WO2008001835A1 - Processing apparatus and method of controlling processing apparatus - Google Patents

Processing apparatus and method of controlling processing apparatus Download PDF

Info

Publication number
WO2008001835A1
WO2008001835A1 PCT/JP2007/062968 JP2007062968W WO2008001835A1 WO 2008001835 A1 WO2008001835 A1 WO 2008001835A1 JP 2007062968 W JP2007062968 W JP 2007062968W WO 2008001835 A1 WO2008001835 A1 WO 2008001835A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
tool
dresser
curve
posture
Prior art date
Application number
PCT/JP2007/062968
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Kunugi
Atsushi Ogihara
Jun Furukawa
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2008522616A priority Critical patent/JP5113747B2/en
Publication of WO2008001835A1 publication Critical patent/WO2008001835A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/08Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels controlled by information means, e.g. patterns, templets, punched tapes or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50353Tool, probe inclination, orientation to surface, posture, attitude
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a machining apparatus that moves a tool relative to a workpiece and cares for a force article and a method for controlling the machining apparatus.
  • a processing apparatus removes unnecessary portions of a workpiece by cutting, grinding, or other methods, and forms the workpiece into a required processing shape.
  • the track of the relative movement of the tool with respect to the workpiece is transferred to the force!
  • a dresser device that forms the outer shape of a mortar with a dresser is known (Patent Document 1). As shown in FIG. 27, a turret 1 as a workpiece is driven to rotate about an axis 2. The outer periphery of the grindstone 1 is formed by a rotary dresser 3 as a tool. The rotary dresser 3 rotates and swivels around a vertical line with a radius R.
  • FIG. 28 is a cross-sectional view taken along line AA in FIG.
  • Vertical line 4 passes through the center of curvature of the arc-shaped molding surface of turret 1.
  • the trajectory of the swivel movement of the mouth dresser 3 is transferred to the turret 1.
  • a rotary dresser 3 having a tapered portion 3a at the outer edge is used, and a wall surface 3b of the tapered portion 3a is brought into contact with a straight portion of the grindstone 1 so that an arc portion of the grindstone is obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 49-50589 (see page 2, Fig. 1 to Fig. 3)
  • the shape of the molding surface depends on the shape of the taper portion of the rotary dresser, so There is a limit to the degree of freedom.
  • the trajectory of the movement of the dresser transferred to the boulder is mechanically controlled, so that the boulder cannot be covered in various shapes! /.
  • an object of the present invention is to provide a method for controlling a machining apparatus and a machining apparatus capable of machining a workpiece into various shapes.
  • the invention described in claim 1 is a method for controlling a machining apparatus for machining a workpiece by moving the tool relative to the workpiece, and the tool is described above.
  • An X-axis moving mechanism that can move relative to the workpiece in the X-axis direction in the two-dimensional plane (P), and the tool perpendicular to the X-axis in the two-dimensional plane with respect to the workpiece.
  • a Y-axis moving mechanism that can be moved relatively in the Y-axis direction, and a tool that rotates in the two-dimensional plane (P) around the tip of the tool that contacts the workpiece.
  • a trajectory curve of the tool corresponding to the machining shape in the two-dimensional plane (P) of the workpiece (which may include a straight line). ) And design the posture of the tool on the locus curve.
  • the clothoid in which the tangential direction angle is given by a quadratic expression having a curve length according to the method for controlling a machining apparatus according to claim 1 Song
  • the trajectory curve of the tool is designed using a line, and the normal direction angle of the trajectory curve is calculated in at least a part of the trajectory curve, and based on the normal direction angle!
  • the posture of the tool is designed.
  • the invention according to claim 3 is the method of controlling a machining apparatus according to claim 1 or 2, wherein, in the trajectory 'posture design step, one end of a trajectory curve that is symmetrical about the symmetry axis.
  • the tool is moved from the point to the axis of symmetry, and then the tool is moved to the other end of the locus curve, and then the tool is moved from the other end of the locus curve to the axis of symmetry.
  • the trajectory curve is designed so as to make it happen.
  • the invention according to claim 4 is the method of controlling a machining apparatus according to claim 2, wherein the workpiece is a gun that rotates around an axis line arranged in the two-dimensional plane (P).
  • the tool is a dresser
  • the processing device is a dresser device that forms the outer shape of the turret with the dresser.
  • the dresser posture is designed so that the center line of the dresser faces the normal direction of the trajectory curve.
  • the invention according to claim 5 is the method of controlling a processing apparatus according to claim 4, wherein the dresser includes a flat surface and a corner portion having a predetermined width at the tip that contacts the turret.
  • the dresser posture is set so that the center line of the dresser faces the normal direction of the trajectory curve in at least a part of the section on the trajectory curve.
  • the dresser's posture is such that the center line of the dresser is other than the normal direction of the trajectory curve. It is designed to face, whereby the corner portion of the dresser is brought into contact with the grindstone.
  • the invention according to claim 6 is the method for controlling a processing apparatus according to claim 4 or 5, wherein the turret is a gothic search groove having a circular arc of a cross section of a ball screw or a linear guide.
  • the turret Used to grind the ball rolling groove of the shape, and in the locus' attitude design process, in order to obtain the turret capable of adjusting the contact angle ( ⁇ ) of the ball screw or linear guide, the symmetry axis is centered.
  • the bilaterally symmetric trajectory curve can be divided into two left and right with the symmetry axis as a boundary, and each of the divided pair of trajectory curves is symmetric. It is characterized by being able to shift the shaft by force.
  • the invention according to claim 7 is the method for controlling a machining apparatus according to any one of claims 4 to 6, wherein the turret grinds a ball rolling groove of a ball screw or a linear guide.
  • the trajectory curve that is symmetric about the axis of symmetry can be shifted in the axial direction of the axis of symmetry in order to adjust the cut amount of the dresser.
  • the invention according to claim 8 is a machining apparatus for moving the tool relative to the workpiece to calcare the workpiece, wherein the tool is moved to the workpiece in a two-dimensional plane
  • An X-axis moving mechanism capable of relatively moving in the X-axis direction in (P), and a relative to the Y-axis direction perpendicular to the X-axis in the two-dimensional plane (P) with respect to the workpiece.
  • a Y-axis moving mechanism that can be moved in an automatic manner, and a ⁇ -axis rotating mechanism that can rotate the tool in the two-dimensional plane (P) around the tip of the tool that contacts the workpiece.
  • a trajectory curve of the tool (which may include a straight line) corresponding to the machining shape of the workpiece in the two-dimensional plane (P)
  • determining the posture of the tool on the trajectory curve Design and control the X-axis moving mechanism and the Y-axis moving mechanism to The tool is moved relative to the workpiece along a trajectory curve corresponding to a machining shape in a two-dimensional plane (P), and the ⁇ -axis rotation mechanism is controlled to control the two-dimensional plane.
  • the invention according to claim 9 is the processing apparatus according to claim 8, wherein the control device uses a clothoid curve in which a tangential direction angle is given by a quadratic expression having a curve length. Designing a trajectory curve, calculating a normal direction angle of the trajectory curve in at least a part of the trajectory curve, and designing the posture of the tool based on the normal direction angle It is characterized by.
  • the workpiece can have various shapes in a two-dimensional plane. Can be processed.
  • the ⁇ axis rotation mechanism changes the tool posture on the trajectory curve. Therefore, the tool can be directed in the optimum direction according to the machining shape.
  • the tool rotates in a two-dimensional plane around the tip that contacts the workpiece, even if the posture of the tool is changed, the position of the tip of the tool that contacts the workpiece does not change. Therefore, changes in the posture of the tool will not affect the shape of the workpiece! ,.
  • the shape of the symmetrical workpiece can be stabilized.
  • the dresser wear can be reduced by orienting the dresser in the normal direction with respect to the processed shape of the turret, and the wear of the dresser varies. Can be reduced.
  • the dresser is The shape of the turret can be shaped to match the trajectory curve that does not pass through the turret.
  • a grindstone capable of adjusting the contact angle between the ball and the ball rolling groove can be formed.
  • the amount of dresser cut into the turret can be adjusted.
  • the tool can be moved along the designed trajectory curve by the X-axis moving mechanism and the Y-axis moving mechanism, the workpiece can be moved in a two-dimensional plane. It can be processed into various shapes.
  • the ⁇ -axis rotation mechanism can change the posture of the tool on the trajectory curve, so that the tool can be directed in the optimum direction according to the machining shape.
  • the position of the tip of the tool that contacts the workpiece does not change even if the posture of the tool is changed. Therefore, the change in the posture of the tool does not affect the shape of the workpiece.
  • the trajectory curve is given by a quadratic expression in which the tangential direction angle is a curve length. Since the obtained two-dimensional clothoid curve is used, the normal direction angle on the trajectory curve can be easily calculated.
  • FIG. 1 is a side view showing a processing apparatus according to a first embodiment of the present invention.
  • FIG. 3 Perspective view showing a ball screw ground by a grindstone
  • FIG. 4 Perspective view showing a linear guide ground by a grindstone
  • FIG.6 A figure showing the dresser's trajectory 'posture that moves along the grinding wheel shape
  • FIG. 11 Diagram showing another example of the locus / posture of the dresser moving along the processed shape of the turret
  • FIG. 13 is a diagram showing the cross-sectional shape of a grindstone with an adjusted contact angle
  • ⁇ 15 Diagram showing an example of the dresser posture designed so that the dresser posture is in the normal direction of the trajectory curve
  • FIG. 23 Schematic diagram for explaining the method for obtaining the initial value of the tangential direction angle.
  • FIG. 25 is a side view of the machining apparatus according to the second embodiment of the present invention viewed from the X-axis direction.
  • FIG. 26 is a side view of the machining apparatus according to the second embodiment of the present invention viewed from the Y-axis direction.
  • FIG.28 A diagram showing a method for forming a turret using a conventional dresser (cross-sectional view taken along line A-A in Fig. 27)
  • FIG. 29 is a diagram showing a method for forming a turret using a conventional dresser.
  • FIG. 30 is a view showing a turret shape that cannot be formed by a conventional dresser device.
  • FIG. 1 shows a processing apparatus according to the first embodiment of the present invention.
  • the outer peripheral surface of the grindstone 7 as a workpiece is formed by a dresser as a tool.
  • the turret 7 is mounted on the heating device so as to be rotatable about its axis 7a, and is not shown in the figure!
  • the axis 7a of the turret 7 is located in the two-dimensional plane, for example, the horizontal plane P.
  • the turret 7 installed with the dresser force separated also is moved in the y direction in the figure by being directed toward the dresser 8 by a turret Y-axis moving device (not shown).
  • a dresser 8 is disposed in a horizontal plane P including the axis 7a of the grindstone 7.
  • the dresser 8 can be moved in the X-axis direction (direction perpendicular to the paper surface) in the horizontal plane by the X-axis moving mechanism 9 and can be moved in the Y-axis direction orthogonal to the X-axis in the horizontal plane by the Y-axis moving mechanism 10.
  • the dresser 8 can be rotated in the horizontal plane by the ⁇ -axis rotation mechanism 20.
  • a Y-axis moving mechanism 10 that moves the Y-axis table 17 in the Y-axis direction by means of ball screw mechanisms 14 and 16 is attached.
  • the rotation of the Y-axis servo motor 12 is transmitted to the screw shaft 14 via the worm gear 13.
  • the screw shaft 14 is rotatably supported on the base 11 via a bearing 15.
  • a ball screw nut 16 is screwed onto the screw shaft 14.
  • a Y-axis table 17 is coupled to the upper surface of the ball screw nut 16.
  • the Y-axis table 17 is supported on the base through a linear guide so as to be slidable in the Y-axis direction.
  • the base 11 of the processing apparatus is moved in the Y-axis direction within a horizontal plane by a slide mechanism 19 such as an air cylinder.
  • the slide mechanism 19 moves the dresser to the machining position or separates the machining position force.
  • An X-axis moving mechanism 9 is attached on the Y-axis table 17.
  • the X-axis moving mechanism 9 also moves the X-axis table 21 in the X-axis direction by the ball screw mechanism.
  • the rotation of the X-axis servo motor is transmitted to the screw shaft 22 via the worm gear.
  • the screw shaft 22 is rotatably supported on the Y-axis table 17 via a bearing.
  • a ball screw nut 23 is screwed onto the screw shaft 22.
  • An X-axis table 21 is coupled to the upper surface of the ball screw nut 23.
  • the Y-axis table 21 is supported on the Y-axis table 17 via the linear guide 24 so as to be slidable in the Y-axis direction.
  • a ⁇ -axis rotation mechanism 20 is attached on the X-axis table 21.
  • a column 26 is coupled on the X-axis table 21.
  • a ⁇ axis 27 extending in the vertical direction is rotatably supported via a bearing 28.
  • the axis 27a of the ⁇ axis 27 points in the vertical direction and is orthogonal to the horizontal plane P.
  • the ⁇ shaft 27 extends downward from the portion supported by the bearing 28, and a dresser 8 is attached to the lower end thereof.
  • the upper end of the ⁇ axis 27 is suspended from the support portion by the bearing 28, and the lower end of the ⁇ axis 27 is not supported.
  • the 0-axis 27 is inclined obliquely from the upper end to the lower end.
  • the axis 27a of the zero axis 27 is the center of rotation of the dresser 8 in the horizontal plane P.
  • the position of the dresser 8 is adjusted so that the tip 8a of the dresser 8 is positioned on the axis 27a of the ⁇ axis 27.
  • the dresser 8 is fixed to the ⁇ axis 27 mm by a set screw 29.
  • a ⁇ -axis servo motor 29 is coupled to the column 26.
  • the rotation of the ⁇ -axis servomotor 29 is transmitted to the ⁇ -axis 27 through the reduction gear 30 and the worm gear 31.
  • the dresser 8 can be rotated with high accuracy.
  • FIG. 2 shows a plan view of the dresser 8.
  • the dresser 8 consists of a diamond tool that grinds the grinding wheel 7.
  • the dresser 8 is moved in the X-axis direction in the horizontal plane P by the X-axis moving mechanism 9 described above, and is moved in the Y-axis direction by the Y-axis moving mechanism 10. Then, the ⁇ -axis rotating mechanism 20 is rotated in the horizontal plane P around the tip 8a.
  • the dresser 8 is a single stone dresser in which a diamond with a sharp tip 8a is embedded.
  • a prismatic dresser in which a prismatic diamond having a flat surface is embedded in the tip 8a may be used, or a disc-shaped rotary dresser may be used.
  • the disk-type rotor lead dresser is a rotary dresser that is driven to rotate about the axis of the disk.
  • a prismatic dresser is shown as an example. Therefore, the dresser 8 has a flat surface 8b having a predetermined width and a corner 8c at the tip 8a.
  • the grindstone 7 formed by the dresser 8 is used for grinding the ball screw 31 shown in FIG. 3 and the ball rolling groove of the linear guide shown in FIG.
  • the ball screw 31 has a ball 34 inserted between the ball rolling groove 32a of the screw shaft 32 and the ball rolling groove 33a of the nut 33, and a return path 35 is provided in the nut 33 so that the ball 34 can circulate.
  • the guide 40 is used to guide the moving body in a linear motion, and the ball rolling groove 36a of the track rail 36 that extends linearly and the bowl-shaped moving block that moves along the track rail 36.
  • a ball 38 is inserted between the ball rolling groove 37a of 37 and a return path 39 is provided in the moving block 37 so that the ball 38 can circulate.
  • FIG. 5 shows an example of a processed shape in the horizontal plane of the grindstone 7 formed by the dresser 8.
  • the Karoe shape in the horizontal plane of the grindstone 7 is made to match the cross-sectional shape of the ball rolling grooves 32a, 33a, 36a, 37a.
  • the processed shape in the horizontal plane P of the turret 7 is set to the Gothic arch groove shape in accordance with the ball rolling grooves 32a, 33a, 36a, and 37a of the Gothicarch groove. That is, the processing shape of the turret 7 has an arc portion 41 composed of two arcs Rl and R2, and the curvature radii of the two arcs Rl and R2 are equal.
  • the center of curvature of the arc R1 and the center of curvature of the arc portion R2 are separated by a distance L.
  • Straight portions 42 are provided on both sides of the arc portion 41.
  • an arc portion 43 such as a small-diameter arc R3, R4 is provided.
  • the centers of curvature of the arcs Rl and R2 and the centers of curvature of the arcs R3 and R4 are on the inside and outside of the turret 7 with the molding surface of the grindstone 7 as a boundary.
  • the locus and posture of the dresser 8 in the horizontal plane P are controlled, and the grindstone 7 is formed into a processed shape.
  • the X-axis moving mechanism 9 and the Y-axis moving mechanism 10 are By controlling, the dresser 8 is moved along the locus curve 44 in the horizontal plane P (corresponding to the processing shape of the grindstone), and the ⁇ -axis rotation mechanism 20 is controlled to change the locus curve 44 in the horizontal plane P Change the dresser 8 posture.
  • FIG. 7 shows a configuration diagram of the control device 55.
  • the hardware of the control device 55 consists of a computer 56 (left side of the dotted line in the figure) such as a personal computer in which the software up to the creation of the motion 'table 51 is installed, and the motion' table 51 is read and the X, ⁇ , It consists of a motor control device 57 (right side from the dotted line in the figure) that incorporates a motion 'operator 54 to operate the ⁇ axis.
  • the computer 56 of the control device 55 creates a motion table 51 that describes the displacement values of each motion axis by taking the time axis in the row direction and the X, ⁇ , and ⁇ axes of the dresser device in the column direction.
  • the motor control device 57 of the control device 55 controls each axis of the dresser device.
  • a signal command from the motion 'table 51 and the motion' editor 53 is transmitted between the computer 56 and the motor control device 57.
  • the software of the control device 55 is a motion to create a motion 'table 51
  • the motion 'table 51 will be described. Giving the position and / or attitude of dresser 8 as a function of time is called motion. As shown in FIG. 8, the motion 'table 51 describes the absolute value or incremental value of the displacement of each axis with the time axis in the row direction and each operation axis (servo motor) in the column direction.
  • the absolute value is an absolute value relative to the reference value, and the incremental value is a value that increments at each time interval.
  • the force for which the absolute value is described does not necessarily start from zero.
  • the motion 'table 51 is sent to a robot or the like in CSV (Comma Separated Value) format data, for example. Since motion 'table 51 is tabular data with vertical columns and horizontal rows, it is converted to a single column using the CSV method so that it can be sent via serial communication. Specifically, for example, the table data has 0, 0, 5 rows from the upper left, 1, 2, 5, rows , 3, 6, 5, ideology, ⁇ ⁇ fununi ⁇ Converted to IJ data.
  • CSV Common Separated Value
  • the contact point of the tip of the dresser 8 with the turret 7 (hereinafter referred to as the tool point) temporally moves on a continuous trajectory curve (which may include a straight line) drawn in a plane.
  • the position of the tool point is represented by coordinates (x, y), and the posture of the dresser 8 is represented by, for example, a rotation angle with respect to the x and y axes. Regardless of the complexity of the movement, the tool point trajectory is continuously connected without interruption.
  • the first stage of motion control is to design the trajectory curve of the dresser 8 and the posture of the dresser 8.
  • FIG. 10 shows a trajectory design screen displayed on the display device of the computer 56.
  • the operator inputs, for example, the XY coordinates of six point sequences P1 to P6 to the computer 56 in correspondence with the machining shape of the turret 7 shown in FIG.
  • Input means such as a keyboard and a mouse can be used for input.
  • P1 ⁇ P2 is the section corresponding to the straight part 42 of the machining shape
  • P2 ⁇ P3 ⁇ P4 is the section corresponding to the small circular arc part 43 of the cage shape
  • P4 ⁇ P5 ⁇ P6 is the section. This section corresponds to the arcuate portion 41 having a large diameter.
  • the computer When the operator inputs a point sequence, the computer designs a locus curve 60 that interpolates the point sequence P1 to P6.
  • the designed locus curve 60 is displayed on the display device.
  • a clothoid curve is used in designing the locus curve 60.
  • the tangential angle of the curve is given continuously as a function of the curve length. Therefore, the continuity of movement is maintained. An interpolation method using this clothoid curve will be described later.
  • the computer 56 After designing the trajectory curve 60 interpolated from P1 to P6, the computer 56 inverts the trajectory curve 60 around the symmetry axis 59 on the workpiece origin to obtain a symmetrical trajectory curve 44 as shown in FIG. design.
  • the computer 56 designs the trajectory curve 44 and also the posture of the dresser 8.
  • the posture of the dresser 8 in designing the posture, is designed so that the center line 8d of the dresser 8 faces the normal direction of the locus curve 44 in all sections on the locus curve 44. Directing the normal direction reduces the wear on the dresser 8 and This is to reduce the variation in wear in each part of the support 8.
  • the clothoid curve is given a tangential angle, so the normal direction of the curve can be calculated simply by rotating the given tangential angle by 90 degrees.
  • the position E of the dresser 8 is also given, and the posture E of the dresser 8 is also given as a function of the curve length s.
  • the dresser 8 when the dresser 8 is moved along the locus curve 44 from one end 44a of the symmetrical locus curve 44 to the other end 44b, the machining time is shortened. You can. However, this method tends to cause variations in the shapes of the arcs R1 and R2. Therefore, as shown in FIG. 11, the dresser 8 is moved from one end 44a of the locus curve 44 to the symmetry axis 59, and then the dresser 8 is moved to the other end 44b of the locus curve 44. Thereafter, the dresser 8 may be moved from the other end 44 b of the trajectory curve 44 to the symmetry axis 59. Designing the trajectory curve in this way takes some machining time but stabilizes the shapes of arcs R1 and R2.
  • FIG. 12 shows a conceptual diagram of a trajectory design method for obtaining the grindstone 7 that can adjust the contact angle of the ball screw 31 or the linear guide 40.
  • the computer 56 creates divided trajectory curves (1) and (2) obtained by dividing the trajectory curve 44 into left and right with the symmetry axis as a boundary.
  • the operator inputs the offset of the segmented trajectory curves (1) and (2) on the input screen shown in FIG.
  • the computer 56 shifts each of the pair of divided trajectory curves 45 in the X direction toward the symmetry axis 59 by the specified offset amount.
  • the radius of curvature of arcs Rl and R2 is not changed.
  • the contact angles ⁇ 1, ⁇ 2 are the ball screw 31 or the inner diameter of the Bonole 34, 38 of the linear guide 40, the point, the ridge, and the Bonole rolling groove 32a, 33a, The angle between the line 46 that connects 36a and 37a and the line that connects the symmetrical axis 59 of the symmetric Bonolet rolling grooves 32a, 33a, 36a, and 37a.
  • the shape of the whetstone 7 and the cross-sectional shape of the ball rolling grooves 32a, 33a, 36a, 37a are the same, so the cross-sectional shape of the ball rolling grooves 32a, 33a, 36a, 37a is changed to the cross-sectional shape of the grindstone 7.
  • contact angles 1 and 2 are shown.
  • the contact angles ⁇ 1 and ⁇ 2 can be adjusted.
  • the contact angle ex 1 can be increased as the contact angle oc 2.
  • FIG. 14 is a conceptual diagram of a trajectory design method for adjusting the cutting amount of the dresser 8.
  • the grindstone 7 may be re-formed with the dresser 8.
  • the operator inputs the shift amount for each divided trajectory curve (1X2) on the input screen shown in FIG.
  • the commutator 56 has a trajectory curve 44 (consisting of split trajectory curves (1) and (2)) designed symmetrically about the symmetry axis 59 by the specified shift amount. Is shifted in the direction of the symmetry axis 59 (in the Y direction).
  • the worn turret 7 can be cut by a predetermined cut amount.
  • the posture of the dresser 8 is designed so that the posture of the dresser 8 faces the normal direction of the trajectories 41 to 43.
  • the tip of the dresser 8 has a flat surface 8b having a predetermined width and a corner 8c. If the width W1 of the flat surface of the dresser 8 tip is larger than the radius of curvature R3 of the small-diameter arc 43 of the locus curve 44, even if the tip of the dresser 8 is moved along the locus curve, the tip of the dresser 8 The corner 8c goes over the turret 7 In this case, as shown in FIG. 17, the arc portion 43 of the molded dresser 8 has a shape that is excessively cut.
  • the corner of the dresser 8 is replaced with the turret 7 until the straight arc portion 43 reaches the arc portion 43 having a small diameter.
  • the posture design is switched, and the dresser 8 is designed so that the posture of the dresser 8 faces the normal direction of the locus curve 44.
  • the flat surface 8b of the dresser 8 is brought into contact with the turret 7.
  • FIG. 19 shows the shape of the grindstone 7 formed by such a trajectory 'posture design. It can be seen that a smooth shape can be obtained even in the arc part 43 with a small diameter.
  • the posture should be designed so as to be in the normal direction of the trajectory curve in all sections where it is not necessary to switch the posture. However, it is necessary to pay attention to wear of the sharp tip.
  • the second stage of motion control is a tool moving on the designed trajectory curve.
  • the point's speed is to determine the acceleration.
  • the time function of the tool point on the trajectory curve is determined by determining the speed'acceleration of the tool point.
  • the speed of the dresser 8 is input.
  • the computer 56 determines the tool point speed'acceleration so that the dresser 8 can be moved at the specified speed.
  • a curve with good characteristics adopted in the cam mechanism is adopted, and this is provided as a universal cam curve with variable parameters.
  • the position and orientation defined in the Cartesian space constitutes a group of continuous curves. Fit a motion curve to each curve and specify acceleration / deceleration.
  • Cartesian space is a three-dimensional coordinate system created using three axes x, y, and z that are orthogonal to each other at the original point, and can represent not only the position of the tool point but also the posture.
  • the tool point position and orientation are given as a function of time t.
  • time t is given at minute time intervals, the displacement of the tool point with respect to each time can be obtained.
  • an appropriate value of 2 ms (milliseconds) or less is selected as the time interval.
  • the inverse mechanism solution is to obtain the rotation angle ⁇ 1 to ⁇ 3 of the axial space from the position “attitude” of the actual space. Since the reverse mechanism solution is unique to each processing device, prepare a solution for each processing device.
  • the motion 'editor 53 shown in Fig. 7 will be described.
  • the motion “editor 53” is used to edit a plurality of motion “tables 51”.
  • the usage of the created motion “table 51” is set in order. Specifically, for example, if the motion 'table 51 is A, B, C, the order is set as B when A ends, C when B ends, and B and C together when A ends Or run. It is close to a sequencer in the sense that it gives a sequence of operations.
  • the motion 'editor 53' may be externally installed with the motion 'designer 52, typically a force built into the computer.
  • Motion 'operator 54 is commonly referred to as a servomechanism (ie, an automatic feedback control system for mechanical motion).
  • a servomechanism ie, an automatic feedback control system for mechanical motion.
  • the motion 'operator 54 reads the motion' table 51 created by the motion 'designer 52 via communication etc., distributes the input data to each axis, determines the synchronization between each axis, and the servo motor of each axis To control.
  • the motion 'operator 54 controls the X-axis servo motor and the Y-axis servo motor based on the motion' table 51 to move the dresser 8 along the locus curve 44.
  • the ⁇ -axis servo motor is controlled to change the posture of the dresser 8 in the horizontal plane.
  • the first method uses a high-speed communication line as the transmission medium.
  • Ethernet registered trademark
  • USB registered trademark
  • IEEE 1394 IEEE 1394
  • a wireless or low-speed communication line can be used.
  • the second method is to read data by connecting a bus directly. If the computer and motor controller are not separated, they can be used.
  • the third method uses a portable memory medium. Transport using CD, DVD, memory card, etc. [0065] ⁇ Load motion table (S2)>
  • the motion table 51 is read according to that protocol.
  • the motion table 51 Since the motion table 51 is usually created for multiple axes, it needs to be distributed to each axis. There is also a method of compulsorily distributing using a hub etc. (a method of distributing a line of data to the drivers of each axis in order on the delivery side), but usually only the data related to each axis is received on the receiving side Like that. If there is a memory on the receiving side, for example, the vertical axis data shown in Fig. 8 is received as X-axis data, the data in the next column is received as Y-axis data, and the ⁇ -axis data is further received. The next column data can be received.
  • the motion editor 53! / ⁇ ⁇ needs to edit the motion table 51 by the sequencer. For example, when the limit switch is activated, the tool point may be stopped, or when the temperature is measured with a sensor and the temperature rises, the tool point may be slowed down. In such a case, if there is an input signal from the sensor, the motion table 51 is edited by the motion editor 53 or the sequencer.
  • each axis servo motor moves following the motion command is the role of the servo driver and each axis servo motor. In this embodiment, return the feedback signal to the computer 56 for creating the motion table! The motion 'table creation computer 56 never enters the servo loop.
  • the X-axis moving mechanism 9 and the Y-axis moving mechanism 10 are controlled to move the dresser 8 along the locus curve 44 (matching the processing shape of the turret) in the horizontal plane, and ⁇
  • the shaft rotating mechanism 20 it becomes possible to change the posture of the dresser 8 of the trajectory curve 44 in the horizontal plane ⁇ .
  • Arc length s (variable (actual displacement measured along curve length)), h (constant (total length of clothoid curve)) Definition of tangential direction angle ej ( ⁇ ) ⁇ dp / ds (position vector is differentiated by arc length) Unit vector) Curvature definition ⁇ ' ⁇ (1 ⁇ 3 Differentiated by arc length of tangential angle
  • Cs and Sn are known as Fresnel integrals.
  • a clothoid segment is obtained by cutting out a part of a clothoid curve in the same way as cutting out an arc from a circle. Determine the start point ⁇ 0 and end point P1 with the above basic formula, and perform definite integration with the arc length from 0 to h.
  • the basic formula of clothoid segment is from (1)
  • the shape of the clothoid segment is determined only by the bending angle ⁇ V and the contraction angle ⁇ u, the size is h, the position is P0, and the direction is ⁇ 0.
  • the arc length h, the curvature angle ⁇ V, and the contraction angle ⁇ u are collectively referred to as interval parameters.
  • Lines, circles and clothoids are separate figures. A straight line is infinite and has a direction, a circle is infinite and large, a clothoid is infinite in length, its existence range is finite, and has both direction and size.
  • the line segment is a subset of an arc, and the arc is a subset of a clothoid segment.
  • the method of obtaining the end point and the tangential direction angle by giving the start point, the tangential direction angle, and the interval parameter is called a forward solution.
  • the method of obtaining the interval parameter by giving the start and end positions and the tangential angle is called the inverse solution.
  • FIG. 22 shows a flowchart of a program executed by the interpolation method using a clothoid curve.
  • the control method according to the present embodiment interpolates P1 to P6 point sequences given in advance using clothoid segments calculated by a computer.
  • each coordinate P (X, y) of the above point sequence is input (step 1).
  • step 2 the tangential direction angle ⁇ at each point is obtained (step 2).
  • Tangent angle ⁇ is the top Indicates the direction of each tangent at each point, and is represented by the angle formed by the tangent to the reference line.
  • the tangential angle ⁇ obtained in the second step is temporary except for the end points.
  • interval parameters in all intervals are obtained (step 3).
  • the interval parameter is composed of the arc length h, the bending angle ⁇ ⁇ , and the contraction angle ⁇ u.
  • the interval auxiliary variable can be obtained at high speed by solving the inverse solution of “Crosoid's reduced angle polynomial” by the following first calculation process to fifth calculation process.
  • chord length and directional angle are calculated from the difference in position between the start point and end point (first calculation process), and the coefficient of the differential force contraction polynomial of the tangential direction angle between the start point and end point is calculated ( (Second calculation process), calculate the contraction angle by solving the contraction polynomial of y by Newton's method (third calculation process), and calculate the arc length using the contraction angle and the contraction polynomial of X (Calculation process), a curvature angle is calculated from the difference in tangential direction angle and the contraction angle (fifth calculation process).
  • the third arithmetic processing is performed by using a joint approximation formula for the inverse Newton method.
  • step 4 the process proceeds to step 4 to obtain curvature difference evaluation values at intermediate points excluding both ends of each point, and mark the maximum point of these curvature difference evaluation values (step 41). It is determined whether or not the curvature difference evaluation value is within the allowable range (step 42) . If the curvature difference evaluation value is within the allowable range, step 4 is terminated. The tangential direction angle was corrected (Step 43), the interval parameters of the two sections before and after the maximum point were recalculated (Step 44), and the curvature difference evaluation values at the maximum point and the three points before and after were recalculated. After (Step 41), return to Step 42 and repeat.
  • the curvature difference evaluation values at all points can be finally reduced to a predetermined tolerance or less.
  • the division auxiliary variable suitable for the product-sum operation is calculated by dividing the interval auxiliary variable obtained in the fourth step as described above. Then, the position is sequentially obtained based on these division assist variables. This makes it possible to obtain an optimum position command for interpolating between the point sequences.
  • an initial value of the tangential direction angle ⁇ i at each point Pi is obtained.
  • interval parameters for each interval are obtained.
  • the interval auxiliary variable is composed of the arc length h of the curve connecting the two points, the curvature ⁇ , and the reduction angle ⁇ .
  • the following “Crosoid reduced-angle polynomial expression” is used to obtain interval parameters at high speed.
  • cnm [m] cnm [m ⁇ 1 / (4m + 4n + 2)
  • step 41 constituting step 4
  • the curvature difference evaluation value at each intermediate point is obtained by the following equation. If the curvature of section 0 at midpoint 1 is ⁇ '10 and the curvature of section 1 is ⁇ '11,
  • V which is the geometric mean of the position error when the opposite curvature is adopted for each. Because it is the dimension of the position, the judgment of accuracy is wrong.
  • the maximum point is marked.
  • the absolute value of this value at the maximum point is compared with the given allowable value. If the maximum point is less than the allowable value, the fourth step is completed. If the maximum point is larger than the allowable value in this step 42, the process proceeds to the next step 43 to correct the tangential direction angle at the maximum point.
  • the correction angle is ( ⁇ '10 — ⁇ '11) -sqrt (h0-hl) Z8, which is the value obtained by dividing the curvature difference evaluation value by the geometric mean of the arc lengths on both sides and 4. As a result, it turns out that the difference in curvature at the maximum point is almost zero. /
  • step 44 the same solution (rotating reverse solution) as in step 3 is executed only twice, and interval parameters in the interval before and after the maximum point are obtained.
  • step 41 the same equation as the process of step 41 is executed only three times to calculate the curvature difference evaluation value between the maximum point and the front and back points, and then step 42 is performed again.
  • step 4 consisting of steps 41 to 44 is repeated until the evaluation value falls within the allowable range in the determination of step 43.
  • step 51 the process proceeds to step 51, where the starting point and the tangential direction angle (x0, y0, ⁇ 0), the interval parameter (h, ⁇ ,
  • ⁇ 'max (I ⁇ 1 ⁇ ⁇ 0
  • n — [ ⁇ h * sqrt ('max / ⁇ / 8)]
  • dv, vx, vy, dx, dy are initial values of variables.
  • step 52 the division assist variable is incremented to obtain sequential positions.
  • x x + dx water vyZdv (7)
  • Fig. 25 and 26 show a second embodiment of the processing apparatus.
  • Fig. 25 shows a side view of the processing device as seen from the X-axis direction
  • Fig. 26 shows a rear view of the processing device as seen from the Y-axis direction.
  • the X-axis moving mechanism 9 that moves the dresser 8 in the X-axis direction in the horizontal plane
  • the Y-axis moving mechanism 10 that moves in the Y-axis direction
  • a ⁇ -axis rotation mechanism 20 that rotates the dresser 8 in the ⁇ -axis direction within a horizontal plane is provided.
  • the machining apparatus of the second embodiment differs from the machining apparatus of the first embodiment in that the X-axis moving mechanism 9, the Y-axis moving mechanism 10, the ⁇ -axis rotating mechanism 20, and the grindstone 7 are both vertical surfaces.
  • a tilt mechanism 61 is provided for tilting the inside.
  • the tilt mechanism 61 includes an electric motor 62, a worm 63 that is rotationally driven by the electric motor 62, and a worm gear 64 that meshes with the worm 63.
  • the tilt mechanism 61 is automatically controlled. An operator manually operates the electric motor 62 to obtain a predetermined inclination angle.
  • a dresser device is provided on the same base as the grinding device.
  • the grindstone 7 is tilted according to the lead angle of the screw.
  • the tilt mechanism 61 since the tilt mechanism 61 is provided, the tilted grindstone 7 can be formed.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
  • the movement of the tool relative to the workpiece in the two-dimensional plane is relative.
  • the X axis movement mechanism and the Y axis movement mechanism may move the workpiece instead of the tool.
  • the work piece is not limited to a turret, and the tool is not limited to a dresser.
  • This specification is based on Japanese Patent Application No. 2006-178496 filed on Jun. 28, 2006. All this content is included here.

Abstract

A method of controlling a processing apparatus capable of processing workpieces, such as grind stones, into a variety of shapes. The processing apparatus has an X-axis movement mechanism (9) capable of moving a tool (8) relative to a workpiece (7) into the X-axis direction in a two-dimensional plane (P), a Y-axis movement mechanism (10) capable of moving the tool in the Y-axis direction in the two-dimensional plane (P), and a θ-axis rotation mechanism (20) capable of rotating the tool (8) in the two-dimensional plane about the end (8a) of the tool (8) in contact with the workpiece. A controller of the processing apparatus designs a locus curve along which the tool (8) is moved and the attitude of the tool during the movement, controls the X-axis movement mechanism (9) and the Y-axis movement mechanism (10) to move the tool (8) along the locus curve, and controls the θ-axis rotating mechanism (20) to change the attitude of the tool (8) in the two-dimensional plane (P).

Description

明 細 書  Specification
加工装置及び加工装置の制御方法  Processing apparatus and control method of processing apparatus
技術分野  Technical field
[0001] 本発明は、工具をカ卩ェ物に対して相対的に移動させて力卩ェ物をカ卩ェする加工装 置及び加工装置の制御方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a machining apparatus that moves a tool relative to a workpiece and cares for a force article and a method for controlling the machining apparatus.
背景技術  Background art
[0002] 加工装置は、加工物の不要部分を切削、研削、その他の方法によって除去して、 加工物を所要の加工形状に作り上げる。力!]ェ物には、加工物に対する工具の相対 的な運動の軌跡が転写される。  A processing apparatus removes unnecessary portions of a workpiece by cutting, grinding, or other methods, and forms the workpiece into a required processing shape. The track of the relative movement of the tool with respect to the workpiece is transferred to the force!
[0003] 加工装置の一種として、砲石の外形をドレッサで成形するドレッサ装置が知られて いる(特許文献 1)。図 27に示されるように、加工物としての砲石 1は、軸線 2を中心に 回転駆動される。砥石 1の外周は、工具としてのロータリードレッサ 3により成形される 。ロータリードレッサ 3は自転すると共に、垂直線の周りを半径 Rの距離を保って旋回 運動する。  [0003] As a type of processing device, a dresser device that forms the outer shape of a mortar with a dresser is known (Patent Document 1). As shown in FIG. 27, a turret 1 as a workpiece is driven to rotate about an axis 2. The outer periphery of the grindstone 1 is formed by a rotary dresser 3 as a tool. The rotary dresser 3 rotates and swivels around a vertical line with a radius R.
[0004] 図 28は図 27の A— A線断面図を示す。垂直線 4は砲石 1の円弧形状の成形面の 曲率中心を通る。垂直線 4を中心にしてロータリードレッサ 3を旋回運動させると、口 一タリードレッサ 3の旋回運動の軌跡が砲石 1に転写される。このドレッサ装置におい ては、図 29に示されるように、外縁にテーパ部 3aを持つロータリードレッサ 3を使用し 、テーパ部 3aの壁面 3bを砥石 1の直線部分に接触させて、砥石の円弧部分と直線 部分を組み合わせた成形面を成形して!/ヽる。  FIG. 28 is a cross-sectional view taken along line AA in FIG. Vertical line 4 passes through the center of curvature of the arc-shaped molding surface of turret 1. When the rotary dresser 3 is swung around the vertical line 4, the trajectory of the swivel movement of the mouth dresser 3 is transferred to the turret 1. In this dresser apparatus, as shown in FIG. 29, a rotary dresser 3 having a tapered portion 3a at the outer edge is used, and a wall surface 3b of the tapered portion 3a is brought into contact with a straight portion of the grindstone 1 so that an arc portion of the grindstone is obtained. Form a molding surface that combines the straight part with!
[0005] 特許文献 1 :特開昭 49— 50589号公報(2頁、図 1〜図 3参照)  [0005] Patent Document 1: Japanese Patent Laid-Open No. 49-50589 (see page 2, Fig. 1 to Fig. 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、従来のドレッサ装置にあっては、曲率半径が一定の円弧形状しか成形でき ず、成形面の形状の自由度が少ない。たとえ、ロータリードレッサの旋回半径を調整 して、曲率半径の異なる円弧面を成形したとしても、曲率中心の異なる複数の円弧を 組み合わせた形状に成形面を成形することや、曲率半径の異なる複数の円弧を組 み合わせた形状に成形することは困難である。特に図 30に示されるように、砲石の成 形面を境にして、成形面の外側と内側の両方に円弧形状の曲率中心がある砲石 (円 弧部分 Rl, R2は成形面の内側に曲率中心があり、円弧部分 R3, R4は成形面の外 側に曲率中心がある)を成形することは不可能である。 [0006] However, in the conventional dresser device, only an arc shape with a constant radius of curvature can be formed, and the degree of freedom of the shape of the forming surface is small. Even if the turning radius of the rotary dresser is adjusted to form an arc surface with different curvature radii, the molding surface can be formed into a combination of multiple arcs with different curvature centers or multiple curvature radii can be combined. Set arc It is difficult to form a combined shape. In particular, as shown in Fig. 30, a boulder with an arc-shaped center of curvature on both the outside and inside of the molding surface, with the molding surface of the boulder as the boundary (circular arcs Rl and R2 are inside the molding surface) It is impossible to mold the center of curvature in the arc part R3 and R4).
[0007] また従来のドレッサ装置にあっては、円弧部分と直線部分を組み合わせた成形面 を成形できるといっても、成形面の形状がロータリードレッサのテーパ部の形状に依 存するので、やはり形状の自由度に制限がある。 [0007] Also, in the conventional dresser device, although it can be said that a molding surface combining an arc portion and a linear portion can be formed, the shape of the molding surface depends on the shape of the taper portion of the rotary dresser, so There is a limit to the degree of freedom.
[0008] つまり、従来のドレッサ装置においては、砲石に転写されるドレッサの運動の軌跡を 機械的に制御して 、るので、砲石を多様な形状にカ卩ェすることができな!/、。 In other words, in the conventional dresser device, the trajectory of the movement of the dresser transferred to the boulder is mechanically controlled, so that the boulder cannot be covered in various shapes! /.
[0009] そこで本発明は、加工物を多様な形状に加工することができる加工装置の制御方 法及び加工装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for controlling a machining apparatus and a machining apparatus capable of machining a workpiece into various shapes.
課題を解決するための手段  Means for solving the problem
[0010] 以下、本発明につ 、て説明する。 [0010] Hereinafter, the present invention will be described.
上記課題を解決するために、請求項 1に記載の発明は、工具を加工物に対して相 対的に移動させて加工物を加工する加工装置の制御方法であって、前記工具を前 記加工物に対して二次元平面 (P)内の X軸方向に相対的に移動させることができる X 軸移動機構と、前記工具を前記加工物に対して前記二次元平面内の X軸に直交す る Y軸方向に相対的に移動させることができる Y軸移動機構と、前記加工物に接触 する前記工具の先端を中心にして前記工具を前記二次元平面 (P)内で回転させるこ とができる Θ軸回転機構と、を有する加工装置を用い、前記加工物の前記二次元平 面 (P)内での加工形状に対応させた前記工具の軌跡曲線 (直線が含まれる場合もあ る)を設計すると共に、前記軌跡曲線上における前記工具の姿勢を設計する軌跡 · 姿勢設計工程と、前記 X軸移動機構及び前記 Y軸移動機構を制御して、前記軌跡 曲線に沿って前記工具を前記加工物に対して相対的に移動させる軌跡制御工程と 、前記 Θ軸回転機構を制御して、前記二次元平面内における前記軌跡曲線上の前 記工具の姿勢を変化させる姿勢制御工程と、を備えることを特徴とする。  In order to solve the above-mentioned problem, the invention described in claim 1 is a method for controlling a machining apparatus for machining a workpiece by moving the tool relative to the workpiece, and the tool is described above. An X-axis moving mechanism that can move relative to the workpiece in the X-axis direction in the two-dimensional plane (P), and the tool perpendicular to the X-axis in the two-dimensional plane with respect to the workpiece. A Y-axis moving mechanism that can be moved relatively in the Y-axis direction, and a tool that rotates in the two-dimensional plane (P) around the tip of the tool that contacts the workpiece. A trajectory curve of the tool corresponding to the machining shape in the two-dimensional plane (P) of the workpiece (which may include a straight line). ) And design the posture of the tool on the locus curve. A trajectory control step of controlling the X-axis moving mechanism and the Y-axis moving mechanism to move the tool relative to the workpiece along the trajectory curve, and the Θ-axis rotating mechanism. And a posture control step of controlling and changing the posture of the tool on the trajectory curve in the two-dimensional plane.
[0011] 請求項 2に記載の発明は、前記軌跡'姿勢設計工程では、請求項 1に記載の加工 装置の制御方法にぉ 、て、接線方向角が曲線長の二次式で与えられるクロソイド曲 線を用いて前記工具の前記軌跡曲線を設計すると共に、前記軌跡曲線上の少なくと も一部の区間において、前記軌跡曲線の法線方向角を算出し、この法線方向角に 基づ!、て前記工具の姿勢を設計することを特徴とする。 [0011] In the invention according to claim 2, in the trajectory 'attitude design step, the clothoid in which the tangential direction angle is given by a quadratic expression having a curve length according to the method for controlling a machining apparatus according to claim 1 Song The trajectory curve of the tool is designed using a line, and the normal direction angle of the trajectory curve is calculated in at least a part of the trajectory curve, and based on the normal direction angle! The posture of the tool is designed.
[0012] 請求項 3に記載の発明は、請求項 1又は 2に記載の加工装置の制御方法において 、前記軌跡'姿勢設計工程では、対称軸を中心にして左右対称の軌跡曲線の一方 の端部から前記対称軸上まで前記工具を移動させ、その後、前記軌跡曲線の他方 の端部に前記工具を移動させ、その後、前記軌跡曲線の他方の端部から前記対称 軸上まで前記工具を移動させるように、前記軌跡曲線を設計することを特徴とする。  [0012] The invention according to claim 3 is the method of controlling a machining apparatus according to claim 1 or 2, wherein, in the trajectory 'posture design step, one end of a trajectory curve that is symmetrical about the symmetry axis. The tool is moved from the point to the axis of symmetry, and then the tool is moved to the other end of the locus curve, and then the tool is moved from the other end of the locus curve to the axis of symmetry. The trajectory curve is designed so as to make it happen.
[0013] 請求項 4に記載の発明は、請求項 2に記載の加工装置の制御方法において、前記 加工物は、前記二次元平面 (P)内に配置される軸線の回りを回転運動する砲石であ り、前記工具は、ドレッサであり、前記加工装置は、前記砲石の外形を前記ドレッサで 成形するドレッサ装置であり、前記軌跡'姿勢設計工程では、前記軌跡曲線上の前 記少なくとも一部の区間において、前記ドレッサの中心線が前記軌跡曲線の法線方 向を向くように前記ドレッサの姿勢を設計することを特徴とする。  [0013] The invention according to claim 4 is the method of controlling a machining apparatus according to claim 2, wherein the workpiece is a gun that rotates around an axis line arranged in the two-dimensional plane (P). The tool is a dresser, and the processing device is a dresser device that forms the outer shape of the turret with the dresser. In the trajectory 'posture design step, at least In some sections, the dresser posture is designed so that the center line of the dresser faces the normal direction of the trajectory curve.
[0014] 請求項 5に記載の発明は、請求項 4に記載の加工装置の制御方法において、前記 ドレッサは、前記砲石に接触する前記先端に、所定幅の平坦面と角部と、を有し、前 記軌跡 ·姿勢設計工程では、前記軌跡曲線上の前記少なくとも一部の区間にお ヽて 、前記ドレッサの姿勢を前記ドレッサの中心線が前記軌跡曲線の法線方向を向くよう に設計し、これにより、前記ドレッサの前記平坦面を前記砥石に接触させ、前記軌跡 曲線上の他の区間において、前記ドレッサの姿勢を前記ドレッサの中心線が前記軌 跡曲線の法線方向以外を向くように設計し、これにより、前記ドレッサの前記角部を 前記砥石に接触させることを特徴とする。  [0014] The invention according to claim 5 is the method of controlling a processing apparatus according to claim 4, wherein the dresser includes a flat surface and a corner portion having a predetermined width at the tip that contacts the turret. In the trajectory / posture design step, the dresser posture is set so that the center line of the dresser faces the normal direction of the trajectory curve in at least a part of the section on the trajectory curve. Design, thereby bringing the flat surface of the dresser into contact with the grindstone, and in other sections on the trajectory curve, the dresser's posture is such that the center line of the dresser is other than the normal direction of the trajectory curve. It is designed to face, whereby the corner portion of the dresser is brought into contact with the grindstone.
[0015] 請求項 6に記載の発明は、請求項 4又は 5に記載の加工装置の制御方法において 、前記砲石は、ボールねじ又はリニアガイドの、断面が二つの円弧力 なるゴシックァ ーチ溝形状のボール転走溝を研削加工するのに用いられ、前記軌跡'姿勢設計ェ 程では、ボールねじ又はリニアガイドの接触角( α )を調整できる前記砲石を得るため に、対称軸を中心にして左右対称の前記軌跡曲線を、前記対称軸を境に左右に二 分割することができると共に、分割された一対の分割軌跡曲線それぞれを前記対称 軸に向力つてずらすことができることを特徴とする。 [0015] The invention according to claim 6 is the method for controlling a processing apparatus according to claim 4 or 5, wherein the turret is a gothic search groove having a circular arc of a cross section of a ball screw or a linear guide. Used to grind the ball rolling groove of the shape, and in the locus' attitude design process, in order to obtain the turret capable of adjusting the contact angle (α) of the ball screw or linear guide, the symmetry axis is centered. The bilaterally symmetric trajectory curve can be divided into two left and right with the symmetry axis as a boundary, and each of the divided pair of trajectory curves is symmetric. It is characterized by being able to shift the shaft by force.
[0016] 請求項 7に記載の発明は、請求項 4ないし 6いずれかに記載の加工装置の制御方 法において、前記砲石は、ボールねじ又はリニアガイドのボール転走溝を研削加工 するのに用いられ、前記軌跡'姿勢設計工程では、前記ドレッサの切り込み量を調整 するために、対称軸を中心にして左右対称の前記軌跡曲線を、前記対称軸の軸線 方向にずらすことができることを特徴とする。  [0016] The invention according to claim 7 is the method for controlling a machining apparatus according to any one of claims 4 to 6, wherein the turret grinds a ball rolling groove of a ball screw or a linear guide. In the trajectory 'posture design step, the trajectory curve that is symmetric about the axis of symmetry can be shifted in the axial direction of the axis of symmetry in order to adjust the cut amount of the dresser. And
[0017] 請求項 8に記載の発明は、工具を加工物に対して相対的に移動させて加工物をカロ ェする加工装置であって、前記工具を前記加工物に対して二次元平面 (P)内の X軸 方向に相対的に移動させることができる X軸移動機構と、前記工具を前記加工物に 対して前記二次元平面 (P)内の X軸に直交する Y軸方向に相対的に移動させることが できる Y軸移動機構と、前記加工物に接触する前記工具の先端を中心にして前記ェ 具を前記二次元平面 (P)内で回転させることができる Θ軸回転機構と、前記加工物の 前記二次元平面 (P)内での加工形状に対応させた前記工具の軌跡曲線 (直線が含ま れる場合がある)を設計すると共に、前記軌跡曲線上における前記工具の姿勢を設 計し、前記 X軸移動機構及び前記 Y軸移動機構を制御して、前記加工物の前記二 次元平面 (P)内での加工形状に対応する軌跡曲線に沿って前記工具を前記加工物 に対して相対的に移動させ、そして、前記 Θ軸回転機構を制御して、前記二次元平 面 (P)内における前記軌跡曲線上の前記工具の姿勢を変化させる制御装置と、を備 えることを特徴とする加工装置である。  [0017] The invention according to claim 8 is a machining apparatus for moving the tool relative to the workpiece to calcare the workpiece, wherein the tool is moved to the workpiece in a two-dimensional plane ( An X-axis moving mechanism capable of relatively moving in the X-axis direction in (P), and a relative to the Y-axis direction perpendicular to the X-axis in the two-dimensional plane (P) with respect to the workpiece. A Y-axis moving mechanism that can be moved in an automatic manner, and a Θ-axis rotating mechanism that can rotate the tool in the two-dimensional plane (P) around the tip of the tool that contacts the workpiece. Designing a trajectory curve of the tool (which may include a straight line) corresponding to the machining shape of the workpiece in the two-dimensional plane (P), and determining the posture of the tool on the trajectory curve Design and control the X-axis moving mechanism and the Y-axis moving mechanism to The tool is moved relative to the workpiece along a trajectory curve corresponding to a machining shape in a two-dimensional plane (P), and the Θ-axis rotation mechanism is controlled to control the two-dimensional plane. And a control device for changing the posture of the tool on the trajectory curve in (P).
[0018] 請求項 9に記載の発明は、請求項 8に記載の加工装置において、前記制御装置は 、接線方向角が曲線長の二次式で与えられるクロソイド曲線を用いて前記工具の前 記軌跡曲線を設計すると共に、前記軌跡曲線上の少なくとも一部の区間にお 、て、 前記軌跡曲線の法線方向角を算出し、法線方向角に基づいて前記工具の姿勢を設 計することを特徴とする。  [0018] The invention according to claim 9 is the processing apparatus according to claim 8, wherein the control device uses a clothoid curve in which a tangential direction angle is given by a quadratic expression having a curve length. Designing a trajectory curve, calculating a normal direction angle of the trajectory curve in at least a part of the trajectory curve, and designing the posture of the tool based on the normal direction angle It is characterized by.
発明の効果  The invention's effect
[0019] 請求項 1に記載の発明によれば、 X軸移動機構及び Y軸移動機構が、設計された 軌跡曲線に沿って工具を移動させるので、加工物を二次元平面内で多様な形状に 加工することができる。また Θ軸回転機構によって、軌跡曲線上の工具の姿勢を変 化させることができるので、加工形状に合せた最適な方向に工具を向けることができ る。ここで、工具は加工物に接触する先端を中心に二次元平面内で回転するので、 工具の姿勢を変化させても、加工物に接触する工具の先端の位置は変化しない。よ つて、工具の姿勢変化が加工物の形状に影響を及ぼすこともな!、。 [0019] According to the invention described in claim 1, since the X-axis moving mechanism and the Y-axis moving mechanism move the tool along the designed trajectory curve, the workpiece can have various shapes in a two-dimensional plane. Can be processed. In addition, the Θ axis rotation mechanism changes the tool posture on the trajectory curve. Therefore, the tool can be directed in the optimum direction according to the machining shape. Here, since the tool rotates in a two-dimensional plane around the tip that contacts the workpiece, even if the posture of the tool is changed, the position of the tip of the tool that contacts the workpiece does not change. Therefore, changes in the posture of the tool will not affect the shape of the workpiece! ,.
[0020] 請求項 2に記載の発明によれば、軌跡曲線に接線方向角が曲線長の二次式で与 えられる二次元クロソイド曲線を用いているので、軌跡曲線上の法線方向角を容易 に算出できる。  [0020] According to the invention described in claim 2, since the two-dimensional clothoid curve in which the tangential direction angle is given by the quadratic expression of the curve length is used for the locus curve, the normal direction angle on the locus curve is It can be calculated easily.
[0021] 請求項 3に記載の発明によれば、左右対称の加工物の形状を安定させることがで きる。  [0021] According to the invention described in claim 3, the shape of the symmetrical workpiece can be stabilized.
[0022] 請求項 4に記載の発明によれば、ドレッサの姿勢を砲石の加工形状に対して法線 方向に向けることで、ドレッサの摩耗を減らすことができ、またドレッサの摩耗のばらつ きを減少、させることができる。  [0022] According to the invention of claim 4, the dresser wear can be reduced by orienting the dresser in the normal direction with respect to the processed shape of the turret, and the wear of the dresser varies. Can be reduced.
[0023] 請求項 5に記載の発明によれば、たとえ、軌跡曲線の曲率中心が軌跡曲線よりもド レッサ側にあり、且つ軌跡曲線の曲率半径がドレッサの幅より小さい場合でも、ドレツ サが砲石をえぐってしまうことがなぐ軌跡曲線に合わせた砲石の形状を成形すること ができる。  [0023] According to the invention of claim 5, even if the center of curvature of the trajectory curve is closer to the dresser than the trajectory curve and the radius of curvature of the trajectory curve is smaller than the width of the dresser, the dresser is The shape of the turret can be shaped to match the trajectory curve that does not pass through the turret.
[0024] 請求項 6に記載の発明によれば、ボールとボール転走溝との接触角を調整できる 砥石を成形することができる。  [0024] According to the invention of claim 6, a grindstone capable of adjusting the contact angle between the ball and the ball rolling groove can be formed.
[0025] 請求項 7に記載の発明によれば、砲石へのドレッサの切り込み量を調整することが できる。 [0025] According to the invention of claim 7, the amount of dresser cut into the turret can be adjusted.
[0026] 請求項 8に記載の発明によれば、 X軸移動機構及び Y軸移動機構によって、設計 された軌跡曲線に沿って工具を移動させることができるので、加工物を二次元平面 内で多様な形状に加工することができる。また Θ軸回転機構によって、軌跡曲線上 の工具の姿勢を変化させることができるので、加工形状に合せた最適な方向に工具 を向けることができる。ここで、工具は加工物に接触する先端を中心に二次元平面内 で回転するので、工具の姿勢を変化させても、加工物に接触する工具の先端の位置 は変化しない。よって、工具の姿勢変化が加工物の形状に影響を及ぼすこともない。  [0026] According to the invention described in claim 8, since the tool can be moved along the designed trajectory curve by the X-axis moving mechanism and the Y-axis moving mechanism, the workpiece can be moved in a two-dimensional plane. It can be processed into various shapes. Also, the Θ-axis rotation mechanism can change the posture of the tool on the trajectory curve, so that the tool can be directed in the optimum direction according to the machining shape. Here, since the tool rotates in a two-dimensional plane around the tip that contacts the workpiece, the position of the tip of the tool that contacts the workpiece does not change even if the posture of the tool is changed. Therefore, the change in the posture of the tool does not affect the shape of the workpiece.
[0027] 請求項 9に記載の発明によれば、軌跡曲線に接線方向角が曲線長の二次式で与 えられる二次元クロソイド曲線を用いているので、軌跡曲線上の法線方向角を容易 に算出できる。 [0027] According to the invention of claim 9, the trajectory curve is given by a quadratic expression in which the tangential direction angle is a curve length. Since the obtained two-dimensional clothoid curve is used, the normal direction angle on the trajectory curve can be easily calculated.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の第一の実施形態における加工装置を示す側面図  FIG. 1 is a side view showing a processing apparatus according to a first embodiment of the present invention.
[図 2]ドレッサの平面図 [Figure 2] Top view of the dresser
[図 3]砥石によって研削されるボールねじを示す斜視図  [Fig. 3] Perspective view showing a ball screw ground by a grindstone
[図 4]砥石によって研削されるリニアガイドを示す斜視図 [Fig. 4] Perspective view showing a linear guide ground by a grindstone
[図 5]砲石の水平面内の加工形状を示す図 [Figure 5] Diagram showing the machining shape of the turret in the horizontal plane
[図 6]砥石の加工形状に沿って移動するドレッサの軌跡'姿勢を示す図  [Fig.6] A figure showing the dresser's trajectory 'posture that moves along the grinding wheel shape
圆 7]制御装置のブロック構成図 圆 7] Block diagram of the control device
[図 8]表形式のモーション ·テーブルを示す図  [Figure 8] Diagram showing a tabular motion table
[図 9]モーション'デザイナが実行するフローチャート  [Figure 9] Flowchart executed by Motion Designer
[図 10]コンピュータの表示装置に表示される軌跡設計用画面  [Fig.10] Trajectory design screen displayed on computer display device
[図 11]砲石の加工形状に沿って移動するドレッサの軌跡 ·姿勢の他の例を示す図 [Fig. 11] Diagram showing another example of the locus / posture of the dresser moving along the processed shape of the turret
[図 12]接触角を調整できる砥石を得るための軌跡設計方法の概念図 [Figure 12] Conceptual diagram of the trajectory design method for obtaining a grindstone with adjustable contact angle
[図 13]接触角を調整した砥石の断面形状を示す図  FIG. 13 is a diagram showing the cross-sectional shape of a grindstone with an adjusted contact angle
圆 14]ドレッサの切り込み量を調整するための軌跡設計方法の概念図 圆 14] Conceptual diagram of trajectory design method for adjusting dresser cutting depth
圆 15]ドレッサの姿勢が軌跡曲線の法線方向を向くようにドレッサの姿勢を設計した 例を示す図 圆 15] Diagram showing an example of the dresser posture designed so that the dresser posture is in the normal direction of the trajectory curve
圆 16]ドレッサ先端の平坦面の幅が、軌跡曲線の小径の円弧部分の曲率半径よりも 大きい例を示す図 圆 16] Diagram showing an example where the width of the flat surface at the tip of the dresser is larger than the radius of curvature of the small-diameter arc portion of the locus curve
[図 17]削られすぎたドレッサの円弧部分を示す図  [Figure 17] Figure showing the arc portion of the dresser that has been cut too much
圆 18]ドレッサの姿勢が軌跡曲線の法線方向以外を向くようにドレッサの姿勢を設計 した例を示す図 圆 18] Diagram showing an example of the dresser posture designed so that the dresser posture is not in the normal direction of the trajectory curve
圆 19]滑らかに削られたドレッサの円弧部分を示す図 圆 19] Diagram showing the arc portion of the dresser cut smoothly
[図 20]モーション 'オペレータが実行するフローチャート [Figure 20] Motion 'Flowchart executed by the operator
[図 21]基本クロソイド曲線を示す図 [Fig.21] Diagram showing basic clothoid curve
[図 22]クロソイド曲線を用いた補間方法で実行されるプログラムのフローチャート [図 23]接線方向角の初期値を得る際の方法について説明するための略図 [Fig.22] Flowchart of the program executed by the interpolation method using clothoid curve [FIG. 23] Schematic diagram for explaining the method for obtaining the initial value of the tangential direction angle.
[図 24]三点円弧法について説明するための略図  [Figure 24] Schematic diagram for explaining the three-point arc method
[図 25]本発明の第二の実施形態の加工装置の X軸方向からみた側面図  FIG. 25 is a side view of the machining apparatus according to the second embodiment of the present invention viewed from the X-axis direction.
[図 26]本発明の第二の実施形態の加工装置の Y軸方向からみた側面図  FIG. 26 is a side view of the machining apparatus according to the second embodiment of the present invention viewed from the Y-axis direction.
[図 27]従来のドレッサ装置の側面図  [Fig.27] Side view of conventional dresser device
[図 28]従来のドレッサによる砲石の成形方法を示す図(図 27の A— A線断面図) [Fig.28] A diagram showing a method for forming a turret using a conventional dresser (cross-sectional view taken along line A-A in Fig. 27)
[図 29]従来のドレッサによる砲石の成形方法を示す図 FIG. 29 is a diagram showing a method for forming a turret using a conventional dresser.
[図 30]従来のドレッサ装置では成形できない砲石の形状を示す図。  FIG. 30 is a view showing a turret shape that cannot be formed by a conventional dresser device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 図 1は、本発明の第一の実施形態における加工装置を示す。この加工装置は、加 ェ物としての砥石 7の外周面を、工具としてのドレッサにより成形する。砲石 7はその 軸線 7aの周りを回転可能に加ェ装置に設けられ、そして図示しな!、砲石駆動装置 により回転駆動される。砲石 7の軸線 7aは二次元平面内、例えば水平面 P内に位置 する。加工の際、ドレッサ力も離間して据え付けられた砲石 7は、図示しない砲石 Y軸 移動装置によってドレッサ 8に向力つて図中 y方向に移動される。  FIG. 1 shows a processing apparatus according to the first embodiment of the present invention. In this processing apparatus, the outer peripheral surface of the grindstone 7 as a workpiece is formed by a dresser as a tool. The turret 7 is mounted on the heating device so as to be rotatable about its axis 7a, and is not shown in the figure! The axis 7a of the turret 7 is located in the two-dimensional plane, for example, the horizontal plane P. At the time of processing, the turret 7 installed with the dresser force separated also is moved in the y direction in the figure by being directed toward the dresser 8 by a turret Y-axis moving device (not shown).
[0030] 砥石 7の軸線 7aを含む水平面 P内には、ドレッサ 8が配置される。ドレッサ 8は、 X軸 移動機構 9によって水平面内の X軸方向(紙面と直交する方向)に移動でき、 Y軸移 動機構 10によって水平面内の X軸に直交する Y軸方向に移動できる。そしてドレッサ 8は、 Θ軸回転機構 20によって水平面内を回転できる。  [0030] A dresser 8 is disposed in a horizontal plane P including the axis 7a of the grindstone 7. The dresser 8 can be moved in the X-axis direction (direction perpendicular to the paper surface) in the horizontal plane by the X-axis moving mechanism 9 and can be moved in the Y-axis direction orthogonal to the X-axis in the horizontal plane by the Y-axis moving mechanism 10. The dresser 8 can be rotated in the horizontal plane by the Θ-axis rotation mechanism 20.
[0031] 加工装置のベース 11上には、ボールねじ機構 14, 16によって Y軸テーブル 17を Y軸方向に移動させる Y軸移動機構 10が取り付けられる。 Y軸サーボモータ 12の回 転はウォームギヤ 13を介してねじ軸 14に伝動される。ここで、速比の小さいウォーム ギヤ 13が使用すると、 Y軸サーボモータ 12の回転量に対する Y軸テーブル 17の移 動量を小さくすることができ、 Y軸テーブル 17を精度良く移動させることができる。ね じ軸 14はベース 11上にベアリング 15を介して回転可能に支持される。ねじ軸 14に はボールねじナット 16が螺合する。ボールねじナット 16の上面には、 Y軸テーブル 1 7が結合される。 Y軸テーブル 17はリニアガイドを介してベース上に Y軸方向にスライ ド可能に支持される。 [0032] なお、加工装置のベース 11はエアシリンダ等のスライド機構 19によって水平面内を Y軸方向に移動される。スライド機構 19はドレッサを加工位置へ移動させたり、加工 位置力 離間させたりする。 [0031] On the base 11 of the processing apparatus, a Y-axis moving mechanism 10 that moves the Y-axis table 17 in the Y-axis direction by means of ball screw mechanisms 14 and 16 is attached. The rotation of the Y-axis servo motor 12 is transmitted to the screw shaft 14 via the worm gear 13. Here, when the worm gear 13 having a small speed ratio is used, the amount of movement of the Y-axis table 17 relative to the amount of rotation of the Y-axis servomotor 12 can be reduced, and the Y-axis table 17 can be moved with high accuracy. The screw shaft 14 is rotatably supported on the base 11 via a bearing 15. A ball screw nut 16 is screwed onto the screw shaft 14. A Y-axis table 17 is coupled to the upper surface of the ball screw nut 16. The Y-axis table 17 is supported on the base through a linear guide so as to be slidable in the Y-axis direction. Note that the base 11 of the processing apparatus is moved in the Y-axis direction within a horizontal plane by a slide mechanism 19 such as an air cylinder. The slide mechanism 19 moves the dresser to the machining position or separates the machining position force.
[0033] Y軸テーブル 17上には X軸移動機構 9が取り付けられる。 X軸移動機構 9も、ボー ルねじ機構によって X軸テーブル 21を X軸方向に移動させる。 X軸サーボモータの 回転はウォームギヤを介してねじ軸 22に伝動される。ねじ軸 22は Y軸テーブル 17上 にベアリングを介して回転可能に支持される。ねじ軸 22にはボールねじナット 23が 螺合する。ボールねじナット 23の上面には、 X軸テーブル 21が結合される。 Y軸テー ブル 21はリニアガイド 24を介し Y軸テーブル 17上に Y軸方向にスライド可能に支持 される。  An X-axis moving mechanism 9 is attached on the Y-axis table 17. The X-axis moving mechanism 9 also moves the X-axis table 21 in the X-axis direction by the ball screw mechanism. The rotation of the X-axis servo motor is transmitted to the screw shaft 22 via the worm gear. The screw shaft 22 is rotatably supported on the Y-axis table 17 via a bearing. A ball screw nut 23 is screwed onto the screw shaft 22. An X-axis table 21 is coupled to the upper surface of the ball screw nut 23. The Y-axis table 21 is supported on the Y-axis table 17 via the linear guide 24 so as to be slidable in the Y-axis direction.
[0034] X軸テーブル 21上には、 Θ軸回転機構 20が取り付けられる。 X軸テーブル 21上に はコラム 26が結合される。コラム 26には、垂直方向に伸びる Θ軸 27がベアリング 28 を介して回転可能に支持される。 Θ軸 27の軸線 27aは垂直方向を向き、水平面 Pと 直交する。 Θ軸 27はベアリング 28で支持される部分から下方に伸びていて、その下 端部にドレッサ 8が取り付けられる。 Θ軸 27の上端部がベアリング 28による支持部分 に吊り下げられ、 Θ軸 27の下端部は支持されていない。砲石 7との干渉を避けるため に、 0軸 27は上端部から下端部に向力つて斜めに傾いている。 0軸 27の軸線 27a は、水平面 P内でのドレッサ 8の回転中心になる。 Θ軸 27の軸線 27a上にドレッサ 8 の先端 8aが位置するように、ドレッサ 8の位置が調整される。ドレッサ 8は止めねじ 29 により Θ軸 27〖こ固定される。  A Θ-axis rotation mechanism 20 is attached on the X-axis table 21. A column 26 is coupled on the X-axis table 21. In the column 26, a Θ axis 27 extending in the vertical direction is rotatably supported via a bearing 28. The axis 27a of the Θ axis 27 points in the vertical direction and is orthogonal to the horizontal plane P. The Θ shaft 27 extends downward from the portion supported by the bearing 28, and a dresser 8 is attached to the lower end thereof. The upper end of the Θ axis 27 is suspended from the support portion by the bearing 28, and the lower end of the Θ axis 27 is not supported. In order to avoid interference with the turret 7, the 0-axis 27 is inclined obliquely from the upper end to the lower end. The axis 27a of the zero axis 27 is the center of rotation of the dresser 8 in the horizontal plane P. The position of the dresser 8 is adjusted so that the tip 8a of the dresser 8 is positioned on the axis 27a of the Θ axis 27. The dresser 8 is fixed to the Θ axis 27 mm by a set screw 29.
[0035] コラム 26には Θ軸サーボモータ 29が結合される。 Θ軸サーボモータ 29の回転は、 減速歯車 30、ウォーム歯車 31を介して Θ軸 27に伝動される。これら減速歯車 30、ゥ オーム歯車 31を介在させることにより、ドレッサ 8を高精度に回転させることができる。  A Θ-axis servo motor 29 is coupled to the column 26. The rotation of the Θ-axis servomotor 29 is transmitted to the Θ-axis 27 through the reduction gear 30 and the worm gear 31. By interposing the reduction gear 30 and the worm gear 31, the dresser 8 can be rotated with high accuracy.
[0036] 図 2はドレッサ 8の平面図を示す。ドレッサ 8は砥石 7を研削するダイヤモンド工具か らなる。ドレッサ 8は水平面 P内を上述の X軸移動機構 9によって X軸方向に移動され 、 Y軸移動機構 10によって Y軸方向に移動される。そして、 Θ軸回転機構 20によつ て先端 8aを中心に水平面内 Pを回転される。  FIG. 2 shows a plan view of the dresser 8. The dresser 8 consists of a diamond tool that grinds the grinding wheel 7. The dresser 8 is moved in the X-axis direction in the horizontal plane P by the X-axis moving mechanism 9 described above, and is moved in the Y-axis direction by the Y-axis moving mechanism 10. Then, the Θ-axis rotating mechanism 20 is rotated in the horizontal plane P around the tip 8a.
[0037] ドレッサ 8には、先端 8aを尖らせたダイヤモンドが埋め込まれる単石ドレッサを用い てもよいし、先端 8aに平坦面を有する角柱形状のダイヤモンドが埋め込まれた角柱 ドレッサを用いてもよいし、円盤型のロータリードレッサを用いてもよい。円盤型のロー タリードレッサとは、円盤の軸線を中心に回転駆動される回転型のドレッサである。こ の図 2には、一例として、角柱ドレッサが示されている。ゆえに、このドレッサ 8は先端 8aに所定幅の平坦面 8bと角部 8cを有する。 [0037] The dresser 8 is a single stone dresser in which a diamond with a sharp tip 8a is embedded. Alternatively, a prismatic dresser in which a prismatic diamond having a flat surface is embedded in the tip 8a may be used, or a disc-shaped rotary dresser may be used. The disk-type rotor lead dresser is a rotary dresser that is driven to rotate about the axis of the disk. In FIG. 2, a prismatic dresser is shown as an example. Therefore, the dresser 8 has a flat surface 8b having a predetermined width and a corner 8c at the tip 8a.
[0038] ドレッサ 8によって成形される砥石 7は、図 3に示されるボールねじ 31や図 4に示さ れるリニアガイドのボール転走溝を研削加工するのに用いられる。ボールねじ 31は ねじ軸 32のボール転走溝 32aと、ナット 33のボール転走溝 33aとの間にボール 34を 入れ、ナット 33にそのボール 34が循環できるように戻し路 35を設けたものである。リ ユアガイド 40は、移動体が直線運動するのを案内するのに用いられ、直線状に伸び る軌道レール 36のボール転走溝 36aと、軌道レール 36に沿って移動する鞍状の移 動ブロック 37のボール転走溝 37aとの間にボール 38を入れ、移動ブロック 37にその ボール 38が循環できるように戻し路 39を設けたものである。これらボールねじ 31、リ ニァガイド 40【こお!/ヽて ίま、ボーノレ転走溝 32a, 33a, 36a, 37aの断面形状 ίま単一の 円弧力もなるサーキユラ一アーチ溝形状に形成される場合もあるし、二つの円弧から なるゴシックアーチ溝形状に形成される場合もある。  The grindstone 7 formed by the dresser 8 is used for grinding the ball screw 31 shown in FIG. 3 and the ball rolling groove of the linear guide shown in FIG. The ball screw 31 has a ball 34 inserted between the ball rolling groove 32a of the screw shaft 32 and the ball rolling groove 33a of the nut 33, and a return path 35 is provided in the nut 33 so that the ball 34 can circulate. It is. The guide 40 is used to guide the moving body in a linear motion, and the ball rolling groove 36a of the track rail 36 that extends linearly and the bowl-shaped moving block that moves along the track rail 36. A ball 38 is inserted between the ball rolling groove 37a of 37 and a return path 39 is provided in the moving block 37 so that the ball 38 can circulate. These ball screws 31 and linear guides 40 【Cow! / Tetsuteoraki, Bonole rolling groove 32a, 33a, 36a, 37a cross-sectional shape ・ When formed into a circular arch groove shape with a single arc force In some cases, it is formed in a Gothic arch groove shape consisting of two arcs.
[0039] 図 5は、ドレッサ 8によって成形される砥石 7の水平面 Ρ内の加工形状の一例を示す 。砥石 7の水平面 Ρ内でのカロェ形状は、ボール転走溝 32a, 33a, 36a, 37aの断面 形状に一致させられる。この例では、砲石 7の水平面 P内の加工形状は、ゴシックァ ーチ溝のボール転走溝 32a, 33a, 36a, 37aに合わせてゴシックアーチ溝形状に設 定される。すなわち砲石 7の加工形状は、二つの円弧 Rl, R2からなる円弧部分 41を 有し、二つの円弧 Rl, R2の曲率半径は等しい。円弧 R1の曲率中心と円弧部分 R2 の曲率中心とは、距離 L離れている。円弧部分 41の両側には直線部分 42が設けら れる。円弧部分 41と直線部分 42との接続部には、小径の円弧 R3, R4カゝらなる円弧 部分 43が設けられる。円弧 Rl, R2の曲率中心と、円弧 R3, R4の曲率中心は、砥石 7の成形面を境にして、砲石 7の内側と外側とにある。  FIG. 5 shows an example of a processed shape in the horizontal plane of the grindstone 7 formed by the dresser 8. The Karoe shape in the horizontal plane of the grindstone 7 is made to match the cross-sectional shape of the ball rolling grooves 32a, 33a, 36a, 37a. In this example, the processed shape in the horizontal plane P of the turret 7 is set to the Gothic arch groove shape in accordance with the ball rolling grooves 32a, 33a, 36a, and 37a of the Gothicarch groove. That is, the processing shape of the turret 7 has an arc portion 41 composed of two arcs Rl and R2, and the curvature radii of the two arcs Rl and R2 are equal. The center of curvature of the arc R1 and the center of curvature of the arc portion R2 are separated by a distance L. Straight portions 42 are provided on both sides of the arc portion 41. At the connecting portion between the arc portion 41 and the linear portion 42, an arc portion 43 such as a small-diameter arc R3, R4 is provided. The centers of curvature of the arcs Rl and R2 and the centers of curvature of the arcs R3 and R4 are on the inside and outside of the turret 7 with the molding surface of the grindstone 7 as a boundary.
[0040] 図 6に示されるように、水平面 P内におけるドレッサ 8の軌跡及び姿勢を制御して、 砥石 7を加工形状に成形する。具体的には、 X軸移動機構 9及び Y軸移動機構 10を 制御して、水平面 P内における軌跡曲線 44 (砥石の加工形状に一致)に沿ってドレツ サ 8を移動させ、且つ、 Θ軸回転機構 20を制御して、水平面 P内における軌跡曲線 4 4のドレッサ 8の姿勢を変化させる。 [0040] As shown in FIG. 6, the locus and posture of the dresser 8 in the horizontal plane P are controlled, and the grindstone 7 is formed into a processed shape. Specifically, the X-axis moving mechanism 9 and the Y-axis moving mechanism 10 are By controlling, the dresser 8 is moved along the locus curve 44 in the horizontal plane P (corresponding to the processing shape of the grindstone), and the Θ-axis rotation mechanism 20 is controlled to change the locus curve 44 in the horizontal plane P Change the dresser 8 posture.
[0041] ドレッサ装置の制御装置について説明する。図 7は制御装置 55の構成図を示す。  A control device for the dresser device will be described. FIG. 7 shows a configuration diagram of the control device 55.
制御装置 55のハードウェアは、モーション 'テーブル 51作成までのソフトウェアが組 み込まれたパソコン等のコンピュータ 56 (図中点線より左側)と、モーション 'テーブル 51を読み込んでドレッサ装置の X, Υ, Θ軸を動作させるためのモーション 'オペレー タ 54が組み込まれたモータ制御装置 57 (図中点線より右側)とで構成される。制御装 置 55のコンピュータ 56が、行方向に時間軸、列方向にドレッサ装置の X, Υ, Θ軸を とって各動作軸の変位の値を記述したモーション 'テーブル 51を作成し、このモーシ ヨン.テーブル 51に基づいて、制御装置 55のモータ制御装置 57がドレッサ装置の各 軸の制御を行う。コンピュータ 56とモータ制御装置 57との間には、モーション'テープ ル 51及びモーション 'エディタ 53からの信号指令が伝わる。  The hardware of the control device 55 consists of a computer 56 (left side of the dotted line in the figure) such as a personal computer in which the software up to the creation of the motion 'table 51 is installed, and the motion' table 51 is read and the X, Υ, It consists of a motor control device 57 (right side from the dotted line in the figure) that incorporates a motion 'operator 54 to operate the Θ axis. The computer 56 of the control device 55 creates a motion table 51 that describes the displacement values of each motion axis by taking the time axis in the row direction and the X, Υ, and Θ axes of the dresser device in the column direction. On the basis of the Yong table 51, the motor control device 57 of the control device 55 controls each axis of the dresser device. A signal command from the motion 'table 51 and the motion' editor 53 is transmitted between the computer 56 and the motor control device 57.
[0042] 制御装置 55のソフトウェアは、モーション 'テーブル 51を作成するためのモーション  [0042] The software of the control device 55 is a motion to create a motion 'table 51
'デザイナ 52と、複数のモーション 'テーブル 51を編集するためのモーション 'エディ タ 53 (シーケンサ)、並びにこれらの指令入力を受けて X, Υ, Θ軸のサーボモータを 動作させるためのモーション 'オペレータ 54とによって構成される。  'Designer 52 and multiple motions'' Motion to edit table 51 'Editor 53 (sequencer) and motion to operate X, Υ, and Θ axis servo motors in response to these command inputs' Operator Consists of 54 and
[0043] まず、モーション 'テーブル 51について説明する。ドレッサ 8の位置及び/又は姿 勢を時間の関数として与えることは、モーションと呼ばれる。モーション 'テーブル 51 は、図 8に示されるように、行方向に時間軸、列方向に各動作軸 (サーボモータ)を各 軸の変位のアブソリュート値またはインクリメンタル値を記述したものである。アブソリ ユート値は基準値に対しての絶対値であり、インクリメンタル値は時間間隔毎に増分 する値である。図 8にはアブソリュート値が記述されている力 必ずしも 0から始まると は限らない。  [0043] First, the motion 'table 51 will be described. Giving the position and / or attitude of dresser 8 as a function of time is called motion. As shown in FIG. 8, the motion 'table 51 describes the absolute value or incremental value of the displacement of each axis with the time axis in the row direction and each operation axis (servo motor) in the column direction. The absolute value is an absolute value relative to the reference value, and the incremental value is a value that increments at each time interval. In Fig. 8, the force for which the absolute value is described does not necessarily start from zero.
[0044] モーション 'テーブル 51は、例えば CSV(Comma Separated Value)方式のデータで ロボット等に送られる。モーション 'テーブル 51は縦の列及び横の行を有する表形式 のデータであるので、シリアル通信で送れるように CSV方式を利用して一列のデータ にする。具体的には例えば表データが、左上から 0, 0, 5,行がえ, 1, 2, 5,行がえ , 3, 6, 5,行力え,と ヽぅふうにー歹 IJのデータに変換される。 [0044] The motion 'table 51 is sent to a robot or the like in CSV (Comma Separated Value) format data, for example. Since motion 'table 51 is tabular data with vertical columns and horizontal rows, it is converted to a single column using the CSV method so that it can be sent via serial communication. Specifically, for example, the table data has 0, 0, 5 rows from the upper left, 1, 2, 5, rows , 3, 6, 5, ideology, ヽ ぅ fununi に Converted to IJ data.
[0045] モーション.テーブル 51を作成するためのモーション.デザイナ 52で実行されるフロ 一チャートを、図 9を参照して説明する。  A flow chart executed by the motion designer 52 for creating the motion table 51 will be described with reference to FIG.
[0046] 〈軌跡 ·姿勢の設計 (S 1 )〉  [0046] <Track and Posture Design (S 1)>
ドレッサ 8が動くとき、そのドレッサ 8の先端の砲石 7との接触点(以下工具点という) は、平面的に描かれた連続な軌跡曲線 (直線を含む場合がある)上を時間的に移動 すると考えることができる。工具点の位置は、座標 (x、 y)で表され、ドレッサ 8の姿勢 は、例えば x、 y軸に対する回転角度で表される。どのような複雑な動きでも、工具点 の軌跡は途切れ途切れになることなぐ連続的に繋がっている。運動制御の第 1段階 は、ドレッサ 8の軌跡曲線を設計すると共に、ドレッサ 8の姿勢を設計することにある。  When the dresser 8 moves, the contact point of the tip of the dresser 8 with the turret 7 (hereinafter referred to as the tool point) temporally moves on a continuous trajectory curve (which may include a straight line) drawn in a plane. You can think of it as moving. The position of the tool point is represented by coordinates (x, y), and the posture of the dresser 8 is represented by, for example, a rotation angle with respect to the x and y axes. Regardless of the complexity of the movement, the tool point trajectory is continuously connected without interruption. The first stage of motion control is to design the trajectory curve of the dresser 8 and the posture of the dresser 8.
[0047] 図 10は、コンピュータ 56の表示装置に表示される軌跡設計用画面を示す。まずォ ペレータは、図 5に示される砲石 7の加工形状に対応させて、例えば六つの点列 P1 〜P6の XY座標をコンピュータ 56に入力する。入力にはキーボード、マウス等の入力 手段を用いることができる。 P1→P2は加工形状の直線部分 42に対応させた区間で あり、 P2→P3→P4はカ卩ェ形状の小径の円弧部分 43に対応させた区間であり、 P4 →P5→P6はカ卩ェ形状の大径の円弧部分 41に対応させた区間である。オペレータ が点列を入力すると、コンピュータが点列 P1〜P6を補間した軌跡曲線 60を設計す る。設計された軌跡曲線 60は表示装置に表示される。本実施形態においては、軌跡 曲線 60の設計にあたってクロソイド曲線を採用する。クロソイド曲線においては曲線 の接線方向角が曲線長の関数として連続的に与えられる。それゆえ、運動の連続性 が保たれる。このクロソイド曲線を用いた補間方法については後述する。コンピュータ 56は、 P1〜P6までを補間した軌跡曲線 60を設計したら、ワーク原点上の対称軸 59 を中心に軌跡曲線 60を反転させて、図 6に示されるような左右対称の軌跡曲線 44を 設計する。  FIG. 10 shows a trajectory design screen displayed on the display device of the computer 56. First, the operator inputs, for example, the XY coordinates of six point sequences P1 to P6 to the computer 56 in correspondence with the machining shape of the turret 7 shown in FIG. Input means such as a keyboard and a mouse can be used for input. P1 → P2 is the section corresponding to the straight part 42 of the machining shape, P2 → P3 → P4 is the section corresponding to the small circular arc part 43 of the cage shape, and P4 → P5 → P6 is the section. This section corresponds to the arcuate portion 41 having a large diameter. When the operator inputs a point sequence, the computer designs a locus curve 60 that interpolates the point sequence P1 to P6. The designed locus curve 60 is displayed on the display device. In this embodiment, a clothoid curve is used in designing the locus curve 60. In a clothoid curve, the tangential angle of the curve is given continuously as a function of the curve length. Therefore, the continuity of movement is maintained. An interpolation method using this clothoid curve will be described later. After designing the trajectory curve 60 interpolated from P1 to P6, the computer 56 inverts the trajectory curve 60 around the symmetry axis 59 on the workpiece origin to obtain a symmetrical trajectory curve 44 as shown in FIG. design.
[0048] 図 6に示されるように、コンピュータ 56は軌跡曲線 44を設計すると共にドレッサ 8の 姿勢も設計する。この実施形態では、姿勢の設計にあたって、軌跡曲線 44上の全て の区間において、ドレッサ 8の中心線 8dが軌跡曲線 44の法線方向を向くようにドレツ サ 8の姿勢を設計する。法線方向を向けるのは、ドレッサ 8の摩耗を減らし、またドレッ サ 8の各部分での摩耗のばらつきを減少させるためである。クロソイド曲線において は、接線方向角が与えられているので、与えられた接線方向角を 90度回転させるだ けで、曲線の法線方向を算出できる。クロソイド曲線を用いると、図 9に示されるように 、ドレッサ 8の位置 Pととも〖こ、ドレッサ 8の姿勢 Eも曲線長 sの関数として与えられる。 As shown in FIG. 6, the computer 56 designs the trajectory curve 44 and also the posture of the dresser 8. In this embodiment, in designing the posture, the posture of the dresser 8 is designed so that the center line 8d of the dresser 8 faces the normal direction of the locus curve 44 in all sections on the locus curve 44. Directing the normal direction reduces the wear on the dresser 8 and This is to reduce the variation in wear in each part of the support 8. The clothoid curve is given a tangential angle, so the normal direction of the curve can be calculated simply by rotating the given tangential angle by 90 degrees. When a clothoid curve is used, as shown in FIG. 9, the position E of the dresser 8 is also given, and the posture E of the dresser 8 is also given as a function of the curve length s.
[0049] 図 6に示されるように、左右対称の軌跡曲線 44の一方の端部 44aから他方の端部 4 4bまで軌跡曲線 44に沿ってドレッサ 8を移動させると、加工時間を短くすることができ る。し力し、この方法では円弧 R1と R2の形状のばらつきが生じやすい。そこで、図 11 に示されるように、軌跡曲線 44の一方の端部 44aから対称軸 59上までドレッサ 8を移 動させ、その後、軌跡曲線 44の他方の端部 44bにドレッサ 8を移動させ、その後、軌 跡曲線 44の他方の端部 44bから対称軸 59上までドレッサ 8を移動させてもよい。この ように軌跡曲線を設計すると、多少加工時間はかかるが、円弧 R1と R2の形状が安定 する。 [0049] As shown in FIG. 6, when the dresser 8 is moved along the locus curve 44 from one end 44a of the symmetrical locus curve 44 to the other end 44b, the machining time is shortened. You can. However, this method tends to cause variations in the shapes of the arcs R1 and R2. Therefore, as shown in FIG. 11, the dresser 8 is moved from one end 44a of the locus curve 44 to the symmetry axis 59, and then the dresser 8 is moved to the other end 44b of the locus curve 44. Thereafter, the dresser 8 may be moved from the other end 44 b of the trajectory curve 44 to the symmetry axis 59. Designing the trajectory curve in this way takes some machining time but stabilizes the shapes of arcs R1 and R2.
[0050] 図 12は、ボールねじ 31又はリニアガイド 40の接触角を調整できる砥石 7を得るため の軌跡設計方法の概念図を示す。図 12に示されるように、コンピュータ 56は、対称 軸を境に左右に軌跡曲線 44を二分割した分割軌跡曲線 (1)(2)を作成する。オペレー タは、図 10に示される入力画面において、分割軌跡曲線 (1)(2)のオフセット量を入力 する。コンピュータ 56は、指定されたオフセット量だけ、分割された一対の分割軌跡 曲線 45それぞれを対称軸 59に向かって X方向にずらす。円弧 Rl , R2の曲率半径 は変えない。  FIG. 12 shows a conceptual diagram of a trajectory design method for obtaining the grindstone 7 that can adjust the contact angle of the ball screw 31 or the linear guide 40. As shown in FIG. 12, the computer 56 creates divided trajectory curves (1) and (2) obtained by dividing the trajectory curve 44 into left and right with the symmetry axis as a boundary. The operator inputs the offset of the segmented trajectory curves (1) and (2) on the input screen shown in FIG. The computer 56 shifts each of the pair of divided trajectory curves 45 in the X direction toward the symmetry axis 59 by the specified offset amount. The radius of curvature of arcs Rl and R2 is not changed.
[0051] 図 13に示されるように、接触角 α 1 , α 2とは、ボールねじ 31又はリニアガイド 40の ボーノレ 34, 38の中'、点、 Οと、ボーノレ転走溝 32a, 33a, 36a, 37aとを結んだ、線 46と 、左右対称のボーノレ転走溝 32a, 33a, 36a, 37aの対称軸 59と、を結んだ、線とのな す角である。ここで、砥石 7のカロェ形状とボール転走溝 32a, 33a, 36a, 37aの断面 形状とは一致するので、ボール転走溝 32a, 33a, 36a, 37aの断面形状を砥石 7の 断面形状に代替して接触角ひ 1 , ひ 2を示す。オフセット量を変化させることで、接触 角 α 1 , α 2を調整することができ、例えば接触角 ex 1を接触角 oc 2のように大きくする ことができる。  [0051] As shown in FIG. 13, the contact angles α 1, α 2 are the ball screw 31 or the inner diameter of the Bonole 34, 38 of the linear guide 40, the point, the ridge, and the Bonole rolling groove 32a, 33a, The angle between the line 46 that connects 36a and 37a and the line that connects the symmetrical axis 59 of the symmetric Bonolet rolling grooves 32a, 33a, 36a, and 37a. Here, the shape of the whetstone 7 and the cross-sectional shape of the ball rolling grooves 32a, 33a, 36a, 37a are the same, so the cross-sectional shape of the ball rolling grooves 32a, 33a, 36a, 37a is changed to the cross-sectional shape of the grindstone 7. Instead, contact angles 1 and 2 are shown. By changing the offset amount, the contact angles α 1 and α 2 can be adjusted. For example, the contact angle ex 1 can be increased as the contact angle oc 2.
[0052] 図 14は、ドレッサ 8の切り込み量を調整するための軌跡設計方法の概念図を示す。 砥石 7でボール転走溝 32a, 33a, 36a, 37aを研削した後、砥石 7をドレッサ 8で再 度成形する場合がる。この場合、以前成形した加工形状よりも僅かに切り込み量を深 くして砲石を成形する必要がある。オペレータは、図 10に示される入力画面におい て、分割軌跡曲線 (1X2)毎のシフト量を入力する。図 14に示されるように、コンビユー タ 56は、指定されたシフト量だけ、対称軸 59を中心にして左右対称に設計される軌 跡曲線 44 (分割軌跡曲線 (1)(2)からなる)を、対称軸 59の方向(Y方向に)にずらす。 これにより、摩耗した砲石 7を所定の切り込み量だけ切り込むことができる。 FIG. 14 is a conceptual diagram of a trajectory design method for adjusting the cutting amount of the dresser 8. After grinding the ball rolling grooves 32a, 33a, 36a, 37a with the grindstone 7, the grindstone 7 may be re-formed with the dresser 8. In this case, it is necessary to mold the turret with a slightly deeper cut than the previously molded shape. The operator inputs the shift amount for each divided trajectory curve (1X2) on the input screen shown in FIG. As shown in FIG. 14, the commutator 56 has a trajectory curve 44 (consisting of split trajectory curves (1) and (2)) designed symmetrically about the symmetry axis 59 by the specified shift amount. Is shifted in the direction of the symmetry axis 59 (in the Y direction). Thereby, the worn turret 7 can be cut by a predetermined cut amount.
[0053] 図 15に示されるように、上記軌跡'姿勢設計方法においては、ドレッサ 8の姿勢が 軌跡 41〜43の法線方向を向くようにドレッサ 8の姿勢を設計した。しかし、図 16に示 されるように、ドレッサ 8に角柱ドレッサを使用した場合、ドレッサ 8の先端には所定幅 の平坦面 8bと、角部 8cとがある。ドレッサ 8先端の平坦面の幅 W1が、軌跡曲線 44の 小径の円弧部分 43の曲率半径 R3よりも大きいと、ドレッサ 8の先端を軌跡曲線に沿 つて移動させたとしても、ドレッサ 8の先端の角部 8cが砲石 7をえぐってしまう。こうなる と、図 17に示されるように、成形されたドレッサ 8の円弧部分 43が削られすぎた形状 になる。 As shown in FIG. 15, in the trajectory 'posture design method, the posture of the dresser 8 is designed so that the posture of the dresser 8 faces the normal direction of the trajectories 41 to 43. However, as shown in FIG. 16, when a prismatic dresser is used for the dresser 8, the tip of the dresser 8 has a flat surface 8b having a predetermined width and a corner 8c. If the width W1 of the flat surface of the dresser 8 tip is larger than the radius of curvature R3 of the small-diameter arc 43 of the locus curve 44, even if the tip of the dresser 8 is moved along the locus curve, the tip of the dresser 8 The corner 8c goes over the turret 7 In this case, as shown in FIG. 17, the arc portion 43 of the molded dresser 8 has a shape that is excessively cut.
[0054] この問題を解決するために、本実施形態においては、図 18に示されるように、直線 部分 42から小径の円弧部分 43に到るまでは、ドレッサ 8の角部を砲石 7に接触させ るようにドレッサ 8の姿勢を設計する。すなわち、ドレッサ 8の中心線 8dを軌跡曲線 44 の法線方向以外を向力せる。そして、小径の円弧部分 43から大径の円弧部分 41の 境に到達したら、姿勢設計を切り換え、ドレッサ 8の姿勢が軌跡曲線 44の法線方向を 向くように設計する。これにより、ドレッサ 8の平坦面 8bを砲石 7に接触させる。図 19 はこのような軌跡'姿勢設計をして、成形された砥石 7の形状を示す。小径の円弧部 分 43でも滑らかな形状が得られるのがわかる。  In order to solve this problem, in the present embodiment, as shown in FIG. 18, the corner of the dresser 8 is replaced with the turret 7 until the straight arc portion 43 reaches the arc portion 43 having a small diameter. Design the posture of the dresser 8 so that it makes contact. That is, the center line 8d of the dresser 8 is directed in a direction other than the normal direction of the locus curve 44. When the boundary between the small-diameter arc portion 43 and the large-diameter arc portion 41 is reached, the posture design is switched, and the dresser 8 is designed so that the posture of the dresser 8 faces the normal direction of the locus curve 44. Thereby, the flat surface 8b of the dresser 8 is brought into contact with the turret 7. FIG. 19 shows the shape of the grindstone 7 formed by such a trajectory 'posture design. It can be seen that a smooth shape can be obtained even in the arc part 43 with a small diameter.
[0055] なお、ドレッサ 8に先端が尖った単石ドレッサを使用する場合、姿勢を切り換える必 要はなぐすべての区間で軌跡曲線の法線方向に向くように姿勢を設計すればょ ヽ 。ただし、尖った先端の摩耗に注意する必要がある。  [0055] When a single stone dresser with a sharp tip is used as the dresser 8, the posture should be designed so as to be in the normal direction of the trajectory curve in all sections where it is not necessary to switch the posture. However, it is necessary to pay attention to wear of the sharp tip.
[0056] 〈運動曲線の当てはめ(S2)〉  [0056] <Fitting of motion curve (S2)>
図 9に示されるように、運動制御の第 2段階は、設計された軌跡曲線上を動く工具 点の速度'加速度を決定することである。軌跡曲線上を工具点がどのような時間の関 数として動くかは、工具点の速度'加速度を決定することで定められる。オペレータはAs shown in Figure 9, the second stage of motion control is a tool moving on the designed trajectory curve. The point's speed is to determine the acceleration. The time function of the tool point on the trajectory curve is determined by determining the speed'acceleration of the tool point. The operator
、図 10に示される画面において、ドレッサ 8の速度を入力する。コンピュータ 56は、指 定された速度でドレッサ 8を移動させることができるように工具点の速度'加速度を決 定する。本実施形態においては、カム機構に採用されている特性の良い曲線を採用 し、これを、パラメータ可変のユニバーサルカム曲線として提供する。カルテシアン空 間(実在空間)で定義された位置 ·姿勢は連続した曲線群を構成して 、る。その一つ 一つの曲線に運動曲線を当てはめ、加減速を指定する。カルテシアン空間とは、原 点で互いに直交する x、 y、 zの 3軸を用いてつくられる 3次元座標系であり、工具点の 位置のみならず姿勢も表すことができる。 In the screen shown in FIG. 10, the speed of the dresser 8 is input. The computer 56 determines the tool point speed'acceleration so that the dresser 8 can be moved at the specified speed. In this embodiment, a curve with good characteristics adopted in the cam mechanism is adopted, and this is provided as a universal cam curve with variable parameters. The position and orientation defined in the Cartesian space (real space) constitutes a group of continuous curves. Fit a motion curve to each curve and specify acceleration / deceleration. Cartesian space is a three-dimensional coordinate system created using three axes x, y, and z that are orthogonal to each other at the original point, and can represent not only the position of the tool point but also the posture.
[0057] 〈時分割 (S3)〉  [0057] <Time division (S3)>
軌跡と運動が確定したので、工具点の位置 ·姿勢が時間 tの関数として与えられた ことになる。これにより、時間 tを微小時間間隔で与えたとき、それぞれの時刻に対す る工具点の変位を求めることができる。時間間隔としては例えば 2ms (ミリ秒)以下の 適当な値を選ぶものとする。  Since the locus and motion are fixed, the tool point position and orientation are given as a function of time t. Thus, when the time t is given at minute time intervals, the displacement of the tool point with respect to each time can be obtained. For example, an appropriate value of 2 ms (milliseconds) or less is selected as the time interval.
[0058] 〈カルテシアン座標系によるドレッサ 8の位置 ·姿勢の計算(S4) >  <Calculation of dresser 8 position and orientation by Cartesian coordinate system (S4)>
以上の手続きによって、カルテシアン座標系(実在空間)における時間 tに対するェ 具点の位置と姿勢が計算される。変数としては (x、 y、 θ )がある。  By the above procedure, the position and orientation of the tool point with respect to time t in the Cartesian coordinate system (real space) are calculated. There are (x, y, θ) as variables.
[0059] 〈逆機構解 (S5)〉  [0059] <Inverse mechanism solution (S5)>
次に、上記の工具点の位置 ·姿勢を与えるために必要な各軸の回転角を求める。こ の過程は一般に逆機構解 (Inverse Kinematics)と呼ばれている。逆機構解は、実在の 空間の位置'姿勢から軸空間の回転角 θ 1〜 Θ 3を求めるものである。逆機構解は、 加工装置ごとに固有なので、加工装置ごとに個別に解を用意しておく。  Next, the rotation angle of each axis necessary to give the position and orientation of the tool point is obtained. This process is generally called Inverse Kinematics. The inverse mechanism solution is to obtain the rotation angle θ 1 to Θ 3 of the axial space from the position “attitude” of the actual space. Since the reverse mechanism solution is unique to each processing device, prepare a solution for each processing device.
[0060] 〈軸座標系による各軸サーボモータ変位の計算(S6) >  [0060] <Calculation of each axis servo motor displacement by axis coordinate system (S6)>
時分割された各工具点につき逆機構解を求め、これを各軸サーボモータの変位パ ルスとして整数ィ匕する。パルス制御でない場合には、各軸変位の最少分解単位 (分 解能)を用いて、パルス数相当の整数ィ匕されたデータとして求める。  Find the inverse mechanism solution for each time-divided tool point, and use this as an integer for the displacement pulse of each axis servo motor. When not using pulse control, use the minimum resolution unit (resolution) of each axis displacement, and obtain it as integer data equivalent to the number of pulses.
[0061] 〈モーション.テーブルの作成(S7)〉 こうして求めた各軸変位のアブソリュート値、又はインクリメンタル値を、前述のモー シヨン'テーブル 51の表データとしてコンピュータメモリに格納する。 [0061] <Create motion table (S7)> The absolute value or incremental value of each axial displacement thus obtained is stored in the computer memory as the table data of the aforementioned motion table 51.
[0062] 図 7に示されるモーション 'エディタ 53について説明する。モーション 'エディタ 53は 、複数のモーション 'テーブル 51を編集するもので、例えば作成されたモーション 'テ 一ブル 51の利用の仕方を順序設定する。具体的には例えば、モーション 'テーブル 51が A, B, Cとあるとすると、 Aが終わったら B、 Bが終わったら Cというふうに順序設 定したり、 Aが終わったら B及び Cを一緒に走らせたりする。動作のシーケンスを与え るという意味ではシーケンサに近い。モーション 'エディタ 53は、モーション'デザイナ 52と共に一般的にはコンピュータに内蔵される力 外置される場合もある。 [0062] The motion 'editor 53 shown in Fig. 7 will be described. The motion “editor 53” is used to edit a plurality of motion “tables 51”. For example, the usage of the created motion “table 51” is set in order. Specifically, for example, if the motion 'table 51 is A, B, C, the order is set as B when A ends, C when B ends, and B and C together when A ends Or run. It is close to a sequencer in the sense that it gives a sequence of operations. The motion 'editor 53' may be externally installed with the motion 'designer 52, typically a force built into the computer.
[0063] 次に、モータ制御装置 57に組み込まれるモーション 'オペレータ 54について説明 する。モーション 'オペレータ 54は一般的にはサーボ機構 (すなわち機械的運動のた めの自動フィードバック制御システム)と呼ばれる。ここでは一般ィ匕するためにモーシ ヨン'オペレータを呼ぶ。モーション 'オペレータ 54は、モーション'デザイナ 52で作 成したモーション'テーブル 51を通信等を介して読み取り、入力データを各軸に分配 し、そこ力も各軸間の同期を決め、各軸のサーボモータを制御する。つまり、モーショ ン 'オペレータ 54は、モーション 'テーブル 51に基づいて、 X軸サーボモータ及び Y 軸サーボモータを制御して、軌跡曲線 44に沿ってドレッサ 8を移動させる。これと同 時に、 Θ軸サーボモータを制御して、水平面内のドレッサ 8の姿勢を変化させる。 [0063] Next, the motion 'operator 54 incorporated in the motor control device 57 will be described. Motion 'operator 54 is commonly referred to as a servomechanism (ie, an automatic feedback control system for mechanical motion). Here we call the 'motion' operator for general purposes. The motion 'operator 54 reads the motion' table 51 created by the motion 'designer 52 via communication etc., distributes the input data to each axis, determines the synchronization between each axis, and the servo motor of each axis To control. That is, the motion 'operator 54 controls the X-axis servo motor and the Y-axis servo motor based on the motion' table 51 to move the dresser 8 along the locus curve 44. At the same time, the Θ-axis servo motor is controlled to change the posture of the dresser 8 in the horizontal plane.
[0064] 以下モーション.オペレータ 54が実行する手順について図 20を参照して詳述する。 Hereinafter, a procedure executed by the motion operator 54 will be described in detail with reference to FIG.
〈通信 (Sl)〉  <Communication (Sl)>
コンピュータ 56からモータ制御装置 57へモーション 'テーブル 51のデータを送るに はいくつかの方法がある。第 1の方法は伝送媒体として高速の通信回線を用いる方 法である。高速の通信回線としては、イーサネット(登録商標)(R)、 USB、 IEEE139 4等を用いることができる。また、条件によっては無線や、低速の通信回線を用いるこ ともできる。第 2の方法は直接バスなどを接続してデータを読み込む方法である。コン ピュータとモータ制御装置が離れていなければ採用することができる。第 3の方法は 可搬のメモリ媒体を用いる方法である。 CD、 DVD,メモリカード等を用いて搬送する [0065] 〈モーション.テーブルの読込(S2)〉 There are several ways to send motion 'table 51 data from computer 56 to motor controller 57. The first method uses a high-speed communication line as the transmission medium. As the high-speed communication line, Ethernet (registered trademark) (R), USB, IEEE 1394, etc. can be used. Depending on the conditions, a wireless or low-speed communication line can be used. The second method is to read data by connecting a bus directly. If the computer and motor controller are not separated, they can be used. The third method uses a portable memory medium. Transport using CD, DVD, memory card, etc. [0065] <Load motion table (S2)>
各通信方式にはそれぞれのプロトコルがあるので、そのプロトコルに従ってモーショ ン ·テーブル 51を読み込む。  Since each communication method has its own protocol, the motion table 51 is read according to that protocol.
[0066] 〈入力データの各軸への分配(S3)〉  [0066] <Distribution of input data to each axis (S3)>
モーション'テーブル 51は通常複数の軸に対して作成されるので、これを各軸ごと に分配する必要がある。ハブなどを用いて強制的に分配する方法 (受渡し側で一列 のデータを順番に各軸のドライバに配る方法)もあるが、通常は受け取り側でそれぞ れの軸に関係するデータのみを受け取るようにする。受け取り側にメモリがあると、例 えば X軸のデータとして図 8に示される縦の一列のデータを受け取り、 Y軸のデータと してその次の列のデータを受け取り、 Θ軸のデータとしてさらにその次の列のデータ を受け取ることができる。  Since the motion table 51 is usually created for multiple axes, it needs to be distributed to each axis. There is also a method of compulsorily distributing using a hub etc. (a method of distributing a line of data to the drivers of each axis in order on the delivery side), but usually only the data related to each axis is received on the receiving side Like that. If there is a memory on the receiving side, for example, the vertical axis data shown in Fig. 8 is received as X-axis data, the data in the next column is received as Y-axis data, and the Θ-axis data is further received. The next column data can be received.
[0067] 〈同期、シーケンス制御 (S4) >  [0067] <Synchronization, sequence control (S4)>
いくつかの軸を一斉に動かすためには、何らかの同期信号を送る必要がある。例え ば工具点で円弧を描こうとすると、 X軸のサーボモータ及び Y軸のサーボモータを一 緒に動力さなければならない。同期信号をサーボドライバに送ることで、各軸サーボ モータが一緒に動くようになる。なお同期信号は時分割された時間間隔で必ず一度 送られるのが望ましい。  In order to move several axes all at once, it is necessary to send some synchronization signal. For example, when trying to draw an arc with tool points, the X-axis servo motor and the Y-axis servo motor must be powered together. By sending the synchronization signal to the servo driver, each axis servo motor will move together. It is desirable to send the synchronization signal once at time-divided time intervals.
[0068] ドレッサ装置の各種の入出力信号とのシーケンスを取るためには、モーション'ェデ イタ 53ある!/ヽはシーケンサによってモーション'テーブル 51を編集する必要が生じる 。例えばリミットスィッチが働いたら工具点を停止させる場合や、センサで温度を測り、 温度が高くなつてきたら工具点の速度を落としたい場合がある。このような場合、セン サからの入力信号があったら、モーション ·エディタ 53あるいはシーケンサによってモ ーシヨン ·テーブル 51を編集する。  [0068] In order to take a sequence with various input / output signals of the dresser device, the motion editor 53! / 編 集 needs to edit the motion table 51 by the sequencer. For example, when the limit switch is activated, the tool point may be stopped, or when the temperature is measured with a sensor and the temperature rises, the tool point may be slowed down. In such a case, if there is an input signal from the sensor, the motion table 51 is edited by the motion editor 53 or the sequencer.
[0069] 〈各軸ドライバ及び各軸サーボモータ(S5, S6)〉  <Each axis driver and each axis servo motor (S5, S6)>
モーション指令に追随して各軸サーボモータが動くかどうかは、サーボドライバ及び 各軸サーボモータの役割である。本実施形態では、フィードバック信号をモーション' テーブル作成用のコンピュータ 56に戻しては!ヽな 、。モーション'テーブル作成用の コンピュータ 56がサーボのループに入ることはない。 [0070] 以上により、 X軸移動機構 9及び Y軸移動機構 10を制御して、水平面 Ρ内における 軌跡曲線 44 (砲石の加工形状に一致)に沿ってドレッサ 8を移動させ、且つ、 Θ軸回 転機構 20を制御して、水平面 Ρ内における軌跡曲線 44のドレッサ 8の姿勢を変化さ せることが可能になる。 Whether each axis servo motor moves following the motion command is the role of the servo driver and each axis servo motor. In this embodiment, return the feedback signal to the computer 56 for creating the motion table! The motion 'table creation computer 56 never enters the servo loop. [0070] As described above, the X-axis moving mechanism 9 and the Y-axis moving mechanism 10 are controlled to move the dresser 8 along the locus curve 44 (matching the processing shape of the turret) in the horizontal plane, and Θ By controlling the shaft rotating mechanism 20, it becomes possible to change the posture of the dresser 8 of the trajectory curve 44 in the horizontal plane Ρ.
[0071] 以下にクロソイド曲線を用いた補間方法について詳述する。  [0071] Hereinafter, an interpolation method using a clothoid curve will be described in detail.
一般に補間を実現するには  To achieve interpolation in general
1.補間式を決定する。  1. Determine the interpolation formula.
2.助変数を決定する。  2. Determine the auxiliary variable.
3.きざみを決めて順次座標を計算する。  3. Determine the step and calculate the coordinates sequentially.
の 3段階があり、 2.で逆解が、 3.で順解が必要とされる。  There are three stages: 2. A reverse solution is required in 2. A forward solution is required in 3.
[0072] クロソイド曲線とクロソイドセグメントに関する基本的な理論について簡単に説明して おく。まず、上記クロソイド曲線をはじめ、関連する用語の定義を示す。 [0072] The basic theory of clothoid curves and clothoid segments will be briefly described. First, definitions of related terms including the clothoid curve will be shown.
位置 P=x+j-y  Position P = x + j-y
弧長 s (変数(曲線長に沿って測った実変位))、 h (定数 (クロソイド曲線の総長)) 接線方向角の定義 ej ( φ )≡dp/ds (位置ベクトルを弧長で微分した単位ベクトル) 曲率の定義 φ'≡(1φΖΐ3接線方向角の弧長による微分  Arc length s (variable (actual displacement measured along curve length)), h (constant (total length of clothoid curve)) Definition of tangential direction angle ej (φ) ≡dp / ds (position vector is differentiated by arc length) Unit vector) Curvature definition φ'≡ (1φΖΐ3 Differentiated by arc length of tangential angle
縮率の定義 φ〃≡d '/ds曲率の弧長による微分  Definition of shrinkage φ〃≡d '/ ds Curvature derivative by arc length
直線の定義 d φ Zds≡ 0接線方向角一定の曲線が直線  Definition of straight line d φ Zds≡ 0 Curve with constant tangential angle is straight line
円の定義 1φブ ds≡0曲率一定の曲線が円 (直線を含む)  Definition of circle 1φ b ds≡0 Curve with constant curvature is a circle (including a straight line)
クロソイドの定義 (1φ "Zds≡0縮率一定の曲線がクロソイド(円を含む)  Definition of clothoid (1φ "Zds≡0 shrinkage constant curve is clothoid (including circle)
クロソイド基本式:定義式を順次積分して得られる。 φ ' = φ '0+ φ s  Clothoid basic formula: obtained by sequentially integrating the defining formula. φ '= φ' 0+ φ s
φ = 0+ '0·5+ 2-s^ (接線方向が曲線長の二次式で与えられる) φ = 0+ '0 · 5 + 2-s ^ (Tangential direction is given by a quadratic expression of curve length)
P = J Θΐ( 0+ O-s+ "/2-s',2)ds (1) P = J Θΐ (0+ O-s + "/ 2-s' , 2) ds (1)
[0073] 図 21は基本クロソイド曲線を示しており、同図の実線は、 φ 0= φ '0 = 0、 φ "= π /2とした場合における曲線を示すものである。この曲線はコル-ユーの螺旋と呼ば れる。同図の破線は φ〃=一 πΖ2とした場合の曲線を示している。 Cs, Snはフレネ ル積分として知られている。  FIG. 21 shows a basic clothoid curve, and the solid line in FIG. 21 shows a curve when φ 0 = φ′0 = 0, φ ″ = π / 2. -This is called Yu's spiral, and the broken line in the figure shows the curve when φ〃 = 1 πΖ 2. Cs and Sn are known as Fresnel integrals.
[0074] なお、数式の表現として、本明細書においては以下のような記載方法を採用する。 I除算記号 It should be noted that the following description method is adopted in this specification as expression of the mathematical expression. I division symbol
^べき乗記号  ^ Exponentiation
i=[v]小数部切り捨て例 [0. 5]=0一 [一 0. 5]=1  i = [v] Example of fractional truncation [0. 5] = 0 one [one 0.5.] = 1
a. . b aから bまでの積分区間または累計区間  a.. b Integration interval or cumulative interval from a to b
a--- aから無限大までの累計区間  a --- Cumulative interval from a to infinity
ej ( ) =e^ ' ) =cos φ +j 'sin φ 2次元単 ベクトル  ej () = e ^ ') = cos φ + j' sin φ 2D single vector
[0075] クロソイドセグメントは、直線力 線分を、円から円弧を切り出すのと同様、クロソイド 曲線の一部を切り出したものである。上記基本式で始点 Ρ0、終点 P1を確定し、弧 長を 0から hとして定積分する。又、区間を (S = 0..1)と無次元化し、角度変化の円弧 成分としての曲角 φν = φ'0'hと、同じくクロソイド成分としての縮角 ()U= φ〃Ζ2· 2と、を定義する。クロソイドセグメントの基本式は(1)より
Figure imgf000020_0001
[0075] A clothoid segment is obtained by cutting out a part of a clothoid curve in the same way as cutting out an arc from a circle. Determine the start point Ρ0 and end point P1 with the above basic formula, and perform definite integration with the arc length from 0 to h. In addition, the section is made dimensionless as (S = 0..1), the bending angle φν = φ'0'h as the arc component of the angle change, and the reduced angle as the clothoid component () U = φ〃Ζ2. 2 and define. The basic formula of clothoid segment is from (1)
Figure imgf000020_0001
Pl = PO+h-ej( O ) · J ej( v -S+ φη -S^ds  Pl = PO + h-ej (O) J ej (v -S + φη -S ^ ds
S = 0..1 (2)  S = 0..1 (2)
[0076] クロソイドセグメントの形は、曲角 φ Vと縮角 φ uとのみで決まり、大きさは h、位置は P0、方向は φ 0で決まる。弧長 hと曲角 φ Vと縮角 φ uとをあわせて区間助変数と称 する。直線と円とクロソイドとは別々の図形である。直線は無限で方向があり、円は有 限で大きさがあり、クロソイドは長さは無限、存在範囲は有限で方向も大きさもある。 先の定義によって線分は円弧の部分集合、円弧はクロソイドセグメントの部分集合と なる。なお上述したように、始点と接線方向角と区間助変数とを与えて、終点と接線 方向角とを求める方法を順解と呼ぶ。これに対し、始点と終点の位置と接線方向角と を与えて、区間助変数を求める方法を逆解と呼ぶ。  [0076] The shape of the clothoid segment is determined only by the bending angle φV and the contraction angle φu, the size is h, the position is P0, and the direction is φ0. The arc length h, the curvature angle φ V, and the contraction angle φ u are collectively referred to as interval parameters. Lines, circles and clothoids are separate figures. A straight line is infinite and has a direction, a circle is infinite and large, a clothoid is infinite in length, its existence range is finite, and has both direction and size. By the definition above, the line segment is a subset of an arc, and the arc is a subset of a clothoid segment. As described above, the method of obtaining the end point and the tangential direction angle by giving the start point, the tangential direction angle, and the interval parameter is called a forward solution. On the other hand, the method of obtaining the interval parameter by giving the start and end positions and the tangential angle is called the inverse solution.
[0077] 図 22はクロソイド曲線を用いた補間方法で実行されるプログラムのフローチャートを 示す。本実施形態に係る制御方法は、予め与えられた P1〜P6の点列を、コンビユー タにより算出したクロソイドセグメントを用いて補間する。クロソイド曲線を用いた補間 方法においては、はじめに上記点列の各座標 P (X, y)を入力する (ステップ 1)。  [0077] FIG. 22 shows a flowchart of a program executed by the interpolation method using a clothoid curve. The control method according to the present embodiment interpolates P1 to P6 point sequences given in advance using clothoid segments calculated by a computer. In the interpolation method using a clothoid curve, first, each coordinate P (X, y) of the above point sequence is input (step 1).
[0078] 次いで、各点における接線方向角 φを求める (ステップ 2)。接線方向角 Φとは、上 記各点におけるそれぞれ接線の方向を指し、基準線に対する接線のなす角 で表 す。この第二工程で求める接線方向角 φは、端点以外は仮のものである。 Next, the tangential direction angle φ at each point is obtained (step 2). Tangent angle Φ is the top Indicates the direction of each tangent at each point, and is represented by the angle formed by the tangent to the reference line. The tangential angle φ obtained in the second step is temporary except for the end points.
[0079] 次いで、全ての区間における区間助変数を求める (ステップ 3)。区間助変数は、弧 長 h、曲角 φ ν、縮角 φ uによって構成される。区間助変数は、「クロソイドの縮角多項 式」の逆解を次の第一演算処理乃至第五演算処理力 なる手順で解くことで高速に 求めることができる。すなわち、始点と終点との位置の差から、弦の長さと方向角とを 算出し (第一演算処理)、始点と終点とのそれぞれ接線方向角の差力 縮角多項式 の係数を算出し (第二演算処理)、 yの縮角多項式をニュートン法によって解いて縮 角を算出し (第三演算処理)、上記縮角と Xの縮角多項式とを使って弧長を算出し( 第四演算処理)、接線方向角の差と縮角とから曲角を算出 (第五演算処理)する。な お、上記第三演算処理については、ニュートン法逆解のために関節近似式を使うこと ちでさる。  [0079] Next, interval parameters in all intervals are obtained (step 3). The interval parameter is composed of the arc length h, the bending angle φ ν, and the contraction angle φ u. The interval auxiliary variable can be obtained at high speed by solving the inverse solution of “Crosoid's reduced angle polynomial” by the following first calculation process to fifth calculation process. In other words, the chord length and directional angle are calculated from the difference in position between the start point and end point (first calculation process), and the coefficient of the differential force contraction polynomial of the tangential direction angle between the start point and end point is calculated ( (Second calculation process), calculate the contraction angle by solving the contraction polynomial of y by Newton's method (third calculation process), and calculate the arc length using the contraction angle and the contraction polynomial of X (Calculation process), a curvature angle is calculated from the difference in tangential direction angle and the contraction angle (fifth calculation process). Note that the third arithmetic processing is performed by using a joint approximation formula for the inverse Newton method.
[0080] 次いで、ステップ 4に進み、各点のうちの両端を除く中間点での曲率差評価値を求 め、これら曲率差評価値の最大の点をマークし (ステップ 41)、最大点の曲率差評価 値が許容範囲内にあるカゝ否かを判断し (ステップ 42)、該曲率差評価値がこの許容 範囲内にあればステップ 4を終了し、そうでなければ、上記最大点の接線方向角を修 正し (ステップ 43)、最大点の前後 2区間の区間助変数を再計算し (ステップ 44)、最 大点及び前後点の 3点での曲率差評価値を再計算した (ステップ 41)後、ステップ 42 に戻って繰り返す。  [0080] Next, the process proceeds to step 4 to obtain curvature difference evaluation values at intermediate points excluding both ends of each point, and mark the maximum point of these curvature difference evaluation values (step 41). It is determined whether or not the curvature difference evaluation value is within the allowable range (step 42) .If the curvature difference evaluation value is within the allowable range, step 4 is terminated. The tangential direction angle was corrected (Step 43), the interval parameters of the two sections before and after the maximum point were recalculated (Step 44), and the curvature difference evaluation values at the maximum point and the three points before and after were recalculated. After (Step 41), return to Step 42 and repeat.
これにより、最終的にすべての点での曲率差評価値を予め与えた許容差以下にす ることがでさる。  As a result, the curvature difference evaluation values at all points can be finally reduced to a predetermined tolerance or less.
[0081] 続く第五工程においては、上述したような第四工程で得られた区間助変数を分割 することによって積和演算に適した分割助変数を算出する。そして、これら分割助変 数に基づいて順次位置を求める。これにより、上記点列間を補間するのに最適な位 置指令を得ることができる。  [0081] In the subsequent fifth step, the division auxiliary variable suitable for the product-sum operation is calculated by dividing the interval auxiliary variable obtained in the fourth step as described above. Then, the position is sequentially obtained based on these division assist variables. This makes it possible to obtain an optimum position command for interpolating between the point sequences.
[0082] 具体的な補間方法としては、図 22のフローチャートに示すとおり、先ず、補間すベ き点列 Pi (xi, yi) (但し、 iは 0, 1, 2, · ··, n)を入力する (第一工程)。  As a specific interpolation method, as shown in the flowchart of FIG. 22, first, the point sequence Pi (xi, yi) to be interpolated (where i is 0, 1, 2,..., N) Enter (first step).
[0083] 次いで、第二工程において、上記各点 Piにおける接線方向角 φ iの初期値を求め る。本ステップにおける解法手段の一例を以下に示す。図 23に示されるように、連続 した 3点を選択し、これら 3点(図 24の A, B, C)を通る円弧の各点における接線方向 角 φΑ, Β, φ。を求める。三角 ff a + b = cの各辺の角度を 0 a, Θ b, 0 cとすると、 頂点の角度 αは、 [0083] Next, in the second step, an initial value of the tangential direction angle φ i at each point Pi is obtained. The An example of the solution means in this step is shown below. As shown in Fig. 23, three consecutive points are selected, and the tangential angles φΑ, Β, φ at each point of the arc passing through these three points (A, B, C in Fig. 24). Ask for. If the angle of each side of the triangle ff a + b = c is 0 a, Θ b, 0 c, the vertex angle α is
a = Θ c— Θ a  a = Θ c— Θ a
β = π— 6b+ Θ a  β = π— 6b + Θ a
γ = Θ b- Θ c  γ = Θ b-Θ c
3点を通る円弧の各点での接線方向は、円周角と弦弧角が等 、ので、 Α= Θ a- γ = Θ a- Θ b+ Θ c The tangent direction at each point of the arc passing through the three points is equal to the circumference angle and the chordal arc angle, so Α = Θ a- γ = Θ a- Θ b + Θ c
Β= Θ b- α = Θ b- Θ c+ Θ a Β = Θ b- α = Θ b- Θ c + Θ a
Figure imgf000022_0001
Figure imgf000022_0001
で与えられる。  Given in.
[0084] 上述のような理論により、各点での接線方向角 φが順次求められる。なお、本明細 書にお 、ては上述した解法を「3点円弧」と称する。 i= 1から n— 1までの(n— 1)点に 対し、 φΒが計算できる。 i=0, i=nの端点については、別途入力することもありうる 力 簡単には、 i=lでの φ Aを i=0に、 i=n— 1での 0Cを i=nに使ってもよい。  [0084] According to the theory as described above, the tangential angle φ at each point is sequentially obtained. In the present specification, the above-described solution is referred to as “three-point arc”. φΒ can be calculated for (n-1) points from i = 1 to n-1. For i = 0 and i = n endpoints, force may be entered separately. Simply, φA at i = l is set to i = 0, and 0C at i = n—1 is set to i = n. You may use it.
[0085] 次いで、第三工程に進み、各区間の区間助変数を求める。区間助変数は、 2点間 を結ぶ曲線の弧長 h、曲角 φν、縮角 〖こよって構成される。区間助変数を高速に 求めるためには、以下の「クロソイドの縮角多項式表現」が使われる。  [0085] Next, the process proceeds to the third step, and interval parameters for each interval are obtained. The interval auxiliary variable is composed of the arc length h of the curve connecting the two points, the curvature φν, and the reduction angle 〖. The following “Crosoid reduced-angle polynomial expression” is used to obtain interval parameters at high speed.
Pl = P0+h-∑cn[n]-ej( n[n])- φηη η=0... (4)  Pl = P0 + h-∑cn [n] -ej (n [n])-φηη η = 0 ... (4)
係数の大きさ cn[n]=∑cnm[m] m=0...  Coefficient size cn [n] = ∑cnm [m] m = 0 ...
ここで、 cnm[m]=w/½Z(2m+l) ! /n(4m+4k+2) Where cnm [m] = w / ½Z (2m + l)! / n (4m + 4k + 2)
k=l..n  k = l..n
w=—v 2  w = —v 2
ν=( 1- 0)/2  ν = (1-0) / 2
係数の方向 φη[η] =(φ0+φ1— η·π)Ζ2  Coefficient direction φη [η] = (φ0 + φ1— η · π) Ζ2
この式の証明は詳述しな 、が、クロソイドセグメントの基本式(2)で変数を S = 0..1で はなぐ T=— l..lと置き換えて両振り無次元化し、マクローリン展開、二項展開した のちに積分して得られる。逆解のために弦の長さ!:、弦の方向角 Θを使って変形し、 スカラ分解すると The proof of this formula is not detailed, but in the basic formula (2) of the clothoid segment, the variable is replaced by T = —l. , Binomial expanded It is obtained by integrating later. String length for the reverse solution! :, Deformed using the direction angle of the string Θ, and scalar decomposition
r/h=∑χη[η]· u η n=0...  r / h = ∑χη [η] · u η n = 0 ...
0 =∑ yn[n] · u n n=0...  0 = ∑ yn [n] · u n n = 0 ...
xn[n] = cn[n] · cos( φ n[n]) n=0...  xn [n] = cn [n] · cos (φ n [n]) n = 0 ...
yn[n] = cn[n] · sin( φ n[n]) n=0...  yn [n] = cn [n] · sin (φ n [n]) n = 0 ...
φη =( 0+ 1-η· π)/2- θとなる。これらの式を使って次の手順で逆解を解 φη = (0+ 1-η · π) / 2-θ. Use these formulas to solve the inverse solution as follows:
<ο <ο
[0086] 最初に、出発位置 (P0=x0+j'y0)と到着位置 (Pl=xl+j'yl)との差から、弦の 角度 Θと長さ rとを求める (第一演算処理)。  [0086] First, the chord angle Θ and length r are obtained from the difference between the starting position (P0 = x0 + j'y0) and the arriving position (Pl = xl + j'yl). ).
Θ =a-tan ( (yl -y0) / (xl -χθ) )  Θ = a-tan ((yl -y0) / (xl -χθ))
r=x'cos Θ +ysin θ  r = x'cos Θ + ysin θ
[0087] 次いで、出発接線方向角 φ 0と到着接線方向角 φ 1と弦の角度 Θとから、初期計算 4式 [0087] Next, from the starting tangential direction angle φ 0, the arrival tangential direction angle φ 1 and the chord angle Θ, the initial calculation 4
Figure imgf000023_0001
Figure imgf000023_0001
w=—(φΐ— φ 0)^2/4  w = — (φΐ—φ 0) ^ 2/4
cnm[0] = 1  cnm [0] = 1
cnm [m] = cnm[m— 1] * wZ 2m/ (2m+ 1J  cnm [m] = cnm [m— 1] * wZ 2m / (2m + 1J
m= L.mmax cnm[mmax] < h /x  m = L.mmax cnm [mmax] <h / x
を計算する。次いで以下 5式を n=0から始めて、 cn[nmax]く δ Zrになるまで繰り返 す。  Calculate Next, start the following equation 5 starting from n = 0 and repeat until cn [nmax] becomes δ Zr.
cn[n] =∑cnm m=0..mmax cn [n] = ∑cnm m = 0..mmax
Figure imgf000023_0002
Figure imgf000023_0002
yn[n] = cn[n]氺 sin φ n  yn [n] = cn [n] 氺 sin φ n
cnm[m] = cnm[m― 1 / (4m+4n+2)  cnm [m] = cnm [m― 1 / (4m + 4n + 2)
m = 0..mmax  m = 0..mmax
φ n= φ n— π Z2  φ n = φ n— π Z2
これが第二演算処理である。 [0088] 次いで、 yの縮率多項式∑yn[n φ n =0 n=0..nmax This is the second calculation process. [0088] Next, the reduction factor polynomial yyn [n φ n = 0 n = 0..nmax of y
を-ユートン法で解いて φ uを求める(第三演算処理)。すなわち適当な φ uを初期値 と  Is solved by -Euton method to obtain φ u (third operation processing). In other words, the appropriate φ u is
し一し、 Er=∑yn[n], φ u n n=0..nmax  Er = ∑yn [n], φ u n n = 0..nmax
を計算し、許容誤差 δ >|Er|であれば第三演算処理を完了する。そうでなければ、 φ u= φ u—Ery ∑, in'yn[n」' φ u (η— 1) }  If the allowable error δ> | Er |, the third calculation process is completed. Otherwise, φ u = φ u—Ery ∑, in'yn [n ”'φ u (η— 1)}
η= L.nmax  η = L.nmax
として、再度 Erを計算する。  Then calculate Er again.
[0089] 次いで、 Xの縮率多項式を使って [0089] Next, using the reduced polynomial of X
h=rZ∑{xn[n φ n} n=0..nmaxで hを求める(第四演算処理)。  h = rZ∑ {xn [n φ n} n = 0..nmax is obtained (fourth operation process).
[0090] 最後に、曲角を計算する (第五演算処理)。 [0090] Finally, the curvature angle is calculated (fifth calculation process).
ν= φ 1— u0— u  ν = φ 1— u0— u
[0091] ニュートン法は 2次の収束をするので大変効率がょ 、。係数の性質がょ 、ので発散 することもない。求める φν, ()Uの領域を挟く指定することにより、より一層、高速にな る。尚、図 22のステップ 3に係る解法を、「回旋逆解」と称する。上記「回旋」とはクロソ イド曲線の意である。回旋逆解は、次のステップ 44でも使われる。  [0091] Newton's method has a second-order convergence, so it is very efficient. Since the nature of the coefficient, it does not diverge. The speed is further increased by specifying the desired φν, () U region. Note that the solution according to Step 3 in FIG. 22 is referred to as “rotating reverse solution”. The above “rotation” means a clothoid curve. The convolution solution is also used in the next step 44.
[0092] ニュートン法の効率を左右するのは、適切な初期値の選択である。次の「クロソイド の関節近似式」によれば、高精度の初期値が得られる。この式の証明も詳述しないが 、この式をマクローリン展開して、縮率の多項式にして (4)と比較すると 0次から 2次ま で完全に一致し 3次項の係数の差力 ¾iZl2600より小さいことがわ力る。  [0092] It is the selection of an appropriate initial value that determines the efficiency of the Newton method. The following “Clothoid joint approximation formula” provides a highly accurate initial value. Although the proof of this equation is not described in detail, when this equation is expanded to a polynomial of reduction rate and compared with (4), it completely matches from the 0th order to the 2nd order, and the differential power of the coefficient of the 3rd order term ¾iZl2600 A small thing is powerful.
Pl = PO+h-ej(( O+ l)/2) -{a+b-ej(-k- u)}(5)  Pl = PO + h-ej ((O + l) / 2)-{a + b-ej (-k- u)} (5)
k=2*cn[2]/cn[l]  k = 2 * cn [2] / cn [l]
b = cn[l]/k  b = cn [l] / k
a = cn[0]-b  a = cn [0] -b
誤差は、 h' φ 3 Z12600で評価される。例えば、 h力 OOOmm、 が lradとして 、誤差は 8 μ m以下である。弦の長さ rと角度 Θとを利用して変形し、スカラ分解すると 、 =( 0+ 1)/2- Θとして  The error is evaluated by h 'φ 3 Z12600. For example, if the h force OOOmm, is lrad, the error is 8 μm or less. Deformation using the length r and angle Θ of the string, and scalar decomposition, = (0+ 1) / 2- Θ
r/h^a'cos φ +b'cos(()―] ί· φ u) 0 ^ a · sin +b ' sin ( φ―] ί · φ u) r / h ^ a'cos φ + b'cos (() ―] ί · φ u) 0 ^ a · sin + b 'sin (φ―) ί · φ u)
となるから、  So,
φ {a ' sin (a' sin φ Zb) + φ }/k  φ {a 'sin (a' sin φ Zb) + φ} / k
がきわめてよ!/ヽ近似を与えることになる。  Gives a very good! / ヽ approximation.
[0093] 更に、第四工程に進む。このステップ 4を構成するステップ 41により、各中間点の曲 率差評価値を次の式で求める。中間点 1での区間 0の曲率を φ '10、区間 1の曲率を φ '11とすると、  [0093] Further, the process proceeds to the fourth step. In step 41 constituting step 4, the curvature difference evaluation value at each intermediate point is obtained by the following equation. If the curvature of section 0 at midpoint 1 is φ '10 and the curvature of section 1 is φ '11,
( '10- '11) ·1ι0·Μ/2  ('10-'11) 1ι0 · Μ / 2
これは、それぞれに反対側の曲率を採用したときの位置誤差の相乗平均になって V、る。位置の次元であるから精度の判断がしゃす 、。  This is V, which is the geometric mean of the position error when the opposite curvature is adopted for each. Because it is the dimension of the position, the judgment of accuracy is wrong.
[0094] そして、このステップ 41で、最大点をマークする。次のステップ 42は、上記最大点 でのこの値の絶対値を与えられた許容値と比較するもので、最大点が許容値以下な ら第四工程完了である。このステップ 42で上記最大点が上記許容値より大きければ 、次のステップ 43に進み、上記最大点での接線方向角を修正する。修正角度は、曲 率差評価値を両側の弧長の相乗平均と 4とで割った値で、(φ '10— φ '11) -sqrt (h0- hl) Z8となる。これによつて、最大点の曲率差はほぼ 0になる力 前後点の曲率には あまり響かな 、ことがわかって!/、る。  [0094] Then, in this step 41, the maximum point is marked. In the next step 42, the absolute value of this value at the maximum point is compared with the given allowable value. If the maximum point is less than the allowable value, the fourth step is completed. If the maximum point is larger than the allowable value in this step 42, the process proceeds to the next step 43 to correct the tangential direction angle at the maximum point. The correction angle is (φ '10 —φ '11) -sqrt (h0-hl) Z8, which is the value obtained by dividing the curvature difference evaluation value by the geometric mean of the arc lengths on both sides and 4. As a result, it turns out that the difference in curvature at the maximum point is almost zero. /
[0095] 更に、ステップ 44で、前記ステップ 3と同様の解法(回旋逆解)を 2回だけ実行し、 最大点の前後区間の区間助変数を求める。  [0095] Further, in step 44, the same solution (rotating reverse solution) as in step 3 is executed only twice, and interval parameters in the interval before and after the maximum point are obtained.
[0096] 更に、上記ステップ 41に戻り、このステップ 41の処理と同じ式を 3回だけ実行し、最 大点と前後点の曲率差評価値を計算したのち、再びステップ 42を行う。こうして、ステ ップ 43の判定で評価値が許容範囲内に収まるまで、ステップ 41からステップ 44の各 ステップから成るステップ 4を繰り返す。  [0096] Further, returning to step 41, the same equation as the process of step 41 is executed only three times to calculate the curvature difference evaluation value between the maximum point and the front and back points, and then step 42 is performed again. Thus, step 4 consisting of steps 41 to 44 is repeated until the evaluation value falls within the allowable range in the determination of step 43.
[0097] 次に、ステップ 51に進み、始点と接線方向角(x0, y0, φ 0)、区間助変数 (h, ν,  [0097] Next, the process proceeds to step 51, where the starting point and the tangential direction angle (x0, y0, φ0), the interval parameter (h, ν,
( ) U)力ら、歩進助変数(du, dv, dx, dy, vx, vy, ux, uy)を求める。 ίまじめに分害 ij 数 nを計算する。ここでは、後段が直線機能を持っているケースの例をとりあげる。当 然点機能しかないときは、もっと多く分割し、円弧機能があればもっと少なく分割する 。クロソイド機能があれば、 n= lで分割不要である。分割数は、近似した直線 (弦)と 元の曲線 (弧)との差が所要誤差 δ以内になるように決める。曲率の大きいところは短 ぐ小さいところは長く可変長で分割すれば、分割数が最小になるが、計算の単純ィ匕 のため、「等弧長分割」を採用する。そこで、 φ'Οまたは φ'1の絶対値のうちの大きい 方の φ 'maxを曲率とし、弧長 hの円弧を想定し、これを n分割したときの誤差を評価す る。 () U) Determine the step assist variables (du, dv, dx, dy, vx, vy, ux, uy). Seriously calculate the harm ij number n. Here, an example of a case where the latter stage has a straight line function is taken. If there is only a natural point function, divide more, and if there is an arc function, divide it less. If there is a clothoid function, n = l and no division is required. The number of divisions is the approximate straight line (string) and Determine the difference from the original curve (arc) to be within the required error δ. If the part with large curvature is short and the part with small length is long and divided with variable length, the number of divisions is minimized. For simplicity of calculation, “equal arc length division” is adopted. Therefore, φ'max, which is the larger of φ'Ο or φ'1, is assumed to be a curvature, and an arc with an arc length h is assumed, and the error when this is divided into n parts is evaluated.
[0098] ここで、
Figure imgf000026_0001
[0098] where
Figure imgf000026_0001
を利用すれば  If you use
φ 'max= (I φ 1— φ 0| + 1 φ u|) Zhとなる。  φ 'max = (I φ 1− φ 0 | + 1 φ u |) Zh.
δ = { 1— cos ( φ 'max * h./ n/ 2)}/ 'max  δ = {1— cos (φ 'max * h. / n / 2)} /' max
cos0 =1- Θ "2/2! + θ "4/4! ...であるから  cos0 = 1- Θ "2/2! + θ" 4/4! ... because
δ <= φ 'max* (hZn 2Z8  δ <= φ 'max * (hZn 2Z8
整数切りあげ記号として一 [一 a]を使えば、  If you use one [one a] as the integer round-up symbol,
n=— [― h*sqrt( ' max/ δ /8)]  n = — [― h * sqrt ('max / δ / 8)]
である。  It is.
[0099] 細分化された区間の助変数 (分割助変数)は、 dh=hZnによって次のように計算 すればよい。 du, ux, uyは定数である。  [0099] The auxiliary variable (division auxiliary variable) of the subdivided section may be calculated as follows using dh = hZn. du, ux and uy are constants.
du= φ uZ n 2  du = φ uZ n 2
ux = cos (du)  ux = cos (du)
uy=sin(du)  uy = sin (du)
dv, vx, vy, dx, dyは変数の初期値である。  dv, vx, vy, dx, dy are initial values of variables.
dv= φ O/2*dh+du/2  dv = φ O / 2 * dh + du / 2
vx=cos (dv)  vx = cos (dv)
vy=sin(dv)  vy = sin (dv)
dx = dh水 cos(0O + dv)  dx = dh water cos (0O + dv)
dy=dh水 sin(0O + dv)  dy = dh water sin (0O + dv)
[0100] 最後に、ステップ 52で上記分割助変数を歩進し、順次位置を得る。 x = x +dx水 vyZdv (7) [0100] Finally, in step 52, the division assist variable is incremented to obtain sequential positions. x = x + dx water vyZdv (7)
y=y +dx水 vy/ dv  y = y + dx water vy / dv
w = dx * νχ— dy * vy  w = dx * νχ— dy * vy
dy = dx * vy + dy * vx  dy = dx * vy + dy * vx
dx=w  dx = w
dv=dv+du  dv = dv + du
w=vx * ux— vy * uy  w = vx * ux— vy * uy
vy=vx * uy+vy * ux  vy = vx * uy + vy * ux
vx=ww  vx = ww
w = dx * vx— dy * vy  w = dx * vx— dy * vy
dy = dx * vy + dy * vx  dy = dx * vy + dy * vx
dx=wを繰り返す。  Repeat dx = w.
[0101] オリジナルの(3)が 6個の和(差)と 8個の積によって歩進させたのに対し、 9個の和  [0101] The original (3) stepped by 6 sums (differences) and 8 products, whereas 9 sums
(差)と 14個の積 (商)で歩進させる。演算量は、ほぼ倍に近いが、精度は桁ちがいに 向上している。区間の弧の長さと弦の長さの比率を考慮に入れたこと、区間を半分に して曲率を端で切り替え、接線方向を区間中央で切り替えるようにしたことが精度向 上にあずかつている。  (Difference) and 14 products (quotient). The amount of computation is almost doubled, but the accuracy is improved by orders of magnitude. Taking into account the ratio of the arc length and chord length of the section, switching the curvature at the end by halving the section, and switching the tangential direction at the center of the section is not improving the accuracy. .
[0102] このようにして、順次すベての区間についてクロソイドセグメントで補間する。上述の ように構成される本形態例に係る軌跡制御方法を用いれば、最適のクロソイド曲線を 容易に且つ高速に得ることができ、要求水準に見合う補間制御を行える。  [0102] In this way, all sections are sequentially interpolated with clothoid segments. By using the trajectory control method according to this embodiment configured as described above, an optimal clothoid curve can be obtained easily and at high speed, and interpolation control that meets the required level can be performed.
[0103] さらに付言するならば、理論式力も計算で決まった点列を補間するときは、同時に 各点での接線方向角も計算しておき、第二工程、第四工程をパスすることができる。 また、曲率連続を要求しないときは、第四工程をパスすることができる。さらに、演算 精度が低くてよいときは、第三工程に代えてはじめから関節近似式を使うことができる 。このとき、 cn[n]は (4)の級数式によらず、次のように三角関数力も演算することがで きる。  [0103] In addition, when interpolating the point sequence determined by the theoretical formula force and calculation, the tangential direction angle at each point is calculated at the same time, and the second and fourth steps can be passed. it can. Further, when the curvature continuity is not required, the fourth step can be passed. Furthermore, when the calculation accuracy may be low, the joint approximation formula can be used from the beginning instead of the third step. At this time, cn [n] can also calculate the trigonometric force as follows, regardless of the series formula of (4).
-w/6< = δのとき  -w / 6 <= δ
cn[0] = l それ以外の場合、 cn[0] = sin (v) /v cn [0] = l Otherwise, cn [0] = sin (v) / v
w"2/840< = δのとき  When w "2/840 <= δ
cn[l] = (l +w/10) /6  cn [l] = (l + w / 10) / 6
それ以外の場合、 cn[l]= (cos (v) -cn[0]) /w/2  Otherwise, cn [l] = (cos (v) -cn [0]) / w / 2
-w"3/498960< = δのとき  -w "3/498960 <= when δ
cn[2]= (l + (l +w/36) *w/14) /60  cn [2] = (l + (l + w / 36) * w / 14) / 60
それ以外の場合、 cn[2] = (cn[0]— 6 * cn[l]) /w/4  Otherwise, cn [2] = (cn [0] — 6 * cn [l]) / w / 4
[0104] 図 25及び図 26は、加工装置の第二の実施形態を示す。図 25は加工装置の X軸 方向からみた側面図を示し、図 26は加工装置の Y軸方向からみた背面図を示す。こ の実施形態の加工装置でも、第一の実施形態と同様に、ドレッサ 8を水平面内の X軸 方向に移動させる X軸移動機構 9と、 Y軸方向に移動させる Y軸移動機構 10とを備え る。そして、ドレッサ 8を水平面内で Θ軸方向に回転させる Θ軸回転機構 20を備える 25 and 26 show a second embodiment of the processing apparatus. Fig. 25 shows a side view of the processing device as seen from the X-axis direction, and Fig. 26 shows a rear view of the processing device as seen from the Y-axis direction. In the processing apparatus of this embodiment, similarly to the first embodiment, the X-axis moving mechanism 9 that moves the dresser 8 in the X-axis direction in the horizontal plane and the Y-axis moving mechanism 10 that moves in the Y-axis direction are provided. Prepare. Then, a Θ-axis rotation mechanism 20 that rotates the dresser 8 in the Θ-axis direction within a horizontal plane is provided.
[0105] 第二の実施形態の加工装置は、第一の実施形態の加工装置と異なり、 X軸移動機 構 9, Y軸移動機構 10, Θ軸回転機構 20、砥石 7を共に、垂直面内で傾斜させる傾 斜機構 61を備える。傾斜機構 61は、電動モータ 62と、電動モータ 62によって回転 駆動されるウォーム 63と、ウォーム 63に嚙み合うウォーム歯車 64とで構成される。傾 斜機構 61は自動制御されて 、な 、。オペレータが手動で電動モータ 62を操作して 所定の傾斜角度を得る。 [0105] The machining apparatus of the second embodiment differs from the machining apparatus of the first embodiment in that the X-axis moving mechanism 9, the Y-axis moving mechanism 10, the Θ-axis rotating mechanism 20, and the grindstone 7 are both vertical surfaces. A tilt mechanism 61 is provided for tilting the inside. The tilt mechanism 61 includes an electric motor 62, a worm 63 that is rotationally driven by the electric motor 62, and a worm gear 64 that meshes with the worm 63. The tilt mechanism 61 is automatically controlled. An operator manually operates the electric motor 62 to obtain a predetermined inclination angle.
[0106] ボールねじを研削加工する場合、研削装置と同一のベース上にドレッサ装置が設 けられる。そして、砥石 7はねじのリード角に合わせて傾けられる。この第二の実施形 態の加工装置においては、傾斜機構 61を備えるので、傾けた砥石 7を成形すること ができる。  [0106] When grinding a ball screw, a dresser device is provided on the same base as the grinding device. The grindstone 7 is tilted according to the lead angle of the screw. In the processing apparatus of the second embodiment, since the tilt mechanism 61 is provided, the tilted grindstone 7 can be formed.
[0107] 本発明は、上記実施形態に限られることなぐ本発明の要旨を変更しない範囲で種 々変更可能である。例えば、二次元平面内における工具の加工物に対する移動は 相対的なものでよぐ X軸移動機構及び Y軸移動機構は、工具の替わりに加工物を 移動させてもよい。また、加工物は砲石に限られることはなぐ工具はドレッサに限ら れることはない。 本明細書は、 2006年 6月 28日出願の特願 2006— 178496に基づく。この内容は すべてここに含めておく。 [0107] The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the movement of the tool relative to the workpiece in the two-dimensional plane is relative. The X axis movement mechanism and the Y axis movement mechanism may move the workpiece instead of the tool. The work piece is not limited to a turret, and the tool is not limited to a dresser. This specification is based on Japanese Patent Application No. 2006-178496 filed on Jun. 28, 2006. All this content is included here.

Claims

請求の範囲 The scope of the claims
[1] 工具を加工物に対して相対的に移動させて力卩ェ物をカ卩ェする加工装置の制御方 法であって、  [1] A method for controlling a machining apparatus that moves a tool relative to a workpiece to check a force,
前記工具を前記加工物に対して二次元平面内の X軸方向に相対的に移動させる ことができる X軸移動機構と、前記工具を前記加工物に対して前記二次元平面内の X軸に直交する Y軸方向に相対的に移動させることができる Y軸移動機構と、前記カロ ェ物に接触する前記工具の先端を中心にして前記工具を前記二次元平面内で回 転させることができる Θ軸回転機構と、を有する加工装置を用い、  An X-axis moving mechanism capable of moving the tool relative to the workpiece in the X-axis direction in a two-dimensional plane; and the tool on the X-axis in the two-dimensional plane with respect to the workpiece. The Y-axis moving mechanism that can be moved relatively in the orthogonal Y-axis direction, and the tool can be rotated in the two-dimensional plane around the tip of the tool that contacts the calorie object. Using a processing apparatus having a Θ-axis rotation mechanism,
前記加工物の前記二次元平面内での加工形状に対応させた前記工具の軌跡曲 線 (直線が含まれる場合もある)を設計すると共に、前記軌跡曲線上における前記ェ 具の姿勢を設計する軌跡 ·姿勢設計工程と、  The trajectory curve of the tool (which may include a straight line) corresponding to the machining shape of the workpiece in the two-dimensional plane is designed, and the posture of the tool on the trajectory curve is designed. Locus and posture design process,
前記 X軸移動機構及び前記 Y軸移動機構を制御して、前記軌跡曲線に沿って前 記工具を前記加工物に対して相対的に移動させる軌跡制御工程と、  A trajectory control step of controlling the X-axis moving mechanism and the Y-axis moving mechanism to move the tool relative to the workpiece along the trajectory curve;
前記 Θ軸回転機構を制御して、前記二次元平面内における前記軌跡曲線上の前 記工具の姿勢を変化させる姿勢制御工程と、を備えることを特徴とする加工装置の 制御方法。  And a posture control step of changing the posture of the tool on the trajectory curve in the two-dimensional plane by controlling the Θ-axis rotation mechanism.
[2] 前記軌跡 ·姿勢設計工程では、  [2] In the locus / posture design process,
接線方向角が曲線長の二次式で与えられるクロソイド曲線を用いて前記工具の前 記軌跡曲線を設計すると共に、  The locus curve of the tool is designed using a clothoid curve whose tangential direction angle is given by a quadratic expression of the curve length, and
前記軌跡曲線上の少なくとも一部の区間において、前記軌跡曲線の法線方向角を 算出し、法線方向角に基づいて前記工具の姿勢を設計することを特徴とする請求項 1に記載の加工装置の制御方法。  2. The machining according to claim 1, wherein a normal direction angle of the trajectory curve is calculated in at least a part of the trajectory curve, and a posture of the tool is designed based on the normal direction angle. Control method of the device.
[3] 前記軌跡 ·姿勢設計工程では、 [3] In the locus / posture design process,
対称軸を中心にして左右対称の軌跡曲線の一方の端部から前記対称軸上まで前 記工具を移動させ、その後、前記軌跡曲線の他方の端部に前記工具を移動させ、そ の後、前記軌跡曲線の他方の端部から前記対称軸上まで前記工具を移動させるよう に、前記軌跡曲線を設計することを特徴とする請求項 1又は 2に記載の加工装置の 制御方法。 The tool is moved from one end of a symmetrical trajectory curve around the axis of symmetry to the axis of symmetry, and then the tool is moved to the other end of the trajectory curve, and then The method of controlling a machining apparatus according to claim 1, wherein the trajectory curve is designed so that the tool is moved from the other end of the trajectory curve to the axis of symmetry.
[4] 前記加工物は、前記二次元平面内に配置される軸線の回りを回転運動する砥石で あり、 [4] The workpiece is a grindstone that rotates around an axis arranged in the two-dimensional plane,
前記工具は、ドレッサであり、  The tool is a dresser;
前記加工装置は、前記砥石の外形を前記ドレッサで成形するドレッサ装置であり、 前記軌跡 ·姿勢設計工程では、前記軌跡曲線上の前記少なくとも一部の区間にお いて、前記ドレッサの中心線が前記軌跡曲線の法線方向を向くように前記ドレッサの 姿勢を設計することを特徴とする請求項 2に記載の加工装置の制御方法。  The processing device is a dresser device that forms an outer shape of the grindstone with the dresser. In the locus / posture design step, a centerline of the dresser is the centerline of the dresser in the at least a part of the locus curve. 3. The method for controlling a machining apparatus according to claim 2, wherein the posture of the dresser is designed so as to face a normal direction of a locus curve.
[5] 前記ドレッサは、前記砲石に接触する前記先端に、所定幅の平坦面と角部と、を有 し、 [5] The dresser has a flat surface and a corner of a predetermined width at the tip that contacts the turret,
前記軌跡 ·姿勢設計工程では、前記軌跡曲線上の前記少なくとも一部の区間にお いて、  In the locus / posture design step, in the at least a part of the locus curve,
前記ドレッサの中心線が前記軌跡曲線の法線方向を向くように前記ドレッサの姿勢 を設計し、これにより、前記ドレッサの前記平坦面を前記砥石に接触させ、  The dresser posture is designed so that the center line of the dresser faces the normal direction of the trajectory curve, thereby bringing the flat surface of the dresser into contact with the grindstone,
前記軌跡曲線上の他の区間において、前記ドレッサの中心線が前記軌跡曲線の 法線方向以外を向くように前記ドレッサの姿勢を設計し、これにより、前記ドレッサの 前記角部を前記砲石に接触させることを特徴とする請求項 4に記載の加工装置の制 御方法。  In other sections on the locus curve, the dresser's posture is designed so that the center line of the dresser faces in a direction other than the normal direction of the locus curve, so that the corner portion of the dresser is placed on the turret 5. The method for controlling a processing apparatus according to claim 4, wherein contact is made.
[6] 前記砲石は、ボールねじ又はリニアガイドの、断面が二つの円弧力もなるゴシックァ ーチ溝形状のボール転走溝を研削加工するのに用いられ、  [6] The turret is used to grind a ball rolling groove of a gothic groove groove shape having a circular arc force with a cross section of a ball screw or a linear guide,
前記軌跡 ·姿勢設計工程では、  In the locus and posture design process,
ボールねじ又はリニアガイドの接触角を調整できる前記砲石を得るために、対称軸 を中心にして左右対称の前記軌跡曲線を、前記対称軸を境に左右に二分割すること ができると共に、分割された一対の分割軌跡曲線それぞれを前記対称軸に向力つて ずらすことができることを特徴とする請求項 4又は 5に記載の加工装置の制御方法。  In order to obtain the turret that can adjust the contact angle of the ball screw or the linear guide, the trajectory curve that is symmetric about the symmetry axis can be divided into two parts left and right with the symmetry axis as a boundary. 6. The method for controlling a machining apparatus according to claim 4, wherein each of the paired divided trajectory curves can be shifted by being directed toward the symmetry axis.
[7] 前記砲石は、ボールねじ又はリニアガイドのボール転走溝を研削加工するのに用 いられ、 [7] The turret is used for grinding a ball screw or a ball rolling groove of a linear guide.
前記軌跡 ·姿勢設計工程では、  In the locus and posture design process,
前記ドレッサの切り込み量を調整するために、対称軸を中心にして左右対称の前 記軌跡曲線を、前記対称軸の軸線方向にずらすことができることを特徴とする請求項In order to adjust the cut-in amount of the dresser, it is The trajectory curve can be shifted in the axial direction of the symmetry axis.
4な 、し 6 、ずれかに記載の加工装置の制御方法。 4 or 6, and the processing method control method described in any of the above.
[8] 工具を加工物に対して相対的に移動させて力卩ェ物をカ卩ェする加工装置であって、 前記工具を前記加工物に対して二次元平面内の X軸方向に相対的に移動させる ことができる X軸移動機構と、 [8] A processing apparatus for moving a tool relative to a workpiece to check a force object, wherein the tool is relative to the workpiece in the X-axis direction in a two-dimensional plane. An X-axis moving mechanism that can be moved automatically,
前記工具を前記加ェ物に対して前記二次元平面内の X軸に直交する Y軸方向に 相対的に移動させることができる Y軸移動機構と、  A Y-axis moving mechanism capable of moving the tool relative to the additive in the Y-axis direction perpendicular to the X-axis in the two-dimensional plane;
前記加工物に接触する前記工具の先端を中心にして前記工具を前記二次元平面 内で回転させることができる Θ軸回転機構と、  A Θ-axis rotation mechanism capable of rotating the tool in the two-dimensional plane around the tip of the tool that contacts the workpiece;
前記加工物の前記二次元平面内での加工形状に対応させた前記工具の軌跡曲 線 (直線を含む)を設計すると共に、前記軌跡曲線上における前記工具の姿勢を設 計し、前記 X軸移動機構及び前記 Y軸移動機構を制御して、前記加工物の前記二 次元平面内での加工形状に対応する軌跡曲線 (直線が含まれる場合がある)に沿つ て前記工具を前記加工物に対して相対的に移動させ、そして、前記 Θ軸回転機構を 制御して、前記二次元平面内における前記軌跡曲線上の前記工具の姿勢を変化さ せる制御装置と、を備えることを特徴とする加工装置。  The tool trajectory curve (including straight lines) corresponding to the machining shape of the workpiece in the two-dimensional plane is designed, and the posture of the tool on the trajectory curve is designed, and the X axis The tool is moved along the trajectory curve (which may include a straight line) corresponding to the machining shape of the workpiece in the two-dimensional plane by controlling the moving mechanism and the Y-axis moving mechanism. And a control device that controls the Θ axis rotation mechanism to change the posture of the tool on the trajectory curve in the two-dimensional plane. Processing equipment.
[9] 前記制御装置は、接線方向角が曲線長の二次式で与えられるクロソイド曲線を用 いて前記工具の前記軌跡曲線を設計すると共に、前記軌跡曲線上の少なくとも一部 の区間において、前記軌跡曲線の法線方向角を算出し、法線方向角に基づいて前 記工具の姿勢を設計することを特徴とする請求項 8に記載の加工装置。 [9] The control device designs the trajectory curve of the tool using a clothoid curve in which a tangential direction angle is given by a quadratic expression of a curve length, and at least in a section on the trajectory curve, 9. The machining apparatus according to claim 8, wherein the normal direction angle of the locus curve is calculated, and the posture of the tool is designed based on the normal direction angle.
PCT/JP2007/062968 2006-06-28 2007-06-28 Processing apparatus and method of controlling processing apparatus WO2008001835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522616A JP5113747B2 (en) 2006-06-28 2007-06-28 Processing apparatus and control method of processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-178496 2006-06-28
JP2006178496 2006-06-28

Publications (1)

Publication Number Publication Date
WO2008001835A1 true WO2008001835A1 (en) 2008-01-03

Family

ID=38845599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062968 WO2008001835A1 (en) 2006-06-28 2007-06-28 Processing apparatus and method of controlling processing apparatus

Country Status (2)

Country Link
JP (1) JP5113747B2 (en)
WO (1) WO2008001835A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050281A1 (en) * 2008-10-29 2010-05-06 Thk株式会社 Motion guide device, and screw device
US9868169B2 (en) 2013-09-06 2018-01-16 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Gear-cutting machine
CN114563982A (en) * 2022-01-24 2022-05-31 中铁九桥工程有限公司 Method for controlling motion trail of mobile equipment on circular tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6390501B2 (en) 2015-04-15 2018-09-19 京セラドキュメントソリューションズ株式会社 Learning support apparatus and learning support method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552544U (en) * 1978-06-23 1980-01-09
JPS58173459U (en) * 1982-05-14 1983-11-19 三井精機工業株式会社 Grindstone forming device
JPS6161765A (en) * 1984-08-29 1986-03-29 ブライアント・グラインダー・コーポレイション Orthogonal dressing of whetstone
JP2005276157A (en) * 2004-02-27 2005-10-06 Thk Co Ltd Numerical control method and device
JP2005297190A (en) * 1999-01-18 2005-10-27 Nsk Ltd Workpiece i.d. spline ball groove grinding method, grindstone and grindstone dressing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE363260B (en) * 1972-06-02 1974-01-14 Lidkoepings Mekaniska Verkstad
JP2844872B2 (en) * 1990-07-24 1999-01-13 日本精工株式会社 Forming method and forming apparatus for grinding wheel
JPH10156720A (en) * 1996-11-29 1998-06-16 Nippei Toyama Corp Method and device for correcting grinding wheel
JP2000084852A (en) * 1998-09-07 2000-03-28 Nippon Seiko Kk Dressing device for grinding machine
JP2004351598A (en) * 2003-05-30 2004-12-16 Thk Co Ltd Tool movement control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552544U (en) * 1978-06-23 1980-01-09
JPS58173459U (en) * 1982-05-14 1983-11-19 三井精機工業株式会社 Grindstone forming device
JPS6161765A (en) * 1984-08-29 1986-03-29 ブライアント・グラインダー・コーポレイション Orthogonal dressing of whetstone
JP2005297190A (en) * 1999-01-18 2005-10-27 Nsk Ltd Workpiece i.d. spline ball groove grinding method, grindstone and grindstone dressing method
JP2005276157A (en) * 2004-02-27 2005-10-06 Thk Co Ltd Numerical control method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050281A1 (en) * 2008-10-29 2010-05-06 Thk株式会社 Motion guide device, and screw device
US9868169B2 (en) 2013-09-06 2018-01-16 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Gear-cutting machine
CN114563982A (en) * 2022-01-24 2022-05-31 中铁九桥工程有限公司 Method for controlling motion trail of mobile equipment on circular tube
CN114563982B (en) * 2022-01-24 2023-05-09 中铁九桥工程有限公司 Control method for movement track of mobile equipment on circular tube

Also Published As

Publication number Publication date
JP5113747B2 (en) 2013-01-09
JPWO2008001835A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP2009083295A (en) Scribing device and method
CN109702567B (en) Grinding track solving method for front cutter face of arc edge of arc-head end mill
JP5650762B2 (en) Continuous process for producing face gears
CN102470466B (en) Method and tool for manufaturing face gears
US5193314A (en) Computer controlled grinding machine for producing objects with complex shapes
CN110355365B (en) EBM variable-direction forming dynamic slicing method cooperating with 840D numerical control system
CN105269565A (en) Offline programming and modifying method of six-axis grinding and polishing industrial robot
JP2009509793A (en) Manufacture of straight tooth bevel gear
JPH01206406A (en) Numerical controller for non-cylindrical work machining
JP2008246594A (en) Machining data calculating method of free curved surface and manufacturing method of free curved surface
WO2008001835A1 (en) Processing apparatus and method of controlling processing apparatus
CN105246631A (en) Swing motion for manufacturing non-generated bevel gears with end relief
CN105785914B (en) Determined to be processed the point vector twice-enveloping method of spiral camber profile by generating tool
JP5430760B2 (en) Gear grinding method and processing apparatus
CN112705794A (en) Tooth cutting tool for machining cycloid gear and design method thereof
JP2007018495A (en) Contour machining method by numerical control single cutting tool
CN108098515B (en) Method for machining drill groove type by using multiple formed grinding wheels
CN100424601C (en) Method for processing shoe tree
CN104768684A (en) Machine tool control device and machine tool
CN109740269A (en) A kind of involute helicoid worm turnery processing flank of tooth three-dimensional modeling method
CN113399751B (en) Profile control and programming method for 2-axis gear face tooth chamfer
CN109158616B (en) Method for machining convex elliptic piston with equal volume resection rate
CN104148397A (en) Method for flexible design of spiral groove skew rolling roller
CN108445841B (en) Device and method for machining screw of single-screw compressor
CN114423553A (en) Method for producing a rotor or a workpiece having a helical contour for a screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767763

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008522616

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767763

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)