WO2008001591A1 - Nucleus particle for layering and method for producing the same - Google Patents

Nucleus particle for layering and method for producing the same Download PDF

Info

Publication number
WO2008001591A1
WO2008001591A1 PCT/JP2007/061541 JP2007061541W WO2008001591A1 WO 2008001591 A1 WO2008001591 A1 WO 2008001591A1 JP 2007061541 W JP2007061541 W JP 2007061541W WO 2008001591 A1 WO2008001591 A1 WO 2008001591A1
Authority
WO
WIPO (PCT)
Prior art keywords
layering
core
core particle
coating layer
particles
Prior art date
Application number
PCT/JP2007/061541
Other languages
French (fr)
Japanese (ja)
Inventor
Narimichi Takei
Takeshi Honma
Ikuo Tanai
Terumi Takahashi
Original Assignee
Freund Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freund Corporation filed Critical Freund Corporation
Publication of WO2008001591A1 publication Critical patent/WO2008001591A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug

Definitions

  • the present invention relates to a core particle for layering for coating an active ingredient (drug) on its surface and a method for producing the same.
  • DDS Drug Delivery System
  • release control release control
  • the active ingredient is coated on the surface of core particles for layering (for example, “Nonparel (registered trademark)” manufactured by Freund Sangyo Co., Ltd.).
  • core particles for layering for example, “Nonparel (registered trademark)” manufactured by Freund Sangyo Co., Ltd.
  • Nonparel registered trademark
  • a film base material that has been further coated according to the purpose see, for example, Patent Document 1 or a hard capsule filled is known.
  • the core particle for layering is usually composed of a component that does not contain an active component, that is, a component that is an inactive component, and serves as a central core (hereinafter referred to as a central core particle).
  • a central core particle a component that does not contain an active component, that is, a component that is an inactive component, and serves as a central core.
  • the powder that is the main component of the core particles for layering is supplied thereto, and the granulation is performed by spraying a liquid for wetting the central core particles and the powder. Then, it is manufactured by a method of drying the granulated particles.
  • sugars such as sucrose and lactose
  • sugar alcohols such as xylitol and mannitol
  • crystalline cellulose and z or powdered cellulose As the main component of the core particle for layering, sugars such as sucrose and lactose; sugar alcohols such as xylitol and mannitol; crystalline cellulose and z or powdered cellulose; starches such as corn starch are often used.
  • layering core particles mainly composed of crystalline cellulose are preferable in that they have little reactivity with active ingredients having high hardness.
  • such layering core particles are water-insoluble and have high moisture absorption, so that the active ingredient is layered on the surface of the layering core particle while keeping the surface of the core layer wet with water. It was difficult to do, but there was also a problem with layering. If layering is difficult, it will not be possible to efficiently layer to the target active ingredient content, and in this case also, the recovery rate of drug particles with the target particle size will decrease.
  • the present invention has been made in view of the above circumstances, and it is possible to satisfactorily layer a wide variety of active ingredients on the surface, and to obtain layered drug particles having a desired particle size at a high recovery rate. It is an object to provide a nuclear particle for layering that can be performed.
  • the layering core particle according to the first aspect of the present invention is a layering core particle composed of a non-active component and having an active component coated on the surface thereof, the saccharide being a main component. Core particles, and a coating layer formed on the surface of the core particles.
  • the saccharide is preferably at least one selected from the group consisting of sugar, sugar alcohol, starches, powdered cellulose, and crystalline cellulose.
  • the coating layer preferably contains a polymer compound as a main component.
  • a cellulose derivative is suitable as the polymer compound.
  • the coating layer is preferably formed by spraying a coating layer forming component-containing liquid.
  • FIG. 1 is a cross-sectional view showing an example of a layering core particle of the present invention.
  • FIG. 2 is a cross-sectional view showing the main part of an example of a centrifugal tumbling granulator used in the production method of the present invention.
  • the layering core particle of the present invention is for coating the surface with an active ingredient, and is suitably used, for example, in the field of sustained-release preparations.
  • the core particle for layering itself is a component that does not contain an active ingredient, that is, an inactive ingredient, and is formed on the core particle 11 having a saccharide as a main component and the surface of the core particle 11 as shown in FIG. It has a coating layer 12.
  • reference numeral 10 denotes a nuclear particle for layering.
  • the saccharides that are the main components of the core particles 11 include sugars, sugar alcohols, starches, powdered cellulose, crystalline cellulose, and the like that are commonly used as pharmaceutical or food additives. One or more of these can be used.
  • the main component refers to a component that occupies 50% by mass or more of the whole.
  • Sugars include sugars such as sucrose, sucrose, lactose, glucose, fructose and maltose; sugar alcohols such as xylitol, sorbitol, mannitol, maltitol, ratitol and erythritol; starches such as corn starch, rice starch and dextrin; powder Examples include cellulose and crystalline cellulose.
  • cores are sugars that are reactive with some of the active ingredients and do not exhibit sufficient hardness, and crystalline cellulose that has high moisture absorption and insufficient active ingredient layering. In the case where it is the main component of the particle 11, as will be described in detail later, the effect of forming the coating layer 12 is particularly effective.
  • the particle size of the core particle 11 is not particularly limited, but it is preferable that the particle size (sieving method) is:! To 2000 / im.
  • the polymer compound may be either a natural polymer compound or a synthetic polymer compound.
  • Preferred examples include cellulose derivatives such as nate, ethylcellulose, methinorescenellose, canoleboxi chinenorescenellose, hydroxyethinorescenellose, and cellulose acetate phthalate.
  • acrylic polymers such as amino alkyl methacrylate copolymers and methacrylic acid copolymers
  • corn starch alpha starch, partially alpha starch, starch such as hydroxypropyl starch, dextrin and pullulan
  • polyvinyl alcohol poly Butyl acetate phthalate
  • polybutyl pyrrolidone polybutyl pyrrolidone
  • gum arabic powder sodium alginate, agar, gelatin, xanthan gum, hemicellulose, shellac, zein, polyoxyethylene polyoxypropylene glycol, carboxybutyl polymer, acetoacetate
  • examples include roulose and yeast extract.
  • the active ingredient layered on the surface of the layering core particle 10 and the core particle 11 do not come into direct contact with each other. Therefore, even when there is reactivity between the core particle 11 and the active ingredient to be layered, the reaction is suppressed. Even when it is a main component, a wide variety of active ingredients can be layered without restriction.
  • the core particle 10 for layering with higher hardness can be obtained in addition to the above-described effects.
  • the core particle 10 for layering with high hardness is also suitable from the viewpoint of a modification with less damage and wear.
  • the coating layer 12 when such a coating layer 12 is provided, when the main component of the core particle 11 is moistened with moisture and is blocking sucrose, the penetration of moisture into the core particle 11 can be reduced, and blocking during layering can be achieved. Can be suppressed. Since the blocking particles generated by blocking are removed by sieving or the like, if blocking occurs, the recovery rate of drug particles having the intended particle size will eventually decrease. Such problems can also be avoided. On the other hand, even when the main component of the core particle 11 is crystalline cellulose having a high water absorbability, by providing the coating layer 12 in this manner, the water absorbability is reduced and an appropriate wettability can be maintained, thereby improving efficiency. Layering progresses. When the layering progresses efficiently, the drug particles with a small particle size due to the difficulty of the layering decrease, and the recovery rate of the drug particle with the target particle size is improved.
  • the above-described polymer compound as the main component of the coating layer 12 in terms of obtaining such an effect, and cellulose derivatives are preferable.
  • the main component of the coating layer 12 is a cellulose derivative, it is easy to obtain layering core particles 10 with higher hardness, which is also preferable.
  • the ratio of the cellulose derivative in the coating layer 12 is 80% by mass or more, and more preferably 90% by mass or more.
  • the upper limit of the ratio of the cellulose derivative in the coating layer 12 is preferably 100% by mass or less.
  • the coating layer 12 may contain an additive such as a colorant such as a pigment or a plasticizer for enhancing the film forming property.
  • an additive such as a colorant such as a pigment or a plasticizer for enhancing the film forming property.
  • some additives have reactivity with active ingredients. Care must be taken when using plasticizers in particular. It is preferable to use a plasticizer as much as possible.
  • examples of sugar alcohols that may be formed of the sugar alcohol as the main component of the coating layer 12 include xylitol, erythritol, and mannitol.
  • examples of sugar alcohols include xylitol, erythritol, and mannitol.
  • D-mannitol having no Maillard reaction with an active ingredient having an amino group is particularly suitable.
  • the thickness of the coating layer 12 is not particularly limited. However, when the mass of the core particle 11 is 100%, the thickness of the coating layer 12 is preferably in the range of 0.5 to 200%. Masle.
  • the layering core particle 10 as described above includes a core particle manufacturing process for manufacturing a core particle 11 mainly composed of a saccharide, and a coating layer for forming a coating layer 12 on the surface of the manufactured core particle 11.
  • the core particle manufacturing process can be performed by a centrifugal tumbling granulator 20 as shown in FIG. 2, for example.
  • the centrifugal rolling granulator 20 of FIG. 2 includes a centrifugal rolling chamber 21 that granulates while rolling powder.
  • the centrifugal rolling chamber 21 has a cylindrical fixed wall 22 disposed so that its axis is in the vertical direction, and is disposed inside the fixed wall 22 and is spaced from the inner wall of the fixed wall 22 with a predetermined tarance.
  • a circular rotating plate 23 that rotates in the horizontal direction about the central axis 24, and by rolling the powder on the rotating plate 23, this powder is formed into spherical core particles 11. It is something to granulate.
  • the rotating dish 23 has a shape in which the peripheral edge is gradually inclined upward, and the powder can be uniformly rolled thereon.
  • thermometer such as a thermocouple (not shown) is installed so that the particle temperature can be measured.
  • the centrifugal rolling chamber 21 is provided with a powder supply pipe (powder supply device) 25 so that the raw material powder of the core particles 11 can be dispersed.
  • the centrifugal rolling chamber 21 is also provided with a spray device 26, and a liquid for promoting the aggregation of the powder or a liquid containing a component that acts as a binder is contained in the centrifugal rolling chamber 21 as necessary.
  • Can spray Further, in this example, an air chamber 27 is formed below the rotating dish 23, and a compressed air supply pipe 28 is connected to the air chamber 27, and compressed air is supplied into the air chamber 27 from the compressed air supply pipe 28.
  • slit air High-pressure air
  • the size of the powder to be introduced is not particularly limited, but those having an average particle size of:! To 100 zm are preferred, and more preferably 10 to 50 zm.
  • Examples of the liquid to be sprayed include water, alcohol, and the like, and the granulated powders agglomerate with each other when they come into contact with the liquid and become wet. In the case of a product, such spraying of the liquid for spraying is effective.
  • a solution in which a component that acts as a binder between powders is dissolved or dispersed in water can be suitably used.
  • Such components include sugar derivatives such as sugar, sugar alcohol, crystalline cellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose acetate succinate, starches, polyvinylpyrrolidone, poly (meth) acrylic acid and Examples thereof include esters, polyvinyl alcohol and derivatives thereof, and polyoxyethylene hydrogenated castor oil.
  • These components may be used alone or in combination of two or more, but are particularly selected from the group consisting of sugar, sugar alcohol, starches, crystalline cellulose, hydroxypropyl cellulose, and polyvinylpyrrolidone.
  • (meth) attalinoleic acid means one or both of acrylic acid in which a hydrogen atom is bonded to the primary position and methacrylic acid in which a methyl group is bonded to the primary position.
  • the asterisk (the carbon atom at the arbor) is a carbon atom to which a carbonyl group is bonded.
  • the powder in the core particle manufacturing process, can be granulated in the presence of the central core particle.
  • the central core particles are charged into the centrifugal rolling chamber 21, and then the rotating dish 23 is rotated while introducing the slit chamber into the centrifugal rolling chamber 21.
  • the spraying liquid is sprayed from the spray device 16, and the powder and / or the core particles are granulated while being wetted. .
  • Preferable central core particles include granulated sugar and secondary particles in which saccharide powder is associated.
  • the secondary particles associated with the saccharide powder are those obtained by previously moistening the primary particles of the saccharide powder and mixing and associating with some pressure.
  • the size and shape of the central core particles can be selected as appropriate, but those having a particle diameter measured by a sieving method in the range of 50 to 1000 ⁇ m are preferred.
  • the amount of the central core particles to be used can be appropriately set, but is usually in the range of 50 to 1000 parts by mass with respect to 100 parts by mass of the powder supplied from the powder supply pipe 25.
  • the undried wet particles are taken out from the centrifugal tumbling granulator 20, and a fluidized bed apparatus (for example, a fluidized bed granulated coating apparatus "Flow coater” manufactured by Freund Sangyo Co., Ltd.)
  • the core particles 11 can be obtained by transferring to the apparatus and drying.
  • the obtained core particles 11 are made to flow with heated air in the fluidized bed apparatus, and the coating layer forming component-containing liquid is sprayed into the fluidized bed apparatus (coating layer forming step), whereby the core It is possible to obtain the layering core particle 10 in which the coating layer 12 is formed on the surface of the particle 11.
  • the method of performing the coating layer forming step in the fluidized bed apparatus is particularly preferable when forming the coating layer 12 mainly composed of a polymer compound, and in such a case, the coating layer forming component-containing liquid is used.
  • the coating layer forming component mainly composed of a polymer compound is dissolved and Z or dispersed in water and Z or alcohol.
  • the concentration of the coating layer forming component in the coating layer forming component-containing liquid is not particularly limited, but the coating layer 12 can be formed more satisfactorily when it is:! To 30% by mass.
  • a coating layer 12 mainly composed of powdered sugar alcohol such as D_mannitol is applied.
  • the obtained core particles 11 are again put into a centrifugal rolling granulation apparatus 20 as shown in FIG.
  • the sugar alcohol is supplied from and sprayed with a spraying liquid selected from the examples exemplified above.
  • unwet wet particles are taken out from the centrifugal tumbling granulator 20, transferred to another drying device such as a fluidized bed device, and dried, whereby sugar alcohol is mainly contained on the surface of the core particles 11.
  • the core particle 10 for layering in which the coating layer 12 is formed can be obtained.
  • the coating layer 12 can be formed by a centrifugal rolling granulation coating apparatus (for example, “CF Durayuratori”, “Daranyu” manufactured by Freund Sangyo Co., Ltd.). Rex "etc.) and a composite granulation coating apparatus (for example,” Spiraflow "manufactured by Freund Sangyo Co., Ltd.) can be used.
  • a centrifugal rolling granulation coating apparatus for example, “CF Durayuratori”, “Daranyu” manufactured by Freund Sangyo Co., Ltd.). Rex "etc.)
  • a composite granulation coating apparatus for example, Spiraflow "manufactured by Freund Sangyo Co., Ltd.
  • the particles in 1 can be irradiated with microwaves.
  • the core particle manufacturing process and the coating layer forming process can be performed continuously in one apparatus, and no transfer work is required. Produces core particles 10 for layering.
  • the core particles 11 are produced in a centrifugal tumbling granulator equipped with microwave introduction means, and then the granulated core particles 11 are dried while being irradiated with microwaves.
  • a coating layer 12 is formed on the core particle 11.
  • the layering core particle 10 thus produced has an active component coated on its surface.
  • the active ingredient coating is applied by centrifugal rolling granulation coating equipment (for example, “Freund Sangyo Co., Ltd.”
  • Fluidized bed granulation coating equipment for example, “Flow Coater” manufactured by Freund Corporation.
  • a composite granulation coating apparatus for example, “Spiraflow” manufactured by Freund Corporation) or the like.
  • Such layering core particle 10 is obtained by forming a covering layer 12 on the surface of a core particle 11 containing saccharides as a main component, and includes a core particle 11 and an active ingredient to be coated. A covering layer 12 is interposed between them. Therefore, a wide variety of active ingredients can be satisfactorily layered on the surface without being limited by the reactivity with the core particle 11.
  • Active ingredients include, for example, hypnosis, sedative, antipyretic analgesic / anti-inflammatory agent, neuropsychiatric agent, autonomic nerve agent, anti-parkinsonian agent, antihistamine, cardiotonic agent, diuretic agent, antihypertensive agent, vasoconstrictor, arteriosclerotic agent Antitussive expectorant, vitamins, nourishing tonics, antibiotics, gastrointestinal drugs, etc.
  • the core particle 10 for layering is also excellent in layering properties (blocking suppression, layering efficiency), it is possible to obtain drug particles having a target particle size with a high recovery rate.
  • the core particle 10 for layering can be provided with high hardness and low damage and wear during layering.
  • the centrifugal rolling chamber 21 of the centrifugal rolling granulator 20 shown in Fig. 2 1.5 kg of granulated sugar with a particle size (sieving method) of 20 0 to 300 111 is charged as the core particle, and slit air is supplied.
  • the rotating pan 23 was rotated at 160 rpm.
  • 3 kg of a mixed powder composed of 60% by mass of refined sucrose powder having an average particle size of 10 ⁇ m and 40% by mass of corn starch is supplied from the powder supply tube 25 into the centrifugal rolling chamber 21, and a 5% by mass hydroxypropylmethyl cell.
  • aqueous solution of sucrose is sprayed from the spray device 26 into the centrifugal rolling chamber 21 and granulated, and then the wet particles obtained are mixed with a fluidized bed granulation coating device (“flow coater type 5”, “ (Freund Sangyo Co., Ltd.) and set in this fluidized bed equipment at 90 ° C.
  • the specified heated air was introduced and dried until the temperature of the particles reached 60 ° C.
  • the granulated product was sieved to 355-500 ⁇ m to make the core particle (1).
  • Granulation was performed in the same manner as in Core Particle Production Example 1 except that 3 kg of purified sucrose powder having an average particle size of 10 zm was used as the powder supplied from the powder supply pipe 25 instead of the mixed powder.
  • the resulting undried wet particles were transferred into a fluidized bed granulation coating device (“Flow Coater Type 1-5”, manufactured by Freund Corporation) and installed in this fluidized bed device at 80 ° C. Introduced heated air was introduced and dried until the particle temperature reached 50 ° C. The granulated product obtained by further IJing to 355 to 500 ⁇ m was used as the core particle (2).
  • the resulting undried wet particles were transferred into a fluidized bed granulation coating device (“Flow coater 1-5”, manufactured by Freund Sangyo Co., Ltd.) and dried in the same manner as in Core Particle Production Example 2. did.
  • the granulated product was sieved to 355 to 500 ⁇ m to obtain core particles (3).
  • the obtained core particles for layering (1) are sieved to a particle size of 355-500 xm, and about 10 g is precisely weighed (Wt) and placed in a stainless steel cylindrical container with an inner diameter of 32 mm and a depth of 65 mm.
  • the mixture was shaken with a mixer mill (SPEX) for 10 minutes. After shaking, mesh opening 300 ⁇
  • the fine powder was removed by transferring to a sieve of m (No. 50), and the residue (Ws) on the sieve was precisely weighed, and the friability was obtained by the following formula (i).
  • the friability of the core particles for normal layering is preferably 1.0% or less, more preferably 0.3% or less. Therefore, in this evaluation, the friability is less than 0.3% as A, 0.3 or more and less than 1.0% as B, and 1.0% or more as C, and the results are shown in Table 1.
  • Friction (%) (Wt-Ws) / Wt X 100 ⁇ ⁇ ⁇ (i)
  • the obtained core particles for layering (1) are sieved to a particle size of 355 to 500 xm, and 1 kg is weighed and charged into the centrifugal rolling chamber 21 of the centrifugal rolling granulator 20 shown in FIG. Then, the rotating plate 23 was rotated at 160 rpm while supplying slits. Next, lkg of aminophylline with an average particle size of 15 zm is supplied as an active ingredient from the powder supply pipe 25 into the centrifugal rolling chamber 21 and a 2% by mass 1!? 1 ⁇ ⁇ aqueous solution is supplied from the spray device 26 to the centrifugal rolling chamber 21. Sprayed inside to obtain undried drug particles layered with the active ingredient.
  • the undried drug particles are transferred into a fluidized bed granulation coating device (“Flow Coater Type 5”, manufactured by Freund Corporation) and heated to 50 ° C. in the fluidized bed device. Air was introduced and dried until the particle temperature reached 40 ° C.
  • Flow Coater Type 5 manufactured by Freund Corporation
  • a core particle for layering (2) was obtained and evaluated in the same manner as in Example 1 except that the core particle (2) was used instead of the core particle (1). The results are shown in Table 1. [0035] [Example 3]
  • a core particle for layering (3) was obtained and evaluated in the same manner as in Example 1 except that the core particle (3) was used instead of the core particle (1). The results are shown in Table 1.
  • a core particle for layering (5) was obtained and evaluated in the same manner as in Example 4 except that the core particle (2) was used instead of the core particle (1). The results are shown in Table 1.
  • the core particles for layering in each Example in which a coating layer was formed on the surface of the core particles were excellent in layering properties, and drug particles with the desired particle size were obtained with a high recovery rate. It was.
  • a coating layer is formed. Therefore, it was shown that discoloration due to a reaction with a small color difference change rate was suppressed.
  • the coating layer was formed from HPMC, a cellulose derivative, layering core particles with high hardness and low friability were obtained.
  • a 5 mass% HPMC aqueous solution was sprayed from the spray device 26 while continuously irradiating microwaves to form a coating layer.
  • the amount of spraying was set so that the amount of HPMC was 3/100 of the mass of the core particles.
  • Example 7 the core particles and the coating layer could be dried in a shorter time than Example 1, which was efficient.
  • the present invention is extremely useful industrially because it can provide layered core particles that can satisfactorily layer a wide variety of active ingredients on the surface and obtain layered drug particles with a high recovery rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Glanulating (AREA)

Abstract

Disclosed is a nucleus particle for layering which is composed of a non-active component. The surface of the nucleus particle for layering is covered with an active component. The nucleus particle for layering has a core particle mainly composed of a sugar and a covering layer formed on the surface of the core particle. In particular, a high effect can be achieved by having the covering layer mainly composed of a polymer compound such as a cellulose derivative.

Description

明 細 書  Specification
レイヤリング用核粒子とその製造方法  Core particle for layering and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、表面に活性成分 (薬物)が被覆されるためのレイヤリング用核粒子とそ の製造方法に関する。  [0001] The present invention relates to a core particle for layering for coating an active ingredient (drug) on its surface and a method for producing the same.
本願は、 2006年 06月 29曰に日本に出願された特願 2006— 179684号に基づく 優先権を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2006-179684 filed in Japan on June 29, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] DDS (Drug Delivery System)において、活性成分の作用部位での活性成分 濃度一時間パターンを最適に保つ手法の 1つとして、 Controlled Release (放出制 御)という手法がある。  [0002] In DDS (Drug Delivery System), there is a technique called Controlled Release (release control) as one of the techniques for optimally maintaining the active ingredient concentration hourly pattern at the site of action of the active ingredient.
このような手法を実現するための徐放性製剤(Controlled Release製剤)としては 、レイヤリング用核粒子 (例えばフロイント産業 (株)製「ノンパレル (登録商標)」)の表 面に活性成分が被覆(レイヤリング)された後、 目的に応じたフィルム基材がさらにコ 一ティングされたもの(例えば特許文献 1参照。)や、ハードカプセルに充填されたも のなどが知られている。  As a sustained-release preparation (Controlled Release preparation) for realizing such a method, the active ingredient is coated on the surface of core particles for layering (for example, “Nonparel (registered trademark)” manufactured by Freund Sangyo Co., Ltd.). (Layered), a film base material that has been further coated according to the purpose (see, for example, Patent Document 1) or a hard capsule filled is known.
[0003] ここでレイヤリング用核粒子は、通常、活性成分を含有しなレ、成分、すなわち非活 性成分からなるものであって、中心核となる粒子(以下、中心核粒子という。)を各種 造粒装置内で転動させておき、そこへレイヤリング用核粒子の主成分となる粉末を供 給するとともに、中心核粒子や粉末を湿潤させるための液体を噴霧して造粒し、つい で、造粒された粒子を乾燥させる方法などにより製造されている。  [0003] Here, the core particle for layering is usually composed of a component that does not contain an active component, that is, a component that is an inactive component, and serves as a central core (hereinafter referred to as a central core particle). Is rolled in various granulators, and the powder that is the main component of the core particles for layering is supplied thereto, and the granulation is performed by spraying a liquid for wetting the central core particles and the powder. Then, it is manufactured by a method of drying the granulated particles.
レイヤリング用核粒子の主成分としては、しょ糖、乳糖などの糖;キシリトール、マン 二トールなどの糖アルコール;結晶セルロースおよび zまたは粉末セルロース;コー ンスターチなどのデンプン類が使用されることが多い。  As the main component of the core particle for layering, sugars such as sucrose and lactose; sugar alcohols such as xylitol and mannitol; crystalline cellulose and z or powdered cellulose; starches such as corn starch are often used.
特許文献 1 :特開 2002— 284674号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-284674
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] し力 ながら、糖のなかには、一部の活性成分との間に反応性 (例えばメイラード反 応)があるものがあり、これを主成分とするレイヤリング用核粒子においては、その表 面にレイヤリングされる活性成分の種類が制限されてしまうという問題があった。また 、糖は比較的機械的強度 (硬度)が低ぐ造粒中の粒子に強いせん断力をかけるとレ イヤリング時に磨耗や破損が生じたり、また、水溶性であるため、粒子同士のブロッキ ングが起こったりしゃすぐレイヤリング性に劣るという問題もあった。また、こうして生 じたブロッキング粒子は篩い分けなどにより除去されてしまうため、結果的に、 目的と した粒径の薬物粒子の回収率が低下してしまう。さらに、レイヤリング時に磨耗や破 損が生じると、それに起因したロスが生じ、レイヤリング時の作業性やコストの点でも 不利であった。 Problems to be solved by the invention [0004] However, some sugars have reactivity (for example, Maillard reaction) with some of the active ingredients. There is a problem that the type of active ingredient layered on the surface is limited. In addition, sugar has a relatively low mechanical strength (hardness). When a strong shearing force is applied to particles during granulation, wear or breakage occurs at the time of layering. There was also a problem that it was inferior and layering was inferior. In addition, the blocking particles thus generated are removed by sieving or the like, and as a result, the recovery rate of the drug particles having a target particle size is lowered. Furthermore, if wear or damage occurs during layering, losses due to the loss occur, which is disadvantageous in terms of workability and cost during layering.
一方、結晶セルロースを主成分とするレイヤリング用核粒子は、硬度が高ぐ活性 成分との反応性もほとんどない点で好適ではある。ところ力 このようなレイヤリング用 核粒子は、水不溶性であり、また、水分の吸収性が高いため、レイヤリング用核粒子 の表面を水分で湿潤状態に保ちつつその表面に活性成分をレイヤリングすることが 難しぐやはりレイヤリング性に問題があった。レイヤリングが難しいと、 目的とする活 性成分の含量まで効率的にレイヤリングできず、この場合にも、 目的とした粒径の薬 物粒子の回収率が低下してしまう。  On the other hand, layering core particles mainly composed of crystalline cellulose are preferable in that they have little reactivity with active ingredients having high hardness. However, such layering core particles are water-insoluble and have high moisture absorption, so that the active ingredient is layered on the surface of the layering core particle while keeping the surface of the core layer wet with water. It was difficult to do, but there was also a problem with layering. If layering is difficult, it will not be possible to efficiently layer to the target active ingredient content, and in this case also, the recovery rate of drug particles with the target particle size will decrease.
[0005] 本発明は上記事情に鑑みてなされたもので、幅広い種類の活性成分を表面に良 好にレイヤリングでき、 目的とした粒径のレイヤリング済み薬物粒子を高い回収率で 得ることのできるレイヤリング用核粒子の提供を課題とする。 [0005] The present invention has been made in view of the above circumstances, and it is possible to satisfactorily layer a wide variety of active ingredients on the surface, and to obtain layered drug particles having a desired particle size at a high recovery rate. It is an object to provide a nuclear particle for layering that can be performed.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは鋭意検討した結果、レイヤリング用核粒子の表面に被覆層を形成す ることによって、上記課題を解決できることを見出し、本発明を完成するに至った。 本発明の第一の態様 (aspect)のレイヤリング用核粒子は、非活性成分からなり、表 面に活性成分が被覆されるためのレイヤリング用核粒子であって、糖類を主成分とす るコア粒子と、前記コア粒子の表面に形成された被覆層を有する。 [0006] As a result of intensive studies, the present inventors have found that the above problem can be solved by forming a coating layer on the surface of the layering core particles, and have completed the present invention. The layering core particle according to the first aspect of the present invention is a layering core particle composed of a non-active component and having an active component coated on the surface thereof, the saccharide being a main component. Core particles, and a coating layer formed on the surface of the core particles.
前記糖類は、糖、糖アルコール、デンプン類、粉末セルロース、結晶セルロースか らなる群より選ばれる 1種以上であることが好ましい。 前記被覆層は、高分子化合物を主成分とすることが好ましい。 The saccharide is preferably at least one selected from the group consisting of sugar, sugar alcohol, starches, powdered cellulose, and crystalline cellulose. The coating layer preferably contains a polymer compound as a main component.
前記高分子化合物としては、セルロース誘導体が好適である。  A cellulose derivative is suitable as the polymer compound.
本発明の第二の態様のレイヤリング用核粒子の製造方法は、非活性成分力 なり、 表面に活性成分が被覆されるためのレイヤリング用核粒子の製造方法であって、糖 類を主成分とするコア粒子を製造するコア粒子製造工程と、前記コア粒子の表面に 、被覆層を形成する被覆層形成工程とを有する。  The method for producing core particles for layering according to the second aspect of the present invention is a method for producing core particles for layering in which the active ingredient is coated on the surface, and the main component is sugar. A core particle production process for producing core particles as components; and a coating layer forming process for forming a coating layer on the surface of the core particles.
また、前記被覆層形成工程においては、被覆層形成成分含有液をスプレーするこ とにより、前記被覆層を形成することが好ましい。  In the coating layer forming step, the coating layer is preferably formed by spraying a coating layer forming component-containing liquid.
発明の効果  The invention's effect
[0007] 本発明によれば、幅広い種類の活性成分を表面に良好にレイヤリングでき、高い回 収率でレイヤリング済み薬物粒子を得ることのできるレイヤリング用核粒子を提供でき る。  [0007] According to the present invention, it is possible to provide core particles for layering that can satisfactorily layer a wide variety of active ingredients on the surface and obtain layered drug particles with a high recovery rate.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明のレイヤリング用核粒子の一例を示す断面図である。  FIG. 1 is a cross-sectional view showing an example of a layering core particle of the present invention.
[図 2]本発明の製造方法で使用される遠心転動造粒装置の一例について、その要部 を示す断面図である。  FIG. 2 is a cross-sectional view showing the main part of an example of a centrifugal tumbling granulator used in the production method of the present invention.
符号の説明  Explanation of symbols
[0009] 10 レイヤリング用核粒子 [0009] 10 Core particles for layering
11 コア粒子  11 core particles
12 被覆層  12 Coating layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のレイヤリング用核粒子は、表面に活性成分が被覆されるためのものであつ て、例えば、徐放性製剤の分野において好適に使用される。レイヤリング用核粒子自 体は、活性成分を含まない成分、すなわち非活性成分力 なり、図 1に示すように、 糖類を主成分とするコア粒子 11と、コア粒子 11の表面に形成された被覆層 12を有 する。図 1中、符号 10は、レイヤリング用核粒子である。 [0011] ここでコア粒子 11の主成分である糖類としては、医薬用または食品用の添加剤とし て通常用いられている糖、糖アルコール、デンプン類、粉末セルロース、結晶セル口 ースなどが挙げられ、これらのうち 1種以上を使用できる。 The layering core particle of the present invention is for coating the surface with an active ingredient, and is suitably used, for example, in the field of sustained-release preparations. The core particle for layering itself is a component that does not contain an active ingredient, that is, an inactive ingredient, and is formed on the core particle 11 having a saccharide as a main component and the surface of the core particle 11 as shown in FIG. It has a coating layer 12. In FIG. 1, reference numeral 10 denotes a nuclear particle for layering. [0011] Here, the saccharides that are the main components of the core particles 11 include sugars, sugar alcohols, starches, powdered cellulose, crystalline cellulose, and the like that are commonly used as pharmaceutical or food additives. One or more of these can be used.
なお、本明細書において主成分とは、全体の 50質量%以上を占める成分のことを いう。  In the present specification, the main component refers to a component that occupies 50% by mass or more of the whole.
糖類としては、しょ糖、白糖、乳糖、ブドウ糖、果糖、麦芽糖などの糖;キシリトール、 ソルビトール、マンニトール、マルチトール、ラタチトール、エリスリトール等の糖アルコ 一ノレ;コーンスターチ、コメデンプン、デキストリンなどのデンプン類;粉末セルロール 、結晶セルロース等が挙げられる。これらのなかでは、一部の活性成分との間に反応 性があるとともに十分な硬度も発現しにくい糖や、水分の吸収性が高く活性成分のレ イヤリング性が不十分である結晶セルロースがコア粒子 11の主成分である場合に、 詳しくは後述するが、被覆層 12を形成することによる効果が特に有効となる。  Sugars include sugars such as sucrose, sucrose, lactose, glucose, fructose and maltose; sugar alcohols such as xylitol, sorbitol, mannitol, maltitol, ratitol and erythritol; starches such as corn starch, rice starch and dextrin; powder Examples include cellulose and crystalline cellulose. Among these, cores are sugars that are reactive with some of the active ingredients and do not exhibit sufficient hardness, and crystalline cellulose that has high moisture absorption and insufficient active ingredient layering. In the case where it is the main component of the particle 11, as will be described in detail later, the effect of forming the coating layer 12 is particularly effective.
コア粒子 11の粒径には特に制限はないが、粒径(篩い分け法)が:!〜 2000 /i mで あることが好ましい。  The particle size of the core particle 11 is not particularly limited, but it is preferable that the particle size (sieving method) is:! To 2000 / im.
[0012] コア粒子 11の表面に形成される被覆層 12は、医薬用または食品用の添加剤として 通常用いられてレ、る高分子化合物を主成分として形成されることが好ましレ、。  [0012] The coating layer 12 formed on the surface of the core particle 11 is preferably formed mainly of a high molecular compound that is usually used as an additive for pharmaceuticals or foods.
高分子化合物としては、天然高分子化合物、合成高分子化合物のいずれでもよく 、具体的には、ヒドロキシプロピルセルロース、低置換度ヒドロキシプロピルセルロース 、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート 、ヒドロキシプロピルメチルセルロースアセテートサクシネート、ェチルセルロース、メ チノレセノレロース、カノレボキシェチノレセノレロース、ヒドロキシェチノレセノレロース、酢酸フ タル酸セルロースなどのセルロース誘導体が好ましく例示できる。その他には、ァミノ アルキルメタクリレートコポリマー、メタクリル酸コポリマーなどのアクリル系ポリマー、ト ゥモロコシデンプン、アルファ一化デンプン、部分アルファ一化デンプン、ヒドロキシ プロピルスターチ、デキストリン、プルランなどのデンプン類、ポリビニルアルコール、 ポリビュルアセテートフタレート、ポリビュルピロリドン、アラビアゴム末、アルギン酸ナ トリウム、カンテン、ゼラチン、キサンタンガム、へミセルロース、セラック、ゼイン、ポリ ォキシエチレンポリオキシプロピレングリコール、カルボキシビュルポリマー、酢酸セ ルロース、酵母抽出物なども挙げられる。 The polymer compound may be either a natural polymer compound or a synthetic polymer compound. Specifically, hydroxypropylcellulose, low-substituted hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succin Preferred examples include cellulose derivatives such as nate, ethylcellulose, methinorescenellose, canoleboxi chinenorescenellose, hydroxyethinorescenellose, and cellulose acetate phthalate. Other examples include acrylic polymers such as amino alkyl methacrylate copolymers and methacrylic acid copolymers, corn starch, alpha starch, partially alpha starch, starch such as hydroxypropyl starch, dextrin and pullulan, polyvinyl alcohol, poly Butyl acetate phthalate, polybutyl pyrrolidone, gum arabic powder, sodium alginate, agar, gelatin, xanthan gum, hemicellulose, shellac, zein, polyoxyethylene polyoxypropylene glycol, carboxybutyl polymer, acetoacetate Examples include roulose and yeast extract.
[0013] このような被覆層 12を設けることによって、レイヤリング用核粒子 10の表面にレイヤ リングされる活性成分とコア粒子 11とは直に接触しなくなる。よって、コア粒子 11とレ イヤリングされる活性成分との間に反応性がある場合でも反応が抑制され、例えば糖 など、一部の活性成分との間に反応性を有するものがコア粒子 11の主成分である場 合でも、幅広い種類の活性成分を制限なくレイヤリングすることができる。  By providing such a coating layer 12, the active ingredient layered on the surface of the layering core particle 10 and the core particle 11 do not come into direct contact with each other. Therefore, even when there is reactivity between the core particle 11 and the active ingredient to be layered, the reaction is suppressed. Even when it is a main component, a wide variety of active ingredients can be layered without restriction.
また、このような被覆層 12を設けると、上述の効果に加えて、より硬度の高いレイヤ リング用核粒子 10を得ることができる。硬度の高いレイヤリング用核粒子 10は破損や 磨耗が少なぐヴァリディションの観点からも好適である。  Further, when such a coating layer 12 is provided, the core particle 10 for layering with higher hardness can be obtained in addition to the above-described effects. The core particle 10 for layering with high hardness is also suitable from the viewpoint of a modification with less damage and wear.
さらに、このような被覆層 12を設けると、コア粒子 11の主成分が水分により湿潤しブ ロッキングしゃすい糖である場合に、水分のコア粒子 11への浸透を低減でき、レイヤ リング時のブロッキングを抑制することができる。ブロッキングで生成したブロッキング 粒子は篩い分けなどにより除去されてしまうため、ブロッキングが発生すると、結果的 に目的とした粒径の薬物粒子の回収率が低下するが、被覆層 12を設けることにより、 このような問題も回避できる。一方、コア粒子 11の主成分が水の吸収性の高い結晶 セルロースである場合でも、このように被覆層 12を設けることによって、水の吸収性が 低減されて適度な湿潤性を維持でき、効率的にレイヤリングが進行するようになる。 効率的にレイヤリングが進行すると、レイヤリングが進行しにくいことによる小粒径の 薬物粒子が少なくなり、 目的とした粒径の薬物粒子の回収率が向上する。  In addition, when such a coating layer 12 is provided, when the main component of the core particle 11 is moistened with moisture and is blocking sucrose, the penetration of moisture into the core particle 11 can be reduced, and blocking during layering can be achieved. Can be suppressed. Since the blocking particles generated by blocking are removed by sieving or the like, if blocking occurs, the recovery rate of drug particles having the intended particle size will eventually decrease. Such problems can also be avoided. On the other hand, even when the main component of the core particle 11 is crystalline cellulose having a high water absorbability, by providing the coating layer 12 in this manner, the water absorbability is reduced and an appropriate wettability can be maintained, thereby improving efficiency. Layering progresses. When the layering progresses efficiently, the drug particles with a small particle size due to the difficulty of the layering decrease, and the recovery rate of the drug particle with the target particle size is improved.
[0014] このような効果がより高く得られる点で、被覆層 12の主成分として、上述した高分子 化合物を選択することが好ましぐなかでもセルロース誘導体が好ましい。被覆層 12 の主成分がセルロース誘導体であると、より硬度の高いレイヤリング用核粒子 10が得 られやすレ、点でも好ましレ、。より好ましレ、被覆層 12中のセルロース誘導体の割合は 8 0質量%以上であり、さらに好ましくは 90質量%以上である。被覆層 12中のセルロー ス誘導体の割合の上限としては、 100質量%以下が好ましい。 [0014] Among these, it is preferable to select the above-described polymer compound as the main component of the coating layer 12 in terms of obtaining such an effect, and cellulose derivatives are preferable. When the main component of the coating layer 12 is a cellulose derivative, it is easy to obtain layering core particles 10 with higher hardness, which is also preferable. More preferably, the ratio of the cellulose derivative in the coating layer 12 is 80% by mass or more, and more preferably 90% by mass or more. The upper limit of the ratio of the cellulose derivative in the coating layer 12 is preferably 100% by mass or less.
なお、被覆層 12には、顔料などの着色剤や、被膜形成性を高めるための可塑剤な どの添加剤が含まれていてもよい。ただ、添加剤の種類によっては、活性成分との反 応性を有するものがある。特に可塑剤においては使用に際して注意が必要であり、 なるべく可塑剤を使用しなレ、ことが好ましレ、。 The coating layer 12 may contain an additive such as a colorant such as a pigment or a plasticizer for enhancing the film forming property. However, some additives have reactivity with active ingredients. Care must be taken when using plasticizers in particular. It is preferable to use a plasticizer as much as possible.
[0015] また、被覆層 12は、糖アルコールを主成分として形成されてもよぐ糖アルコールと しては、例えばキシリトール、エリスリトール、マンニトールなどが例示できる。これらの なかでは、特にアミノ基を有する活性成分とのメイラード反応のない D—マンニトール が好適である。  [0015] In addition, examples of sugar alcohols that may be formed of the sugar alcohol as the main component of the coating layer 12 include xylitol, erythritol, and mannitol. Among these, D-mannitol having no Maillard reaction with an active ingredient having an amino group is particularly suitable.
被覆層 12の厚みには特に制限はなレ、が、コア粒子 11の質量を 100%とした際に、 被覆層 12の質量が 0. 5〜200%となる範囲で形成されることが好ましレ、。  The thickness of the coating layer 12 is not particularly limited. However, when the mass of the core particle 11 is 100%, the thickness of the coating layer 12 is preferably in the range of 0.5 to 200%. Masle.
[0016] このようなレイヤリング用核粒子 10は、糖類を主成分とするコア粒子 11を製造する コア粒子製造工程と、製造されたコア粒子 11の表面に、被覆層 12を形成する被覆 層形成工程とを有する方法により製造でき、コア粒子製造工程は、例えば図 2に示す ような遠心転動造粒装置 20により行える。 [0016] The layering core particle 10 as described above includes a core particle manufacturing process for manufacturing a core particle 11 mainly composed of a saccharide, and a coating layer for forming a coating layer 12 on the surface of the manufactured core particle 11. The core particle manufacturing process can be performed by a centrifugal tumbling granulator 20 as shown in FIG. 2, for example.
図 2の遠心転動造粒装置 20は、粉末を転動させながら造粒する遠心転動室 21を 備えている。この遠心転動室 21は、軸線が鉛直方向となるように配置された円筒状 の固定壁 22と、この固定壁 22の内側に配置され、固定壁 22の内壁と所定のタリァラ ンスをあけつつ、中心軸 24を中心として水平方向に回転する円形の回転皿 23とを 有して構成され、粉末を回転皿 23の上で転動させることにより、この粉末を球形のコ ァ粒子 11に造粒するものである。この例では、回転皿 23は、周縁部が徐々に上方に 傾斜した形状となっていて、その上で粉末を均質に転動させることができるようになつ ている。  The centrifugal rolling granulator 20 of FIG. 2 includes a centrifugal rolling chamber 21 that granulates while rolling powder. The centrifugal rolling chamber 21 has a cylindrical fixed wall 22 disposed so that its axis is in the vertical direction, and is disposed inside the fixed wall 22 and is spaced from the inner wall of the fixed wall 22 with a predetermined tarance. And a circular rotating plate 23 that rotates in the horizontal direction about the central axis 24, and by rolling the powder on the rotating plate 23, this powder is formed into spherical core particles 11. It is something to granulate. In this example, the rotating dish 23 has a shape in which the peripheral edge is gradually inclined upward, and the powder can be uniformly rolled thereon.
また、遠心転動室 21内には、図示略の熱電対などの温度計が設置されていて、粒 子温度を測定できるようになつている。  In the centrifugal rolling chamber 21, a thermometer such as a thermocouple (not shown) is installed so that the particle temperature can be measured.
[0017] 遠心転動室 21には粉末供給管 (粉末供給装置) 25が設けられ、ここ力、らコア粒子 1 1の原料の粉末を散布できるようになつている。また、遠心転動室 21にはスプレー装 置 26も設けられ、粉末の凝集を促すための液体や、バインダーとして作用するような 成分を含む液体などを必要に応じて遠心転動室 21内に噴霧できるようになつている 。さらに、この例では、回転皿 23の下方にはエアチャンバ 27が形成され、さらにこの エアチャンバ 27に圧空供給管 28が接続されていて、このエアチャンバ 27内に圧空 供給管 28から圧縮空気を送り込むことにより、固定壁 22の内壁と回転皿 23との間の クリアランス部分から遠心転動室 21内に高圧の空気(以下、スリットエアという。)が導 入され、粉末の混合循環性がより高められるようになっている。なお、図中符号 29は 、排気口である。 [0017] The centrifugal rolling chamber 21 is provided with a powder supply pipe (powder supply device) 25 so that the raw material powder of the core particles 11 can be dispersed. In addition, the centrifugal rolling chamber 21 is also provided with a spray device 26, and a liquid for promoting the aggregation of the powder or a liquid containing a component that acts as a binder is contained in the centrifugal rolling chamber 21 as necessary. Can spray. Further, in this example, an air chamber 27 is formed below the rotating dish 23, and a compressed air supply pipe 28 is connected to the air chamber 27, and compressed air is supplied into the air chamber 27 from the compressed air supply pipe 28. By feeding in, between the inner wall of the fixed wall 22 and the rotating plate 23 High-pressure air (hereinafter referred to as “slit air”) is introduced from the clearance into the centrifugal rolling chamber 21 to further improve the mixing and circulation of the powder. Reference numeral 29 in the figure denotes an exhaust port.
[0018] この遠心転動造粒装置 20を使用してコア粒子 11を製造するには、まず、粉末を粉 末供給管 25から導入し、回転皿 23を、その直径が 360mm程度のものであれば、例 えば 40〜400rpmで回転させる。そして、スリットエアを遠心転動室 21内に導入しな がら、スプレー装置 26から液体を噴霧して、粉末を湿潤させつつ造粒する。  [0018] In order to produce the core particles 11 using this centrifugal rolling granulator 20, first, powder is introduced from the powder supply pipe 25, and the rotating dish 23 is about 360mm in diameter. For example, rotate at 40-400 rpm. Then, while introducing the slit air into the centrifugal rolling chamber 21, the liquid is sprayed from the spray device 26 and granulated while moistening the powder.
導入する粉末の大きさとしては特に制限はなレ、が、その平均粒子径が:!〜 100 z m であるものが好ましぐより好ましくは 10〜50 z mである。  The size of the powder to be introduced is not particularly limited, but those having an average particle size of:! To 100 zm are preferred, and more preferably 10 to 50 zm.
[0019] ここで噴霧する液体 (以下、噴霧用液体という場合もある。 )としては、水、アルコー ルなどが挙げられ、造粒される粉末が液体と接触して湿潤することにより互いに凝集 するものの場合には、このような噴霧用液体の噴霧が効果的である。  [0019] Examples of the liquid to be sprayed (hereinafter sometimes referred to as a spraying liquid) include water, alcohol, and the like, and the granulated powders agglomerate with each other when they come into contact with the liquid and become wet. In the case of a product, such spraying of the liquid for spraying is effective.
噴霧用液体としては、粉末間のバインダーとして作用するような成分を水に溶解ま たは分散させたものも好適に使用できる。このような成分としては、糖、糖アルコール 、結晶セルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロー ス、ヒドロキシプロピルメチルセルロースアセテートサクシネートなどのセルロース誘導 体、デンプン類、ポリビニルピロリドン、ポリ (メタ)アクリル酸およびそのエステル、ポリビ ニルアルコールおよびその誘導体、ポリオキシエチレン硬化ヒマシ油などが挙げられ る。これらの成分は 1種単独で使用しても 2種以上を組み合わせて使用してもよいが 、特に糖、糖アルコール、デンプン類、結晶セルロース、ヒドロキシプロピルセルロー ス、ポリビニルピロリドンからなる群より選ばれる 1種以上を使用すると、粉末が糖類を 主成分とするものである場合により強いバインダー力が発現し、より硬度の高いコア 粒子 11が得られやすく好ましい。なお、これらの成分の噴霧用液体中の濃度は、そ の成分の種類などに応じて適宜設定すればよい。なお、本明細書において、「(メタ) アタリノレ酸」とは、 ひ位に水素原子が結合したアクリル酸と、 ひ位にメチル基が結合し たメタクリル酸の一方あるいは両方を意味する。 ひ位(ひ位の炭素原子)とは、特に断 りがない限り、カルボニル基が結合している炭素原子のことである。  As the spray liquid, a solution in which a component that acts as a binder between powders is dissolved or dispersed in water can be suitably used. Such components include sugar derivatives such as sugar, sugar alcohol, crystalline cellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose acetate succinate, starches, polyvinylpyrrolidone, poly (meth) acrylic acid and Examples thereof include esters, polyvinyl alcohol and derivatives thereof, and polyoxyethylene hydrogenated castor oil. These components may be used alone or in combination of two or more, but are particularly selected from the group consisting of sugar, sugar alcohol, starches, crystalline cellulose, hydroxypropyl cellulose, and polyvinylpyrrolidone. When one or more types are used, a stronger binder force is exhibited when the powder is mainly composed of saccharides, and core particles 11 with higher hardness are easily obtained, which is preferable. The concentration of these components in the spray liquid may be set as appropriate according to the type of the component. In the present specification, “(meth) attalinoleic acid” means one or both of acrylic acid in which a hydrogen atom is bonded to the primary position and methacrylic acid in which a methyl group is bonded to the primary position. Unless otherwise specified, the asterisk (the carbon atom at the arbor) is a carbon atom to which a carbonyl group is bonded.
[0020] また、コア粒子製造工程では、中心核粒子の存在下で粉末を造粒することもできる その場合には、まず、中心核粒子を遠心転動室 21内に仕込み、その後、スリットェ ァを遠心転動室 21内に導入しながら回転皿 23を回転させる。ついで、粉末供給管 2 5から原料の粉末を遠心転動室 21内に導入しながら、スプレー装置 16から噴霧用液 体を噴霧して、粉末および/または中心核粒子を湿潤させつつ造粒する。このように 中心核粒子を使用することによって、中心核粒子の周囲に粉末が凝集しやすくなり、 より効率的に造粒が行える。 [0020] Further, in the core particle manufacturing process, the powder can be granulated in the presence of the central core particle. In that case, first, the central core particles are charged into the centrifugal rolling chamber 21, and then the rotating dish 23 is rotated while introducing the slit chamber into the centrifugal rolling chamber 21. Next, while introducing the raw material powder into the centrifugal rolling chamber 21 from the powder supply pipe 25, the spraying liquid is sprayed from the spray device 16, and the powder and / or the core particles are granulated while being wetted. . By using the central core particles in this way, the powder tends to aggregate around the central core particles, and granulation can be performed more efficiently.
好ましい中心核粒子としては、グラニュー糖や、糖類粉末を会合させた二次粒子な どが挙げられる。糖類粉末を会合させた二次粒子とは、糖類粉末の一次粒子を予め 湿潤させ、ある程度の圧力をかけで混合し会合させたものである。中心核粒子の大き さ、形状などは適宜選択できるが、篩い分け法により測定される粒子径が 50〜: 1000 μ mの範囲のものが好ましい。  Preferable central core particles include granulated sugar and secondary particles in which saccharide powder is associated. The secondary particles associated with the saccharide powder are those obtained by previously moistening the primary particles of the saccharide powder and mixing and associating with some pressure. The size and shape of the central core particles can be selected as appropriate, but those having a particle diameter measured by a sieving method in the range of 50 to 1000 μm are preferred.
また、使用する中心核粒子の量は適宜設定できるが、通常、粉末供給管 25から供 給される粉末 100質量部に対して、 50〜: 1000質量部の範囲である。  The amount of the central core particles to be used can be appropriately set, but is usually in the range of 50 to 1000 parts by mass with respect to 100 parts by mass of the powder supplied from the powder supply pipe 25.
[0021] こうして造粒した後、この未乾燥の湿潤粒子を遠心転動造粒装置 20から取り出し、 流動層装置 (例えば、フロイント産業 (株)製流動層造粒コーティング装置「フローコー ター」)などの装置に移し替えて乾燥することによって、コア粒子 11を得ることができる [0021] After the granulation in this way, the undried wet particles are taken out from the centrifugal tumbling granulator 20, and a fluidized bed apparatus (for example, a fluidized bed granulated coating apparatus "Flow coater" manufactured by Freund Sangyo Co., Ltd.) The core particles 11 can be obtained by transferring to the apparatus and drying.
[0022] ついで、得られたコア粒子 11を流動層装置内で加熱空気により流動させつつ、こ の流動層装置内に被覆層形成成分含有液をスプレーすることによって (被覆層形成 工程)、コア粒子 11の表面に被覆層 12が形成されたレイヤリング用核粒子 10を得る こと力 Sできる。このように被覆層形成工程を流動層装置内で行う方法は、高分子化合 物を主成分とする被覆層 12を形成する際に特に好ましぐその場合には、被覆層形 成成分含有液として、高分子化合物を主成分とする被覆層形成成分が水および Zま たはアルコールに溶解および Zまたは分散した液を使用すればょレ、。被覆層形成成 分含有液中における被覆層形成成分の濃度には特に制限はないが、:!〜 30質量% であると、より良好に被覆層 12を形成することができる。 Next, the obtained core particles 11 are made to flow with heated air in the fluidized bed apparatus, and the coating layer forming component-containing liquid is sprayed into the fluidized bed apparatus (coating layer forming step), whereby the core It is possible to obtain the layering core particle 10 in which the coating layer 12 is formed on the surface of the particle 11. Thus, the method of performing the coating layer forming step in the fluidized bed apparatus is particularly preferable when forming the coating layer 12 mainly composed of a polymer compound, and in such a case, the coating layer forming component-containing liquid is used. As a coating solution, the coating layer forming component mainly composed of a polymer compound is dissolved and Z or dispersed in water and Z or alcohol. The concentration of the coating layer forming component in the coating layer forming component-containing liquid is not particularly limited, but the coating layer 12 can be formed more satisfactorily when it is:! To 30% by mass.
一方、 D_マンニトールなどの粉末状の糖アルコールを主成分とする被覆層 12を 形成する場合には、まず、得られたコア粒子 11を再度、図 2のような遠心転動造粒装 置 20に投入してこれを回転皿 23の上で転動させ、粉末供給管 25から糖アルコール を供給し、先に例示した中から選ばれる噴霧用液体をスプレーする。そして、この遠 心転動造粒装置 20から未乾燥の湿潤粒子を取り出し、流動層装置などの他の乾燥 装置に移し替えて乾燥することによって、コア粒子 11の表面に糖アルコールを主成 分とする被覆層 12が形成されたレイヤリング用核粒子 10を得ることができる。 On the other hand, a coating layer 12 mainly composed of powdered sugar alcohol such as D_mannitol is applied. In the case of formation, first, the obtained core particles 11 are again put into a centrifugal rolling granulation apparatus 20 as shown in FIG. The sugar alcohol is supplied from and sprayed with a spraying liquid selected from the examples exemplified above. Then, unwet wet particles are taken out from the centrifugal tumbling granulator 20, transferred to another drying device such as a fluidized bed device, and dried, whereby sugar alcohol is mainly contained on the surface of the core particles 11. The core particle 10 for layering in which the coating layer 12 is formed can be obtained.
なお、被覆層 12の形成は、流動層造粒コーティング装置などの流動層装置以外に も、遠心転動造粒コーティング装置 (例えばフロイント産業 (株)製「CFダラ二ユレータ 一」、「ダラニュレックス」など。)、複合型造粒コーティング装置 (例えばフロイント産業 (株)製「スパイラフロー」など。 )などの公知の装置を用いて行うことができる。  In addition to the fluidized bed apparatus such as a fluidized bed granulation coating apparatus, the coating layer 12 can be formed by a centrifugal rolling granulation coating apparatus (for example, “CF Durayuratori”, “Daranyu” manufactured by Freund Sangyo Co., Ltd.). Rex "etc.) and a composite granulation coating apparatus (for example," Spiraflow "manufactured by Freund Sangyo Co., Ltd.) can be used.
[0023] その他のレイヤリング用核粒子の製造方法としては、遠心転動造粒装置 20にマイ クロ波導入手段を備えた装置を使用する方法も例示できる。 [0023] As another method for producing layering core particles, a method of using a device equipped with a microwave introduction means in the centrifugal tumbling granulator 20 can be exemplified.
このような装置としては、図 2中の蓋体 20aに、マイクロ波導入手段としてマイクロ波 導波管の一端を接続した構成のものが挙げられる。このような装置によれば、マイクロ 波導波管の他端側にマイクロ波発振装置を接続することにより、このマイクロ波発振 装置から発振されたマイクロ波が遠心転動室 21内に伝送、導入され、遠心転動室 2 As such an apparatus, one having a configuration in which one end of a microwave waveguide is connected as a microwave introduction means to the lid 20a in FIG. According to such a device, the microwave oscillated from the microwave oscillating device is transmitted and introduced into the centrifugal rolling chamber 21 by connecting the microwave oscillating device to the other end of the microwave waveguide. , Centrifugal rolling chamber 2
1内の粒子にマイクロ波を照射することができる。 The particles in 1 can be irradiated with microwaves.
[0024] このような装置を使用すると、コア粒子製造工程と被覆層形成工程とを 1つの装置 内で連続的に行うことができ、移し替えの作業が不要であるため、非常に効率的に生 産性よぐレイヤリング用核粒子 10を製造できる。 [0024] When such an apparatus is used, the core particle manufacturing process and the coating layer forming process can be performed continuously in one apparatus, and no transfer work is required. Produces core particles 10 for layering.
具体的には、マイクロ波導入手段を備えた遠心転動造粒装置内でコア粒子 11を製 造し、ついで、マイクロ波を照射しながら、造粒後のコア粒子 11を乾燥させ、さらに、 コア粒子 11に被覆層 12を形成する。  Specifically, the core particles 11 are produced in a centrifugal tumbling granulator equipped with microwave introduction means, and then the granulated core particles 11 are dried while being irradiated with microwaves. A coating layer 12 is formed on the core particle 11.
[0025] こうして製造されたレイヤリング用核粒子 10には、その表面に活性成分が被覆され[0025] The layering core particle 10 thus produced has an active component coated on its surface.
、薬物粒子となる。そして、さらに目的に応じたフィルム基材のコーティングや、ハード カプセルへの充填などが必要に応じて実施され、徐放性製剤などの薬剤とされる。 活性成分の被覆は、遠心転動造粒コーティング装置 (例えばフロイント産業 (株)製「, Become drug particles. Further, coating of a film base according to the purpose, filling into a hard capsule, etc. is carried out as necessary to make a drug such as a sustained-release preparation. The active ingredient coating is applied by centrifugal rolling granulation coating equipment (for example, “Freund Sangyo Co., Ltd.”
CFダラ二ユレ一ター」、「ダラ二ュレックス」など。)、流動層造粒コーティング装置 (例 えばフロイント産業 (株)製「フローコーター」など。)、複合型造粒コーティング装置( 例えばフロイント産業 (株)製「スパイラフロー」など。 )などを用いた公知の方法により 行える。 “CF Daranayureta”, “Daranurex”, etc. ), Fluidized bed granulation coating equipment (example: For example, “Flow Coater” manufactured by Freund Corporation. ), A composite granulation coating apparatus (for example, “Spiraflow” manufactured by Freund Corporation) or the like.
[0026] このようなレイヤリング用核粒子 10は、糖類を主成分とするコア粒子 11の表面に被 覆層 12が形成されたものであって、コア粒子 11と被覆される活性成分との間には被 覆層 12が介在する。よって、コア粒子 11との反応性に制限されることなぐ幅広い種 類の活性成分を表面に良好にレイヤリングできる。  [0026] Such layering core particle 10 is obtained by forming a covering layer 12 on the surface of a core particle 11 containing saccharides as a main component, and includes a core particle 11 and an active ingredient to be coated. A covering layer 12 is interposed between them. Therefore, a wide variety of active ingredients can be satisfactorily layered on the surface without being limited by the reactivity with the core particle 11.
活性成分としては、例えば、催眠,鎮静剤、解熱鎮痛消炎剤、精神神経用剤、 自律 神経用剤、抗パーキンソン剤、抗ヒスタミン剤、強心剤、利尿剤、血圧降下剤、血管 収縮剤、動脈硬化用剤、鎮咳去痰剤、ビタミン剤、滋養強壮薬、抗生物質、胃腸薬 などが挙げられる。  Active ingredients include, for example, hypnosis, sedative, antipyretic analgesic / anti-inflammatory agent, neuropsychiatric agent, autonomic nerve agent, anti-parkinsonian agent, antihistamine, cardiotonic agent, diuretic agent, antihypertensive agent, vasoconstrictor, arteriosclerotic agent Antitussive expectorant, vitamins, nourishing tonics, antibiotics, gastrointestinal drugs, etc.
また、このレイヤリング用核粒子 10は、レイヤリング性(ブロッキング抑制、レイヤリン グ効率)にも優れるため、高い回収率で目的とした粒径の薬物粒子を得ることもでき る。  In addition, since the core particle 10 for layering is also excellent in layering properties (blocking suppression, layering efficiency), it is possible to obtain drug particles having a target particle size with a high recovery rate.
さらに、被覆層 12の主成分が特にセルロース誘導体などの高分子化合物であると 、硬度が高くレイヤリング時の破損や磨耗が少なレ、レイヤリング用核粒子 10を提供で きる。  Furthermore, when the main component of the coating layer 12 is a polymer compound such as a cellulose derivative, the core particle 10 for layering can be provided with high hardness and low damage and wear during layering.
実施例  Example
[0027] [コア粒子製造例 1] [0027] [Core particle production example 1]
図 2に示す遠心転動造粒装置 20の遠心転動室 21内に、粒子径 (篩い分け法) 20 0〜300 111のグラニュー糖1. 5kgを中心核粒子として仕込み、スリットエアを供給し ながら回転皿 23を 160rpmで回転させた。ついで、平均粒子径 10 μ mの精製白糖 粉末 60質量%とトウモロコシデンプン 40質量%からなる混合粉末 3kgを粉末供給管 25から遠心転動室 21内に供給するとともに、 5質量%ヒドロキシプロピルメチルセル ロース(HPMC)水溶液をスプレー装置 26から遠心転動室 21内に噴霧し、造粒した ついで、得られた未乾燥の湿潤粒子を流動層造粒コーティング装置(「フローコー タ一一 5型」、フロイント産業 (株)製)内へ移し替え、この流動層装置内に 90°Cに設 定された加熱空気を導入し、粒子の温度が 60°Cになるまで乾燥した。この造粒物を 355-500 μ mに篩別したものをコア粒子(1)とした。 In the centrifugal rolling chamber 21 of the centrifugal rolling granulator 20 shown in Fig. 2, 1.5 kg of granulated sugar with a particle size (sieving method) of 20 0 to 300 111 is charged as the core particle, and slit air is supplied. The rotating pan 23 was rotated at 160 rpm. Next, 3 kg of a mixed powder composed of 60% by mass of refined sucrose powder having an average particle size of 10 μm and 40% by mass of corn starch is supplied from the powder supply tube 25 into the centrifugal rolling chamber 21, and a 5% by mass hydroxypropylmethyl cell. An aqueous solution of sucrose (HPMC) is sprayed from the spray device 26 into the centrifugal rolling chamber 21 and granulated, and then the wet particles obtained are mixed with a fluidized bed granulation coating device (“flow coater type 5”, “ (Freund Sangyo Co., Ltd.) and set in this fluidized bed equipment at 90 ° C. The specified heated air was introduced and dried until the temperature of the particles reached 60 ° C. The granulated product was sieved to 355-500 μm to make the core particle (1).
[0028] [コア粒子製造例 2] [0028] [Core particle production example 2]
粉末供給管 25から供給する粉末として、混合粉末の代わりに平均粒子径 10 z m の精製白糖粉末 3kgを使用した以外は、コア粒子製造例 1と同様にして、造粒した。 ついで、得られた未乾燥の湿潤粒子を流動層造粒コーティング装置(「フローコー タ一— 5型」、フロイント産業 (株)製)内へ移し替え、この流動層装置内に 80°Cに設 定された加熱空気を導入し、粒子の温度が 50°Cになるまで乾燥した。この造粒物を 355〜500 μ mに箭另 IJしたものをコア粒子 (2)とした。  Granulation was performed in the same manner as in Core Particle Production Example 1 except that 3 kg of purified sucrose powder having an average particle size of 10 zm was used as the powder supplied from the powder supply pipe 25 instead of the mixed powder. Next, the resulting undried wet particles were transferred into a fluidized bed granulation coating device (“Flow Coater Type 1-5”, manufactured by Freund Corporation) and installed in this fluidized bed device at 80 ° C. Introduced heated air was introduced and dried until the particle temperature reached 50 ° C. The granulated product obtained by further IJing to 355 to 500 μm was used as the core particle (2).
[0029] [コア粒子製造例 3] [0029] [Core particle production example 3]
図 2に示す遠心転動造粒装置 20の遠心転動室 21内に、平均粒子径 50 z mの結 晶セルロース粉末 2kgを仕込み、スリットエアを供給しながら回転皿 23を 200ι·ρπιで 回転させた。その状態で精製水をスプレー装置 26から遠心転動室 21内に噴霧し、 粒子径がおよそ 355〜500 μ mに成長するまで造粒した。  2 kg of crystalline cellulose powder with an average particle size of 50 zm is placed in the centrifugal rolling chamber 21 of the centrifugal rolling granulator 20 shown in Fig. 2, and the rotating dish 23 is rotated by 200ι · ρπι while supplying slit air. It was. In this state, purified water was sprayed from the spray device 26 into the centrifugal rolling chamber 21 and granulated until the particle diameter grew to about 355 to 500 μm.
ついで、得られた未乾燥の湿潤粒子を流動層造粒コーティング装置(「フローコー タ一— 5型」、フロイント産業 (株)製)内へ移し替え、コア粒子製造例 2と同様にして乾 燥した。この造粒物を 355〜500 μ mに篩別したものをコア粒子 (3)とした。  Next, the resulting undried wet particles were transferred into a fluidized bed granulation coating device (“Flow coater 1-5”, manufactured by Freund Sangyo Co., Ltd.) and dried in the same manner as in Core Particle Production Example 2. did. The granulated product was sieved to 355 to 500 μm to obtain core particles (3).
[0030] [実施例 1] [0030] [Example 1]
コア粒子(1) 3kgを流動層造粒コーティング装置(「フローコータ一— 5型」、フロイン ト産業 (株)製)へ入れ、このなかに 80°Cに設定された加熱空気を導入し、 5質量%^1 PMC水溶液をスプレー噴霧して、コア粒子(1)の表面に被覆層を形成した。ここでス プレー噴霧の量は、 HPMCの質量がコア粒子(1)の質量の 3Z100となるようにした 。 HPMC水溶液をスプレー噴霧した後、粒子の温度が 50°Cになるまで乾燥し、レイ ヤリング用核粒子(1)を得て、次の評価を行った。  Put 3 kg of core particles (1) into a fluidized bed granulation coating device (“Flow Coater Type 1-5”, manufactured by Freund Sangyo Co., Ltd.), and introduce heated air set at 80 ° C. A 5 mass% ^ 1 PMC aqueous solution was sprayed to form a coating layer on the surface of the core particles (1). Here, the amount of spray spraying was set so that the mass of HPMC was 3Z100 of the mass of the core particles (1). After spraying the HPMC aqueous solution, the particles were dried until the temperature of the particles reached 50 ° C to obtain layering core particles (1), and the following evaluation was performed.
[0031] (評価)(1)摩損度 [0031] (Evaluation) (1) Degree of wear
得られたレイヤリング用核粒子(1)を粒径 355〜500 x mに篩別した後、その約 10 gを精密に量りとり(Wt)、内径 32mm X深さ 65mmのステンレス製円筒容器に入れ、 ミキサーミル (SPEX社製)にて 10分間振とうを行った。振とう終了後、 目開き 300 μ mの篩い(50号)に移して微粉を除去し、篩い上の残留分 (Ws)を精密に秤量し、次 式 (i)により摩損度を求めた。 The obtained core particles for layering (1) are sieved to a particle size of 355-500 xm, and about 10 g is precisely weighed (Wt) and placed in a stainless steel cylindrical container with an inner diameter of 32 mm and a depth of 65 mm. The mixture was shaken with a mixer mill (SPEX) for 10 minutes. After shaking, mesh opening 300 μ The fine powder was removed by transferring to a sieve of m (No. 50), and the residue (Ws) on the sieve was precisely weighed, and the friability was obtained by the following formula (i).
なお、通常レイヤリング用核粒子において摩損度は、 1. 0%以下であることが好ま しぐより好ましくは 0. 3%以下である。よって今回の評価では、摩損度が 0. 3%未満 を A、 0. 3以上 1. 0%未満を B、 1. 0%以上を Cとし、結果を表 1に示す。  Note that the friability of the core particles for normal layering is preferably 1.0% or less, more preferably 0.3% or less. Therefore, in this evaluation, the friability is less than 0.3% as A, 0.3 or more and less than 1.0% as B, and 1.0% or more as C, and the results are shown in Table 1.
摩損度(%) = (Wt-Ws) /Wt X 100 · · · (i)  Friction (%) = (Wt-Ws) / Wt X 100 · · · (i)
[0032] (2)レイヤリング後の薬物粒子の回収率 [0032] (2) Recovery rate of drug particles after layering
得られたレイヤリング用核粒子(1)を粒径 355〜500 x mに篩別した後、その lkg を量りとり、図 2に示す遠心転動造粒装置 20の遠心転動室 21内に仕込み、スリットェ ァを供給しながら回転皿 23を 160rpmで回転させた。ついで、活性成分として平均 粒子径 15 z mのアミノフィリン lkgを粉末供給管 25から遠心転動室 21内に供給する とともに、 2質量%1!?1^〇水溶液をスプレー装置 26から遠心転動室 21内に噴霧し て、活性成分がレイヤリングされた未乾燥の薬物粒子を得た。  The obtained core particles for layering (1) are sieved to a particle size of 355 to 500 xm, and 1 kg is weighed and charged into the centrifugal rolling chamber 21 of the centrifugal rolling granulator 20 shown in FIG. Then, the rotating plate 23 was rotated at 160 rpm while supplying slits. Next, lkg of aminophylline with an average particle size of 15 zm is supplied as an active ingredient from the powder supply pipe 25 into the centrifugal rolling chamber 21 and a 2% by mass 1!? 1 ^ 〇 aqueous solution is supplied from the spray device 26 to the centrifugal rolling chamber 21. Sprayed inside to obtain undried drug particles layered with the active ingredient.
ついで、この未乾燥の薬物粒子を流動層造粒コーティング装置(「フローコーター 5型」、フロイント産業 (株)製)内へ移し替え、この流動層装置内に 50°Cに設定さ れた加熱空気を導入し、粒子の温度が 40°Cになるまで乾燥した。  Next, the undried drug particles are transferred into a fluidized bed granulation coating device (“Flow Coater Type 5”, manufactured by Freund Corporation) and heated to 50 ° C. in the fluidized bed device. Air was introduced and dried until the particle temperature reached 40 ° C.
こうして得られた乾燥後の薬物粒子から粒径 425〜600 μ mのものを篩分し、乾燥 後の薬物粒子全量に対する質量割合を求め、回収率(%)とした。結果を表 1に示す  From the thus obtained dried drug particles, those having a particle size of 425 to 600 μm were sieved, and the mass ratio with respect to the total amount of the drug particles after drying was determined to obtain the recovery rate (%). The results are shown in Table 1.
[0033] (3)レイヤリング後の薬物粒子の色差変化率 [0033] (3) Rate of color difference change of drug particles after layering
上記(2)で得られた乾燥後の薬物粒子約 100gをサンプノレ瓶に入れて密栓し、 60 °Cの恒温器にて 7日間保存した。保存前後の色差を測定し、その変化率 Δ Εを求め た。そして、 £が0〜10未満を八、 10以上 20未満を B、 20以上を Cとし、結果を表 1 に示す。なお、色差計には、 日本電色工業株式会社製: SZ_∑90を用レ、、 JIS Z - 8729、 8730に準拠して、 L*a*b*表色系に基づき色差 Δ Εを測定した。  About 100 g of the dried drug particles obtained in (2) above were placed in a Sampnole bottle, sealed, and stored in a 60 ° C incubator for 7 days. The color difference before and after storage was measured and the rate of change ΔΕ was determined. The results are shown in Table 1, where 8 is less than 0 to less than 0, B is 10 or more and less than 20, and C is 20 or more. For color difference meter, Nippon Denshoku Industries Co., Ltd .: SZ_∑90 is used, and color difference Δ 基 づ き is measured based on L * a * b * color system in accordance with JIS Z-8729, 8730. did.
[0034] [実施例 2]  [0034] [Example 2]
コア粒子(1)のかわりにコア粒子(2)を使用した以外は、実施例 1と同様にして、レ イヤリング用核粒子(2)を得て、評価した。結果を表 1に示す。 [0035] [実施例 3] A core particle for layering (2) was obtained and evaluated in the same manner as in Example 1 except that the core particle (2) was used instead of the core particle (1). The results are shown in Table 1. [0035] [Example 3]
コア粒子(1)のかわりにコア粒子(3)を使用した以外は、実施例 1と同様にして、レ イヤリング用核粒子(3)を得て、評価した。結果を表 1に示す。  A core particle for layering (3) was obtained and evaluated in the same manner as in Example 1 except that the core particle (3) was used instead of the core particle (1). The results are shown in Table 1.
[0036] [実施例 4] [Example 4]
コア粒子(1) 2kgを図 2に示す遠心転動造粒装置 20の遠心転動室 21内に仕込み 、スリットエアを供給しながら回転皿 23を 160rpmで回転させた。ついで、平均粒子 径 13 z mの D—マンニトール lkgを粉末供給管 25から遠心転動室 21内に供給する とともに、 5質量%1!?1^〇水溶液をスプレー装置 26から遠心転動室 21内に噴霧し た。  2 kg of core particles (1) were charged into the centrifugal rolling chamber 21 of the centrifugal rolling granulator 20 shown in FIG. 2, and the rotating dish 23 was rotated at 160 rpm while supplying slit air. Next, 1 kg of D-mannitol having an average particle size of 13 zm is supplied from the powder supply pipe 25 into the centrifugal rolling chamber 21 and a 5 mass% 1!? 1 ^ 〇 aqueous solution is supplied from the spray device 26 to the centrifugal rolling chamber 21. Sprayed on.
ついで、内容物を流動層造粒コーティング装置(「フローコータ一一 5型」、フロイン ト産業 (株)製)内へ移し替え、この流動層装置内に 80°Cに設定された加熱空気を導 入し、粒子の温度が 50°Cになるまで乾燥し、レイヤリング用核粒子 (4)を得た。 そして、実施例 1と同様にして、レイヤリング後の薬物粒子の回収率と色差変化率を 評価した。結果を表 1に示す。  Next, the contents were transferred into a fluidized bed granulation coating device (“Flow Coater Ichiichi Type 5”, manufactured by Freund Sangyo Co., Ltd.), and heated air set at 80 ° C in this fluidized bed device. It was introduced and dried until the temperature of the particles reached 50 ° C to obtain core particles for layering (4). Then, in the same manner as in Example 1, the recovery rate and color difference change rate of drug particles after layering were evaluated. The results are shown in Table 1.
[0037] [実施例 5] [0037] [Example 5]
コア粒子(1)のかわりにコア粒子(2)を使用した以外は、実施例 4と同様にして、レ イヤリング用核粒子(5)を得て、評価した。結果を表 1に示す。  A core particle for layering (5) was obtained and evaluated in the same manner as in Example 4 except that the core particle (2) was used instead of the core particle (1). The results are shown in Table 1.
[0038] [実施例 6] [0038] [Example 6]
コア粒子(1)のかわりにコア粒子(3)を使用した以外は、実施例 4と同様にして、レ イヤリング用核粒子(6)を得て、評価した。結果を表 1に示す。  A core particle for layering (6) was obtained and evaluated in the same manner as in Example 4 except that the core particle (3) was used instead of the core particle (1). The results are shown in Table 1.
[比較例 1]  [Comparative Example 1]
コア粒子製造例 1により得られたコア粒子(1)について、実施例 1と同様にコア粒子 1の摩損度とレイヤリング後の薬物粒子の回収率および色差変化率を評価した。結 果を表 1に示す。  For the core particles (1) obtained in Core Particle Production Example 1, the friability of the core particles 1, the recovery rate of drug particles after layering, and the color difference change rate were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[比較例 2]  [Comparative Example 2]
コア粒子製造例 2により得られたコア粒子(2)について、実施例 1と同様にコア粒子 2の摩損度とレイヤリング後の薬物粒子の回収率および色差変化率を評価した。結 果を表 1に示す。 [比較例 3] For the core particles (2) obtained in the core particle production example 2, the friability of the core particles 2, the recovery rate of the drug particles after layering, and the color difference change rate were evaluated in the same manner as in Example 1. The results are shown in Table 1. [Comparative Example 3]
コア粒子製造例 3により得られたコア粒子(3)について、実施例 1と同様にコア粒子 3の摩損度とレイヤリング後の薬物粒子の回収率および色差変化率を評価した。結 果を表 1に示す。  For the core particles (3) obtained in Core Particle Production Example 3, the friability of the core particles 3, the recovery rate of drug particles after layering, and the color difference change rate were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[表 1] [table 1]
Figure imgf000016_0001
表 1に示すように、コア粒子の表面に被覆層が形成された各実施例のレイヤリング 用核粒子はレイヤリング性に優れ、高い回収率で目的とする粒径の薬物粒子が得ら れた。また、コア粒子に糖を使用したレイヤリング用核粒子に、糖と反応性のあるアミ ノフィリンを活性成分としてレイヤリングした場合 (実施例 1、 2、 4、 5)でも、被覆層が 形成されているために色差変化率が小さぐ反応による変色が抑制されたことが示さ れた。また、特に被覆層をセルロース誘導体である HPMCから形成すると、硬度が 高ぐ摩損度の少ないレイヤリング用核粒子が得られた。
Figure imgf000016_0001
As shown in Table 1, the core particles for layering in each Example in which a coating layer was formed on the surface of the core particles were excellent in layering properties, and drug particles with the desired particle size were obtained with a high recovery rate. It was. In addition, even when layering core particles using sugar as a core particle are layered with an aminophylline reactive with sugar as an active ingredient (Examples 1, 2, 4, and 5), a coating layer is formed. Therefore, it was shown that discoloration due to a reaction with a small color difference change rate was suppressed. In particular, when the coating layer was formed from HPMC, a cellulose derivative, layering core particles with high hardness and low friability were obtained.
[実施例 7] [Example 7]
マイクロ波照射手段を備えた遠心転動造粒装置を使用した以外は、コア粒子製造 例(1)と同様に造粒し、次に、この未乾燥の湿潤粒子を流動層造粒コーティング装置 内へ移し替えずに、マイクロ波照射手段を備えた遠心転動造粒装置内でマイクロ波 を照射して乾燥し、コア粒子とした。  Granulate in the same manner as in core particle production example (1) except that a centrifugal tumbling granulator equipped with microwave irradiation means was used. Without being transferred to, microwaves were irradiated in a centrifugal tumbling granulator equipped with microwave irradiation means and dried to obtain core particles.
そして、引き続きマイクロ波を照射しながら、 5質量%HPMC水溶液をスプレー装 置 26から噴霧して、被覆層を形成した。ここでスプレー噴霧の量は、 HPMCの量が コア粒子の質量の 3/100となるようにした。  Then, a 5 mass% HPMC aqueous solution was sprayed from the spray device 26 while continuously irradiating microwaves to form a coating layer. Here, the amount of spraying was set so that the amount of HPMC was 3/100 of the mass of the core particles.
このような実施例 7によれば、実施例 1よりも短時間でコア粒子の乾燥、被覆層の乾 燥を行うことができ、効率的であった。  According to such Example 7, the core particles and the coating layer could be dried in a shorter time than Example 1, which was efficient.
また、実施例 1と同様の各評価を行ったところ、同等の結果が得られた。 産業上の利用可能性 Moreover, when each evaluation similar to Example 1 was performed, the equivalent result was obtained. Industrial applicability
本発明は、幅広い種類の活性成分を表面に良好にレイヤリングでき、高い回収率 でレイヤリング済み薬物粒子を得ることのできるレイヤリング用核粒子を提供できるか ら、産業上極めて有用である。  INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially because it can provide layered core particles that can satisfactorily layer a wide variety of active ingredients on the surface and obtain layered drug particles with a high recovery rate.

Claims

請求の範囲 The scope of the claims
[1] 非活性成分力 なり、表面に活性成分が被覆されるためのレイヤリング用核粒子で あって、糖類を主成分とするコア粒子と、前記コア粒子の表面に形成された被覆層を 有するレイヤリング用核粒子。  [1] Non-active component power A layering core particle for coating an active component on its surface, comprising a core particle mainly composed of a saccharide and a coating layer formed on the surface of the core particle. Core particles for layering.
[2] 前記糖類は、糖、糖アルコール、デンプン類、粉末セルロース、結晶セルロースか らなる群より選ばれる 1種以上である請求項 1に記載のレイヤリング用核粒子。  2. The core particle for layering according to claim 1, wherein the saccharide is at least one selected from the group consisting of sugar, sugar alcohol, starches, powdered cellulose, and crystalline cellulose.
[3] 前記被覆層は、高分子化合物を主成分とする請求項 1に記載のレイヤリング用核 粒子。  [3] The core particle for layering according to claim 1, wherein the coating layer contains a polymer compound as a main component.
[4] 前記高分子化合物は、セルロース誘導体である請求項 3に記載のレイヤリング用核 粒子。  [4] The core particle for layering according to claim 3, wherein the polymer compound is a cellulose derivative.
[5] 非活性成分からなり、表面に活性成分が被覆されるためのレイヤリング用核粒子の 製造方法であって、  [5] A method for producing layering core particles comprising a non-active component and having a surface coated with the active component,
糖類を主成分とするコア粒子を製造するコア粒子製造工程と、  A core particle production process for producing core particles mainly composed of sugars;
前記コア粒子の表面に、被覆層を形成する被覆層形成工程とを有するレイヤリング 用核粒子の製造方法。  The manufacturing method of the core particle for layering which has the coating layer formation process which forms a coating layer on the surface of the said core particle.
[6] 前記被覆層形成工程において、被覆層形成成分含有液をスプレーすることにより、 前記被覆層を形成する請求項 5に記載のレイヤリング用核粒子の製造方法。  6. The method for producing layering core particles according to claim 5, wherein in the coating layer forming step, the coating layer is formed by spraying a coating layer forming component-containing liquid.
PCT/JP2007/061541 2006-06-29 2007-06-07 Nucleus particle for layering and method for producing the same WO2008001591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006179684A JP2008007458A (en) 2006-06-29 2006-06-29 Core particle for layering and method for producing the same
JP2006-179684 2006-06-29

Publications (1)

Publication Number Publication Date
WO2008001591A1 true WO2008001591A1 (en) 2008-01-03

Family

ID=38845359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061541 WO2008001591A1 (en) 2006-06-29 2007-06-07 Nucleus particle for layering and method for producing the same

Country Status (2)

Country Link
JP (1) JP2008007458A (en)
WO (1) WO2008001591A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2324908A3 (en) * 2009-11-03 2011-07-20 Mangra, S.A. Method and apparatus for adding additives to feeds
US8116428B2 (en) 2006-09-18 2012-02-14 Optosecurity Inc. Method and apparatus for assessing characteristics of liquids
JP2013526344A (en) * 2010-05-11 2013-06-24 アラーガン、インコーポレイテッド Porogen composition, method of manufacture, and use
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US9138310B2 (en) 2007-11-05 2015-09-22 Allergan, Inc. Soft prosthesis shell texturing method
US9155613B2 (en) 2010-11-16 2015-10-13 Allergan, Inc. Methods for creating foam-like texture
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US9593224B2 (en) 2010-09-28 2017-03-14 Allergan, Inc. Porogen compositions, methods of making and uses
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
US10765501B2 (en) 2008-08-13 2020-09-08 Allergan, Inc. Dual plane breast implant
US10864661B2 (en) 2012-12-13 2020-12-15 Allergan, Inc. Device and method for making a variable surface breast implant
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
CN115364763A (en) * 2022-08-23 2022-11-22 武汉水木弘新材料有限公司 Preparation method and application of high-yield spherical particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566757B2 (en) * 2010-04-16 2014-08-06 大塚製薬株式会社 Solid preparation
JP5764811B2 (en) * 2014-06-18 2015-08-19 大塚製薬株式会社 Solid preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275688A (en) * 1994-04-14 1995-10-24 Kyowa Yakuhin Kogyo Kk Sustained release microcapsule and its production
JPH09263589A (en) * 1996-01-24 1997-10-07 Freunt Ind Co Ltd Spherical particle of lactose and its production
WO1999004760A1 (en) * 1997-07-23 1999-02-04 Freund Industrial Co., Ltd. Spherical single-substance particles, medicines and foodstuffs containing the particles, and method of production thereof
JP2003517446A (en) * 1998-11-11 2003-05-27 フアーマシア・アー・ベー Novel controlled release beads, method of making the same, and multi-unit formulations containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275688A (en) * 1994-04-14 1995-10-24 Kyowa Yakuhin Kogyo Kk Sustained release microcapsule and its production
JPH09263589A (en) * 1996-01-24 1997-10-07 Freunt Ind Co Ltd Spherical particle of lactose and its production
WO1999004760A1 (en) * 1997-07-23 1999-02-04 Freund Industrial Co., Ltd. Spherical single-substance particles, medicines and foodstuffs containing the particles, and method of production thereof
JP2003517446A (en) * 1998-11-11 2003-05-27 フアーマシア・アー・ベー Novel controlled release beads, method of making the same, and multi-unit formulations containing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116428B2 (en) 2006-09-18 2012-02-14 Optosecurity Inc. Method and apparatus for assessing characteristics of liquids
US9138310B2 (en) 2007-11-05 2015-09-22 Allergan, Inc. Soft prosthesis shell texturing method
US10765501B2 (en) 2008-08-13 2020-09-08 Allergan, Inc. Dual plane breast implant
EP2324908A3 (en) * 2009-11-03 2011-07-20 Mangra, S.A. Method and apparatus for adding additives to feeds
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US10391199B2 (en) 2010-02-05 2019-08-27 Allergan, Inc. Porous materials, methods of making and uses
US10624997B2 (en) 2010-02-05 2020-04-21 Allergan, Inc. Porogen compositions, methods of making and uses
JP2013526344A (en) * 2010-05-11 2013-06-24 アラーガン、インコーポレイテッド Porogen composition, method of manufacture, and use
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
US9593224B2 (en) 2010-09-28 2017-03-14 Allergan, Inc. Porogen compositions, methods of making and uses
US9155613B2 (en) 2010-11-16 2015-10-13 Allergan, Inc. Methods for creating foam-like texture
US10864661B2 (en) 2012-12-13 2020-12-15 Allergan, Inc. Device and method for making a variable surface breast implant
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
US10350055B2 (en) 2014-05-16 2019-07-16 Allergan, Inc. Textured breast implant and methods of making same
CN115364763A (en) * 2022-08-23 2022-11-22 武汉水木弘新材料有限公司 Preparation method and application of high-yield spherical particles

Also Published As

Publication number Publication date
JP2008007458A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
WO2008001591A1 (en) Nucleus particle for layering and method for producing the same
EP0582380B1 (en) Dry granulation using a fluidized bed
CN102325526B (en) Extend the pharmaceutical preparation of release
US5026560A (en) Spherical granules having core and their production
WO2006115198A1 (en) Porous cellulose aggregate and molding composition thereof
CN101756960B (en) Duloxetine enteric-coated preparation and core material and preparation method thereof
WO2006090845A1 (en) Method for producing granules
JP2004143071A (en) Method for producing medicine-containing composite particle and medicine-containing composite particle
CN102525990A (en) Ilaprazole enteric-coated tablets and preparation method thereof
CN1744889A (en) Controlled release pharmaceutical compositions of tamsulosin
CN1135981C (en) Morphine sulphate microgranules, method for making same and pharmaceutical preparations
US5026709A (en) Method for the preparation of a theophylline sustained release pharmaceutical composition and the composition prepared thereby
JP2007259887A (en) Manufacturing method of grain, and centrifugal rolling granulator
CN102973515A (en) Sustained release preparation for treating hypertention and angina, and preparation method thereof
CN106619520A (en) Dry suspension of sodium dexlansoprazole and preparation method of dry suspension
JPH02504145A (en) Enzyme-controlled drug release pellets
TWI522113B (en) Novel method for the preparation of granulates of active constituents, and granulates as obtained
CN101099762B (en) Blood pressue lowering sustained-release preparation with chrysanthemum flower and pearl
JP3910939B2 (en) Single-substance spherical particles, foods and medicines using them, and methods for producing them
KR20010033206A (en) Pharmaceutical compositions
CN1883460A (en) An enteric coated mini-pill of pantoprazole sodium
CN1529587A (en) Medicine bisacodyl granular composition comprising dung softening poloxamer and coated with enteric-coatel casing
WO2009133774A1 (en) Spherical granules and method of producing the same
CN103040761B (en) Novel metformin hydrochloride sustained release pellets and preparation method thereof
CN113262206A (en) Preparation process of nifedipine preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07744870

Country of ref document: EP

Kind code of ref document: A1