WO2008001439A1 - Mimo reception device and mimo reception method - Google Patents

Mimo reception device and mimo reception method Download PDF

Info

Publication number
WO2008001439A1
WO2008001439A1 PCT/JP2006/312919 JP2006312919W WO2008001439A1 WO 2008001439 A1 WO2008001439 A1 WO 2008001439A1 JP 2006312919 W JP2006312919 W JP 2006312919W WO 2008001439 A1 WO2008001439 A1 WO 2008001439A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
channel estimation
value
received
fast
Prior art date
Application number
PCT/JP2006/312919
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Inogai
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/312919 priority Critical patent/WO2008001439A1/en
Publication of WO2008001439A1 publication Critical patent/WO2008001439A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to a MIMO receiving apparatus and a MIMO receiving method used in a wireless communication system such as a wireless LAN (Local Area Network) or a cellular system.
  • a wireless communication system such as a wireless LAN (Local Area Network) or a cellular system.
  • Patent Document 1 discloses a MIMO transmission system.
  • FIG. 1 shows the concept of a conventional MIMO transmission system.
  • the MIMO transmitter 10 transmits M transmit antennas TxANT—0 to TxANT—M—1 power every one frame time, and k-channel TDM multiplexed signals. These signals are combined and received by N receiving antennas RxANT—0 to RxANT —N—l connected to the MIMO receiver 20.
  • N receiving antennas RxANT—0 to RxANT —N—l connected to the MIMO receiver 20.
  • MIMO receiver 20 performs signal separation to obtain M signals transmitted from M antennas on the transmission side from N received symbols. Signal separation is performed in two stages: channel estimation and separation.
  • the signal separation algorithm performed by the signal separation unit 22 is roughly divided into the following three.
  • ZF Ignores the presence of transmission line noise and obtains an inverse matrix H_1 of the channel estimation value, and performs inverse matrix operation to separate each signal.
  • MLD The channel estimation value H is used to generate a received symbol replica for all transmitted symbol patterns, and the most reliable transmission symbol is selected while evaluating each error component.
  • the separated signal separated as described above includes residual interference components and receiver noise from other separated signals, and these magnitudes are related to the state of the MIMO transmission path and the obtained channel. Depends on the accuracy of the estimation and separation algorithm used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-237751
  • the conventional MIMO reception method has the following problems.
  • the channel estimation values used in the above (1) and (2) are obtained by detecting distortions experienced by known symbols.
  • the number of known symbols that can be transmitted is often limited in order to avoid a drastic decrease in transmission speed, so that the number of known symbols that can be used on the receiving side is limited and sufficient separation accuracy cannot be obtained.
  • An object of the present invention is to provide a MIMO receiving apparatus and a MIMO receiving method capable of performing high-accuracy signal separation with a relatively small number of known symbols and an operation amount. Means for solving the problem
  • the MIMO receiver of the present invention performs independent blind signal separation processing using an independent component analysis method on a plurality of received signals received by a plurality of antennas, thereby obtaining a plurality of independent separated signals.
  • Component analysis means, channel estimation means for obtaining a channel estimation value between each transmitting / receiving antenna using the received known symbols, and a correlation matrix of received signals used in Sphering processing performed as preprocessing for performing the independent component analysis A correlation matrix calculating means for obtaining the value using the channel estimation value is employed.
  • FIG. 1 A diagram showing the concept of a conventional MIMO transmission system
  • FIG. 3 Qualitatively explaining the meaning of separation so that “non-Gaussianity” is maximized.
  • FIG. 3A shows sub-Gauss
  • FIG. 3B shows Gauss
  • FIG. 7 is a block diagram showing the configuration of the MIMO receiving apparatus according to the first embodiment.
  • FIG. 8 Timing chart showing the concept of MIMO reception processing using the Fast—ICA algorithm of Embodiment 1.
  • FIG. 9 is a block diagram showing the configuration of the MIMO receiving apparatus according to the second embodiment.
  • FIG. 10 is a timing chart showing the concept of MIMO reception processing using the Fast-ICA algorithm of Embodiment 2.
  • FIG. 11 is a block diagram showing the configuration of the MIMO receiving apparatus according to the third embodiment.
  • FIG. 12 is a timing chart showing the concept of MIMO reception processing using the Fast-ICA algorithm of Embodiment 3.
  • the inventor of the present invention can use an independent component analysis algorithm (hereinafter also referred to as an ICA (Independent Component Analysis) algorithm) studied in the acoustic and medical fields without using a known symbol.
  • ICA Independent Component Analysis
  • Figure 2 shows a typical independent component analysis algorithm.
  • the inventor of the present invention considered that the Fast-ICA algorithm with the fastest convergence among the independent component analysis algorithms in FIG. 2 is optimal for application to a MIMO transmission system.
  • independent component analysis The case where the Fast-IC A algorithm is applied as an algorithm will be mainly described.
  • the inventors of the present invention have considered problems in applying the Fast-ICA algorithm to a MIMO receiver, and have devised the present invention to solve the problems.
  • Fast—ICA is an algorithm that extracts and separates signals one by one in adaptive signal processing so as to maximize the “non-Gaussianity” of the separated signal.
  • the quantity representing the non-Gaussian principle which is the guiding principle of the adaptive algorithm, uses the statistic of the absolute value of Kurtosis (kurtosis) or negentropy. Especially, the latter uses numerical stability and computational complexity. This is a practical algorithm.
  • each transmission signal has a non-Gaussian distribution and is considered to be independent of each other, and therefore, signal separation by Fast-ICA is possible.
  • transmission signals with strong non-Gaussian characteristics there is a possibility that superior transmission characteristics may be obtained in a low SINR environment.
  • FIG. 4 shows a configuration when Fast-ICA that maximizes negentropy is applied to MIMO receiver 100.
  • the configuration other than the Fast-ICA processing unit 110 in the MIMO receiver 100 is omitted in order to simplify the drawing.
  • N-dimensional transmission signal vector each element signal has a mean of 0 and follows a non-Gaussian distribution that is independent and even from each other
  • N X N transfer coefficient matrix (a constant execution matrix because multipath and Rayleigh fluctuations are not considered)
  • R N X N rotation matrix (orthogonal matrix for obtaining separated signals y (t) independent of decorrelated signals z (t))
  • the Fast-ICA processing unit 110 includes a Sphering processing unit 120, which is a preprocessing unit, and an ICA processing unit 130 that executes approximate Newton method processing.
  • the Sphering processing unit 120 first obtains eigenvalues ⁇ ⁇ and eigenvectors e ⁇ e by performing eigenvalue decomposition on the correlation matrix E [xx T ] of the received signal as shown in the following equation.
  • the Sphering processing unit 120 obtains the eigenvalues ⁇ ⁇ and eigenvectors e thus obtained.
  • E [ ⁇ ] means the set average value (expected value) of '.
  • the ICA processing unit 130 detects the rotation angle that maximizes the separation signal's negentropy with respect to the output z of the Sphering processing unit 120, forms a rotation matrix R, and performs signal separation. Therefore, first, the R matrix calculation unit 131 determines a line r tau of the matrix R to separate the first signal using the Newton method. This is performed as follows:
  • the 1-signal separation process is represented by the flowchart shown in FIG. That is, the estimation vector is initialized in step ST1, and the received signal vector is input to the Sphering processing unit 120 in step ST2.
  • the DC component of each element signal is removed, and in step ST4, the S, ⁇ matrix calculation unit 121 calculates the decorrelation matrix Aj and the level equalization matrix Sj.
  • the whitening unit 122 performs Sphering processing. Execute. That is, the processing of steps ST3-ST4-ST5 is performed by the Sphering processing unit 120. Note that in FIG. 4, the force that omits the part that removes the DC component of each element signal is omitted for the sake of simplicity.
  • Step ST6 signal separation processing is performed in step ST6, and estimation vector updating and normalization are performed in step ST7. Steps ST6 to ST7 correspond to the approximate Newton method and are executed by the ICA processing unit 130.
  • Rotation matrix R can be obtained by preparing 0 0 1 M-l appropriately and executing the following equation.
  • the Fast-ICA execution procedure includes, in addition to the above, executing the approximate Newton method of Eq. (4) in parallel to obtain M row vectors and calculating the force so that they are orthogonal to each other. There is also a way to adjust.
  • the approximate Newton method of Eq. (4) is sequentially processed online, and a method in which batch processing is performed in which data is accumulated and batch processed.
  • Fig. 6 shows a conceptual diagram (timing chart) of MIMO reception processing using the Fast-ICA algorithm.
  • MIMO receiving apparatus 100 performs channel estimation using known symbols transmitted by each transmission antenna power time division in a known symbol transmission period. Further, MIMO receiving apparatus 100 obtains a separated signal by performing signal separation processing using a Fast-ICA algorithm on data symbols transmitted simultaneously from the respective transmission antennas during the data transmission period.
  • Fast-ICA is the correlation matrix of the received signal shown in without using a channel estimate (2) E [ ⁇ ⁇ ], by performing eigenvalue decomposition, to separate the signals. Since a large amount of received signal data is required to calculate the correlation matrix ⁇ [ ⁇ ⁇ ], the received data is stored and stored for each frame, and the correlation matrix is calculated and the eigenvalues are decomposed. And output become so.
  • Negentropy is entropy corrected by the entropy of a Gaussian signal, and can be expressed by the following equation.
  • the entropy H (y) in Eq. (6) is the maximum for a signal with Gaussian distribution among signals of the same power. This is precisely called differential entropy, and relative comparison is possible, but its absolute value is meaningless. On the other hand, negentropy is always greater than 0 and its absolute value is also meaningful.
  • the second moment around the mean is the variance ⁇ .
  • the kth moment is given by
  • the k-th order cumulant ⁇ is the logarithm of the product moment generating function Mx (t) as
  • Kurtosis which is a fourth-order cumulant, is a statistic whose value changes according to the sharpness of the probability density distribution, as shown in FIG. In other words, it is 0 for the Gaussian distribution (Fig. 3B), a positive value for the super Gaussian (Fig. 3C) with a larger degree of sharpness, and a negative value for a sub-Gaussian with a smaller degree of sharpness (Fig. 3A). Therefore, the absolute value of Kurtosis includes the fourth power of the force signal, which is a measure of non-Gaussianity. Therefore, even if one sample contains an abnormal value due to noise or other factors, the value changes sensitively. Lack of robustness. However, Kurtosis is often used because it has convenient properties as shown in the following equation.
  • the Fast ICA algorithm When the Fast ICA algorithm is applied to MIMO transmission, signals can be separated without using known symbols. Therefore, since the data transmission period can be extended by an amount that does not require the known symbol transmission period, the substantial data transmission rate can be increased.
  • the Fast-ICA algorithm is used in the case where a known symbol transmission period is provided on the transmission side and channel estimation is performed using known symbols on the reception side. In principle, the known symbol transmission period and channel estimation process are not required.
  • ICA operates based on statistics, it has the following problems.
  • A Since the set average value included in the algorithm is replaced with the time average value and executed, a sufficient number of data until the value stabilizes, that is, a pull-in time is required, and the number of data such as packets , There is a risk that it will not be applicable to transmission.
  • B Because it is an adaptive algorithm that uses a non-linear function V, it is close to the convergence point to some extent! If the initial value force estimation is not started, the convergence speed drops significantly, so there is a possibility that it will not be able to follow high-speed transmission path fluctuations. is there.
  • the inventor of the present invention has reached the present invention by considering the above points to be improved when applying the independent component analysis algorithm (Fast-ICA algorithm) to MIMO transmission.
  • Fast-ICA algorithm independent component analysis algorithm
  • a feature of the present invention is that an independent component analysis algorithm that does not require a known symbol and that can perform signal separation is used, and an independent component analysis algorithm that performs channel estimation using a known symbol in an auxiliary manner. In other words, signal separation processing using channel estimation values is performed. As a result, highly accurate signal separation can be performed with a relatively small number of known symbols and a large amount of computation.
  • Fast-ICA signal separation algorithm which is one of independent component analysis algorithms, and channel estimation are used together as follows.
  • FIG. 7 shows the configuration of the MIMO receiver of this embodiment.
  • the configuration other than the Fast-ICA processing unit 210 in the MIMO receiver 200 is omitted in order to simplify the drawing.
  • parts corresponding to those in FIG. 4 are assigned the same reference numerals as in FIG. 4, and descriptions thereof are omitted.
  • FIG. 7 differs from FIG. 4 in that switching switch 201 and channel estimation section 202 are provided, and that the channel estimation value obtained by channel estimation section 202 in S, ⁇ matrix calculation section 221 is provided. H is input.
  • MIMO receiving apparatus 200 selectively inputs N received signals x (t) received by N antennas to Fast-ICA processing section 210 or channel estimation section 202 via switching switch 201. To do. Specifically, the switching switch 201 outputs the received signal x (t) to the channel estimation unit 202 during the period in which the known symbol is received, and the received signal x ( t) is output to the Whitening unit 122 of the Fast-ICA processing unit 210.
  • Channel estimation section 202 obtains channel estimation value H using a known symbol. In practice, the channel estimation value H is also obtained for the relational power in Eq. (1). Channel estimation section 202 transmits the obtained channel estimation value H to S, ⁇ matrix calculation section 221 of Sphering processing section 220.
  • the S, ⁇ matrix calculator 221 calculates a level uniformization matrix (eigenvalue matrix) S and a decorrelation matrix (inherent vector) ⁇ . At this time, the S, ⁇ matrix calculation unit 221 instantly obtains the matrices S and ⁇ using the channel estimation value H that does not use the received signal X, and eliminates the pull-in time. This will be described below.
  • the S, ⁇ matrix calculation unit 221 performs an eigenvalue decomposition operation as shown in Equation (2).
  • the i and j elements of the correlation matrix on the right-hand side of equation (2) are set average values. Is generally calculated as a time average as follows: However,
  • n time
  • the channel estimation value H is a value measured in a good transmission environment without interference obtained by a known symbol transmitted while switching the transmitting antenna, and the time when the above-mentioned L is small. It is considered more reliable than the correlation value.
  • the S, ⁇ matrix calculation unit 221 of the present embodiment uses the channel estimation value H to calculate the correlation matrix based on the original set average instead of calculating the correlation matrix by time average using a large amount of data. By calculating as in the equation, the pull-in time is almost unnecessary.
  • FIG. 8 shows a conceptual diagram (timing chart) of the soot reception process using the Fast-ICA algorithm of this embodiment.
  • the channel estimation value H is obtained from the known symbols received at the beginning of the received frame
  • the correlation matrix is obtained instantaneously according to Eq. (13). You can proceed to.
  • frames are not received continuously for a long time as shown in the figure. As a result, the frame signal separation operation can be completed within a problem-free time.
  • a plurality of received signals received by a plurality of antennas are subjected to blind signal separation processing using an independent component analysis method, whereby a plurality of separated signals that are independent of each other are obtained.
  • S, ⁇ matrix calculation unit 221 that obtains the correlation matrix of the received signal using the channel estimation value eliminates the pull-in time in the independent component analysis process and reduces the number of data as in packet transmission It is possible to realize the MIMO receiver 200 that can also support transmission.
  • FIG. 9 in which the same reference numerals are assigned to the parts corresponding to FIG. 7 shows the configuration of MIMO receiving apparatus 300 according to the present embodiment.
  • MIMO receiving apparatus 300 has initial estimated value calculating section 301 for calculating initial estimated value R of R matrix calculating section 331 in addition to the configuration of FIG. Initial estimate calculation
  • the unit 301 inputs the channel estimation value H and the matrix S, ⁇ obtained by the S, ⁇ matrix calculation unit 221 using the channel estimation value H, and uses these to obtain an initial estimation value R of the approximate Newton method R
  • the initial estimated value R is sent to the R matrix calculation unit 331.
  • the ICA algorithm is a combination of Sphering processing and approximate Newton's method that achieves third-order convergence and extremely fast convergence speed. When the convergence point is reached after about 10 iterations It is said. However, if it does not start with an appropriate initial estimation vector, it may stay at a stop point other than the convergence point, and the convergence may be significantly delayed or may diverge in some cases.
  • a random number is generated and used as an initial value (step ST1).
  • an initial estimated value R that is close to the channel estimated value H force convergence point is calculated and used.
  • FIG. 10 shows a conceptual diagram (timing chart) of MIMO reception processing using the Fast-ICA algorithm of the present embodiment.
  • Matrix eigenvalue decomposition of the channel estimation value H force further correlation matrix HH T by known symbol received by the head of the received frame S, lambda is that Motomema. Therefore, the initial value estimated value calculation unit 301 calculates the initial estimated value R according to Equation (17), and the ICA process.
  • the initial estimated value calculation unit 301 for estimating the initial estimated value R of the independent component analysis using the channel estimated value H is provided.
  • FIG. 11 in which parts corresponding to those in FIG. 9 are assigned the same reference numerals shows the configuration of the MIMO receiving apparatus of the present embodiment.
  • R matrix calculation unit 331 Approximate Newton method estimated value obtained from rotation (rotation matrix) R force also reversely calculates transmission line matrix H ′ Transmission line matrix reverse calculation part 401 and an averaging unit 402 that averages the transmission path matrix H ′ and the channel estimation value H.
  • the channel estimation value H is the ICA algorithm. This is a very important amount to bring out the performance.
  • the channel estimation value H is reduced in estimation accuracy due to receiver noise or is updated at the frame period, so high-speed channel fluctuation You may not be able to follow.
  • the Fast-ICA estimated value R is updated in the symbol period by online operation. Therefore, if the channel matrix H 'at that time is calculated backward from the Fast-ICA estimated value R at the frame end time and this is reflected in the channel estimated value H, it will follow even under high-speed channel fluctuations. As a result, better transmission characteristics can be obtained. This will be described below.
  • the rotation matrix R force which is the Fast-ICA estimate, can also be calculated as follows by substituting R for matrix R in Eq. (17) and H for matrix H in Eq. (17). That is,
  • the transmission path matrix inverse calculation unit 401 calculates the transmission path matrix H ′ by performing the following calculation.
  • the averaging unit 402 reflects the channel matrix H ′ obtained in this way on the channel estimation value H as a weighted average as shown in the following equation, thereby averaging the channel estimation value. Find H.
  • FIG. 12 shows a schematic diagram of a MIMO reception process using the Fast-ICA algorithm of this embodiment (timing chart). ).
  • Known symbols received at the beginning of each received frame Force The force that the channel estimation value H can be obtained.
  • the Fast—IC A estimation value R force obtained in the previous frame is also obtained by the equation (18), and the channel matrix H 'at that time is obtained and averaged by the equation (19). Is the channel estimation value H again.
  • Subsequent matrix by eigenvalue decomposition of the correlation matrix HH T S, seeking lambda. Therefore, the initial estimated value R is calculated by equation (16) and approximated from here.
  • channel estimation and Fast-ICA operate in a complementary manner, improving the estimation accuracy without increasing the number of known symbols for channel estimation and reducing the transmission speed, and providing good transmission characteristics. It will be obtained.
  • the transmission path matrix H ′ is calculated backward from the estimated value R of the approximate Newton method obtained by the R matrix calculation unit 331.
  • the channel estimation unit 401 and the averaging unit 402 which averages the channel matrix H ′ and the channel estimation value H are provided. Therefore, it is possible to improve the channel estimation accuracy without increasing the number of known symbols to reduce the transmission rate, and to perform independent component analysis processing with better error rate characteristics. In addition, since the followability to transmission path fluctuation is improved, it is possible to increase the transmission rate by extending the frame period.
  • the present invention is particularly suitable for application to an Ml MO receiver adapted to perform signal separation processing by independent component analysis (ICA).
  • ICA independent component analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

It is possible to provide a MIMO reception device and a MIMO reception method capable of perform highly accurate signal separation with a small number of known symbols and a small calculation amount. The MIMO reception device includes a Fast-ICA processing unit (210) capable of performing signal separation not requiring a known symbol and a channel estimation unit (202) for acquiring a channel estimation value H by using a known symbol. An S, Λ matrix calculation unit (221) obtains a correlation matrix (S, Λ) by using the channel estimation value H. Thus, it is possible to instantaneously obtain the correlation matrix (S, Λ) usedin the Sphering process, which eliminates the need of the draw-in time in the Fast-ICA process, and to realize a MIMO reception device (200) capable of coping with transmission of a small number of data such as packet transmission.

Description

MIMO受信装置及び MIMO受信方法  MIMO receiving apparatus and MIMO receiving method
技術分野  Technical field
[0001] 本発明は、無線 LAN (Local Area Network)やセルラシステム等の無線通信システ ムに用いられる MIMO受信装置及び MIMO受信方法に関する。  The present invention relates to a MIMO receiving apparatus and a MIMO receiving method used in a wireless communication system such as a wireless LAN (Local Area Network) or a cellular system.
背景技術  Background art
[0002] 近年、チャネル数が増えても帯域が増加しな 、無線伝送方式として、 MIMO (Multi pie-Input Multiple- Output)伝送方式が注目され、その研究が盛んに行われている。 MIMO伝送方式に関しては、例えば特許文献 1で開示されたものがある。  In recent years, a multi-input-multiple-output (MIMO) transmission system has attracted attention as a wireless transmission system that does not increase the bandwidth even if the number of channels increases, and its research has been actively conducted. For example, Patent Document 1 discloses a MIMO transmission system.
[0003] 図 1に、従来の MIMO伝送システムの概念を示す。図 1にお!/、て、 MIMO送信装 置 10は、 1フレーム時間毎に M本の送信アンテナ TxANT— 0〜TxANT— M— 1 力 既知シンボルパターンと kチャネル TDM多重信号を送出する。これらは交じり合 つて MIMO受信装置 20に接続された N本の受信アンテナ RxANT— 0〜RxANT — N—lで受信される。ここでサービスエリアが狭い場合、または OFDM伝送と併用 した時の各サブキャリア内に分割して考えた場合、マルチパスの伝搬経路遅延差に よる周波数選択性フェージングを無視できるので、伝送路行列の各要素は複素数に なり、送信シンボルと受信シンボルの間に次式が成立つ。なお、次式は行列表現で X =Hsと表わされる。  FIG. 1 shows the concept of a conventional MIMO transmission system. As shown in FIG. 1, the MIMO transmitter 10 transmits M transmit antennas TxANT—0 to TxANT—M—1 power every one frame time, and k-channel TDM multiplexed signals. These signals are combined and received by N receiving antennas RxANT—0 to RxANT —N—l connected to the MIMO receiver 20. Here, when the service area is narrow or when divided into subcarriers when combined with OFDM transmission, frequency selective fading due to propagation path delay difference of multipath can be ignored. Each element is a complex number, and the following equation holds between the transmitted symbol and the received symbol. The following equation is expressed as X = Hs in matrix representation.
[数 1]  [Number 1]
N-1ノ h
Figure imgf000003_0001
x; ,i = 0,1,· ' ·,Ν -1 は i番目の受信アンテナでの受信シンボル s -,j = 0,1,· · ·,Μ - 1 は j番目目のの送送信信アァンンテテナナかかららのの送送信信 >シンボル h.. は第 j送 第 i受信ァンテナ間の伝達係数 y [0004] MIMO受信装置 20は、 N個の受信シンボルから、送信側の M本のアンテナで送 信された M個の信号を得るための信号分離を行う。信号分離はチャネル推定と分離 の 2段階で実行される。
N-1 Roh h
Figure imgf000003_0001
x ;, i = 0,1, · '·, Ν -1 is the received symbol at the i-th receiving antenna s-, j = 0,1, ···, Μ-1 is the j-th transmission Transmitter / receiver from receiver antenna> symbol h .. is the transmission coefficient y between jth and ith receiver antennas. [0004] MIMO receiver 20 performs signal separation to obtain M signals transmitted from M antennas on the transmission side from N received symbols. Signal separation is performed in two stages: channel estimation and separation.
[0005] まず、図 1にお!/、て送信アンテナ TxANT— 0が既知シンボルを送出して!/、る時間 は他の送信アンテナ TxANT— l〜TxANT— M— 1は信号を送出しないので、この 時の各受信アンテナ RxANT— 0〜RxANT— N— 1で受信された既知シンボルが どのような歪を受けたかを複素除算で検出し、その商が h , h , · · , h になる。  [0005] First, as shown in FIG. 1! /, Because the transmitting antenna TxANT—0 sends out a known symbol! /, The other transmitting antennas TxANT—l to TxANT—M—1 do not send out signals. At this time, the distortion of the known symbols received by each receiving antenna RxANT—0 to RxANT—N—1 is detected by complex division, and the quotient becomes h 1, h 2,. .
00 10 N- l 0  00 10 N- l 0
以下同様に送信アンテナ TxANT 1のみが既知シンボルを送出する時では h , h 一 01 1 Similarly, when only the transmitting antenna TxANT 1 transmits a known symbol, h and h 1 01 1
, · · , h t 、うように全要素を測定し、 N X M伝送路行列 Hを得ることができる。 ,..., H t, all elements can be measured to obtain an N X M transmission line matrix H.
1 N-l 1  1 N-l 1
これがチャネル推定であり、既知シンボル歪測定部 21— 0〜21— M— 1で行われる 。このチャネル推定値を用いると受信シンボルベクトル Xから元の送信シンボルべタト ル sを抽出分離することができ、その処理が信号分離部 22で行われる。信号分離部 2 2で行われる信号分離アルゴリズムは次の 3つに大別される。  This is channel estimation, which is performed by the known symbol distortion measurement units 21-0 to 21-M-1. Using this channel estimation value, the original transmission symbol vector s can be extracted and separated from the reception symbol vector X, and the processing is performed by the signal separation unit 22. The signal separation algorithm performed by the signal separation unit 22 is roughly divided into the following three.
[0006] (1) ZF:伝送路雑音の存在を無視してチャネル推定値の逆行列 H_1を求め、逆行 列演算を行って各信号を分離する。 [0006] (1) ZF: Ignores the presence of transmission line noise and obtains an inverse matrix H_1 of the channel estimation value, and performs inverse matrix operation to separate each signal.
(2) MMSE:チャネル推定誤差電力が最小になるように推定値を修正し、その逆伝 送路行列 H_ 1を求め、その逆行列を使って各信号を分離する。 (2) MMSE: Correct the estimate as the channel estimation error power is minimized, the reverse transfer sending passage matrix H _ 1 determined, to separate the signals using the inverse matrix thereof.
(3) MLD:チャネル推定値 Hを用いて全送信シンボルパターンに対する受信シン ボルレプリカを発生させ、各誤差成分を評価しながら、尤も確カゝな送信シンボルを選 択する。  (3) MLD: The channel estimation value H is used to generate a received symbol replica for all transmitted symbol patterns, and the most reliable transmission symbol is selected while evaluating each error component.
[0007] なお上記のように分離された分離信号中には、他の分離信号からの残留干渉成分 や受信機雑音が含まれ、これらの大きさは MIMO伝送路の状態や、得られたチヤネ ル推定精度、用いた分離アルゴリズムなどに依存する。  [0007] Note that the separated signal separated as described above includes residual interference components and receiver noise from other separated signals, and these magnitudes are related to the state of the MIMO transmission path and the obtained channel. Depends on the accuracy of the estimation and separation algorithm used.
特許文献 1:特開 2001— 237751号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-237751
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、上記従来の MIMO受信方法においては、次のような問題があった。 However, the conventional MIMO reception method has the following problems.
(1) ZF及び MMSEによる信号分離は、低演算量だが伝送特性の劣化 (すなわち 分離精度の劣化)を伴う。 (1) Signal separation by ZF and MMSE is a low amount of computation, but the transmission characteristics are degraded (i.e. Accompanied by degradation of separation accuracy).
(2) MLDによる信号分離は、理論的に最も良い伝送特性が得られるが、演算量が 膨大になる。例えば送受信に各々 4本のアンテナを用いて 16QAM伝送を行う場合 に 1. 9 X 101G回もの乗算が必要である。このオリジナルの MLDに大胆な簡略ィ匕を 導入して乗算回数を MMSEと同程度の 1 X 107回にまで削減した簡易アルゴリズム も提案されて ヽるが、伝送特性が十分に評価されて ヽるとは言えな 、のが現状であ る。 (2) Signal separation by MLD can theoretically provide the best transmission characteristics, but the amount of computation is enormous. For example, when 16QAM transmission is performed using four antennas each for transmission and reception, 1.9 x 10 1G multiplications are required. A simple algorithm that reduces the number of multiplications to 1 X 10 7 times that is the same as MMSE by introducing a bold simple key to this original MLD has also been proposed, but its transmission characteristics have been fully evaluated. That said, it is the current situation.
(3)上記(1)、(2)で用いるチャネル推定値は、既知シンボルが受ける歪を検出し て得られるものである。しかし、伝送速度の極端な低下を避けるために、送信できる 既知シンボル数は制限される場合が多ぐこのため受信側で利用できる既知シンポ ル数は制限され十分な分離精度が得られなくなる。  (3) The channel estimation values used in the above (1) and (2) are obtained by detecting distortions experienced by known symbols. However, the number of known symbols that can be transmitted is often limited in order to avoid a drastic decrease in transmission speed, so that the number of known symbols that can be used on the receiving side is limited and sufficient separation accuracy cannot be obtained.
[0009] 本発明の目的は、比較的少な 、既知シンボル数及び演算量で、高精度の信号分 離を行うことができる MIMO受信装置及び MIMO受信方法を提供することである。 課題を解決するための手段  An object of the present invention is to provide a MIMO receiving apparatus and a MIMO receiving method capable of performing high-accuracy signal separation with a relatively small number of known symbols and an operation amount. Means for solving the problem
[0010] 本発明の MIMO受信装置は、複数のアンテナで受信された複数の受信信号に独 立成分分析法を用いたブラインド信号分離処理を施すことにより、互いに独立な複数 の分離信号を得る独立成分分析手段と、受信した既知シンボルを用いて、各送受信 アンテナ間のチャネル推定値を求めるチャネル推定手段と、前記独立成分分析を行 う前処理として行われる Sphering処理において用いられる受信信号の相関行列を、 前記チャネル推定値を用いて求める相関行列算出手段とを具備する構成を採る。 発明の効果 [0010] The MIMO receiver of the present invention performs independent blind signal separation processing using an independent component analysis method on a plurality of received signals received by a plurality of antennas, thereby obtaining a plurality of independent separated signals. Component analysis means, channel estimation means for obtaining a channel estimation value between each transmitting / receiving antenna using the received known symbols, and a correlation matrix of received signals used in Sphering processing performed as preprocessing for performing the independent component analysis A correlation matrix calculating means for obtaining the value using the channel estimation value is employed. The invention's effect
[0011] 本発明によれば、独立成分分析法を用いて信号分離処理を行うようにしたので、基 本的には既知シンボルを必要とせず、高精度の信号分離を行うことができるようにな る。カ卩えて、補助的に既知シンボルを用いたチャネル推定を行って、 Sphering処理 にお 、て用いられる受信信号の相関行列を、既知シンボル力も得られたチャネル推 定値を用いて求めるようにしたので、独立成分分析処理における引き込み時間を不 要にし、パケット伝送のようにデータ数の少ない伝送にも対応可能な MIMO— ICA 受信装置を実現できる。 図面の簡単な説明 [0011] According to the present invention, since signal separation processing is performed using an independent component analysis method, basically, a known symbol is not required and high-precision signal separation can be performed. Become. In addition, channel estimation using a known symbol is performed supplementarily, and the correlation matrix of the received signal used in the Sphering process is obtained using the channel estimation value from which the known symbol power is also obtained. Therefore, it is possible to realize a MIMO-ICA receiver that does not require the pull-in time in the independent component analysis processing and can cope with transmission with a small number of data such as packet transmission. Brief Description of Drawings
[0012] [図 1]従来の MIMO伝送システムの概念を示す図  [0012] [FIG. 1] A diagram showing the concept of a conventional MIMO transmission system
[図 2]独立成分分析アルゴリズムの代表例を示す図  [Figure 2] Figure showing a typical example of an independent component analysis algorithm
[図 3]"非ガウス性"が最大になるように分離するという意味を定性的に説明するため の図であり、図 3Aはサブガウスを示し、図 3Bはガウスを示し、図 3Cはスーパーガウ スを示す図  [Fig. 3] Qualitatively explaining the meaning of separation so that “non-Gaussianity” is maximized. FIG. 3A shows sub-Gauss, FIG. 3B shows Gauss, and FIG. Illustration showing
[図 4]MIMO受信に Fast— ICAを適用した構成例を示す図  [Fig.4] Diagram showing an example of configuration using Fast-ICA for MIMO reception
[図 5]Fast— ICAによる 1信号分離処理の説明に供するフローチャート  [Fig.5] Fast— Flowchart for explaining 1-signal separation processing by ICA
[図 6]Fast— ICAアルゴリズムを用いた MIMO受信処理の概念を示すタイミングチヤ ート  [Figure 6] Fast—Timing chart showing the concept of MIMO reception processing using the ICA algorithm
[図 7]実施の形態 1の MIMO受信装置の構成を示すブロック図  FIG. 7 is a block diagram showing the configuration of the MIMO receiving apparatus according to the first embodiment.
[図 8]実施の形態 1の Fast— ICAアルゴリズムを用 ヽた MIMO受信処理の概念を示 すタイミングチャート  [FIG. 8] Timing chart showing the concept of MIMO reception processing using the Fast—ICA algorithm of Embodiment 1.
[図 9]実施の形態 2の MIMO受信装置の構成を示すブロック図  FIG. 9 is a block diagram showing the configuration of the MIMO receiving apparatus according to the second embodiment.
[図 10]実施の形態 2の Fast— ICAアルゴリズムを用 、た MIMO受信処理の概念を 示すタイミングチャート  FIG. 10 is a timing chart showing the concept of MIMO reception processing using the Fast-ICA algorithm of Embodiment 2.
[図 11]実施の形態 3の MIMO受信装置の構成を示すブロック図  FIG. 11 is a block diagram showing the configuration of the MIMO receiving apparatus according to the third embodiment.
[図 12]実施の形態 3の Fast— ICAアルゴリズムを用いた MIMO受信処理の概念を 示すタイミングチャート  FIG. 12 is a timing chart showing the concept of MIMO reception processing using the Fast-ICA algorithm of Embodiment 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態について図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014] (実施の形態の原理)  [Principle of Embodiment]
先ず、本発明の発明者は、音響や医療分野などで研究されている独立成分分析ァ ルゴリズム(以下 ICA (Independent Component Analysis)アルゴリズムと呼ぶこともあ る)を用いれば、既知シンボルを用いずに信号分離を行うことができると考えた。独立 成分分析アルゴリズムの代表的なものを、図 2に示す。本発明の発明者は、図 2の独 立成分分析アルゴリズムの中で、収束が最も速い Fast— ICAアルゴリズムが MIMO 伝送システムに適用するのに最適であると考えた。実施の形態では、独立成分分析 アルゴリズムとして Fast - IC Aアルゴリズムを適用した場合を中心に説明する。 First, the inventor of the present invention can use an independent component analysis algorithm (hereinafter also referred to as an ICA (Independent Component Analysis) algorithm) studied in the acoustic and medical fields without using a known symbol. We thought that signal separation could be performed. Figure 2 shows a typical independent component analysis algorithm. The inventor of the present invention considered that the Fast-ICA algorithm with the fastest convergence among the independent component analysis algorithms in FIG. 2 is optimal for application to a MIMO transmission system. In an embodiment, independent component analysis The case where the Fast-IC A algorithm is applied as an algorithm will be mainly described.
[0015] さらに、本発明の発明者は、 MIMO受信装置に Fast— ICAアルゴリズムを適用す るにあたっての問題点について考察し、その問題点を解決するために本発明を考案 した。 [0015] Furthermore, the inventors of the present invention have considered problems in applying the Fast-ICA algorithm to a MIMO receiver, and have devised the present invention to solve the problems.
[0016] (i) Fast— ICAァノレゴリズム  [0016] (i) Fast—ICA anoligo rhythm
先ず、 Fast— ICAアルゴリズムについて説明する。ここで、無線伝送では複素信号 、複素係数で記述することが多いが、 ICAアルゴリズムは複素信号に適用可能である 。ただし、複素信号に適用した場合も、実数で記述した場合と基本概念は等しいので 、簡単のため以下では全て実数として記述する。さらに送信アンテナと受信アンテナ が同数 (M = N)の場合を例に説明する。  First, the Fast-ICA algorithm will be described. Here, in radio transmission, complex signals and complex coefficients are often described, but the ICA algorithm can be applied to complex signals. However, even when applied to complex signals, the basic concept is the same as that described in real numbers, so all are described as real numbers below for simplicity. Furthermore, the case where the number of transmitting antennas and receiving antennas is the same (M = N) will be described as an example.
[0017] Fast— ICAは、分離信号の"非ガウス性"を最大にするように、適応信号処理にて 信号を 1個ずつ抽出分離するアルゴリズムである。適応アルゴリズムの指導原理であ る"非ガウス性"を表す量には、 Kurtosis (尖度)の絶対値ゃネゲントロピーという統 計量が用いられ、特に後者を用いたものは数値的安定性や演算量の点で実用的な アルゴリズムになっている。 MIMO伝送では、各送信信号は非ガウス分布をしており 、互いに独立と考えられるので、 Fast— ICAによる信号分離が可能である。非ガウス 性の強い送信信号の場合、低 SINR環境において、従来よりも優れた伝送特性が得 られる可能性がある。  [0017] Fast—ICA is an algorithm that extracts and separates signals one by one in adaptive signal processing so as to maximize the “non-Gaussianity” of the separated signal. The quantity representing the non-Gaussian principle, which is the guiding principle of the adaptive algorithm, uses the statistic of the absolute value of Kurtosis (kurtosis) or negentropy. Especially, the latter uses numerical stability and computational complexity. This is a practical algorithm. In MIMO transmission, each transmission signal has a non-Gaussian distribution and is considered to be independent of each other, and therefore, signal separation by Fast-ICA is possible. In the case of transmission signals with strong non-Gaussian characteristics, there is a possibility that superior transmission characteristics may be obtained in a low SINR environment.
[0018] 図 3を用いて"非ガウス性"が最大になるように分離するという意味を定性的に説明 する。一般に信号の確率密度分布の形状は、ガウス分布よりへこんでいる力 尖がつ ているかによつて、サブガウス(図 3A)、ガウス(図 3B)、スーパーガウス(図 3C)かの 3つに大別される。各々の分布に従った互いに独立な 2送信信号の 2次元分布は各 々 2段目のようになる。そして、伝送路で回転歪が加わると 3段目の 2次元分布を有す る受信信号になる。そして単純にこれらを受信分離すると、その 1分離信号の分布は 最下段のようになり、以下のことが分かる。  [0018] The meaning of separation so that "non-Gaussianity" is maximized will be qualitatively explained with reference to FIG. In general, the shape of the probability density distribution of a signal is largely divided into three types: sub-Gauss (Fig. 3A), Gauss (Fig. 3B), and Super Gauss (Fig. 3C), depending on whether the force cusps that are dented from the Gaussian distribution are present. Separated. The two-dimensional distribution of the two independent transmission signals according to each distribution is as shown in the second stage. When rotational distortion is applied to the transmission line, the received signal has a two-dimensional distribution at the third stage. If these are simply received and separated, the distribution of the separated signal becomes the lowest level.
[0019] (1)混合前の分布に較べて混合後の分布はガウス分布に近くなる(中心極限定理)  [0019] (1) The distribution after mixing is closer to the Gaussian distribution than the distribution before mixing (central limit theorem)
(2)ガウス分布にっ 、ては混合前と混合後で変化はな!/、。 [0020] Fast— ICAの指導原理である「分離信号の"非ガウス性"を最大にする」とは、図 3 の最下段の受信信号に、非ガウス分布に従う分離信号が得られるように適当な回転 を与えて、元の信号を得るというものである。但し図 3からも明らかなように、元の信号 がガウス分布に従って!/、ると 2次元分布は円形になるため、元に戻すための適当な 回転角を決定できず、分離できない。なお実際の無線伝送路では、位相回転の他に 振幅変動も受ける力 '非ガウス性"という性質は分布の形にのみ依存するので、レべ ル不定であっても本質的な問題にはならない。しかしながら Fast— ICAでは、 Spher ingという前処理を行って、混合信号を互いに無相関でかつ同電力の信号に変換し て力も適応動作を行うことで、所要演算量の削減と高速な収束特性とを実現するよう になっている。 (2) The Gaussian distribution does not change before and after mixing! /. [0020] Fast—The ICA's guiding principle “maximize the“ non-Gaussianity ”of the separated signal” is appropriate so that a separated signal conforming to the non-Gaussian distribution can be obtained in the lowermost received signal in FIG. Give the original signal. However, as can be seen from Fig. 3, if the original signal follows a Gaussian distribution! /, The two-dimensional distribution becomes circular, so an appropriate rotation angle for returning to the original cannot be determined and cannot be separated. In an actual wireless transmission line, the force of non-Gaussianity that is subject to amplitude fluctuations in addition to phase rotation depends only on the shape of the distribution, so even if the level is indefinite, it does not become an essential problem. However, with Fast-ICA, preprocessing called Sphering is performed to convert the mixed signals into signals that are uncorrelated with each other and have the same power, thereby reducing the required amount of computation and achieving high-speed convergence characteristics. It has come to realize.
[0021] 図 4に、ネゲントロピーを最大化する Fast— ICAを、 MIMO受信装置 100に適用し た場合の構成を示す。なお図 4では、図を簡単化するため、 MIMO受信装置 100〖こ おける Fast— ICA処理部 110以外の構成は省略した。  FIG. 4 shows a configuration when Fast-ICA that maximizes negentropy is applied to MIMO receiver 100. In FIG. 4, the configuration other than the Fast-ICA processing unit 110 in the MIMO receiver 100 is omitted in order to simplify the drawing.
[0022] 図中の各記号は、以下の意味をもつ。  [0022] Each symbol in the figure has the following meaning.
s (t) :N次元送信信号ベクトル (各要素信号は平均 0で互いに独立かつ偶対象な 非ガウス分布に従う)  s (t): N-dimensional transmission signal vector (each element signal has a mean of 0 and follows a non-Gaussian distribution that is independent and even from each other)
A: N X N伝達係数行列(マルチパスやレイリー変動を考慮しないので一定の実行 列)  A: N X N transfer coefficient matrix (a constant execution matrix because multipath and Rayleigh fluctuations are not considered)
x(t): N次元受信信号ベクトル (x (t) =A' s (t)で表される)  x (t): N-dimensional received signal vector (expressed as x (t) = A 's (t))
Λ :Ν Χ Ν無相関化行列  Λ: Ν Χ ΝDecorrelated matrix
S :N X N電力均一化行列  S: N X N power equalization matrix
z (t): N次元 Sphering出力信号ベクトル (z (t) =S A 'x(t)で表され、各要素信号 は互いに無相関で平均 0、分散 1である)  z (t): N-dimensional Sphering output signal vector (expressed as z (t) = S A 'x (t), each element signal is uncorrelated with mean 0 and variance 1)
R:N X N回転行列(直交行列であり、無相関化された信号 z (t)から互いに独立な 分離信号 y (t)を得るためのもの)  R: N X N rotation matrix (orthogonal matrix for obtaining separated signals y (t) independent of decorrelated signals z (t))
y(t): N次元分離信号ベクトル (y (t) =R'z (t)で表される)  y (t): N-dimensional separated signal vector (represented by y (t) = R'z (t))
G (y):分離信号の 1つを入力とする観測関数 (行列 Rを決定するのに必要だが、実 質上は後述するいくつかの関数候補から選択すればよい) Fast— ICA処理部 110は、前処理部である Sphering処理部 120と、近似 Newto n法処理を実行する IC A処理部 130とを有する。 Sphering処理部 120は、まず次式 に示すように、受信信号の相関行列 E[xxT]を固有値分解することで、固有値え 〜 λ 及び固有ベクトル e〜e を得る。 G (y): an observation function that takes one of the separated signals as input (necessary to determine the matrix R, but in practice it can be selected from several function candidates described later) The Fast-ICA processing unit 110 includes a Sphering processing unit 120, which is a preprocessing unit, and an ICA processing unit 130 that executes approximate Newton method processing. The Sphering processing unit 120 first obtains eigenvalues ~ λ and eigenvectors e ~ e by performing eigenvalue decomposition on the correlation matrix E [xx T ] of the received signal as shown in the following equation.
[数 2] [Equation 2]
X λ0 -Λι ½-1 ' Λ 0 el -
Figure imgf000009_0001
X λ 0- Λ ι ½-1 ' Λ 0 e l-
Figure imgf000009_0001
- ~ ' ~— 、 え 0, 八 1, は、 Ε|ΧΧΤ])固有値 -~ '~ —, Eh 0, 8 1, is Ε | ΧΧ Τ ]) eigenvalue
Τ  Τ
· ·, e mlt 対応する Elxx1 固有べクトル · ·, E m lt The corresponding Elxx 1 specific vector
(2)  (2)
Sphering処理部 120は、このようにして得た固有値え 〜λ 及び固有ベクトル e  The Sphering processing unit 120 obtains the eigenvalues ~ λ and eigenvectors e thus obtained.
0 N-1  0 N-1
〜e を用いて、次式を実行する。  The following equation is executed using ~ e.
0 N-1  0 N-1
[数 3] [Equation 3]
Figure imgf000009_0002
Figure imgf000009_0002
( 3 ) なお以下の記述では E [ · ]は'の集合平均値 (期待値)を意味する。 (3) In the following description, E [·] means the set average value (expected value) of '.
ICA処理部 130は、 Sphering処理部 120の出力 zに対して分離信号のネゲントロ ピーを最大にする回転角を検出し、回転行列 Rを構成して信号分離を行う。そのため に、先ず、 R行列算出部 131によって、 Newton法を用いて 1信号を分離して行列 R の 1行 r τを決定する。これは、次式のように実行される。 The ICA processing unit 130 detects the rotation angle that maximizes the separation signal's negentropy with respect to the output z of the Sphering processing unit 120, forms a rotation matrix R, and performs signal separation. Therefore, first, the R matrix calculation unit 131 determines a line r tau of the matrix R to separate the first signal using the Newton method. This is performed as follows:
0  0
[数 4]
Figure imgf000010_0001
[Equation 4]
Figure imgf000010_0001
( 4 )  ( Four )
[0026] この処理は、 Sphering処理部 120の出力 zの各要素信号が互いに無相関かつ同 電力であることと、 r τは回転行列の行ベクトルなのでノルム 1であることを利用して大 [0026] Large This process utilizes the fact and that each element signal output z of Sphering processor 120 are uncorrelated and the power to each other, the r tau is the norm 1 because row vector of rotation matrix
0  0
幅に演算量を削減したものであり、近似 Newton法と呼ばれる。なお、(4)式におけ る jはサンプリング処理時刻を示す。また、(4)式における g' (y) , g' 下  This is a reduction in the amount of computation, and is called the approximate Newton method. In equation (4), j represents the sampling processing time. In addition, under g '(y), g' in equation (4)
j ,(y)としては  j and (y)
j  j
表のような関数が用いられる。  A function like the table is used.
[表 1] [table 1]
Figure imgf000010_0002
Figure imgf000010_0002
[0027] 近似 Newton法の収束は非常に速ぐ Sphering処理の効果もあって推定誤差が 3 乗のオーダーで減少する 3次収束であることが知られている。 [0027] It is known that the convergence of the approximate Newton method is a third-order convergence in which the estimation error decreases in the order of the third power due to the effect of a very fast Sphering process.
[0028] 以上をまとめると、 1信号分離処理は、図 5に示すフローチャートで表される。すなわ ち、ステップ ST1で推定ベクトルを初期化し、ステップ ST2で Sphering処理部 120 に受信信号ベクトルを入力する。続くステップ ST3で各要素信号の直流成分を除去 し、ステップ ST4で S, Λ行列算出部 121によって無相関化行列 Ajとレベル均一化 行列 Sjを算出した後、ステップ ST5で Whitening部 122によって Sphering処理を 実行する。すなわち、ステップ ST3— ST4— ST5の処理は、 Sphering処理部 120 で行われる。なお、図 4では、図を簡単ィ匕するために、各要素信号の直流成分を除 去する部分を省略している力 実際には Whitenig部 122及び S, Λ行列算出部 12 1の前段側には、直流成分除去回路が設けられている。 [0029] 次に、ステップ ST6で信号分離処理を行 、、ステップ ST7で推定ベクトルの更新と 正規化を行う。ステップ ST6— ST7の処理が近似 Newton法に相当し、 ICA処理部 130によって実行される。 Summarizing the above, the 1-signal separation process is represented by the flowchart shown in FIG. That is, the estimation vector is initialized in step ST1, and the received signal vector is input to the Sphering processing unit 120 in step ST2. In step ST3, the DC component of each element signal is removed, and in step ST4, the S, Λ matrix calculation unit 121 calculates the decorrelation matrix Aj and the level equalization matrix Sj. Then, in step ST5, the whitening unit 122 performs Sphering processing. Execute. That is, the processing of steps ST3-ST4-ST5 is performed by the Sphering processing unit 120. Note that in FIG. 4, the force that omits the part that removes the DC component of each element signal is omitted for the sake of simplicity. Actually, the preceding stage of the Whitenig part 122 and the S, Λ matrix calculation part 121 Is provided with a DC component removal circuit. [0029] Next, signal separation processing is performed in step ST6, and estimation vector updating and normalization are performed in step ST7. Steps ST6 to ST7 correspond to the approximate Newton method and are executed by the ICA processing unit 130.
[0030] その他の分離信号は、その独立性力 すでに分離された信号と垂直方向に分布す る。従って、得られた行ベクトル r τと直交するベクトルをグラム =シュミット正規直交化 [0030] The other separated signals are distributed in the vertical direction with respect to the already separated signals. Therefore, the vector orthogonal to the obtained row vector r τ is gram = Schmidt orthonormalization
0  0
法で順次求め、行列 Rの他の行ベクトルとしていけばよい。つまり 1信号分離で得られ た行列 Rの行ベクトル r Tを含む M個の互いに独立な行ベクトル r T, q T, · · · , q Τ It can be obtained sequentially by the method and used as another row vector of matrix R. That is, M mutually independent row vectors r T , q T , ..., q Τ including row vector r T of matrix R obtained by one signal separation
0 0 1 M-l を適当に用意して、次式を実行すれば回転行列 Rを求めることができる。  Rotation matrix R can be obtained by preparing 0 0 1 M-l appropriately and executing the following equation.
[数 5]
Figure imgf000011_0001
[Equation 5]
Figure imgf000011_0001
rM - l PM - l/ ||PM -l|| ' PM-1 — qM-l
Figure imgf000011_0002
rM-2/rM - 2
rM-l P M-l / || P M -l || ' P M-1 — q Ml
Figure imgf000011_0002
r M-2 / r M-2
[0031] なお、 Fast— ICAの実行手順には、上記の他に(4)式の近似 Newton法を M個並 列実行して M個の行ベクトルを求めて力 それらが互いに直交するように調整する方 法もある。また (4)式の近似 Newton法を逐次的にオンライン処理する方法や、デー タを蓄積して一括処理するバッチ処理で行う方法もある。 [0031] In addition to the above, the Fast-ICA execution procedure includes, in addition to the above, executing the approximate Newton method of Eq. (4) in parallel to obtain M row vectors and calculating the force so that they are orthogonal to each other. There is also a way to adjust. In addition, there are a method in which the approximate Newton method of Eq. (4) is sequentially processed online, and a method in which batch processing is performed in which data is accumulated and batch processed.
[0032] 図 6に、 Fast— ICAアルゴリズムを用いた MIMO受信処理の概念図(タイミングチ ヤート)を示す。 MIMO受信装置 100は、既知シンボル送信期間に各送信アンテナ 力 時分割で送信された既知シンボルを用いて、チャネル推定を行う。また MIMO 受信装置 100は、データ送信期間に各送信アンテナから同時に送信されたデータシ ンボルに対して、 Fast— ICAアルゴリズムを用いた信号分離処理を行うことで、分離 信号を得る。  [0032] Fig. 6 shows a conceptual diagram (timing chart) of MIMO reception processing using the Fast-ICA algorithm. MIMO receiving apparatus 100 performs channel estimation using known symbols transmitted by each transmission antenna power time division in a known symbol transmission period. Further, MIMO receiving apparatus 100 obtains a separated signal by performing signal separation processing using a Fast-ICA algorithm on data symbols transmitted simultaneously from the respective transmission antennas during the data transmission period.
[0033] Fast— ICAはチャネル推定値を用いずに(2)式に示した受信信号の相関行列 E[ χχτ]を求め、固有値分解を行うことで、信号を分離する。ここで相関行列 Ε [χχτ]の 計算には多くの受信信号データが必要なので、フレームごとに受信データをー且蓄 積し、相関行列の計算及び固有値分解してから、一括して信号分離を行い、出力す るようになる。 [0033] Fast-ICA is the correlation matrix of the received signal shown in without using a channel estimate (2) E [χχ τ], by performing eigenvalue decomposition, to separate the signals. Since a large amount of received signal data is required to calculate the correlation matrix Ε [χχ τ ], the received data is stored and stored for each frame, and the correlation matrix is calculated and the eigenvalues are decomposed. And output Become so.
[0034] ここで、補足として、ネゲントロピー、 k次モーメント、 k次キュムラントについて簡単に 説明しておく。  [0034] Here, as a supplement, a brief description of negentropy, kth moment, and kth cumulant will be given.
[0035] ネゲントロピーとは、ガウス信号のエントロピーで補正されたエントロピーであり、次 式で表すことができる。  [0035] Negentropy is entropy corrected by the entropy of a Gaussian signal, and can be expressed by the following equation.
[数 6] 〕 = Hlygauss) - H 〕 , H(yj) = - , 〕 dyj ここで、 ygaussは平均と分散が y;と等しいガゥス信号 [Equation 6]] = H l y gauss) -H ], H ( y j) =-,] dy j where y gauss is a Gaussian signal whose mean and variance are equal to y;
( 6 )  (6)
[0036] (6)式のエントロピー H (y )は、同電力の信号の中ではガウス分布する信号に対し て最大になる。なおこれは、正確には微分エントロピーといい、相対比較は可能だが その絶対値には意味がない。これに対して、ネゲントロピーは常に 0以上でその絶対 値も意味を持つ。 [0036] The entropy H (y) in Eq. (6) is the maximum for a signal with Gaussian distribution among signals of the same power. This is precisely called differential entropy, and relative comparison is possible, but its absolute value is meaningless. On the other hand, negentropy is always greater than 0 and its absolute value is also meaningful.
[0037] 信号 Xの統計量で、 k次モーメント (積率)とは、次式で表されるものであり、例えば 1 次モーメントは平均 = ί Χ·ρ (X) dXである。  [0037] The statistic of the signal X, and the k-th moment (product moment) is expressed by the following equation. For example, the first moment is the average = ίΧρ (X) dX.
[数 7]
Figure imgf000012_0001
[Equation 7]
Figure imgf000012_0001
[0038] また、次式で表される平均の周りの k次モーメントもよく用いられる。 [0038] In addition, a k-th moment around an average represented by the following equation is often used.
[数 8]
Figure imgf000012_0002
[Equation 8]
Figure imgf000012_0002
[0039] 因みに平均の周りの 2次モーメントが分散 σ である。なお k次モーメント は次式 [0039] Incidentally, the second moment around the mean is the variance σ. The kth moment is given by
k のように積率母関数 M (t)をティラー展開した時の係数に現れる。  It appears in the coefficient when the product generating function M (t) is expanded by Tiller like k.
X  X
[数 9] Mx(t) ·
Figure imgf000013_0001
[Equation 9] M x (t)
Figure imgf000013_0001
( 9 )  (9)
[0040] これに対して k次キュムラント κ とは、次式のように、積率母関数 Mx (t)の対数をと [0040] On the other hand, the k-th order cumulant κ is the logarithm of the product moment generating function Mx (t) as
k  k
つたキュムラント母関数 K (t)をティラー展開した時の係数として得られる統計量であ  This is a statistic obtained as a coefficient when the cumulant generating function K (t)
X  X
る。  The
[数 10]  [Equation 10]
(0 =log[M (t)] = 1 +t (0 = log [M (t)] = 1 + t
( 1 o ) ここで、 4次キュムラントが Kurtosis (尖度)である。  (1 o) where the 4th order cumulant is Kurtosis.
[0041] 4次キュムラントである Kurtosisは、図 3に示すように、確率密度分布の尖り具合に 応じて値が変わる統計量である。つまりガウス分布(図 3B)では 0、それよりも尖り具合 が大きいスーパーガウシアン(図 3C)では正値、逆に尖り具合が小さいサブガウシァ ン(図 3A)では負値となる。従って、 Kurtosisの絶対値は非ガウス性を計る尺度とな る力 信号の 4乗演算を含むために、雑音の混入等により 1サンプルでも異常な値が 混入すると敏感に値が変化し、尺度としての頑健さに欠ける。しかしながら Kurtosis には、次式に示すような便利な性質があるためよく用いられる。  [0041] Kurtosis, which is a fourth-order cumulant, is a statistic whose value changes according to the sharpness of the probability density distribution, as shown in FIG. In other words, it is 0 for the Gaussian distribution (Fig. 3B), a positive value for the super Gaussian (Fig. 3C) with a larger degree of sharpness, and a negative value for a sub-Gaussian with a smaller degree of sharpness (Fig. 3A). Therefore, the absolute value of Kurtosis includes the fourth power of the force signal, which is a measure of non-Gaussianity. Therefore, even if one sample contains an abnormal value due to noise or other factors, the value changes sensitively. Lack of robustness. However, Kurtosis is often used because it has convenient properties as shown in the following equation.
[数 11]  [Equation 11]
Kurt(x+y) = Kurt(x ) + Kurt(y) Kurt (x + y) = Kurt (x) + Kurt (y)
Kurt(jS x) = TKurt(x)  Kurt (jS x) = TKurt (x)
[0042] (ii) Fast— ICAアルゴリズムの改善すべき点 [0042] (ii) Fast—Improved points of ICA algorithm
Fast ICAアルゴリズムを MIMO伝送に適用すると、既知シンボルを用いずに信 号を分離できる。従って、既知シンボル送信期間が不要な分だけ、データ送信期間 を長くすることができるようになるので、実質的なデータ伝送速度を速くすることができ る。因みに、図 6では、送信側に既知シンボル送信期間を設け、さらに受信側で既知 シンボルを用いたチャネル推定を行う場合を例にとった力 Fast— ICAアルゴリズム を用いる場合には、原則として既知シンボル送信期間及びチャネル推定処理は不要 である。 When the Fast ICA algorithm is applied to MIMO transmission, signals can be separated without using known symbols. Therefore, since the data transmission period can be extended by an amount that does not require the known symbol transmission period, the substantial data transmission rate can be increased. For example, in Fig. 6, the Fast-ICA algorithm is used in the case where a known symbol transmission period is provided on the transmission side and channel estimation is performed using known symbols on the reception side. In principle, the known symbol transmission period and channel estimation process are not required.
[0043] さらに ICAの所要演算量は非線形関数の数値計算を含むので評価は難しいが、ォ リジナルの MLDよりは十分少なぐ比較的実現は容易であると思われる。  [0043] In addition, the required amount of computation of ICA is difficult to evaluate because it includes numerical calculations of nonlinear functions, but it is considered to be relatively easy to implement, with sufficiently less than the original MLD.
[0044] し力しながら、 ICAは、統計量に基づいて動作するため以下のような問題がある。 ( A)アルゴリズムに含まれる集合平均値を時間平均値に置換えて実行するため、値が 安定するまでの十分な数のデータ、つまり引込み時間が必要になって、パケットのよ うなデータ数の少な 、伝送には適用できなくなるおそれがある。 (B)非線形関数を用 V、た適応アルゴリズムなので、ある程度収束点に近!、初期値力 推定を開始しな 、と 収束速度が著しく低下するので、高速な伝送路変動に追随できなくなるおそれがあ る。  However, since ICA operates based on statistics, it has the following problems. (A) Since the set average value included in the algorithm is replaced with the time average value and executed, a sufficient number of data until the value stabilizes, that is, a pull-in time is required, and the number of data such as packets , There is a risk that it will not be applicable to transmission. (B) Because it is an adaptive algorithm that uses a non-linear function V, it is close to the convergence point to some extent! If the initial value force estimation is not started, the convergence speed drops significantly, so there is a possibility that it will not be able to follow high-speed transmission path fluctuations. is there.
[0045] (iii)本発明の原理  [Iii] Principle of the present invention
本発明の発明者は、 MIMO伝送に独立成分分析アルゴリズム (Fast— ICAァルゴ リズム)を適用するにあたっての上記改善すべき点を考察することで、本発明に至つ た。  The inventor of the present invention has reached the present invention by considering the above points to be improved when applying the independent component analysis algorithm (Fast-ICA algorithm) to MIMO transmission.
[0046] 本発明の特徴は、既知シンボルを必要としな 、信号分離を行うことが可能な独立成 分分析アルゴリズムを用いると共に、補助的に既知シンボルを用いたチャネル推定を 行って独立成分分析アルゴリズムでチャネル推定値を使った信号分離処理を行うよう にしたことである。これにより、比較的少ない既知シンボル数及び演算量で、高精度 の信号分離を行うことができるようになる。  [0046] A feature of the present invention is that an independent component analysis algorithm that does not require a known symbol and that can perform signal separation is used, and an independent component analysis algorithm that performs channel estimation using a known symbol in an auxiliary manner. In other words, signal separation processing using channel estimation values is performed. As a result, highly accurate signal separation can be performed with a relatively small number of known symbols and a large amount of computation.
[0047] 具体的には、独立成分分析アルゴリズムの一つである Fast— ICA信号分離アルゴ リズムとチャネル推定とを以下のように併用する。  [0047] Specifically, Fast-ICA signal separation algorithm, which is one of independent component analysis algorithms, and channel estimation are used together as follows.
[0048] 1.チャネル推定値を利用した前処理を行うことで、 Fast— ICAの引き込み時間を 短縮する。  [0048] 1. Fast-ICA pull-in time is reduced by performing pre-processing using channel estimation values.
[0049] 2.チャネル推定値を利用して適切な Fast— ICA推定値の初期値を求めることで、 収束を速める。  [0049] 2. Use channel estimates to speed up convergence by finding an appropriate initial Fast—ICA estimate.
[0050] 3. Fast— ICA推定値力も逆算した各時点の伝送路行列を用いることで、既知シン ボル数を増加させずにチャネル推定精度を向上する(又はフレーム周期を長くして伝 送速度を向上する)。 [0050] 3. Fast—By using the channel matrix at each time point, which also calculated the ICA estimated power, the channel estimation accuracy is improved without increasing the number of known symbols (or the frame period is lengthened). Improve feed speed).
[0051] 1〜3のいずれかを行うことで、比較的少ない既知シンボル数かつ MLDよりも低演 算量で高精度の信号分離を行うことができる。  [0051] By performing any one of steps 1 to 3, high-precision signal separation can be performed with a relatively small number of known symbols and a lower computational complexity than MLD.
[0052] 以下、上記 1.の詳しい構成については実施の形態 1で、上記 2.の詳しい構成に ついては実施の形態 2で、上記 3.の詳しい構成については実施の形態 3で説明す る。 [0052] The detailed configuration of 1. above will be described in Embodiment 1, the detailed configuration of 2. above will be described in Embodiment 2, and the detailed configuration of 3. above will be described in Embodiment 3.
[0053] (実施の形態 1)  [0053] (Embodiment 1)
図 7に、本実施の形態の MIMO受信装置の構成を示す。なお、図 7では、図を簡 単化するため、 MIMO受信装置 200における Fast— ICA処理部 210以外の構成は 省略した。また、図 7では、図 4との対応部分には図 4と同一の符号を付してその説明 は省略する。  FIG. 7 shows the configuration of the MIMO receiver of this embodiment. In FIG. 7, the configuration other than the Fast-ICA processing unit 210 in the MIMO receiver 200 is omitted in order to simplify the drawing. In FIG. 7, parts corresponding to those in FIG. 4 are assigned the same reference numerals as in FIG. 4, and descriptions thereof are omitted.
[0054] 図 7が図 4と異なるのは、切換スィッチ 201と、チャネル推定部 202とが設けられて いることと、 S, Λ行列算出部 221にチャネル推定部 202によって得られたチャネル 推定値 Hが入力されて 、ることである。  FIG. 7 differs from FIG. 4 in that switching switch 201 and channel estimation section 202 are provided, and that the channel estimation value obtained by channel estimation section 202 in S, Λ matrix calculation section 221 is provided. H is input.
[0055] MIMO受信装置 200は、 N本のアンテナで受信した N系統の受信信号 x (t)を切 換スィッチ 201を介して、 Fast - ICA処理部 210又はチャネル推定部 202に選択的 に入力する。具体的には、切換スィッチ 201は、既知シンボルを受信している期間は 、受信信号 x(t)をチャネル推定部 202に出力し、データシンボルを受信している期 間は、受信信号 x (t)を Fast— ICA処理部 210の Whitening部 122に出力する。  MIMO receiving apparatus 200 selectively inputs N received signals x (t) received by N antennas to Fast-ICA processing section 210 or channel estimation section 202 via switching switch 201. To do. Specifically, the switching switch 201 outputs the received signal x (t) to the channel estimation unit 202 during the period in which the known symbol is received, and the received signal x ( t) is output to the Whitening unit 122 of the Fast-ICA processing unit 210.
[0056] チャネル推定部 202は、既知シンボルを用いてチャネル推定値 Hを求める。実際に は、(1)式の関係力もチャネル推定値 Hを求める。チャネル推定部 202は、求めたチ ャネル推定値 Hを Sphering処理部 220の S, Λ行列算出部 221に送出する。  [0056] Channel estimation section 202 obtains channel estimation value H using a known symbol. In practice, the channel estimation value H is also obtained for the relational power in Eq. (1). Channel estimation section 202 transmits the obtained channel estimation value H to S, Λ matrix calculation section 221 of Sphering processing section 220.
[0057] S, Λ行列算出部 221は、レベル均一化行列(固有値行列) Sと無相関化行列(固 有ベクトル) Λを算出する。このとき、 S, Λ行列算出部 221は、受信信号 Xを用いるの ではなぐチャネル推定値 Hを用いて行列 S、 Λを瞬時に求め、引き込み時間を不要 とするようになつている。このことを以下で説明する。  [0057] The S, Λ matrix calculator 221 calculates a level uniformization matrix (eigenvalue matrix) S and a decorrelation matrix (inherent vector) Λ. At this time, the S, Λ matrix calculation unit 221 instantly obtains the matrices S and Λ using the channel estimation value H that does not use the received signal X, and eliminates the pull-in time. This will be described below.
[0058] S, Λ行列算出部 221では、先ず、(2)式に示したような固有値分解演算を行うこと になる。ここで、(2)式の右辺の相関行列の i, j要素は集合平均値であるが、実際に はよく行われるように時間平均として次式のように計算されるのが一般的である。但し[0058] First, the S, Λ matrix calculation unit 221 performs an eigenvalue decomposition operation as shown in Equation (2). Here, the i and j elements of the correlation matrix on the right-hand side of equation (2) are set average values. Is generally calculated as a time average as follows: However,
、次式において nは時刻を表す。 In the following formula, n represents time.
[数 12]  [Equation 12]
L-1 L-l N-1 N-1  L-1 L-l N-1 N-1
^一 ∑ x.(n-k)"x.(n-kj ==— ∑ <] ∑ h. -s (n-k)ト ·{ ∑ h. -s (n-k)^
Figure imgf000016_0002
Lk = o l ' 」、 -k=o[P=o 'p p j [q=o q
Figure imgf000016_0001
^ 1 ∑ x. (Nk) "x. (N-kj == — ∑ <] ∑ h. -S (nk) t {∑ h. -S (nk) ^
Figure imgf000016_0002
L k = o l ''', -k = o [ P = o' ppj [ q = oq
Figure imgf000016_0001
( 1 2)  (1 2)
[0059] ここで送信信号 sと sは互いに独立なので、( 12)式の右辺で p≠qの項は本来の集 合平均で計算すると 0になるが、時間平均で求める場合は計算するデータ数 Lが小さ いと 0に近づかない。つまり時間平均で高精度に相関行列を計算する場合は Lを大 きくする必要があり、 Lデータ時間の引込み時間以降でないと Fast— ICAによる信号 分離処理を開始できない。これは、パケット伝送のような小さなデータの塊を受信する ような場合には適用困難なことを意味する。 [0059] Here, since the transmission signals s and s are independent of each other, the term of p ≠ q on the right side of equation (12) becomes 0 when calculated with the original aggregate average, but when calculated with the time average, the calculated data If the number L is small, it will not approach 0. In other words, when calculating the correlation matrix with high accuracy by time averaging, it is necessary to increase L, and signal separation processing by Fast-ICA can only be started after the L data time pull-in time. This means that it is difficult to apply when receiving small chunks of data such as packet transmission.
[0060] これに対して、チャネル推定値 Hは送信アンテナを切換えながら送信される既知シ ンボルカ 得られる無干渉の良好な伝送環境で測定される値であり、上述の Lが小さ い時の時間相関値よりも十分信頼性があると考えられる。  [0060] On the other hand, the channel estimation value H is a value measured in a good transmission environment without interference obtained by a known symbol transmitted while switching the transmitting antenna, and the time when the above-mentioned L is small. It is considered more reliable than the correlation value.
[0061] 本実施の形態の S, Λ行列算出部 221は、相関行列を大量のデータを用いた時間 平均によって計算する代わりに、チャネル推定値 Hを用いて本来の集合平均によつ て次式のように計算することで、引込み時間をほぼ不要にするようになつている。  [0061] The S, Λ matrix calculation unit 221 of the present embodiment uses the channel estimation value H to calculate the correlation matrix based on the original set average instead of calculating the correlation matrix by time average using a large amount of data. By calculating as in the equation, the pull-in time is almost unnecessary.
[数 13]  [Equation 13]
E XX T = ElHss THA = Η·Ε bs T T T E XX T = ElHss T H A = Η · Ε bs TTT
H HH (1 3) 図 8に、本実施の形態の Fast— ICAアルゴリズムを用いた ΜΙΜΟ受信処理の概念 図(タイミングチャート)を示す。図 6と比較すると明らかなように、受信フレームの各先 頭で受信される既知シンボルによりチャネル推定値 Hが得られると(13)式によって瞬 時に相関行列が求められるので、続けて以降の処理に進むことができる。パケット伝 送の場合は、同図のように長時間連続してフレームを受信することはないが、このよう に引込み時間が短縮された結果、問題ない時間内にフレームの信号分離動作を完 了できるようになる。 H HH (1 3) FIG. 8 shows a conceptual diagram (timing chart) of the soot reception process using the Fast-ICA algorithm of this embodiment. As is clear from the comparison with Fig. 6, when the channel estimation value H is obtained from the known symbols received at the beginning of the received frame, the correlation matrix is obtained instantaneously according to Eq. (13). You can proceed to. In the case of packet transmission, frames are not received continuously for a long time as shown in the figure. As a result, the frame signal separation operation can be completed within a problem-free time.
[0063] なお、 Fast— ICA処理につ!、ては、上述のように近似 Newton法は極めて収束が 速いので、オンライン動作でも問題はないが、パケット伝送のような場合はデータを蓄 積してバッチ処理を行えば収束過程に依存せず良好な伝送特性が得られる。  [0063] Note that the Fast-ICA process! As described above, the approximate Newton method has a very fast convergence, so there is no problem with online operation, but in the case of packet transmission, data is accumulated. If batch processing is performed, good transmission characteristics can be obtained without depending on the convergence process.
[0064] このように本実施の形態によれば、複数のアンテナで受信された複数の受信信号 に独立成分分析法を用いたブラインド信号分離処理を施すことにより、互いに独立な 複数の分離信号を得る ICA処理部 130と、受信した既知シンボルを用いて、各送受 信アンテナ間のチャネル推定値 Hを求めるチャネル推定部 202と、独立成分分析を 行う前処理として行われる Sphering処理にぉ 、て用いられる受信信号の相関行列 を、チャネル推定値を用いて求める S, Λ行列算出部 221とを設けたことにより、独立 成分分析処理における引き込み時間を不要にし、パケット伝送のようにデータ数の少 ない伝送にも対応可能な MIMO受信装置 200を実現できる。  [0064] As described above, according to the present embodiment, a plurality of received signals received by a plurality of antennas are subjected to blind signal separation processing using an independent component analysis method, whereby a plurality of separated signals that are independent of each other are obtained. ICA processing unit 130 to be obtained, channel estimation unit 202 for obtaining a channel estimation value H between each transmitting and receiving antennas using the received known symbols, and Sphering processing performed as a preprocessing for performing independent component analysis. S, Λ matrix calculation unit 221 that obtains the correlation matrix of the received signal using the channel estimation value eliminates the pull-in time in the independent component analysis process and reduces the number of data as in packet transmission It is possible to realize the MIMO receiver 200 that can also support transmission.
[0065] (実施の形態 2)  [Embodiment 2]
図 7との対応部分に同一符号を付して示す図 9に、本実施の形態の MIMO受信装 置 300の構成を示す。 MIMO受信装置 300は、図 7の構成にカ卩えて、 R行列算出部 331の初期推定値 Rを計算する初期推定値計算部 301を有する。初期推定値計算  FIG. 9 in which the same reference numerals are assigned to the parts corresponding to FIG. 7 shows the configuration of MIMO receiving apparatus 300 according to the present embodiment. MIMO receiving apparatus 300 has initial estimated value calculating section 301 for calculating initial estimated value R of R matrix calculating section 331 in addition to the configuration of FIG. Initial estimate calculation
0  0
部 301は、チャネル推定値 Hと、チャネル推定値 Hを用いて S, Λ行列算出部 221に よって得られた行列 S, Λとを入力し、これらを用いて近似 Newton法の初期推定値 Rを求め、初期推定値 Rを R行列算出部 331に送出するようになっている。  The unit 301 inputs the channel estimation value H and the matrix S, Λ obtained by the S, Λ matrix calculation unit 221 using the channel estimation value H, and uses these to obtain an initial estimation value R of the approximate Newton method R The initial estimated value R is sent to the R matrix calculation unit 331.
0 0  0 0
[0066] Fast— ICAアルゴリズムは、 Sphering処理と近似 Newton法の組合せにより 3次 収束と!/、う非常に高速な収束速度を実現したアルゴリズムで、 10回程度の反復で収 束点に達すると言われている。但し、適切な初期推定ベクトルから始めないと、収束 点以外の停留点に留まって著しく収束が遅れたり、場合によっては発散することもあ る。  [0066] Fast— The ICA algorithm is a combination of Sphering processing and approximate Newton's method that achieves third-order convergence and extremely fast convergence speed. When the convergence point is reached after about 10 iterations It is said. However, if it does not start with an appropriate initial estimation vector, it may stay at a stop point other than the convergence point, and the convergence may be significantly delayed or may diverge in some cases.
[0067] 図 5の例では、乱数を発生させて初期値としているが (ステップ ST1)、本実施の形 態では、チャネル推定値 H力 収束点にある程度近い初期推定値 Rを計算して用い  [0067] In the example of Fig. 5, a random number is generated and used as an initial value (step ST1). However, in this embodiment, an initial estimated value R that is close to the channel estimated value H force convergence point is calculated and used.
0  0
ることにより、常に Fast— ICA本来の収束速度が得られるようにしている。このことを 以下に説明する。 By doing so, it is always possible to obtain Fast—the original convergence speed of ICA. This This will be described below.
[0068] まず図 4に示したように、 MIMO伝送に Fast—ICAを適用した例では、 y^R'SA •x^R'SA'H'sが成立つ。ここで、 は、受信機雑音を無視し、さらに Hにチャネル 推定値を用いたために用いている。ここで y=s,つまり R'SA'H=I(単位行列)とな るように、行列 Rを次式のように選べば、収束点に近い初期推定値 Rとすることがで  [0068] First, as shown in FIG. 4, y ^ R'SA and x ^ R'SA'H's are satisfied in an example in which Fast-ICA is applied to MIMO transmission. Here, is used because the receiver noise is ignored and the channel estimation value is used for H. If the matrix R is chosen as follows so that y = s, that is, R'SA'H = I (unit matrix), the initial estimated value R close to the convergence point can be obtained.
0  0
きる。  wear.
[数 14]  [Equation 14]
—1 —1 — 1 —1 —1 — 1
R0 = H ΧΛ ^ 1 (14) R 0 = H Χ Λ ^ 1 (14)
[0069] し力しながら上式には所要演算量の大きい逆行列演算が含まれている。回転行列 である Λの逆行列は転置により、対角行列である Sの逆行列は対角要素をその逆数 に置換えることにより、簡単に求められる力 チャネル推定値 Ηの逆行列を直接求め ると演算量が増加する。 [0069] In spite of this, the above equation includes an inverse matrix calculation with a large required calculation amount. The inverse matrix of Λ, which is a rotation matrix, is transposed, and the inverse matrix of S, which is a diagonal matrix, is directly obtained by replacing the diagonal element with its inverse to obtain the inverse matrix of the force channel estimate Η directly. And the amount of computation increases.
[0070] そこで実施の形態 1にお 、て相関行列をチャネル推定値 Η力も計算したことを用い て、(14)式を(2)式に代入すると(15)式が得られ、(16)式を導くことができる。  [0070] Therefore, in the first embodiment, using the fact that the correlation matrix is also calculated as the channel estimation value repulsive force, substituting equation (14) into equation (2) yields equation (15), and (16) An expression can be derived.
[数 15]  [Equation 15]
Figure imgf000018_0001
Figure imgf000018_0001
(1 5)  (1 5)
[0071] [数 16] [0071] [Equation 16]
H:1ΤΤΣΛ厂H: 1 = Η ΤΤ ΣΛ 厂
Figure imgf000018_0002
Figure imgf000018_0002
( 1 6)  (1 6)
[0072] 従って、(16)式を(15)式に代入することで、 Η_1の消去と次式が得られ、低演算 量でチャネル推定値 H力も初期推定値!^を計算することができるようになる。 [0072] Therefore, by substituting equation (16) into equation (15), we can eliminate 、 _1 and The channel estimate by the quantity H force can also calculate the initial estimate! ^.
[数 17]  [Equation 17]
¾ = ΗΤΛΤΣ一 1A-A_1S_1 = ΗΤΛΤ (Σ - ½_1) = HTATS o 、 ¾ = Η Τ Λ Τ Σ one 1 AA _1 S _1 = Η Τ Λ Τ (Σ - ½ _1) = H T A T S o,
RQ = HTATS
Figure imgf000019_0001
( 1 7 )
R Q = H T A T S
Figure imgf000019_0001
(1 7)
[0073] なお 1信号を分離するために実際に必要とされる初期推定ベクトルは、行列 Rから [0073] Note that the initial estimation vector actually required to separate one signal is
0 適当に選んだ 1行だけなので、演算量は(17)式からさらに削減することができる。  0 Since only one line is selected appropriately, the amount of computation can be further reduced from equation (17).
[0074] 図 10に、本実施の形態の Fast— ICAアルゴリズムを用いた MIMO受信処理の概 念図(タイミングチャート)を示す。受信フレームの各先頭で受信される既知シンボル によりチャネル推定値 H力 さらに相関行列 HHTを固有値分解して行列 S, Λが求ま る。そこで初期値推定値計算部 301が(17)式により初期推定値 Rを計算し、 ICA処 FIG. 10 shows a conceptual diagram (timing chart) of MIMO reception processing using the Fast-ICA algorithm of the present embodiment. Matrix eigenvalue decomposition of the channel estimation value H force further correlation matrix HH T by known symbol received by the head of the received frame S, lambda is that Motomema. Therefore, the initial value estimated value calculation unit 301 calculates the initial estimated value R according to Equation (17), and the ICA process.
0  0
理部 330が初期推定値 Rから近似 Newton法による適応処理を開始することにより  By starting the adaptive process using the approximate Newton method from the initial estimate R
0  0
、常に Fast— ICA本来の 3次収束特性が得られる。  Always, Fast-ICA's original third-order convergence characteristics can be obtained.
[0075] このように本実施の形態によれば、実施の形態 1の構成に加えて、独立成分分析の 初期推定値 Rを、チャネル推定値 Hを用いて推定する初期推定値計算部 301を設 As described above, according to the present embodiment, in addition to the configuration of the first embodiment, the initial estimated value calculation unit 301 for estimating the initial estimated value R of the independent component analysis using the channel estimated value H is provided. Setting
0  0
けたことにより、安定して高速な収束速度を実現できるので、高速な伝送路変動にも 追随可能な MIMO受信装置 300を実現できる。  As a result, a stable and high convergence speed can be realized, so that it is possible to realize a MIMO receiver 300 that can follow high-speed transmission path fluctuations.
[0076] (実施の形態 3) [Embodiment 3]
図 9との対応部分に同一符号を付して示す図 11に、本実施の形態の MIMO受信 装置の構成を示す。本実施の形態では、図 9の構成に加えて、 R行列算出部 331〖こ より得られた近似 Newton法の推定値(回転行列) R力も伝送路行列 H'を逆算する 伝送路行列逆算部 401と、この伝送路行列 H'とチャネル推定値 Hとを平均化する平 均化部 402とを有する。  FIG. 11 in which parts corresponding to those in FIG. 9 are assigned the same reference numerals shows the configuration of the MIMO receiving apparatus of the present embodiment. In this embodiment, in addition to the configuration of FIG. 9, R matrix calculation unit 331 Approximate Newton method estimated value obtained from rotation (rotation matrix) R force also reversely calculates transmission line matrix H ′ Transmission line matrix reverse calculation part 401 and an averaging unit 402 that averages the transmission path matrix H ′ and the channel estimation value H.
[0077] 上述のように MIMO— ICA受信において、チャネル推定値 Hは、 ICAアルゴリズム の性能を引き出す上で非常に重要な量である。し力しながらチャネル推定値 Hは、伝 送速度低下を抑制するために既知シンボル数が制限されるので、受信機雑音による 推定精度低下が生じたり、フレーム周期で更新するので高速な伝送路変動に追随で きなくなる場合がある。これに対して Fast— ICAの推定値 Rはオンライン動作によつ てシンボル周期で更新される。そこでフレーム末尾時刻での Fast— ICAの推定値 R からその時点での伝送路行列 H'を逆算し、これをチャネル推定値 Hに反映すれば、 高速な伝送路変動下にお 、ても追随して、より良 、伝送特性が得られるようになる。 このことを以下に説明する。 [0077] As described above, in MIMO-ICA reception, the channel estimation value H is the ICA algorithm. This is a very important amount to bring out the performance. However, since the number of known symbols is limited in order to suppress a decrease in transmission speed, the channel estimation value H is reduced in estimation accuracy due to receiver noise or is updated at the frame period, so high-speed channel fluctuation You may not be able to follow. On the other hand, the Fast-ICA estimated value R is updated in the symbol period by online operation. Therefore, if the channel matrix H 'at that time is calculated backward from the Fast-ICA estimated value R at the frame end time and this is reflected in the channel estimated value H, it will follow even under high-speed channel fluctuations. As a result, better transmission characteristics can be obtained. This will be described below.
Fast-ICA推定値である回転行列 R力も伝送路行列 H'を逆算するには、(17)式 の行列 Rを R,行列 Hを H'に置換えて次式のように求めることができる。すなわち、  The rotation matrix R force, which is the Fast-ICA estimate, can also be calculated as follows by substituting R for matrix R in Eq. (17) and H for matrix H in Eq. (17). That is,
0  0
伝送路行列逆算部 401は、次式の演算を行って伝送路行列 H'を求める。 The transmission path matrix inverse calculation unit 401 calculates the transmission path matrix H ′ by performing the following calculation.
[数 18] [Equation 18]
R Η'Τ Λ S R Η ' Τ Λ S
,Τ 1  , Τ 1
Η R TS I = RS RS_ 1A Η R T SI = RS RS _ 1 A
H' ATS―】
Figure imgf000020_0001
H 'A T S-]
Figure imgf000020_0001
( 1 8 ) 平均化部 402は、このようにして得られた伝送路行列 H'を、次式に示すように加重 平均にてチャネル推定値 Hに反映することにより、平均化したチャネル推定値 Hを求 める。  (18) The averaging unit 402 reflects the channel matrix H ′ obtained in this way on the channel estimation value H as a weighted average as shown in the following equation, thereby averaging the channel estimation value. Find H.
[数 19] [Equation 19]
H - (l - α)Η + α Η' , 0≤ α≤ 1 ( 1 9 ) 図 12に、本実施の形態の Fast— ICAアルゴリズムを用 V、た MIMO受信処理の概 念図(タイミングチャート)を示す。受信フレームの各先頭で受信される既知シンボル 力 チャネル推定値 Hが求まる力 直前のフレームで得られた Fast— IC A推定値 R 力も(18)式によってその時点での伝送路行列 H'を求め、(19)式によって平均化し 、その結果を改めてチャネル推定値 Hとする。以降は相関行列 HHTを固有値分解し て行列 S, Λを求める。そこで(16)式によって初期推定値 Rを計算し、ここから近似 H-(l-α) Η + α Η ', 0≤ α≤ 1 (1 9) Figure 12 shows a schematic diagram of a MIMO reception process using the Fast-ICA algorithm of this embodiment (timing chart). ). Known symbols received at the beginning of each received frame Force The force that the channel estimation value H can be obtained. The Fast—IC A estimation value R force obtained in the previous frame is also obtained by the equation (18), and the channel matrix H 'at that time is obtained and averaged by the equation (19). Is the channel estimation value H again. Subsequent matrix by eigenvalue decomposition of the correlation matrix HH T S, seeking lambda. Therefore, the initial estimated value R is calculated by equation (16) and approximated from here.
0  0
Newton法による適応処理を行う。このようにチャネル推定と Fast— ICAが相補的に 動作することにより、チャネル推定のための既知シンボル数を増カロさせて伝送速度を 低下させること無ぐ推定精度を向上し、良好な伝送特性が得られるようになる。  Performs adaptive processing using the Newton method. In this way, channel estimation and Fast-ICA operate in a complementary manner, improving the estimation accuracy without increasing the number of known symbols for channel estimation and reducing the transmission speed, and providing good transmission characteristics. It will be obtained.
[0081] このように本実施の形態によれば、実施の形態 2の構成に加えて、 R行列算出部 33 1により得られた近似 Newton法の推定値 Rから伝送路行列 H'を逆算する伝送路行 列逆算部 401と、この伝送路行列 H'とチャネル推定値 Hとを平均化する平均化部 4 02とを設けたことにより、実施の形態 1の効果に加えて、チャネル推定のための既知 シンボル数を増カロさせて伝送速度を低下させること無くチャネル推定精度を向上させ て、一段と誤り率特性の良い独立成分分析処理を行うことができるようになる。また、 伝送路変動への追随性が向上することから、フレーム周期を長くして伝送速度を向 上させることも可會 になる。 As described above, according to the present embodiment, in addition to the configuration of the second embodiment, the transmission path matrix H ′ is calculated backward from the estimated value R of the approximate Newton method obtained by the R matrix calculation unit 331. In addition to the effects of the first embodiment, the channel estimation unit 401 and the averaging unit 402 which averages the channel matrix H ′ and the channel estimation value H are provided. Therefore, it is possible to improve the channel estimation accuracy without increasing the number of known symbols to reduce the transmission rate, and to perform independent component analysis processing with better error rate characteristics. In addition, since the followability to transmission path fluctuation is improved, it is possible to increase the transmission rate by extending the frame period.
産業上の利用可能性  Industrial applicability
[0082] 本発明は、特に独立成分分析 (ICA)により信号分離処理を行うようになされた Ml MO受信機に適用して好適である。 The present invention is particularly suitable for application to an Ml MO receiver adapted to perform signal separation processing by independent component analysis (ICA).

Claims

請求の範囲 The scope of the claims
[1] 複数のアンテナで受信された複数の受信信号に独立成分分析法を用いたブライン ド信号分離処理を施すことにより、互いに独立な複数の分離信号を得る独立成分分 析手段と、  [1] Independent component analysis means for obtaining a plurality of independent separated signals by subjecting a plurality of received signals received by a plurality of antennas to blind signal separation processing using an independent component analysis method;
受信した既知シンボルを用いて、各送受信アンテナ間のチャネル推定値を求める チャネル推定手段と、  Channel estimation means for obtaining a channel estimation value between each transmitting and receiving antenna using the received known symbol;
前記独立成分分析を行う前処理として行われる Sphering処理にぉ ヽて用いられる 受信信号の相関行列を、前記チャネル推定値を用いて求める相関行列算出手段と を具備する MIMO受信装置。  A MIMO receiving apparatus comprising: a correlation matrix calculating unit that obtains a correlation matrix of a received signal used for Sphering processing performed as preprocessing for performing the independent component analysis using the channel estimation value.
[2] 前記独立成分分析の初期値を、前記チャネル推定値を用いて求める初期推定値 計算手段を、さらに具備する [2] An initial estimated value calculating means for obtaining an initial value of the independent component analysis using the channel estimated value is further provided.
請求項 1に記載の MIMO受信装置。  The MIMO receiver according to claim 1.
[3] 前記互いに独立な分離信号を得るために前記独立成分分析手段により得られた回 転行列から、伝送路推定行列を逆算する伝送路行列逆算手段と、 [3] Transmission path matrix inverse calculation means for calculating back a transmission path estimation matrix from the rotation matrix obtained by the independent component analysis means to obtain the separated signals independent of each other;
前記伝送路行列逆算手段により得られた前記伝送路推定行列と、前記チャネル推 定手段により得られたチャネル推定値とを用いて平均化処理を行い、前記逆算され た伝送路推定行列の値が反映されたチャネル推定値を算出する平均化手段と、 をさらに具備し、  An averaging process is performed using the transmission path estimation matrix obtained by the transmission path matrix reverse calculation means and the channel estimation value obtained by the channel estimation means, and the value of the reverse calculation of the transmission path estimation matrix is obtained. Averaging means for calculating a reflected channel estimate, and
前記相関行列算出手段は、前記平均化手段により得られた前記逆算された伝送 路推定行列の値が反映されたチャネル推定値を用いて、前記 Sphering処理にぉ ヽ て用いられる受信信号の相関行列を求める  The correlation matrix calculation means uses the channel estimation value reflecting the back-calculated transmission path estimation matrix value obtained by the averaging means, and uses the correlation matrix of the received signal used for the Sphering process. Ask for
請求項 1に記載の MIMO受信装置。  The MIMO receiver according to claim 1.
[4] 複数のアンテナで受信された複数の受信信号に対して、 Fast— ICAアルゴリズム を用いて信号分離処理を行う信号分離ステップと、 [4] A signal separation step of performing signal separation processing on a plurality of received signals received by a plurality of antennas using a Fast-ICA algorithm,
前記複数のアンテナで受信した既知シンボルを用いて、各送受信アンテナ間のチ ャネル推定値を求めるチャネル推定ステップと、  A channel estimation step for obtaining a channel estimation value between the transmission and reception antennas using known symbols received by the plurality of antennas;
を含み、  Including
前記 Fast— ICAアルゴリズムにおける Sphering処理にお!、て用いられる受信信 号の相関行列を、前記チャネル推定値を用いて求める MIMO受信方法。 Received signal used for Sphering processing in the Fast-ICA algorithm! MIMO reception method for obtaining a correlation matrix of a signal using the channel estimation value.
PCT/JP2006/312919 2006-06-28 2006-06-28 Mimo reception device and mimo reception method WO2008001439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312919 WO2008001439A1 (en) 2006-06-28 2006-06-28 Mimo reception device and mimo reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312919 WO2008001439A1 (en) 2006-06-28 2006-06-28 Mimo reception device and mimo reception method

Publications (1)

Publication Number Publication Date
WO2008001439A1 true WO2008001439A1 (en) 2008-01-03

Family

ID=38845217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312919 WO2008001439A1 (en) 2006-06-28 2006-06-28 Mimo reception device and mimo reception method

Country Status (1)

Country Link
WO (1) WO2008001439A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112751A (en) * 2008-11-04 2010-05-20 Mitsubishi Electric Corp Signal processing apparatus
JP2016058847A (en) * 2014-09-08 2016-04-21 三菱電機株式会社 Receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112508A (en) * 2002-09-19 2004-04-08 Toshiba Corp Receiver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112508A (en) * 2002-09-19 2004-04-08 Toshiba Corp Receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAGANNATHAM A.K. AND RAO B.D.: "Whitening-rotating-based semi-blind MIMO channel estimation", SIGNAL PROCESSING, IEEE TRANSACTIONS, vol. 54, March 2006 (2006-03-01), pages 861 - 869, XP003003032 *
WONG C.S., OBRADOVIC D., MADHU N.: "INDEPENDENT COMPONENT ANALYSIS (ICA) FOR BLIND EQUALIZATION OF FREQUENCY SELECTIVE CHANNELS", NEURAL NETWORKS FOR SIGNAL PROCESSING 2003 IEEE 13TH WORKSHOP, 19 September 2003 (2003-09-19), pages 419 - 423, XP003003033 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112751A (en) * 2008-11-04 2010-05-20 Mitsubishi Electric Corp Signal processing apparatus
JP2016058847A (en) * 2014-09-08 2016-04-21 三菱電機株式会社 Receiver

Similar Documents

Publication Publication Date Title
CN110719239B (en) Data model dual-drive combined MIMO channel estimation and signal detection method
Prasad et al. Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning
JP5275535B2 (en) Apparatus and method for beamforming in a changing interference environment
CN108512787B (en) Hyperfine channel estimation method of large-scale MIMO system
TW201249129A (en) Model-based channel estimator for correlated fading channels and channel estimation method thereof
JP2000502533A (en) Method and apparatus for reducing inter-symbol interference using array processing of diversity signals
CN106716866B (en) Ping-pong beamforming
CN107276933B (en) Channel estimation method based on second-order statistics and used in uplink multi-user MIMO system
WO2019206331A1 (en) Wireless communication method based on chaotic moulding and chaotic matched filter
CN111049767B (en) Data detection method for sparse orthogonal frequency division multiplexing amplification forwarding (OFDM-AF) system
Rodríguez-Fernández Joint synchronization and compressive channel estimation for frequency-selective hybrid mmWave MIMO systems
CN110113283B (en) OFDM-AF system data detection method
US20070117527A1 (en) Method and apparatus of multiple antenna receiver
WO2008001439A1 (en) Mimo reception device and mimo reception method
WO2008151518A1 (en) The method and device for detecting information in the ofdm system
WO2011010107A2 (en) Receiver for wireless transmission
Luo et al. Independent component analysis based blind adaptive interference reduction and symbol recovery for OFDM systems
WO2022062810A1 (en) Station, ap, channel state information feedback method, beam forming method, and storage medium
CN110808926B (en) Interference signal estimation method, apparatus, device and computer readable storage medium
Ladaycia et al. EM-based semi-blind MIMO-OFDM channel estimation
Rodriguez-Fernandez Broadband synchronization and compressive channel estimation for hybrid mmWave MIMO systems
Gong et al. Gaussian mixture model-based Expectation-Maximization signal processing algorithm in power-efficiency networks
Poborchaya Separate Estimation of Constant Components, Channel Matrix, Amplitude and Phase Imbalance of the QAM Signal in a System with MIMO
Bai et al. Massive MIMO Channel Estimation Based on Compressed Sensing
KR101093920B1 (en) Lattice Reduction method-based MIMO receiver under time varying fading environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06767536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP