WO2008000924A1 - Nacelle structurante - Google Patents

Nacelle structurante Download PDF

Info

Publication number
WO2008000924A1
WO2008000924A1 PCT/FR2007/000951 FR2007000951W WO2008000924A1 WO 2008000924 A1 WO2008000924 A1 WO 2008000924A1 FR 2007000951 W FR2007000951 W FR 2007000951W WO 2008000924 A1 WO2008000924 A1 WO 2008000924A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal structure
nacelle
platform
frame
radial
Prior art date
Application number
PCT/FR2007/000951
Other languages
English (en)
Inventor
Guy Bernard Vauchel
Anne-Laure Gibouin
Régis FASSIER
Jean-Philippe Joret
Jérôme COLLIER
Guillaume Lefort
Pierre-Alain Chouard
Original Assignee
Aircelle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle filed Critical Aircelle
Priority to AT07788856T priority Critical patent/ATE452823T1/de
Priority to US12/302,998 priority patent/US8739552B2/en
Priority to CN200780024985.XA priority patent/CN101489870B/zh
Priority to CA2654398A priority patent/CA2654398C/fr
Priority to DE602007003981T priority patent/DE602007003981D1/de
Priority to EP07788856A priority patent/EP2035279B1/fr
Priority to BRPI0713993-4A priority patent/BRPI0713993A2/pt
Publication of WO2008000924A1 publication Critical patent/WO2008000924A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/16Aircraft characterised by the type or position of power plants of jet type
    • B64D27/18Aircraft characterised by the type or position of power plants of jet type within, or attached to, wings

Definitions

  • the present invention relates to a nacelle for turbojet turbofan.
  • An aircraft is propelled by several turbojet engines each housed in a nacelle also housing a set of ancillary actuating devices related to its operation, such as a thrust reverser device, and performing various functions when the turbojet engine is in operation or in operation. shutdown.
  • a nacelle generally has a tubular structure comprising an air inlet upstream of the turbojet engine, a median section intended to surround a fan of the turbojet engine, a downstream section housing a thrust reverser means and intended to surround the combustion chamber of the turbojet engine. , and is generally terminated by an ejection nozzle whose output is located downstream of the turbojet engine.
  • the modern nacelles are intended to house a turbofan engine capable of generating through the blades of the rotating fan a flow of hot air (also called primary flow) from the combustion chamber of the turbojet engine, and a flow of cold air (secondary flow) which circulates outside the turbojet engine through an annular passage, also called a vein, formed between a shroud of the turbojet engine (or an internal structure of the downstream structure of the nacelle and surrounding the turbojet engine) and a inner wall of the nacelle.
  • the two air flows are ejected from the turbojet engine from the rear of the nacelle.
  • Each propulsion unit of the aircraft is therefore formed by a nacelle and a turbojet, and is suspended from a fixed structure of the aircraft, for example under a wing or on the fuselage, via a pylon attached to the turbojet engine. in its front and rear part by suspensions.
  • turbojet that supports the nacelle.
  • Such an architecture is subject to many external efforts combined during the mission of the aircraft. These include efforts resulting from gravity, aerodynamic external and internal forces, bursts, thermal effects. These constraints applied to the propulsion unit are transmitted to the turbojet engine and cause crankcase deformations that impact directly the efficiency of the different stages of the turbojet engine. More particularly, in the case of a so-called wasp size propulsion assembly, that is to say having a long and relatively thin downstream portion relative to the intermediate and air inlet structures, these stresses result in a particularly damaging deformation called "banana", the downstream part bending significantly.
  • Such "banana setting" results in a deformation of the external structure of the nacelle formed by the various successive casings while the drive shaft, the blades of the blower and internal blades of the turbojet engine remain rectilinear. It follows a rimpedement of the blade heads of the shaft towards the inner periphery of the casings.
  • the overall performance of the turbojet is reduced compared to a configuration in which the housings do not undergo or very little deformation, because it is then necessary to take account of this deformation in the design of the nacelle so as to always provide a sufficient clearance between the blade heads and the periphery of the housings. This results in a portion of the supply air that is not compressed by the blades as they are leaking through this large clearance.
  • the present invention aims to overcome the disadvantages mentioned above, and consists of a nacelle for turbojet turbofan comprising a front air inlet section, a median section intended to surround a fan of the turbojet engine and a rear section, said section rear having an internal structure, intended to serve as a housing at a rear part of the turbojet, characterized in that the internal structure has hooking means adapted to allow attachment of the nacelle to a pylon intended to be linked to a fixed structure of an aircraft on at least a part of said internal structure.
  • the internal structure is equipped with rigid connection means to the turbojet engine, for example by bolting.
  • the internal structure is linked to the median section through a casing surrounding the fan.
  • the internal structure is linked to the median section of the downstream portion of the casing surrounding the blower on at least a portion of its periphery through a groove of the latter.
  • the internal structure is linked to the median section of the downstream portion of the housing over its entire periphery.
  • this attachment can be made only on part of the periphery of the groove.
  • the peripheral groove of the casing has a V-shaped internal profile.
  • the internal structure is equipped with a recentering means of the turbojet engine.
  • the internal structure is designed so that the pylon can extend over the entire length of the internal structure.
  • the pylon is integrated in the internal structure.
  • the internal structure comprises at least one outer wall constituting an aerodynamic surface mounted on a frame.
  • the outer wall is made, partially or totally, from an acoustic panel.
  • the outer wall does not fulfill any structural role, this function being provided by the frame, and it can be lightened to the maximum without the need to provide in this wall of high density structural areas.
  • an acoustic panel it is thus possible to devote the entire surface of the acoustic panel to the acoustic function without the need to provide structural zones that prohibit any acoustic function.
  • the frame only partially surrounds the turbojet, preferably at least 180 °. ,
  • the framework completely surrounds the turbojet engine.
  • the frame of the internal structure is made from radial frames.
  • the radial frames are made from rods of stress recovery.
  • At least a portion of the radial frames are made in one piece.
  • at least a portion of the radial frames are made from several interconnected elements, for example by bolting.
  • the framework of the internal structure is made from radial frames distributed over the length of the internal structure.
  • the frame comprises at least one radial front frame and a rear radial frame connected by an intermediate lattice structure.
  • the intermediate structure is made in the form of a box.
  • the intermediate structure is made from connecting bars connecting at least two radial frames to each other.
  • At least a portion of the connecting bars are integrated in at least one radial frame.
  • the connecting bars are hollow.
  • the connecting bars are arranged relative to each other so as to form triangles, preferably isosceles.
  • the framework comprises at least one longitudinal reinforcement on either side of a longitudinal axis of the internal structure.
  • the internal structure comprises at least one thrust recovery connecting rod attached, on the one hand, to at least one point of an upstream part of the internal structure, for example at a horizontal median plane, and on the other hand, at least one point of a downstream part of the internal structure in the vicinity of the pylon or possibly integrated therewith.
  • the thrust recovery rod is oriented substantially in the structural alignment of the pylon.
  • the thrust recovery rod has a fork attached to the internal structure in at least two points of the upstream part of the structure, on either side of the horizontal median plane, the fork of the connecting rod having a point of junction located, for example, at a radial frame of the frame.
  • the elements of the frame namely in particular radial frames, rods of stress, intermediate structure and longitudinal reinforcements, are equipped with a thermal protection.
  • the framework is made in one piece.
  • the framework is made in two half-parts intended to be assembled substantially vertically.
  • the present invention also relates to an aircraft, characterized in that it comprises at least one propulsion unit comprising a nacelle according to the invention.
  • FIG. 1 is a diagrammatic representation in perspective of a nacelle according to FIG. invention attached to a pylon through an internal structure surrounding the turbojet engine.
  • Figure 2 is a longitudinal sectional view of the nacelle of Figure 1.
  • Figure 3 is a partial schematic view showing the arrangement of the internal structure relative to a housing of the fan.
  • Figure 4 is a schematic representation of the structure of Figure 3 with a complete internal structure attached to the pylon.
  • Figure 5 is a representation in solid lines of Figure 4 with the internal structure housing the turbojet engine.
  • Figure 6 is a cross-sectional view of the nacelle of Figure 1.
  • Figure 7 is a schematic representation of a first embodiment of the internal structure.
  • Figure 8 is a schematic representation of a second alternative embodiment of the internal structure.
  • Figure 9 is a simplified illustration of a refocusing means equipping the internal structure.
  • FIG. 10 is a cross-sectional view of a nacelle according to the invention with an internal structure equipped with means for refocusing the turbojet engine.
  • Figures 11 and 12 are respectively perspective and side representations of a third embodiment comprising a short internal structure.
  • Figures 13 and 14 are representations of the structure shown in Figures 11 and 12 in support of a turbojet position.
  • Figures 1 and 2 show a nacelle 1 for turbojet 2 double flow.
  • the nacelle 1 constitutes a tubular housing for a turbojet engine
  • the nacelle 1 has a structure comprising a front section forming an air inlet 5, a median section 6 surrounding the fan 3 of the turbojet engine 2, and a rear section 7 surrounding the turbojet engine 2 and comprising a thrust reversal system.
  • the air inlet 5 has an inner surface 5a for channeling the incoming air and an outer fairing surface 5b.
  • the median section 6 comprises, on the one hand, an internal casing 6a surrounding the blower 3 of the turbojet engine 2, and on the other hand, an external casing fairing structure 6b extending the outer surface 5b of the inlet section of the air 5.
  • the housing 6a is attached to the air intake section 5 that it supports and extends its inner surface 5a.
  • the casing 6a is connected to an upstream casing 6c of the turbojet 2 via radial uprights 8 arranged in a cross. It can of course be more than four radial amounts, in particular on a CFM type turbojet engine.
  • the rear section 7 comprises an external structure 7a comprising a thrust reverser system forming an ejection nozzle and an internal structure 7b fairing of the turbojet 2 defining with the external structure 7a a vein 9 for the flow of cold flow.
  • the internal structure 7b is made from a structural frame 10 covered with acoustic panels 11 providing an internal aerodynamic surface of the vein 9. As a result, the acoustic panels
  • acoustic panels 11 are not structural and can be lightened to the maximum, the entire surface of said acoustic panels 11 can be dedicated to the function acoustics without the need to provide structural zones that prohibit any acoustics.
  • the structural framework 10 is intended to be attached directly to a mast 12 itself intended to be attached to a fixed part of an aircraft such as a wing 13.
  • the structural framework 10 is made from two half-parts 14, one of which is shown in FIG. 3 in perspective with the casing 6a of the fan 3, intended to be attached to one another.
  • Each half portion 14 has a series of radial frames 15 distributed over the entire length of the half portion 14 and whose number and section are defined according to the efforts to be transmitted.
  • each half portion has an upstream radial frame 15a associated with an upper upright 16a and a lower upright 16b which together the upstream radial frame 15a are intended to serve as a connection interface between the structural frame 10 and the section median 6 through the upstream housing 6c and uprights 8 vertical.
  • the radial frames 15 are interconnected by at least one longitudinal reinforcement 17 as well as an upper longitudinal reinforcement 18 and a lower longitudinal reinforcement 19 junction. Furthermore, the half-portion 14 has an upper upright 20a and a lower downstream upright 20b which complete the half-portion 14 to allow a structural connection by an upper reinforcement 21a and a lower reinforcement 21b respectively connecting the uprights 16a and 20a and 16b and 20b between them. Other upper and lower uprights may be added, for example in continuity of the radial frames 15.
  • each half portion 14 a rod 22 of force recovery, as visible in Figure 4, attached, on the one hand, upstream of the half portion 14 at a plane median of the structural frame 10, that is to say substantially at the longitudinal reinforcement 17 and the upstream radial frame 15a, and secondly, downstream of the half portion 14 at a point intended to come in the vicinity the mast 12, that is to say, substantially on the upper longitudinal reinforcement 18 and near a downstream radial frame 15b.
  • the rod 22 of force recovery is thus oriented in a direction substantially identical to the direction of the mast 12.
  • the downstream hooked point of the rod 22 of force recovery can be integrated in the mast 12.
  • Each half portion 14 is connected to the other half by its lower part, through their lower uprights 16b upstream and downstream lower uprights 20b, as well as through the lower longitudinal reinforcements 19 and lower reinforcements 21b.
  • each half portion 14 is connected to the mast 12 via their upper uprights 16a upstream and upper uprights 20a, as well as through the upper longitudinal reinforcements 18 and upper reinforcements 21a.
  • FIG. 5 represents the interior of the nacelle 1, once the structural framework 10 has been covered by the acoustic panels 11.
  • Figure 6 shows a front sectional view of the internal structure 7b thus assembled.
  • FIG. 7 shows an alternative embodiment of the structural frame 10.
  • a structural frame 110 according to FIG. 7 is made from two half-portions 114 differing only from one half part
  • each half portion 114 comprises a load-lifting rod 122 having an upstream fork.
  • a connecting rod 122 of force recovery is thus fixed to the half portion 114 in three points, namely two downstream points 114a, 114b located at the level of the upstream radial frame 15a on either side of the median plane of the frame structural 100, that is to say on either side of the longitudinal reinforcement 17, and at a point 114c located downstream at the same location as for the rod 22 of force recovery.
  • the fork of the rod 112 of force recovery is joined at a point 114d substantially located at a radial frame 15 and is attached thereto.
  • FIG. 8 shows a structural frame 210 made in one piece open only in the upper part, part of which it is intended to be attached to the mast 12.
  • the structural framework 10, 110, 210 is completed by means of refocusing between the turbojet engine 2 and the internal structure 7b located downstream of the latter.
  • the operating principle of the recentering means is shown in FIG. 9.
  • the recentering means aim at ensuring a permanent contact between the turbojet engine 2 and the internal structure 7b so as to take into account a differential movement between these two structures due to the expansion. thermal turbojet 2 operating causing a longitudinal and axial displacement of the latter.
  • the turbojet has, downstream of its structure, radial extensions 30 distributed over its entire circumference and each terminated by a ramp 31 in sliding contact with a ramp 32 complementary to an inner radial extension 33 of the structural frame 10, 110, 210.
  • the ramps 31, 32 are designed so that their Orientation substantially corresponds to the estimated displacement differential between the two structures.
  • the refocusing system can be made in various ways, in particular by elastic contact, by separate elements or monoblocs, on only one sector of the periphery of the turbojet 2 or over its entire periphery.
  • Figure 10 shows a front sectional view showing a distribution of the recentering means.
  • the invention allows easy maintenance of the turbojet 2, access to the latter can be performed by simply removing the acoustic panels 11 without the need to dismantle the entire internal structure 7b.
  • the internal structure 7b may optionally comprise a lower structure for attachment of a rear outer structure 41 in the lower part. In this case, this results in a distance between the point of attachment of said rear outer structure 41 and the circumferential recentering zone of the downstream of the turbojet engine 2. This distance provides a component of effort that tends to move the lower structure apart. of the internal structure 7b by which the rear outer structure 41 is attached which no longer allows the refocusing means to perform their function in this area. Therefore, we can ensure the integrity of maintaining the refocusing by a lock system 40 at the junction between the two half portions 14, 114 at the downstream radial frames 15b.
  • Figures 11 to 14 show a particular embodiment of the invention comprising a short internal structure 310 also maintained at a housing of the fan.
  • the support system alone is shown in FIGS. 11 and 12.
  • This comprises pylon type attachment means 12 to which the internal structure 310 is bonded.
  • the internal structure 310 is in the form of a peripheral structural framework made from a front peripheral radial frame 315a and a rear peripheral radial frame 315b.
  • the radial front frame 315a and the rear radial frame 315b are interconnected by an intermediate structure 316 forming lattices made from connecting bars 316a, 316b together forming substantially isosceles triangles.
  • the support assembly is completed by suspensions 320 mounted on the pylon type structure 12 and intended to be connected near one end of the turbojet engine 2.
  • FIGS. 13 and 14 show the support assembly previously described in the support situation of a turbojet engine 2, the frame 310 being linked to the card 6c by means of a bolting system via the front radial frame 315a installed in a peripheral groove V of the housing 6c.
  • the internal structure may alternatively be made in the form of one or more sectors that are not entirely peripheral.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Glass Compositions (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wrappers (AREA)
  • Wind Motors (AREA)

Abstract

La présente invention se rapporte, d'une part, à une nacelle (1) pour turboréacteur (2) double flux comprenant une section avant (5) d'entrée d'air, une section médiane (6) destinée à entourer une soufflante (3) du turboréacteur et une section arrière (7), ladite section arrière présentant une structure interne (7b) destinée à servir de carter à une partie arrière du turboréacteur, caractérisée en ce que la structure interne possède des moyens d'accrochage aptes à permettre un rattachement de la nacelle à un pylône (12) destiné à être lié à une structure fixe (13) d'un avion sur au moins une partie de ladite structure interne, et d'autre part, à un ensemble propulsif et à un aéronef équipés d'une telle nacelle.

Description

Nacelle structurante
La présente invention se rapporte à une nacelle pour turboréacteur double flux. Un avion est propulsé par plusieurs turboréacteurs logés chacun dans une nacelle abritant également un ensemble de dispositifs d'actionnement annexes liés à son fonctionnement, tel qu'un dispositif d'inversion de poussée, et assurant diverses fonctions lorsque le turboréacteur est en fonctionnement ou à l'arrêt. Une nacelle présente généralement une structure tubulaire comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer une soufflante du turboréacteur, une section aval abritant des moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turboréacteur, et est généralement terminée par une tuyère d'éjection dont la sortie est située en aval du turboréacteur.
Les nacelles modernes sont destinées à abriter un turboréacteur double flux apte à générer par l'intermédiaire des pâles de la soufflante en rotation un flux d'air chaud (également appelé flux primaire) issu de la chambre de combustion du turboréacteur, et un flux d'air froid (flux secondaire) qui circule à l'extérieur du turboréacteur à travers un passage annulaire, également appelé veine, formé entre un carénage du turboréacteur (ou une structure interne de la structure aval de la nacelle et entourant le turboréacteur) et une paroi interne de la nacelle. Les deux flux d'air sont éjectés du turboréacteur par l'arrière de la nacelle. Chaque ensemble propulsif de l'avion est donc formé par une nacelle et un turboréacteur, et est suspendu à une structure fixe de l'avion, par exemple sous une aile ou sur le fuselage, par l'intermédiaire d'un pylône rattaché au turboréacteur dans sa partie avant et arrière par des suspensions.
Dans une telle configuration, c'est le turboréacteur qui supporte la nacelle.
Une telle architecture est soumise à de nombreux efforts externes conjugués lors de la mission de l'avion. Il s'agit entre autre d'efforts résultants de la gravité, des efforts aérodynamiques externes et internes, rafales, effets thermiques. Ces contraintes appliquées à l'ensemble propulsif sont transmises au turboréacteur et entraînent des déformées de carters qui impactent directement le rendement des différents étages du turboréacteur. Plus particulièrement, dans le cas d'un ensemble propulsif dit en taille de guêpe, c'est-à-dire présentant une partie aval longue et relativement fine par rapport aux structures intermédiaires et d'entrée d'air, ces contraintes résultent en une déformation particulièrement préjudiciable appelée « mise en banane », la partie aval se courbant de manière importante.
Une telle « mise en banane » se traduit par une déformation de la structure externe de la nacelle formée par les différents carters successifs tandis que l'arbre d'entraînement, les aubes de la soufflante et aubes internes du turboréacteur restent rectilignes. Il s'ensuit un rapprochement des têtes d'aubes de l'arbre vers la périphérie interne des carters. La performance générale du turboréacteur s'en trouve réduite par rapport à une configuration dans laquelle les carters ne subissent pas ou très peu de déformations, car il convient alors de tenir compte de cette déformation dans la conception de la nacelle de manière à toujours ménager un jeu suffisant entre les têtes d'aubes et la périphérie des carters. Ceci résulte en une partie de l'air d'alimentation qui n'est pas compressé par les aubes car fuyant à travers ce jeu important.
La présente invention vise à pallier les inconvénients précédemment évoqués, et consiste pour cela en une Nacelle pour turboréacteur double flux comprenant une section avant d'entrée d'air, une section médiane destinée à entourer une soufflante du turboréacteur et une section arrière, ladite section arrière présentant une structure interne, destinée à servir de carter à une partie arrière du turboréacteur, caractérisée en ce que la structure interne possède des moyens d'accrochage aptes à permettre un rattachement de la nacelle à un pylône destiné à être lié à une structure fixe d'un avion sur au moins une partie de ladite structure interne.
Ainsi, en permettant le rattachement du pylône directement à une structure de la nacelle au lieu de le rattacher directement au turboréacteur, c'est la nacelle qui supporte le turboréacteur. De cette manière, le turboréacteur n'a pas à subir et à transmettre les déformées de la nacelle et réciproquement. Comme expliqué précédemment, il est alors possible d'optimiser le jeu existant entre les aubes de soufflante et aubes internes au turboréacteur et leurs carter respectifs afin d'améliorer la performance de l'ensemble propulsif. De manière préférentielle, la structure interne est équipée de moyens de liaison rigide au turboréacteur, par exemple par boulonnage. Avantageusement, la structure interne est liée à la section médiane par l'intermédiaire d'un carter entourant la soufflante.
Préférentiellement, la structure interne est liée à la section médiane de la partie aval du carter entourant la soufflante sur au moins une partie de sa périphérie par le biais d'une gorge de ce dernier.
Préférentiellement encore, la structure interne est liée à la section médiane de la partie aval du carter sur toute sa périphérie. Bien évidemment, cette fixation peut ne s'effectuer que sur une partie de la périphérie de la gorge.
Avantageusement, la gorge périphérique du carter présente un profil intérieur en V.
Avantageusement encore, la structure interne est équipée d'un moyen de recentrage du turboréacteur.
De manière préférentielle, la structure interne est conçue de manière à ce que le pylône puisse s'étendre sur toute la longueur de la structure interne.
Avantageusement, le pylône est intégré à la structure interne.
De manière préférentielle, la structure interne comprend au moins une paroi extérieure constituant une surface aérodynamique montée sur une ossature. Avantageusement, la paroi extérieure est réalisée, partiellement ou en totalité, à partir d'un panneau acoustique. De cette manière, la paroi extérieure ne remplit aucun rôle structurel, cette fonction étant assurée par l'ossature, et elle peut donc être allégée au maximum sans qu'il soit nécessaire de prévoir dans cette paroi des zones structurelles de forte densité. Dans le cas d'un panneau acoustique, il est ainsi possible de consacrer toute la surface du panneau acoustique à la fonction acoustique sans qu'il soit nécessaire de prévoir des zones structurelles qui interdisent toute fonction acoustique.
Selon une première variante de réalisation, l'ossature n'entoure que partiellement le turboréacteur, de préférence sur au moins 180°. ,
Selon une deuxième variante de réalisation, l'ossature entoure totalement le turboréacteur.
Avantageusement, l'ossature de la structure interne est réalisée à partir de cadres radiaux. Avantageusement encore, les cadres radiaux sont réalisés à partir de bielles de reprise d'effort.
De manière préférentielle, au moins une partie des cadres radiaux sont réalisés d'une seule pièce. De manière alternative ou complémentaire, au moins une partie des cadres radiaux sont réalisés à partir de plusieurs éléments liés entre eux, par exemple par boulonnage.
De manière avantageuse, l'ossature de la structure interne est réalisée à partir de cadres radiaux, répartis sur la longueur de la structure interne.
Préférentiellement, l'ossature comprend au moins un cadre radial avant et un cadre radial arrière reliés par une structure intermédiaire formant treillis. De manière avantageuse, la structure intermédiaire est réalisée sous la forme d'un caisson.
Avantageusement, la structure intermédiaire est réalisée à partir de barres de liaison reliant au moins deux cadres radiaux entre eux.
Avantageusement encore, au moins une partie des barres de liaison sont intégrés à au moins un cadre radial.
De manière préférentielle, les barres de liaison sont creuses.
Avantageusement, les barres de liaisons sont disposées les unes par rapport aux autres de manière à former des triangles, de préférence isocèles. De manière encore plus avantageuse, l'ossature comprend au moins un renfort longitudinal de part et d'autre d'un axe longitudinal de la structure interne.
Préférentiellement, la structure interne comprend au moins une bielle de reprise de poussée rattachée, d'une part, à au moins un point d'une partie amont de la structure interne, par exemple au niveau d'un plan médian horizontal, et d'autre part, à au moins un point d'une partie aval de la structure interne au voisinage du pylône ou éventuellement intégré à celui-ci.
La présence de telles bielles de reprise de poussée montées de manière oblique facilite la transmission d'efforts longitudinaux vers le pylône. Avantageusement, la bielle de reprise de poussée est orientée sensiblement dans l'alignement structural du pylône.
Avantageusement encore, la bielle de reprise de poussée présente une fourche rattachée à la structure interne en au moins deux points de la partie amont de la structure, de part et d'autre du plan médian horizontal, la fourche de la bielle présentant un point de jonction situé, par exemple, au niveau d'un cadre radial de l'ossature. De manière préférentielle, au moins une partie des éléments de l'ossature, à savoir notamment cadres radiaux, bielles de reprises d'effort, structure intermédiaire et renforts longitudinaux, sont équipés d'une protection thermique. Selon une première variante de réalisation, l'ossature est réalisée en une pièce.
Selon une deuxième variante de réalisation, l'ossature est réalisée en deux demi-parties destinées à être assemblées sensiblement verticalement.
La présente invention se rapporte également à un aéronef, caractérisé en ce qu'il comprend au moins un ensemble propulsif comportant une nacelle selon l'invention.
La mise en œuvre de l'invention sera mieux comprise à la l'aide de la description détaillée qui est exposée ci-dessous en regard du dessin annexé dans lequel : La figure 1 est une représentation schématique en perspective d'une nacelle selon l'invention rattachée à un pylône par l'intermédiaire d'une structure interne entourant le turboréacteur.
La figure 2 est une vue en coupe longitudinale de la nacelle de la figure 1. La figure 3 est une vue schématique partielle montrant l'agencement de la structure interne par rapport à un carter de la soufflante.
La figure 4 est une représentation schématique de la structure de la figure 3 avec une structure interne complète rattachée au pylône.
La figure 5 est une représentation en traits pleins de la figure 4 avec la structure interne abritant le turboréacteur.
La figure 6 est une vue en coupe transversale de la nacelle de la figure 1.
La figure 7 est une représentation schématique d'une première variante de réalisation de la structure interne. La figure 8 est une représentation schématique d'une deuxième variante de réalisation de la structure interne.
La figure 9 est une illustration simplifiée d'un moyen de recentrage équipant la structure interne.
La figure 10 est une vue en coupe transversale d'une nacelle selon l'invention avec une structure interne équipée de moyens de recentrage du turboréacteur. Les figures 11 et 12 sont des représentations respectivement en perspective et de côté d'un troisième mode de réalisation comprenant une structure interne courte.
Les figures 13 et 14 sont des représentations de la structure représentée aux figures 11 et 12 en situation de support d'un turboréacteur.
Les figures 1 et 2 représentent une nacelle 1 pour turboréacteur 2 double flux.
La nacelle 1 constitue un logement tubulaire pour un turboréacteur
2 double flux et sert à canaliser les flux d'air qu'il génère par l'intermédiaire des pâles d'une soufflante 3, à savoir un flux d'air chaud traversant une chambre de combustion 4 du turboréacteur 2, et un flux d'air froid circulant à l'extérieur du turboréacteur 2.
La nacelle 1 possède une structure comprenant une section avant formant une entrée d'air 5, une section médiane 6 entourant la soufflante 3 du turboréacteur 2, et une section arrière 7 entourant le turboréacteur 2 et comprenant un système d'inversion de poussée.
L'entrée d'air 5 présente une surface interne 5a destinée à canaliser l'air entrant et une surface externe 5b de carénage.
La section médiane 6 comprend, d'une part, un carter 6a interne entourant la soufflante 3 du turboréacteur 2, et d'autre part, une structure externe 6b de carénage du carter prolongeant la surface externe 5b de la section d'entrée d'air 5. Le carter 6a est rattaché à la section d'entrée d'air 5 qu'elle supporte et prolonge sa surface interne 5a. De plus, le carter 6a est relié à un carter amont 6c du turboréacteur 2 par l'intermédiaire de montants 8 radiaux disposés en croix. Il peut bien évidemment y avoir plus de quatre montants radiaux, notamment sur un turboréacteur de type CFM.
La section arrière 7 comprend une structure externe 7a comprenant un système d'inversion de poussée formant une tuyère d'éjection et une structure interne 7b de carénage du turboréacteur 2 définissant avec la structure externe 7a une veine 9 destinée à la circulation du flux froid.
La structure interne 7b est réalisée à partir d'une ossature structurale 10 recouverte de panneaux acoustiques 11 réalisant une surface aérodynamique intérieure de la veine 9. De ce fait, les panneaux acoustiques
11 ne sont pas structuraux et peuvent être allégés au maximum, toute la surface desdits panneaux acoustiques 11 pouvant être consacrée à la fonction acoustique sans avoir besoin de prévoir des zones structurales interdisant toute acoustique.
L'ossature structurale 10 est destinée à être rattachée directement à un mât 12 destiné lui-même à être rattaché à une partie fixe d'un avion telle qu'une aile 13.
L'ossature structurale 10 est réalisée à partir de deux demi parties 14, dont l'une est représentée sur la figure 3 en perspective avec le carter 6a de la soufflante 3, destinées à être rattachées entre elle.
Chaque demi partie 14 présente une série de cadres radiaux 15 répartis sur toute la longueur de la demi partie 14 et dont le nombre et la section sont définis selon les efforts à faire transiter.
Plus précisément, chaque demi partie présente un cadre radial amont 15a associé à un montant supérieur 16a et un montant inférieur 16b qui, ensemble le cadre radial amont 15a, sont destinés à servir d'interface de raccordement entre l'ossature structural 10 et la section médiane 6 par l'intermédiaire du carter amont 6c et des montants 8 verticaux.
Les cadres radiaux 15 sont reliés entre eux par au moins un renfort longitudinal 17 ainsi que par un renfort longitudinal supérieur 18 et un renfort longitudinal inférieur 19 de jonction. Par ailleurs, la demi partie 14 présente un montant supérieur aval 20a et un montant inférieur aval 20b qui viennent compléter la demi partie 14 pour permettre une liaison structurale par un renfort supérieur 21a et un renfort inférieur 21b reliant respectivement les montants 16a et 20a ainsi que 16b et 20b entre eux. D'autres montants supérieurs et inférieurs peuvent être ajoutés, par exemple en continuité des cadres radiaux 15.
La transmission des efforts est améliorée en ajoutant sur chaque demi partie 14 une bielle 22 de reprise d'effort, telle que visible sur la figure 4, rattachée, d'une part, en amont de la demi partie 14 au niveau d'un plan médian de l'ossature structural 10, c'est-à-dire sensiblement au niveau du renfort longitudinal 17 et du cadre radial amont 15a, et d'autre part, en aval de la demi partie 14 en un point destiné à venir à proximité du mât 12, c'est-à-dire, sensiblement sur le renfort longitudinal supérieur 18 et à proximité d'un cadre radial aval 15b. Avantageusement, la bielle 22 de reprise d'effort est ainsi orientée selon une direction sensiblement identique à la direction du mât 12. Alternativement, le point d'accroché aval de la bielle 22 de reprise d'effort peut être intégré au mât 12. Chaque demi partie 14 est liée à l'autre demi partie par sa partie inférieure, par l'intermédiaire de leurs montants inférieurs 16b amonts et montants inférieurs aval 20b, ainsi que par l'intermédiaire des renforts longitudinaux inférieurs 19 et des renforts inférieurs 21b. En partie supérieure, chaque demi partie 14 est liée au mât 12 par l'intermédiaire de leurs montants supérieurs 16a amonts et montants supérieurs aval 20a, ainsi que par l'intermédiaire des renforts longitudinaux supérieurs 18 et des renforts supérieurs 21a.
Alternativement le mât peut être intégré à l'ossature structurale 10. La figure 5 représente l'intérieur de la nacelle 1 , une fois l'ossature structurale 10 recouverte par les panneaux acoustiques 11.
La figure 6 présente une vue en coupe de face de la structure interne 7b ainsi assemblée.
La figure 7 présente une variante de réalisation de l'ossature structurale 10. Une ossature structurale 110 selon la figure 7 est réalisée à partir de deux demi parties 114 se différenciant uniquement d'une demi partie
14 par le fait que chaque demi partie 114 comprend une bielle 122 de reprise d'effort présentant une fourche amont. Une telle bielle 122 de reprise d'effort est donc fixée à la demi partie 114 en trois point, à savoir deux points aval 114a, 114b situés au niveau du cadre radial amont 15a de part et d'autre du plan médian de l'ossature structural 100, c'est-à-dire de part et d'autre du renfort longitudinal 17, et en un point 114c situé en aval au même endroit que pour la bielle 22 de reprise d'effort. De manière préférentielle, la fourche de la bielle 122 de reprise d'effort se rejoint en un point 114d sensiblement situé au niveau d'un cadre radial 15 et y est rattaché.
La figure 8 montre une ossature structurale 210 réalisée en une seule pièce ouverte en partie supérieure uniquement, partie par laquelle elle est destinée à être rattachée au mât 12.
L'ossature structurale 10, 110, 210 est complétée par des moyens de recentrage entre le turboréacteur 2 et de la structure interne 7b situés en aval de cette dernière. Le principe de fonctionnement des moyens de recentrage est montré sur la figure 9.
Les moyens de recentrage visent à assurer un contact permanent entre le turboréacteur 2 et la structure interne 7b de manière à prendre en compte un mouvement différentiel entre ces deux structures dû à la dilation thermique du turboréacteur 2 en fonctionnement provoquant un déplacement longitudinal et axial de ce dernier.
Pour ce faire, le turboréacteur présente, en aval de sa structure, des prolongement radiaux 30 répartis sur toute sa circonférence et terminés chacun par une rampe 31 en contact glissant avec une rampe 32 complémentaire d'un prolongement radial intérieur 33 de l'ossature structural 10, 110, 210. Les rampes 31 , 32 sont conçues de manière à ce que leur Orientation corresponde sensiblement au différentiel de déplacement estimé entre les deux structures. Le système de recentrage peut être réalisé de façon diverses, notamment par contact élastique, par éléments distincts ou monoblocs, sur uniquement un secteur de la périphérie du turboréacteur 2 ou sur toute sa périphérie.
La figure 10 présente une vue en coupe de face, montrant une répartition des moyens de recentrage.
On notera également que l'invention permet une maintenance facilitée du turboréacteur 2, l'accès à ce dernier pouvant s'effectuer par simple dépose des panneaux acoustiques 11 sans nécessité le démontage de toute la structure interne 7b. On notera également que la structure interne 7b peut éventuellement comporter une structure inférieure permettant l'accrochage d'une structure externe arrière 41 en partie inférieure. Dans ce cas, il en résulte une distance entre le point d'attache de ladite structure externe arrière 41 et la zone circonférentielle de recentrage de l'aval du turboréacteur 2. Cette distance procure une composante d'effort qui tend à écarter la structure inférieure de la structure interne 7b par laquelle la structure externe arrière 41 est rattachée qui ne permet plus au moyens de recentrage de remplir leur fonction dans cette zone. De ce fait, on pourra assurer l'intégrité du maintien du recentrage par un système de verrous 40 au niveau de la jonction entre les deux demi parties 14, 114 au niveau des cadres radiaux aval 15b.
Les figures 11 à 14 montrent une variante particulière de réalisation de l'invention comprenant une structure interne 310 courte maintenue également au niveau d'un carter de la soufflante.
Le système de support seul est représenté sur les figures 11 et 12. Celui-ci comprend des moyens d'attache de type pylône 12 sur laquelle est liée la structure interne 310. La structure interne 310 se présente sous la forme d'une ossature structurale périphérique réalisée à partir d'un cadre radial périphérique avant 315a et d'un cadre radial périphérique arrière 315b.
Le cadre radial avant 315a et le cadre radial arrière 315b sont reliés entre eux par une structure intermédiaire 316 formant treillis réalisés à partir de barres de liaisons 316a, 316b formant ensemble des triangles sensiblement isocèles.
L'ensemble de support est complété par des suspensions 320 montées sur la structure de type pylône 12 et destinées à être reliées à proximité d'une extrémité du turboréacteur 2.
Les figures 13 et 14 montrent l'ensemble support précédemment décrit en situation de support d'un turboréacteur 2, l'ossature 310 étant liée au carte 6c au moyen d'un système de boulonnage par l'intermédiaire du cadre radial avant 315a installé dans une gorge périphérique en V du carter 6c. Bien évidemment, comme mentionné précédemment, la structure interne pourra en variante être réalisée sous la forme d'un ou plusieurs secteurs non entièrement périphériques.
Bien que l'invention ait été décrite avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims

REVENDICATIONS
1. Nacelle (1) pour turboréacteur (2) double flux comprenant une section avant (5) d'entrée d'air, une section médiane (6) destinée à entourer une soufflante (3) du turboréacteur et une section arrière (7), ladite section arrière présentant une structure interne (7b) destinée à servir de carter à une partie arrière du turboréacteur, caractérisée en ce que la structure interne possède des moyens d'accrochage aptes à permettre un rattachement de la nacelle à un pylône (12) destiné à être lié à une structure fixe (13) d'un avion sur au moins une partie de ladite structure interne.
2. Nacelle (1) selon la revendication 1, caractérisée en ce que la structure interne (7b) est équipée de moyens de liaison rigide au turboréacteur, par exemple par boulonnage.
3. Nacelle (1) selon l'une quelconque des revendications 1 ou 2, caractérisée en ce que la structure interne (7b) est liée à la section médiane (6) par l'intermédiaire d'un carter (6c) entourant la soufflante (3).
4. Nacelle (1) selon la revendication 3, caractérisée en ce que la structure interne (7b) est liée à la section médiane de la partie aval du carter (6c) entourant la soufflante (3) sur au moins une partie de sa périphérie par le biais d'une gorge de ce dernier.
5. Nacelle (1) selon la revendication 4, caractérisée en ce que la structure interne (7b) est liée à la section médiane de la partie aval du carter (6c) sur toute sa périphérie.
6. Nacelle (1) selon l'une quelconque des revendications 4 ou 5, caractérisée en ce que la gorge périphérique du carter (6c) présente un profil intérieur en V.
7. Nacelle (1) selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la structure interne (7b) est équipée d'un moyen de recentrage (30, 31 , 32, 33) du turboréacteur (2).
8. Nacelle (1) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la structure interne (7b) est conçue de manière à ce que le pylône (12) puisse s'étendre sur toute la longueur de la structure interne.
9. Nacelle (1) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le pylône (12) est intégré à la structure interne (7b).
10. Nacelle (1) selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la structure interne (7b) comprend au moins une paroi extérieure (11) constituant une surface aérodynamique montée sur une ossature (10, 110, 210).
11. Nacelle (1) selon la revendication 10, caractérisée en ce que l'ossature n'entoure que partiellement le turboréacteur, de préférence sur au moins 180°.
12. Nacelle (1) selon la revendication 11 , caractérisée en ce que l'ossature entoure totalement le turboréacteur.
13. Nacelle (1) selon l'une quelconque des revendications 10 à 12, caractérisée en ce que la paroi extérieure est réalisée, partiellement ou en totalité, à partir d'au moins un panneau acoustique (11).
14. Nacelle (1) selon l'une quelconque des revendications 10 à 13, caractérisée en ce que l'ossature (10, 110, 210) de la structure interne (7b) est réalisée à partir de cadres radiaux (15a, 15b, 15).
15. Nacelle (1) selon la revendication 14, caractérisée en ce que les cadres radiaux sont réalisés à partir de bielles de reprise d'effort. 51
13
16. Nacelle (1) selon l'une quelconque des revendications 14 ou 15, caractérisée en ce que au moins une partie des cadres radiaux sont réalisés d'une seule pièce.
17. Nacelle (1) selon l'une quelconque des revendications 14 à 16, caractérisée en ce qu'au moins une partie des cadres radiaux sont réalisés à partir de plusieurs éléments liés entre eux, par exemple par boulonnage.
18. Nacelle (1) selon l'une quelconque des revendications 14 à 17, caractérisée en ce que les cadres radiaux sont répartis sur la longueur de la structure interne.
19. Nacelle (1) selon l'une quelconque des revendications 14 à 18, caractérisée en ce que l'ossature comprend au moins un cadre radial avant et un cadre radial arrière reliés par une structure intermédiaire formant treillis.
20. Nacelle (1) selon la revendication 19, caractérisée en ce que la structure intermédiaire est réalisée sous la forme d'un caisson.
21. Nacelle (1) selon la revendication 19, caractérisée en ce que la structure intermédiaire est réalisée à partir de barres de liaison reliant au moins deux cadres radiaux entre eux.
22. Nacelle (1) selon la revendication 21, caractérisée en ce qu'au moins une partie des barres de liaison sont intégrés à au moins un cadre radial.
23. Nacelle (1) selon l'une quelconque des revendications 21 ou 22, caractérisée en ce que les barres de liaison sont creuses.
24. Nacelle (1) selon l'une quelconque des revendications 21 à 23, caractérisée en ce que les barres de liaisons sont disposées les unes par rapport aux autres de manière à former des triangles, de préférence isocèles.
25. Nacelle (1) selon l'une quelconque des revendications 6 à 24 caractérisée en ce que l'ossature (10, 110, 210) comprend au moins un renfort longitudinal (17, 20a, 20b) de part et d'autre d'un axe longitudinal de la structure interne.
26. Nacelle (1) selon l'une quelconque des revendications 1 à 25, caractérisée en ce que la structure interne (7b) comprend au moins une bielle
(22, 122) de reprise de poussée rattachée, d'une part, à au moins un point d'une partie amont de la structure interne (114a, 114b), par exemple au niveau d'un plan médian horizontal, et d'autre part, en au moins un point (114c) d'une partie aval de la structure interne au voisinage du pylône (12) ou éventuellement intégré à celui-ci.
27. Nacelle (1) selon la revendication 26, caractérisée en ce que la bielle (22, 122) de reprise de poussée est orientée sensiblement dans l'alignement structural du pylône (12).
28. Nacelle (1) selon l'une quelconque des revendications 26 ou 27, caractérisée en ce que la bielle (122) de reprise de poussée présente une fourche rattachée à la structure interne (7b) en au moins deux points (114a, 114b) de la partie amont de la structure interne, de part et d'autre du plan médian horizontal, la fourche de la bielle présentant un point de jonction (114d) situé, par exemple, au niveau d'un cadre radial (15) de l'ossature (110).
29. Nacelle (1) selon l'une quelconque des revendications 10 à 28, caractérisée en ce qu'au moins une partie des éléments de l'ossature, à savoir notamment cadres radiaux, bielles de reprises d'effort, structure intermédiaire et renforts longitudinaux, sont équipés d'une protection thermique.
30. Nacelle (1) selon l'une quelconque des revendications 1 à 29, caractérisée en ce que la structure interne (7b) possède une ossature (210) en une pièce.
31. Nacelle (1) selon l'une quelconque des revendications 1 à 30, caractérisé en ce que la structure interne (7b) possède une ossature (10, 110) en deux pièces destinées à être assemblées sensiblement verticalement.
32. Ensemble propulsif, caractérisé en ce qu'il comprend une nacelle (1) selon l'une quelconque des revendications 1 à 31 , ladite nacelle abritant un turboréacteur (2).
33. Aéronef, caractérisé en ce qu'il comprend au moins un ensemble propulsif selon la revendication 32.
PCT/FR2007/000951 2006-06-30 2007-06-11 Nacelle structurante WO2008000924A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT07788856T ATE452823T1 (de) 2006-06-30 2007-06-11 Strukturgondel
US12/302,998 US8739552B2 (en) 2006-06-30 2007-06-11 Structural nacelle
CN200780024985.XA CN101489870B (zh) 2006-06-30 2007-06-11 结构化发动机舱
CA2654398A CA2654398C (fr) 2006-06-30 2007-06-11 Nacelle structurante
DE602007003981T DE602007003981D1 (de) 2006-06-30 2007-06-11 Strukturgondel
EP07788856A EP2035279B1 (fr) 2006-06-30 2007-06-11 Nacelle structurante
BRPI0713993-4A BRPI0713993A2 (pt) 2006-06-30 2007-06-11 nacela para turboÉlice, sistema de propulsço e aeronave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0605912A FR2903076B1 (fr) 2006-06-30 2006-06-30 Nacelle structurante
FR0605912 2006-06-30

Publications (1)

Publication Number Publication Date
WO2008000924A1 true WO2008000924A1 (fr) 2008-01-03

Family

ID=37762062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000951 WO2008000924A1 (fr) 2006-06-30 2007-06-11 Nacelle structurante

Country Status (11)

Country Link
US (1) US8739552B2 (fr)
EP (1) EP2035279B1 (fr)
CN (1) CN101489870B (fr)
AT (1) ATE452823T1 (fr)
BR (1) BRPI0713993A2 (fr)
CA (1) CA2654398C (fr)
DE (1) DE602007003981D1 (fr)
ES (1) ES2338385T3 (fr)
FR (1) FR2903076B1 (fr)
RU (1) RU2424160C2 (fr)
WO (1) WO2008000924A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774430A (zh) * 2008-12-24 2010-07-14 通用电气公司 用于安装飞行器发动机的整体结构
FR2948636A1 (fr) * 2009-07-31 2011-02-04 Airbus Operations Sas Ensemble moteur pour aeronef dont le mat d'accrochage comprend une enveloppe structurale formant delimitation radiale interne du flux secondaire
FR2950322A1 (fr) * 2009-09-22 2011-03-25 Airbus Operations Sas Element d'accrochage d'un moteur d'aeronef, ensemble d'aeronef comprenant cet element et aeronef associe
US20110220218A1 (en) * 2008-11-13 2011-09-15 Aircelle Turbojet engine nacelle
US8517304B2 (en) 2009-10-01 2013-08-27 Airbus Operations S.A.S. Device for locking an engine on an aircraft pylon
US8640987B2 (en) 2009-09-22 2014-02-04 Airbus Operations S.A.S. Aircraft engine mounting structure, assembly comprising this structure and associated aircraft
US9212607B2 (en) 2012-07-18 2015-12-15 Spirit Aerosystems, Inc. Intermediate structure for independently de-mountable propulsion components
WO2017109328A1 (fr) * 2015-12-24 2017-06-29 Safran Aircraft Engines Turboréacteur avec un moyen de reprise de poussée sur le carter inter-compresseurs
FR3060532A1 (fr) * 2016-12-20 2018-06-22 Airbus Operations Ensemble moteur pour aeronef, comprenant des dispositifs elastiques souples de transmission d'efforts entre des capots de nacelle et une structure annulaire reliee au carter moteur par des bielles
WO2019122680A1 (fr) 2017-12-18 2019-06-27 Safran Aircraft Engines Structure porteuse destinée au montage sur un générateur de gaz

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523516B2 (en) 2006-10-11 2013-09-03 Aircelle Bypass turbojet engine nacelle
FR2909974B1 (fr) 2006-12-13 2009-02-06 Aircelle Sa Nacelle pour turboreacteur double flux
US8262050B2 (en) * 2008-12-24 2012-09-11 General Electric Company Method and apparatus for mounting and dismounting an aircraft engine
DE102009054568A1 (de) * 2009-12-11 2011-06-16 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Aufhängung eines Strahltriebwerks an einer Stützstruktur
GB201007215D0 (en) * 2010-04-30 2010-06-16 Rolls Royce Plc Gas turbine engine
US20140352797A1 (en) * 2013-06-04 2014-12-04 Rohr, Inc. Aircraft jet engine
FR3010048B1 (fr) * 2013-09-04 2017-03-31 Snecma Structure de liaison moteur-nacelle a cales de liaison
GB201322077D0 (en) * 2013-12-13 2014-01-29 Rolls Royce Plc Engine mount
FR3045570B1 (fr) 2015-12-16 2017-12-22 Airbus Operations Sas Ensemble moteur pour aeronef, comprenant un dispositif d'accrochage du moteur equipe d'une enveloppe structurale fixee sur un caisson central
FR3058704B1 (fr) * 2016-11-14 2018-11-16 Safran Aircraft Engines Berceau bipartite a coulissement pour turbopropulseur
US10899463B2 (en) 2017-05-16 2021-01-26 Rohr, Inc. Segmented pylon for an aircraft propulsion system
FR3068008B1 (fr) * 2017-06-21 2019-11-08 Airbus Operations Ensemble de motorisation pour un aeronef
US11448161B2 (en) 2018-09-10 2022-09-20 Rohr, Inc. Acoustic fairing
FR3106126B1 (fr) * 2020-01-10 2022-01-07 Safran Aircraft Engines Assemblage entre un pylône d’aéronef et une turbomachine
US11613372B2 (en) * 2020-11-09 2023-03-28 Rohr, Inc. Ducted fan case attachment structure
CN113771564A (zh) * 2021-08-20 2021-12-10 王全文 一种水陆交通装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155887A1 (fr) * 1984-03-07 1985-09-25 Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." Capotages structuraux participant à la rigidité d'ensemble d'un turboréacteur
GB2312251A (en) * 1996-04-18 1997-10-22 Rolls Royce Plc Ducted fan gas turbine engine mounting
US6330985B1 (en) * 2000-06-30 2001-12-18 General Electric Company Link component for aircraft engine mounting systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1095605A (fr) 1953-08-06 1955-06-03 Perfectionnements apportés aux dispositifs de fixation de panneaux, capots, couvercles, etc.
GB1516980A (en) * 1974-12-24 1978-07-05 Rolls Royce Mounting ducted fan gas turbine engines on aircraft
US4266741A (en) * 1978-05-22 1981-05-12 The Boeing Company Mounting apparatus for fan jet engine having mixed flow nozzle installation
EP0145809B1 (fr) 1983-12-19 1987-11-19 The Boeing Company Système et méthode pour minimiser la flexion axiale dans un moteur
CN1269308A (zh) * 2000-03-21 2000-10-11 贾龙 一种飞行器的升空和飞行方法及其装置
FR2873987B1 (fr) * 2004-08-05 2006-11-24 Airbus France Sas Ensemble moteur pour aeronef
GB0418454D0 (en) * 2004-08-19 2004-09-22 Rolls Royce Plc An engine mounting assembly
FR2885877B1 (fr) * 2005-05-23 2008-12-12 Airbus France Sas Mat d'accrochage de turboreacteur pour aeronef

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155887A1 (fr) * 1984-03-07 1985-09-25 Societe Nationale D'etude Et De Construction De Moteurs D'aviation, "S.N.E.C.M.A." Capotages structuraux participant à la rigidité d'ensemble d'un turboréacteur
GB2312251A (en) * 1996-04-18 1997-10-22 Rolls Royce Plc Ducted fan gas turbine engine mounting
US6330985B1 (en) * 2000-06-30 2001-12-18 General Electric Company Link component for aircraft engine mounting systems

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169026B2 (en) * 2008-11-13 2015-10-27 Aircelle Turbojet engine nacelle
US20110220218A1 (en) * 2008-11-13 2011-09-15 Aircelle Turbojet engine nacelle
CN101774430A (zh) * 2008-12-24 2010-07-14 通用电气公司 用于安装飞行器发动机的整体结构
WO2011012822A3 (fr) * 2009-07-31 2011-03-31 Airbus Operations Ensemble moteur pour aeronef dont le mat d'accrochage comprend une enveloppe structurale formant delimitation radiale interne du flux secondaire
US8646725B2 (en) 2009-07-31 2014-02-11 Airbus Operations S.A.S. Engine assembly for an aircraft the engine attachment strut of which includes a structural case forming an internal radial delimitation of the secondary flow
FR2948636A1 (fr) * 2009-07-31 2011-02-04 Airbus Operations Sas Ensemble moteur pour aeronef dont le mat d'accrochage comprend une enveloppe structurale formant delimitation radiale interne du flux secondaire
US8651416B2 (en) 2009-09-22 2014-02-18 Airbus Operations S.A.S. Aircraft assembly including an element for mounting an engine and associated aircraft
FR2950322A1 (fr) * 2009-09-22 2011-03-25 Airbus Operations Sas Element d'accrochage d'un moteur d'aeronef, ensemble d'aeronef comprenant cet element et aeronef associe
WO2011036386A1 (fr) 2009-09-22 2011-03-31 Airbus Operations Ensemble d'aeronef comprenant un element d'accrochage d'un moteur et aeronef associe
US8640987B2 (en) 2009-09-22 2014-02-04 Airbus Operations S.A.S. Aircraft engine mounting structure, assembly comprising this structure and associated aircraft
US8517304B2 (en) 2009-10-01 2013-08-27 Airbus Operations S.A.S. Device for locking an engine on an aircraft pylon
US9212607B2 (en) 2012-07-18 2015-12-15 Spirit Aerosystems, Inc. Intermediate structure for independently de-mountable propulsion components
CN108431373B (zh) * 2015-12-24 2020-10-13 赛峰飞机发动机公司 在居间压缩机壳体上具有推力抵抗装置的涡轮喷气发动机
FR3046201A1 (fr) * 2015-12-24 2017-06-30 Snecma Turboreacteur avec un moyen de reprise de poussee sur le carter inter-compresseurs
CN108431373A (zh) * 2015-12-24 2018-08-21 赛峰飞机发动机公司 在居间压缩机壳体上具有推力抵抗装置的涡轮喷气发动机
WO2017109328A1 (fr) * 2015-12-24 2017-06-29 Safran Aircraft Engines Turboréacteur avec un moyen de reprise de poussée sur le carter inter-compresseurs
US11053852B2 (en) 2015-12-24 2021-07-06 Safran Aircraft Engines Turbojet engine with thrust take-up means on the inter-compressors case
FR3060532A1 (fr) * 2016-12-20 2018-06-22 Airbus Operations Ensemble moteur pour aeronef, comprenant des dispositifs elastiques souples de transmission d'efforts entre des capots de nacelle et une structure annulaire reliee au carter moteur par des bielles
WO2019122680A1 (fr) 2017-12-18 2019-06-27 Safran Aircraft Engines Structure porteuse destinée au montage sur un générateur de gaz
US11542024B2 (en) 2017-12-18 2023-01-03 Safran Aircraft Engines Load-bearing structure intended to be mounted on a gas generator

Also Published As

Publication number Publication date
EP2035279A1 (fr) 2009-03-18
FR2903076A1 (fr) 2008-01-04
CA2654398C (fr) 2015-04-07
DE602007003981D1 (de) 2010-02-04
ES2338385T3 (es) 2010-05-06
EP2035279B1 (fr) 2009-12-23
US20090255271A1 (en) 2009-10-15
CN101489870B (zh) 2013-12-25
BRPI0713993A2 (pt) 2012-11-20
US8739552B2 (en) 2014-06-03
RU2424160C2 (ru) 2011-07-20
FR2903076B1 (fr) 2009-05-29
CA2654398A1 (fr) 2008-01-03
CN101489870A (zh) 2009-07-22
ATE452823T1 (de) 2010-01-15
RU2009102323A (ru) 2010-08-10

Similar Documents

Publication Publication Date Title
EP2035279B1 (fr) Nacelle structurante
FR2907098A1 (fr) Nacelle pour turboreacteur double flux
CA2689111C (fr) Ensemble moteur pour aeronef a nacelle coulissante
EP2076438A2 (fr) Nacelle pour turboréacteur double flux
EP2501920B1 (fr) Inverseur de poussée
FR3067406B1 (fr) Systeme d'inverseur de poussee presentant des perturbations aerodynamiques limitees
EP2543864B1 (fr) Ensemble propulsif avec un plancher de protection thermique d'un carenage aérodynamique arrière d'un mat d'accrochage et procéde de refroidissement du plancher de protection thermique
EP1976758B1 (fr) Systeme de fixation pour element constitutif d'une nacelle de turboreacteur
CA2696204C (fr) Fixation d'une structure d'une nacelle de turboreacteur par bride couteau/gorge renforcee
FR2965589A1 (fr) Inverseur de poussee
FR2948636A1 (fr) Ensemble moteur pour aeronef dont le mat d'accrochage comprend une enveloppe structurale formant delimitation radiale interne du flux secondaire
CA2740824C (fr) Nacelle pour turboreacteur a capot amont translatable
EP2459444B1 (fr) Assemblage pour aeronef comprenant un mat d'accrochage de turbomachine dont les moyens d'attache sur la voilure sont agences en t
EP2247503B1 (fr) Structure d'accrochage pour turboréacteur
FR2900907A1 (fr) Ensemble moteur pour aeronef a nacelle et mat integres
WO2020217027A1 (fr) Entrée d'air de nacelle et nacelle comportant une telle entrée d'air
EP3856639B1 (fr) Nacelle pour aéronef et entrée d'air associée

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024985.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007788856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302998

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2654398

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009102323

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0713993

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081230