide a solid-state imaging device having a global shutter function for moving image shooting that requires a high frame rate and a control method therefor.
特許文献 1:特開平 7— 78954号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-78954
特許文献 2:特開 2003 - 332546号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-332546
特許文献 3 :特開 2004— 14802号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-14802
発明の開示  Disclosure of the invention
[0010] 本発明の第 1の態様に係る固体撮像装置は、複数の画素を有する固体撮像素子と 、前記複数の画素に光が入射する状態、又は、前記複数の画素を遮光する状態に する液晶シャッターとを備え、露光中は前記液晶シャッターにより前記複数の画素に 光が入射する状態にし、露光中以外は前記液晶シャッターにより前記複数の画素を 遮光する状態にして動画撮影を行う、ことを特徴とする。 [0010] A solid-state imaging device according to the first aspect of the present invention includes a solid-state imaging device having a plurality of pixels, A liquid crystal shutter in a state where light is incident on the plurality of pixels or a state in which the plurality of pixels are shielded, and during the exposure, light is incident on the plurality of pixels by the liquid crystal shutter. Except for the inside, moving image shooting is performed with the liquid crystal shutters shielding the plurality of pixels.
[0011] この構成によれば、液晶シャッターを高速の連続シャッターとして機能させることが でき、また全画素同時露光が可能になるので、高フレームレートが要求される動画撮 影向けのグローバルシャッター機能を有した装置を提供することができる。  [0011] According to this configuration, the liquid crystal shutter can function as a high-speed continuous shutter, and all pixels can be exposed simultaneously. Therefore, a global shutter function for moving image shooting that requires a high frame rate is provided. The apparatus which it has can be provided.
[0012] また、本発明の第 2の態様に係る固体撮像装置は、上記第 1の態様において、前 記複数の画素を制御する画素制御手段と、前記画素から出力される信号を読み出 す読出手段と、前記各手段と前記液晶シャッターを制御する制御手段とを備え、前 記動画撮影時に、前記液晶シャッターにより前記複数の画素を遮光する状態にして 、前記複数の画素をリセットし、次に、前記液晶シャッターにより前記複数の画素に光 が入射する状態にして、前記複数の画素にて同時に露光を行い、次に、前記液晶シ ャッターにより前記複数の画素を遮光する状態にして、前記画素から出力される信号 を読み出すように、前記制御手段は前記各手段と前記液晶シャッターを制御する、こ とを特徴とする。  [0012] Further, the solid-state imaging device according to the second aspect of the present invention is the above-described first aspect, wherein the pixel control means for controlling the plurality of pixels and the signal output from the pixels are read out. A reading means; a control means for controlling each of the means and the liquid crystal shutter; and at the time of moving image shooting, the liquid crystal shutter is configured to shield the plurality of pixels and reset the plurality of pixels. In addition, light is incident on the plurality of pixels by the liquid crystal shutter, and the plurality of pixels are exposed simultaneously, and then the plurality of pixels are shielded from light by the liquid crystal shutter. The control means controls each of the means and the liquid crystal shutter so as to read a signal output from a pixel.
[0013] この構成によれば、固体撮像素子として例えば CMOSイメージセンサを用いても、 液晶シャッターにより全画素同時露光が可能になるので、グロ一ノ レシャッター機能 を有した装置を提供することができる。  According to this configuration, even if a CMOS image sensor, for example, is used as the solid-state image sensor, all the pixels can be exposed simultaneously by the liquid crystal shutter, so that an apparatus having a glossy shutter function can be provided. it can.
[0014] また、本発明の第 3の態様に係る固体撮像装置は、上記第 2の態様において、前 記複数の画素の各画素は、光電変換素子、転送用素子、リセット用素子、増幅用素 子、及び選択用素子を有し、前記動画撮影時に、前記液晶シャッターにより前記複 数の画素を遮光する状態にして、前記複数の画素の各画素において前記リセット用 素子及び前記転送用素子を制御して前記光電変換素子をリセットし、次に、前記液 晶シャッターにより前記複数の画素に光が入射する状態にして、前記複数の画素に て同時に露光を行い、次に、前記液晶シャッターにより前記複数の画素を遮光する 状態にして、前記複数の画素の各画素について、前記リセット用素子と前記選択用 素子を制御して出力させた第 1の信号を読み出し、続いて前記転送用素子と前記選 択用素子を制御して出力させた第 2の信号を読み出し、続いて前記第 2の信号から 前記第 1の信号を差し引くように、前記制御手段は前記各手段と前記液晶シャッター を制御する、ことを特徴とする。 [0014] Further, in the solid-state imaging device according to the third aspect of the present invention, in the second aspect, each of the plurality of pixels includes a photoelectric conversion element, a transfer element, a reset element, and an amplification element. An element and a selection element, wherein the plurality of pixels are shielded from light by the liquid crystal shutter at the time of moving image shooting, and the reset element and the transfer element are provided in each pixel of the plurality of pixels. The photoelectric conversion element is reset by control, the light is then incident on the plurality of pixels by the liquid crystal shutter, and the plurality of pixels are simultaneously exposed, and then the liquid crystal shutter is used. In a state where the plurality of pixels are shielded from light, for each pixel of the plurality of pixels, the reset element and the selection element are controlled and read out, and then the first signal is read. Hexene The control means controls the means and the liquid crystal shutter so as to read out the second signal output by controlling the selection element, and then subtract the first signal from the second signal. It is characterized by that.
[0015] この構成によれば、 1回のリセットに対し第 1及び第 2の信号の読み出しが行われて 後者力 前者が差し引かれるので、増幅用素子の素子バラツキによるノイズだけでな ぐ kTCノイズ (リセットノイズ)もキャンセルすることでき、ノイズを少なくして SZNを高 くすることがでさる。 [0015] According to this configuration, the first and second signals are read for one reset and the latter force is subtracted, so the kTC noise is not limited to noise due to element variation of the amplifying element. (Reset noise) can also be canceled, reducing noise and increasing SZN.
[0016] また、本発明の第 4の態様に係る固体撮像装置は、上記第 3の態様において、前 記動画撮影時に、前記制御手段は、最初に行われる前記光電変換素子のリセットを 前記複数の画素にて同時に行うように制御する、ことを特徴とする。  [0016] Further, in the solid-state imaging device according to the fourth aspect of the present invention, in the third aspect, at the time of the moving image shooting, the control unit performs reset of the photoelectric conversion element that is performed first. It is characterized by controlling so that it may perform simultaneously by the pixel of this.
[0017] この構成によれば、動画撮影時に最初に行われる、全画素の光電変換素子のリセ ットを、より短時間で行うことができる。  [0017] According to this configuration, it is possible to reset the photoelectric conversion elements of all the pixels, which is performed first during moving image shooting, in a shorter time.
また、本発明の第 5の態様に係る固体撮像装置は、上記第 1の態様において、前 記複数の画素の各画素に対応して設けられた第 1の電荷転送手段と、前記複数の 画素の各列に対応して設けられた第 2の電荷転送手段と、前記第 2の電荷転送手段 の各々に接続された第 3の電荷転送手段と、電荷を電気信号に変換する増幅手段と 、前記各手段と前記液晶シャッターを制御する制御手段とを備え、前記動画撮影時 に、前記液晶シャッターにより前記複数の画素を遮光する状態力 前記複数の画素 に光が入射する状態にして、前記複数の画素にて同時に露光を行い、次に、前記液 晶シャッターにより前記複数の画素を遮光する状態にして、前記第 1の転送手段によ り各画素で発生した電荷をそれぞれ対応する前記第 2の電荷転送手段へ転送し、次 〖こ、前記第 2及び前記第 3の電荷転送手段により電荷を更に前記増幅手段へ転送し て前記増幅手段により電気信号に変換するように、前記制御手段は前記各手段と前 記液晶シャッターを制御する、ことを特徴とする。  Further, the solid-state imaging device according to the fifth aspect of the present invention is the first aspect, wherein the first charge transfer means provided corresponding to each pixel of the plurality of pixels and the plurality of pixels are provided. A second charge transfer means provided corresponding to each column of the first charge transfer means, a third charge transfer means connected to each of the second charge transfer means, an amplification means for converting the charge into an electric signal, Each of the means and a control means for controlling the liquid crystal shutter, and a state power for shielding the plurality of pixels by the liquid crystal shutter during the moving image shooting so that light is incident on the plurality of pixels, The pixels are simultaneously exposed to light, and then the plurality of pixels are shielded from light by the liquid crystal shutter, and the second charges corresponding to the charges generated in the pixels by the first transfer means are respectively associated. To the charge transfer means, and then The control means controls the means and the liquid crystal shutter so that the charge is further transferred to the amplifying means by the second and third charge transferring means and converted into an electric signal by the amplifying means. It is characterized by that.
[0018] この構成〖こよれば、固体撮像素子として例えば CCDイメージセンサを用いても、露 光中以外 (例えば電荷転送中)は液晶シャッターにより全画素が遮光されるので、スミ ァの発生を防止して高画質な画像を得ることができる。  [0018] According to this configuration, even if a CCD image sensor is used as the solid-state image sensor, all pixels are shielded by the liquid crystal shutter except during exposure (for example, during charge transfer), so that smear is not generated. Therefore, a high-quality image can be obtained.
[0019] また、本発明は、上記の各態様に係る固体撮像装置の他、固体撮像装置の制御方 法として構成することちできる。 [0019] In addition to the solid-state imaging device according to each aspect described above, the present invention provides a method for controlling a solid-state imaging device It can be configured as a law.
図面の簡単な説明  Brief Description of Drawings
[0020] 本発明は、後述する詳細な説明を、下記の添付図面と共に参照すればより明らか になるであろう。  [0020] The present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
[図 1]実施例 1に係る固体撮像装置が備える、撮像素子チップと液晶シャッターの実 装構造を示す図である。  FIG. 1 is a diagram showing the mounting structure of an image sensor chip and a liquid crystal shutter provided in the solid-state imaging device according to Embodiment 1.
[図 2]実施例 1に係る、液晶シャッターが実装された撮像素子チップの回路構成を示 す図である。  FIG. 2 is a diagram illustrating a circuit configuration of an image sensor chip on which a liquid crystal shutter is mounted according to the first embodiment.
[図 3]実施例 1に係る、動画撮影時の動作を示すタイミングチャートである。  FIG. 3 is a timing chart showing an operation during moving image shooting according to the first embodiment.
[図 4]実施例 1の変形例に係る、動画撮影時の動作を示すタイミングチャートである。  FIG. 4 is a timing chart showing an operation at the time of moving image shooting according to a modification of the first embodiment.
[図 5]実施例 2に係る、液晶シャッターが実装された撮像素子チップの回路構成を示 す図である。  FIG. 5 is a diagram showing a circuit configuration of an image sensor chip on which a liquid crystal shutter is mounted according to Example 2.
[図 6]実施例 2に係る、動画撮影時の動作を示すタイミングチャートである。  FIG. 6 is a timing chart showing the operation during moving image shooting according to the second embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、図面を参照しながら本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0022] 図 1は、本発明の実施例 1に係る固体撮像装置が備える、撮像素子チップと液晶シ ャッターの実装構造を示す図である。  FIG. 1 is a diagram illustrating a mounting structure of an imaging element chip and a liquid crystal shutter that are included in the solid-state imaging device according to Embodiment 1 of the present invention.
同図に示したように、本実施例に係る固体撮像装置においては、撮像素子チップ 1 上に液晶シャッター 2が導電性接着剤 3により接着されて実装されている。尚、本実 施例では、導電性接着剤 3により接着している力 液晶シャッター 2に影響が無い程 度の低温で処理可能な半田バンプによる接合によって撮像素子チップ 1上に液晶シ ャッター 2を実装することも可能である。  As shown in the figure, in the solid-state imaging device according to the present embodiment, the liquid crystal shutter 2 is mounted on the imaging element chip 1 by being adhered by the conductive adhesive 3. In this embodiment, the bonding force by the conductive adhesive 3 The liquid crystal shutter 2 is placed on the image sensor chip 1 by bonding with solder bumps that can be processed at a low temperature that does not affect the liquid crystal shutter 2. It can also be implemented.
[0023] 撮像素子チップ 1は、 Si基板の LSIであって、各画素が 4Tr型画素回路で構成され た CMOSイメージセンサ(CMOSの固体撮像素子)、読み出し回路、及び制御回路 などを搭載している。尚、本実施例では、固体撮像素子として CMOSイメージセンサ を適用する力 CMD (Charge Modulation Device)イメージセンサなどのその他のィメ ージセンサを適用することも可能である。 [0024] 液晶シャッター 2は、透過型の液晶シャッターであって、撮像素子チップ 1が搭載す る制御回路の制御の下に液晶が透明 Z不透明に制御され、 CMOSイメージセンサ の全画素に光(映像光)が入射する状態、又は、その全画素を遮光する状態にする。 [0023] The image pickup device chip 1 is a Si substrate LSI, and includes a CMOS image sensor (CMOS solid-state image pickup device) in which each pixel is configured by a 4Tr type pixel circuit, a readout circuit, a control circuit, and the like. Yes. In this embodiment, it is also possible to apply other image sensors such as a CMD (Charge Modulation Device) image sensor that applies a CMOS image sensor as a solid-state imaging device. The liquid crystal shutter 2 is a transmissive liquid crystal shutter, and the liquid crystal is controlled to be transparent and opaque under the control of a control circuit mounted on the image sensor chip 1, and light ( (Image light) is incident, or all pixels are shielded.
[0025] 尚、液晶は、既にテレビ、ノ ソコン、ワークステーション等のディスプレイに使われて いるように、動画に対応して明暗のスイッチングが可能であるので、本実施例では、こ れを固体撮像装置のシャッターとして用いることで、高速の連続シャッターを実現し、 高いフレームレートの動画撮影を可能にしている。液晶シャッター 2においては、テレ ビ程度の動画を表現する程度の高速動作が可能であるとする。  [0025] Note that the liquid crystal can be switched between light and dark according to the moving image as already used in displays of televisions, computers, workstations, and the like. By using it as a shutter for an imaging device, it realizes a high-speed continuous shutter and enables high frame rate movie shooting. It is assumed that the liquid crystal shutter 2 is capable of high-speed operation that can express a moving image of television.
[0026] 図 2は、液晶シャッター 2が実装された撮像素子チップ 1の回路構成を示す図であ る。 FIG. 2 is a diagram showing a circuit configuration of the image sensor chip 1 on which the liquid crystal shutter 2 is mounted.
同図において、 CMOSイメージセンサ 4は、 N行(ライン) X M列(カラム)の複数の 画素で構成されており、各画素の画素回路は、枠 5に示すように、 4Tr型画素回路で 構成されている。 4Tr型画素回路は、光の照射により電荷を発生する光電変換素子 であるフォトダイオード (以下「PD」 t 、う)と、 PD力も信号の読み出し箇所となる読み 出しノード(以下「FD」 t 、う (FD: Floating Diffiision) )へ電荷を転送する転送用素子 である転送用トランジスタ(以下「TG— Tr」という(TG : Transfer Gate) )と、 FDをリセ ットするリセット用素子であるリセット用トランジスタ(以下「RST—Tr」という)と、ゲート 端子が FDに接続された増幅用素子である増幅用トランジスタ (以下「SF—Tr」という (SF: Source Follower) )と、 CMOSイメージセンサ 4の各カラム出力に共通接続され た複数ラインの中から 1ラインを選択する選択用素子である選択用トランジスタ (以下 「SLCT— Tr」という)とを備えている。尚、 RST— Tr、 TG— Tr、 SF— Tr、及び、 SL CT— Trは、 nチャンネルの MOSトランジスタである。また、 RSTは RST— Trを制御 する信号、 TGは TG— Trを制御する信号、 SLCTは SLCT— Trを制御する信号、 V DDは電源電圧、 VRはリセット電圧を示している。  In the figure, the CMOS image sensor 4 is composed of a plurality of pixels in N rows (lines) and XM columns (columns), and the pixel circuit of each pixel is composed of a 4Tr type pixel circuit as shown in frame 5. Has been. The 4Tr pixel circuit consists of a photodiode (hereinafter referred to as “PD” t), which is a photoelectric conversion element that generates charges when irradiated with light, and a reading node (hereinafter referred to as “FD” t, where PD force is also a signal readout location). (FD: Floating Diffiision)) Transfer transistor (hereinafter referred to as "TG-Tr") (TG: Transfer Gate) that transfers charge to FD and reset device that resets FD Transistor (hereinafter referred to as “RST-Tr”), amplification transistor (hereinafter referred to as “SF—Tr” (SF)) whose gate terminal is connected to FD, and CMOS image sensor 4 A selection transistor (hereinafter referred to as “SLCT-Tr”), which is a selection element for selecting one line from a plurality of lines commonly connected to each column output, is provided. RST-Tr, TG-Tr, SF-Tr, and SL CT-Tr are n-channel MOS transistors. RST is a signal for controlling RST-Tr, TG is a signal for controlling TG-Tr, SLCT is a signal for controlling SLCT-Tr, V DD is a power supply voltage, and VR is a reset voltage.
[0027] ライン制御回路 (画素制御手段の一例) 6は、 CMOSイメージセンサ 4の各画素回 路をライン毎に制御する。読み出し回路 (読出手段の一例) 7は、 CMOSイメージセ ンサ 4の各カラムから出力される各画素の信号を読み出す。また、読み出し回路 7は CDS回路を含み、露光により生じた電荷力 FDに有る時に読み出した信号から、リセ ット時に読み出した信号を差し引いた差信号を出力する。 ADC (ADコンバータ) 8は 、読み出し回路 7の出力であるアナログ信号をデジタル信号に変換して出力する。駆 動回路 9は、液晶シャッター 2を駆動する。 A line control circuit (an example of pixel control means) 6 controls each pixel circuit of the CMOS image sensor 4 for each line. A readout circuit (an example of readout means) 7 reads out the signal of each pixel output from each column of the CMOS image sensor 4. Further, the readout circuit 7 includes a CDS circuit, and from the signal read out when the charge force FD generated by exposure is present, A difference signal obtained by subtracting the signal read at the time of the output is output. The ADC (AD converter) 8 converts the analog signal output from the readout circuit 7 into a digital signal and outputs it. The drive circuit 9 drives the liquid crystal shutter 2.
[0028] 制御回路 (制御手段の一例) 10は、ライン制御回路 6、読み出し回路 7、 ADC8、及 び、駆動回路 9の各回路を制御する。また、制御回路 10は、当該固体撮像装置が備 える AE (Automatic Exposure)機能により求められた露光時間に応じて露光時間を 制御する露光時間制御部 10aを有し、露光時間制御部 10aによる制御に応じて各回 路の制御も行う。尚、 AE機能により求められる露光時間は、被写体の明るさに応じて 求められるものである。また、 AE機能は、撮像素子チップ 1に搭載することもできるし 、撮像素子チップ 1外に搭載することもできる。  Control circuit (an example of control means) 10 controls each circuit of the line control circuit 6, the read circuit 7, the ADC 8, and the drive circuit 9. The control circuit 10 has an exposure time control unit 10a that controls the exposure time according to the exposure time obtained by the AE (Automatic Exposure) function provided in the solid-state imaging device, and is controlled by the exposure time control unit 10a. Each circuit is also controlled accordingly. Note that the exposure time required by the AE function is determined according to the brightness of the subject. Further, the AE function can be mounted on the image sensor chip 1 or can be mounted outside the image sensor chip 1.
[0029] 次に、図 2に示した回路構成の動作として、動画撮影時の動作について詳細に説 明する。  Next, as the operation of the circuit configuration shown in FIG. 2, the operation during moving image shooting will be described in detail.
図 3は、本実施例に係る動画撮影時の動作を示すタイミングチャートである。  FIG. 3 is a timing chart showing an operation during moving image shooting according to the present embodiment.
[0030] 同図において、「シャッター制御信号」は、液晶シャッター 2を制御するために制御 回路 10から駆動回路 9へ出力される信号である。尚、駆動回路 9は、このシャッター 制御信号に応じて液晶シャッター 2を透明 Z不透明にするように駆動する。 In FIG. 3, the “shutter control signal” is a signal output from the control circuit 10 to the drive circuit 9 in order to control the liquid crystal shutter 2. The drive circuit 9 drives the liquid crystal shutter 2 so as to make it transparent Z opaque in accordance with the shutter control signal.
[0031] また、「1行目制御信号」、「2行目制御信号」、 ···,「; j行目制御信号」、 ···,「N行目 制御信号」の各制御信号は、制御回路 10の制御の下に、ライン制御回路 6から CM OSイメージセンサ 4の各ラインの画素の画素回路へ出力される信号である。これらの 各制御信号は、画素回路(図 2の枠 5参照)における、 RST— Trを制御する信号であ る「リセット信号」(RST)、 TG—Trを制御する信号である「転送信号」 (TG)、及び、 S LCT—Trを制御する信号である「選択信号」 (SLCT)からなる。 In addition, the control signals of “first row control signal”, “second row control signal”,..., “J row control signal”,. These signals are output from the line control circuit 6 to the pixel circuits of the pixels of the CMOS image sensor 4 under the control of the control circuit 10. Each of these control signals is a “reset signal” (RST) that controls the RST-Tr and a “transfer signal” that controls the TG-Tr in the pixel circuit (see frame 5 in FIG. 2). (TG) and “selection signal” (SLCT) which is a signal for controlling S LCT-Tr.
[0032] また、「読み出し回路 CDS回路動作」は、 CDS回路を含む読み出し回路 7の動作 を示す。また、「ADC回路動作」は、 ADC8の動作を示す。 In addition, “read circuit CDS circuit operation” indicates the operation of the read circuit 7 including the CDS circuit. “ADC circuit operation” indicates the operation of ADC8.
図 3のタイミングチャートに示したように、動画撮影時の動作では、まず、(S1)シャツ ター制御信号により、液晶シャッター 2を不透明にして、 CMOSイメージセンサ 4の全 画素を遮光する。  As shown in the timing chart of FIG. 3, in the operation at the time of moving image shooting, first, (S1) the shutter control signal makes the liquid crystal shutter 2 opaque and blocks all pixels of the CMOS image sensor 4.
[0033] 続いて、(S2)ライン制御回路 6からの制御信号により、 CMOSイメージセンサ 4の 1 行目力も N行目までライン毎に順番に、各ラインの各画素の画素回路において、次 の(S2a)の動作を行う。 [0033] Next, (S2) 1 of the CMOS image sensor 4 is controlled by a control signal from the line control circuit 6. As for the row power, the following operation (S2a) is performed in the pixel circuit of each pixel in each line in order up to the Nth row.
[0034] (S2a)リセット信号と転送信号を同時に ON、 OFFして RST— Trと TG— Trとを同 時に ONさせ、 PDをリセットする(先行リセット: Al)。 [S2a] The reset signal and transfer signal are turned ON and OFF simultaneously to turn ON RST-Tr and TG-Tr at the same time to reset the PD (advanced reset: Al).
続いて、(S3)シャッター制御信号により、液晶シャッター 2を透明にする。これにより 、 CMOSイメージセンサ 4の全画素に同時に光(映像光)が入射し、全画素同時露光 が行われる(1フレーム分の露光)。このとき、各画素の PDでは、光の照射により電荷 が発生する。  Subsequently, (S3) the liquid crystal shutter 2 is made transparent by the shutter control signal. As a result, light (image light) is simultaneously incident on all the pixels of the CMOS image sensor 4, and simultaneous exposure of all the pixels is performed (exposure for one frame). At this time, charges are generated in the PD of each pixel due to light irradiation.
[0035] 尚、この(S3)における液晶シャッター 2を透明にしている時間、すなわち露光時間 は、当該固体撮像装置が備える AE機能により求められた露光時間に応じて決定さ れ、露光時間制御部 10aにより制御される。  Note that the time during which the liquid crystal shutter 2 is made transparent in this (S3), that is, the exposure time, is determined according to the exposure time obtained by the AE function of the solid-state imaging device, and the exposure time control unit Controlled by 10a.
[0036] 続いて、(S4)シャッター制御信号により、液晶シャッター 2を再び不透明にして、 C MOSイメージセンサ 4の全画素を再び遮光する。  Subsequently, (S4) the liquid crystal shutter 2 is made opaque again by the shutter control signal, and all pixels of the CMOS image sensor 4 are shielded from light again.
続いて、(S5)ライン制御回路 6からの制御信号により、 CMOSイメージセンサ 4の 1 行目力も N行目までライン毎に順番に、各ラインの各画素の画素回路において、次 の(S5a)〜(S5e)の動作を順に行うと共に、 (S5b)では読み出し回路 7も動作させ、 (S5d)では読み出し回路 7及び ADC8も動作させる(1フレーム分の出力動作)。  Subsequently, (S5) In response to a control signal from the line control circuit 6, the first row force of the CMOS image sensor 4 is also sequentially applied to each pixel line in each pixel up to the Nth row. The operations of .about. (S5e) are performed in order, the readout circuit 7 is also operated in (S5b), and the readout circuit 7 and ADC8 are also operated in (S5d) (output operation for one frame).
[0037] (S5a)リセット信号を ON、 OFFして RST— Trを ONさせ、 FDをリセットする(読み 出しリセット: A2)。  [0037] (S5a) Turn the reset signal ON and OFF to turn on the RST-Tr and reset the FD (Reading reset: A2).
(S5b)選択信号を ON、 OFFして SLCT— Trを ONさせ、 SF— Trからリセット時の 信号を出力させる(選択行リセットレベル読み出し: A3)。ここで出力されたリセット時 の信号は、読み出し回路 7により読み出される(リセットレベルサンプリング: A4)。  (S5b) Turn ON / OFF the selection signal to turn on SLCT-Tr, and output the reset signal from SF-Tr (Read selected row reset level: A3). The reset signal output here is read out by the readout circuit 7 (reset level sampling: A4).
[0038] (S5c)転送信号を ON、 OFFして TG—Trを ONさせ、 PDに蓄積された電荷を FD へ転送する(信号電荷転送: A5)。 [0038] (S5c) The transfer signal is turned ON / OFF to turn TG-Tr ON, and the charge accumulated in the PD is transferred to the FD (signal charge transfer: A5).
(S5d)選択信号を ON、 OFFして SLCT— Trを ONさせ、 SF— Tr力ら、 PDに蓄積 された電荷が FDへ転送された時の信号を出力させる(選択行信号読み出し: A6)。 ここで出力された信号は、読み出し回路 7により読み出され (信号読み出し: A7)、読 み出し回路 7の CDS回路により、各カラム毎に、上記(S5b)で読み出されたリセット 時の信号が差し引かれ、その差信号が出力される。これにより、リセット時の信号レべ ルが毎回微妙に異なるリセットノイズ (kTCノイズ)、及び、カラム毎の SF—Trの素子 ノ ツキによるノイズを同時にキャンセルすることができる。そして、読み出し回路 (C DS回路) 7から出力された差信号は、 ADC8によりデジタル信号に変換されて出力 される。 (S5d) Turn ON / OFF the selection signal to turn on SLCT-Tr, and output the signal when the charge accumulated in PD is transferred to FD, such as SF-Tr force (read out selected row signal: A6) . The signal output here is read out by the readout circuit 7 (signal readout: A7), and reset by the CDS circuit of the readout circuit 7 in the above (S5b) for each column. The hour signal is subtracted and the difference signal is output. This makes it possible to simultaneously cancel the reset noise (kTC noise), which is slightly different each time the signal level at the time of resetting, and the noise due to SF-Tr element noise for each column. The difference signal output from the readout circuit (CDS circuit) 7 is converted into a digital signal by the ADC 8 and output.
[0039] (S5e)上記(S2a)と同様に、リセット信号と転送信号を同時に ON、 OFFして RST — Trと TG— Trとを同時に ONさせ、 PDをリセットする(先行リセット: Al)。  [0039] (S5e) Similarly to (S2a) above, the reset signal and the transfer signal are turned ON and OFF simultaneously to turn ON RST-Tr and TG-Tr simultaneously, and the PD is reset (advanced reset: Al).
[0040] そして、上記(S5)の動作が完了したら、上記(S3)へ戻り、同様にして、次の 1フレ ーム分の露光及び出力の動作が開始される。  [0040] When the operation in (S5) is completed, the process returns to (S3), and similarly, exposure and output operations for the next one frame are started.
このように 1フレーム分の露光及び出力を繰り返すことによって、動画撮影が行われ る。  In this way, moving image shooting is performed by repeating exposure and output for one frame.
[0041] 以上、本実施例に係る固体撮像装置によれば、撮像素子チップ 1上に実装された 液晶シャッター 2によって、各画素が 4Tr型画素回路で構成された CMOSイメージセ ンサを用いながらも全画素同時露光を可能にするグロ一バルシャッター機能を実現 することができるので、動いている被写体を撮影しても、撮影された被写体がゆがむ ことはなぐまた、各画素が 4Tr型画素回路で構成されているので、小型化'低コスト 化が可能になる。  As described above, according to the solid-state imaging device according to the present embodiment, the liquid crystal shutter 2 mounted on the imaging element chip 1 uses the CMOS image sensor in which each pixel is configured by a 4Tr type pixel circuit. A global shutter function that enables simultaneous exposure of all pixels can be realized, so that even if a moving subject is shot, the shot subject will not be distorted. In addition, each pixel is a 4Tr type pixel circuit. Since it is configured, it is possible to reduce the size and cost.
[0042] また、液晶シャッター 2により CMOSイメージセンサ 4の全画素への光の入射とその 遮光を切り替えることによって、動画撮影時に、その光の入射と遮光を高速且つ連続 的に繰り返すことが可能となり、メカ-カルシャッターを使用した場合のように、サイズ 、消費電力、及びコストが著しく増大するという問題もない。  [0042] In addition, by switching between the incidence of light on all pixels of the CMOS image sensor 4 and the light shielding by the liquid crystal shutter 2, it becomes possible to repeat the light incidence and light shielding at high speed and continuously during movie shooting. There is no problem that the size, power consumption, and cost are significantly increased as in the case of using a mechanical shutter.
[0043] また、本実施例に係る固体撮像装置では、各画素の画素回路として 4Tr型画素回 路を用いることによって PDを基板内部 (撮像素子チップ 1内部)に埋め込む構造とす ることができるので、基板表面に多数ある結晶欠陥に起因する暗電流ノイズの影響を 少、なくすることができる。  [0043] Further, in the solid-state imaging device according to the present embodiment, a PD can be embedded in the substrate (inside the imaging device chip 1) by using a 4Tr type pixel circuit as the pixel circuit of each pixel. Therefore, the influence of dark current noise caused by a large number of crystal defects on the substrate surface can be reduced.
[0044] また、本実施例に係る固体撮像装置では、各画素の画素回路として 4Tr型画素回 路を用いて、上記(S5a)の 1回の読み出しリセットに対し、上記(S5b)のリセットレべ ル読み出しと上記(S5d)の信号読み出しが行われるので、 CDS回路によって、 SF —Trの素子バラツキによるノイズだけでなぐ kTCノイズ (リセットノイズ)もキャンセル することでき、ノイズを少なくして SZNを高くすることができる。 Further, in the solid-state imaging device according to the present embodiment, a 4Tr type pixel circuit is used as the pixel circuit of each pixel, and the reset level of (S5b) is compared to the single readout reset of (S5a). Signal reading and the above signal reading (S5d) are performed. —KTC noise (reset noise) that can be canceled out only by noise due to element variations of Tr can be canceled, and SZN can be increased by reducing noise.
[0045] 尚、本実施例に係る固体撮像装置では、画素回路として 4Tr型画素回路を用いた 力 例えば、 TG— Trを省いた 3Tr型画素回路、又は、 2画素で RST— Trと SF— Tr と SLCT— Trを共用する 4Tr— Tr共用型画素回路を用いることも可能である。例え ば、 3Tr型画素回路を用いた場合には、 1フレームについて、液晶シャッター 2を不 透明にしてリセットを行い、次に透明にして露光を行い、次に不透明にして読み出す ということを行うことで、全画素同時露光が可能になる。  Note that in the solid-state imaging device according to the present embodiment, a force using a 4Tr type pixel circuit as a pixel circuit, for example, a 3Tr type pixel circuit without TG-Tr, or two pixels, RST-Tr and SF— It is also possible to use a 4Tr-Tr shared pixel circuit that shares Tr and SLCT-Tr. For example, if a 3Tr type pixel circuit is used, reset the liquid crystal shutter 2 with the liquid crystal shutter 2 opaque, then perform the exposure with the transparency, and then read with the opaque Thus, all pixels can be exposed simultaneously.
[0046] また、本実施例に係る固体撮像装置にお!、て、動画撮影時の動作を図 3に示した タイミングチャートを用 Vヽて説明したが、このタイミングチャートにお 、て最初に行われ る上記(S2)の動作では、 CMOSイメージセンサ 4の 1行目力 N行目までライン毎に 順番に、各ラインの各画素の画素回路において上記(S2a)の動作を行うものであつ た力 これを、図 4に示すタイミングチャートのように、 CMOSイメージセンサ 4の全ラ イン同時に、各ラインの各画素の画素回路において上記(S2a)の動作を行うように 構成することもできる。これにより、最初に行われる、全画素の画素回路に対する先 行リセットを短時間で行うことができ、フレームレートをより高めることが可能になる。  [0046] Further, in the solid-state imaging device according to the present embodiment, the operation at the time of moving image shooting has been described using the timing chart shown in FIG. 3. First, in this timing chart, In the operation of (S2) to be performed, the operation of (S2a) is performed in the pixel circuit of each pixel in each line in order for each line up to the first line Nth line of the CMOS image sensor 4. As shown in the timing chart of FIG. 4, it is also possible to perform the above operation (S2a) in the pixel circuit of each pixel in each line simultaneously with all the lines of the CMOS image sensor 4. As a result, the first reset for the pixel circuits of all the pixels, which is performed first, can be performed in a short time, and the frame rate can be further increased.
[0047] また、本実施例に係る固体撮像装置において、撮像素子チップ 1に、カラー処理、 ガンマ処理、輪郭補正処理、 AWB (Automatic White Balance)処理などの画像処理 回路を、更に内蔵させるように構成することも可能である。  In the solid-state imaging device according to the present embodiment, the image sensor chip 1 is further provided with an image processing circuit such as color processing, gamma processing, contour correction processing, and AWB (Automatic White Balance) processing. It is also possible to configure.
実施例 2  Example 2
[0048] 本発明の実施例 2に係る固体撮像装置は、実施例 1に係る固体撮像装置において CMOSイメージセンサの代わりに CCDイメージセンサを用いるようにした態様である 。すなわち、本実施例に係る固体撮像装置は、 CCDイメージセンサを搭載した撮像 素子チップ上に、実施例 1と同様に、液晶シャッターを実装し、この液晶シャッターの 駆動により、 CCDイメージセンサへの光(映像光)の入射とその遮光を切り替えるよう にしたものである。  [0048] The solid-state imaging device according to the second embodiment of the present invention is an aspect in which a CCD image sensor is used instead of the CMOS image sensor in the solid-state imaging device according to the first embodiment. That is, in the solid-state imaging device according to the present embodiment, a liquid crystal shutter is mounted on the image sensor chip on which the CCD image sensor is mounted, and light to the CCD image sensor is driven by driving the liquid crystal shutter. (Image light) is switched between incident and shading.
[0049] 図 5は、本実施例に係る固体撮像装置にお!、て、液晶シャッターが実装された撮像 素子チップの回路構成を示す図である。尚、同図において、図 2に示した要素と同一 の要素については同一の符号を付している。 FIG. 5 is a diagram showing a circuit configuration of an imaging element chip on which a liquid crystal shutter is mounted in the solid-state imaging device according to the present embodiment. In the figure, the same elements as shown in FIG. These elements are denoted by the same reference numerals.
[0050] 図 5において、 CCDイメージセンサ 21は、 N行(ライン) X M列(カラム)の複数の画 素を有する IT (Interline Transfer)型の CCDイメージセンサであって、各画素には PD が設けられ、各列の PDには隣接して垂直転送用 CCD (第 2の電荷転送手段の一例 ) 22が設けられ、各垂直転送用 CCD22には水平転送用 CCD (第 3の電荷転送手段 の一例) 23が接続されている。ここで、 PDは、光の照射により電荷を発生する光電変 換素子であるフォトダイオードである。垂直転送用 CCD22は、電荷を垂直方向(水 平転送用 CCD23の方向)に転送する電荷転送手段である。水平転送用 CCD23は 、電荷を水平方向(出力アンプ 26の方向)に転送する電荷転送手段である。尚、同 図では、模式的に、各垂直転送用 CCD22と水平転送用 CCD23とを転送方向も含 めて太線矢印で示している。但し、垂直転送用 CCD22については、 1カラム目、 2力 ラム目、及び、最終カラム目のみを示している。また、 CCDイメージセンサ 21におい て、各 PDは、隣接する垂直転送用 CCDと転送ゲート(第 1の電荷転送手段の一例, 以下「TGP」という)を介して接続されている。尚、同図では、一部の TGPのみを「TG P」と示している。  In FIG. 5, a CCD image sensor 21 is an IT (Interline Transfer) type CCD image sensor having a plurality of pixels of N rows (lines) XM columns (columns), and each pixel has a PD. A vertical transfer CCD (an example of the second charge transfer means) 22 is provided adjacent to each column PD, and each vertical transfer CCD 22 has a horizontal transfer CCD (of the third charge transfer means). Example) 23 is connected. Here, PD is a photodiode, which is a photoelectric conversion element that generates charges when irradiated with light. The vertical transfer CCD 22 is charge transfer means for transferring charges in the vertical direction (the direction of the horizontal transfer CCD 23). The horizontal transfer CCD 23 is charge transfer means for transferring charges in the horizontal direction (in the direction of the output amplifier 26). In the figure, the vertical transfer CCD 22 and the horizontal transfer CCD 23 are schematically shown by bold arrows including the transfer direction. However, for the vertical transfer CCD 22, only the first column, the second force ram, and the last column are shown. In the CCD image sensor 21, each PD is connected to an adjacent vertical transfer CCD via a transfer gate (an example of first charge transfer means, hereinafter referred to as “TGP”). In the figure, only some TGPs are shown as “TG P”.
[0051] ライン駆動回路 24は、各 TGPに転送信号 (Tf)として正の電圧パルスを与えて各 P Dに蓄積された電荷を隣接する垂直転送用 CCD22に転送させること、及び、垂直転 送用 CCD22の転送ゲート群(以下「TGV」 t 、う)に垂直転送用信号として与える電 圧の正のパルス位相を、 ν φ 1, νφ 2, νφ 3の順に変えて、電荷を垂直方向(水平 転送用 CCD23の方向)に転送させることを行う。尚、同図では、一部の TGVのみを「 TGV」と示している。  [0051] The line driving circuit 24 applies a positive voltage pulse to each TGP as a transfer signal (Tf) to transfer the charge accumulated in each PD to the adjacent vertical transfer CCD 22, and for vertical transfer. By changing the positive pulse phase of the voltage applied to the CCD22 transfer gate group (hereinafter “TGV” t) as the vertical transfer signal in the order of ν φ 1, νφ 2 and νφ 3, Transfer in the direction of CCD23 for transfer). In the figure, only some TGVs are indicated as “TGV”.
[0052] カラム駆動回路 25は、水平転送用 CCD23の転送ゲート群(以下「TGH」 t ヽぅ)に 水平転送信号として与える電圧の正のパルス位相を、 Η φ 1, Η φ 2, Η φ 3の順に変 えて、電荷を水平方向(出力アンプ 26の方向)に転送させることを行う。尚、同図では 、一部の TGHのみを「TGH」と示している。  [0052] The column drive circuit 25 determines the positive pulse phase of the voltage applied as a horizontal transfer signal to the transfer gate group (hereinafter “TGH” t ヽ ぅ) of the CCD 23 for horizontal transfer as Η φ 1, Η φ 2, Η φ Change to the order of 3 to transfer the charge in the horizontal direction (in the direction of output amplifier 26). In the figure, only a part of TGH is shown as “TGH”.
[0053] 出力アンプ 26は、転送された電荷を電気信号に変換する増幅手段であって、入力 ノードの寄生容量により、転送された電荷に応じた電圧を発生し、これを出力する。 制御回路 27は、ライン駆動回路 24、カラム駆動回路 25、出力アンプ 26、及び、駆 動回路 9の各回路を制御する。また、制御回路 27は、実施例 1と同様に、当該固体 撮像装置が備える AE機能により求められた露光時間に応じて露光時間を制御する 露光時間制御部 27aを有し、露光時間制御部 27aによる制御に応じて各回路の制御 も行う。 The output amplifier 26 is an amplifying means for converting the transferred charge into an electric signal, and generates a voltage corresponding to the transferred charge by the parasitic capacitance of the input node and outputs it. The control circuit 27 includes a line drive circuit 24, a column drive circuit 25, an output amplifier 26, and a drive. Controls each circuit of the dynamic circuit 9. Similarly to the first embodiment, the control circuit 27 has an exposure time control unit 27a that controls the exposure time according to the exposure time obtained by the AE function provided in the solid-state imaging device, and the exposure time control unit 27a Each circuit is also controlled according to the control by.
[0054] 次に、図 5に示した回路構成の動作として、動画撮影時の動作について詳細に説 明する。  Next, as the operation of the circuit configuration shown in FIG. 5, the operation during moving image shooting will be described in detail.
図 6は、本実施例に係る動画撮影時の動作を示すタイミングチャートである。  FIG. 6 is a timing chart showing an operation during moving image shooting according to the present embodiment.
[0055] 同図において、「シャッター制御信号」は、実施例 1と同様に、液晶シャッター 2を制 御するために制御回路 27から駆動回路 9へ出力される信号である。  In the same figure, the “shutter control signal” is a signal output from the control circuit 27 to the drive circuit 9 in order to control the liquid crystal shutter 2 as in the first embodiment.
また、「転送信号 Tf」は、制御回路 27の制御の下に、ライン駆動回路 24から各 T GPへ出力され、 PDから垂直転送用 CCD22に電荷を転送する転送パルス信号であ る。「垂直転送信号 V φ 1」, 「V φ 2」, 「V φ 3」は、制御回路 27の制御の下に、ライ ン駆動回路 24から各垂直転送用 CCD22の TGVに出力され、垂直転送用 CCD22 に沿って電荷を転送するパルス信号である。「水平転送信号 Η φ 1」, 「Η φ 2」, 「H φ 3」は、制御回路 27の制御の下に、カラム駆動回路 25から水平転送用 CCD23の TGHに出力され、水平転送用 CCD23に沿って電荷を転送するパルス信号である。  The “transfer signal Tf” is a transfer pulse signal that is output from the line drive circuit 24 to each TGP under the control of the control circuit 27 and transfers charges from the PD to the vertical transfer CCD 22. The “vertical transfer signals V φ 1”, “V φ 2”, and “V φ 3” are output from the line drive circuit 24 to the TGV of each vertical transfer CCD 22 under the control of the control circuit 27 for vertical transfer. This is a pulse signal that transfers charges along the CCD22. The “horizontal transfer signals Η φ 1”, “Η φ 2”, and “H φ 3” are output from the column drive circuit 25 to the TGH of the horizontal transfer CCD 23 under the control of the control circuit 27, and the horizontal transfer CCD 23 Is a pulse signal for transferring charges along the line.
[0056] また、「RST」は、制御回路 27から出力アンプ 26へ出力され、出力アンプに転送さ れた電荷を電圧に変換する電荷センシングノードをリセットする信号である。電荷セン シングノードは、寄生容量のあるアンプの入力ノードであり、さらに具体的には、増幅 用トランジスタのゲート端子である。「出力」は、出力アンプ 26の出力信号である。  “RST” is a signal that resets the charge sensing node that converts the charge that is output from the control circuit 27 to the output amplifier 26 and transferred to the output amplifier into a voltage. The charge sensing node is an input node of an amplifier having a parasitic capacitance, and more specifically, a gate terminal of an amplifying transistor. “Output” is an output signal of the output amplifier 26.
[0057] 同図のタイミングチャートに示したように、動画撮影時の動作では、まず、(S11)シ ャッター制御信号により、液晶シャッター 2を不透明から透明にする。これにより、全画 素の PDに光(映像光)が入射し、全画素同時露光が行われる(1フレーム分の露光) 。このとき、各画素の PDでは、光の照射により電荷が発生する。  [0057] As shown in the timing chart of the figure, in the operation during moving image shooting, first, (S11) the liquid crystal shutter 2 is changed from opaque to transparent by a shutter control signal. As a result, light (image light) enters the PD of all pixels, and all pixels are exposed simultaneously (exposure for one frame). At this time, charges are generated in the PD of each pixel by light irradiation.
[0058] 尚、この(S11)における液晶シャッター 2を透明にしている時間、すなわち露光時 間は、当該固体撮像装置が備える AE機能により求められた露光時間に応じて決定 され、露光時間制御部 27aにより制御される。  Note that the time during which the liquid crystal shutter 2 is made transparent in this (S11), that is, the exposure time, is determined according to the exposure time obtained by the AE function of the solid-state imaging device, and the exposure time control unit Controlled by 27a.
[0059] 露光時間分の露光が終了すると、続いて、次の(S12)〜(S14)を行って、 1フレー ム分の出力動作を行う。 [0059] When exposure for the exposure time is completed, the following (S12) to (S14) are performed, and one frame Perform the output operation for the number of seconds.
まず、(S 12)シャッター制御信号により、液晶シャッターを不透明にして、全画素の PDを遮光する。  First, (S12) the liquid crystal shutter is made opaque by the shutter control signal, and the PDs of all pixels are shielded from light.
[0060] 続いて、(S 13)ライン駆動回路 24から全 TGPに、転送信号 (TF)として正の電圧 パルスを与える。これにより各 PDに蓄積された電荷がそれぞれ隣接する垂直転送用 Subsequently, (S 13) A positive voltage pulse is given as a transfer signal (TF) from the line drive circuit 24 to all TGPs. As a result, the charges accumulated in each PD are adjacent to each other for vertical transfer.
CCD22に転送される(全画素同時転送)。 Transferred to CCD22 (simultaneous transfer of all pixels).
[0061] 続いて、(S14) 1ライン目カゝら最終ライン (Nライン)目までについて、ライン毎に川頁 番に、次の(S14a)及び (S14b)の動作である 1ライン分の出力動作(1ライン分の電 荷を出力アンプ 26で読み出す動作)を行う。 [0061] Next, (S14) from the first line to the last line (N line), the next page (S14a) and (S14b) for one line is displayed for each line. Performs output operation (operation to read charge for one line with output amplifier 26).
[0062] (S14a)ライン駆動回路 24から垂直転送用 CCD22の TGVに垂直転送信号として 与える電圧の正のパルス位相を、 νφ 1、νφ 2、ν φ 3の順に変えて、電荷を 1ライン 分垂直方向(水平転送用 CCD23の方向)へ転送する。これにより、 1ライン分の電荷 が水平転送用 CCD23に転送される。 [0062] (S14a) The positive pulse phase of the voltage applied as a vertical transfer signal from the line drive circuit 24 to the TGV of the vertical transfer CCD 22 is changed in the order of νφ 1, νφ 2, and ν φ 3, and the charge is supplied for one line. Transfer in the vertical direction (direction of CCD23 for horizontal transfer). As a result, the charge for one line is transferred to the CCD 23 for horizontal transfer.
[0063] (S14b)水平転送用 CCD23に転送された 1ライン分の電荷における、 1カラム目か ら最終カラム (Mカラム)目までについて、カラム毎に j噴番に、次の(S14b— 1)〜(S1[0063] (S14b) From the first column to the last column (M column) in the charge for one line transferred to the CCD 23 for horizontal transfer, the next (S14b— 1 ) ~ (S1
4b— 3)の動作を行う。 4b— Perform step 3).
[0064] (S14b— 1)制御回路 27からの信号 (RST)により、出力アンプ 26の入力ノードをリ セットする。  [0064] (S14b—1) The input node of the output amplifier 26 is reset by the signal (RST) from the control circuit 27.
(S 14b— 2)ライン駆動回路 24から水平転送用 CCD23の TGHに水平転送信号と して与える電圧の正のパルス位相を、 Η φ 1、Η φ 2、Η φ 3の順に変えて、電荷を 1 カラム分水平方向(出力アンプ 26の方向)へ転送する。これにより、 1カラム分の電荷 が出力アンプ 26の入力ノードに転送される。  (S 14b-2) Change the positive pulse phase of the voltage applied as a horizontal transfer signal from the line drive circuit 24 to the TGH of the horizontal transfer CCD 23 as 水平 φ 1, Η φ 2, and Η φ 3 in this order. Is transferred horizontally by one column (in the direction of output amplifier 26). As a result, the charge for one column is transferred to the input node of the output amplifier 26.
[0065] (S14b— 3)出力アンプ 26では、 1カラム分の電荷が入力ノードに転送されると、入 力ノードの寄生容量によって、転送された電荷に応じた電圧を発生し、これを出力す る。 [0065] (S14b—3) When the charge for one column is transferred to the input node, the output amplifier 26 generates a voltage corresponding to the transferred charge by the parasitic capacitance of the input node, and outputs this voltage. The
[0066] そして、上記(S14)の動作が完了したら、上記(S11)へ戻り、同様にして、次の 1フ レーム分の露光及び出力の動作が開始される。  [0066] When the operation of (S14) is completed, the process returns to (S11), and similarly, the exposure and output operations for the next one frame are started.
このように 1フレーム分の露光及び出力を繰り返すことによって、動画撮影が行われ る。 In this way, moving images are shot by repeating exposure and output for one frame. The
[0067] 以上、本実施例に係る固体撮像装置によれば、 CCDイメージセンサ 21を搭載した 撮像素子チップに液晶シャッター 2を実装することによって、動画撮影時において、 露光中以外は液晶シャッター 2により全画素を遮光することができるので、スミアの発 生を防止することができる。よって、イメージセンサとして CCDイメージセンサを用い ながらも、スミアのない高速動画撮影が可能となる。  As described above, according to the solid-state imaging device according to the present embodiment, by mounting the liquid crystal shutter 2 on the imaging element chip on which the CCD image sensor 21 is mounted, the liquid crystal shutter 2 is used except for the exposure during moving image shooting. Since all pixels can be shielded from light, it is possible to prevent smear. Therefore, high-speed movie shooting without smear is possible while using a CCD image sensor as the image sensor.
[0068] 液晶シャッター 2のようなシャッター手段を備えていない、従来の CCDイメージセン サを備えた固体撮像装置と比較すると、従来の装置では、シャッター手段を備えてい ないために露光中も全画素に光が入射し続け、 PDでは電荷が大量に発生し続ける 。このときに太陽等のような高輝度になる箇所の画素では、 PDで発生した電荷が TG Pを超えて垂直転送用 CCD22にあふれ出てしまう。その結果、そのあふれ出た電荷 が出力アンプ 26に送られるので、画像には白い縦線、すなわちスミアが発生してしま う。これに対し、本実施例に係る固体撮像装置では、露光中以外は液晶シャッター 2 により全画素が遮光されるので PDに光が入射せず、スミアの発生は無!、。  [0068] Compared to a conventional solid-state imaging device equipped with a CCD image sensor that does not include shutter means such as the liquid crystal shutter 2, the conventional apparatus does not include shutter means, so all pixels are exposed even during exposure. Light continues to be incident on the PD, and a large amount of charge continues to be generated in the PD. At this time, in pixels where the brightness is high, such as the sun, the charge generated in the PD exceeds TGP and overflows to the CCD 22 for vertical transfer. As a result, the overflowing charge is sent to the output amplifier 26, and white vertical lines, or smears, appear in the image. In contrast, in the solid-state imaging device according to the present embodiment, all pixels are shielded by the liquid crystal shutter 2 except during exposure, so that no light enters the PD and smear does not occur.
[0069] 以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、 本発明の要旨を逸脱しな 、範囲にぉ 、て、各種の改良及び変更を行っても良!、の はもちろんである。  [0069] Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements and modifications may be made without departing from the scope of the present invention. Of course!
[0070] 以上、本発明によれば、高いフレームレートが要求される動画撮影向けのグローバ ルシャッター機能を有する個体撮像装置及びその制御方法を提供することができる。  As described above, according to the present invention, it is possible to provide a solid-state imaging device having a global shutter function for moving image shooting that requires a high frame rate and a control method thereof.

Claims

請求の範囲 The scope of the claims
[1] 複数の画素を有する固体撮像素子と、  [1] a solid-state imaging device having a plurality of pixels;
前記複数の画素に光が入射する状態、又は、前記複数の画素を遮光する状態に する液晶シャッターとを備え、  A liquid crystal shutter that makes light incident on the plurality of pixels or blocks the plurality of pixels;
露光中は前記液晶シャッターにより前記複数の画素に光が入射する状態にし、露 光中以外は前記液晶シャッターにより前記複数の画素を遮光する状態にして動画撮 影を行う、  During exposure, the liquid crystal shutter is used to make light incident on the plurality of pixels, and when not exposed, the liquid crystal shutter is used to shield the plurality of pixels to perform moving image shooting.
ことを特徴とする固体撮像装置。  A solid-state imaging device.
[2] 前記複数の画素を制御する画素制御手段と、  [2] pixel control means for controlling the plurality of pixels;
前記画素から出力される信号を読み出す読出手段と、  Reading means for reading out signals output from the pixels;
前記各手段と前記液晶シャッターを制御する制御手段とを備え、  Each means and a control means for controlling the liquid crystal shutter,
前記動画撮影時に、前記液晶シャッターにより前記複数の画素を遮光する状態に して、前記複数の画素をリセットし、次に、前記液晶シャッターにより前記複数の画素 に光が入射する状態にして、前記複数の画素にて同時に露光を行い、次に、前記液 晶シャッターにより前記複数の画素を遮光する状態にして、前記画素から出力される 信号を読み出すように、前記制御手段は前記各手段と前記液晶シャッターを制御す る、  At the time of moving image shooting, the plurality of pixels are shielded from light by the liquid crystal shutter, the plurality of pixels are reset, and then the liquid crystal shutter is in a state where light is incident on the plurality of pixels. The control means is configured to perform exposure with a plurality of pixels at the same time, and then to read out signals output from the pixels in a state where the plurality of pixels are shielded from light by the liquid crystal shutter. Control the LCD shutter,
ことを特徴とする請求項 1記載の固体撮像装置。  The solid-state imaging device according to claim 1, wherein:
[3] 前記複数の画素の各画素は、光電変換素子、転送用素子、リセット用素子、増幅 用素子、及び選択用素子を有し、 [3] Each of the plurality of pixels includes a photoelectric conversion element, a transfer element, a reset element, an amplification element, and a selection element.
前記動画撮影時に、前記液晶シャッターにより前記複数の画素を遮光する状態に して、前記複数の画素の各画素にお 、て前記リセット用素子及び前記転送用素子を 制御して前記光電変換素子をリセットし、次に、前記液晶シャッターにより前記複数 の画素に光が入射する状態にして、前記複数の画素にて同時に露光を行い、次に、 前記液晶シャッターにより前記複数の画素を遮光する状態にして、前記複数の画素 の各画素について、前記リセット用素子と前記選択用素子を制御して出力させた第 1 の信号を読み出し、続いて前記転送用素子と前記選択用素子を制御して出力させ た第 2の信号を読み出し、続いて前記第 2の信号から前記第 1の信号を差し引くよう に、前記制御手段は前記各手段と前記液晶シャッターを制御する、 ことを特徴とする請求項 2記載の固体撮像装置。 At the time of shooting the moving image, the plurality of pixels are shielded from light by the liquid crystal shutter, and the photoelectric conversion element is controlled by controlling the reset element and the transfer element in each pixel of the plurality of pixels. Next, the liquid crystal shutter is used to make light incident on the plurality of pixels, and the plurality of pixels are exposed simultaneously, and then the liquid crystal shutter is used to block the plurality of pixels. Then, for each pixel of the plurality of pixels, the first signal output by controlling the reset element and the selection element is read, and then the transfer element and the selection element are controlled and output. Read out the second signal, and then subtract the first signal from the second signal. 3. The solid-state imaging device according to claim 2, wherein the control unit controls each of the units and the liquid crystal shutter.
[4] 前記動画撮影時に、前記制御手段は、最初に行われる前記光電変換素子のリセッ トを前記複数の画素にて同時に行うように制御する、 [4] At the time of moving image shooting, the control means controls to reset the photoelectric conversion element first performed at the plurality of pixels simultaneously.
ことを特徴とする請求項 3記載の固体撮像装置。  The solid-state imaging device according to claim 3.
[5] 前記固体撮像素子は、 CMOSイメージセンサである、 [5] The solid-state imaging device is a CMOS image sensor.
ことを特徴とする請求項 2記載の固体撮像装置。  The solid-state imaging device according to claim 2, wherein:
[6] 前記複数の画素の各画素に対応して設けられた第 1の電荷転送手段と、 [6] first charge transfer means provided corresponding to each pixel of the plurality of pixels;
前記複数の画素の各列に対応して設けられた第 2の電荷転送手段と、 前記第 2の電荷転送手段の各々に接続された第 3の電荷転送手段と、 電荷を電気信号に変換する増幅手段と、  A second charge transfer means provided corresponding to each column of the plurality of pixels; a third charge transfer means connected to each of the second charge transfer means; and converts the charge into an electric signal. Amplifying means;
前記各手段と前記液晶シャッターを制御する制御手段とを備え、  Each means and a control means for controlling the liquid crystal shutter,
前記動画撮影時に、前記液晶シャッターにより前記複数の画素を遮光する状態か ら前記複数の画素に光が入射する状態にして、前記複数の画素にて同時に露光を 行い、次に、前記液晶シャッターにより前記複数の画素を遮光する状態にして、前記 第 1の転送手段により各画素で発生した電荷をそれぞれ対応する前記第 2の電荷転 送手段へ転送し、次に、前記第 2及び前記第 3の電荷転送手段により電荷を更に前 記増幅手段へ転送して前記増幅手段により電気信号に変換するように、前記制御手 段は前記各手段と前記液晶シャッターを制御する、  At the time of shooting the moving image, the liquid crystal shutter is used to make light incident on the plurality of pixels from the state where the plurality of pixels are shielded from light, and then the plurality of pixels are simultaneously exposed, and then the liquid crystal shutter is used. The plurality of pixels are shielded from light, and the charge generated in each pixel by the first transfer means is transferred to the corresponding second charge transfer means, and then the second and third The control means controls each means and the liquid crystal shutter so that the charge is further transferred to the amplifying means by the charge transferring means and converted into an electric signal by the amplifying means.
ことを特徴とする請求項 1記載の固体撮像装置。  The solid-state imaging device according to claim 1, wherein:
[7] 前記固体撮像素子は、 CCDイメージセンサである、 [7] The solid-state imaging device is a CCD image sensor.
ことを特徴とする請求項 6記載の固体撮像装置。  The solid-state imaging device according to claim 6.
[8] 前記制御手段は、被写体の明るさに応じて求められた露光時間に応じて、前記複 数の画素に光が入射する状態の時間を制御する露光時間制御手段を備える、 ことを特徴とする請求項 1乃至 7の何れか一つに記載の固体撮像装置。 [8] The control means includes an exposure time control means for controlling a time during which light is incident on the plurality of pixels according to an exposure time determined according to the brightness of a subject. The solid-state imaging device according to any one of claims 1 to 7.
[9] 前記液晶シャッターは、導電性接着剤による接着、又は、前記液晶シャッターに影 響が無い程度の低温で処理可能な半田バンプによる接合によって、前記固体撮像 素子上に設けられる、 ことを特徴とする請求項 1乃至 8の何れか一つに記載の固体撮像装置。 [9] The liquid crystal shutter is provided on the solid-state imaging device by bonding with a conductive adhesive or bonding with solder bumps that can be processed at a low temperature that does not affect the liquid crystal shutter. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is provided.
[10] 複数の画素を有する固体撮像素子と、前記複数の画素に光が入射する状態、又は 、前記複数の画素を遮光する状態にする液晶シャッターとを備えた固体撮像装置の 制御方法であって、 [10] A method for controlling a solid-state imaging device, comprising: a solid-state imaging device having a plurality of pixels; and a liquid crystal shutter in a state in which light enters the plurality of pixels or a state in which the plurality of pixels are shielded. And
露光中は前記液晶シャッターにより前記複数の画素に光が入射する状態にし、露 光中以外は前記液晶シャッターにより前記複数の画素を遮光する状態にして動画撮 影を行う、  During exposure, the liquid crystal shutter is used to make light incident on the plurality of pixels, and when not exposed, the liquid crystal shutter is used to shield the plurality of pixels to perform moving image shooting.
ことを特徴とする固体撮像装置の制御方法。  A control method for a solid-state imaging device.
[11] 前記固体撮像装置は、前記複数の画素を制御する画素制御手段と、前記画素か ら出力される信号を読み出す読出手段とを有し、前記動画撮影時に、 [11] The solid-state imaging device includes a pixel control unit that controls the plurality of pixels, and a reading unit that reads a signal output from the pixel.
前記液晶シャッターにより前記複数の画素を遮光する状態にして、前記複数の画 素をリセットし、  The plurality of pixels are shielded from light by the liquid crystal shutter, and the plurality of pixels are reset.
前記液晶シャッターにより前記複数の画素に光が入射する状態にして、前記複数 の画素にて同時に露光を行い、  With the liquid crystal shutter in a state where light is incident on the plurality of pixels, the plurality of pixels are simultaneously exposed,
前記液晶シャッターにより前記複数の画素を遮光する状態にして、前記画素から出 力される信号を読み出す、  Reading out signals output from the pixels in a state in which the plurality of pixels are shielded from light by the liquid crystal shutter;
ように前記各手段と前記液晶シャッターを制御する、  So as to control each means and the liquid crystal shutter,
ことを特徴とする請求項 10記載の固体撮像装置の制御方法。  11. The method for controlling a solid-state imaging device according to claim 10, wherein:
[12] 前記固体撮像装置は、前記複数の画素の各画素に対応して設けられた第 1の電 荷転送手段と、前記複数の画素の各列に対応して設けられた第 2の電荷転送手段と 、前記第 2の電荷転送手段の各々に接続された第 3の電荷転送手段と、電荷を電気 信号に変換する増幅手段とを有し、前記動画撮影時に、 [12] The solid-state imaging device includes: a first charge transfer unit provided corresponding to each pixel of the plurality of pixels; and a second charge provided corresponding to each column of the plurality of pixels. A transfer means; a third charge transfer means connected to each of the second charge transfer means; and an amplifying means for converting the charge into an electric signal.
前記液晶シャッターにより前記複数の画素を遮光する状態から前記複数の画素に 光が入射する状態にして、前記複数の画素にて同時に露光を行い、  From the state where the plurality of pixels are shielded from light by the liquid crystal shutter to the state where light is incident on the plurality of pixels, exposure is performed simultaneously on the plurality of pixels,
前記液晶シャッターにより前記複数の画素を遮光する状態にして、前記第 1の転送 手段により各画素で発生した電荷をそれぞれ対応する前記第 2の電荷転送手段へ 転 し、  The plurality of pixels are shielded from light by the liquid crystal shutter, and the charge generated in each pixel by the first transfer means is transferred to the corresponding second charge transfer means,
前記第 2及び前記第 3の電荷転送手段により電荷を更に前記増幅手段へ転送して 前記増幅手段により電気信号に変換する、 Charges are further transferred to the amplification means by the second and third charge transfer means. Converted into an electrical signal by the amplification means,
ように前記各手段と前記液晶シャッターを制御する、 ことを特徴とする請求項 10記載の固体撮像装置の制御方法。  11. The control method for a solid-state imaging device according to claim 10, wherein the respective units and the liquid crystal shutter are controlled as described above.
PCT/JP2006/313541 2006-07-07 2006-07-07 Solid-state imaging device and method of controlling the same WO2008004302A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/313541 WO2008004302A1 (en) 2006-07-07 2006-07-07 Solid-state imaging device and method of controlling the same
JP2008523579A JPWO2008004302A1 (en) 2006-07-07 2006-07-07 Solid-state imaging device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313541 WO2008004302A1 (en) 2006-07-07 2006-07-07 Solid-state imaging device and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2008004302A1 true WO2008004302A1 (en) 2008-01-10

Family

ID=38894280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313541 WO2008004302A1 (en) 2006-07-07 2006-07-07 Solid-state imaging device and method of controlling the same

Country Status (2)

Country Link
JP (1) JPWO2008004302A1 (en)
WO (1) WO2008004302A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296866A (en) * 1988-05-25 1989-11-30 Casio Comput Co Ltd Image pickup device
JPH0373077U (en) * 1989-11-16 1991-07-23
JPH04358126A (en) * 1991-06-04 1992-12-11 Hokuriku Electric Power Co Inc:The Liquid crystal shutter
JPH05122614A (en) * 1991-10-28 1993-05-18 Olympus Optical Co Ltd Image pickup device
JPH06305196A (en) * 1993-02-23 1994-11-01 Kyocera Corp Image forming device
JPH06340118A (en) * 1993-05-31 1994-12-13 Kyocera Corp Image device and production thereof
JPH07222043A (en) * 1994-01-31 1995-08-18 Sony Tektronix Corp Television camera equipment with liquid crystal shutter
JPH08163240A (en) * 1994-11-30 1996-06-21 Nec Eng Ltd Private branch exchange
JPH11261899A (en) * 1998-03-12 1999-09-24 Canon Inc Solid state image pickup device
JP2000023028A (en) * 1998-06-26 2000-01-21 Casio Comput Co Ltd Digital still camera
JP2003032555A (en) * 2001-07-19 2003-01-31 Olympus Optical Co Ltd Imaging apparatus
JP2004120250A (en) * 2002-09-25 2004-04-15 Victor Co Of Japan Ltd Imaging apparatus and its dark current data updating method
JP2004207895A (en) * 2002-12-24 2004-07-22 Sony Corp Moving picture imaging apparatus and moving picture imaging method
JP2004320106A (en) * 2003-04-11 2004-11-11 Olympus Corp Solid-state imaging apparatus
JP2006166135A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Imaging apparatus, driving device, digital camera, and imaging method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133212A (en) * 1992-10-20 1994-05-13 Fujitsu General Ltd Solid-state image pickup device
JPH09163240A (en) * 1995-12-12 1997-06-20 Toshiba Corp Solid-state image pickup device
JPH118802A (en) * 1997-06-16 1999-01-12 Sony Corp Method for driving ccd solid-state image pickup device and image recorder
JP4501350B2 (en) * 2003-03-18 2010-07-14 ソニー株式会社 Solid-state imaging device and imaging device
JP2004304331A (en) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd Solid state imaging apparatus
JP4280990B2 (en) * 2003-12-19 2009-06-17 ソニー株式会社 Imaging device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296866A (en) * 1988-05-25 1989-11-30 Casio Comput Co Ltd Image pickup device
JPH0373077U (en) * 1989-11-16 1991-07-23
JPH04358126A (en) * 1991-06-04 1992-12-11 Hokuriku Electric Power Co Inc:The Liquid crystal shutter
JPH05122614A (en) * 1991-10-28 1993-05-18 Olympus Optical Co Ltd Image pickup device
JPH06305196A (en) * 1993-02-23 1994-11-01 Kyocera Corp Image forming device
JPH06340118A (en) * 1993-05-31 1994-12-13 Kyocera Corp Image device and production thereof
JPH07222043A (en) * 1994-01-31 1995-08-18 Sony Tektronix Corp Television camera equipment with liquid crystal shutter
JPH08163240A (en) * 1994-11-30 1996-06-21 Nec Eng Ltd Private branch exchange
JPH11261899A (en) * 1998-03-12 1999-09-24 Canon Inc Solid state image pickup device
JP2000023028A (en) * 1998-06-26 2000-01-21 Casio Comput Co Ltd Digital still camera
JP2003032555A (en) * 2001-07-19 2003-01-31 Olympus Optical Co Ltd Imaging apparatus
JP2004120250A (en) * 2002-09-25 2004-04-15 Victor Co Of Japan Ltd Imaging apparatus and its dark current data updating method
JP2004207895A (en) * 2002-12-24 2004-07-22 Sony Corp Moving picture imaging apparatus and moving picture imaging method
JP2004320106A (en) * 2003-04-11 2004-11-11 Olympus Corp Solid-state imaging apparatus
JP2006166135A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Imaging apparatus, driving device, digital camera, and imaging method

Also Published As

Publication number Publication date
JPWO2008004302A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US9749557B2 (en) Solid-state image pickup device in which charges overflowing a memory during a charge transfer period are directed to a floating diffusion and method of driving same
JP5821315B2 (en) Electronic device, driving method of electronic device
CN104272722B (en) The driving method and electronic device of solid-state imaging element, solid-state imaging element
US8174590B2 (en) Image pickup apparatus and image pickup method
JP2008011298A (en) Solid-state imaging apparatus and control method therefor
US9402038B2 (en) Solid-state imaging device and method of driving comprising a first and second accumulation sections for transferring charges exceeding the saturation amount
CN102685405A (en) Solid-state imaging device, imaging apparatus, electronic appliance, and method of driving the solid-state imaging device
JP2011188410A (en) Solid-state imaging device, method of driving solid-state imaging device, and electronic equipment
JP2014060573A (en) Solid-state image sensor, control method and electronic apparatus
WO2007043252A1 (en) Solid-state imaging device, imaging apparatus and driving method for the same
US8547452B2 (en) Image processing apparatus, image processing method, and image processing program
US20100045830A1 (en) Image capturing device, smear reduction method, and computer readable storage medium
JP3113406B2 (en) Image sensor control device for still video camera
JP2007208885A (en) Imaging unit and image sensor
US8390711B2 (en) Solid-state imaging device with transfer signal used in different states to affect reset and accumulation times and imaging apparatus incorporating same
US8743273B2 (en) Imaging device and solid-state imaging device
JP2008099040A (en) Solid-state imaging apparatus, and electronic information apparatus
JP6676317B2 (en) Imaging device and imaging system
WO2008004302A1 (en) Solid-state imaging device and method of controlling the same
US9338374B2 (en) Solid-state image sensor, method for driving solid-state image sensor, and electronic device
TW200805638A (en) Solid-state imaging device and method of controlling the same
JP4333144B2 (en) Driving method of solid-state imaging device
JP2014027520A (en) Imaging apparatus and image processing method
JP2009296134A (en) Imaging device
JP2022164803A (en) Imaging device and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06780866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523579

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06780866

Country of ref document: EP

Kind code of ref document: A1