WO2008001597A1 - Method for production of protein - Google Patents

Method for production of protein Download PDF

Info

Publication number
WO2008001597A1
WO2008001597A1 PCT/JP2007/061699 JP2007061699W WO2008001597A1 WO 2008001597 A1 WO2008001597 A1 WO 2008001597A1 JP 2007061699 W JP2007061699 W JP 2007061699W WO 2008001597 A1 WO2008001597 A1 WO 2008001597A1
Authority
WO
WIPO (PCT)
Prior art keywords
pstp
protein
serine
sequence
threonine phosphatase
Prior art date
Application number
PCT/JP2007/061699
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Matsuda
Hiroshi Itaya
Yoshimi Kikuchi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP2008522388A priority Critical patent/JPWO2008001597A1/en
Publication of WO2008001597A1 publication Critical patent/WO2008001597A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03016Phosphoprotein phosphatase (3.1.3.16), i.e. calcineurin

Definitions

  • the present invention relates to a method for producing (producing and secreting) a target protein in a coryneform bacterium.
  • the present invention relates to a method for secretory production of various proteins including industrially useful enzymes and physiologically active proteins in coryneform bacteria.
  • Coryneform bacteria are very useful bacteria in the fermentation industry as L-amino acid and nucleic acid-producing bacteria such as L-glutamic acid and L-lysine. Coryneform bacteria also have a simpler purification process when producing proteins that produce significantly less protein that is secreted outside the cells than mold, yeast and Bacillus bacteria, which are suitable for protein secretion. It grows quickly on simple media such as sugar, ammonia and inorganic salts, and is excellent in terms of medium cost, culture method and culture productivity, and is a very useful bacterium for protein production. It is thought that there is.
  • nuclease lipase secretion by Corynebacterium glutamicum (hereinafter sometimes abbreviated as C. glutamicum) [USA] Patent No. 4965197, Bacteri ol., 174, 1854-1861 (1992)] and secretion of protease such as subtilisin [Non-patent document 2: Appl. Environ. Microbiol., 61, 1610-1613 (1995)], Coryne Secretion of cell surface proteins of type Bacteria [Tokuhei Hei 6-502548], secretion of fibronectin binding protein using coryneform bacteria Appl. Environ.
  • a pstP gene which is a gene encoding serine Z threonine phosphatase, has been found in Mycobacterium spp., A closely related species of coryneform bacteria. pstP forms an operon structure together with the rodA gene, pbpA gene involved in cell growth and morphogenesis, and genes pknA and pknB encoding serine / threonine kinases.
  • An object of the present invention is to provide a method for efficiently producing a target protein in coryneform bacteria.
  • the present invention efficiently produces a target protein in a coryneform bacterium and efficiently secretes the produced target protein outside the cell (secretory production).
  • the object is to provide a method of manufacturing.
  • the present inventors have provided a secretory protein production ability and a cell encoded by pstP.
  • pstP phosphorus / threonine phosphatase activity
  • various proteins such as transglutaminase and plotting noretaminase produced in the coryneform bacteria can be efficiently secreted.
  • the present invention was completed.
  • the present invention comprises culturing a coryneform bacterium modified so that serine Z threonine phosphatase activity is enhanced and imparted with the ability to produce the target protein, and recovering the secreted target protein.
  • the present invention is also the above production method, wherein serine Z threonine phosphatase is encoded by pstP.
  • the present invention is enhanced by increasing the expression of serine Z threonine phosphatase activity pstP, enhanced by increasing the copy number of pstP, or enhanced by modifying the expression control region of pstP. It is also a method for producing a target protein, comprising culturing a coryneform bacterium that has been modified to the above and imparted with the ability to produce the target protein, and recovering the secreted target protein.
  • the present invention is also the above production method, wherein the target protein is a protein selected from the group consisting of transgnoretinase, plotting glutaminase, interferon, interleukin, insulin, IGF-1 and peptide synthesis enzyme. .
  • the present invention is a gene wherein pstP encodes a protein having an amino acid sequence having at least 80% homology with the sequence shown in SEQ ID NO: 2 or 4, and having serine / threonine phosphatase activity, or
  • the above production method is also a gene having a sequence of a nucleic acid molecule that hybridizes under stringent conditions with a nucleic acid molecule having the sequence set forth in SEQ ID NO: 1 or 3.
  • the ability to secrete and produce a target protein is imparted to a coryneform bacterium modified so that serine Z threonine phosphatase activity (PstP activity) is enhanced.
  • the coryneform bacterium to which the target protein is secreted and produced is modified so that the serine / threonine phosphatase activity is enhanced.
  • the target protein may be a secreted protein. It may be a protein that is not produced. When the protein is not secreted naturally, it can be secreted by expressing it in a form to which a signal peptide that can function in coryneform bacteria is added.
  • a phosphatase is a protein that catalyzes the hydrolysis of phosphate esters and polyphosphates.
  • a serine Z threonine phosphatase is a dephosphorylation of phosphorylated Ser and Thr residues in a protein. It is a protein that catalyzes oxidation (EC 3.1.3.16).
  • the present inventors named the coryneform bacterium serine / threonine phosphatase PstP and the gene encoding the protein pstP.
  • “modified so that serine Z threonine phosphatase activity is enhanced” means that the number of serine / threonine phosphatase (PstP) molecules per cell is increased compared to the parent strain or the wild strain. Or when the activity per serine / threonine phosphatase (PstP) molecule is increased.
  • wild-type strains to be compared include, for example, corynebacterium 'Dartamicam (Brevibaterium' latatofamentum) ATCC13869 and ATCC13032 in the case of coryneform bacteria.
  • a coryneform bacterium modified to enhance serine / threonine phosphatase activity encoded by pstP is used as a host vector system.
  • An expression construct having a target protein gene secreted downstream of a signal peptide that can function in coryneform bacteria is introduced into the coryneform bacterium having enhanced phosphatase activity, whereby the gene is expressed.
  • the target protein is produced and secreted. Either the modification for enhancing serine / threonine phosphatase activity encoded by pstP or the provision of protein production ability may be performed first.
  • pstP may be a homologue of pstP derived from other microorganisms as long as the protein encoded thereby has serine / threonine phosphatase (PstP) activity in coryneform bacteria.
  • the homologue of pstP can be searched by referring to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 using BLAST (http: ⁇ blast.ge nome.jp/).
  • the pstP that can be used in the present invention is a coryneform using a primer prepared based on the nucleotide arrangement 1J already disclosed, for example, SEQ ID NO: 1 or 3, such as the primers shown in SEQ ID NOs: 5 and 6.
  • PCR method using bacterial chromosome DNA PCR: polym erase chain reaction; see White, TJ et al, Trends Genet. 5, 185 (1989)
  • a region containing the control region of pstP can also be obtained, and pstP homologues of other microorganisms can be obtained in the same manner using these primer pairs.
  • pstP used in the present invention is not limited to the sequence of SEQ ID NO: 1 or 3 and may be encoded because there may be differences in the nucleotide sequence of pstP depending on the strain of coryneform bacterium. As long as it has the function of PstP protein and serine / threonine phosphatase activity, substitution, deletion, insertion or addition of one or several amino acids at one or more positions in the amino acid sequence of SEQ ID NO: 2 or 4 It may be a mutant or artificially modified protein that codes for a protein having the sequence to be included.
  • “several” means a force that varies depending on the position and type of the amino acid residue protein in the three-dimensional structure.
  • 2 forces 20 pieces preferably 2 forces 10 pieces, more preferably 2 to 5 pieces. It is.
  • amino acid substitutions, deletions, insertions, additions, or inversions may be caused by naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of microorganisms that retain pstP. It also includes those produced by.
  • the substitution is preferably a conservative substitution which is a neutral mutation that does not change functionally.
  • a conservative mutation is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid.
  • G1 n and Asn in the case of a basic amino acid, between Lys, Arg and His, in the case of an acidic amino acid, it is an amino acid having a hydroxyl group between Asp and Glu. In this case, connect between Ser and Thr. Mutations that replace each other.
  • conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp force Asn, Glu or Gin substitution, Cys to Ser or Ala substitution, Gin to Asn, Glu, Lys, His, Asp or Arg substitution, Glu to Gly, Asn, Gln, Lys or Asp substitution, Gly to Pro, His to Asn, Lys, Gln, Arg or Tyr, lie to Leu, Met, Val or Phe, Leu to Ile, Met, Val or Phe, Lys To Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to TYp, Tyr, Met, lie or Leu, Ser to Thr or Ala , Thr to Ser or Ala, TYp to Phe or Tyr, Tyr to His, Phe or TYp, and Val force Met, lie or Leu.
  • pstP is 70% or more, preferably 80% or more, more preferably 90, with respect to the entire amino acid sequence of SEQ ID NO: 2 or 4. / o or more, more preferably 95.
  • a nucleic acid molecule encoding a protein having a homology of / 0 or more, particularly preferably 97% or more, particularly preferably 99% or more, and having serine / threonine phosphatase (PstP) activity can be used.
  • “homology” refers to the ratio of identity to the full length of the sequence, and can be calculated by BLAST, Genetyx, etc.
  • at least one codon in these nucleic acid molecules can be replaced with a codon that is easy to use in the host into which pstP is introduced.
  • pstP may be an N-terminal side or C-terminal side extended or shortened.
  • the length to be extended or shortened is 50 or less, preferably 20 or less, more preferably 10 or less, and particularly preferably 5 or less in amino acid residues.
  • the amino acid sequence of SEQ ID NO: 2 or 4 may be shortened by 5 amino acids from the N-terminal side of 50 amino acids and 5 amino acids from the C-terminal side of 50 amino acids.
  • Such a gene homologous to pstP is identified by SEQ ID NO: such that the amino acid residue at a specific site of the encoded protein includes substitution, deletion, insertion or addition, for example, by site-directed mutagenesis. It can be obtained by modifying the nucleotide sequence of 1 or SEQ ID NO: 3. It can also be obtained by a conventionally known mutation treatment as follows. . Mutation treatment includes in vitro treatment of the above nucleotide sequence with hydroxynoreamine or the like, and microorganisms carrying the gene, such as coryneform bacteria, with ultraviolet light or N-methyl-N, -nitro-N-nitrosoguanidine.
  • NVG ethyl methane sulfonate
  • E MS ethyl methane sulfonate
  • pstP is a sequence complementary to SEQ ID NO: 1 or 3 or a probe that can be prepared from these sequences under a stringent condition and encodes a protein having phosphotransferase activity. DNA to do.
  • the “stringent condition” refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • DNAs having high homology for example, DNAs having 80, 90, 95, 97, or 99% or more homology are hybridized, and DNAs having lower homology are not hybridized.
  • the normal Southern hybridization s washing conditions are 60 ° C, lxS SC, 0.1% SDS, preferably 0.1xSSC, 0.1% SDS, more preferably 68. C, O.lxSS
  • a partial sequence of the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 can also be used as a probe.
  • a probe can be prepared by PCR using an oligonucleotide prepared based on the nucleotide sequence as a primer and a DNA fragment containing the nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 3 as a saddle. it can.
  • the conditions for washing the hybridization include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • secretion of a protein or peptide means that the protein or peptide molecule is transferred outside the bacterial cell (extracellular). This includes not only the case where the protein or peptide molecule is completely free in the medium, but also the case where only a part of the protein or peptide molecule is present outside the cell or the surface of the cell. It is known that secreted proteins are generally translated as pre-peptides or pre-mouth peptides and then become mature proteins. That is, generally, after being translated as a prepeptide or prepeptide, the signal peptide (“pre-part”) is cleaved and converted to a mature peptide or propeptide, which is further cleaved by the protease.
  • signal distribution lj refers to a sequence that exists at the N-terminus of a secretory protein precursor and does not exist in a natural mature protein
  • signal peptide Such protein precursor force refers to a peptide that is cleaved off.
  • a signal sequence is cleaved by a protease (generally called a signal peptidase) with secretion outside the cell.
  • a signal peptide has certain common sequence characteristics across species, but a signal peptide that exhibits a secretory function in one species does not necessarily exhibit a secretory function in another species. .
  • a protein having both a signal peptide and a pro moiety that is, a primary translation product may be referred to as a "preb mouth protein", and a protein that does not have a signal peptide but has a pro moiety.
  • proprotein Sometimes referred to as “proprotein”.
  • the pro-pro part of a pro-protein is sometimes referred to as the “pro-structure part” or simply “pro-structure”, and the “pro-structure part / pro-structure” of the protein and the “pro part” of the protein are used interchangeably herein. Is done.
  • the signal peptide may be derived from a different protein or may be a signal peptide naturally present in the target protein, but it may be a secreted protein of the host used. It is preferable to derive from. Or you may modify
  • the signal peptide that can be used for the purpose of the present invention may contain a part of the N-terminal amino acid sequence of the natural mature protein from which it is derived. Preb if the signal peptide is derived from a different protein Oral proteins are sometimes referred to specifically as “heterologous preb oral proteins”.
  • the target protein may be a secreted protein or a protein that is not secreted in nature.
  • the protein When the protein is not secreted naturally, it can be expressed in a form in which the above-mentioned signal peptide is attached when the protein is expressed. Even if it is an intrinsically secreted protein, the natural signal peptide and / or pro-structure may be replaced with a heterologous signal peptide and / or hetero-pro-structure as described above.
  • this target protein has a plug structure.
  • the target protein is a plotting glutaminase
  • they are referred to as “preb mouth plotting lutaminase”, “proproteing lutaminase” and “heterologous fusion pretaminuta lutaminase”, respectively.
  • a “pro-part cleaved protein” refers to a protein in which at least one amino acid constituting the pro part has been removed by cleaving the peptide bond, and the N-terminal region of the protein is a natural mature protein. And a mature protein that has one or more extra amino acids derived from the pro moiety at the N-terminus as compared to a natural protein, as long as it has the activity of the protein. Proteins with shorter amino acid sequences are also included. Any of the above-mentioned forms of plotting rutaminase can be secreted and produced efficiently according to the present invention.
  • the coryneform bacterium referred to in the present invention is an aerobic Gram-positive gonococcus and includes a bacterium that has been conventionally classified into the genus Brevibaterium but is now integrated into the genus Corynebatarum (Int. J. Syst. Bacteriol., 41, 255 (1981)), and Brevibaterium bacterium belonging to the genus Corynebataterium.
  • the advantage of using coryneform bacteria is that there are very few proteins that are inherently extracted outside the fungus compared to fungi, yeast and Bacillus bacteria that have been suitable for protein secretion so far.
  • coryneform bacteria When the target protein is secreted and produced, its purification process can be simplified and omitted, and because it grows easily on a simple medium containing sugar, ammonia, inorganic salts, etc., the medium cost, culture method, and culture productivity It is included that is superior. Examples of such coryneform bacteria include the following.
  • corynebacterium glutamicum AJ12036 isolated from the wild strain Corynebacterium glutamicum AT CC13869 as a streptomycin (Sm) -resistant mutant strain.
  • Sm streptomycin
  • a strain modified so as not to produce cell surface proteins from such a strain is used as a host, the target protein secreted into the medium can be easily purified. Is preferable.
  • Such modification can be performed by introducing a mutation into a cell surface protein on the chromosome or its expression regulatory region by mutation or gene recombination.
  • Examples of coryneform bacteria modified so as not to produce cell surface proteins include Corynebacterium glutamicum (C. glutamicum) YDK010 strain, which is a cell surface protein (PS2) disruption strain of AJ12 036 (International Publication Pamphlet WO 01 / 23591).
  • the coryneform bacterium imparted with the ability to produce the target protein used in the present invention introduces, for example, a gene construct containing a nucleic acid encoding the target protein into the coryneform bacterium described above. Can be obtained.
  • a gene construct for conferring protein production ability to coryneform bacteria generally includes a promoter, a sequence encoding an appropriate signal peptide and a nucleic acid fragment encoding a target protein, and a coryneform bacterium.
  • control sequences necessary for expressing the target protein gene are placed at appropriate positions so that they can function.
  • the target protein may have a prostructure at the N-terminus.
  • the vector that can be used for this construct is not particularly limited, and it can be integrated into the bacterial chromosome even if it can grow autonomously outside the chromosome, such as a plasmid, as long as it can function in coryneform bacteria. It may be. Examples of such include PAM330 (Japanese Unexamined Patent Publication No. 58-067699), pHM1519 (Japanese Unexamined Patent Publication No. 58-77895), and pSFK6 (Japanese Unexamined Patent Publication No. 2000-262288).
  • DNA fragments capable of autonomously replicating plasmids in coryneform bacteria can be taken out of these vectors and inserted into the E.
  • coli vector to be used as so-called shuttle vectors that can replicate in both E. coli and coryneform bacteria.
  • Artificial transposons can also be used. When a transposon is used, the target gene is introduced into the chromosome by homologous recombination or its own ability to transfer.
  • the promoter that can be used in the present invention is not particularly limited, and any promoter can be used as long as it can function in the cells of coryneform bacteria. It can be a promoter from E.coli). Among them, a strong promoter such as tac promoter is more preferable.
  • promoters derived from coryneform bacteria include promoters of cell surface proteins PS1, PS2, and SlpA, Amino acid biosynthetic system, for example, glutaremic acid biosynthetic glutamate dehydrogenase gene, gnoretamine synthesizing glutamine synthase gene, lysine biosynthetic aspartokinase gene, threonine biosynthetic homoserine dehydrogenase gene, isoleucine And palin biosynthetic acetohydroxy acid synthase gene, leucine biosynthetic 2-isopropylmethyl malate synthase gene, proline and arginine biosynthetic gnoretamic acid kinase gene, histidine biosynthetic phosphoribosyl-ATP pyrone
  • nucleic acid biosynthesis system such as phosphorylase gene, deoxyarabinohepturonic acid phosphate (DAHP) synthase gene
  • the signal peptide used in the present invention is not particularly limited as long as it is a signal peptide that can function in the cells of coryneform bacteria, and any signal peptide that can function in the cells of coryneform bacteria should be used. Can do. Therefore, a signal peptide derived from a different species, for example, E. coli or Bacillus subtilis, can be used in the present invention as long as it can function in the cells of coryneform bacteria. A part of the N-terminal amino acid sequence of the secretory protein from which it is derived is added to the signal peptide. Signal binding IJ is cleaved by signal peptidase when the translation product is secreted outside the cell.
  • the gene encoding the signal peptide can be used in its natural form, but may be modified so as to have an optimal codon according to the codon usage frequency of the host to be used.
  • the gene that encodes the target protein is connected to the 3'-terminal side of the gene that encodes the signal peptide, and the expression is controlled by the promoter. To do.
  • the target protein that can be produced and secreted by the present invention is not particularly limited, and includes all proteins including intracellular proteins derived from animals and plants and microorganisms, and even proteins derived from coryneform bacteria serving as hosts. Even a heterogeneous protein can be used. Examples of proteins that can be secreted and produced according to the present invention include:
  • Interleukin 2 (IL2: Genbank Accession No. AAK26665 etc., mature type 21-: amino acid sequence at position 153);
  • IGF-1 insulin-like growth factor 1: Genbank Accession No. CAA01954 etc.
  • peptide synthase WO 2004/011653, WO2004 / 065610
  • genes encoding these proteins can be modified depending on the host used and Z or to obtain the desired activity, including the addition, deletion, substitution, etc. of one or more amino acids. It is. If necessary, it may be converted to an optimal codon according to the frequency of codon usage of the host.
  • Such general molecular biology techniques including modification techniques, gene cloning techniques, and production protein detection techniques, are well known to those skilled in the art, for example, Sambrook et al., 2001, Molecular Cloning: A Laboratory Manual, Third Edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, DNA cloning: A Practical Approach, Volumes I and II (DN Glover ed.
  • the method for introducing a gene construct that can be used in the present invention into coryneform bacteria is not particularly limited, and a commonly used method such as the protoplast method (Gene, 39, 281-286 (1985), the electoral position method ( Bio / Technology, 7, 1067_1070) (1989)), etc.
  • the resulting gene-transformed transformant can be cultivated according to commonly used methods and conditions. It can be cultured in a normal medium containing a carbon source, nitrogen source, and inorganic ions, and organic micronutrients such as vitamins and amino acids can be added as needed to achieve higher growth.
  • Can use carbohydrates such as glucose and sucrose, organic acids such as acetic acid, alcohols, etc.
  • ammonia gas ammonia , Anmoniu Mus salt and others can be used.
  • inorganic ions calcium ions, magnesium ions, phosphate ions, potassium ions, iron ions, and the like can be appropriately used as necessary.
  • Cultivation may be carried out under aerobic conditions in a suitable range of pH 5.0 to 8.5 and 15 ° C. to 37 ° C. The culture period may be:! To 7 days. By culturing the transformant under such conditions, the target protein is produced in a large amount in the microbial cell and efficiently secreted outside the microbial cell.
  • the coryneform bacterium imparted with the ability to produce and secrete the target protein is modified so that serine / threonine phosphatase activity is enhanced, or modified in advance so that serine / threonine phosphatase activity is enhanced.
  • the coryneform bacterium used for the production of the protein by the method of the present invention can be obtained.
  • Modifications that enhance serine / threonine phosphatase activity can be achieved, for example, by enhancing the expression level of pstP. Enhancement of the expression level of pstP is achieved, for example, by increasing the copy number of pstP. More specifically, a fragment containing pstP is ligated with a vector that functions in a coryneform bacterium, preferably a multicopy vector, to produce a recombinant DNA, which has the ability to produce L amino acids as described above. It may be introduced into a microorganism and transformed.
  • the recombinant DNA may be introduced into a wild-type microorganism to obtain a transformed strain, and then the protein-producing ability may be imparted to the transformed strain.
  • An increase in the number of copies can also be achieved by transferring one or more copies of the pstP-encoding fragment onto the chromosome. Confirmation of transfer of pstP on the chromosome can be confirmed by Southern hybridization using a part of pstP as a probe.
  • enhancement of pstP expression can also be achieved by modifying the expression regulatory region of pstP. For example, it can be achieved by replacing the promoter sequence of pstP with a stronger promoter, or bringing the promoter sequence closer to consensus (International Publication No. WO00). / 18935 pamphlet).
  • enhancement of the expression level of pstP is achieved by increasing the copy number of pstP.
  • Increasing the copy number can be achieved, for example, by amplifying pstP with a plasmid as follows.
  • pstP is cloned from the chromosome of a coryneform bacterium.
  • Chromosomal DNA is derived from bacteria that are DNA donors, for example, the method of Saito and Miura (H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963), Biological Experiments, Japan. Ability to prepare according to the Biotechnology Society, pages 97-98, Bafukan, 1992).
  • Oligonucleotides used for PCR can be synthesized based on the above known information.
  • pstP can be amplified using synthetic oligonucleotides described in SEQ ID NOs: 5 and 6.
  • the gene fragment containing pstP amplified by the PCR method is connected to a vector DNA capable of autonomous replication in cells of coryneform bacteria to prepare a recombinant DNA, which is introduced into Escherichia coli.
  • the operation becomes difficult.
  • vectors capable of autonomous replication in Escherichia coli cells include pUC19, pUC18, pHSG299, pHSG399, pHSG398, RSF1010, pBR322, pACYC184, and pMW219.
  • the DNA is introduced into a vector that can function in coryneform bacteria.
  • the vector that functions in coryneform bacteria is, for example, a plasmid that can autonomously replicate in coryneform bacteria.
  • a plasmid capable of autonomous replication in coryneform bacteria for example, Plasmids pCRY21, pCRY2KE, pCRY2KX, pCRY31, pCRY3KE and PCRY3KX described in JP-A No.
  • the vector can be cleaved with a restriction enzyme that matches the end of pstP.
  • This restriction enzyme part The position is introduced in advance into a synthetic oligonucleotide used for pstP amplification.
  • Ligation can be performed using a ligase such as T4 DNA ligase.
  • transformation methods that have been reported so far may be used. For example, a method to increase DNA permeability by treating recipient cells with calcium chloride, as reported in Escherichia coli K-12 strain (Mandel, M. and Higa, AJ Mol. Biol, 53, 159 (1970)), and a method for introducing DNA by preparing a competent cell from proliferating cells, as reported for B. noles subtilis (Duncan, CH, Wilson). GAand Young, FE, Gene, 1, 153 (1977)).
  • DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be put into a protoplast or a squirrel-mouth plast that readily incorporates recombinant DNA into the recombinant DNA.
  • Coryneform bacteria can also be transformed by the electric pulse method (Japanese Patent Laid-Open No. 2-207791) and the junction transfer method (Biotechnology (NY). 1991 Jan; 9 (l): 84_7).
  • Increasing the copy number of pstP can also be achieved by having multiple copies of pstP on the chromosomal DNA of coryneform bacteria.
  • homologous recombination is carried out using the sequence present in the chromosomal DNA as a target.
  • a sequence present in multiple copies on chromosomal DNA a repetitive DNA or an inverted 'repeat present at the end of a transposable element can be used.
  • a method in which pstP is introduced into a replication origin that cannot replicate in the host, or a plasmid that has the ability to transfer the junction to the host and the replication origin that cannot replicate in the host, and is amplified on the chromosome can also be applied.
  • the vector that can be used is pSUP301 (Simo et al., Bio / Technol ogy 1, 784-791 (1983)), pK18mob or pK19mob (Schaefer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shu man (1994) .Journal of Biological Chemisty 269: 32678-84; US-A 5487993), pCR ( R ) Blunt (Invitrogen, Groningen, Netherlands; Bernard et al, Journal of Molecular Biolog, 234: 534-541 (1993) )), PEMl (Schrumpf et al., 1991, Journal of Bacteriology 173: 4510-4516) or pBGS8 (spratt et al., 1986, Gene, 41: 337-342).
  • pSUP301 Sim
  • the plasmid vector containing pstP is transferred into a coryneform bacterium by conjugation or transformation.
  • Joining methods are described, for example, in Schaefer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Transformation methods are described in, for example, Theirbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivinan (Bio / Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 3 43-347 (1994)).
  • Expression control sequences such as promoters upstream of pstP are used as promoter search vectors and GENs. It can also be determined using genetic analysis software such as ETYX. These promoter substitutions or modifications enhance pstP expression.
  • the substitution of the expression regulatory sequence can be performed using, for example, a temperature sensitive plasmid.
  • the modification of the expression regulatory sequence may be combined with increasing the number of pstP copies.
  • An increase in the expression level can also be achieved by prolonging the survival time of m-RNA or preventing degradation of the enzyme protein in the cell.
  • PstP serine / threonine phosphatase
  • the enhanced serine / threonine phosphatase (PstP) activity or expression level can be any activity or expression level as long as it is statistically significantly higher than that of the wild-type or non-modified strain.
  • the serine / threonine phosphatase (PstP) activity is increased by 1.5 times or more, more preferably by 2 times or more, and even more preferably by 3 times or more compared to the wild type strain or the unmodified strain.
  • the protein secreted into the medium according to the present invention can be separated and purified from the cultured medium according to a method well known to those skilled in the art. For example, after removing cells by centrifugation, etc., salting out, ethanol precipitation, ultrafiltration, gel filtration chromatography, ion exchange column chromatography, affinity chromatography, medium to high pressure liquid chromatography, reverse phase chromatography Separation and purification can be performed by known appropriate methods such as chromatography and hydrophobic chromatography, or a combination thereof.
  • Proteins secreted into the cell surface by the present invention are also well known to those skilled in the art, for example, increasing the salt concentration, After solubilization by use of a surfactant or the like, separation and purification can be performed in the same manner as when secreted into the medium.
  • the protein secreted to the surface of the bacterial cell may be used as, for example, an immobilized enzyme without solubilizing the protein.
  • Example 1 Cloning of phosphatase gene ostP from C glutamicum ATCC13869 and amplification of ostP on secretory cow
  • the genomic sequence of C. glutamicum ATCC13032 has already been determined [Eur. J. Biochem., 257, 570-576 (1998)].
  • the primers shown in SEQ ID NO: 5 and SEQ ID NO: 6 were synthesized and prepared according to a conventional method (Saito, Miura method [Biochim. Biophys. Acta, 72, 619 (1963)]).
  • a region encoding pstP was amplified by PCR from the chromosomal DNA of C. glutamicum ATCC13869. Pyrobest DNA polymerase (Takara Shuzo) was used for the PCR reaction, and the reaction conditions followed the protocol recommended by the manufacturer.
  • sequence of SEQ ID NO: 5 contains the recognition sequence of the restriction enzyme Pstl
  • sequence of SEQ ID NO: 6 contains the sequence of the restriction enzyme EcoRI.
  • SEQ ID NO: 5 5'- CACGGATATCCGTACTGCAGGTACAACAGT -3 '
  • the amplified DNA fragment was digested with Pstl and EcoRI, and a fragment of about 1.4 kb was recovered by agarose gel electrophoresis using EASYTRAP Ver.2 (Takara Shuzo Co., Ltd.). This was recovered by pVC7 described in JP-A-9-070291. It was inserted into the Pstl and EcoRI sites of a shuttle vector that can replicate in both E. coli and coryneform bacteria, and then introduced into the Escherichia coli JM109 (Takara Shuzo Co.) cell.
  • a strain carrying the plasmid in which the pstP fragment was cloned was obtained, from which the plasmid was recovered and named pVpstP.
  • the nucleotide sequence of the fragment cloned in pVpstP is the DNA Terminator Cycle Sequencing Kit (PE Applied Biosystems) and DNA Sequencer 377A (PE Applied Biosystems). Determined by the As a result of nucleotide sequencing, it was found that the nucleotide sequence of pstP of C. glutamicum A TCC13869 obtained was partially different from the nucleotide sequence of pstP of C. glutamicum ATCC13032.
  • the nucleotide sequence of pstP derived from C. glutamicum ATCC13869 is shown in SEQ ID NO: 3, and the entire amino acid sequence encoded is shown in SEQ ID NO: 4. Further, the nucleotide sequence of pstP of C. efficiens YS-314 is shown in SEQ ID NO: 7, and the entire amino acid sequence encoded is shown in SEQ ID NO: 8.
  • Figure 3 shows the alignment of these amino acid sequences.
  • the homology between ATC C13032 and ATCC13869 is 99.8% of the total amino acid sequence, and the homology between ATCC1 3032 and ATCC13869 and YS-314. One was 72.3% of the total length of the amino acid sequence. Alignment creation and homology calculation were performed using Genetyx_Version7 (Genetics).
  • Example 1 Using the plasmid pVpstP constructed in (1), the C. glutamicum ATCC13869 and glutamicum ATCC13869 streptomycin (sm) resistant mutant AJ12036 cell surface protein (PS2) disruption strain YDK010 strain (WO 01/23591 CM2G agar medium containing 5 mg / 1 chloramphenicol (yeast extratate 10 g, tryptone 10 g, glucose 5 g, NaCl 5 g, DL_methionine 0.2 g, agar 20 g, water 1 U) ) was selected. Next, using these transformants and pVC7 introduced into C.
  • sm streptomycin
  • Example 1 Using the plasmid pVpstP constructed in (1), the Sec system secretion signal sequence described in WO01 / 23591 has a pro-structured transgnoreminase-expressing plasmid pPKSPTGl having a CspA signal sequence.
  • C. glutamicum ATCC13869 And YDKOIO were transformed, and a strain grown on the CM2G agar medium containing 5 mg / l chloramphenicol and 25 mg / l kanamycin was selected. Next, these transformants were compared with those obtained by introducing pVC7 and pPKSPTG1 into C. glutamicum ATCC13869 and YDKOIO, and evaluated by comparison with the amount of secretory production.
  • Example 2 using the plasmid pVpstP constructed in Example 1 (1), a Tat secretion signal distribution IjTorA signal sequence described in WO 02/081694 C. glutamicum A TCC13869 carrying the secretory expression plasmid pPKT_PPG was transformed, and a strain grown on the CM2G agar medium containing 5 mg / l chloramphenicol and 25 mg / l kanamycin was selected. Next, this transformant was compared with the one obtained by introducing pVC7 and pPKT_PPG into C. glutamicum ATCC13869, and evaluated by comparison with the amount of secretory production.
  • the efficiency of protein secretion production using coryneform bacteria is dramatically increased.
  • the coryneform of which the secretion efficiency of the target protein is enhanced by enhancing the serine Z threonine phosphatase activity (PstP activity) of the coryneform bacterium imparted with the ability to produce the target protein.
  • Bacteria are obtained. By culturing this coryneform bacterium, a method for efficiently producing the target protein is provided.
  • FIG. 1 shows the effect of pstP amplification on secretory production of protransdaltaminase by C. glutamicum ATCC13869 and YDK010 when Sec secretion signal sequence is used.
  • Lanes 1 and 2 (ATCC13869 / pPKSPTGl), 5 and 6 (YDKOlO / pPKSP TGI) are pstP non-amplified strains
  • lanes 3 and 4 (ATCC13869 / pPKSPTGl)
  • 7 and 8 (YDK010 / pPKSPTGl) are pstP amplified strains. Each represents the production of dartaminase.
  • FIG. 2 shows the effect of pstP amplification on the secretory production of pro-structured plotting glutaminase produced by C. glutamicum ATCC13869 when a Tat secretion signal sequence is used.
  • Lanes 1 and 2 represent the production of plotting taminaminase in the pstP non-amplified strain (ATCC13869 / pPKT-PPG) and lanes 3 and 4 represent the pstP amplified strain (ATCC13869 / pPKT_PPG), respectively.
  • FIG. 3 Alignment of amino acid sequences of serine / threonine phosphatase encoded by pstP of C. glutamicum ATCC13032, C. glutamicum ATCC13869, and C. efficiens Y S-314. Indicates the same position in the three species, and “ ⁇ ” indicates the position of the amino acid that is the same in ATCC13032 and ATCC13869 but different in the force YS-314.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a method for secreting/producing a protein with high efficiency by using a coryneform bacterium. Specifically, disclosed is a method for producing a protein of interest, comprising culturing a coryneform bacterium to secrete the protein and collecting the secreted protein, wherein the coryneform bacterium is so modified as to have an enhanced serine/threonine phosphatase activity and therefore has an ability of secreting/producing the protein.

Description

明 細 書  Specification
タンパク質の製造法  Protein production method
技術分野  Technical field
[0001] 本発明は、 目的タンパク質を、コリネ型細菌で分泌生産(生産および分泌)させる方 法に関する。特に、本発明は、産業上有用な酵素や生理活性タンパク質を含む各種 タンパク質をコリネ型細菌で分泌生産させる方法に関する。  [0001] The present invention relates to a method for producing (producing and secreting) a target protein in a coryneform bacterium. In particular, the present invention relates to a method for secretory production of various proteins including industrially useful enzymes and physiologically active proteins in coryneform bacteria.
背景技術  Background art
[0002] コリネ型細菌は、 L グルタミン酸、 L リジンを始めとする L アミノ酸、核酸生産 菌として発酵工業上、非常に有用な細菌である。また、コリネ型細菌は、タンパク質の 分泌に好適とされるカビ、酵母や Bacillus属細菌と比べ、もともと菌体外に分泌される タンパク質が極めて少なぐタンパク質を分泌生産した場合の精製過程が簡略化、省 略化できることであり、また糖、アンモニアや無機塩等のシンプルな培地で早く生育し 、培地代や培養方法、培養生産性で優れており、タンパク生産においても非常に有 用な細菌であると考えられている。  [0002] Coryneform bacteria are very useful bacteria in the fermentation industry as L-amino acid and nucleic acid-producing bacteria such as L-glutamic acid and L-lysine. Coryneform bacteria also have a simpler purification process when producing proteins that produce significantly less protein that is secreted outside the cells than mold, yeast and Bacillus bacteria, which are suitable for protein secretion. It grows quickly on simple media such as sugar, ammonia and inorganic salts, and is excellent in terms of medium cost, culture method and culture productivity, and is a very useful bacterium for protein production. It is thought that there is.
[0003] コリネ型細菌を利用して異種タンパク質を効率良く分泌生産する方法として、コリネ バクテリゥム.グノレタミカム (Corynebacterium glutamicum) (以後、 C. glutamicumと略 すことがある)によるヌクレアーゼゃリパーゼの分泌 [米国特許第 4965197号, Bacteri ol., 174, 1854-1861(1992)]及び、サチライシン等のプロテアーゼの分泌 [非特許文献 2 : Appl.Environ.Microbiol., 61, 1610-1613(1995)]、コリネ型細菌の細胞表層タンパク 質の分泌 [特表平 6-502548]、コリネ型細菌を利用したフイブロネクチン結合タンパク 質の分泌 Appl. Environ. Microbiol., 63, 4392-4400(1997)]、変異型分泌装置を利用 したタンパク質の分泌方法 [特開平 11- 169182]、トランスダルタミナーゼの分泌生産 法 [Appl. Environ. Microbiol., 69, 358-366(2003)]、変異株を利用したトランスグルタミ ナーゼの分泌生産法 [WO02/81694]等がある。タンパク質の蓄積量でみると、バチル ス'ズブチリス由来のサチライシン遺伝子 (aprE)のプロモーター、リボソーム結合部位 及びシグナルペプチドの配列を利用してディケロバクタ一 'ノドサス(Dichelobacter no dosus)由来のアルカリ性プロテアーゼの遺伝子を C. glutamicumにおいて発現させ、 約 2.5mg/mlの蓄積を認めた例 [Appl. Environ. Microbiol., 61, 1610-1613 (1995)]、ま た、トランスダルタミナーゼの分泌については、最大 930mg/Lという分泌蓄積が確認さ れている [WO02/81694]。 [0003] As a method for efficiently secreting and producing heterologous proteins using coryneform bacteria, nuclease lipase secretion by Corynebacterium glutamicum (hereinafter sometimes abbreviated as C. glutamicum) [USA] Patent No. 4965197, Bacteri ol., 174, 1854-1861 (1992)] and secretion of protease such as subtilisin [Non-patent document 2: Appl. Environ. Microbiol., 61, 1610-1613 (1995)], Coryne Secretion of cell surface proteins of type Bacteria [Tokuhei Hei 6-502548], secretion of fibronectin binding protein using coryneform bacteria Appl. Environ. Microbiol., 63, 4392-4400 (1997)], variant secretion Secretion method of protein using apparatus [JP-A-11-169182], secretory production of transdaltaminase [Appl. Environ. Microbiol., 69, 358-366 (2003)], transglutaminase using mutant strain Secretion production method [WO02 / 81 694] etc. In terms of the amount of protein accumulated, the alkaline protease gene derived from Dichelobacter no dosus was obtained using the promoter, ribosome binding site and signal peptide sequence of the subtilisin gene (aprE) derived from Bacillus subtilis. Expressed in C. glutamicum, Example of accumulating about 2.5 mg / ml [Appl. Environ. Microbiol., 61, 1610-1613 (1995)], and confirming that transdaltaminase secretion is a maximum of 930 mg / L. [WO02 / 81694].
また、 Tat系と言われる分泌経路を利用することにより、これまでに知られていた Sec 系といわれる分泌経路では分泌生産が困難なタンパク質であった、イソマルトデキス トラナーゼやプロティングルタミナーゼ等産業上有用なタンパク質も効率良く分泌さ れることが報告されてレ、る [WO2005/103278L  In addition, by using the secretory pathway called Tat system, industrially useful proteins such as isomaltdextranase and plotting glutaminase, which have been difficult to produce by the secretory pathway known as Sec system, have been known so far. Have been reported to be efficiently secreted [WO2005 / 103278L
[0004] コリネ型細菌の近縁種であるマイコバクテリゥム属細菌において、セリン Zスレオニ ンフォスファターゼをコードする遺伝子である pstP遺伝子が見出されている。 pstPは、 細胞の増殖'形態形成に関与する rodA遺伝子、 pbpA遺伝子、また、セリン/スレオ ニンキナーゼをコードする遺伝子 pknA、 pknBと共にオペロン構造を形成している。 Ro dA、 PbpA力 SPknA、 PknBによるリン酸化、 PstPによる脱リン酸化の制御を受けることで 、細胞の増殖や形態形成を制御していること、 PstPは PbpAや PknA、 PknBの脱リン酸 化能を有することが知られてレ、る [WO2005/007880、 Molecular Microbiology(2003)4 9(6), 1493—1508、 Biochemical and Biophysical Reseachし ommumcations 311 (2003) 112-120]。 [0004] A pstP gene, which is a gene encoding serine Z threonine phosphatase, has been found in Mycobacterium spp., A closely related species of coryneform bacteria. pstP forms an operon structure together with the rodA gene, pbpA gene involved in cell growth and morphogenesis, and genes pknA and pknB encoding serine / threonine kinases. RodA, PbpA force Phosphorylation by SPknA and PknB, PstP regulates cell growth and morphogenesis, PstP has the ability to dephosphorylate PbpA, PknA and PknB [WO2005 / 007880, Molecular Microbiology (2003) 4 9 (6), 1493-1508, Biochemical and Biophysical Reseach ommumcations 311 (2003) 112-120].
[0005] また、 pstPを含むオペロン構造は、コリネ型細菌にも存在することが知られている [M olecular Microbiology(2003)49(6)]。コリネ型細菌における pstPと相同性の高い遺伝 子としては、 Corynebacterium glutamicum ATCC13032のゲノム配列中に、 NCgl0044 (遺伝子名)が Genbankに登録されている (accession NC_003450.3の 46666..44802)。 しかし、この遺伝子がタンパク質分泌に与える影響は明らかでな力 た。  [0005] In addition, it is known that an operon structure containing pstP also exists in coryneform bacteria [Molecular Microbiology (2003) 49 (6)]. As a gene having high homology with pstP in coryneform bacteria, NCgl0044 (gene name) is registered in Genbank in the genome sequence of Corynebacterium glutamicum ATCC13032 (46666..44802 of accession NC_003450.3). However, the effect of this gene on protein secretion was obvious.
発明の開示  Disclosure of the invention
[0006] 本発明は、コリネ型細菌において目的タンパク質を効率的に製造する方法を提供 することを目的とする。  [0006] An object of the present invention is to provide a method for efficiently producing a target protein in coryneform bacteria.
より具体的には、本発明は、 目的タンパク質をコリネ型細菌において産生させ、産 生された目的タンパク質を効率的に菌体外に分泌(分泌生産)させることによって、 目 的タンパク質を効率的に製造する方法を提供することを目的とする。  More specifically, the present invention efficiently produces a target protein in a coryneform bacterium and efficiently secretes the produced target protein outside the cell (secretory production). The object is to provide a method of manufacturing.
[0007] 本発明者らは、タンパク質の分泌生産能が付与され、かつ pstPによりコードされるセ リン/スレオニンフォスファターゼ活性が増強されたコリネ型細菌を培養することによ り、前記コリネ型細菌中で産生されたトランスグルタミナーゼ、プロティングノレタミナー ゼ等の各種タンパク質が効率的に分泌されることを見出し、本発明を完成させた。 [0007] The present inventors have provided a secretory protein production ability and a cell encoded by pstP. By culturing coryneform bacteria with enhanced phosphorus / threonine phosphatase activity, various proteins such as transglutaminase and plotting noretaminase produced in the coryneform bacteria can be efficiently secreted. The present invention was completed.
[0008] すなわち本発明は、セリン Zスレオニンフォスファターゼ活性が増強するように改変 され、かつ、 目的タンパク質の分泌生産能が付与されたコリネ型細菌を培養し、分泌 された前記目的タンパク質を回収することを含む、 目的タンパク質の製造方法である 本発明は、セリン Zスレオニンフォスファターゼが pstPによってコードされる、前記製 造方法でもある。  [0008] That is, the present invention comprises culturing a coryneform bacterium modified so that serine Z threonine phosphatase activity is enhanced and imparted with the ability to produce the target protein, and recovering the secreted target protein. The present invention is also the above production method, wherein serine Z threonine phosphatase is encoded by pstP.
また、本発明は、セリン Zスレオニンフォスファターゼ活性力 pstPの発現増加によ り増強される、 pstPのコピー数の増加により増強される、または、 pstPの発現制御領域 を修飾することにより増強されるように改変され、かつ、 目的タンパク質の分泌生産能 が付与されたコリネ型細菌を培養し、分泌された前記目的タンパク質を回収すること を含む、 目的タンパク質の製造方法でもある。  In addition, the present invention is enhanced by increasing the expression of serine Z threonine phosphatase activity pstP, enhanced by increasing the copy number of pstP, or enhanced by modifying the expression control region of pstP. It is also a method for producing a target protein, comprising culturing a coryneform bacterium that has been modified to the above and imparted with the ability to produce the target protein, and recovering the secreted target protein.
さらに、本発明は、 目的タンパク質がトランスグノレタミナーゼ、プロティングルタミナ ーゼ、インターフェロン、インターロイキン、インスリン、 IGF—1及びペプチド合成酵 素からなる群より選択されるタンパク質である前記製造方法でもある。  Furthermore, the present invention is also the above production method, wherein the target protein is a protein selected from the group consisting of transgnoretinase, plotting glutaminase, interferon, interleukin, insulin, IGF-1 and peptide synthesis enzyme. .
特に本発明は、 pstPが、配列番号 2または 4記載の配列と少なくとも 80%の相同性 を有するアミノ酸配列を有し、セリン/スレオニンフォスファターゼ活性を有するタン パク質をコードする遺伝子である、または、配列番号 1または 3記載の配列を有する 核酸分子とストリンジェントな条件でハイブリダィズする核酸分子の配列を有する遺伝 子である、前記製造方法でもある。  In particular, the present invention is a gene wherein pstP encodes a protein having an amino acid sequence having at least 80% homology with the sequence shown in SEQ ID NO: 2 or 4, and having serine / threonine phosphatase activity, or The above production method is also a gene having a sequence of a nucleic acid molecule that hybridizes under stringent conditions with a nucleic acid molecule having the sequence set forth in SEQ ID NO: 1 or 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の方法の一態様において、セリン Zスレオニンフォスファターゼ活性 (PstP活 性)が増強するように改変されたコリネ型細菌に目的タンパク質の分泌生産能が付与 される。本発明の方法の別の態様において、 目的タンパク質の分泌生産能が付与さ れているコリネ型細菌がセリン/スレオニンフォスファターゼ活性が増強するように改 変される。 目的タンパク質は天然に分泌型のタンパク質であってもよぐ天然には分 泌されないタンパク質であってもよい。天然には分泌されないタンパク質である場合 には、前記タンパク質を発現させる際にコリネ型細菌で機能し得るシグナルペプチド が付加された形態で発現させことによって分泌させることができる。 [0009] In one embodiment of the method of the present invention, the ability to secrete and produce a target protein is imparted to a coryneform bacterium modified so that serine Z threonine phosphatase activity (PstP activity) is enhanced. In another embodiment of the method of the present invention, the coryneform bacterium to which the target protein is secreted and produced is modified so that the serine / threonine phosphatase activity is enhanced. The target protein may be a secreted protein. It may be a protein that is not produced. When the protein is not secreted naturally, it can be secreted by expressing it in a form to which a signal peptide that can function in coryneform bacteria is added.
本発明において、フォスファターゼとは、リン酸エステル及びポリリン酸の加水分解 を触媒するタンパク質であり、特にセリン Zスレオニンフォスファターゼとは、タンパク 質中のリン酸化された Ser残基及び Thr残基の脱リン酸化を触媒するタンパク質である (EC 3.1.3.16)。本発明者らは、コリネ型細菌のセリン/スレオニンフォスファターゼを PstP、該タンパク質をコードする遺伝子を pstPと命名した。  In the present invention, a phosphatase is a protein that catalyzes the hydrolysis of phosphate esters and polyphosphates. In particular, a serine Z threonine phosphatase is a dephosphorylation of phosphorylated Ser and Thr residues in a protein. It is a protein that catalyzes oxidation (EC 3.1.3.16). The present inventors named the coryneform bacterium serine / threonine phosphatase PstP and the gene encoding the protein pstP.
本明細書において、 「セリン Zスレオニンフォスファターゼ活性が増強するように改 変された」とは、親株、あるいは野生株に対して細胞当たりのセリン/スレオニンフォ スファターゼ(PstP)分子の数が増加した場合や、セリン/スレオニンフォスファターゼ (PstP)分子当たりの活性が上昇した場合などが該当する。また、比較対象となる野生 株には、コリネ型細菌の場合、例えばコリネバタテリゥム 'ダルタミカム(ブレビバタテリ ゥム'ラタトフアーメンタム) ATCC13869や ATCC13032が含まれる。  In the present specification, “modified so that serine Z threonine phosphatase activity is enhanced” means that the number of serine / threonine phosphatase (PstP) molecules per cell is increased compared to the parent strain or the wild strain. Or when the activity per serine / threonine phosphatase (PstP) molecule is increased. In addition, wild-type strains to be compared include, for example, corynebacterium 'Dartamicam (Brevibaterium' latatofamentum) ATCC13869 and ATCC13032 in the case of coryneform bacteria.
[0010] 本発明の方法の一態様において、 pstPによりコードされるセリン/スレオニンフォス ファターゼ活性が増強するように改変されたコリネ型細菌が宿主ベクター系として用 レ、られる。コリネ型細菌で機能し得るシグナルペプチドの下流に分泌させる目的タン パク質の遺伝子が結合された発現構築物が前記フォスファターゼ活性の増強された コリネ型細菌内に導入され、それによつて前記遺伝子が発現され、 目的タンパク質が 生産および分泌される。 pstPによりコードされるセリン/スレオニンフォスファターゼ活 性増強のための改変とタンパク質生産能の付与はどちらを先に行ってもよい。 [0010] In one embodiment of the method of the present invention, a coryneform bacterium modified to enhance serine / threonine phosphatase activity encoded by pstP is used as a host vector system. An expression construct having a target protein gene secreted downstream of a signal peptide that can function in coryneform bacteria is introduced into the coryneform bacterium having enhanced phosphatase activity, whereby the gene is expressed. The target protein is produced and secreted. Either the modification for enhancing serine / threonine phosphatase activity encoded by pstP or the provision of protein production ability may be performed first.
[0011] コリネ型細菌のセリン Zスレオニンフォスファターゼ(PstP)をコードする遺伝子(pstP )としては、 f列えは Genbankに登球 れ飞レヽる、 Corynebacterium glutamicum (C.gluta micum)ATCC13032の NCg0044(accession NC_003450.3の 46666..448021)が利用で きる。 C. glutamicum ATCC13032の pstPのヌクレオチド配列を配列番号 1に、コード されるタンパク質のアミノ酸配列を配列番号 2に示す。また C. glutamicum ATCC1386 9株の pstPのヌクレオチド配列を配列番号 3に、コードされるタンパク質のアミノ酸配列 を配列番号 4に示す。 また、本発明において pstPは、それによつてコードされるタンパク質がコリネ型細菌 においてセリン/スレオニンフォスファターゼ(PstP)活性を有する限り、他の微生物 に由来する、 pstPのホモログを用いてもよレ、。 pstPのホモログは、 BLAST等によって配 列番号 1または配列番号 3のヌクレオチド配列を参照して検索出来る(http:〃 blast.ge nome.jp/)。 [0011] As a gene (pstP) encoding the serine Z threonine phosphatase (PstP) of coryneform bacteria, the f-line is climbed to Genbank and the corynebacterium glutamicum (C. glutamicum) ATCC13032 NCg0044 (accession NC_003450.3 46666..448021) can be used. The nucleotide sequence of pstP of C. glutamicum ATCC13032 is shown in SEQ ID NO: 1, and the amino acid sequence of the encoded protein is shown in SEQ ID NO: 2. The nucleotide sequence of pstP of C. glutamicum ATCC1386 9 strain is shown in SEQ ID NO: 3, and the amino acid sequence of the encoded protein is shown in SEQ ID NO: 4. In the present invention, pstP may be a homologue of pstP derived from other microorganisms as long as the protein encoded thereby has serine / threonine phosphatase (PstP) activity in coryneform bacteria. The homologue of pstP can be searched by referring to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 using BLAST (http: 〃 blast.ge nome.jp/).
本発明に用いることが出来る pstPは、既に明らかにされたヌクレオチド配歹 1J、例えば 配列番号 1または 3、に基づいて作製したプライマー、例えば配列番号 5及び 6に示 すプライマーを用いて、コリネ型細菌の染色体 DNAを錡型とする PCR法(PCR : polym erase chain reaction; White, T.J. et al, Trends Genet. 5, 185 (1989)参照リによつ飞 取得すること力 Sできる。さらに続いて pstPの制御領域を含む領域も取得することがで きる。他の微生物の pstPのホモログも、これらのプライマー対を用いて同様にして取 得され得る。  The pstP that can be used in the present invention is a coryneform using a primer prepared based on the nucleotide arrangement 1J already disclosed, for example, SEQ ID NO: 1 or 3, such as the primers shown in SEQ ID NOs: 5 and 6. PCR method using bacterial chromosome DNA (PCR: polym erase chain reaction; see White, TJ et al, Trends Genet. 5, 185 (1989)). A region containing the control region of pstP can also be obtained, and pstP homologues of other microorganisms can be obtained in the same manner using these primer pairs.
[0012] また、コリネ型細菌の種ゃ菌株によって pstPのヌクレオチド配列に差異が存在する ことがあるため、本発明に用いる pstPは配列番号 1または 3の配列には限られず、コ ードされる PstPタンパク質の機能、セリン/スレオニンフォスファターゼ活性を有する 限り、配列番号 2または 4のアミノ酸配列において、 1若しくは複数の位置での 1若しく は数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコ ードする変異体又は人為的な改変体であってもよい。ここで、「数個」とは、アミノ酸残 基のタンパク質の立体構造における位置や種類によっても異なる力 具体的には 2 力 20個、好ましくは、 2力 10個、より好ましくは 2から 5個である。また、このようなァ ミノ酸の置換、欠失、挿入、付加、または逆位等には、 pstPを保持する微生物の個体 差、種の違いに基づく場合などの天然に生じる変異 (mutant又は variant)によって生 じるものも含まれる。  [0012] In addition, pstP used in the present invention is not limited to the sequence of SEQ ID NO: 1 or 3 and may be encoded because there may be differences in the nucleotide sequence of pstP depending on the strain of coryneform bacterium. As long as it has the function of PstP protein and serine / threonine phosphatase activity, substitution, deletion, insertion or addition of one or several amino acids at one or more positions in the amino acid sequence of SEQ ID NO: 2 or 4 It may be a mutant or artificially modified protein that codes for a protein having the sequence to be included. Here, “several” means a force that varies depending on the position and type of the amino acid residue protein in the three-dimensional structure. Specifically, 2 forces 20 pieces, preferably 2 forces 10 pieces, more preferably 2 to 5 pieces. It is. In addition, such amino acid substitutions, deletions, insertions, additions, or inversions may be caused by naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of microorganisms that retain pstP. It also includes those produced by.
[0013] 上記置換は機能的に変化しない中性変異である保存的置換が好ましい。保存的 変異とは、置換部位が芳香族アミノ酸である場合には、 Phe,Trp,Tyr間で、置換部位 が疎水性アミノ酸である場合には、 Leu,Ile,Val間で、極性アミノ酸である場合には、 G1 n,Asn間で、塩基性アミノ酸である場合には、 Lys,Arg,His間で、酸性アミノ酸である場 合には、 Asp,Glu間で、ヒドロキシル基を持つアミノ酸である場合には、 Ser,Thr間でお 互いに置換する変異である。より具体的には、保存的置換としては、 Alaから Ser又は Thrへの置換、 Argから Gln、 His又は Lysへの置換、 Asnから Glu、 Gln、 Lys、 His又は As pへの置換、 Asp力 Asn、 Glu又は Ginへの置換、 Cysから Ser又は Alaへの置換、 Gin から Asn、 Glu、 Lys, His, Asp又は Argへの置換、 Gluから Gly、 Asn、 Gln、 Lys又は Asp への置換、 Glyから Proへの置換、 Hisから Asn、 Lys、 Gln、 Arg又は Tyrへの置換、 lieか ら Leu、 Met, Val又は Pheへの置換、 Leuから Ile、 Met, Val又は Pheへの置換、 Lysから Asn、 Glu、 Gln、 His又は Argへの置換、 Metから Ile、 Leu、 Val又は Pheへの置換、 Phe から TYp、 Tyr、 Met, lie又は Leuへの置換、 Serから Thr又は Alaへの置換、 Thrから Ser 又は Alaへの置換、 TYpから Phe又は Tyrへの置換、 Tyrから His、 Phe又は TYpへの置換 、及び、 Val力 Met、 lie又は Leuへの置換が挙げられる。 [0013] The substitution is preferably a conservative substitution which is a neutral mutation that does not change functionally. A conservative mutation is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In the case of G1 n and Asn, in the case of a basic amino acid, between Lys, Arg and His, in the case of an acidic amino acid, it is an amino acid having a hydroxyl group between Asp and Glu. In this case, connect between Ser and Thr. Mutations that replace each other. More specifically, conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp force Asn, Glu or Gin substitution, Cys to Ser or Ala substitution, Gin to Asn, Glu, Lys, His, Asp or Arg substitution, Glu to Gly, Asn, Gln, Lys or Asp substitution, Gly to Pro, His to Asn, Lys, Gln, Arg or Tyr, lie to Leu, Met, Val or Phe, Leu to Ile, Met, Val or Phe, Lys To Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to TYp, Tyr, Met, lie or Leu, Ser to Thr or Ala , Thr to Ser or Ala, TYp to Phe or Tyr, Tyr to His, Phe or TYp, and Val force Met, lie or Leu. The
[0014] さらに、 pstPとして、配列番号 2あるいは 4のアミノ酸配列全体に対して、 70%以上、 好ましくは 80%以上、より好ましくは 90。/o以上、更に好ましくは 95。/0以上、特に好ま しくは 97%以上、とりわけ好ましくは 99%以上の相同性を有し、セリン/スレオニンフ ォスファターゼ (PstP)活性を有するタンパク質をコードする核酸分子を用いることが 出来る。なお、ここにいう「相同性」とは配列の全長に対して同一である割合をレ、い、 B LAST, Genetyx等により計算されうる。さらに、それぞれ導入する宿主により、遺伝子 の縮重性が異なるので、これらの核酸分子中の少なくとも一つのコドンを pstPが導入 される宿主で使用しやすいコドンに置換することができる。 [0014] Further, pstP is 70% or more, preferably 80% or more, more preferably 90, with respect to the entire amino acid sequence of SEQ ID NO: 2 or 4. / o or more, more preferably 95. A nucleic acid molecule encoding a protein having a homology of / 0 or more, particularly preferably 97% or more, particularly preferably 99% or more, and having serine / threonine phosphatase (PstP) activity can be used. As used herein, “homology” refers to the ratio of identity to the full length of the sequence, and can be calculated by BLAST, Genetyx, etc. Furthermore, since the degeneracy of the gene differs depending on the host to be introduced, at least one codon in these nucleic acid molecules can be replaced with a codon that is easy to use in the host into which pstP is introduced.
同様に pstPは、セリン/スレオニンフォスファターゼ活性を有する限り、 N末端側、 C 末端側が延長したものあるいは短縮されているものでもよい。例えば延長'短縮する 長さは、アミノ酸残基で 50以下、好ましくは 20以下、より好ましくは 10以下、特に好まし くは 5以下である。より具体的には、配列番号 2あるいは 4のアミノ酸配列の N末端側 5 0アミノ酸から 5アミノ酸、 C末端側 50アミノ酸から 5アミノ酸延長 '短縮したものでもよい  Similarly, as long as pstP has serine / threonine phosphatase activity, it may be an N-terminal side or C-terminal side extended or shortened. For example, the length to be extended or shortened is 50 or less, preferably 20 or less, more preferably 10 or less, and particularly preferably 5 or less in amino acid residues. More specifically, the amino acid sequence of SEQ ID NO: 2 or 4 may be shortened by 5 amino acids from the N-terminal side of 50 amino acids and 5 amino acids from the C-terminal side of 50 amino acids.
[0015] このような pstPと相同な遺伝子は、例えば、部位特異的変異法によって、コードされ るタンパク質の特定の部位のアミノ酸残基が置換、欠失、揷入または付加を含むよう に配列番号 1または配列番号 3のヌクレオチド配列を改変することによって取得する こと力 Sできる。また、以下のような従来知られている変異処理によっても取得され得る 。変異処理としては、上記ヌクレオチド配列をヒドロキシノレアミン等でインビトロ処理す る方法、および該遺伝子を保持する微生物、例えばコリネ型細菌を、紫外線または N -メチル -N,-ニトロ- N-ニトロソグァ二ジン (NTG)もしくはェチルメタンスルフォネート(E MS)等の通常変異処理に用レ、られてレ、る変異剤によって処理する方法、エラ―プロ —ン PCR、 DNA shuffling, StEP_PCRによって、遺伝子組換えにより人工的に pstP に変異を導入して活性の高い PstPをコードする pstPを取得することが出来る(Firth A E, Patrick WMjBioinformatics. 2005 Jun 2; Statistics of protein library construction. )。これらの pstP相同遺伝子がセリン Zスレオニンフォスファターゼをコードしているか 否かは、例えば、上述の方法により酵素活性を測定することによって確かめることが できる。 [0015] Such a gene homologous to pstP is identified by SEQ ID NO: such that the amino acid residue at a specific site of the encoded protein includes substitution, deletion, insertion or addition, for example, by site-directed mutagenesis. It can be obtained by modifying the nucleotide sequence of 1 or SEQ ID NO: 3. It can also be obtained by a conventionally known mutation treatment as follows. . Mutation treatment includes in vitro treatment of the above nucleotide sequence with hydroxynoreamine or the like, and microorganisms carrying the gene, such as coryneform bacteria, with ultraviolet light or N-methyl-N, -nitro-N-nitrosoguanidine. (NTG) or ethyl methane sulfonate (E MS), etc., which are usually used for mutagenesis, are treated with mutagens, erlapron PCR, DNA shuffling, StEP_PCR, It is possible to artificially introduce a mutation into pstP to obtain pstP encoding highly active PstP (Firth AE, Patrick WMj Bioinformatics. 2005 Jun 2; Statistics of protein library construction.). Whether or not these pstP homologous genes encode serine Z threonine phosphatase can be confirmed, for example, by measuring the enzyme activity by the method described above.
[0016] また pstPは、配列番号 1または配列番号 3と相補的な配列又はこれらの配列から調 製され得るプローブとストリンジェントな条件下でハイブリダィズし、ホスホトランスァセ チラーゼ活性を有するタンパク質をコードする DNAが挙げられる。ここで、「ストリンジ ェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリツ ドが形成されない条件をいう。「ストリンジェントな条件」とは、いわゆる特異的なハイブ リツドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば 、相同性が高い DNA同士、例えば 80、 90、 95、 97または 99%以上の相同性を有する DNA同士がハイブリダィズし、それより相同性が低い DNA同士がハイブリダィズしな い条件、あるいは通常のサザンハイブリダィゼーシヨンの s洗浄条件である 60°C、 lxS SC, 0.1%SDS、好ましくは、 0.1xSSC、 0.1%SDSさらに好ましくは、 68。C、 O.lxSS [0016] pstP is a sequence complementary to SEQ ID NO: 1 or 3 or a probe that can be prepared from these sequences under a stringent condition and encodes a protein having phosphotransferase activity. DNA to do. Here, the “stringent condition” refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, DNAs having high homology, for example, DNAs having 80, 90, 95, 97, or 99% or more homology are hybridized, and DNAs having lower homology are not hybridized. Alternatively, the normal Southern hybridization s washing conditions are 60 ° C, lxS SC, 0.1% SDS, preferably 0.1xSSC, 0.1% SDS, more preferably 68. C, O.lxSS
C、 0.1%SDSに相当する塩濃度、温度で、 1回より好ましくは 2〜3回洗浄する条件 が挙げられる。 C, salt concentration and temperature corresponding to 0.1% SDS, conditions of washing once, more preferably 2-3 times.
[0017] プローブとして、配列番号 1、配列番号 3のヌクレオチド配列の部分配列を用いるこ ともできる。そのようなプローブは、該ヌクレオチド配列に基づいて作製したオリゴヌク レオチドをプライマーとし、配列番号 1のヌクレオチド配列、または配列番号 3のヌクレ ォチド配列を含む DNA断片を錡型とする PCRによって作製することができる。例え ば、プローブとして、 300bp程度の長さの DNA断片を用いる場合には、ハイブリダィ ゼーシヨンの洗いの条件は、 50°C、 2xSSC、 0.1%SDSが挙げられる。 [0018] 本明細書にぉレ、て、タンパク質またはペプチドが「分泌」されるとは、タンパク質また はペプチドの分子が細菌菌体外(細胞外)に移送されることをいい、最終的にそのタ ンパク質またはペプチド分子が培地中に完全に遊離状態におかれる場合はもちろん 、一部のみが菌体外に存在している場合、菌体表層に存在している場合も含む。 分泌型タンパク質は一般にはプレペプチドまたはプレブ口ペプチドとして翻訳され、 その後、成熟型タンパク質になることが知られている。すなわち、一般に、プレぺプチ ドまたはプレブ口ペプチドとして翻訳された後、シグナルペプチド(「プレ部分」)が切 断されて成熟ペプチドまたはプロペプチドに変換され、プロペプチドはプロテアーゼ によってさらにプロ部分が切断されて成熟ペプチドになることが知られている。また、 本明細書において、「シグナル配歹 lj」とは、分泌性タンパク質前駆体の N末端に存在 し、かつ天然の成熟タンパク質には存在しない配列をレ、い、「シグナルペプチド」とは そのようなタンパク質前駆体力 切り取られるペプチドをいう。一般にはシグナル配列 は菌体外への分泌に伴ってプロテアーゼ(一般にシグナルぺプチダーゼと呼ばれる )によって切断される。このようなシグナルペプチドは生物種を越えて一定の共通した 配列上の特徴を有するが、ある生物種で分泌機能を示すシグナルペプチドが他の生 物種においても必ずしも分泌機能を発揮するということではない。 [0017] A partial sequence of the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 can also be used as a probe. Such a probe can be prepared by PCR using an oligonucleotide prepared based on the nucleotide sequence as a primer and a DNA fragment containing the nucleotide sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 3 as a saddle. it can. For example, when a DNA fragment having a length of about 300 bp is used as a probe, the conditions for washing the hybridization include 50 ° C., 2 × SSC, and 0.1% SDS. [0018] As used herein, "secretion" of a protein or peptide means that the protein or peptide molecule is transferred outside the bacterial cell (extracellular). This includes not only the case where the protein or peptide molecule is completely free in the medium, but also the case where only a part of the protein or peptide molecule is present outside the cell or the surface of the cell. It is known that secreted proteins are generally translated as pre-peptides or pre-mouth peptides and then become mature proteins. That is, generally, after being translated as a prepeptide or prepeptide, the signal peptide (“pre-part”) is cleaved and converted to a mature peptide or propeptide, which is further cleaved by the protease. It is known to become a mature peptide. In the present specification, “signal distribution lj” refers to a sequence that exists at the N-terminus of a secretory protein precursor and does not exist in a natural mature protein, and “signal peptide” Such protein precursor force refers to a peptide that is cleaved off. In general, a signal sequence is cleaved by a protease (generally called a signal peptidase) with secretion outside the cell. Such a signal peptide has certain common sequence characteristics across species, but a signal peptide that exhibits a secretory function in one species does not necessarily exhibit a secretory function in another species. .
[0019] 本明細書において、シグナルペプチドおよびプロ部分の両方を有するタンパク質、 すなわち、一次翻訳産物を「プレブ口タンパク質」と称することがあり、また、シグナル ペプチドを有しないがプロ部分を有するタンパク質を「プロタンパク質」と称することが ある。プロタンパク質のプロ部分は「プロ構造部」または単に「プロ構造」と称することも あり、本明細書においてタンパク質の「プロ構造部/プロ構造」とタンパク質の「プロ 部分」とは互換的に使用される。プレプロタンパク質またはプレタンパク質において、 そのシグナルペプチドは異なるタンパク質に由来する場合であっても、 目的タンパク 質に天然に存在するシグナルペプチドであってもよレ、が、使用する宿主の分泌型タ ンパク質に由来することが好ましい。あるいは、使用する宿主のコドン使用頻度に応 じて最適なコドンを有するように改変してもよい。さらに本発明の目的に使用し得るシ グナルペプチドは、それが由来する天然の成熟タンパク質の N末端アミノ酸配列を一 部含んでいてもよい。シグナルペプチドが異なるタンパク質に由来する場合はプレブ 口タンパク質を特に「異種融合プレブ口タンパク質」と称することもある。前述したように 、本発明において、 目的タンパク質は本来的に分泌型のタンパク質であってもよぐ 天然には分泌されないタンパク質であってもよい。天然には分泌されないタンパク質 である場合には、前記タンパク質を発現させる際に上述したシグナルペプチドが付カロ された形態で発現させることができる。本来的に分泌型のタンパク質であっても、上 述のように異種のシグナルペプチドおよび/または異種プロ構造部で天然のシグナ ルペプチドおよび/またはプロ構造を置換してもよレ、。また、この目的タンパク質はプ 口構造を有してレ、てもいなくてもょレ、。 [0019] In the present specification, a protein having both a signal peptide and a pro moiety, that is, a primary translation product may be referred to as a "preb mouth protein", and a protein that does not have a signal peptide but has a pro moiety. Sometimes referred to as “proprotein”. The pro-pro part of a pro-protein is sometimes referred to as the “pro-structure part” or simply “pro-structure”, and the “pro-structure part / pro-structure” of the protein and the “pro part” of the protein are used interchangeably herein. Is done. In the preproprotein or preprotein, the signal peptide may be derived from a different protein or may be a signal peptide naturally present in the target protein, but it may be a secreted protein of the host used. It is preferable to derive from. Or you may modify | change so that it may have an optimal codon according to the codon usage frequency of the host to be used. Furthermore, the signal peptide that can be used for the purpose of the present invention may contain a part of the N-terminal amino acid sequence of the natural mature protein from which it is derived. Preb if the signal peptide is derived from a different protein Oral proteins are sometimes referred to specifically as “heterologous preb oral proteins”. As described above, in the present invention, the target protein may be a secreted protein or a protein that is not secreted in nature. When the protein is not secreted naturally, it can be expressed in a form in which the above-mentioned signal peptide is attached when the protein is expressed. Even if it is an intrinsically secreted protein, the natural signal peptide and / or pro-structure may be replaced with a heterologous signal peptide and / or hetero-pro-structure as described above. In addition, this target protein has a plug structure.
[0020] 例えば、 目的タンパク質がプロティングルタミナーゼの場合は、それぞれ「プレブ口 プロティングルタミナーゼ」、「プロプロティングルタミナーゼ」および「異種融合プレブ 口プロティングルタミナーゼ」と称される。また、「プロ部分を切断した」タンパク質とは 、ペプチド結合を切断することによってプロ部分を構成する少なくとも 1以上のァミノ 酸を除去したタンパク質をいい、その N末端領域が天然の成熟型タンパク質のものと 完全に一致するタンパク質、および、そのタンパク質の活性を有する限り、天然のタ ンパク質に比較して N末端にプロ部分に由来する 1以上の余分のアミノ酸を有するも のおよび天然の成熟型タンパク質よりもアミノ酸配列が短いタンパク質も含まれる。前 述したいずれの形態のプロティングルタミナ一ゼも本発明により効率的に分泌生産 すること力 Sできる。  [0020] For example, when the target protein is a plotting glutaminase, they are referred to as “preb mouth plotting lutaminase”, “proproteing lutaminase” and “heterologous fusion pretaminuta lutaminase”, respectively. A “pro-part cleaved protein” refers to a protein in which at least one amino acid constituting the pro part has been removed by cleaving the peptide bond, and the N-terminal region of the protein is a natural mature protein. And a mature protein that has one or more extra amino acids derived from the pro moiety at the N-terminus as compared to a natural protein, as long as it has the activity of the protein. Proteins with shorter amino acid sequences are also included. Any of the above-mentioned forms of plotting rutaminase can be secreted and produced efficiently according to the present invention.
[0021] 本発明に言うコリネ型細菌とは好気性のグラム陽性桿菌であり、従来ブレビバタテリ ゥム属に分類されていたが現在コリネバタテリゥム属に統合された細菌を含み (Int. J. Syst. Bacteriol. , 41, 255(1981))、またコリネバタテリゥム属と非常に近縁なブレビバタ テリゥム属細菌を含む。コリネ型細菌を使用することの利点には、これまでにタンパク 質の分泌に好適とされるカビ、酵母や Bacillus属細菌と比べて本来的に菌体外に分 泌されるタンパク質が極めて少なぐ 目的タンパク質を分泌生産した場合にその精製 過程が簡略化、省略化できること、また糖、アンモニアや無機塩等を含む単純な培地 で容易に生育するため、培地代や培養方法、培養生産性の点で優れていることが含 まれる。このようなコリネ型細菌の例として以下のものが挙げられる。  [0021] The coryneform bacterium referred to in the present invention is an aerobic Gram-positive gonococcus and includes a bacterium that has been conventionally classified into the genus Brevibaterium but is now integrated into the genus Corynebatarum (Int. J. Syst. Bacteriol., 41, 255 (1981)), and Brevibaterium bacterium belonging to the genus Corynebataterium. The advantage of using coryneform bacteria is that there are very few proteins that are inherently extracted outside the fungus compared to fungi, yeast and Bacillus bacteria that have been suitable for protein secretion so far. When the target protein is secreted and produced, its purification process can be simplified and omitted, and because it grows easily on a simple medium containing sugar, ammonia, inorganic salts, etc., the medium cost, culture method, and culture productivity It is included that is superior. Examples of such coryneform bacteria include the following.
[0022] コリネバタテリゥム'ァセトァシドフィラム、 コリネバタテリゥム.ァセトグルタミカム、 [0022] Corynebataterum 'acetoside filam, Corynebatarum, Acetoglutamicum,
コリネバタテリゥム 'アル力ノリティカム、  Coryne Batterium 'Al Force Nority Cam,
コリネバタテリゥム.カルナェ、  Coryne Batterium, Karnaye,
コリネバタテリゥム.ダルタミカム、  Corynebatterium, Dartamicam,
コリネバタテリゥム.リリウム、  Corynebatterium, Lilium,
コリネバタテリゥム 'メラセコーラ、  Coryne Batterium 'Merase Cola,
コリネバタテリゥム.サーモアミノゲネス、  Corynebatterium, Thermoaminogenes,
コリネバタテリゥム ·/ヽーキユリス、  Corynebatterium
ブレビバタテリゥム.ディバリカタム、  Brevibaterium, Divarikatam,
ブレビバタテリゥム.フラバム、  Brevibaterium, Flabum,
ブレビバタテリゥム.インマリオフィラム、  Brevibaterium, Mario Filam,
ブレビバタテリゥム.ラタトフアーメンタム、  Brevibaterium, Ratatofamentum,
ブレビバタテリゥム.ロゼゥム、  Brevibaterium, Rosem,
ブレビバクテリウム*サッカロリティカム、  Brevibacterium * saccharity cam,
ブレビバタテリゥム.チォゲ二タリス、  Brevibaterium.
コリネバタテリゥム.アンモニアゲネス、  Corynebatterium, ammoniagenes,
ブレビバタテリゥム .アルバム、  Brevibaterium album,
ブレビバタテリゥム.セリヌム、  Brevibaterium, Selinum,
ミクロバタテリゥム ·アンモニアフィラム。  Microbatterium · Ammonia film.
具体的には、下記のような菌株を例示することができる。 コリネバタテリゥム.ァセトグルタミカム ATCC15806、  Specifically, the following strains can be exemplified. Corynebatarum.acetoglutamicum ATCC15806,
コリネバタテリゥム 'アル力ノリティカム ATCC21511、  Coryne Batterium 'Al Force Nority Cam ATCC21511,
コリネバタテリゥム'カルナェ ATCC15991、  Coryne Batterium 'Karnaye ATCC15991,
コリネバタテリゥム 'グルタミカム ATCC13020, ATCC13032, ATCC13060, ATCC13 869, FERM BP- 734、  Corynebaterium 'Glutamicum ATCC13020, ATCC13032, ATCC13060, ATCC13 869, FERM BP-734,
コリネバタテリゥム.リリウム ATCC15990、  Corynebatterium Lilium ATCC 15990,
コリネバタテリゥム 'メラセコーラ ATCC17965、 コリネバタテリゥム 'エツフイシエンス AJ12340(FERM BP_1539)、 Coryne Batterium 'Merase Cola ATCC17965, Corynebatterium 'Etsuhuience AJ12340 (FERM BP_1539),
コリネバタテリゥム.ハーキユリス ATCC13868、  Corynebatterium Herkiuris ATCC 13868,
ブレビバタテリゥム ·ディバリカタム ATCC14020、  Brevibaterium Divivacatam ATCC14020,
ブレビバタテリゥム.フラバム ATCC13826, ATCC14067, AJ12418(FERM BP-2205) ブレビバタテリゥム.インマリオフィラム ATCC14068、  Brevibaterium Flavum ATCC13826, ATCC14067, AJ12418 (FERM BP-2205) Brevibaterium Inmariophyllum ATCC14068,
ブレビバタテリゥム 'ラタトフアーメンタム ATCC13869、  Brevibaterium 'Ratatofmentum ATCC 13869,
ブレビバタテリゥム'ロゼゥム ATCC13825、  Brevibaterium 'Rozeum ATCC13825,
ブレビバタテリゥム.サッカロリティカム ATCC14066、  Brevibaterium, Saccharolytic Cam ATCC14066,
ブレビバタテリゥム.チォゲ二タリス ATCC19240、  Brevibaterium, Chageni Talis ATCC 19240,
コリネバタテリゥム'アンモニアゲネス ATCC6871、 ATCC6872、  Corynebatarum 'Ammonia Genes ATCC6871, ATCC6872,
ブレビバタテリゥム 'アルバム ATCC15111、  Brevibaterium 'Album ATCC15111,
ブレビバタテリゥム 'セリヌム ATCC15112、  Brevibaterium 'Serineum ATCC 15112,
ミクロバタテリゥム.アンモニアフィラス ATCC15354。  Microbatterium. Ammonia phyllus ATCC15354.
これらを入手するには、例えばアメリカン'タイプ'カルチャー 'コレクションより分譲を 受けることができる。すなわち、菌株毎に対応する登録番号が付与されており、この 登録番号はアメリカン'タイプ'カルチャー 'コレクションのカタログに記載され、この番 号を参照して各菌株の分譲を受けることができる。  You can get them from, for example, an American 'type' culture 'collection. In other words, a corresponding registration number is assigned to each strain. This registration number is described in the catalog of the American 'Type' Culture 'collection, and each strain can be sold with reference to this number.
とりわけ、野生株コリネバタテリゥム 'グルタミカム(Corynebacterium glutamicum) AT CC13869よりストレプトマイシン (Sm)耐性変異株として分離したコリネバタテリゥム.グ ルタミカム AJ12036(FERM BP-734) (昭和 59年 3月 26日原寄託)(現、独立行政法人 産業技術総合研究所 特許生物寄託センター、 日本国つくば巿東 1一 1一 1 中央 第 6、郵便番号 305-8566)はその親株(野生株)に比べ、タンパク質の分泌に関わる 機能遺伝子に変異が存在することが予測され、タンパク質の分泌生産能が至適培養 条件下での蓄積量としておよそ 2〜3倍と極めて高いため、宿主菌として好適である( WO 02/081694参照)。  In particular, corynebacterium glutamicum AJ12036 (FERM BP-734) isolated from the wild strain Corynebacterium glutamicum AT CC13869 as a streptomycin (Sm) -resistant mutant strain. (Now deposit) (National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, Tsukuba Sakai Higashi, Japan 11-1 1 1 1st, 6th, ZIP code 305-8566) compared to its parent strain (wild strain) It is predicted that there will be mutations in the functional genes involved in secretion, and the protein production capacity for secretion is extremely high, about 2 to 3 times as the amount accumulated under optimal culture conditions. / 081694).
さらに、このような菌株から細胞表層タンパク質を生産しないように改変した菌株を 宿主として使用すれば、培地中に分泌された目的タンパク質の精製が容易となり、特 に好ましい。そのような改変は、突然変異または遺伝子組換え法により染色体上の細 胞表層タンパク質またはその発現調節領域に変異を導入することにより行うことがで きる。細胞表層タンパク質を生産しないように改変されたコリネ型細菌としては、 AJ12 036の細胞表層タンパク質(PS2)破壊株である Corynebacterium glutamicum (C.gluta micum) YDK010株が挙げられる(国際公開パンフレット WO 01/23591)。 Furthermore, if a strain modified so as not to produce cell surface proteins from such a strain is used as a host, the target protein secreted into the medium can be easily purified. Is preferable. Such modification can be performed by introducing a mutation into a cell surface protein on the chromosome or its expression regulatory region by mutation or gene recombination. Examples of coryneform bacteria modified so as not to produce cell surface proteins include Corynebacterium glutamicum (C. glutamicum) YDK010 strain, which is a cell surface protein (PS2) disruption strain of AJ12 036 (International Publication Pamphlet WO 01 / 23591).
[0025] 本発明において使用される目的タンパク質の生産能を付与されたコリネ型細菌は、 例えば、前述したコリネ型細菌に目的タンパク質をコードする核酸を含む遺伝子構築 物を前記コリネ型細菌に導入することによって得られる。ここに、コリネ型細菌にタン パク質の生産能を付与するための遺伝子構築物は、一般にプロモーター、適切なシ グナルペプチドをコードする配列および目的タンパク質をコードする核酸断片、およ びコリネ型細菌中で目的タンパク質遺伝子を発現させるために必要な制御配列(ォ ぺレーターやターミネータ一等)を、それらが機能し得るように適切な位置に有するも のである。 目的タンパク質は、 N末端にプロ構造部を有していてもよい。この構築物の ために使用できるベクターは特に制限されず、コリネ型細菌中で機能し得るものであ ればよぐプラスミドのように染色体外で自律増殖するものであっても細菌染色体に組 み込まれるものであってもよい。そのような例には、 PAM330(特開昭 58-067699号公 報)、 pHM1519(特開昭 58-77895号公報)、 pSFK6 (特開 2000-262288号公報)が含ま れる。また、これらのベクターからコリネ型細菌中でプラスミドを自律複製可能にする 能力を持つ DNA断片を取り出し、前記大腸菌用ベクターに挿入すると、大腸菌及び コリネ型細菌の両方で複製可能ないわゆるシャトルベクターとして使用することが出 来る。また、人工トランスポゾン等も利用することができる。トランスポゾンが使用される 場合は相同組換えまたはそれ自身の転移能によって目的遺伝子が染色体中に導入 される。 [0025] The coryneform bacterium imparted with the ability to produce the target protein used in the present invention introduces, for example, a gene construct containing a nucleic acid encoding the target protein into the coryneform bacterium described above. Can be obtained. Here, a gene construct for conferring protein production ability to coryneform bacteria generally includes a promoter, a sequence encoding an appropriate signal peptide and a nucleic acid fragment encoding a target protein, and a coryneform bacterium. In addition, control sequences (operators, terminators, etc.) necessary for expressing the target protein gene are placed at appropriate positions so that they can function. The target protein may have a prostructure at the N-terminus. The vector that can be used for this construct is not particularly limited, and it can be integrated into the bacterial chromosome even if it can grow autonomously outside the chromosome, such as a plasmid, as long as it can function in coryneform bacteria. It may be. Examples of such include PAM330 (Japanese Unexamined Patent Publication No. 58-067699), pHM1519 (Japanese Unexamined Patent Publication No. 58-77895), and pSFK6 (Japanese Unexamined Patent Publication No. 2000-262288). In addition, DNA fragments capable of autonomously replicating plasmids in coryneform bacteria can be taken out of these vectors and inserted into the E. coli vector to be used as so-called shuttle vectors that can replicate in both E. coli and coryneform bacteria. To do. Artificial transposons can also be used. When a transposon is used, the target gene is introduced into the chromosome by homologous recombination or its own ability to transfer.
[0026] 本発明に使用できるプロモーターは特に限定されず、コリネ型細菌の菌体内で機 能し得るプロモーターであれば一般に使用でき、更に異種由来の、例えば tacプロモ 一ター等の大昜菌(E.coli)由来のプロモーターであってもよレ、。その中で、 tacプロモ 一ター等の強力なプロモーターがより好ましい。コリネ型細菌由来のプロモーターとし ては、例えば、細胞表層タンパク質の PS1、 PS2、 SlpAの遺伝子のプロモーター、各種 アミノ酸生合成系、例えばグノレタミン酸生合成系のグルタミン酸脱水素酵素遺伝子、 グノレタミン合成系のグルタミン合成酵素遺伝子、リジン生合成系のァスパルトキナー ゼ遺伝子、スレオニン生合成系のホモセリン脱水素酵素遺伝子、イソロイシンおよび パリン生合成系のァセトヒドロキシ酸合成酵素遺伝子、ロイシン生合成系の 2-イソプロ ピルリンゴ酸合成酵素遺伝子、プロリンおよびアルギニン生合成系のグノレタミン酸キ ナーゼ遺伝子、ヒスチジン生合成系のホスホリボシル -ATPピロホスホリラーゼ遺伝子 、トリプトファン、チロシンおよびフエ二ルァラニン等の芳香族アミノ酸生合成系のデォ キシァラビノヘプッロン酸リン酸(DAHP)合成酵素遺伝子、イノシン酸およびグァニル 酸のような核酸生合成系におけるホスホリボシルピロホスフェート (PRPP)アミドトランス フェラーゼ遺伝子、イノシン酸脱水素酵素遺伝子およびグァニル酸合成酵素遺伝子 の各プロモーターが挙げられる。 [0026] The promoter that can be used in the present invention is not particularly limited, and any promoter can be used as long as it can function in the cells of coryneform bacteria. It can be a promoter from E.coli). Among them, a strong promoter such as tac promoter is more preferable. Examples of promoters derived from coryneform bacteria include promoters of cell surface proteins PS1, PS2, and SlpA, Amino acid biosynthetic system, for example, glutaremic acid biosynthetic glutamate dehydrogenase gene, gnoretamine synthesizing glutamine synthase gene, lysine biosynthetic aspartokinase gene, threonine biosynthetic homoserine dehydrogenase gene, isoleucine And palin biosynthetic acetohydroxy acid synthase gene, leucine biosynthetic 2-isopropylmethyl malate synthase gene, proline and arginine biosynthetic gnoretamic acid kinase gene, histidine biosynthetic phosphoribosyl-ATP pyrone In the nucleic acid biosynthesis system such as phosphorylase gene, deoxyarabinohepturonic acid phosphate (DAHP) synthase gene of aromatic amino acid biosynthetic system such as tryptophan, tyrosine and phenylalanin, inosinic acid and guanylic acid Phosphoribosi Pyrophosphate (PRPP) amide trans luciferase gene, include the promoters inosinate dehydrogenase gene and Guaniru synthase gene.
[0027] 本発明で使用するシグナルペプチドはコリネ型細菌の菌体内で機能し得るシグナ ルペプチドであれば特に限定されず、コリネ型細菌の菌体内で機能し得るどのような シグナルペプチドも使用することができる。したがって、異種由来の、例えば大腸菌 やバチルス ·ズブチリス由来のシグナルペプチドも、コリネ型細菌の菌体内で機能し 得る限り、本発明に使用することができる。シグナルペプチドには、それが由来する 分泌性タンパク質の N末端アミノ酸配列の一部が付加されてレ、てもよレ、。シグナル配 歹 IJは、翻訳産物が菌体外に分泌される際にシグナルぺプチダーゼによって切断され る。なお、シグナルペプチドをコードする遺伝子は、天然型のままでも使用できるが、 使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変してもよい。 これらのシグナルペプチドを使用する場合、 目的とするタンパク質をコードする遺伝 子は、シグナルペプチドをコードする遺伝子の 3'-末端側に接続し、かつ、上記プロ モーターにより発現の制御を受けるように配置する。  [0027] The signal peptide used in the present invention is not particularly limited as long as it is a signal peptide that can function in the cells of coryneform bacteria, and any signal peptide that can function in the cells of coryneform bacteria should be used. Can do. Therefore, a signal peptide derived from a different species, for example, E. coli or Bacillus subtilis, can be used in the present invention as long as it can function in the cells of coryneform bacteria. A part of the N-terminal amino acid sequence of the secretory protein from which it is derived is added to the signal peptide. Signal binding IJ is cleaved by signal peptidase when the translation product is secreted outside the cell. The gene encoding the signal peptide can be used in its natural form, but may be modified so as to have an optimal codon according to the codon usage frequency of the host to be used. When using these signal peptides, the gene that encodes the target protein is connected to the 3'-terminal side of the gene that encodes the signal peptide, and the expression is controlled by the promoter. To do.
[0028] 本発明によって生産および分泌し得る目的タンパク質は、特に限定されず、動植物 や微生物由来の菌体内タンパク質を含むタンパク質全般が含まれ、宿主となるコリネ 型細菌に由来するタンパク質であっても、異種タンパク質であっても良レ、。本発明に よって分泌生産できるタンパク質の例には、以下のものが含まれる:  [0028] The target protein that can be produced and secreted by the present invention is not particularly limited, and includes all proteins including intracellular proteins derived from animals and plants and microorganisms, and even proteins derived from coryneform bacteria serving as hosts. Even a heterogeneous protein can be used. Examples of proteins that can be secreted and produced according to the present invention include:
トランスグルタミナーゼ(EC 2.3.2.13; Genbank Accession No.等); プロティングノレタミナーゼ(EC 3.5.1; Genbank Accession No. BAB21508、 Eur. J. Bio chem. 268. 1410-1421 (2001)等); Transglutaminase (EC 2.3.2.13; Genbank Accession No., etc.); Plotting noretaminase (EC 3.5.1; Genbank Accession No. BAB21508, Eur. J. Biochem. 268. 1410-1421 (2001) etc.);
インターフェロン(Genbank Accession No. CAA23802等); Interferon (Genbank Accession No. CAA23802 etc.);
インターロイキン 2 (IL2 : Genbank Accession No. AAK26665等、成熟型は 21〜: 153 位のアミノ酸配列); Interleukin 2 (IL2: Genbank Accession No. AAK26665 etc., mature type 21-: amino acid sequence at position 153);
インスリン(特開平 07-284394等); Insulin (JP 07-284394 A, etc.);
IGF—1 (インスリン様成長因子 1 : Genbank Accession No. CAA01954等); ペプチド合成酵素(WO 2004/011653号、 WO2004/065610号);  IGF-1 (insulin-like growth factor 1: Genbank Accession No. CAA01954 etc.); peptide synthase (WO 2004/011653, WO2004 / 065610);
これらのタンパク質をコードする遺伝子は、使用する宿主に応じて、および Zまたは 、望みの活性を得るために改変することができ、それらには 1以上のアミノ酸の付加、 欠失、置換などが含まれる。必要により宿主のコドン使用頻度に応じて最適なコドン に変換してもよい。改変技術、遺伝子のクローニング技術、生産されたタンパク質の 検出技術を含む、このような一般的な分子生物学的手法は当業者によく知られたも のであり、例えば、 Sambrook et al., 2001, Molecular Cloning: A Laboratory Manual, Third Edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Ne w York、 DNA cloning: A Practical Approach, Volumes I and II (D.N. Glover ed. 198 5)、 F.M. Ausubel et al. (eds), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)、 PCR Technology: Principles and Application for DNA Amplificatio n, H. Erlich, ed., Stockton Press等を参照することができる。  The genes encoding these proteins can be modified depending on the host used and Z or to obtain the desired activity, including the addition, deletion, substitution, etc. of one or more amino acids. It is. If necessary, it may be converted to an optimal codon according to the frequency of codon usage of the host. Such general molecular biology techniques, including modification techniques, gene cloning techniques, and production protein detection techniques, are well known to those skilled in the art, for example, Sambrook et al., 2001, Molecular Cloning: A Laboratory Manual, Third Edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, DNA cloning: A Practical Approach, Volumes I and II (DN Glover ed. 198 5), FM Ausubel et al (eds), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994), PCR Technology: Principles and Application for DNA Amplificatio, H. Erlich, ed., Stockton Press, and the like.
本発明に使用し得る遺伝子構築物のコリネ型細菌への導入方法は特に限定され ず、一般に使用される方法、例えば、プロトプラスト法 (Gene, 39, 281-286(1985》、ェ レクト口ポレーシヨン法 (Bio/Technology, 7, 1067_1070)(1989))等を使用することがで きる。得られた遺伝子導入形質転換体は通常用いられる方法および条件に従って培 養することができる。例えば、形質転換体は炭素源、窒素源、無機イオンを含有する 通常の培地で培養することができる。さらに高い増殖を得るため、ビタミン、アミノ酸等 の有機微量栄養素を必要に応じて添加することもできる。炭素源としてはグルコース およびシユークロースのような炭水化物、酢酸のような有機酸、アルコール類、その他 を使用することができる。窒素源としては、アンモニアガス、アンモニア水、アンモニゥ ム塩、その他が使用できる。無機イオンとしては、カルシウムイオン、マグネシウムィォ ン、リン酸イオン、カリウムイオン、鉄イオン等を必要に応じて適宜使用することができ る。培養は pH5.0〜8.5、 15°C〜37°Cの適切な範囲にて好気的条件下で行えばよぐ 培養期間は:!〜 7日間程度でよい。このような条件下で形質転換体を培養することに より、 目的タンパク質は菌体内で多量に生産され、効率よく菌体外に分泌される。 The method for introducing a gene construct that can be used in the present invention into coryneform bacteria is not particularly limited, and a commonly used method such as the protoplast method (Gene, 39, 281-286 (1985), the electoral position method ( Bio / Technology, 7, 1067_1070) (1989)), etc. The resulting gene-transformed transformant can be cultivated according to commonly used methods and conditions. It can be cultured in a normal medium containing a carbon source, nitrogen source, and inorganic ions, and organic micronutrients such as vitamins and amino acids can be added as needed to achieve higher growth. Can use carbohydrates such as glucose and sucrose, organic acids such as acetic acid, alcohols, etc. As the nitrogen source, ammonia gas, ammonia , Anmoniu Mus salt and others can be used. As inorganic ions, calcium ions, magnesium ions, phosphate ions, potassium ions, iron ions, and the like can be appropriately used as necessary. Cultivation may be carried out under aerobic conditions in a suitable range of pH 5.0 to 8.5 and 15 ° C. to 37 ° C. The culture period may be:! To 7 days. By culturing the transformant under such conditions, the target protein is produced in a large amount in the microbial cell and efficiently secreted outside the microbial cell.
[0030] 上記のようにして目的タンパク質の分泌生産能が付与されるコリネ型細菌を、セリン /スレオニンフォスファターゼ活性が増強するように改変する、あるいは、予めセリン /スレオニンフォスファターゼ活性が増強するように改変しておいたコリネ型細菌に 目的タンパク質の分泌生産能を付与することによって、本発明の方法によるタンパク 質の製造に用いるコリネ型細菌を得ることができる。  [0030] As described above, the coryneform bacterium imparted with the ability to produce and secrete the target protein is modified so that serine / threonine phosphatase activity is enhanced, or modified in advance so that serine / threonine phosphatase activity is enhanced. By imparting the ability to secrete and produce the target protein to the coryneform bacterium, the coryneform bacterium used for the production of the protein by the method of the present invention can be obtained.
[0031] 以下、セリン Zスレオニンフォスファターゼ(PstP)活性が上昇するように改変したコリ ネ型細菌の構築方法の例を示す。これらの方法は、 Molecular cloning (Cold spring H arbor Laboratory Press, Cold spring Harbor(USA), 2001)等のマニュアルに従って実 施出来る。他の微生物も同様にしてセリン/スレオニンフォスファターゼ活性が上昇 するように改変することができる。  [0031] An example of a method for constructing a coryneform bacterium modified so as to increase serine Z threonine phosphatase (PstP) activity is shown below. These methods can be performed according to a manual such as Molecular cloning (Cold spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001). Other microorganisms can be similarly modified to increase serine / threonine phosphatase activity.
セリン/スレオニンフォスファターゼ活性が増強するような改変は、例えば、 pstPの 発現量の増強によって達成することができる。 pstPの発現量の増強は、例えば pstPの コピー数を増加させることによって達成される。より具体的には、 pstPを含む断片を、 コリネ型細菌で機能するベクター、好ましくはマルチコピー型のベクターと連結して組 換え DNAを作製し、これを上述のような L アミノ酸生産能を有する微生物に導入し て形質転換すればよい。また、野生型の微生物に上記組換え DNAを導入して形質 転換株を得、その後当該形質転換株にタンパク質生産能を付与してもよい。また、コ ピー数の増加は、 pstPをコードする断片を染色体上に 1コピーあるいは複数コピー転 移させることによつても達成される。染色体上に pstPが転移したことの確認は、 pstPの 一部をプローブとして、サザンハイブリダィゼーシヨンを行うことによって確認出来る。 また、 pstPの発現の増強は、 pstPの発現調節領域を改変することによつても達成出来 る。例えば、 pstPのプロモーターの配列をより強いプロモーターに置換すること、プロ モーター配列をコンセンサスに近づけることによって達成出来る(国際公開第 WO00 /18935号パンフレット)。 Modifications that enhance serine / threonine phosphatase activity can be achieved, for example, by enhancing the expression level of pstP. Enhancement of the expression level of pstP is achieved, for example, by increasing the copy number of pstP. More specifically, a fragment containing pstP is ligated with a vector that functions in a coryneform bacterium, preferably a multicopy vector, to produce a recombinant DNA, which has the ability to produce L amino acids as described above. It may be introduced into a microorganism and transformed. Alternatively, the recombinant DNA may be introduced into a wild-type microorganism to obtain a transformed strain, and then the protein-producing ability may be imparted to the transformed strain. An increase in the number of copies can also be achieved by transferring one or more copies of the pstP-encoding fragment onto the chromosome. Confirmation of transfer of pstP on the chromosome can be confirmed by Southern hybridization using a part of pstP as a probe. Furthermore, enhancement of pstP expression can also be achieved by modifying the expression regulatory region of pstP. For example, it can be achieved by replacing the promoter sequence of pstP with a stronger promoter, or bringing the promoter sequence closer to consensus (International Publication No. WO00). / 18935 pamphlet).
[0032] 本発明の一実施態様において、 pstPの発現量の増強は pstPのコピー数を増加させ ることによって達成される。コピー数を増加させることは、例えば、以下のようにプラス ミドで pstPを増幅することによって達成出来る。まず pstPを、コリネ型細菌の染色体か らクローニングする。染色体 DNAは、 DNA供与体である細菌から、例えば、斎藤、三 浦の方法(H. Saito and K.Miura, Biochem.B iophys. Acta, 72, 619 (1963)、生物ェ 学実験書、 日本生物工学会編、 97〜98頁、培風館、 1992年参照)等により調製す ること力 Sできる。 PCRに用いるオリゴヌクレオチドは上記の公知情報に基づいて合成 でき、例えば配列番号 5、 6に記載の合成オリゴヌクレオチドを用い pstPを増幅するこ とが出来る。 [0032] In one embodiment of the present invention, enhancement of the expression level of pstP is achieved by increasing the copy number of pstP. Increasing the copy number can be achieved, for example, by amplifying pstP with a plasmid as follows. First, pstP is cloned from the chromosome of a coryneform bacterium. Chromosomal DNA is derived from bacteria that are DNA donors, for example, the method of Saito and Miura (H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963), Biological Experiments, Japan. Ability to prepare according to the Biotechnology Society, pages 97-98, Bafukan, 1992). Oligonucleotides used for PCR can be synthesized based on the above known information. For example, pstP can be amplified using synthetic oligonucleotides described in SEQ ID NOs: 5 and 6.
PCR法により増幅された pstPを含む遺伝子断片は、コリネ型細菌の細胞内において 自律複製可能なベクター DNAに接続して組換え DNAを調製し、これをェシヱリヒア' コリに導入しておくと、後の操作がしゃすくなる。ェシエリヒア 'コリ細胞内において自 律複製可能なベクターとしては、 pUC19、 pUC18、 pHSG299, pHSG399, pHSG398, R SF1010, pBR322, pACYC184, pMW219等が挙げられる。  The gene fragment containing pstP amplified by the PCR method is connected to a vector DNA capable of autonomous replication in cells of coryneform bacteria to prepare a recombinant DNA, which is introduced into Escherichia coli. The operation becomes difficult. Examples of vectors capable of autonomous replication in Escherichia coli cells include pUC19, pUC18, pHSG299, pHSG399, pHSG398, RSF1010, pBR322, pACYC184, and pMW219.
[0033] 上記 DNAをコリネ型細菌で機能し得るベクターに導入する。コリネ型細菌で機能す るベクターとは、例えばコリネ型細菌で自律複製できるプラスミドである。具体的に例 示すれば、コリネ型細菌で自律複製可能なプラスミドとしては、例えば、特開平 3-210 184号公報に記載のプラスミド pCRY30 ;特開平 2-72876号公報及び米国特許 5, 185,2 62号公報に記載のプラスミド pCRY21、 pCRY2KE、 pCRY2KX、 pCRY31、 pCRY3KE及 び PCRY3KX;特開平 1-191686号公報に記載のプラスミド pCRY2および pCRY3;特開 昭 58-67679号公報に記載の pAM330 ;特開昭 58-77895号公報に記載の pHM1519 ; 特開昭 58-192900号公報に記載の pAJ655、 pAJ611及び pAJ1844 ;特開昭 57-134500 号公報に記載の pCGl;特開昭 58-35197号公報に記載の pCG2;特開昭 57-183799 号公報に記載の PCG4および pCGl l等、特開平 10-215883号公報に記載の pVK7を 挙げ'ること力 Sできる。 [0033] The DNA is introduced into a vector that can function in coryneform bacteria. The vector that functions in coryneform bacteria is, for example, a plasmid that can autonomously replicate in coryneform bacteria. Specifically, as a plasmid capable of autonomous replication in coryneform bacteria, for example, plasmid pCRY30 described in JP-A-3-210184; JP-A-2-72876 and US Pat. No. 5,185, Plasmids pCRY21, pCRY2KE, pCRY2KX, pCRY31, pCRY3KE and PCRY3KX described in JP-A No. 62; plasmids pCRY2 and pCRY3 described in JP-A 1-191686; pAM330 described in JP-A-58-67679; PHM1519 described in Kokai 58-77895; pAJ655, pAJ611 and pAJ1844 described in JP-A-58-192900; pCGl described in JP-A-57-134500; JP-A-58-35197 PCG2 described in JP-A-10-215883, such as PCG4 and pCGll described in JP-A-57-183799, and the like.
[0034] pstPとコリネ型細菌で機能するベクターを連結して組換え DNAを調製するために、 p stPの末端に合うような制限酵素でベクターを切断することができる。この制限酵素部 位はあらかじめ pstPの増幅に用いる合成オリゴヌクレオチドに導入されてレ、てもよレ、。 連結は T4 DNAリガーゼ等のリガーゼを用いて行うことができる。 [0034] In order to prepare a recombinant DNA by ligating a vector that functions in pstP and coryneform bacteria, the vector can be cleaved with a restriction enzyme that matches the end of pstP. This restriction enzyme part The position is introduced in advance into a synthetic oligonucleotide used for pstP amplification. Ligation can be performed using a ligase such as T4 DNA ligase.
上記のように調製した組換えプラスミドをコリネ型細菌に導入するには、これまでに 報告されている形質転換法に従って行えばよい。例えば、ェシエリヒア'コリ K-12株 につレ、て報告されてレ、るような、受容菌細胞を塩化カルシウムで処理して DNAの透 過性を増す方法(Mandel,M.and Higa,A.J. Mol. Biol, 53, 159 (1970))があり、バチ ノレス'ズブチリスについて報告されているような、増殖段階の細胞からコンビテントセ ルを調製して DNAを導入する方法(Duncan,C.H.,Wilson,G.A.and Young,F.E., Gen e, 1, 153 (1977))がある。あるいは、バチルス'ズブチリス、放線菌類及び酵母につい て知られているような、 DNA受容菌の細胞を、組換え DNAを容易に取り込むプロト プラストまたはスフヱ口プラストの状態にして組換え DNAを DNA受容菌に導入する 方法 (Chang,S. andChoen,S.N.,Mol.Gen.Genet.,168, lll(1979);Bibb, M.J., Ward, J.M. a ndHopwood,O.A., Nature, 274, 398 (1978);Hinnen,A.,Hicks J.B.and Fink,G.R.,Proc. Natl. Acad. Sci. USA, 75 1929 (1978))も応用できる。また、電気パルス法(特開平 2_ 207791号公報)や、接合伝達法(Biotechnology (N Y). 1991 Jan;9(l):84_7) ·によって も、コリネ型細菌の形質転換を行うことができる。  In order to introduce the recombinant plasmid prepared as described above into a coryneform bacterium, transformation methods that have been reported so far may be used. For example, a method to increase DNA permeability by treating recipient cells with calcium chloride, as reported in Escherichia coli K-12 strain (Mandel, M. and Higa, AJ Mol. Biol, 53, 159 (1970)), and a method for introducing DNA by preparing a competent cell from proliferating cells, as reported for B. noles subtilis (Duncan, CH, Wilson). GAand Young, FE, Gene, 1, 153 (1977)). Alternatively, DNA-receptive cells, such as those known for Bacillus subtilis, actinomycetes, and yeast, can be put into a protoplast or a squirrel-mouth plast that readily incorporates recombinant DNA into the recombinant DNA. (Chang, S. and Choen, SN, Mol. Gen. Genet., 168, lll (1979); Bibb, MJ, Ward, JMandHopwood, OA, Nature, 274, 398 (1978); Hinnen, A., Hicks JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)). Coryneform bacteria can also be transformed by the electric pulse method (Japanese Patent Laid-Open No. 2-207791) and the junction transfer method (Biotechnology (NY). 1991 Jan; 9 (l): 84_7).
[0035] pstPのコピー数を増加させることは、 pstPをコリネ型細菌の染色体 DNA上に複数コ ピー存在させることによつても達成できる。コリネ型細菌の染色体 DNA上に pstPを複 数コピー導入するには、染色体 DNA上に複数コピー存在する配列を標的に利用して 相同組換えにより行う。染色体 DNA上に多コピー存在する配列としては、レペティティ ブ DNA、転移因子の端部に存在するインバーテッド'リピートが利用できる。あるいは 、特開平 2-109985号公報に開示されているように、 pstPをトランスポゾンに搭載してこ れを転移させて染色体 DNA上に多コピー導入することも可能である。 (特開平 2-1099 85号、特開平 7— 107976号、 Mol.Gen.Genet.,245, 397-405 (1994)、 Plasmid. 2000 Nov;44(3):285-91) 0 [0035] Increasing the copy number of pstP can also be achieved by having multiple copies of pstP on the chromosomal DNA of coryneform bacteria. In order to introduce multiple copies of pstP into the chromosomal DNA of coryneform bacteria, homologous recombination is carried out using the sequence present in the chromosomal DNA as a target. As a sequence present in multiple copies on chromosomal DNA, a repetitive DNA or an inverted 'repeat present at the end of a transposable element can be used. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, it is possible to mount pstP on a transposon, transfer it, and introduce multiple copies onto chromosomal DNA. (JP-A-2-109985, JP-A-7-107976, Mol. Gen. Genet., 245, 397-405 (1994), Plasmid. 2000 Nov; 44 (3): 285-91) 0
[0036] また、宿主で複製できない複製起点あるいは、宿主で複製出来ない複製起点と宿 主への接合伝達能を有するプラスミドに pstPを導入して、染色体上で増幅させる方法 も適用できる。例えば用いることが出来るベクターは、 pSUP301 (Simo等, Bio/Technol ogy 1, 784〜791 (1983) )、 pK18mobまたは pK19mob (Schaefer等, Gene 145, 69〜73 (1994) )、 pGEM-T (Promega corporation, Madison, WI, USA)、 pCR2.1- TOPO (Shu man (1994). Journal of Biological Chemisty 269: 32678〜84; US- A 5487993)、 pCR(R )Blunt (Invitrogen, Groningen, Netherlands; Bernard et al , Journal of Molecular Biol ogy, 234: 534〜541 (1993))、 pEMl (Schrumpf等, 1991, Journal of Bacteriology 173: 4510〜4516)または pBGS8 (spratt等, 1986, Gene, 41: 337〜342)等が挙げられる。 p stPを含むプラスミドベクターをコリネ型細菌中に接合または形質転換によって転移さ せる。接合法は、 列えば Schaefer等 (Applied and Environmental Microbiology 60, 75 6〜759 (1994))に記載されている。形質転換法は、例えば Theirbach等(Applied Micr obiology and Biotechnology 29, 356〜362 (1988))、 Dunicanおよび Shivinan(Bio/Tec hnology 7, 1067〜1070 (1989))および Tauch等(FEMS Microbiological Letters 123, 3 43〜347 (1994))に記載されている。 [0036] In addition, a method in which pstP is introduced into a replication origin that cannot replicate in the host, or a plasmid that has the ability to transfer the junction to the host and the replication origin that cannot replicate in the host, and is amplified on the chromosome can also be applied. For example, the vector that can be used is pSUP301 (Simo et al., Bio / Technol ogy 1, 784-791 (1983)), pK18mob or pK19mob (Schaefer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shu man (1994) .Journal of Biological Chemisty 269: 32678-84; US-A 5487993), pCR ( R ) Blunt (Invitrogen, Groningen, Netherlands; Bernard et al, Journal of Molecular Biolog, 234: 534-541 (1993) )), PEMl (Schrumpf et al., 1991, Journal of Bacteriology 173: 4510-4516) or pBGS8 (spratt et al., 1986, Gene, 41: 337-342). The plasmid vector containing pstP is transferred into a coryneform bacterium by conjugation or transformation. Joining methods are described, for example, in Schaefer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Transformation methods are described in, for example, Theirbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivinan (Bio / Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 3 43-347 (1994)).
[0037] また、 pstPの活性を上昇させる手段として染色体 DNA上またはプラスミド上の pstPの プロモーター等の発現調節配列を強力なものに置換すること、 pstPの発現調節に関 与する因子、例えばオペレーターゃリプレッサーを改変すること、強力なターミネータ 一を連結することによつても達成される。(Hamilton et al,; Journal of Bacterologyl71 : 4617-4622)例えば、 lacプロモーター、 t卬プロモーター、 trcプロモーター、 PS2プロモ 一ター等が強力なプロモーターとして知られている。プロモーターの強度の評価法お よび強力なプロモーターの例は、 Goldsteinらの論文 (Prokaryotic promoters in biote chnology. Biotechnol. Annu. Rev., 1995, 1, 105-128)等に記載されている。また、国 際公開 WO00/18935に開示されているように、 目的遺伝子のプロモーター領域に数 塩基の塩基置換を導入し、よりコンセンサスに近づける配列に置換し、強力なものに 改変することも可能である。例えば、 _ 35領域を TTGACA、 TTGCCA配歹 1Jに、一10 領域を TATAAT、 TATAAC配列に置換することが考えられる。さらに、リボソーム結合 部位 (RBS)と開始コドンとの間のスぺーサ、特に開始コドンのすぐ上流の配列にお ける数個のヌクレオチドの置換カ¾1^八の翻訳効率に非常に影響を及ぼすことが知 られており、これらを改変することも可能である。 [0037] In addition, as a means for increasing the activity of pstP, substitution of an expression control sequence such as a promoter of pstP on a chromosomal DNA or plasmid with a strong one, factors involved in pstP expression control, such as an operator It can also be achieved by modifying the repressor and connecting a strong terminator. (Hamilton et al ,; Journal of Bacterology 71: 4617-4622) For example, lac promoter, t 卬 promoter, trc promoter, PS2 promoter and the like are known as strong promoters. Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1995, 1, 105-128). In addition, as disclosed in International Publication WO00 / 18935, it is also possible to introduce a base substitution of several bases into the promoter region of the target gene, replace it with a sequence closer to consensus, and modify it to a stronger one. is there. For example, it is conceivable to replace the _35 region with TTGACA and TTGCCA array 1J and replace 10 regions with TATAAT and TATAAC sequences. In addition, it greatly affects the translation efficiency of the spacer between the ribosome binding site (RBS) and the start codon, especially the substitution of several nucleotides in the sequence immediately upstream of the start codon. Are known and can be modified.
[0038] pstP上流のプロモーター等の発現調節配列は、プロモーター検索ベクターや GEN ETYX等の遺伝子解析ソフトを用いて決定することも出来る。これらのプロモーター置 換または改変により pstPの発現が強化される。発現調節配列の置換は、例えば温度 感受性プラスミドを用いて行うことができる。なお、発現調節配列の改変は、 pstPのコ ピー数を増加させることと組み合わせてもよい。 [0038] Expression control sequences such as promoters upstream of pstP are used as promoter search vectors and GENs. It can also be determined using genetic analysis software such as ETYX. These promoter substitutions or modifications enhance pstP expression. The substitution of the expression regulatory sequence can be performed using, for example, a temperature sensitive plasmid. The modification of the expression regulatory sequence may be combined with increasing the number of pstP copies.
また、発現量の上昇は、 m-RNAの生存時間を延長させることや、酵素タンパク質の 細胞内での分解を防ぐことによつても達成可能である。  An increase in the expression level can also be achieved by prolonging the survival time of m-RNA or preventing degradation of the enzyme protein in the cell.
[0039] セリン/スレオニンフォスファターゼ(PstP)活性が増強されたことは、既知の方法、 例えば、 Boitel等に記載の方法(Brigitte Boitel, Miguel Ortiz-Lombardia, Rosario D uran, Frederique Pompeo, Stewart T. Cole, Carlos Cervenansky and Pedro M. Alzar i (2003) Molecular Microbiology. 49(6), 1493-1508)で PstP酵素活性を測定し、野生 型、あるいは非改変株と比較することによって確認できる。また、セリン/スレオニンフ ォスファターゼ (PstP)活性が増強されたことの確認は、セリン Zスレオニンフォスファ ターゼ(PstP)をコードする遺伝子の m-RNAの量を野生型、あるいは非改変株と比較 することによつても確認出来る。発現量の確認方法としては、ノーザンハイブリダィゼ ~~シヨン、 RT—Pし R力、 げられる (Molecular cloning (Cold spring Harbor Laboratory Press, Cold spring Harbor(USA),2001) ) o本発明において、増強されたセリン/スレ ォニンフォスファターゼ (PstP)活性あるいは発現量は、野生株あるいは非改変株と比 較して統計的に有意に上昇していればどのような活性または発現量でもあり得る。本 発明によれば、セリン/スレオニンフォスファターゼ (PstP)活性は野生株又は非改変 株と比べて 1.5倍以上、より好ましくは 2倍以上、さらに好ましくは 3倍以上上昇してい る。 [0039] The enhanced serine / threonine phosphatase (PstP) activity is known in the art, for example, the method described by Boitel et al. (Brigitte Boitel, Miguel Ortiz-Lombardia, Rosario Duran, Frederique Pompeo, Stewart T. Cole , Carlos Cervenansky and Pedro M. Alzari (2003) Molecular Microbiology. 49 (6), 1493-1508), and can be confirmed by measuring the PstP enzyme activity and comparing it with the wild type or unmodified strain. Confirmation that serine / threonine phosphatase (PstP) activity was enhanced was compared to the wild-type or unmodified strain in the amount of m-RNA of the gene encoding serine Z-threonine phosphatase (PstP). This can also be confirmed. As a method for confirming the expression level, Northern hybridase ~~ Cillon, RT-P and R force, (Molecular cloning (Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)) o In the present invention The enhanced serine / threonine phosphatase (PstP) activity or expression level can be any activity or expression level as long as it is statistically significantly higher than that of the wild-type or non-modified strain. . According to the present invention, the serine / threonine phosphatase (PstP) activity is increased by 1.5 times or more, more preferably by 2 times or more, and even more preferably by 3 times or more compared to the wild type strain or the unmodified strain.
[0040] 本発明によって培地中に分泌されたタンパク質は、当業者によく知られた方法に従 つて培養後の培地から分離精製することができる。例えば、菌体を遠心分離等により 除去した後、塩析、エタノール沈殿、限外濾過、ゲル濾過クロマトグラフィー、イオン 交換カラムクロマトグラフィー、ァフィニーティークロマトグラフィー、中高圧液体クロマ トグラフィー、逆相クロマトグラフィー、疎水クロマトグラフィー等の既知の適切な方法、 またはこれらを組み合わせることにより分離精製することができる。本発明によって菌 体表層に分泌されたタンパク質も当業者によく知られた方法、例えば塩濃度の上昇、 界面活性剤の使用等によって可溶化した後に、培地中に分泌された場合と同様にし て分離精製することができる。また、ある場合には、菌体表層に分泌されたタンパク質 を可溶化せずに、例えば固定化酵素として使用しても良い。 [0040] The protein secreted into the medium according to the present invention can be separated and purified from the cultured medium according to a method well known to those skilled in the art. For example, after removing cells by centrifugation, etc., salting out, ethanol precipitation, ultrafiltration, gel filtration chromatography, ion exchange column chromatography, affinity chromatography, medium to high pressure liquid chromatography, reverse phase chromatography Separation and purification can be performed by known appropriate methods such as chromatography and hydrophobic chromatography, or a combination thereof. Proteins secreted into the cell surface by the present invention are also well known to those skilled in the art, for example, increasing the salt concentration, After solubilization by use of a surfactant or the like, separation and purification can be performed in the same manner as when secreted into the medium. In some cases, the protein secreted to the surface of the bacterial cell may be used as, for example, an immobilized enzyme without solubilizing the protein.
本発明は以下の実施例によって、更に具体的に説明されるが、これらはいかなる意 味でも本発明を限定するものと解してはならない。  The invention is further illustrated by the following examples, which should not be construed as limiting the invention in any way.
実施例  Example
実施例 1. C glutamicum ATCC13869由来の脱リン酸化酵素遣伝子 ostPのクローン 化とタンパク誓の分泌牛産に及ぼす ostPの増幅効果 Example 1. Cloning of phosphatase gene ostP from C glutamicum ATCC13869 and amplification of ostP on secretory cow
(1) C. glutamicum ATCC13869の pstPのクローン化 (1) Cloning of pstP of C. glutamicum ATCC13869
C. glutamicum ATCC13032のゲノム配列は既に決定されている [Eur. J. Biochem., 257, 570-576(1998)]。この配列を参考にして、配列番号 5と配列番号 6に示したプラ イマ一を合成し、常法に従って(斉藤、三浦の方法 [Biochim. Biophys. Acta, 72, 619( 1963)])調製した C. glutamicum ATCC13869の染色体 DNAから pstPをコードする領 域を PCR法にて増幅した。 PCR反応には Pyrobest DNA polymerase (宝酒造社製)を 用レ、、反応条件は業者の推奨するプロトコルに従った。なお、配列番号 5の配列は制 限酵素 Pstlの認識配列、配列番号 6の配列は制限酵素 EcoRIの配列を含んでいる。 (配列番号 5) 5'- CACGGATATCCGTACTGCAGGTACAACAGT -3'  The genomic sequence of C. glutamicum ATCC13032 has already been determined [Eur. J. Biochem., 257, 570-576 (1998)]. With reference to this sequence, the primers shown in SEQ ID NO: 5 and SEQ ID NO: 6 were synthesized and prepared according to a conventional method (Saito, Miura method [Biochim. Biophys. Acta, 72, 619 (1963)]). A region encoding pstP was amplified by PCR from the chromosomal DNA of C. glutamicum ATCC13869. Pyrobest DNA polymerase (Takara Shuzo) was used for the PCR reaction, and the reaction conditions followed the protocol recommended by the manufacturer. The sequence of SEQ ID NO: 5 contains the recognition sequence of the restriction enzyme Pstl, and the sequence of SEQ ID NO: 6 contains the sequence of the restriction enzyme EcoRI. (SEQ ID NO: 5) 5'- CACGGATATCCGTACTGCAGGTACAACAGT -3 '
(配列番号 6) 5'-CACATTTCCGTGCGGCGAATTCTTAATCGT -3' (SEQ ID NO: 6) 5'-CACATTTCCGTGCGGCGAATTCTTAATCGT -3 '
<配列表フリーテキスト > <Sequence Listing Free Text>
配列番号 5, 6 : PCRプライマー  SEQ ID NOs: 5, 6: PCR primers
次に増幅した DNA断片を Pstl、 EcoRIで消化した約 1.4kbの断片を EASYTRAP Ver .2 (宝酒造社製)を用いてァガロースゲル電気泳動により回収し、これを特開平 9-070 291記載の pVC7 (大腸菌およびコリネ型細菌の両方で複製可能なシャトルベクター) の Pstl、 EcoRI部位に揷入した後、 Escherichia coli JM109 (宝酒造社製)のコンビテン トセルに導入した。 pstP断片がクローン化されたプラスミドを保持する菌株を取得し、 これよりプラスミドを回収し、 pVpstPと名付けた。 pVpstPにクローン化されている断片 のヌクレオチド配列は、ダイターミネータ一サイクルシークェンシングキット(PEァプラ イドバイオシステムズ社製)と DNAシークェンサ一 377A (PEアプライドバイオシステム ズ社製)を用いて決定した。ヌクレオチド配列決定の結果、得られた C. glutamicum A TCC13869の pstPのヌクレオチド配列は、 C. glutamicum ATCC13032の pstPのヌクレ ォチド配列と一部異なっていることが判明した。 C. glutamicum ATCC13869由来の ps tPのヌクレオチド配列を配列番号 3に、コードされる全アミノ酸配列を配列番号 4に示 した。また、 C. efficiens YS-314の pstPのヌクレオチド配列を配列番号 7に、コードされ る全アミノ酸配列を配列番号 8に示した。図 3にこれらアミノ酸配列のアラインメントを 示した。このように、 pstPの配列はコリネ型細菌間においてよく保存されており、 ATC C13032と ATCC13869間のホモロジ一はアミノ酸配列の全長に対して 99.8%、 ATCC1 3032および ATCC13869と、 YS-314間のホモロジ一はアミノ酸配列の全長に対して、 7 2.3%であった。ァライメントの作成および相同性の計算は、 Genetyx_Version7 (ゼネ ティックス社製)を用いて行った。 Next, the amplified DNA fragment was digested with Pstl and EcoRI, and a fragment of about 1.4 kb was recovered by agarose gel electrophoresis using EASYTRAP Ver.2 (Takara Shuzo Co., Ltd.). This was recovered by pVC7 described in JP-A-9-070291. It was inserted into the Pstl and EcoRI sites of a shuttle vector that can replicate in both E. coli and coryneform bacteria, and then introduced into the Escherichia coli JM109 (Takara Shuzo Co.) cell. A strain carrying the plasmid in which the pstP fragment was cloned was obtained, from which the plasmid was recovered and named pVpstP. The nucleotide sequence of the fragment cloned in pVpstP is the DNA Terminator Cycle Sequencing Kit (PE Applied Biosystems) and DNA Sequencer 377A (PE Applied Biosystems). Determined by the As a result of nucleotide sequencing, it was found that the nucleotide sequence of pstP of C. glutamicum A TCC13869 obtained was partially different from the nucleotide sequence of pstP of C. glutamicum ATCC13032. The nucleotide sequence of pstP derived from C. glutamicum ATCC13869 is shown in SEQ ID NO: 3, and the entire amino acid sequence encoded is shown in SEQ ID NO: 4. Further, the nucleotide sequence of pstP of C. efficiens YS-314 is shown in SEQ ID NO: 7, and the entire amino acid sequence encoded is shown in SEQ ID NO: 8. Figure 3 shows the alignment of these amino acid sequences. Thus, the sequence of pstP is well conserved among coryneform bacteria. The homology between ATC C13032 and ATCC13869 is 99.8% of the total amino acid sequence, and the homology between ATCC1 3032 and ATCC13869 and YS-314. One was 72.3% of the total length of the amino acid sequence. Alignment creation and homology calculation were performed using Genetyx_Version7 (Genetics).
(2) C. glutamicum ATCC13869における pstP増幅によるタンパク質分泌生産量に及 ぼす効果 (2) Effects of pstP amplification on protein secretion production in C. glutamicum ATCC13869
実施例 1 (1)で構築したプラスミド pVpstPを用いて、 C. glutamicum ATCC13869及 び glutamicum ATCC13869のストレプトマイシン(sm)耐性変異株 AJ12036の細胞 表層タンパク質(PS2)破壊株である YDK010株 (WO 01/23591記載)を形質転換し、 5 mg/1のクロラムフエ二コールを含む CM2G寒天培地(酵母エキストラタト 10g、トリプト ン 10g、グルコース 5g、 NaCl 5g、 DL_メチォニン 0.2g、寒天 20g、水で 1Uこする )で生育した菌株を選択した。次に、これらの形質転換体と、 pVC7を C. glutamicum A TCC13869及び YDK010に導入したものを対照として、培養上清中に分泌されるタン パク質の生産量について比較評価した。 5mg/lのクロラムフエ二コールを含む上記 C M2G寒天培地で 30°Cでー晚生育した菌株を MMTG液体培地(グルコース 60g、硫 酸マグネシウム七水和物 3g、硫酸アンモニゥム 30g、リン酸二水素カリウム 1.5g、 硫酸鉄七水和物 0.03g、硫酸マンガン四水和物 0.03g、チアミン塩酸塩 0.45mg、 ピオチン 0.45mg、 DL-メチォニン 0.15g、炭酸カルシウム 50g、水で 1Lにして pH7 .5に調整)にクロラムフエ二コール 5mg/lを添カ卩した培地の 4mlを張り込んだ大型試験 管に接種し、それぞれ 30°C、 48時間培養した。培養終了後の培養上清中のタンパク 質量を Protein Assay CBB Solution (ナカライテスタ社製)を用いて定量した。測定条 件は業者の推奨するプロトコルに従った。その結果、 C. glutamicum ATCC13869及 び YDK010いずれにおいても、対照と比較して pVpstPを有することで形質転換 YDK0 10培養上清中に分泌される総タンパク質量が約 1.2倍に増加した。対照として pVC7 を用いた時との分泌量の相対比を表 1、 2に示した。 Example 1 Using the plasmid pVpstP constructed in (1), the C. glutamicum ATCC13869 and glutamicum ATCC13869 streptomycin (sm) resistant mutant AJ12036 cell surface protein (PS2) disruption strain YDK010 strain (WO 01/23591 CM2G agar medium containing 5 mg / 1 chloramphenicol (yeast extratate 10 g, tryptone 10 g, glucose 5 g, NaCl 5 g, DL_methionine 0.2 g, agar 20 g, water 1 U) ) Was selected. Next, using these transformants and pVC7 introduced into C. glutamicum A TCC13869 and YDK010 as controls, the production of proteins secreted into the culture supernatant was compared and evaluated. Strains grown at 30 ° C on the above CM2G agar medium containing 5 mg / l chloramphenicol were grown in MMTG liquid medium (glucose 60 g, magnesium sulfate heptahydrate 3 g, ammonium sulfate 30 g, potassium dihydrogen phosphate 1.5 g, iron sulfate heptahydrate 0.03 g, manganese sulfate tetrahydrate 0.03 g, thiamine hydrochloride 0.45 mg, piotin 0.45 mg, DL-methionine 0.15 g, calcium carbonate 50 g, 1 L with water to pH 7.5 In a large test tube containing 4 ml of medium supplemented with chloramphenicol 5 mg / l, the cells were cultured at 30 ° C for 48 hours. The amount of protein in the culture supernatant after culturing was quantified using Protein Assay CBB Solution (manufactured by Nacalai Testa). Measurement conditions The matter followed the protocol recommended by the vendor. As a result, in both C. glutamicum ATCC13869 and YDK010, the amount of total protein secreted in the culture supernatant of transformed YDK010 was increased by about 1.2 times by having pVpstP compared to the control. Tables 1 and 2 show the relative ratios of secretion with pVC7 as a control.
表 1. C. glutamicum ATCC13869のタンパク質分泌生産量に及ぼす pstP増幅効果 プラス ミ ド タ ンパ ク 質分泌量 (mg/1) 相対比  Table 1. Effect of pstP amplification on protein production of C. glutamicum ATCC13869 Plasmid protein secretion (mg / 1) Relative ratio
pVC7 8 1 . 6 1 . 0 pVpstP 9 7 . 6 1 . 2  pVC7 8 1 .6 1 .0 pVpstP 9 7 .6 1 .2
[0044] 表 2. C. glutamicum YDKOIOのタンパク質分泌生産量に及ぼす pstP増幅効果 [0044] Table 2. Effect of pstP amplification on protein secretion of C. glutamicum YDKOIO
プラス タ ンパ ク 質分泌量 (mg/1) 相対比  Plus protein secretion (mg / 1) Relative ratio
pVC7 1 2 8 . 9 0 pVpstP 1 5 4 . 3 2  pVC7 1 2 8 .9 0 pVpstP 1 5 4. 3 2
[0045] 実施例 2. C glutamicumにおける目的タンパク晳の分泌牛産に及ぼす DstPの増幅効 [0045] Example 2. Amplifying effect of DstP on the secretory cow producing the target protein in C glutamicum
(1)C. glutamicum ATCC13869の pstP増幅株を用いてのプロトランスグルタミナーゼ の分泌生産 (1) Secretory production of protransglutaminase using pstP amplified strain of C. glutamicum ATCC13869
実施例 1 (1)で構築したプラスミド pVpstPを用いて、 WO01/23591記載の Sec系分泌 シグナル配列 CspAシグナル配列を持つプロ構造部付きトランスグノレタミナーゼの分 泌発現プラスミド pPKSPTGlを有する C. glutamicum ATCC13869及び YDKOIOを形質 転換し、 5mg/lのクロラムフエ二コールと 25mg/lのカナマイシンを含む上記 CM2G寒天 培地で生育した菌株を選択した。次に、これらの形質転換体と、 pVC7及び pPKSPTG 1を C. glutamicum ATCC13869及び YDKOIOに導入したものを対照として、分泌生産 量にっレ、て比較評価した。 5mg/lのクロラムフエ二コールと 25mg/lのカナマイシンを含 む上記 CM2G寒天培地で 30°Cでー晚生育した菌株を上記 MMTG液体培地にクロラ ムフエ二コール 5mg/lとカナマイシン 25mg/lを添加した培地の 4mlを張り込んだ大型試 験管に接種し、それぞれ 30°C、 48時間培養した。培養終了後 10 μΐの培養上清を SD S-PAGEに供した結果、 pVpstPを有することで C. glutamicum ATCC13869、 YDKOIO 株のいずれも、 pVC7を用いた対照と比較して、約 1.5倍の分泌量増加が認められた。 さらに、 pVpstPを有することで Sec系分泌シグナル配列を利用した場合でも C.glutami cum ATCC13869、 YDK010株のいずれについてもプロトランスグルタミナーゼの分泌 生産量の増加が認められた(図 1)。 Example 1 Using the plasmid pVpstP constructed in (1), the Sec system secretion signal sequence described in WO01 / 23591 has a pro-structured transgnoreminase-expressing plasmid pPKSPTGl having a CspA signal sequence. C. glutamicum ATCC13869 And YDKOIO were transformed, and a strain grown on the CM2G agar medium containing 5 mg / l chloramphenicol and 25 mg / l kanamycin was selected. Next, these transformants were compared with those obtained by introducing pVC7 and pPKSPTG1 into C. glutamicum ATCC13869 and YDKOIO, and evaluated by comparison with the amount of secretory production. Add 5 mg / l chloramphenicol and 25 mg / l kanamycin to the above MMTG liquid medium with 5 mg / l chloramphenicol and 25 mg / l kanamycin grown on the above CM2G agar medium at 30 ° C. Inoculated into a large test tube containing 4 ml of the prepared medium, and cultured at 30 ° C for 48 hours, respectively. As a result of subjecting 10 μΐ of the culture supernatant to SD S-PAGE after completion of the culture, both C. glutamicum ATCC13869 and YDKOIO strains secreted approximately 1.5 times as much as the control using pVC7. An increase in quantity was observed. Furthermore, even when the Sec-type secretion signal sequence was used due to the presence of pVpstP, an increase in the secretory production of protransglutaminase was observed in both C. glutamicum ATCC13869 and YDK010 strains (Fig. 1).
[0046] (2) C. glutamicum ATCC13869の pstP増幅株を用いたプロティングルタミナ一ゼの分 泌生産 [0046] (2) Production of plotting rutaminase using pstP amplified strain of C. glutamicum ATCC13869
実施例 2 (1)と同様にして、実施例 1 (1)で構築したプラスミド pVpstPを用いて、 WO 02/081694記載の Tat系分泌シグナル配歹 IjTorAシグナル配列を持つプロ構造部付き プロティングルタミナーゼの分泌発現プラスミド pPKT_PPGを有する C. glutamicum A TCC13869を形質転換し、 5mg/lのクロラムフエ二コールと 25mg/lのカナマイシンを含 む上記 CM2G寒天培地で生育した菌株を選択した。次に、この形質転換体と、 pVC7 及び pPKT_PPGを C. glutamicum ATCC13869に導入したものを対照として、分泌生 産量にっレ、て比較評価した。 5mg/lのクロラムフエ二コールと 25mg/lのカナマイシンを 含む上記 CM2G寒天培地で 30°Cにてー晚生育した菌株を上記 MMTG液体培地にク 口ラムフエ二コール 5mg/lとカナマイシン 25mg/lを添加した培地の 4mlを張り込んだ大 型試験管に接種し、それぞれ 30°C、 48時間培養した。培養終了後 10 μ ΐの培養上清 を SDS-PAGEに供した。その結果、 pVpstPを有することにより対照と比較して約 1.5倍 の分泌量増加が認められた。さらに、 Tat系分泌シグナル配列を利用した分泌生産に おいても pVpstPを有することにより形質転換 C. glutamicum ATCC13869によるプロ構 造付きプロティングノレタミナーゼ生産量の増加が認められた(図 2)。  In the same manner as in Example 2 (1), using the plasmid pVpstP constructed in Example 1 (1), a Tat secretion signal distribution IjTorA signal sequence described in WO 02/081694 C. glutamicum A TCC13869 carrying the secretory expression plasmid pPKT_PPG was transformed, and a strain grown on the CM2G agar medium containing 5 mg / l chloramphenicol and 25 mg / l kanamycin was selected. Next, this transformant was compared with the one obtained by introducing pVC7 and pPKT_PPG into C. glutamicum ATCC13869, and evaluated by comparison with the amount of secretory production. Strains grown at 30 ° C on the above CM2G agar medium containing 5 mg / l chloramphenicol and 25 mg / l kanamycin were added to the above MMTG liquid medium with 5 mg / l kanalamphenicol and 25 mg / l kanamycin. A large test tube containing 4 ml of the added medium was inoculated and cultured at 30 ° C for 48 hours, respectively. After completion of the culture, 10 μΐ of the culture supernatant was subjected to SDS-PAGE. As a result, pVpstP increased secretion volume about 1.5 times compared with the control. Furthermore, in the secretory production using the Tat secretion signal sequence, the production of the plotting noretaminase with prostructure by transformed C. glutamicum ATCC13869 was increased by having pVpstP (Fig. 2).
[0047] 本発明により、コリネ型細菌を用いるタンパク質分泌生産の効率が飛躍的に高まる 。すわなち、本発明によれば、 目的タンパク質の分泌生産能が付与されたコリネ型細 菌のセリン Zスレオニンフォスファターゼ活性(PstP活性)を増強することにより、 目的 タンパク質の分泌効率が高まったコリネ型細菌が得られる。このコリネ型細菌を培養 することにより効率的に目的タンパク質を製造する方法が提供される。 [0047] According to the present invention, the efficiency of protein secretion production using coryneform bacteria is dramatically increased. In other words, according to the present invention, the coryneform of which the secretion efficiency of the target protein is enhanced by enhancing the serine Z threonine phosphatase activity (PstP activity) of the coryneform bacterium imparted with the ability to produce the target protein. Bacteria are obtained. By culturing this coryneform bacterium, a method for efficiently producing the target protein is provided.
[0048] 参考文献 [0048] References
1.米国特許第 4965197号  1.US Patent No. 4965197
2.特表平 6-502548号公報  2.Special Table No. 6-502548
3.特開平 11-169182号公報 4.国際公開第 02/81694号パンフレット 3. JP 11-169182 A 4. International Publication No. 02/81694 Pamphlet
5.国際公開第 05/103278号パンフレット  5.International Publication No. 05/103278 Pamphlet
6.国際公開第 05/007880号パンフレット  6. International Publication No. 05/007880 Pamphlet
( . Liebl W, Smskey AJ, Schleirer KH、 Expression, secretion, and processing of sta phylococcal nuclease by Corynebacterium glutamicum Λ J. Bacteriology (1992), 174, 1 854-1861 (. Liebl W, Smskey AJ, Schleirer KH, Expression, secretion, and processing of sta phylococcal nuclease by Corynebacterium glutamicum Λ J. Bacteriology (1992), 174, 1 854-1861
8. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A、 Expression and seer etion of heterologous proteases by Corynebacterium glutamicum^ Applied Envirome ntal Microbiology, (1995),61, 1610—1613  8. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A, Expression and seer etion of heterologous proteases by Corynebacterium glutamicum ^ Applied Environmental Microbiology, (1995), 61, 1610-1616
9. Salim K, Haedens V, Content J, Leblon G, Huygen K、 Heterologous expression o f the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium gl utamicum、 Applied Enviromental Microbiology, (1997),63, 4392 - 4400  9. Salim K, Haedens V, Content J, Leblon G, Huygen K, Heterologous expression of the mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum, Applied Environmental Microbiology, (1997), 63, 4392-4400
10. Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H、 Secretion of active-fo rm Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum : rocessing of the pro-transglutaminase by a cosecreted subtilisin-Like protease fr om Streptomyces albogriseolus、 Applied Enviromental Microbiology, (2003), 69, 358- 366  10. Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H, Secretion of active-fo rm Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: rocessing of the pro-transglutaminase by a cosecreted subtilisin-Like protease fr om Streptomyces albogrisetalus, Applied Enviromen Microbiology, (2003), 69, 358- 366
11. Brigitte Boitel, Miguel〇rtiz_Lombardia, Rosario Duran, Frederique Pompeo, S tewart T. Cole, Carlos Cervenansky and Pedro M. Alzari、 PknB kinase activity is re gulated by phosphorylation in two Thr residues and dephosphorylatin by PstP, the c ognate phospho-Ser/Thr phosphatase, in Miycobacterium tubeculosis^ Molecular Mi crobiology, (2003), 49(6), 1493-1508  11. Brigitte Boitel, Miguel〇rtiz_Lombardia, Rosario Duran, Frederique Pompeo, S tewart T. Cole, Carlos Cervenansky and Pedro M. Alzari, PknB kinase activity is re gulated by phosphorylation in two Thr residues and dephosphorylatin by PstP, the c ognate phospho -Ser / Thr phosphatase, in Miycobacterium tubeculosis ^ Molecular Mi crobiology, (2003), 49 (6), 1493-1508
12. Puneet Chopra, Bhuminder Singh, Ramandeep Singh, Reena Vohra, Anil Koul, L axman S. Meena, Harshavardhan Koduri, Megha Ghildiyal, Parampal Deol, Taposh K . Das, Anil K. Tyagi, and Yogendra Singh、 Phosphoprotein phosphatase of Mycobact erium tubeculosis dephosphorylates serine-threonine kinases PknA and PknB、 Bioch emical and Biophysical Research Communications, 311, (2003), 112-120.  12. Puneet Chopra, Bhuminder Singh, Ramandeep Singh, Reena Vohra, Anil Koul, L axman S. Meena, Harshavardhan Koduri, Megha Ghildiyal, Parampal Deol, Taposh K. Das, Anil K. Tyagi, and Yogendra Singh, Phosphoprotein Mycophosbact erium tubeculosis dephosphorylates serine-threonine kinases PknA and PknB, Biochemical and Biophysical Research Communications, 311, (2003), 112-120.
図面の簡単な説明 [図 l]Sec系分泌シグナル配列を利用した場合における C.glutamicum ATCC13869、 および YDK010によるプロトランスダルタミナーゼの分泌生産量におよぼす pstP増幅 の効果を示す。レーン 1、 2 (ATCC13869/pPKSPTGl)、 5および 6 (YDKOlO/pPKSP TGI)が pstP非増幅株、レーン 3, 4 (ATCC13869/pPKSPTGl)、 7および 8 (YDK010/ pPKSPTGl)が pstP増幅株におけるプロトランスダルタミナーゼの生産をそれぞれ表 す。 Brief Description of Drawings [Fig. 1] shows the effect of pstP amplification on secretory production of protransdaltaminase by C. glutamicum ATCC13869 and YDK010 when Sec secretion signal sequence is used. Lanes 1 and 2 (ATCC13869 / pPKSPTGl), 5 and 6 (YDKOlO / pPKSP TGI) are pstP non-amplified strains, lanes 3 and 4 (ATCC13869 / pPKSPTGl), 7 and 8 (YDK010 / pPKSPTGl) are pstP amplified strains. Each represents the production of dartaminase.
[図 2]Tat系分泌シグナル配列を利用した場合における C.glutamicum ATCC13869よ るプロ構造付きプロティングルタミナーゼの分泌生産量におよぼす pstP増幅の効果 を示す。レーン 1および 2が pstP非増幅株(ATCC13869/pPKT- PPG)、レーン 3およ び 4が pstP増幅株(ATCC13869/pPKT_PPG)におけるプロティングルタミナ一ゼの生 産をそれぞれ表す。  FIG. 2 shows the effect of pstP amplification on the secretory production of pro-structured plotting glutaminase produced by C. glutamicum ATCC13869 when a Tat secretion signal sequence is used. Lanes 1 and 2 represent the production of plotting taminaminase in the pstP non-amplified strain (ATCC13869 / pPKT-PPG) and lanes 3 and 4 represent the pstP amplified strain (ATCC13869 / pPKT_PPG), respectively.
[図 3]C. glutamicum ATCC13032、 C. glutamicum ATCC13869、および C. efficiens Y S-314の pstPによってコードされるセリン/スレオニンフォスファターゼのアミノ酸配列 のアラインメント。 は 3種において同一である箇所を示し、 "· "は ATCC13032と A TCC13869とでは同一だ力 YS-314では異なっているアミノ酸の位置を示す。  [FIG. 3] Alignment of amino acid sequences of serine / threonine phosphatase encoded by pstP of C. glutamicum ATCC13032, C. glutamicum ATCC13869, and C. efficiens Y S-314. Indicates the same position in the three species, and “·” indicates the position of the amino acid that is the same in ATCC13032 and ATCC13869 but different in the force YS-314.

Claims

請求の範囲 The scope of the claims
[1] セリン/スレオニンフォスファターゼ活性が増強するように改変され、かつ、 目的タ ンパク質の分泌生産能が付与されたコリネ型細菌を培養し、分泌された前記目的タ ンパク質を回収することを含む、 目的タンパク質の製造方法。  [1] Cultivation of a coryneform bacterium modified so that serine / threonine phosphatase activity is enhanced and imparted with the ability to produce the target protein, and recovering the secreted target protein A method for producing a target protein.
[2] セリン/スレオニンフォスファターゼが pstPによってコードされる、請求項 1記載の方 法。  [2] The method of claim 1, wherein the serine / threonine phosphatase is encoded by pstP.
[3] セリン/スレオニンフォスファターゼ活性力 pstPの発現増加により増強されるもの である、請求項 1記載の方法。  [3] The method according to claim 1, which is enhanced by increased expression of serine / threonine phosphatase activity pstP.
[4] セリン/スレオニンフォスファターゼ活性力 pstPのコピー数の増加により増強され るものである、請求項 1記載の方法。 [4] The method according to claim 1, wherein the serine / threonine phosphatase activity is enhanced by an increase in the copy number of pstP.
[5] セリン/スレオニンフォスファターゼ活性力 pstPの発現制御領域を修飾することに より増強されるものである、請求項 1記載の方法。 [5] The method according to claim 1, wherein the serine / threonine phosphatase activity is enhanced by modifying an expression control region of pstP.
[6] 目的タンパク質がトランスグルタミナーゼ、プロティングルタミナーゼ、インターフエ口 ン、インターロイキン、インスリン、 IGF—1及びペプチド合成酵素からなる群より選択 されるタンパク質である請求項 1〜5のいずれ力 1項記載の方法。 6. The target protein according to any one of claims 1 to 5, wherein the target protein is a protein selected from the group consisting of transglutaminase, plotting glutaminase, interferon, interleukin, insulin, IGF-1 and peptide synthase. the method of.
[7] pstPが、セリン/スレオニンフォスファターゼ活性が増強するように改変されるコリネ 型細菌に由来する遺伝子である、請求項:!〜 6のいずれか 1項記載の方法。 [7] The method according to any one of [6] to [6], wherein pstP is a gene derived from a coryneform bacterium modified so that serine / threonine phosphatase activity is enhanced.
[8] pstPが配列番号 2または 4記載の配列と少なくとも 70%の相同性を有するアミノ酸 配列を有し、セリン/スレオニンフォスファターゼ活性を有するタンパク質をコードす る遺伝子である、請求項:!〜 6のいずれか 1項記載の方法。 [8] The pstP is a gene encoding a protein having an amino acid sequence having at least 70% homology with the sequence of SEQ ID NO: 2 or 4, and having a serine / threonine phosphatase activity: The method according to any one of the above.
[9] pstPが配列番号 1または 3記載の配列を有する核酸分子とストリンジェントな条件で ハイブリダィズする核酸分子の配列を有する、請求項 1〜6のいずれ力 4項記載の方 法。 [9] The method according to any one of claims 1 to 6, wherein pstP has a sequence of a nucleic acid molecule that hybridizes under stringent conditions with a nucleic acid molecule having the sequence of SEQ ID NO: 1 or 3.
PCT/JP2007/061699 2006-06-30 2007-06-11 Method for production of protein WO2008001597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522388A JPWO2008001597A1 (en) 2006-06-30 2007-06-11 Protein production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-180965 2006-06-30
JP2006180965 2006-06-30
US80761906P 2006-07-18 2006-07-18
US60/807,619 2006-07-18

Publications (1)

Publication Number Publication Date
WO2008001597A1 true WO2008001597A1 (en) 2008-01-03

Family

ID=38845365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061699 WO2008001597A1 (en) 2006-06-30 2007-06-11 Method for production of protein

Country Status (1)

Country Link
WO (1) WO2008001597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156152A1 (en) * 2018-02-08 2019-08-15 GreenEarthInstitute株式会社 Nucleic acid including arabinose-dependent gene expression control sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050153402A1 (en) * 1999-06-25 2005-07-14 Basf Ag Corynebacterium glutamicum genes encoding regulatory proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050153402A1 (en) * 1999-06-25 2005-07-14 Basf Ag Corynebacterium glutamicum genes encoding regulatory proteins

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AV-GAY Y. ET AL.: "The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis", TRENDS MICROBIOL., vol. 8, 2000, pages 238 - 244, XP002191211, DOI: doi:10.1016/S0966-842X(00)01734-0 *
BOITEL B. ET AL.: "PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis", MOL. MICROBIOL., vol. 49, 2003, pages 1493 - 1508, XP002306392, DOI: doi:10.1046/j.1365-2958.2003.03657.x *
CHOPRA P. ET AL.: "Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB", BIOCHEM BIOPHYS RES COMMUN., vol. 311, 2003, pages 112 - 120, XP004465111, DOI: doi:10.1016/j.bbrc.2003.09.173 *
GREENSTEIN A.E. ET AL.: "Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis", J MOL MICROBIOL BIOTECHNOL, vol. 9, 2005, pages 167 - 181 *
MOLLE V. ET AL.: "The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by psosphorylation", J BIOL CHEM, vol. 281, 2006, pages 30094 - 30103 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156152A1 (en) * 2018-02-08 2019-08-15 GreenEarthInstitute株式会社 Nucleic acid including arabinose-dependent gene expression control sequence
JPWO2019156152A1 (en) * 2018-02-08 2021-02-12 GreenEarthInstitute株式会社 Nucleic acid containing arabinose-dependent gene expression control sequence
JP7374475B2 (en) 2018-02-08 2023-11-07 GreenEarthInstitute株式会社 Nucleic acid containing an arabinose-dependent gene expression control sequence

Similar Documents

Publication Publication Date Title
JP5088136B2 (en) Method for producing succinic acid
JP4730302B2 (en) Protein production method
US10538798B2 (en) Method for secretory production of protein
JP6569662B2 (en) Novel protein deamidase
JP6136930B2 (en) Protein secretory production
EP2149607B1 (en) Method for production of succinic acid
US9376701B2 (en) Method for secretory production of protein
JP2012165765A (en) L-glutamic acid-producing microorganism and method for producing l-glutamic acid
JP5343303B2 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP6582997B2 (en) Method for producing mutant glutamate-cysteine ligase and γ-glutamylvalylglycine
TW201712117A (en) Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
JPWO2007024010A1 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
WO2015133547A1 (en) γ-GLUTAMYL-VALINE SYNTHASE, AND METHOD FOR PRODUCING γ-GLUTAMYL-VALYL-GLYCINE
WO2008001597A1 (en) Method for production of protein
JP2017046673A (en) γ-GLUTAMYLVALINE SYNTHETASE AND METHOD FOR PRODUCING γ-GLUTAMYLVALYLGLYCINE
WO2021177392A1 (en) Mutant transglutaminase
JPWO2008001597A1 (en) Protein production method
JP2024052995A (en) How vanillin is produced
CN115851802A (en) Construction method of glutamic acid high-producing strain and application of glutamic acid high-producing strain in glutamic acid production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522388

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07744991

Country of ref document: EP

Kind code of ref document: A1