WO2008001447A1 - Mobile communication method and mobile communication device - Google Patents

Mobile communication method and mobile communication device Download PDF

Info

Publication number
WO2008001447A1
WO2008001447A1 PCT/JP2006/313003 JP2006313003W WO2008001447A1 WO 2008001447 A1 WO2008001447 A1 WO 2008001447A1 JP 2006313003 W JP2006313003 W JP 2006313003W WO 2008001447 A1 WO2008001447 A1 WO 2008001447A1
Authority
WO
WIPO (PCT)
Prior art keywords
asn
anchor
mobile communication
mobile station
access management
Prior art date
Application number
PCT/JP2006/313003
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Tazaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/313003 priority Critical patent/WO2008001447A1/en
Publication of WO2008001447A1 publication Critical patent/WO2008001447A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a mobile communication method and a mobile communication device, and more particularly, to a mobile communication method and a mobile communication device with improved control during handover by a WiMAX communication method.
  • handover (HO) control in a mobile communication system includes a configuration that controls transfer on an IP address (see, for example, Patent Document 1 below). There is a configuration that performs packet transfer by definition (for example, see Patent Document 2 below.) 0 In addition, at the time of data transmission, a data packet including a message is used to execute a transaction between the mobile terminal device and the gateway. (For example, refer to Patent Document 3 below.) 0
  • These conventional technologies do not realize handover control via a specific node to be realized by the Wi MAX Forum.
  • WiMAX is based on the 802.16e technology and is a standard specification for supporting mobile communication networks. In the current WiMAX, there are multiple handono (HO) methods as options.
  • FIG. 16 is a diagram showing an overall configuration of a mobile communication system in WiMAX.
  • the WiMAX system is roughly divided into three nodes: CSN (Core Service Network) 1001, ASN (Access Service Network) 1002, and MS (Mobile Station) 1003.
  • ASN—GW stands for ASN (Gate Way).
  • the MS1003 uses a data path (DP: Data Path) 1026 configured on R6 between the BS (Base Station) 1004 and the ASN1002.
  • DP Data Path
  • MIP session 1023 within the MIP tunnel
  • FIG. 17 is a diagram showing a data path setting state during MS movement.
  • HO-Request (HO- Req) is one of the important primitives used when the MS 1003 moves.
  • FIG. 18 is a table showing primitive information elements. As shown in Table 1100, typical IE (information elements) defined by HO-Request include Target BSID, Serving BSID, and Anchor GWID.
  • Anchor GWID 1101 is used as an ID (identifier) and indicates Anchor ASN 1002a or Anchor DP 1026a.
  • HO means that MS1003 is handed over to Target BSID (BS1 004b). For this reason, if it does not go through Anchor ASN1002a, the Primitive transfer will be the Target BSID of IE or Serving B SID described in HO—Request (HO—Req) ZHO—Response (HO—Rsp) It can be easily done just by transferring to, but this causes the problem [b] described later.
  • WiMAX it is an option (undeveloped state) for Primitive to pass through Anchor ASN, and the content of processing related to actual transfer is not stipulated in the standard specification.
  • WiMAX the transfer process that considers the implementation status is different from the exchange formats using existing technology and SIP, so processing that specifically considers the implementation is required.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2006-80690
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-74379
  • Patent Document 3 Japanese Translation of Special Publication 2003-515280
  • BS According to WiMAX standard specifications, BS generates Primitive including IE called Anchor ASN (Anchor GWID)! /, but it is not concrete! /.
  • Anchor ASN Anchor GWID
  • FIG. 19 is a diagram for explaining problems with the conventional technology. As shown in the figure, when the movement of MS1003 is a movement across a plurality of AS N1002, R4 which is DP1024 between Anchor ASN1002a and the destination ASN1002c becomes a daisy chain. If this R4 path becomes longer, there will be a problem that packet delay and communication quality will be affected.
  • the present invention has been made in view of the above, and can perform primitive transfer via the ASN of the anchor, resulting in a decrease in service quality during WiMAX handover!
  • the object of the present invention is to provide a mobile communication method and a mobile communication device.
  • the present invention provides a mobile communication method for allowing a mobile station to perform handover with a WiMAX communication method, wherein the mobile station is a network.
  • the base station that communicates with the mobile station enters the configuration information that associates the unique identifier of the mobile station with the unique identifier of the access management device that is an anchor for the mobile station.
  • generate is included, It is characterized by the above-mentioned.
  • the mobile station and the anchor access control device can be associated with each other, so that the primitive at the time of handover based on the movement of the mobile station can be transferred via the anchor access control device. Become. Thus, there is an effect that each device constituting the system can smoothly and efficiently execute necessary handover processing when the mobile station moves.
  • FIG. 1 is a diagram showing a system configuration of a mobile communication apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a sequence diagram showing processing of each component unit for temporary entry.
  • FIG. 3 is a diagram showing a setting table for Anchor GWID.
  • FIG. 4 is a diagram showing a state at the time of handover of an MS.
  • FIG. 5 is a diagram showing a state of handover.
  • FIG. 6 is a diagram showing an example in which a handover request does not pass through the anchor ASN
  • FIG. 7 is a diagram showing an example in which a handover request passes through an anchor ASN.
  • FIG. 8 is a flowchart showing a procedure for transferring a hand-on request in the ASN-GW.
  • FIG. 9 is a diagram illustrating an example in which a handover response passes through an anchor ASN.
  • FIG. 10 is a flowchart showing a handover response transfer procedure in the ASN-GW.
  • FIG. 11 1 is a sequence diagram showing the transfer process of each unit on data paths R4 and R6 (part 1).
  • FIG. 11 2 is a sequence diagram showing transfer processing of each unit on data paths R4 and R6 (part 2).
  • FIG. 12 is a flowchart showing a data-nos setting preparation process.
  • FIG. 13 is a flowchart showing a data path setting process.
  • FIG. 14 is a diagram showing a data path switching state before and after handover.
  • Fig. 15-1 is a diagram showing all states of DP setting (part 1).
  • Fig. 15-2 shows all states of DP setting (part 2).
  • Fig. 15-3 shows all states of DP setting (No. 3).
  • Fig. 15-4 shows all states of DP setting (No. 4).
  • Fig. 15-5 shows the entire DP setting status (No. 5).
  • FIG. 16 is a diagram showing an overall configuration of a mobile communication system in WiMAX.
  • FIG. 17 is a diagram showing a data path setting state during MS movement.
  • FIG. 18 is a table showing primitive information elements.
  • FIG. 19 is a diagram for explaining problems with the prior art.
  • the present invention relates to processing at the time of handover in WiMAX, and has the following characteristic configuration corresponding to the problems [a] to [d] described above.
  • Anchor ASN Anchor DP force
  • FIG. 1 is a diagram showing a system configuration of a mobile communication apparatus according to Embodiment 1 of the present invention. This is the overall configuration of the mobile communication system in WiMAX shown in Fig. 1, and each component is arranged in the same way as the conventional technology (see Fig. 16). This shows the state of the initial entry (Network entry) to the network by the MS.
  • FIG. 2 is a sequence diagram showing the processing of each component unit for temporary entry. This will be described with reference to FIG. 1 and FIG. In the following, the handover request (Request) is abbreviated as Req, and the response (Response) is abbreviated as Rsp.
  • Req the handover request
  • Response response
  • the WiMAX system includes CSN101, ASN-GW102, and MS103 nodes.
  • 110 is CN and 104 is BS.
  • ASN-GW 102 is called an access management device, BS is a base station, and MS is a mobile station.
  • MS103 MS1 performs network entry.
  • Pre- Provisioned Service Flow Creation When PD-Rsp can be set, Anchor AS for the unique identifier (MSID) of MS103 N—The unique identifier of GW102 Anchor GWID is set as ASN—GW102 that has transmitted PD-Rsp. That is, the BS 104 performs PD-Req (Sl 02) on the ASN-GW 102, and the ASN-GW 102 performs PD-Req (S103) on the CSN 101.
  • the ASN-GW 102 that has received the PD-Rsp (S104) from the CSN 101 sends the PD-Rsp to the BS 104 (S105).
  • the BS 104 sets Anchor GWID (S106).
  • FIG. 3 is a diagram showing an anchor GWID setting table.
  • This setting information is generated by generating means (not shown) provided in BSK 104).
  • This setting information is used as Anchor GWID 1101 shown in FIG.
  • the MS 103 generates and deletes a service flow ID (SFID) by DSA (Dynamic Service Addition) Req, Rsp, or the like.
  • SFID service flow ID
  • DSA Dynamic Service Addition
  • FIG. 4 is a diagram showing a state at the time of handover of the MS.
  • FIG. 5 is a diagram showing the state of the handover.
  • ASN-GWID A2
  • FIG. 7 is a diagram illustrating an example in which a handono request passes through an anchor ASN.
  • MS103 HO-Req transmission source
  • FIG. 8 is a flow chart showing the procedure for transferring a handover request in the ASN-GW.
  • Each ASN-GW 102 described above executes the processing shown in FIG. At this time, it is assumed that whether or not the own ASN-GW 102 is Anchor is known in advance by setting.
  • TBS is Target BSID
  • A—GW is Anchor GWID
  • Self GW is self ASN—GWID ⁇
  • R—GW is an abbreviation for Relay ASN-GWID (ASN—GW managing Target BS).
  • step S802 if HO—Req is not received from BS 104 (step S8 02: No), HO—Req is received from another ASN—GW 102, and then TBS is subordinate to its own AS N. It is determined whether it is a BS (step S806). If TBS is BS104 under its own ASN-GW102 (step S806: Yes), ASN-GW102 sends this HO-Req to BS104 under its own ASN-GW102 (step S807), and HO-Req The transfer process ends. In this case, the DP of R6 is limited to one.
  • step S806 if the TBS is not BS 104 under its own ASN—GW 102 (step S806: No), HO—Req is transmitted to R—GW (step S808), and HO—Re q transfer processing is performed. Exit. In other words, HO-Req is transferred to ASN-GW 102 that manages Target BS 104 via R4. In this case, the R4 DP is limited to one.
  • step S803 if the own GW-ASN102 is not Anchor (step S803: No), HO-Req is transmitted to A-GW (step S809), and HO-Req transfer processing is terminated. .
  • step S804 if the TBS of HO—Req is not BS104 under its own ASN—GW 102 (step S804: No), HO—Req is sent to R—GW. (Step S810), HO—Req transfer processing is terminated. That is, HO-Req is transferred to ASN-GW 102 that manages Target BS 104 via R4. In this case, the DP of R4 is limited to one.
  • FIG. 8 The processing content shown in FIG. 8 will be specifically described using an example in which the handono request in FIG. 7 passes through the anchor ASN.
  • MS103 has performed a handover from position P1 to P2.
  • Path 1: Step S806: No ⁇ Step S808 in Fig. 8).
  • A2 The Relay ASN-GW 102
  • FIG. 9 is a diagram illustrating an example in which the handover response passes through the anchor ASN.
  • FIG. 10 is a flowchart showing a handover response transfer procedure in the ASN-GW.
  • HO—Response HO—Rsp
  • Target BSID BSID
  • SBS, BSID BS2
  • TBS Transmission Base Station
  • the HO-Req destination TBS is sent from the HO-Rsp and forwarded to the HO-Req source SBS.
  • Each process shown in FIG. 10 is individually executed by each ASN-GW 102 described above. At this time, it is assumed that whether or not the own ASN-GW 102 is Anchor is known in advance by setting.
  • step S 1004 If the SBS of the HO—Rsp is the BS104 under its own ASN—GW102 (step S 1004: Yes), this HO—Rsp is sent to the SBS 104 (step S 10 05), and the HO—Rsp transfer process is terminated .
  • the data path (DP) of R6 is limited to one.
  • step S1002 if HO—Rsp is not received from BS 104 (step S 1002: No), HO—Rsp is received from another ASN—GW 102, and then SBS is under its own ASN. It is determined whether it is BS (step S 1006). If the SBS is the BS 104 under its own ASN-GW 102 (step S1006: Yes), the ASN-GW 102 transmits this HO Rsp to the SBS 104 (step S1007), and ends the HO-Rsp transfer process. In this case, the DP of R6 is limited to one.
  • step S1006 if SBS is not BS104 under its own ASN—GW102 (step S1006: No), HO—Rsp is transmitted to R-GW (step S1008), and HO Rsp is transferred. End the process.
  • the R4 DP is limited to one.
  • step S1003 if GW-ASN102 is not Anchor (step S1003: No), HO-Rsp is transmitted to A-GW (step S1009), and HO-Rsp transfer processing is performed. Exit. Further, in step S1004, if the SBS of HO—Rsp is not BS 104 under its own ASN—GW102 (step S1004: No), HO—Rsp is changed to R—GW. (Step S1010), and the HO—Rsp transfer process ends. In this case, the DP of R4 is limited to one.
  • FIG. 10 The processing contents shown in FIG. 10 will be specifically described using an example in which the handover response in FIG. 9 passes through the anchor ASN. As shown in FIG. 9, it is assumed that the MS 103 performs a handover from the position P1 to P2.
  • TBS Target BS
  • BS3 BS3
  • These primitives in 2. 3. are other primitives that need to be transferred to the same destination as 1. HO—Req.
  • -Reg Req is sent (step SI 106).
  • This Path Pre-Reg Req is performed based on a predetermined transfer process (step SI 107) described later.
  • Target BS BS3
  • SBS104 BS2
  • TBS104 BS3
  • TBS104 BS3 stores information on Target BS described in HO—Confirm! (Step S1114).
  • the DP that has been set is canceled (step S 1120).
  • FIG. 12 is a flowchart showing data path setting preparation processing. This is processing related to the transfer of the Path Pre-Reg Req (Rsp) described above, and is executed by the ASN-GW102.
  • Path Pre-Reg Req is received (step S 1201)
  • step S 1202 If the local ASN—GW102 is not Anchor (step S 1202: No), a Path Pre-Reg Req is transmitted in the direction of Anchor GWI D (to the Anchor ASN—GW102) (step S1203).
  • step S I 204 when the Path Pre-Reg Rsp transmitted from the ASN-GW 102 of the Anchor is received (step S I 204), the received Path Pre-Reg Rsp is transmitted in the reverse direction of the Anchor GWID (step S I 205). Thereafter, Path Pre-Reg Ack is received (step S I 206), and the above processing ends.
  • step S1202 After responding with Path Pre-Reg Rsp (step SI 207), receiving Path Pre-Reg Ack (step SI 2 06), The above process ends.
  • FIG. 13 is a flowchart showing data path setting processing. Path Reg mentioned above
  • the following processing is the same as in FIG. 12, and only the difference is whether the force Reg is Pre-Reg.
  • Path Reg Req is received (step S 1301)
  • it is determined whether the own ASN—GW 102 is Anchor (ie, own GW A—GW) (step S 1302).
  • the own GW is not Anchor (step SI 302: No)
  • Path Reg Req is transmitted in the direction of Anchor GWID (to the ASN-GW 102 of Anchor) (step SI 303).
  • step S 1304 when the Path Reg Rsp transmitted from the Anchor ASN—GW 102 is received (step S 1304), the received Path Reg Rsp is transmitted in the reverse direction of the Anchor GWID (step S 1305). Thereafter, Path Reg Ack is received (step SI 306), and the above processing is terminated.
  • step S1302 Yes
  • step SI 307 After responding with Path Reg Rsp (step SI 307), receiving Path Reg Ack (step SI 306), and the above processing ends. To do.
  • FIG. 14 is a diagram showing a data path switching state before and after the handover. This corresponds to the state at the time of the node over described with reference to FIG.
  • the explanation is divided into the control signal plane (C— Plane) and the user information transfer plane (U— Plane).
  • C— Plane control signal plane
  • U— Plane user information transfer plane
  • the IE described above is exchanged in each part by C-Plane, and among the codes 1 to 16 used in Fig. 11-1 and Fig. 11-2, the Primitive (4) of Path (Pre-) Reg related to DP switching 5. 6. 11. 12. 13.) are extracted and described.
  • Primitive between each component is attached with subscripts a, b,... (Example: 4a, 4b), respectively.
  • ASN-G W102 ASN GWID
  • SBS104 BS2
  • Old Air Data path DP
  • the MS 103 transfers data with the CSN 101 (see Fig. 4) via the R3 DP via the anchor ASN-GW 102 via the R6 DP.
  • the number of R4 DPs in is one.
  • FA Form Agent in Anchor's ASN-GW102 switches old DP data before handover to New DP after handover (based on 12a. Path R eg Rsp and 13b. Path Reg Ack) switching).
  • MS103 sends data to and from CSN101 (see Fig. 5) from RSN DP via Relay ASN—GW102, via R4 DP via Anchor ASN—GW102, and via R3 DP. Data transfer.
  • the DP (R4 and R6) from MS103 to Anchor ASN—GW102 after HO is the maximum. Can be limited to two. At this time, the ASN-GW102 does not require any special operation.
  • FIG. 15-1 to FIG. 15-5 are diagrams showing all states of DP setting.
  • the state of Figure 15-1 is
  • the movement of MS103 is the case of movement between BS104 managed by Anchor ASN-GW102.
  • R3 MIP
  • MS 104 When IP packets are transmitted between R3 (MIP) and MS 104, the R6 DP path (R6-1) before handover is switched at the switching point (SW) at the time of handover, and the R6 path (R6) after handover is switched. — Changed to 2).
  • the HO-R eq at this time is transferred by the route HI (dotted line in the figure) from the SBS 104 before the handover to the ASN of the anchor to the TBS 104 after the handover.
  • the state shown in Fig. 15-2 is when the MS 103 moves across different ASN-GWs 102 (when R4 changes from Anchor to Relay).
  • the DP route (R6 1) of R6 before handover is switched at the switching point (SW) at the time of handover.
  • the route is changed to (R6-2).
  • the HO-Req at this time is transferred via the route H2 from the SBS 104 before the handover to the ASN of the anchor—GW 102 ⁇ the ASN of the relay—GW 102 ⁇ the TBS 104 after the handover.
  • the state shown in Fig. 15-3 is when the MS 103 moves across different ASN-GWs 102 (when changing R4 from Relay to Anchor).
  • the R6 DP route (R6-1) and R4 route (R4-1) before the handover are switched at the switching point (SW) at the time of the handover, and after the handover with the ASN-GW102 of the Anchor R4 route between (R6-2).
  • the HO-Req at this time is transferred via the route H3 from the SBS 104 before the handover to the ASN of the relay—GW 102 ⁇ the ASN of the anchor—GW 102 ⁇ the TBS 104 after the handover.
  • the state of FIG. 15-4 is the case where the movement of the MS 103 is the movement between the BSs 104 managed by the ASN-GW 102 of the Relay.
  • the R6 DP path before handover (R6-1) and the R4 DP path (R4-1) are switched at the switching point (SW) during handover, and the R6 path after handover (R6 — Changed to 2) and R4 route (R4-2).
  • the HO-Req at this time is transferred via the route H4 from the SBS 104 before the handover to the ASN of the relay-GW 102-> Anchor ASN-GW 102-> Relay ASN-GW 102--to the TBS 104 after the handover.
  • the state of FIG. 15-5 is a case where the movement of the MS 103 straddles between the ASN of the Relay—GW 102 and further moves to the ASN—GW 102 of a different Relay.
  • the R6 DP route (R6-1) before the handover and the R4 DP route (R4-1) are switched at the switching point (SW) during the handover, and the R6 route (R6) after the handover.
  • SW switching point
  • the HO-Req at this time is transferred via the route H5 from the SBS 104 before the handover to the ASN of the Relay 1 ⁇ GW 102 ⁇ the ASN of the Anchor ⁇ GW 102 ⁇ the ASN of the Relay 2 ⁇ GW 102 ⁇ the TBS 104 after the handover.
  • the HO-Req at the time of handover is transferred from the SBS 104 to the TBS 104 via the ASN-GW 102 of the Anchor, and a new DP Is set.
  • the number of DPs is one for R4 and one for R6.
  • the Primitive transfer at the time of handover in WiMAX has been described as an example.
  • any communication method for performing message transfer via a specific node at the time of handover other than WiMAX alone may be used. Can be applied.
  • the method for transferring Primitive at the time of handover described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read by the computer.
  • This program may also be a transmission medium that can be distributed via a network such as the Internet!
  • the mobile communication method and the mobile communication apparatus according to the present invention are useful for processing at the time of handover when the mobile station moves, and particularly at the time of handover of the mobile station including WiMAX. Suitable for message transfer processing via a specific node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a mobile communication device which is arranged as a BS (104) for an MS (103) to perform handover-enabled communication by the WiMAX communication. The mobile communication device includes generation means for generating setting information which correlates a unique identifier of the MS (103) to a unique identifier of an ASN-GW (102) as an anchor of the MS (103) when the MS (103) makes an entry to a CSN (101). Moreover, the mobile communication device includes transmission means for transmitting the setting information generated by the generation means by putting the information on a primitive information element upon handover based on the movement of the MS (103).

Description

明 細 書  Specification
移動通信方法および移動通信装置  Mobile communication method and mobile communication device
技術分野  Technical field
[0001] 本発明は、移動通信方法および移動通信装置に関し、特に、 WiMAXの通信方式 によるハンドオーバ時の制御を改善した移動通信方法および移動通信装置に関す る。  TECHNICAL FIELD [0001] The present invention relates to a mobile communication method and a mobile communication device, and more particularly, to a mobile communication method and a mobile communication device with improved control during handover by a WiMAX communication method.
背景技術  Background art
[0002] 従来、移動通信システムにおけるハンドオーバ(HO)制御としては、 IPアドレス上で 転送を制御する構成のものがある(たとえば、下記特許文献 1参照。 ) oまた、マルチ キャスト通信において、プリミティブを定義してパケット転送を行う構成のものがある( たとえば、下記特許文献 2参照。 ) 0さらに、データ伝送時に、メッセージを含むデー タパケットを用いて、移動端末装置とゲートウェイ間におけるトランザクションを実行さ せる構成のものがある(たとえば、下記特許文献 3参照。 ) 0これらの従来技術は、 Wi MAX Forumで実現しょうとしている特定のノードを経由したハンドオーバ制御を実 現するものではない。 [0002] Conventionally, handover (HO) control in a mobile communication system includes a configuration that controls transfer on an IP address (see, for example, Patent Document 1 below). There is a configuration that performs packet transfer by definition (for example, see Patent Document 2 below.) 0 In addition, at the time of data transmission, a data packet including a message is used to execute a transaction between the mobile terminal device and the gateway. (For example, refer to Patent Document 3 below.) 0 These conventional technologies do not realize handover control via a specific node to be realized by the Wi MAX Forum.
[0003] WiMAXは、 802. 16eの技術を基礎とし、移動通信網に対応するための標準仕様 である。現在の WiMAXでは、ハンドォーノ (HO)の方式が複数、オプションとして存 在する状態である。図 16は、 WiMAXにおける移動通信システムの全体構成を示す 図である。  [0003] WiMAX is based on the 802.16e technology and is a standard specification for supporting mobile communication networks. In the current WiMAX, there are multiple handono (HO) methods as options. FIG. 16 is a diagram showing an overall configuration of a mobile communication system in WiMAX.
[0004] WiMAXシステムは、大きく分けて CSN (Core Service Network) 1001と、 AS N (Access Service Network) 1002と、 MS (Mobile Station) 1003の 3つのノ ードからなる。 ASN— GWとは、 ASN (Gate Way)の略である。 MS1003カWiM AXシステムの外の CN (Correspondent Node) 1010と通信する場合、 MS1003 は、 BS (Base Station) 1004と ASN1002との間の R6上に設定されているデータ パス(DP : Data Path) 1026、および ASN1002と CSN1001との間の R3上に設 定されている(MIPトンネル内の) MIPセッション 1023を経由し、 CN1010へ IPパケ ットを送受信する。 [0005] 図 17は、 MS移動時のデータパス設定状態を示す図である。 MS 1003の移動があ る一つの ASN1002が管理する BS1004の領域を越えて移動したときの状態を示し ている。 MS1003が異なる ASN1002を跨る X方向への移動(ASN1002a→1002 b間の R4移動)をした場合、それまで通信を行っていてアンカーとして機能する ASN (Anchor ASN) 1002aiま、 ASN1002a自体の移動を実行せずに、 ASN1002a, 1002b間の R4上に DP1024を設定し (R3, R4の関連付け)、移動先の ASN1002 b力も新たな R6上の DP1026bを設定する(R4, R6の関連付け)。移動した MS100 3は、移動先の BS1004bとの間で汎用の ARQ (Automatic Repeat Request) 制御および装置の識別 ID (CID/SFID)を用いて互いに通信を行う。 [0004] The WiMAX system is roughly divided into three nodes: CSN (Core Service Network) 1001, ASN (Access Service Network) 1002, and MS (Mobile Station) 1003. ASN—GW stands for ASN (Gate Way). When communicating with a CN (Correspondent Node) 1010 outside of the MS1003 WiM AX system, the MS1003 uses a data path (DP: Data Path) 1026 configured on R6 between the BS (Base Station) 1004 and the ASN1002. , And the IP packet to CN1010 via MIP session 1023 (within the MIP tunnel) configured on R3 between ASN1002 and CSN1001. FIG. 17 is a diagram showing a data path setting state during MS movement. This shows the status when the MS 1003 moves and moves beyond the BS1004 area managed by one ASN1002. If MS1003 moves in the X direction across different ASN1002s (R4 movement between ASN1002a and 1002b), ASN1002a itself will move until ASN (Anchor ASN) 1002ai that has been communicating and functions as an anchor Without setting, DP1024 is set on R4 between ASN1002a and 1002b (association of R3 and R4), and the destination ASN1002 b force is also set to DP1026b on R6 (association of R4 and R6). The moved MS 1003 communicates with the destination BS 1004b using general-purpose ARQ (Automatic Repeat Request) control and device identification ID (CID / SFID).
[0006] MS1003の移動時に用いられる重要なプリミティブ(Primitive)の一つとして HO —Request (HO— Req)がある。図 18は、プリミティブの情報要素を示す一覧表であ る。この表 1100に示すように、 HO— Requestで定義される代表的な IE (情報要素) としては、 Target BSIDと、 Serving BSIDと、 Anchor GWIDがある。  [0006] HO-Request (HO- Req) is one of the important primitives used when the MS 1003 moves. FIG. 18 is a table showing primitive information elements. As shown in Table 1100, typical IE (information elements) defined by HO-Request include Target BSID, Serving BSID, and Anchor GWID.
[0007] Anchor GWID1101は、 ID (識別子)として用いられており、 Anchor ASN100 2a、もしくは Anchor DP1026aを示す。 HOは、 MS1003が Target BSID (BS1 004b)へハンドオーバするという意味を持つ。このため、 Anchor ASN1002aを経 由しないのであれば、 Primitiveの転送は、 HO— Request (HO— Req) ZHO—R esponse (HO— Rsp)内に記述されている IEの Target BSID、もしくは Serving B SIDに転送するだけで容易に行えるが、後述する [b]の問題点を招く。  [0007] Anchor GWID 1101 is used as an ID (identifier) and indicates Anchor ASN 1002a or Anchor DP 1026a. HO means that MS1003 is handed over to Target BSID (BS1 004b). For this reason, if it does not go through Anchor ASN1002a, the Primitive transfer will be the Target BSID of IE or Serving B SID described in HO—Request (HO—Req) ZHO—Response (HO—Rsp) It can be easily done just by transferring to, but this causes the problem [b] described later.
[0008] WiMAXでは、 Primitiveは Anchor ASNを経由することがオプション(未策定状 態)となっており、実際の転送に関する処理の内容は標準仕様上では何も規定され ていない。 WiMAXにおいて実装状態を考慮した転送の処理は、既存の技術による 交 や SIPなどのルーティング形式とは異なるため、その実装を具体的に考慮した 処理が必要となる。  [0008] In WiMAX, it is an option (undeveloped state) for Primitive to pass through Anchor ASN, and the content of processing related to actual transfer is not stipulated in the standard specification. In WiMAX, the transfer process that considers the implementation status is different from the exchange formats using existing technology and SIP, so processing that specifically considers the implementation is required.
[0009] 特許文献 1 :特開 2006— 80690号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2006-80690
特許文献 2:特開 2006 - 74379号公報  Patent Document 2: Japanese Patent Laid-Open No. 2006-74379
特許文献 3:特表 2003 - 515280号公報  Patent Document 3: Japanese Translation of Special Publication 2003-515280
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0010] しかしながら、現在標準化されて!/、る WiMAXの標準仕様では、ハンドオーバ(HO )を行う際に下記の問題が生じる。  [0010] However, in the standard specification of WiMAX that is currently standardized, the following problems occur when performing handover (HO).
[a] WiMAXの標準仕様上では、 Anchor ASN (Anchor GWID)という IEを含む Primitiveを BSが生成することになつて!/、るが具体的ではな!/、。  [a] According to WiMAX standard specifications, BS generates Primitive including IE called Anchor ASN (Anchor GWID)! /, but it is not concrete! /.
[0011] [b]ハンドオーバ方式の中で、 R4ZR6と呼ばれるインターフェース間で制御信号が Anchor ASN (Anchor GWID、つまり Anchor DP)を通過しない方式では、ュ 一ザ一データを運ぶ R4の DP (データパス)が数珠繋ぎとなる。図 19は、従来技術に よる問題点を説明するための図である。図示のように、 MS1003の移動が複数の AS N1002間を跨ぐ移動となったときには、 Anchor ASN1002a〜移動先の ASN10 02cまでの間の DP1024である R4が数珠繋ぎとなる。この R4の経路が長くなると、パ ケットの遅延や通信品質に影響が出るという問題を生じる。  [B] In the handover method, in which the control signal does not pass through Anchor ASN (Anchor GWID, ie Anchor DP) between the interfaces called R4ZR6, the R4 DP (data path) that carries the user data ) Will be linked together. FIG. 19 is a diagram for explaining problems with the conventional technology. As shown in the figure, when the movement of MS1003 is a movement across a plurality of AS N1002, R4 which is DP1024 between Anchor ASN1002a and the destination ASN1002c becomes a daisy chain. If this R4 path becomes longer, there will be a problem that packet delay and communication quality will be affected.
[0012] [c]HO— Requestの中で定義された IEのみで、ユーザーデータを Anchor ASN ( つまり Anchor DP)を通過させることは、標準上の記述のみでは不可能である。  [C] HO—Passing user data through Anchor ASN (that is, Anchor DP) with only IE defined in Request is impossible by standard description alone.
[d]HO— Responseの中で定義された IEのみで、ユーザーデータを Anchor AS N (つまり Anchor DP)を通過させることは、標準上の記述のみでは不可能である。  [d] HO—Passing user data through Anchor AS N (that is, Anchor DP) with only the IE defined in Response is impossible with the standard description alone.
[0013] 本発明は、上記に鑑みてなされたものであって、アンカーの ASNを経由させたプリ ミティブの転送を行うことができ、 WiMAXのハンドオーバ時にお!、てサービス品質の 低下を招くことがな ヽ移動通信方法および移動通信装置を提供することを目的とす る。  [0013] The present invention has been made in view of the above, and can perform primitive transfer via the ASN of the anchor, resulting in a decrease in service quality during WiMAX handover! The object of the present invention is to provide a mobile communication method and a mobile communication device.
課題を解決するための手段  Means for solving the problem
[0014] 上述した課題を解決し、目的を達成するために、本発明は、 WiMAX通信方式によ り移動局がハンドオーバ可能に通信を行うための移動通信方法であって、前記移動 局がネットワークにエントリーする際に、当該移動局と通信を行う基地局が当該移動 局の固有識別子と、当該移動局に対してアンカーとなるアクセス管理装置の固有識 別子と、を対応付けた設定情報を生成する生成工程を含むことを特徴とする。  [0014] In order to solve the above-described problems and achieve the object, the present invention provides a mobile communication method for allowing a mobile station to perform handover with a WiMAX communication method, wherein the mobile station is a network. When the base station that communicates with the mobile station enters the configuration information that associates the unique identifier of the mobile station with the unique identifier of the access management device that is an anchor for the mobile station. The production | generation process to produce | generate is included, It is characterized by the above-mentioned.
[0015] 上記構成によれば、移動局がネットワークにエントリーする際に、移動局とアンカー のアクセス制御装置との対応を関連付けることができる。これにより、この後、移動局 が移動したノヽンドオーバ時のプリミティブをアンカーのアクセス管理装置を経由させ て転送できるようになる。 [0015] According to the above configuration, when a mobile station enters the network, it is possible to associate the correspondence between the mobile station and the anchor access control device. Thus, after this, the mobile station Primitives at the time of a nodeover that has moved can be transferred via the anchor access management device.
発明の効果  The invention's effect
[0016] 本発明によれば、移動局とアンカーのアクセス制御装置とを関連付けることができる ため、移動局の移動に基づくハンドオーバ時のプリミティブをアンカーのアクセス管 理装置を経由して転送できるようになる。これにより、移動局の移動時においてシステ ムを構成する各装置がそれぞれ必要なハンドオーバの処理を円滑かつ効率的に実 行できるようになる、という効果を奏する。  [0016] According to the present invention, the mobile station and the anchor access control device can be associated with each other, so that the primitive at the time of handover based on the movement of the mobile station can be transferred via the anchor access control device. Become. Thus, there is an effect that each device constituting the system can smoothly and efficiently execute necessary handover processing when the mobile station moves.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、本発明の実施の形態 1による移動通信装置のシステム構成を示す図で ある。  FIG. 1 is a diagram showing a system configuration of a mobile communication apparatus according to Embodiment 1 of the present invention.
[図 2]図 2は、エントリ一時の各構成部の処理を示すシーケンス図である。  [FIG. 2] FIG. 2 is a sequence diagram showing processing of each component unit for temporary entry.
[図 3]図 3は、 Anchor GWIDの設定表を示す図である。  FIG. 3 is a diagram showing a setting table for Anchor GWID.
[図 4]図 4は、 MSのハンドオーバ時の状態を示す図である。  FIG. 4 is a diagram showing a state at the time of handover of an MS.
[図 5]図 5は、ハンドオーバの状態を示す図である。  FIG. 5 is a diagram showing a state of handover.
[図 6]図 6は、ハンドオーバリクエストがアンカー ASNを経由しない例を示す図である  FIG. 6 is a diagram showing an example in which a handover request does not pass through the anchor ASN
[図 7]図 7は、ハンドオーバリクエストがアンカー ASNを経由する例を示す図である。 FIG. 7 is a diagram showing an example in which a handover request passes through an anchor ASN.
[図 8]図 8は、 ASN— GWにおけるハンドォーノ リクエストの転送手順を示すフローチ ヤートである。  [FIG. 8] FIG. 8 is a flowchart showing a procedure for transferring a hand-on request in the ASN-GW.
[図 9]図 9は、ハンドオーバレスポンスがアンカー ASNを経由する例を示す図である。  FIG. 9 is a diagram illustrating an example in which a handover response passes through an anchor ASN.
[図 10]図 10は、 ASN— GWにおけるハンドオーバレスポンスの転送手順を示すフロ 一チャートである。  FIG. 10 is a flowchart showing a handover response transfer procedure in the ASN-GW.
[図 11-1]図 11 1は、データパス R4, R6上での各部の転送処理を示すシーケンス 図である(その 1)。  [FIG. 11-1] FIG. 11 1 is a sequence diagram showing the transfer process of each unit on data paths R4 and R6 (part 1).
[図 11- 2]図 11 2は、データパス R4, R6上での各部の転送処理を示すシーケンス 図である(その 2)。  [FIG. 11-2] FIG. 11 2 is a sequence diagram showing transfer processing of each unit on data paths R4 and R6 (part 2).
[図 12]図 12は、データノ スの設定準備処理を示すフローチャートである。 [図 13]図 13は、データパスの設定処理を示すフローチャートである。 FIG. 12 is a flowchart showing a data-nos setting preparation process. FIG. 13 is a flowchart showing a data path setting process.
[図 14]図 14は、ハンドオーバ前後におけるデータパスの切り替え状態を示す図であ る。  FIG. 14 is a diagram showing a data path switching state before and after handover.
[図 15- 1]図 15— 1は、 DP設定の全状態を示す図である(その 1)。  [Fig. 15-1] Fig. 15-1 is a diagram showing all states of DP setting (part 1).
[図 15- 2]図 15— 2は、 DP設定の全状態を示す図である(その 2)。  [Fig. 15-2] Fig. 15-2 shows all states of DP setting (part 2).
[図 15-3]図 15— 3は、 DP設定の全状態を示す図である(その 3)。  [Fig. 15-3] Fig. 15-3 shows all states of DP setting (No. 3).
[図 15-4]図 15— 4は、 DP設定の全状態を示す図である(その 4)。  [Fig. 15-4] Fig. 15-4 shows all states of DP setting (No. 4).
[図 15-5]図 15— 5は、 DP設定の全状態を示す図である(その 5)。  [Fig. 15-5] Fig. 15-5 shows the entire DP setting status (No. 5).
[図 16]図 16は、 WiMAXにおける移動通信システムの全体構成を示す図である。  FIG. 16 is a diagram showing an overall configuration of a mobile communication system in WiMAX.
[図 17]図 17は、 MS移動時のデータパス設定状態を示す図である。  FIG. 17 is a diagram showing a data path setting state during MS movement.
[図 18]図 18は、プリミティブの情報要素を示す一覧表である。  FIG. 18 is a table showing primitive information elements.
[図 19]図 19は、従来技術による問題点を説明するための図である。  FIG. 19 is a diagram for explaining problems with the prior art.
符号の説明  Explanation of symbols
[0018] 101 CSN [0018] 101 CSN
102 ASN-GW  102 ASN-GW
103 MS  103 MS
104 BS  104 BS
110 CN  110 CN
300 設定表  300 Setting table
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下に添付図面を参照して、この発明にかかる移動通信方法および移動通信装置 の好適な実施の形態を詳細に説明する。この発明は、 WiMAXにおけるハンドォー バ時の処理に関するものであり、上述した課題 [a]〜[d]に対応した下記の特徴的な 構成を有している。 Hereinafter, preferred embodiments of a mobile communication method and a mobile communication device according to the present invention will be described in detail with reference to the accompanying drawings. The present invention relates to processing at the time of handover in WiMAX, and has the following characteristic configuration corresponding to the problems [a] to [d] described above.
[0020] [a] MSが Networkに entryあるいは reentryする際(HO以前のイニシャル時)に 、 Pre— Provisionedと呼ばれるシーケンスの中で ASN—GWにある SFA(Service Flow Authorization) ίま、 BSにある SFM (Service Flow Management)にリ ソース予約の Primitive (メッセージと同義)として RR— Requestを送信する。もしく は、新たな CID (Connection ID)を設定する際に、 ASN— GWにある SFAは、同 様の Primitive (メッセージ)を SFMに送信する。 RR— Requestには、 Anchor G WIDを設定する IEはないが、システムとして一意に決定できるため、この Primitive により、 MSに対する Anchor GWIDを設定する。 [0020] [a] When MS enters or reentry to the network (at the time of initial before HO), SFA (Service Flow Authorization) in ASN-GW in the sequence called Pre-Provisioned or BS RR—Request is sent to SFM (Service Flow Management) as a resource reservation primitive (synonymous with message). Mock When setting a new CID (Connection ID), the SFA in the ASN—GW sends a similar Primitive (message) to the SFM. Although there is no IE that sets Anchor G WID in RR—Request, since it can be uniquely determined as a system, Anchor GWID for MS is set by this Primitive.
[0021] [b] Anchor ASN (Anchor DP)力 複数の DPを経由して MSにデータパケット 送信を実施すると、ネットワーク遅延や品質の低下が起きる可能性があるため、 R4の HO時には、 Anchor ASNから MSまでのデータパス数を最大 2DPに制限する。 [0021] [b] Anchor ASN (Anchor DP) force When data packets are transmitted to the MS via multiple DPs, there is a possibility that network delay and quality degradation may occur. Limit the number of data paths from MS to MS to a maximum of 2DP.
[c] HO— Requestに定義された IEだけでは、 HO— Requestを Anchor ASN ( Anchor DP)を経由させることはできないため、下位レイヤ(IPレイヤ)の情報を含 めた転送ロジックを用いる。  [c] Since only the IE defined in the HO—Request cannot pass the HO—Request through the Anchor ASN (Anchor DP), transfer logic including information of the lower layer (IP layer) is used.
[d] HO— Responseに定義された IEだけでは、 HO— Responseを Anchor AS N (Anchor DP)を経由させることはできないため、下位レイヤの情報を含めた転送 ロジックを用 、る。  [d] Since only the IE defined in HO—Response cannot pass HO—Response via Anchor AS N (Anchor DP), transfer logic including lower layer information is used.
[0022] (実施の形態 1)  [0022] (Embodiment 1)
図 1は、本発明の実施の形態 1による移動通信装置のシステム構成を示す図である 。図 1に示す WiMAXにおける移動通信システムの全体構成であり、各構成部は従 来技術(図 16参照)同様の配置である。 MSがネットワークに対して初期エントリーす る際 (Network entry)の状態を示している。また、図 2は、エントリ一時の各構成部 の処理を示すシーケンス図である。これら図 1および図 2を用いて説明する。以下、ハ ンドオーバのリクエスト(Request)は Req、レスポンス (Response)は Rspと略称する  FIG. 1 is a diagram showing a system configuration of a mobile communication apparatus according to Embodiment 1 of the present invention. This is the overall configuration of the mobile communication system in WiMAX shown in Fig. 1, and each component is arranged in the same way as the conventional technology (see Fig. 16). This shows the state of the initial entry (Network entry) to the network by the MS. FIG. 2 is a sequence diagram showing the processing of each component unit for temporary entry. This will be described with reference to FIG. 1 and FIG. In the following, the handover request (Request) is abbreviated as Req, and the response (Response) is abbreviated as Rsp.
[0023] WiMAXシステムは、 CSN101と、 ASN— GW102と、 MS103の各ノードからなる 。 110は CNであり、 104は BSである。 ASN— GW102は、アクセス管理装置、 BSは 基地局、 MSは移動局、とそれぞれ呼称する。 [0023] The WiMAX system includes CSN101, ASN-GW102, and MS103 nodes. 110 is CN and 104 is BS. ASN-GW 102 is called an access management device, BS is a base station, and MS is a mobile station.
[0024] MS103 (MSID=MS1)は、 Network entryを実施する。この MS103は、 BS1 04 (BSID=B1)、ASN— GW102 (ASN— GWID=A1)を介してCSN101の認 証を受ける(S 101)。 Pre— Provisioned Service Flow Creation時の PD—Rs pで設定が可能である場合、 MS103の固有識別子(MSID)に対する Anchorの AS N— GW102の固有識別子 Anchor GWIDは、 PD—Rspを送信してきた ASN— G W102として設定する。すなわち、 BS104は、 ASN— GW102に対し PD— Req (Sl 02)を行い、 ASN— GW102は、 CSN101に対し PD— Req (S103)を行う。この後 、 CSN101からの PD— Rsp (S104)を受けた ASN— GW102は、 BS104に対して PD—Rspを送出する(S105)。このとき、 BS104は、 Anchor GWIDの設定を行う( S106)。 [0024] MS103 (MSID = MS1) performs network entry. The MS 103 receives the authentication of the CSN 101 via the BS 104 (BSID = B1) and the ASN—GW 102 (ASN—GWID = A1) (S 101). Pre- Provisioned Service Flow Creation When PD-Rsp can be set, Anchor AS for the unique identifier (MSID) of MS103 N—The unique identifier of GW102 Anchor GWID is set as ASN—GW102 that has transmitted PD-Rsp. That is, the BS 104 performs PD-Req (Sl 02) on the ASN-GW 102, and the ASN-GW 102 performs PD-Req (S103) on the CSN 101. Thereafter, the ASN-GW 102 that has received the PD-Rsp (S104) from the CSN 101 sends the PD-Rsp to the BS 104 (S105). At this time, the BS 104 sets Anchor GWID (S106).
[0025] 図 3は、 Anchor GWIDの設定表を示す図である。 BS104 (BSID = BS1)は、 P D-Req (S102)に対する応答 PD—Rsp (S 105)を受けた ASN— GW102が MSI 03 (MSID = MS1)の Anchorであることを示す Anchor GWID =A1として対応付 けた設定情報を生成し、設定表 300として設定する。この設定情報は、 BSK104) に設けられる図示しない生成手段が生成する。この設定情報は、図 18に示した Anc hor GWID1101として用いられる。そして、 MS103は、 DSA(Dynamic Service Addition) Req, Rsp等によりサービスフロー ID (SFID)の生成や削除を行う。また 、 BS104と ASN— GW102との間では、パス登録に関する情報のやりとりを行う。  FIG. 3 is a diagram showing an anchor GWID setting table. BS104 (BSID = BS1) is the Anchor GWID = A1 indicating that the ASN—GW102 that received the PD—Rsp (S105) response to PD-Req (S102) is the anchor of MSI 03 (MSID = MS1). Generate the corresponding setting information and set as setting table 300. This setting information is generated by generating means (not shown) provided in BSK 104). This setting information is used as Anchor GWID 1101 shown in FIG. Then, the MS 103 generates and deletes a service flow ID (SFID) by DSA (Dynamic Service Addition) Req, Rsp, or the like. In addition, information regarding path registration is exchanged between the BS 104 and the ASN-GW 102.
[0026] その後、 MS 103は、 IPアドレスを取得し、 MIPの Registration (CMIPであれば M S103自身、 PMIPであれば ASN— GW102内の PMIP client機能)を実施する。 新たな Service Flowを設定してきた場合も、 Primitiveは、 Anchor ASN (A1) 1 02まで転送されるので、 MSID (MS 1)に対する Anchor ASN=A1として一意に 決定される。  [0026] After that, the MS 103 acquires an IP address and performs MIP Registration (MS 103 itself for CMIP, ASN—PMIP client function in the GW 102 for PMIP). Even when a new Service Flow is set, since the primitive is transferred to Anchor ASN (A1) 102, it is uniquely determined as Anchor ASN = A1 for MSID (MS 1).
[0027] 図 4は、 MSのハンドオーバ時の状態を示す図である。 MS103 (MSID=MS1)が R4を跨ぐ移動を含む場合の例を示している。上述したように、 MS 103の Network entry時に、 BS104 (BSID = BS1)は、図 3に示す設定表 300を作成している。した がって、 MS103 (MSID = MS1)のハンドオーバ時、 BS104 (BSID = BS1)の図 示しない送出手段は、この設定表 300の設定情報を HO— Reqの IE (情報要素)に 載せて転送する。図示の例では、この HO— Reqは、 Anchor ASN102 (ASN— G WID= Anchor GWID=A1)から、 HO先の BS104 (BSID = BS2)まで転送され る。この際、 HO— Reqは、 BSID = BS2を収容する ASN— GW102 (ASN— GWI D=A2)を経由して BS 104 (BSID = BS2)まで転送される。 [0028] (ハンドオーバ時のケース 1) FIG. 4 is a diagram showing a state at the time of handover of the MS. An example in which MS103 (MSID = MS1) includes movement across R4 is shown. As described above, the BS 104 (BSID = BS1) creates the setting table 300 shown in FIG. Therefore, when MS103 (MSID = MS1) is handed over, the transmission means (not shown) of BS104 (BSID = BS1) loads the setting information of this setting table 300 on the HO—Req IE (information element) and transfers it. To do. In the example shown in the figure, this HO—Req is transferred from Anchor ASN102 (ASN—GWID = Anchor GWID = A1) to BS 104 (BSID = BS2) of the HO destination. At this time, HO—Req is transferred to BS 104 (BSID = BS2) via ASN—GW 102 (ASN—GWI D = A2) accommodating BSID = BS2. [0028] (Case 1 at handover)
次に、 MS 103のハンドオーバ時の各種ケースについて説明する。図 5は、ハンドォ ーバの状態を示す図である。この図 5の例は、 MS103力 Network entry (図 1参 照)の後、最低 1回は R4を跨 、で他の ASN -GW102 (ASN - GWID = A2)への ハンドオーバを行い(位置 P1)、その後、同一リレー(Relay)の ASN— GW102 (AS N-GWID=A2)内でのハンドオーバを行った(位置 P2)ケースである。  Next, various cases at the time of handover of the MS 103 will be described. FIG. 5 is a diagram showing the state of the handover. In the example of Fig. 5, after MS103 force network entry (see Fig. 1), at least once, R4 is crossed over to another ASN-GW102 (ASN-GWID = A2) (position P1) This is a case where handover was subsequently performed within ASN-GW102 (AS N-GWID = A2) of the same relay (Relay) (position P2).
[0029] 図 6は、ハンドォーノ リクエストがアンカー ASNを経由しない例を示す図である。 H O - Req力 Anchor ASN— GW 102 (ASN— GWID = A 1 )を経由しな!/、場合は、 この HO— Reqを Target BSIDである BS104 (BSID = BS3)に送信するだけでよ い。このため、まず位置 P1において MS103からの HO要求を受けた BS104 (BSID = BS 2)は、 HO— Reqをこの BS 104を管理する ASN— GW102 (ASN - GWID = A2)に送信する(S201)。 Relay (Anchorではない) ASN— GW102 (ASN— GWI D=A2)は、 HO— Req内の IE (図 18参照)から Target BSIDを抽出し、 HO— Re qを Target BSID (位置 P2)の BS104 (BSID = BS3)に送信する(S202)。この場 合、 Anchorの ASN— GW102 (ASN— GWID=A1)は、 HO— ReqZRspを受け 取ることがない。  [0029] FIG. 6 is a diagram illustrating an example in which the handono request does not pass through the anchor ASN. If the H O-Req force Anchor ASN—GW 102 (ASN—GWID = A 1) is not passed! /, This HO—Req need only be sent to the target BSID BS104 (BSID = BS3). For this reason, the BS 104 (BSID = BS 2) that received the HO request from the MS 103 at the position P1 first transmits the HO—Req to the ASN—GW 102 (ASN—GWID = A 2) that manages the BS 104 (S201) . Relay (not Anchor) ASN—GW102 (ASN—GWI D = A2) extracts Target BSID from IE in HO—Req (see Figure 18), and HO—Req is BS104 of Target BSID (position P2). Transmit to (BSID = BS3) (S202). In this case, Anchor ASN—GW102 (ASN—GWID = A1) does not receive HO—ReqZRsp.
[0030] 図 7は、ハンドォーノ リクエストがアンカー ASNを経由する例を示す図である。図 7 は、図 6と異なり、 HO— Reqが Anchorの ASN— GW102 (ASN— GWID=A1)を 経由する場合にっ 、て示して 、る。 HO— Reqに定義されて!、る IEのみで Primitive を Anchorの ASN - GW102 (ASN - GWID = A1)を経由して Target BSIDの B S104 (BSID = BS3)に転送することはできない。し力し、 ASN— GW102 (ASN— GWID=A1, A2)は、 HO— Reqの送信元(MS103)を、下位のレイヤの IPアドレス 等から固有の識別情報として得ることができる。これにより、図 7に示すように、 Primit iveの転送が可能となる。すなわち、位置 P1の MS103からの HO— Reqは、 BS104 (BSID = BS2)→ASN - GW102 (ASN - GWID=A2)→Anchorの ASN - GW 102 (ASN- GWID = A 1 )→ ASN— GW 102 (ASN— GWID =A2)→位置 P 2の BS104 (Targetの BSID = BS3)に転送することができるようになる。  [0030] FIG. 7 is a diagram illustrating an example in which a handono request passes through an anchor ASN. Unlike FIG. 6, FIG. 7 shows the case where HO—Req passes through Anchor ASN—GW 102 (ASN—GWID = A1). HO—As defined in Req! Primitives cannot be transferred to Target BSID B S104 (BSID = BS3) via Anchor ASN-GW102 (ASN-GWID = A1) only by IE. Thus, the ASN-GW 102 (ASN-GWID = A1, A2) can obtain the HO-Req transmission source (MS103) as unique identification information from the IP address of the lower layer. As a result, as shown in FIG. That is, HO—Req from MS103 at position P1 is BS104 (BSID = BS2) → ASN-GW102 (ASN-GWID = A2) → Anchor ASN-GW102 (ASN-GWID = A1) → ASN—GW102 (ASN—GWID = A2) → can be transferred to BS104 at position P2 (Target BSID = BS3).
[0031] (ハンドォーノ リクエスト HO— Reqの転送手順) 図 8は、 ASN— GWにおけるハンドオーバリクエストの転送手順を示すフローチヤ ートである。上述した各 ASN— GW102の個々が図 8に示す処理を実行する。この 際、 自 ASN— GW102が Anchorであるか否かは設定により予め判っているものとす る。図中、 TBSは Target BSID、 A— GWは Anchor GWID、自 GWは自 ASN— GWIDゝ R— GWは、 Relay ASN -GWID (Target BSを管理する ASN— GW) の各装置の略である。 [0031] (Handono Request HO—Req Transfer Procedure) Figure 8 is a flow chart showing the procedure for transferring a handover request in the ASN-GW. Each ASN-GW 102 described above executes the processing shown in FIG. At this time, it is assumed that whether or not the own ASN-GW 102 is Anchor is known in advance by setting. In the figure, TBS is Target BSID, A—GW is Anchor GWID, Self GW is self ASN—GWID ゝ R—GW is an abbreviation for Relay ASN-GWID (ASN—GW managing Target BS).
[0032] ASN— GW102は、 HO— Reqを受信すると(ステップ S801)、この HOが BS104 力もの受信か判断する(ステップ S802)。 HOが BS 104からの受信であれば (ステツ プ S802 :Yes)、自 GW=A— GWか判断する(ステップ S803)。 自 GW— ASN102 が Anchorであれば (ステップ S803: Yes)、 TBSは自 ASN配下の BSであるか判断 する(ステップ S804)。 HO— Reqの TBSが自 ASN - GW102配下の BS 104であれ ば (ステップ S804: Yes)、この HO—Reqをこの自 ASN - GW102配下の BS 104に 送信し (ステップ S805)、 HO— Reqの転送処理を終了する。なお、この際の R6のデ ータパス (DP)は 1本に制限される(詳細は後述する)。  [0032] When the ASN-GW 102 receives the HO-Req (step S801), the ASN-GW 102 determines whether this HO has received the power of BS 104 (step S802). If HO is received from BS 104 (step S802: Yes), it is determined whether GW = A—GW (step S803). If the own GW—ASN102 is Anchor (step S803: Yes), it is determined whether the TBS is a BS under its own ASN (step S804). If the TBS of HO—Req is BS 104 under its own ASN-GW102 (step S804: Yes), this HO—Req is sent to BS 104 under its own ASN-GW102 (step S805). End the transfer process. At this time, the data path (DP) of R6 is limited to one (details will be described later).
[0033] ステップ S802において、 HO—Reqが BS104からの受信でなければ (ステップ S8 02 :No)、 HO— Reqは他の ASN— GW102からの受信であり、次に、 TBSは自 AS N配下の BSであるか判断する(ステップ S806)。そして、 TBSが自 ASN— GW102 配下の BS104であれば (ステップ S806 :Yes)、 ASN— GW102は、この HO—Req を自 ASN - GW102配下の BS 104に送信し (ステップ S807)、 HO—Reqの転送処 理を終了する。なお、この際の R6の DPは 1本に制限される。  [0033] In step S802, if HO—Req is not received from BS 104 (step S8 02: No), HO—Req is received from another ASN—GW 102, and then TBS is subordinate to its own AS N. It is determined whether it is a BS (step S806). If TBS is BS104 under its own ASN-GW102 (step S806: Yes), ASN-GW102 sends this HO-Req to BS104 under its own ASN-GW102 (step S807), and HO-Req The transfer process ends. In this case, the DP of R6 is limited to one.
[0034] 一方、ステップ S806において、 TBSが自 ASN— GW102配下の BS104でなけれ ば(ステップ S806 :No)、 HO— Reqを R— GWに送信し(ステップ S808)、 HO— Re qの転送処理を終了する。すなわち、 HO—Reqを R4を介して Target BS104を管 理する ASN—GW102に転送する。なお、この際の R4の DPは 1本に制限される。  [0034] On the other hand, in step S806, if the TBS is not BS 104 under its own ASN—GW 102 (step S806: No), HO—Req is transmitted to R—GW (step S808), and HO—Re q transfer processing is performed. Exit. In other words, HO-Req is transferred to ASN-GW 102 that manages Target BS 104 via R4. In this case, the R4 DP is limited to one.
[0035] また、ステップ S803において、自 GW—ASN102が Anchorでなければ (ステップ S803 :No)、 HO— Reqを A— GWに送信し(ステップ S809)、 HO— Reqの転送処 理を終了する。さらに、ステップ S804において、 HO— Reqの TBSが自 ASN— GW 102配下の BS104でなければ (ステップ S804 :No)、 HO— Reqを R— GWに送信し (ステップ S810)、 HO— Reqの転送処理を終了する。すなわち、 HO— Reqを R4を 介して Target BS104を管理する ASN— GW102に転送する。なお、この際の R4 の DPは 1本に制限される。 [0035] In step S803, if the own GW-ASN102 is not Anchor (step S803: No), HO-Req is transmitted to A-GW (step S809), and HO-Req transfer processing is terminated. . In step S804, if the TBS of HO—Req is not BS104 under its own ASN—GW 102 (step S804: No), HO—Req is sent to R—GW. (Step S810), HO—Req transfer processing is terminated. That is, HO-Req is transferred to ASN-GW 102 that manages Target BS 104 via R4. In this case, the DP of R4 is limited to one.
[0036] 図 8に示した処理内容を図 7のハンドォーノ リクエストがアンカー ASNを経由する 例を用いて具体的に説明する。図 7に示したように、 MS103は、位置 P1から P2へハ ンドオーバを実施したとする。 BS104は、 HO— Reqに MS 103が位置 P2へ移動す るように、 Target BSID (BSID = BS3)をセットし、 Anchor GWIDに Anchorの A SN - GW102 (ASN - GWID = Anchor GWID =A1)を設定して Relay ASN GW102 (ASN— GWID=A2)へ送信する(図 7の経路 al)。  The processing content shown in FIG. 8 will be specifically described using an example in which the handono request in FIG. 7 passes through the anchor ASN. As shown in FIG. 7, it is assumed that MS103 has performed a handover from position P1 to P2. BS104 sets Target BSID (BSID = BS3) so that MS 103 moves to position P2 in HO—Req, and Anchor A SN-GW102 (ASN-GWID = Anchor GWID = A1) in Anchor GWID Configure and send to Relay ASN GW102 (ASN—GWID = A2) (route al in Figure 7).
[0037] Relay ASN— GW102 (ASN— GWID=A2)は、まず Serving BS (つまり BS1 04)から HO— Reqを受信しており、かつ、自 ASN— GWは Anchorの GWIDでない こと(≠A1)を判断し、 Anchorの ASN— GW102 (Anchor GWID=A1)に HO— Reqを転送する(図 7の経路 bl、図 8のステップ S803 :No→ステップ S809の処理)。  [0037] Relay ASN—GW102 (ASN—GWID = A2) first receives HO—Req from Serving BS (ie BS1 04), and its own ASN—GW is not Anchor GWID (≠ A1) And HO—Req is transferred to Anchor ASN—GW 102 (Anchor GWID = A1) (route bl in FIG. 7, step S803: No → step S809 in FIG. 8).
[0038] 次に、 Anchorの ASN— GW102 (ASN— GWID=A1)は、 HO— Reqを BS104 力ら受信していなくて、かつ、自 ASNが Anchorの ASN (Anchor GWID=A1)で あることを認識している。これにより、 Anchorの ASN— GW102 (ASN— GWID=A 1)は、 Target BSID (BSID = BS3)を管理する Relay ASN— GW102 (ASN— GW=A2)へ 110—1^ を転送する(図7の経路(:1、図 8のステップ S806 :No→ステ ップ S808の処理)。 [0038] Next, Anchor ASN—GW102 (ASN—GWID = A1) does not receive HO—Req from BS104, and its own ASN is Anchor ASN (Anchor GWID = A1) Recognize. As a result, Anchor ASN—GW102 (ASN—GWID = A 1) forwards 110—1 ^ to Relay ASN—GW102 (ASN—GW = A2) managing Target BSID (BSID = BS3) (FIG. 7). Path ( 1: Step S806: No → Step S808 in Fig. 8).
[0039] 一度 HO— Reqを送信している Relay ASN— GW102 (ASN— GWID=A2)は 、再度、同じ内容の HO— Reqを受信する。し力し、 BS 104から HO— Reqを受信し ておらず、かつ、 Target BSID (BSID = BS3)が自 ASNの配下に存在しているた め、 Target BSID (BSID = BS3)に対して HO— Reqを転送する(図 7の経路 dl、 図 8のステップ S806 :Yes→ステップ S807の処理)。  [0039] The Relay ASN-GW 102 (ASN-GWID = A2), which has once transmitted the HO-Req, receives the HO-Req having the same content again. However, since HO—Req has not been received from BS 104 and Target BSID (BSID = BS3) exists under its own ASN, HO against Target BSID (BSID = BS3) — Req is transferred (path dl in FIG. 7, step S806: Yes → step S807 in FIG. 8).
[0040] (ハンドオーバレスポンス HO— Rspの転送手順)  [0040] (Handover Response HO—Rsp Transfer Procedure)
図 9は、ハンドオーバレスポンスがアンカー ASNを経由する例を示す図である。ま た、図 10は、 ASN— GWにおけるハンドオーバレスポンスの転送手順を示すフロー チャートである。 HO— Response (HO—Rsp)の場合は、 Target BSID (BSID = BS3)から Serving BSID (SBSと称す、 BSID=BS2)に送信する Primitiveにつ いて、 HO— Req (図 8参照)とほぼ同様の処理内容となる。なお、 HO— Reqの転送 を基準としてみて、この HO— Reqの送信元は SBSであり、送信先は TBSである。逆 に、 HO—Rspの転送については、 HO—Reqの送信先の TBSから HO—Rspから送 信され、 HO— Reqの送信元の SBSに転送されることになる。 FIG. 9 is a diagram illustrating an example in which the handover response passes through the anchor ASN. FIG. 10 is a flowchart showing a handover response transfer procedure in the ASN-GW. For HO—Response (HO—Rsp), Target BSID (BSID = The Primitive transmitted from BS3) to Serving BSID (SBS, BSID = BS2) is almost the same as HO-Req (see Fig. 8). Note that the transmission source of this HO-Req is SBS and the transmission destination is TBS, based on the transfer of HO-Req. Conversely, for HO-Rsp transfer, the HO-Req destination TBS is sent from the HO-Rsp and forwarded to the HO-Req source SBS.
[0041] 図 10に示す各処理は、上述した各 ASN— GW102が個々に実行する。この際、 自 ASN— GW102が Anchorであるか否かは設定により予め判っているものとする。  Each process shown in FIG. 10 is individually executed by each ASN-GW 102 described above. At this time, it is assumed that whether or not the own ASN-GW 102 is Anchor is known in advance by setting.
[0042] ASN— GW102は、 HO— Rspを受信すると(ステップ S1001)、この HOが BS104 力もの受信か判断する(ステップ S 1002)。 HOが BS 104からの受信であれば (ステツ プ S1002 :Yes)、自 GW=A— GWか判断する(ステップ S1003)。 自 GW— ASN1 02が Anchorであれば (ステップ S1003 : Yes)、 SBSが自 ASN配下の BSである力 判断する(ステップ S1004)。 HO— Rspの SBSが自 ASN— GW102配下の BS104 であれば (ステップ S 1004: Yes)、この HO—Rspを SBS 104に送信し (ステップ S 10 05)、 HO— Rspの転送処理を終了する。なお、この際の R6のデータパス(DP)は 1 本に制限される。  [0042] When the ASN-GW 102 receives the HO-Rsp (step S1001), the ASN-GW 102 determines whether this HO has received as much as the BS 104 (step S 1002). If HO is received from BS 104 (step S1002: Yes), it is determined whether GW = A—GW (step S1003). If the own GW—ASN102 is Anchor (step S1003: Yes), it is determined whether the SBS is a BS under its own ASN (step S1004). If the SBS of the HO—Rsp is the BS104 under its own ASN—GW102 (step S 1004: Yes), this HO—Rsp is sent to the SBS 104 (step S 10 05), and the HO—Rsp transfer process is terminated . In this case, the data path (DP) of R6 is limited to one.
[0043] ステップ S1002において、 HO—Rspが BS104からの受信でなければ (ステップ S 1002 :No)、 HO—Rspは他の ASN— GW102からの受信であり、次に、 SBSは自 ASN配下の BSであるか判断する(ステップ S 1006)。そして、 SBSが自 ASN— GW 102配下の BS104であれば (ステップ S1006 :Yes)ゝ ASN— GW102は、この HO Rspを SBS104に送信し (ステップ S1007)、 HO— Rspの転送処理を終了する。 なお、この際の R6の DPは 1本に制限される。  [0043] In step S1002, if HO—Rsp is not received from BS 104 (step S 1002: No), HO—Rsp is received from another ASN—GW 102, and then SBS is under its own ASN. It is determined whether it is BS (step S 1006). If the SBS is the BS 104 under its own ASN-GW 102 (step S1006: Yes), the ASN-GW 102 transmits this HO Rsp to the SBS 104 (step S1007), and ends the HO-Rsp transfer process. In this case, the DP of R6 is limited to one.
[0044] 一方、ステップ S1006において、 SBSが自 ASN— GW102配下の BS104でなけ れば (ステップ S 1006 : No)、 HO—Rspを R—GWに送信し (ステップ S 1008)、 HO Rspの転送処理を終了する。なお、この際の R4の DPは 1本に制限される。  [0044] On the other hand, in step S1006, if SBS is not BS104 under its own ASN—GW102 (step S1006: No), HO—Rsp is transmitted to R-GW (step S1008), and HO Rsp is transferred. End the process. In this case, the R4 DP is limited to one.
[0045] また、ステップ S1003において、 自 GW— ASN102が Anchorでなければ (ステツ プ S 1003 : No)、 HO—Rspを A—GWに送信し(ステップ S 1009)、 HO—Rspの転 送処理を終了する。さらに、ステップ S1004において、 HO— Rspの SBSが自 ASN — GW102配下の BS 104でなければ (ステップ S 1004 : No)、 HO—Rspを R—GW に送信し (ステップ S1010)、 HO— Rspの転送処理を終了する。なお、この際の R4 の DPは 1本に制限される。 [0045] In step S1003, if GW-ASN102 is not Anchor (step S1003: No), HO-Rsp is transmitted to A-GW (step S1009), and HO-Rsp transfer processing is performed. Exit. Further, in step S1004, if the SBS of HO—Rsp is not BS 104 under its own ASN—GW102 (step S1004: No), HO—Rsp is changed to R—GW. (Step S1010), and the HO—Rsp transfer process ends. In this case, the DP of R4 is limited to one.
[0046] 図 10に示した処理内容を図 9のハンドオーバレスポンスがアンカー ASNを経由す る例を用いて具体的に説明する。図 9に示したように、 MS103は、位置 P1から P2へ ハンドオーバを実施したとする。  The processing contents shown in FIG. 10 will be specifically described using an example in which the handover response in FIG. 9 passes through the anchor ASN. As shown in FIG. 9, it is assumed that the MS 103 performs a handover from the position P1 to P2.
[0047] まず、 HO—Reqを受信した Target BSID (BS104、 BSID = BS3)は、自分のリ ソースをチェックして HO— Rspの各 IEを生成する(図 18参照)。 HO— Rspの中の A nchor GWIDおよび Serving BSID (図 18参照)は、 HO— Reqから受信した IEを 入れて、 ASN -GW102 (ASN GWID=A2)へ送信する(図 9の経路 a2)。  [0047] First, the Target BSID (BS104, BSID = BS3) that received the HO—Req checks its own resource and generates each HO—Rsp IE (see FIG. 18). The nchor GWID and Serving BSID (see Fig. 18) in the HO—Rsp are sent to the ASN-GW102 (ASN GWID = A2) with the IE received from the HO—Req (route a2 in Fig. 9).
[0048] Target BSID (BSID = BS3)から HO— Rspを受け取った ASN— GW102 (AS N— GWID=A2)は、 自 ASNが Anchorの ASN— GWでないことから、 Anchorの ASN- GW 102 (ASN - GWID = Anchor GWID = A 1 )へ HO - Rspを送信する (図 9の経路 b2、図 10のステップ S1003 :No→ステップ S1009の処理)。  [0048] The ASN—GW102 (AS N—GWID = A2) that received the HO—Rsp from the Target BSID (BSID = BS3) is not the Anchor ASN—GW, so the ASN-GW 102 (ASN -HO-Rsp is transmitted to GWID = Anchor GWID = A 1) (route b2 in FIG. 9, step S1003: No → step S1009 in FIG. 10).
[0049] Anchorの ASN— GW102 (ASN— GWID=A1)は、 HO— Rspを Target BSI D (BSID = BS3)から受信しておらず、かつ、 Serving BSID (BSID = BS2)が自 分の管理下ではな 、ので、この HO— Rspを Relayの ASN - GW102 (ASN - GWI D=A2)へ送信する(図 9の経路 c2、図 10のステップ S 1006: No→ステップ S 1008 の処理)。  [0049] Anchor ASN—GW102 (ASN—GWID = A1) has not received HO—Rsp from Target BSID (BSID = BS3), and Serving BSID (BSID = BS2) is self-managed. Since it is not below, this HO—Rsp is transmitted to ASN-GW102 (ASN-GWI D = A2) of Relay (path c2 in FIG. 9, step S 1006 in FIG. 10: No → step S 1008 processing).
[0050] Relayの ASN— GW102 (ASN— GWID=A2)は、 Anchorの ASN— GW102 ( ASN— GWID=A1)から HO— Rspを受信すると、 Target BSID (BSID = BS2) からの受信ではなぐかつ、 Serving BSID (BSID=BS3)は、自 ASN—GW102 (ASN— GWID=A2)の配下に存在しているので、 Serving BSID (BSID = BS2 )の BS104に対して 110—1^ を送信する(図9の経路(12、図 10のステップ S 1006 : Yes→ステップ S1007の処理)。  [0050] When Relay ASN—GW102 (ASN—GWID = A2) receives HO—Rsp from Anchor ASN—GW102 (ASN—GWID = A1), it does not receive from Target BSID (BSID = BS2). Since Serving BSID (BSID = BS3) exists under its own ASN—GW102 (ASN—GWID = A2), 110—1 ^ is transmitted to BS104 of Serving BSID (BSID = BS2) ( The route in FIG. 9 (12, step S 1006 in FIG. 10: Yes → step S 1007).
[0051] (ハンドオーバ時におけるデータパス R4, R6間での各部の処理)  [0051] (Processing of each part between data paths R4 and R6 at the time of handover)
次に、ハンドオーバ時におけるデータパス(DP) R4, R6間での各部の処理につい て説明する。図 11 1および図 11 2は、それぞれデータパス R4, R6上での各部 の転送処理を示すシーケンス図である。これらの図には、図 7に示した HO—Req、 および図 9に示した HO— Rsp時における各構成が示されている。すなわち、図 11— 1および図 11— 2に示した Relay ASN— GWは、図 7および図 9に記載の同一の A SN— GW102 (ASN— GWID=A2)である。また、 Serving BS (SBS)は、 BS10 4 (BSID = BS2)であり、 Target BS (TBS)は BS104 (BSID = BS3)である。 Next, processing of each unit between the data paths (DP) R4 and R6 at the time of handover will be described. FIG. 111 and FIG. 112 are sequence diagrams showing the transfer processing of each part on the data paths R4 and R6, respectively. These figures show the HO-Req shown in Figure 7, And each configuration at the time of HO-Rsp shown in Fig. 9 is shown. That is, the Relay ASN—GW shown in FIGS. 11-1 and 11-2 is the same ASN—GW 102 (ASN—GWID = A2) shown in FIGS. Serving BS (SBS) is BS10 4 (BSID = BS2), and Target BS (TBS) is BS104 (BSID = BS3).
[0052] 1. MS103のハンドオーバ時、 SBS104 (BSID = BS2)は、上述したように、 MSI Dと Anchor GWIDとを対応付けた設定情報(図 3参照)を生成する(ステップ S110 1)。この設定情報は、 HO— Reqに載せて ASN— GW102に送出される。 ASN— G W102同士間では、それぞれに設けられて転送手段(図示略)が上述した(図 8参照 ) HO— Req転送の処理を実行する(ステップ S 1102)。 TBS104 (BSID = BS3)で は、 HO— Reqに含まれている設定情報から MSIDと Anchor GWIDを図示しない メモリ上に記憶する (ステップ S1103)。  [0052] 1. At the time of MS103 handover, as described above, SBS104 (BSID = BS2) generates setting information (see FIG. 3) in which MSID and Anchor GWID are associated (step S1101). This setting information is sent to the ASN-GW 102 on the HO-Req. Between the ASN-GWs 102, a transfer means (not shown) provided for each executes the HO-Req transfer process described above (see FIG. 8) (step S1102). In TBS104 (BSID = BS3), the MSID and Anchor GWID are stored in a memory (not shown) from the setting information included in the HO—Req (step S1103).
[0053] 2. TBS104 (BSID = BS3)は、上述した(図 10参照) HO— Rsp転送の処理に基 づき、 Context Regを SBS104 (BSID = BS2)に送出する(ステップ S1104)。  [0053] 2. TBS104 (BSID = BS3) sends Context Reg to SBS104 (BSID = BS2) based on the HO—Rsp transfer process described above (see FIG. 10) (step S1104).
3. SBS104 (BSID = BS2)は、上述した(図 8参照) HO—Req転送の処理に基づ き、 Context Rprtを TBS104 (BSID = BS3)に送出する(ステップ SI 105)。これ ら 2. 3.のプリミティブは、 1. HO— Reqと同一の転送先へ転送される必要がある他 のプリミティブである。  3. SBS104 (BSID = BS2) sends Context Rprt to TBS104 (BSID = BS3) based on the HO—Req transfer process described above (see Fig. 8) (step SI 105). These primitives in 2. 3. are other primitives that need to be transferred to the same destination as 1. HO—Req.
[0054] 4. TBS104 (BSID = BS3)は、メモリ上に保存されている設定情報(MSIDと Anc hor GWID)を用いて、 Anchorの ASN— GW102 (ASN— GWID=A1)に対して Path Pre -Reg Reqを送出する(ステップ SI 106)。この Path Pre -Reg Req は、後述する所定の転送処理 (ステップ SI 107)に基づき行われる。  [0054] 4. TBS104 (BSID = BS3) uses the setting information (MSID and Anchor GWID) stored in the memory to set the Path Pre for Anchor ASN—GW102 (ASN—GWID = A1). -Reg Req is sent (step SI 106). This Path Pre-Reg Req is performed based on a predetermined transfer process (step SI 107) described later.
5. Anchorの ASN— GW102 (ASN— GWID=A1)は、 TBS104 (BSID = BS3 )に対して、 Relay ASN— GW102 (ASN— GWID=A2)を経由して Path Pre— Reg Rspを応答する(ステップ SI 108)。  5. Anchor ASN—GW102 (ASN—GWID = A1) responds to TBS104 (BSID = BS3) with Path Pre—Reg Rsp via Relay ASN—GW102 (ASN—GWID = A2) ( Step SI 108).
6. TBS104 (BSID = BS3)は、 Anchorの ASN— GW102 (ASN— GWID=A1 )に対して、 Pre— Regの要求に対する確認の Primitiveとして Path Pre -Reg A ckを送出する(ステップ S 1109)。  6. TBS104 (BSID = BS3) sends Path Pre-Reg A ck as a Primitive for confirmation of Pre-Reg request to Anchor ASN—GW102 (ASN—GWID = A1) (step S 1109) .
[0055] これら 4. Path Pre -Reg Reqと、 5. Path Pre -Reg Rspと、 6. Path Pre -Reg Ackは、 DPのパスのリソースを確保する予約確認のために、 Anchorの AS N-GW102 (ASN GWID = A1)とシステムを構成する複数の BS 104に対して行 われる。 [0055] These 4. Path Pre -Reg Req, 5. Path Pre -Reg Rsp, 6. Path Pre -Reg Ack is performed to Anchor AS N-GW102 (ASN GWID = A1) and a plurality of BSs 104 constituting the system in order to confirm a reservation for securing DP path resources.
[0056] 7. TBS104 (BSID = BS3)は、 SBS104 (BSID = BS2)に対して、上述した(図 1 0参照) HO—Rsp転送の処理に基づき、 HO—Rspを送出する(ステップ S 1110)。  [0056] 7. TBS104 (BSID = BS3) sends HO-Rsp to SBS104 (BSID = BS2) based on the HO-Rsp transfer process described above (see FIG. 10) (step S1110). ).
8. SBS104 (BSID = BS2)は、 HO— Rspの要求に対する確認 Primitiveとして H O— Ackを TBS104 (BSID = BS3)に送出する(ステップ S 1111)。  8. SBS104 (BSID = BS2) sends HO—Ack to TBS104 (BSID = BS3) as a confirmation primitive for the HO—Rsp request (step S1111).
9.以上の処理により、一つの Target BS (BSID = BS3)が決定し、 MS103のハ ンドオーバ先が決定する(ステップ S1112)。そして SBS104 (BSID=BS2)は、上 述した(図 8参照) HO— Req転送の処理に基づき、 HO— Confirmを TBS 104 (BSI D = BS3)に送出する(ステップ S1113)。 TBS104 (BSID=BS3)は、 HO— Confi rmに記載されて!、る Target BSの情報を記憶する(ステップ S 1114)。  9. With the above processing, one Target BS (BSID = BS3) is determined, and the handover destination of MS103 is determined (step S1112). Then, SBS104 (BSID = BS2) sends HO—Confirm to TBS 104 (BSID = BS3) based on the HO—Req transfer process described above (see FIG. 8) (step S1113). TBS104 (BSID = BS3) stores information on Target BS described in HO—Confirm! (Step S1114).
[0057] 10. TBS104 (BSID = BS3)は、 HO— Confirmの要求に対する確認として HO — Ackを SBS104 (BSID = BS2)に送出する(ステップ S 1115)。  [0057] 10. TBS104 (BSID = BS3) sends HO—Ack to SBS104 (BSID = BS2) as a confirmation for the HO—Confirm request (step S1115).
11. TBS104 (BSID = BS3)は、メモリ上に保存されている設定情報(MSIDと An chor GWID)を用い、 Anchorの ASN— GW102 (ASN— GWID =A1)に対して Path Reg Reqを送出する(ステップ SI 116)。この Path Reg Reqは、後述する 所定の転送処理 (ステップ S 1117)に基づき行われる。  11. TBS104 (BSID = BS3) sends Path Reg Req to Anchor ASN—GW102 (ASN—GWID = A1) using the setting information (MSID and Anchor GWID) stored in memory. (Step SI 116). This Path Reg Req is performed based on a predetermined transfer process (step S 1117) described later.
12. Anchorの ASN -GW102 (ASN - GWID = A1 )は、 TBS 104 (BSID = BS 3)に対して、 Relay ASN— GW102 (ASN— GWID =A2)を経由して Path Reg 12. Anchor's ASN -GW102 (ASN-GWID = A1) is connected to TBS 104 (BSID = BS 3) via Relay ASN—GW102 (ASN—GWID = A2)
Rspを応答する(ステップ S 1118)。 Rsp is returned (step S 1118).
13. TBS104 (BSID = BS3)は、 Anchorの ASN— GW102 (ASN— GWID = A 1)に対して、 Pre— Regの要求に対する確認の Primitiveとして Path Reg Ackを 送出する (ステップ SI 119)。  13. TBS104 (BSID = BS3) sends Path Reg Ack as Primitive for confirmation of Pre-Reg request to Anchor ASN—GW102 (ASN—GWID = A1) (step SI 119).
[0058] これら 11. Path Reg Reqと、 12. Path Reg Rspと、 13. Path Reg Ackは、 上述した Pre— Regにより DPのパスのリソースが確保された BS104と Anchorの AS N— GW102 (ASN— GWID=A1)との間でやりとりされる。  [0058] These 11. Path Reg Req, 12. Path Reg Rsp, and 13. Path Reg Ack, BS104 and Anchor AS N—GW102 (ASN — Exchanged with GWID = A1).
[0059] 14.この後、 Anchorの ASN— GW102 (ASN— GWID =A1)は、ハンドオーバ 元へ、設定されている DPの解除を行う(ステップ S 1120)。このために、ハンドオーバ 元の BSである BS 104 (BSID = BS2)に対して、 Path DeReg Reqを送出する。こ の際、途中の Relay ASN— GW102は、 SBS 104 (BSID = BS2)に Path DeRe g Reqを転送 *5る。 [0059] 14. After this, Anchor's ASN—GW102 (ASN—GWID = A1) The DP that has been set is canceled (step S 1120). For this purpose, Path DeReg Req is sent to BS 104 (BSID = BS2) which is the handover source BS. At this time, Relay ASN—GW 102 on the way forwards Path DeReg Req to SBS 104 (BSID = BS2) * 5.
15. SBS 104 (BSID = BS2)は、 Path DeReg Reqに対する応答として Path DeReg Rspを Anchorの ASN— GW102 (ASN - GWID =A1)に送出する(ステ ップ S 1121)  15. SBS 104 (BSID = BS2) sends Path DeReg Rsp to ASN—GW102 (ASN-GWID = A1) of Anchor as a response to Path DeReg Req (step S 1121)
16.最後に、 Anchorの ASN— GW102 (ASN— GWID =A1)は、 Path DeRe g Rspの要求に対する確認として Path DeReg Ackを SBS 104 (BSID = BS2) に送出する (ステップ S 1122)。  16. Finally, Anchor ASN—GW 102 (ASN—GWID = A1) sends Path DeReg Ack to SBS 104 (BSID = BS2) as a confirmation for the request of Path DeReg Rsp (step S 1122).
[0060] 図 12は、データパスの設定準備処理を示すフローチャートである。上述した Path Pre -Reg Req (Rsp)の転送に関する処理であり、 ASN— GW102が実行する。ま ず、 Path Pre -Reg Reqを受信すると(ステップ S 1201)、自 ASN— GW102が A nchorである力 (自 GW=A— GW力、)を半 IJ断する(ステップ S 1202)。  FIG. 12 is a flowchart showing data path setting preparation processing. This is processing related to the transfer of the Path Pre-Reg Req (Rsp) described above, and is executed by the ASN-GW102. First, when Path Pre-Reg Req is received (step S 1201), the force (self GW = A—GW force) at which the self ASN—GW 102 is Anchor is cut halfway (step S 1202).
[0061] 自 ASN— GW102が Anchorでなければ (ステップ S 1202 : No)、 Anchor GWI Dの向きに(Anchorの ASN— GW102に向けて) Path Pre -Reg Reqを送信す る(ステップ S 1203)。次に、 Anchorの ASN— GW102から送信された Path Pre -Reg Rspを受信すると(ステップ S I 204)、 Anchor GWIDの逆向きに、受信し た Path Pre -Reg Rspを送信する(ステップ S I 205)。この後、 Path Pre -Reg Ackを受信し (ステップ S I 206)、以上の処理を終了する。  [0061] If the local ASN—GW102 is not Anchor (step S 1202: No), a Path Pre-Reg Req is transmitted in the direction of Anchor GWI D (to the Anchor ASN—GW102) (step S1203). . Next, when the Path Pre-Reg Rsp transmitted from the ASN-GW 102 of the Anchor is received (step S I 204), the received Path Pre-Reg Rsp is transmitted in the reverse direction of the Anchor GWID (step S I 205). Thereafter, Path Pre-Reg Ack is received (step S I 206), and the above processing ends.
[0062] 一方、自 GW102が Anchorであれば (ステップ S 1202 : Yes)ゝ Path Pre -Reg Rspを応答した後(ステップ S I 207)、 Path Pre -Reg Ackを受信し (ステップ S I 2 06)、以上の処理を終了する。  [0062] On the other hand, if the own GW102 is Anchor (step S1202: Yes) ゝ After responding with Path Pre-Reg Rsp (step SI 207), receiving Path Pre-Reg Ack (step SI 2 06), The above process ends.
[0063] 図 13は、データパスの設定処理を示すフローチャートである。上述した Path Reg  FIG. 13 is a flowchart showing data path setting processing. Path Reg mentioned above
Req (Rsp)の転送に関する処理であり、 ASN— GW102が実行する。以下の処理 は、図 12と同様であり、 Pre— Regである力 Regであるかが相違するだけである。まず , Path Reg Reqを受信すると(ステップ S 1301)、自 ASN— GW102が Anchorで あるか(自 GW=A— GWか)を判断する(ステップ S 1302)。 [0064] 自 GWが Anchorでなければ (ステップ SI 302 : No)、 Anchor GWIDの向きに( Anchorの ASN— GW102に向けて) Path Reg Reqを送信する(ステップ SI 303 )。次に、 Anchorの ASN— GW102から送信された Path Reg Rspを受信すると( ステップ S 1304)、 Anchor GWIDの逆向きに、受信した Path Reg Rspを送信す る(ステップ S1305)。この後、 Path Reg Ackを受信し (ステップ SI 306)、以上の 処理を終了する。 This is processing related to Req (Rsp) transfer, and is executed by ASN—GW102. The following processing is the same as in FIG. 12, and only the difference is whether the force Reg is Pre-Reg. First, when Path Reg Req is received (step S 1301), it is determined whether the own ASN—GW 102 is Anchor (ie, own GW = A—GW) (step S 1302). [0064] If the own GW is not Anchor (step SI 302: No), Path Reg Req is transmitted in the direction of Anchor GWID (to the ASN-GW 102 of Anchor) (step SI 303). Next, when the Path Reg Rsp transmitted from the Anchor ASN—GW 102 is received (step S 1304), the received Path Reg Rsp is transmitted in the reverse direction of the Anchor GWID (step S 1305). Thereafter, Path Reg Ack is received (step SI 306), and the above processing is terminated.
[0065] 一方、自 GW102が Anchorであれば (ステップ S 1302 : Yes)、 Path Reg Rspを 応答した後(ステップ SI 307)、 Path Reg Ackを受信し (ステップ SI 306)、以上 の処理を終了する。  [0065] On the other hand, if the own GW102 is Anchor (step S1302: Yes), after responding with Path Reg Rsp (step SI 307), receiving Path Reg Ack (step SI 306), and the above processing ends. To do.
[0066] 図 14は、ハンドオーバ前後におけるデータパスの切り替え状態を示す図である。図 7を用いて説明したノヽンドオーバ時の状態に対応して 、る。制御信号プレーン (C— Plane)およびユーザー情報転送プレーン (U— Plane)に分けて説明する。 C-Pla neにより上述した IEが各部でやりとりされ、図 11— 1および図 11— 2において用いた 符号 1. 〜16.のうち、 DP切り替えに関連する Path (Pre—) Regの Primitive (4. 5. 6. 11. 12. 13. )だけを抽出して記載してある。なお、各構成部間の Primitive は、それぞれ添字 a, b,…(例: 4a, 4b)を附してある。  FIG. 14 is a diagram showing a data path switching state before and after the handover. This corresponds to the state at the time of the node over described with reference to FIG. The explanation is divided into the control signal plane (C— Plane) and the user information transfer plane (U— Plane). The IE described above is exchanged in each part by C-Plane, and among the codes 1 to 16 used in Fig. 11-1 and Fig. 11-2, the Primitive (4) of Path (Pre-) Reg related to DP switching 5. 6. 11. 12. 13.) are extracted and described. In addition, Primitive between each component is attached with subscripts a, b,... (Example: 4a, 4b), respectively.
[0067] U— Plane側でのデータ転送に関して説明すると、ハンドオーバ前は、 Old Airに より MS 103 (不図示)と、 SBS104 (BSID = BS2)を経由して Anchorの ASN - G W102 (ASN GWID=A1)との間でデータパス(DP)が設定されている(図中点線 で示す Old DPの経路)。ハンドオーバ前において、 MS103は、 R6の DPにより An chorの ASN— GW102を経由し、 R3の DPを介して CSN101 (図 4参照)との間で データ転送を行っている。  [0067] U— Data transfer on the Plane side will be explained. Before handover, ASN-G W102 (ASN GWID) of Anchor via MS 103 (not shown) and SBS104 (BSID = BS2) by Old Air Data path (DP) is set up to = A1) (Old DP path indicated by dotted line in the figure). Before the handover, the MS 103 transfers data with the CSN 101 (see Fig. 4) via the R3 DP via the anchor ASN-GW 102 via the R6 DP.
[0068] そして、 MS103がハンドオーバし、 TBS104 (BSID=BS3)に移動すると、上述し たように(図 11— 1および図 11— 2参照)、 C - Plane側では Primitiveの転送処理を 行う。ハンドオーバ時、 Anchorの ASN—GW102 (ASN GWID=A1)は、この各 Primitiveの内容に基づ!/、て、新たな DP (図中実線で示す New DPの経路)となる 切り替えを行う。この際、 Anchorの ASN— GW102 (ASN— GWID=A1)は、 Pri mitiveの内容に基づいて、 Relayの ASN— GW102 (ASN— GWID=A2)との間 における R4の DPの数を 1本とする。また、 ASN— GW102 (ASN— GWID=A2)と TBS104 (BSID = BS3)との間における R6の DPの数を 1本とする。 [0068] Then, when the MS 103 is handed over and moves to the TBS 104 (BSID = BS3), as described above (see FIGS. 11-1 and 11-2), the C-Plane side performs the primitive transfer process. At the time of handover, Anchor ASN-GW102 (ASN GWID = A1) switches based on the contents of each Primitive to become a new DP (New DP path indicated by a solid line in the figure). At this time, Anchor ASN—GW102 (ASN—GWID = A1) is between Relay ASN—GW102 (ASN—GWID = A2) based on the contents of Primitive. The number of R4 DPs in is one. The number of DPs in R6 between ASN-GW102 (ASN-GWID = A2) and TBS104 (BSID = BS3) is one.
[0069] そして、 Anchorの ASN—GW102における FA(Foriegn Agent)は、ハンドォー バ前の Old DPのデータをハンドオーバ後の New DPに切り替える(12a. Path R eg Rsp、および 13b. Path Reg Ackに基づく切り替え)。ハンドオーバ後におい て、 MS103は、 R6の DPにより Relayの ASN— GW102から、 R4の DPにより Anch orの ASN— GW102を経由し、 R3の DPを介して CSN101 (図 5参照)との間でデー タ転送を行う。 [0069] Then, FA (Foriegn Agent) in Anchor's ASN-GW102 switches old DP data before handover to New DP after handover (based on 12a. Path R eg Rsp and 13b. Path Reg Ack) switching). After the handover, MS103 sends data to and from CSN101 (see Fig. 5) from RSN DP via Relay ASN—GW102, via R4 DP via Anchor ASN—GW102, and via R3 DP. Data transfer.
[0070] 以上のように、 HO— Reqが Anchorの ASN— GW102を経由する Primitive転送 方式によれば、 HO後の MS103からAnchorのASN— GW102までのDP (R4ぉょ び R6)は最大で 2つに限定できる。この際、 ASN— GW102は、特殊な動作を必要と しない。  [0070] As described above, according to the Primitive transfer method in which HO—Req is routed through Anchor ASN—GW102, the DP (R4 and R6) from MS103 to Anchor ASN—GW102 after HO is the maximum. Can be limited to two. At this time, the ASN-GW102 does not require any special operation.
[0071] すなわち、 HO— Reqの Primitiveを Anchorの ASN— GW102 (ASN—GWID  [0071] That is, HO—Req Primitive is set to Anchor ASN—GW102 (ASN—GWID
= A 1 )を経由し転送させた場合には、この Anchorの ASN— GW102 ( ASN— GWI D=A1)から Relay ASN— GW102 (ASN— GWID=A2)に至るデータパス DP ( R4)の数が 1本に制限される。同時に、 Relay ASN - GW102 (ASN - GWID = A2)力も Target BS104に至る DP (R6)の数が 1本に制限される。したがって、 An chorの ASN - GW102 (ASN - GWID = A1)から Target BS104に至る DP (R6 )の数が 2本に制限される。このように、 HO— Req時における Primitive転送の DP数 を最小本数に制限することにより、パケットの遅延を防止でき、通信品質の低下を招 かない。  = A 1), the number of data paths DP (R4) from this Anchor ASN—GW102 (ASN—GWI D = A1) to Relay ASN—GW102 (ASN—GWID = A2) Is limited to one. At the same time, the Relay ASN-GW102 (ASN-GWID = A2) force is also limited to one DP (R6) reaching the Target BS104. Accordingly, the number of DP (R6) from the ASN-GW102 (ASN-GWID = A1) of the anchor to the Target BS104 is limited to two. In this way, by limiting the number of DPs for primitive transfer during HO-Req to the minimum number, packet delay can be prevented and communication quality will not be degraded.
[0072] 図 15— 1〜図 15— 5は、 DP設定の全状態を示す図である。図 15— 1の状態は、 FIG. 15-1 to FIG. 15-5 are diagrams showing all states of DP setting. The state of Figure 15-1 is
MS103の移動が Anchorの ASN—GW102が管理する BS104間の移動の場合で ある。 R3 (MIP)と MS 104間において IPパケットを伝送するにあたり、ハンドオーバ 前の R6の DPにおける経路(R6— 1)は、ハンドオーバ時に切り替えポイント(SW)で 切り替えられ、ハンドオーバ後の R6の経路(R6— 2)に変更される。この際の HO— R eqは、ハンドオーバ前の SBS104→Anchorの ASN— GW102→ハンドオーバ後 の TBS104に至る経路 HI (図中点線)で転送される。 [0073] 図 15— 2の状態は、 MS 103の移動が異なる ASN— GW102を跨ぐ場合 (Anchor →Relayへの R4変更時)である。この場合、ハンドオーバ前の R6の DPの経路(R6 1)は、ハンドオーバ時に切り替えポイント(SW)で切り替えられ、ハンドオーバ後に Relayの ASN— GW102との間の R4の経路(R4— 2)と、 R6の経路(R6— 2)に変 更される。この際の HO— Reqは、ハンドオーバ前の SBS104→Anchorの ASN— GW102→Relayの ASN— GW102→ハンドオーバ後の TBS104に至る経路 H2で 転送される。 The movement of MS103 is the case of movement between BS104 managed by Anchor ASN-GW102. When IP packets are transmitted between R3 (MIP) and MS 104, the R6 DP path (R6-1) before handover is switched at the switching point (SW) at the time of handover, and the R6 path (R6) after handover is switched. — Changed to 2). The HO-R eq at this time is transferred by the route HI (dotted line in the figure) from the SBS 104 before the handover to the ASN of the anchor to the TBS 104 after the handover. [0073] The state shown in Fig. 15-2 is when the MS 103 moves across different ASN-GWs 102 (when R4 changes from Anchor to Relay). In this case, the DP route (R6 1) of R6 before handover is switched at the switching point (SW) at the time of handover. The route is changed to (R6-2). The HO-Req at this time is transferred via the route H2 from the SBS 104 before the handover to the ASN of the anchor—GW 102 → the ASN of the relay—GW 102 → the TBS 104 after the handover.
[0074] 図 15— 3の状態は、 MS103の移動が異なるASN— GW102を跨ぐ場合(Relay →Anchorへの R4変更時)である。この場合、ハンドオーバ前の R6の DPの経路(R 6— 1)と、 R4の経路(R4— 1)は、ハンドオーバ時に切り替えポイント(SW)で切り替 えられ、ハンドオーバ後に Anchorの ASN - GW102との間の R4の経路(R6 - 2) に変更される。この際の HO— Reqは、ハンドオーバ前の SBS104→Relayの ASN — GW102→Anchorの ASN— GW102→ハンドオーバ後の TBS104に至る経路 H3で転送される。  [0074] The state shown in Fig. 15-3 is when the MS 103 moves across different ASN-GWs 102 (when changing R4 from Relay to Anchor). In this case, the R6 DP route (R6-1) and R4 route (R4-1) before the handover are switched at the switching point (SW) at the time of the handover, and after the handover with the ASN-GW102 of the Anchor R4 route between (R6-2). The HO-Req at this time is transferred via the route H3 from the SBS 104 before the handover to the ASN of the relay—GW 102 → the ASN of the anchor—GW 102 → the TBS 104 after the handover.
[0075] 図 15— 4の状態は、 MS103の移動が Relayの ASN— GW102が管理する BS10 4間の移動の場合である。この場合、ハンドオーバ前の R6の DPの経路 (R6— 1)と、 R4の DPの経路(R4—1)は、ハンドオーバ時に切り替えポイント(SW)で切り替えら れ、ハンドオーバ後の R6の経路(R6— 2)と、 R4の経路(R4— 2)に変更される。この 際の HO— Reqは、ハンドオーバ前の SBS104→Relayの ASN— GW102→Anch orの ASN— GW102→Relayの ASN— GW102→ハンドオーバ後の TBS104に至 る経路 H4で転送される。  The state of FIG. 15-4 is the case where the movement of the MS 103 is the movement between the BSs 104 managed by the ASN-GW 102 of the Relay. In this case, the R6 DP path before handover (R6-1) and the R4 DP path (R4-1) are switched at the switching point (SW) during handover, and the R6 path after handover (R6 — Changed to 2) and R4 route (R4-2). The HO-Req at this time is transferred via the route H4 from the SBS 104 before the handover to the ASN of the relay-GW 102-> Anchor ASN-GW 102-> Relay ASN-GW 102--to the TBS 104 after the handover.
[0076] 図 15— 5の状態は、 MS103の移動がRelayのASN— GW102間を跨ぎ、さらに 異なる Relayの ASN— GW102に移動した場合である。この場合、ハンドオーバ前の R6の DPの経路(R6— 1)と、 R4の DPの経路(R4— 1)は、ハンドオーバ時に切り替 えポイント(SW)で切り替えられ、ハンドオーバ後の R6の経路 (R6— 2)と、 R4の経路 (R4- 2)に変更される。この際の HO— Reqは、ハンドオーバ前の SBS104→Relay 1の ASN— GW102→ Anchorの ASN— GW102→Relay 2の ASN— GW102→ ハンドオーバ後の TBS104に至る経路 H5で転送される。 [0077] 図 15— 1〜図 15— 5のいずれの場合であっても、ハンドオーバ時の HO—Reqは、 SBS 104から Anchorの ASN - GW102を経由して TBS 104に転送され、新たな D Pが設定される。いずれの場合であっても DPの本数は、 R4が 1本と、 R6が 1本となる 。特に図 15— 5に示すように、 MS 103の移動力 Relayの ASN— GW102間を複 数跨ぐ移動となった場合であっても、 Anchorの ASN - GW102と Relayの ASN - GW102との間の R4の DPは、 1本となるよう切り替えられる。すなわち、 Relayの AS N— GW102間の DP (R4)が複数の Relay間で数珠繋ぎになることを防止するため、 パケットの遅延や通信品質の低下を防止できる。 The state of FIG. 15-5 is a case where the movement of the MS 103 straddles between the ASN of the Relay—GW 102 and further moves to the ASN—GW 102 of a different Relay. In this case, the R6 DP route (R6-1) before the handover and the R4 DP route (R4-1) are switched at the switching point (SW) during the handover, and the R6 route (R6) after the handover. — Changes to 2) and R4 route (R4-2). The HO-Req at this time is transferred via the route H5 from the SBS 104 before the handover to the ASN of the Relay 1 → GW 102 → the ASN of the Anchor → GW 102 → the ASN of the Relay 2 → GW 102 → the TBS 104 after the handover. [0077] In any of the cases shown in Fig. 15-1 to Fig. 15-5, the HO-Req at the time of handover is transferred from the SBS 104 to the TBS 104 via the ASN-GW 102 of the Anchor, and a new DP Is set. In either case, the number of DPs is one for R4 and one for R6. In particular, as shown in Fig. 15-5, even when the movement between ASN and GW102 of MS 103's mobility relay is crossed multiple times, it is possible to connect between ASN-GW102 of Anchor and ASN-GW102 of Relay. R4 DP can be switched to one. In other words, since DP (R4) between Relay AS N and GW102 is prevented from connecting between multiple Relays, packet delay and communication quality degradation can be prevented.
[0078] 以上のように、 HO—Reqの Primitive転送する全パターンは 5通りである。それ以 外の状態としては、 R3の DPのハンドォーノ 、 R8のデータパスのハンドオーバとなる  [0078] As described above, there are five patterns for the HO-Req primitive transfer. Otherwise, R3 DP handono, R8 data path handover.
[0079] 上述した実施の形態では、 WiMAXにおけるハンドオーバ時の Primitive転送を例 に説明したが、 WiMAXだけではなぐハンドオーバ時に特定のノードを経由するメッ セージ転送を行うたの通信方式であれば同様に適用することができる。 [0079] In the above-described embodiment, the Primitive transfer at the time of handover in WiMAX has been described as an example. However, any communication method for performing message transfer via a specific node at the time of handover other than WiMAX alone may be used. Can be applied.
[0080] なお、本実施の形態で説明したハンドオーバ時の Primitiveの転送に力かる方法 は、予め用意されたプログラムをパーソナル 'コンピュータやワークステーション等のコ ンピュータで実行することにより実現することができる。このプログラムは、ハードディ スク、フレキシブルディスク、 CD— ROM、 MO、 DVD等のコンピュータで読み取り可 能な記録媒体に記録され、コンピュータによって記録媒体力 読み出されることによ つて実行される。またこのプログラムは、インターネット等のネットワークを介して配布 することが可能な伝送媒体であってもよ!/、。  [0080] It should be noted that the method for transferring Primitive at the time of handover described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. . This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read by the computer. This program may also be a transmission medium that can be distributed via a network such as the Internet!
産業上の利用可能性  Industrial applicability
[0081] 以上のように、本発明に力かる移動通信方法および移動通信装置は、移動局が移 動した際のハンドオーバ時の処理に有用であり、特に、 WiMAXを含む移動局のハ ンドオーバ時に特定のノードを経由させるメッセージ転送の処理に適している。 [0081] As described above, the mobile communication method and the mobile communication apparatus according to the present invention are useful for processing at the time of handover when the mobile station moves, and particularly at the time of handover of the mobile station including WiMAX. Suitable for message transfer processing via a specific node.

Claims

請求の範囲 The scope of the claims
[1] 移動局がハンドオーバ可能に通信を行うための移動通信方法であって、  [1] A mobile communication method for a mobile station to perform a handover enabling communication,
前記移動局がネットワークにエントリーする際に、当該移動局と通信を行う基地局が 当該移動局の固有識別子と、当該移動局に対してアンカーとなるアクセス管理装置 の固有識別子と、を対応付けた設定情報を生成する生成工程を含むことを特徴とす る移動通信方法。  When the mobile station enters the network, the base station that communicates with the mobile station associates the unique identifier of the mobile station with the unique identifier of the access management apparatus that is an anchor for the mobile station. A mobile communication method comprising a generation step of generating setting information.
[2] 前記移動局の移動に基づくハンドオーバ時に、前記基地局は、前記生成工程によ り生成された前記設定情報をプリミティブの情報要素に載せて送出する送出工程を 含むことを特徴とする請求項 1に記載の移動通信方法。  [2] In the handover based on the movement of the mobile station, the base station includes a transmission step of transmitting the setting information generated by the generation step on an information element of a primitive. Item 2. The mobile communication method according to Item 1.
[3] 前記送出工程により送出され、前記プリミティブの情報要素に載せられた前記設定 情報を、アンカーとなる前記アクセス管理装置を経由して移動先の基地局に転送さ せる転送工程を含むことを特徴とする請求項 2に記載の移動通信方法。  [3] including a transfer step of transferring the setting information transmitted in the transmission step and loaded on the information element of the primitive to the base station of the movement destination via the access management device serving as an anchor. The mobile communication method according to claim 2, wherein the mobile communication method is characterized.
[4] 前記生成工程は、前記移動局の固有識別子を当該移動局に固有のアドレスに基 づき得ることを特徴とする請求項 1に記載の移動通信方法。  4. The mobile communication method according to claim 1, wherein the generating step can make the unique identifier of the mobile station based on an address unique to the mobile station.
[5] 前記転送工程は、前記移動局が移動した際に送出される前記プリミティブとしての HO— Requestと、当該 HO— Requestと同一の転送先への転送が必要な他のプリ ミティブとを、前記 HO— Requestの送信元の基地局(SBS)力 アンカーとなる前記 アクセス管理装置を経由して送信先の基地局 (TBS)に転送させることを特徴とする 請求項 3に記載の移動通信方法。  [5] The transfer step includes an HO-Request as the primitive sent when the mobile station moves and another primitive that needs to be transferred to the same transfer destination as the HO-Request. The mobile communication method according to claim 3, wherein the HO-Request transmission source base station (SBS) is forwarded to the transmission destination base station (TBS) via the access management device serving as an anchor. .
[6] 前記転送工程は、前記 HO— Requestの応答である HO— Responseと、当該 HO  [6] The transfer step includes an HO—Response that is a response to the HO—Request and the HO—Request.
Responseと同一の送信先への転送が必要な他のプリミティブとを、前記 HO— Re questの送信先の基地局 (TBS)力もアンカーとなる前記アクセス管理装置を経由し て送信元の基地局(SBS)に転送させることを特徴とする請求項 3に記載の移動通信 方法。  Other primitives that need to be transferred to the same destination as Response are sent to the base station of the transmission source via the access management device (TBS) that is also the anchor of the transmission destination base station (TBS) of the HO-Request. 4. The mobile communication method according to claim 3, wherein the mobile communication method is transferred to SBS.
[7] アンカーとなる前記アクセス管理装置は、前記転送工程により転送される前記プリミ ティブの情報要素に載せられた前記設定情報に基づいて、当該アクセス管理装置か ら前記移動局に至るまでのデータパスの数を最大 2つに制限するデータパス数制限 工程を含むことを特徴とする請求項 3に記載の移動通信方法。 [7] The access management device serving as an anchor is configured to transmit data from the access management device to the mobile station based on the setting information placed in the primitive information element transferred in the transfer step. The mobile communication method according to claim 3, further comprising a data path number limiting step of limiting the number of paths to a maximum of two.
[8] 前記データパス数制限工程は、アンカーとなる前記アクセス管理装置が前記転送 工程により転送される前記プリミティブの情報要素に載せられた前記設定情報に基 づいて、当該アクセス管理装置力 前記移動局に至るまでのデータパスに、リレーと しての前記アクセス管理装置が介在する場合には、前記アンカーのアクセス管理装 置と、リレーのアクセス管理装置との間のデータパスの数を最大一つに制限すること を特徴とする請求項 7に記載の移動通信方法。 [8] In the data path number limiting step, based on the setting information placed on the information element of the primitive transferred by the access management device serving as an anchor in the transfer step, the access management device power When the access management device as a relay is interposed in the data path to the station, the number of data paths between the anchor access management device and the relay access management device is set to a maximum of one. The mobile communication method according to claim 7, wherein the mobile communication method is limited to one.
[9] 前記データパス数制限工程は、前記アクセス管理装置が自身の配下で前記移動 局を管理する場合には、前記転送工程により転送される前記プリミティブの情報要素 に載せられた前記設定情報に基づいて、当該アクセス管理装置と前記移動局との間 のデータパスの数を最大一つに制限することを特徴とする請求項 7に記載の移動通 信方法。  [9] In the data path number limiting step, when the access management device manages the mobile station under its control, the data path number limiting step includes the setting information placed in the information element of the primitive transferred in the transfer step. 8. The mobile communication method according to claim 7, wherein the number of data paths between the access management apparatus and the mobile station is limited to a maximum of one based on the base.
[10] 移動局がハンドオーバ可能に通信を行うために基地局として配置される移動通信 装置であって、  [10] A mobile communication device arranged as a base station in order for a mobile station to perform communication to enable handover,
前記移動局がネットワークにエントリーする際に、当該移動局の固有識別子と、当 該移動局に対してアンカーとなるアクセス管理装置の固有識別子と、を対応付けた 設定情報を生成する生成手段を備えたことを特徴とする移動通信装置。  When the mobile station enters the network, the mobile station includes generation means for generating setting information in which the unique identifier of the mobile station is associated with the unique identifier of the access management apparatus that is an anchor for the mobile station. A mobile communication device characterized by that.
[11] 前記移動局の移動に基づくハンドオーバ時に、前記生成手段により生成された前 記設定情報をプリミティブの情報要素に載せて送出する送出手段を備えたことを特 徴とする請求項 10に記載の移動通信装置。  11. The transmission device according to claim 10, further comprising a transmission unit that transmits the setting information generated by the generation unit on a primitive information element at the time of handover based on movement of the mobile station. Mobile communication device.
[12] 前記送出手段により送出され、前記プリミティブの情報要素に載せられた前記設定 情報を転送する位置の装置はそれぞれ、アンカーとなる前記アクセス管理装置を経 由して移動先の基地局まで、前記プリミティブを転送させる転送手段を備えたことを 特徴とする請求項 10に記載の移動通信装置。  [12] A device at a position to which the setting information sent by the sending means and loaded on the information element of the primitive is transferred to the destination base station via the access management device serving as an anchor, 11. The mobile communication device according to claim 10, further comprising transfer means for transferring the primitive.
PCT/JP2006/313003 2006-06-29 2006-06-29 Mobile communication method and mobile communication device WO2008001447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313003 WO2008001447A1 (en) 2006-06-29 2006-06-29 Mobile communication method and mobile communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313003 WO2008001447A1 (en) 2006-06-29 2006-06-29 Mobile communication method and mobile communication device

Publications (1)

Publication Number Publication Date
WO2008001447A1 true WO2008001447A1 (en) 2008-01-03

Family

ID=38845222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313003 WO2008001447A1 (en) 2006-06-29 2006-06-29 Mobile communication method and mobile communication device

Country Status (1)

Country Link
WO (1) WO2008001447A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022950A1 (en) * 2007-08-13 2009-02-19 Telefonaktiebolaget Lm Ericsson (Publ) Improved communication between base station in a cellular network
JP2009188616A (en) * 2008-02-05 2009-08-20 Japan Radio Co Ltd WiMAXGW BASE STATION CONTROL SYSTEM
JP2009231998A (en) * 2008-03-21 2009-10-08 Japan Radio Co Ltd WiMAX COMMUNICATION SYSTEM
WO2009129729A1 (en) * 2008-04-24 2009-10-29 华为技术有限公司 Method, system and csn for realizing location service
WO2011060745A1 (en) * 2009-11-23 2011-05-26 华为技术有限公司 Method for deleting terminal context and system for terminal handover
JP2011523313A (en) * 2008-06-17 2011-08-04 エヌイーシー ヨーロッパ リミテッド Subcarrier allocation method and network in OFDMA communication network
JP2012532566A (en) * 2009-07-06 2012-12-13 インテル・コーポレーション Gateway association

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004467A (en) * 1998-06-15 2000-01-07 Hitachi Ltd Communication connection switching method and communication connection switching device
JP2004166089A (en) * 2002-11-14 2004-06-10 Fujitsu Ltd Packet relay system to mobile terminal, home agent, network node, and mobile terminal
JP2005086456A (en) * 2003-09-08 2005-03-31 Ntt Docomo Inc Communication system, communication terminal, method for controlling route, and router instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004467A (en) * 1998-06-15 2000-01-07 Hitachi Ltd Communication connection switching method and communication connection switching device
JP2004166089A (en) * 2002-11-14 2004-06-10 Fujitsu Ltd Packet relay system to mobile terminal, home agent, network node, and mobile terminal
JP2005086456A (en) * 2003-09-08 2005-03-31 Ntt Docomo Inc Communication system, communication terminal, method for controlling route, and router instrument

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022950A1 (en) * 2007-08-13 2009-02-19 Telefonaktiebolaget Lm Ericsson (Publ) Improved communication between base station in a cellular network
JP2009188616A (en) * 2008-02-05 2009-08-20 Japan Radio Co Ltd WiMAXGW BASE STATION CONTROL SYSTEM
JP2009231998A (en) * 2008-03-21 2009-10-08 Japan Radio Co Ltd WiMAX COMMUNICATION SYSTEM
WO2009129729A1 (en) * 2008-04-24 2009-10-29 华为技术有限公司 Method, system and csn for realizing location service
CN101568063B (en) * 2008-04-24 2011-08-10 华为技术有限公司 Method and system for achieving position service and connection service network (CSN)
JP2011523313A (en) * 2008-06-17 2011-08-04 エヌイーシー ヨーロッパ リミテッド Subcarrier allocation method and network in OFDMA communication network
KR101332937B1 (en) * 2008-06-17 2013-11-26 엔이씨 유럽 리미티드 Method of subcarrier allocation in an ofdma-based communication network and network
JP2012532566A (en) * 2009-07-06 2012-12-13 インテル・コーポレーション Gateway association
US8913586B2 (en) 2009-07-06 2014-12-16 Intel Corporation Gateway association
WO2011060745A1 (en) * 2009-11-23 2011-05-26 华为技术有限公司 Method for deleting terminal context and system for terminal handover

Similar Documents

Publication Publication Date Title
KR101023461B1 (en) Method and apparatus of shifting functional entity in wimax network
JP5062601B2 (en) HRPD signaling link establishment method
JP5227960B2 (en) Packet transfer for proxy mobile IP
JP6084242B2 (en) Method for relocating access service network functional entities during a mobility event in a WiMAX network
JP2009500971A (en) Method and system for negotiating establishment of an interface data path
WO2008001447A1 (en) Mobile communication method and mobile communication device
KR20060093021A (en) Method and system for context transfer across heterogeneous networks
WO2007062583A1 (en) A method and system for managing the context of the mobile terminal
KR101201414B1 (en) Method, system and device for location update in networks
JP2013201781A (en) Relay device using network base ip mobility protocol, mobile terminal, and communication method of relay device
EP2028814A1 (en) Method of performing a handover and corresponding network units
Dutta et al. Seamless proactive handover across heterogeneous access networks
US8787300B2 (en) Method and apparatus for facilitating a fast handoff in a wireless metropolitan area network
KR101023462B1 (en) System for fa relocation with context transfer in wireless networks
US20030053430A1 (en) Method for performing a fast inter-PDSN hard handoff
EP2299748B1 (en) Method and system for supporting mobility security in the next generation network
KR100934086B1 (en) Handover Method of Wireless Access System and Gateway Supporting the Same
JP5389898B2 (en) Method and apparatus for communication between wireless telecommunications networks of different technology types
WO2012155613A1 (en) Method and system for relay node handover
CN100455117C (en) Method for improving reliability of fast switch over business
KR101372735B1 (en) Method for administrating mobility based on network
JP2011061774A (en) Radio communication system and method
JP5136559B2 (en) Proxy mobile IP system, access gateway, and registration notification message order determination method used therefor
KR100739490B1 (en) Network Structure for Access System with IP Infrastructure and Method for Packet Routing thereof
US20100135244A1 (en) REDUCTION OF HANDOVER DELAYS IN NESTED PROXY MOBILE IPv6/MOBILE IPv6 NETWORKS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06767620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP