WO2007148636A1 - Thermoplastic elastomer composition - Google Patents

Thermoplastic elastomer composition Download PDF

Info

Publication number
WO2007148636A1
WO2007148636A1 PCT/JP2007/062181 JP2007062181W WO2007148636A1 WO 2007148636 A1 WO2007148636 A1 WO 2007148636A1 JP 2007062181 W JP2007062181 W JP 2007062181W WO 2007148636 A1 WO2007148636 A1 WO 2007148636A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
group
elastomer composition
acrylic
weight
Prior art date
Application number
PCT/JP2007/062181
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Taniguchi
Takeshi Chiba
Yutaka Kaneda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2008522439A priority Critical patent/JPWO2007148636A1/en
Publication of WO2007148636A1 publication Critical patent/WO2007148636A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a thermoplastic elastomer composition, a powder slush molding material using the composition, and an automobile interior skin obtained by powder slush molding.
  • an acrylic block copolymer having methyl methacrylate as a hard segment and butyl acrylate as a soft segment has characteristics as a thermoplastic elastomer.
  • thermoplastic elastomer By appropriately selecting the components constituting the block body, it is possible to give an extremely flexible elastomer compared to other thermoplastic elastomers such as styrene block bodies.
  • the acrylic block copolymer has excellent characteristics such as weather resistance, heat resistance, and oil resistance. Furthermore, as described in Patent Document 1, the i-ferter method is used. The mechanical properties (tensile strength, elongation, etc.) manufactured in
  • a powder slash molding method which is a powder molding method using a soft powder material.
  • This method is widely used for molding automotive interior skin materials such as instrument panels, console boxes and door trims. This is because, according to the powder one slash molding method, a product with a soft feel is obtained, and the skin texture is stitched. Can be provided in the product, the degree of freedom of design is large, and the design is good. Unlike other molding methods such as injection molding and compression molding, this molding method does not apply shaping pressure during molding. For this reason, it is necessary to uniformly adhere the powder material to a mold having a complicated shape during molding, and the powder is required to have excellent fluidity.
  • Patent Documents 2 and 3 introduce a carboxyl group or an acid anhydride group into an acrylic block copolymer to increase the molecular weight or a crosslinking reaction during molding, thereby achieving both melt fluidity and heat resistance.
  • the material which aimed at is proposed! RU
  • Patent Document 1 JP-A-1-26619
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-104410
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-104419
  • the present invention is a thermoplastic elastomer excellent in storage stability and melt fluidity at the time of molding, and further in heat resistance, oil resistance, chemical resistance, adhesiveness and flexibility of the obtained molded product.
  • the purpose is to obtain a composition.
  • any acrylic block containing a hydroxyl group, an acid anhydride group, or a carboxyl group and having a predetermined structure As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that any acrylic block containing a hydroxyl group, an acid anhydride group, or a carboxyl group and having a predetermined structure. In order to solve the present invention, the inventors have found that the above-mentioned problems can be effectively solved by using a composition containing a polymer and a compound having an epoxy group and capable of being increased in molecular weight or crosslinked during molding. It came.
  • the present invention provides: (I) A methacrylic polymer block (a) having a methacrylic monomer as a main component and a glass transition temperature of 25 to 130 ° C. (a) 10 to 60% by weight, an acrylic polymer block (b) 90 to 40% by weight, and at least one polymer block selected from the group consisting of a hydroxyl group, an acid anhydride group, and a carboxyl group is included in at least one of the blocks (a) and (b).
  • a thermoplastic elastomer composition comprising a compound (B) having a reactive functional group (d) and a thermal latent catalyst (C),
  • R 1 represents hydrogen or a methyl group
  • p and m each represent an integer of 1 or more.
  • thermoplastic elastomer composition according to (II) or (III), wherein R 1 and R 2 are both hydrogen,
  • thermoplastic elastomer composition force The thermoplastic elastomer composition according to any one of (II) to (IV), which is present in the acrylic polymer block (b) ,
  • thermoplastic elastomer composition according to (I), characterized in that:
  • thermoplastic elastomer composition according to any one of (I) to (VII),
  • thermoplastic elastomer composition according to any one of ( ⁇ ) to (IX), wherein the compound ( ⁇ ) has an acrylic polymer strength
  • thermoplastic elastomer according to any one of ⁇ ) to ( ⁇ ), which is a group force consisting of an epoxy group, a carboxyl group, a hydroxyl group and an amino group, selected from ⁇ ) to ( ⁇ )
  • a group force consisting of an epoxy group, a carboxyl group, a hydroxyl group and an amino group, selected from ⁇ ) to ( ⁇ )
  • thermoplastic elastomer according to any one of (I) to (XIV), wherein the thermal latent catalyst (C) exhibits activity when heated at 60 ° C or higher.
  • thermoplastic elastomer composition according to any one of (I) to (XV), wherein the heat latent catalyst (C) is a metal salt compound,
  • the heat latent catalyst (C) is characterized in that it is a compound comprising a fatty acid having 4 to 16 carbon atoms or a diketone compound having 2 to 16 carbon atoms and zinc ( Any force of I) to (XVI)
  • the thermoplastic elastomer composition according to paragraph 1 is characterized in that it is a compound comprising a fatty acid having 4 to 16 carbon atoms or a diketone compound having 2 to 16 carbon atoms and zinc ( Any force of I) to (XVI)
  • the thermoplastic elastomer composition according to paragraph 1
  • thermoplastic elastomer according to any one of ⁇ ) to ( ⁇ ), wherein the thermal latent catalyst (C) is zinc laurate or bis (acetylacetonato) zinc.
  • thermal latent catalyst (C) is zinc laurate or bis (acetylacetonato) zinc.
  • thermoplastic elastomer composition according to any one of (i) to (XVIII), wherein the heat latent catalyst (C) is zinc laurate,
  • thermoplastic elastomer composition according to any one of (1) to (XVI), wherein the heat latent catalyst (C) is zinc tert-butylbenzoate,
  • thermoplastic elastomer composition Any one of (I) to (XX), characterized in that it contains 0.01 to 5 parts by weight of the thermal latent catalyst (C) with respect to 100 parts by weight.
  • thermoplastic elastomer composition according to claim 1,
  • thermoplastic elastomer composition for powder slush molding comprising the composition according to any one of ( ⁇ ) to ( ⁇ ),
  • thermoplastic slush molding of the thermoplastic elastomer composition according to any one of (i) to (ii),
  • thermoplastic elastomer composition A skin for automobile interior characterized by being formed by powder slush molding of the thermoplastic elastomer composition according to any one of (i) to (ii). In between.
  • thermoplastic elastomer composition according to the present invention is excellent in moldability, heat resistance and storage stability. For this reason, the composition of the present invention can be suitably used for powder slush molding, and a molded article having stable quality can be obtained.
  • the structure of the functional group (c) in the acrylic block copolymer (A) excellent storage stability with almost no restrictions on storage of the thermoplastic elastomer can be achieved.
  • weather resistance, oil resistance, and chemical resistance can be selected by appropriately selecting the molecular weight of the acrylic block copolymer (A), the monomer component, the compound (B), the type of the thermal latent catalyst (C), etc. It is possible to obtain a composition having excellent properties, adhesiveness, flexibility and abrasion resistance.
  • FIG. 1 is a schematic diagram of a scratch resistance evaluation test.
  • thermoplastic elastomer composition of the present invention comprises an acryl-based block copolymer (A) having a predetermined structure described below, and one or more reactive functional groups in one molecule. It comprises a compound (B) having (d) and a thermal latent catalyst (C).
  • the reactive functional group (d) in the compound (B) is a hydroxyl group, an acid anhydride group, which is the functional group (c) in the acrylic block copolymer (A).
  • the thermal latent catalyst (C) effectively promotes the reaction as a reaction accelerator.
  • the type of the heat latent catalyst (C) it is possible to ensure secondary workability such as adhesion.
  • the thermal latent catalyst (C) used in the present invention is a catalyst that exhibits higher activity when heated at a predetermined temperature (preferably 60 ° C. or higher).
  • the reason for using the thermal latent catalyst (C) is that if a normal catalyst such as an amine compound is used, the functional group (d) in the compound (B) and the functional group in the copolymer (A) described above are used.
  • the purpose is to prevent the cross-linking reaction by the group (c) from proceeding except at the time of thermoforming, that is, storage before molding. If the cross-linking reaction proceeds during storage before forming, the melt flowability of the thermoplastic elastomer is lowered, which causes deterioration of moldability.
  • the thermal latent catalyst (C) As the functional group (c) in the copolymer (A), a hydroxyl group that is less active than the carboxyl group is selected, and further, a hydroxyl group that is sterically protected by a nearby structure described later is selected. Is preferred.
  • (A) is a general formula (1) containing 1.0 or more hydroxyl groups per molecule on average
  • R 1 represents hydrogen or a methyl group
  • p and m each represent an integer of 1 or more
  • a monomer unit (X) a unit (X) and a unit ( At least one on each side of (X), close to unit (X)
  • R 2 represents hydrogen or a methyl group.
  • Q and n are each an integer of 1 or more, and n> m + 1, q> p.) ).
  • the side chain of the monomer unit (y) (ester chain (one COO (CH) — H)) is the monomer unit. Since the side chain of (x) (ester chain (one COO (CH) —OH)) is longer, the hydroxyl group of unit (X)
  • the structure of the acrylic block copolymer (A) of the present invention is not particularly limited, and may be a linear block copolymer, a branched (star) block copolymer, or a mixture thereof.
  • the structure of such a block copolymer may be appropriately selected according to the required physical properties of the acrylic block copolymer (A).
  • the linear block copolymer is selected. Polymer is preferred.
  • the linear block copolymer may have a structure (arrangement) that is out of alignment! /, but from the viewpoint of the physical properties of the linear block copolymer or the composition,
  • the methacrylic polymer block (a) is expressed as a and the acrylic polymer block (b) is expressed as b, (a -b) type, b— (a— b) type and (a— b) —
  • an a-b type diblock copolymer, an ab-a type triblock copolymer, or a mixture thereof is preferable in terms of easy handling during processing and the point of physical properties of the composition.
  • the functional group (c) selected from a hydroxyl group, an acid anhydride group and a carboxyl group contained in the acrylic block copolymer (A) is a methacrylic polymer block (a), an acrylic heavy polymer. One or more per molecule is introduced into one or both polymer blocks (b). When the number is two or more, the mode in which the monomer (e) having the functional group (c) is superposed can be random copolymerization or block copolymerization.
  • (aZz) — b—a type, (a / z) -b-(a / z) type, z— a— b— a type, z — A— b— a— z type, a— (bZ z) a type, a— b— z— a type, a — z— b— z— a type, (a / z)-(b / z) -(aZz) type, z-a-z-b-z-a-z type, etc. may be used.
  • z represents a polymer block obtained by polymerizing a monomer unit (e) having a functional group (c) or a monomer unit (f) having a hydroxyl group
  • (a / z) Means that the monomer unit (f) is copolymerized with the methacrylic polymer block ( a )
  • (bZz ) Means that the monomer unit (f) having a hydroxyl group is copolymerized with the acrylic polymer block (b).
  • the methacrylic polymer block (a) is! /
  • the site where z is contained and the manner in which it is contained should be appropriately set according to the purpose. Can do.
  • the molecular weight of the acrylic block copolymer (A) is not particularly limited, and may be determined from the molecular weights required for the methacrylic polymer block ( a ) and the acrylic polymer block (b), respectively. . However, if the molecular weight is small, sufficient mechanical properties as an elastomer may not be exhibited. Conversely, if the molecular weight is larger than necessary, the processing characteristics may deteriorate. In the case of the noder slash molding, since it is necessary to flow even under no pressure, if the molecular weight is large, the melt viscosity becomes high and the moldability may be deteriorated.
  • the molecular weight of the acrylic block copolymer (A) is 30,000 to 200,000 force S in terms of number average molecular weight S preferred ⁇ , more preferred ⁇ 35,000 to 150,000 More preferred, ⁇ or 40,000 to 100,000.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (MwZMn) of the acrylic block copolymer ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) measured by gel permeation chromatography is not particularly limited. 1. Preferably it is 8 or less 1. More preferably, it is 5 or less. If Mw / Mn exceeds 1.8, the homogeneity of the acrylic block copolymer may deteriorate and the mechanical strength may decrease.
  • the composition ratio of the methacrylic polymer block (a) and the acrylic polymer block (b) constituting the acrylic block copolymer (A) is 5 for the methacrylic polymer block (a). It is preferable that the amount of the acrylic polymer block (b) is 95 to 10% by weight. From the viewpoint of maintaining the shape during molding and elasticity as an elastomer, the methacrylic polymer block (a) is 10 to 60% by weight, and the acrylic polymer block (b) is 90 to 40% by weight. More preferably, the methacrylic polymer block (a) is more preferably 15 to 50% by weight and the acrylic polymer block (b) is 3 ⁇ 4 to 50% by weight.
  • the proportion of the methacrylic polymer block (a) is less than 5% by weight, the shape tends to be difficult to retain during molding. If the proportion of the acrylic polymer block (b) is less than 10% by weight, the elastomer As an elastic material, there is a tendency for the flexibility and the meltability during molding to decrease. [0035] From the viewpoint of the hardness of the elastomer composition, when the proportion of the methacrylic polymer block (a) is small, the hardness is low, and when the proportion of the acrylic polymer block (b) is small, the hardness is low. The composition is appropriately set according to the required hardness of the elastomer composition. In terms of processing viewpoint, the viscosity is low when the proportion of (a) is small, and the viscosity tends to be high when the proportion of (b) is small. The composition is appropriately set according to the required processing characteristics. .
  • the relationship between the glass transition temperature of the methacrylic polymer block (a) and the acrylic polymer block (b) constituting the acrylic block copolymer (A) depends on the elastomer characteristics and rubber properties.
  • the glass transition temperature of one of the polymer blocks is preferably higher than the glass transition temperature of the other polymer block in terms of imparting, and the glass transition temperature of each block ( More preferably, the glass transition temperature of the methacrylic polymer block (a) is Tga, and the glass transition temperature of the acrylic polymer block (b) is Tgb).
  • the glass transition temperature (Tg) of the polymer (methacrylic polymer block (a) and acrylic polymer block (b)) is set according to the following Fox formula. This can be done by setting the ratio.
  • Tg represents the glass transition temperature of the polymer portion
  • Tgl, Tg2,..., Tgm represent the glass transition temperature of each polymerization monomer
  • Wl, W2,..., Wm represent the weight ratio of each polymerization monomer.
  • glass transition temperature of each polymerization monomer in the Fox formula for example, a value described in Polymer Handbook Third Edition (Wiley-Interscience 1989) may be used.
  • the glass transition temperature can be measured by DSC (differential scanning calorimetry) or tan ⁇ peak of dynamic viscoelasticity.
  • Methacrylic polymer block (a) and acrylic polymer block If the polarity of (b) is too close or the block monomer chain number is too small, The measured value may be different from the calculation formula by the Fox formula.
  • the acrylic block copolymer (A) having a hydroxyl group sterically protected by a neighboring structure as the functional group (c) has an average of 1.0 or more hydroxyl groups per molecule. It has a monomer unit (X) and at least two monomer units (y). At least one monomer unit ( y ) is present on both sides of the unit (X) in the vicinity of the unit (X), and sterically protects the hydroxyl group of the unit (X). For this purpose, the monomer unit (y) may or may not be present adjacent to the monomer unit (X).
  • r is a monomer other than units (X) and (y), for example, y—X—y, y—x—r—y, y—r—x—r—y They may be arranged as follows. Further, the plurality of monomer units (y) present in the acrylic block copolymer (A) do not necessarily have the same structure (the same value of n). Furthermore, as long as the above object can be achieved, the monomer unit (y) may exist at both ends of a continuous or non-continuous monomer unit (for example, y—X—X—y, y—X—r—X—y (r represents a monomer other than the units (X) and (y))).
  • n 4 is preferable in the general formula (2) from the viewpoint that flexibility can be imparted to the thermoplastic elastomer to be obtained and flexibility is available.
  • p> 2p from the viewpoint of storage stability.
  • a methacrylic polymer block (a) in which the relationship between p and q and m and n is combined with the entire acrylic block copolymer (A) is: Is preferably within the acrylic polymer block (b).
  • R 1 and R 2 in the general formula (1) and the general formula (2) are methyl groups.
  • R 1 and R 2 in general formula (1) and general formula (2) are preferably hydrogen! /.
  • R 1 is hydrogen, or units (X) and (y) are included in acrylic polymer block (b)
  • R 1 is a methyl group
  • the polymerization operation of the acrylic block copolymer (A) becomes complicated, or the methacrylic polymer block (a) and the acrylic polymer block (b)
  • the difference in glass transition temperature of the acrylic block copolymer (A) is reduced, and the rubber elasticity of the acrylic block copolymer (A) decreases. Tend to.
  • the monomer unit (X) having a hydroxyl group is an acrylic polymer block in that the rubber elasticity of the obtained molded article can be improved and the hysteresis loss can be reduced. (b) preferred to be present.
  • the methacrylic polymer block (a) is a block obtained by polymerizing a monomer having a methacrylic acid ester as a main component.
  • the methacrylic acid ester 50 100% by weight and a bule-based single copolymer copolymerizable therewith. It is preferable that the weight is 0-50% by weight.
  • the proportion of the methacrylic acid ester is less than 50% by weight, the weather resistance, which is a characteristic of the methacrylic acid ester, may be impaired.
  • the methacrylic acid ester constituting the methacrylic polymer block (a) includes, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, Isobutyl acrylate, n-pentyl methacrylate, n-xyl methacrylate, n-butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, noel methacrylate, decyl methacrylate, meta Methacrylic acid aliphatic hydrocarbons such as dodecyl acrylate and stearyl methacrylate (e.g., alkyl having 1 to 18 carbon atoms); methacrylic acid alicyclic hydrocarbons such as cyclohexyl methacrylate and isobornyl methacrylate Esters; aralkyl methacrylates such
  • Trifluoromethyl methacrylate trifluoromethyl methyl methacrylate, 2-trifluoromethylethyl methacrylate, 2-trifluoroethyl methacrylate, 2-perfluoroethyl methacrylate Chill, 2-perfluoroethyl methacrylate, 2-perfluorobutylethyl methacrylate, 2-perfluoromethacrylate, perfluoromethyl methacrylate, diperfluoromethyl methyl methacrylate, meta Acrylic acid 2-perfluoromethyl-2-perfluoroethylmethyl, methacrylic acid 2-perfluoro Examples thereof include fluorinated alkyl esters of methacrylic acid such as silethyl, 2-perfluorodecylethyl methacrylate, and 2-perfluorohexadecylethyl methacrylate. These can be used alone or in combination of two or more. Among these, methyl methacrylate is preferred in terms of processability,
  • Examples of bulle monomers that can be copolymerized with the methacrylic acid ester constituting the methacrylic polymer block (a) include acrylic acid esters, aromatic alkenyl compounds, vinyl cyanide compounds, conjugated genes. Compounds, halogen-containing unsaturated compounds, vinyl ester compounds, maleimide compounds, and the like.
  • acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, n-hexyl acrylate, and acrylic.
  • Acrylic aliphatic hydrocarbons such as n-heptyl acid, n-octyl acrylate, 2-ethylhexyl acrylate, noel acrylate, decyl acrylate, dodecyl acrylate, stearyl acrylate, etc.
  • Examples of the aromatic alkenyl compound include styrene, ⁇ -methylstyrene, ⁇ -methylolstyrene, ⁇ -methoxystyrene, and the like.
  • Examples of the cyanide bur compound include acrylonitrile and meta-tallow-tolyl.
  • conjugation compound examples include butadiene and isoprene.
  • halogen-containing unsaturated compound examples include vinyl chloride, vinylidene chloride, perfluoroethylene, perfluoropropylene, and vinylidene fluoride.
  • burester compound examples include butyl acetate, butyl propionate, butyl pivalate, benzoate, and vinyl cinnamate.
  • maleimide compounds include maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenolmaleimide, and cyclohexylmaleimide. I can give you.
  • These compounds may be used alone or in combination of two or more.
  • These vinyl monomers are preferably selected from the viewpoints of adjusting the glass transition temperature required for the methacrylic polymer block (a) and compatibility with the acrylic block (b). .
  • the glass transition temperature of the methacrylic polymer block ( a ) is preferably from 25 to 130 ° C, more preferably from 50 to 130, from the viewpoint of thermal deformation and moldability of the elastomer composition. ° C, more preferably 70-100 ° C.
  • the methacrylic polymer block (a) is used for the purpose of adjusting the glass transition temperature of the methacrylic polymer block (a), which is desirably composed mainly of methyl methacrylate. It is preferable to polymerize at least one monomer selected from the group power of ethyl, n-butyl acrylate and 2-methoxyethyl acrylate. Of these, ethyl acrylate is particularly preferred from the viewpoint of compatibility with methyl methacrylate.
  • the Tga of the methacrylic polymer block (a) can be set by setting the weight ratio of the monomers in each polymer portion according to the Fox formula.
  • the unit polymer unit (X) having a hydroxyl group is contained in the methacrylic polymer block (a), from the viewpoint of storage stability and availability, n-butyl methacrylate, acrylic It is preferable that at least one monomer selected from the group power of acid n-ptylca is overlapped as a monomer unit (y). In the present application, even if all the monomers other than the monomer unit (X) in the methacrylic polymer block (a) are monomer units (y), some of the monomers are monomer units. Unit (y) may be used.
  • the acrylic polymer block (b) is a block obtained by polymerizing a monomer having an acrylic ester as a main component.
  • the acrylic ester block 50- L00% by weight and a bulle type copolymer copolymerizable therewith. It is preferable to consist of 0-50% by weight of the mass! /. If the proportion of acrylic acid ester is less than 50% by weight, the physical properties of the composition, particularly flexibility and oil resistance, which are characteristic when acrylic acid ester is used, may be impaired.
  • acrylic ester constituting the acrylic polymer block (b) for example, the same monomer as the acrylic ester exemplified as the monomer constituting the methacrylic polymer block ( a ) is used. I can give you. These can be used alone or in combination of two or more thereof. Among these, n-butyl acrylate is preferable from the viewpoint of rubber elasticity, low temperature characteristics and cost balance. Ethyl acrylate is preferred when oil resistance and mechanical properties are required. In addition, when it is necessary to impart low temperature characteristics and oil resistance and to improve the surface tackiness of the resin, acrylic acid-2-methoxyethyl is preferred. In addition, when a balance between oil resistance and low temperature characteristics is required, it is preferable to use a combination of ethyl acrylate, n-butyl acrylate and 2-methoxyethyl acrylate.
  • the acrylic polymer block (b) is at least one monomer selected from the group consisting of n-butyl acrylate, ethyl acrylate, and 2-methoxyethyl acrylate in terms of cost and physical property balance. body 50 to: L00 and weight%, and more preferably made of these with other copolymerizable acrylic acid ester and Z, or other Bulle monomer 50 to 0 weight 0/0 [0061]
  • Examples of the butyl monomer copolymerizable with the acrylate ester constituting the acrylic polymer block (b) include methacrylic acid esters, aromatic alkenyl compounds, vinyl cyanide compounds, and conjugate conjugates.
  • These bull monomers can be used alone or in combination of two or more. These bull monomers take into account the balance of the glass transition temperature and oil resistance required for the acrylic polymer block (b) and compatibility with the methacrylic polymer block (a). A preferable one is appropriately selected. For example, acrylonitrile may be copolymerized for the purpose of improving the oil resistance of the composition.
  • the glass transition temperature of the acrylic polymer block (b) is preferably 25 ° C or less, more preferably 0 ° C or less, from the viewpoint of flexibility of the elastomer composition and rubber elasticity. More preferably, it is ⁇ 20 ° C. or lower. When the glass transition temperature of the acrylic polymer block (b) is higher than the temperature of the environment in which the elastomer composition is used, flexibility and rubber elasticity are hardly exhibited.
  • the Tgb of the acrylic polymer block (b) can be set by setting the monomer weight ratio of each polymer portion according to the Fox formula.
  • the acrylic polymer block (b) has a unit monomer unit (X) having a hydroxyl group
  • the monomer unit (y) is methacrylic from the viewpoint of storage stability and availability.
  • the acid n-butyl is preferred.
  • some of the monomers are monomer units. It may be (y).
  • the block copolymer (A) is usually a polymer of the acid anhydride group and carboxyl group present in the methacrylic polymer block (a) and Z or acrylic polymer block (b). It acts as a reaction point or crosslinking point for quantification or crosslinking.
  • the acid anhydride group and carboxyl group are introduced into the block copolymer in a form in which the acid anhydride group and carboxyl group are protected with an appropriate protective group, or as a precursor of the acid anhydride group and carboxyl group. Thereafter, an acid anhydride group and a carboxyl group can be generated by a known chemical reaction.
  • the content of the acid anhydride group and carboxyl group is determined by the cohesive strength of the acid anhydride group and carboxyl group, the reactivity, the structure and composition of the acrylic block copolymer (A), the acrylic block copolymer (The number of blocks constituting A) varies depending on the glass transition temperature, and the number must be appropriately set as necessary, but is preferably 1.0 or more, more preferably, per block copolymer molecule. 2. Zero or more. This is because if the number is less than 1.0, the heat resistance of the block copolymer due to high molecular weight or crosslinking tends to be insufficient.
  • the glass transition temperature may be adjusted to 130 ° C or lower in order to ensure good melt fluidity. preferable.
  • the acid anhydride group When the composition contains a compound having an active proton, the acid anhydride group easily reacts with a reactive functional group such as an epoxy group.
  • the position of acid anhydride group introduction is particularly limited. In other words, the acid anhydride group may be introduced into the main chain of the methacrylic polymer block (a) or the acrylic polymer block (b), or may be introduced into the side chain.
  • An acid anhydride group is an anhydride group of a carboxyl group, which is a methacrylic polymer block (a) and an acrylic o CH
  • R 3 is hydrogen or a methyl group, two R ° may be the same or different from each other, t is an integer of 0 to 3, and s is an integer of 0 or 1] Contained in the form.
  • t in the general formula (1) is an integer of 0 to 3, preferably 0 or 1, and more preferably 1.
  • t is 4 or more, polymerization tends to be complicated, and cyclization of the acid anhydride group tends to be difficult.
  • R 4 represents hydrogen or a methyl group.
  • R 5 represents hydrogen, a methyl group or a phenyl group. And at least two of the three R 5 groups are selected from a methyl group and a Z or phenyl group, and the three R 5 groups may be the same or different. It is preferable to melt-knead an acrylic block copolymer having at least one unit represented by) and introduce cyclization.
  • the formation of the acid anhydride group is preferably performed by heating the acrylic block copolymer having a precursor of the acid anhydride group at a high temperature at 180 to 300 ° C. It is preferable. When the temperature is lower than 180 ° C, the acid anhydride groups are likely to be insufficiently generated. When the temperature is higher than 300 ° C, the acrylic block copolymer having a precursor of the acid anhydride group itself may be decomposed. is there.
  • the carboxyl group easily reacts with a reactive functional group such as an epoxy group.
  • the introduction position of the carboxyl group is not particularly limited.
  • the carboxyl group may be introduced into the main chain of the methacrylic polymer block ( a ) or the acrylic polymer block (b)! However, it may be introduced into the side chain, but it may be introduced into the main chain for ease of introduction into the methacrylic polymer block (a) and the acrylic polymer block (b). I like it.
  • the monomer having a carboxyl group does not poison the catalyst under the polymerization conditions, it is preferable to introduce the carboxyl group directly by polymerization.
  • the monomer deactivates the catalyst during polymerization it is preferable to carry out by a method of introducing a carboxyl group by functional group conversion.
  • an appropriate carboxyl group is used. It can be introduced into an acrylic block copolymer in a form protected with a protective group or in the form of a functional group that is a precursor of a carboxyl group, and then a functional group can be generated by a known chemical reaction. .
  • acrylic block copolymer (A) having a carboxyl group for example, a precursor of a carboxyl group such as t-butyl (meth) acrylate and trimethylsilyl (meth) acrylate is used.
  • a method of synthesizing an acrylic block copolymer containing a monomer having a functional group to form a carboxyl group by a known chemical reaction such as hydrolysis or acid decomposition (JP 10-298248 A, JP 2001—234146) and general formula (4):
  • R 4 represents hydrogen or a methyl group.
  • R 5 represents hydrogen, a methyl group or a phenol group, and at least two of the three R 5 groups are a methyl group and Z or a phenyl group. selected group forces, the acrylic block copolymer having at least one unit represented by the three R 5 may be the same or different.
  • the unit represented by the general formula (4) is produced by decomposition of an ester unit at a high temperature to form a carboxyl group, and a part of the carboxyl group is cyclized. Utilizing this, the carboxyl group can be introduced by appropriately adjusting the heating temperature and time according to the type and content of the unit represented by the general formula (4).
  • the hydroxyl group of the monomer unit easily reacts with the reactive functional group (d) of the compound (B). This hydroxyl group only needs to act as a reaction point with the compound (B) having a reactive functional group (d).
  • the block copolymer acts as a reaction point or a crosslinking point for high molecular weight or crosslinking. It is preferable to do.
  • the monomer unit (X) having a hydroxyl group has a high temperature while imparting chemical resistance and rubber elasticity to a molded product obtained from the thermoplastic elastomer composition according to the present invention.
  • the general formula (1) In order to maintain the mechanical properties of the general formula (1):
  • R 1 represents hydrogen or a methyl group.
  • p and m are each an integer of 1 or more) in the form of a monomer unit represented by
  • Z or acryl-based polymer block (b) are introduced in an average of 1.0 or more per molecule.
  • the content of the monomer unit) is the reactivity with the compound (B), the structure and composition of the acrylic block copolymer (A), and the block constituting the acrylic block copolymer (A).
  • the number varies depending on the glass transition temperature. It is necessary to set the number appropriately according to need.
  • Force Block copolymer It is 1.0 or more, preferably 2.0 or more per molecule. This is because if the number is less than 1.0, improvement in heat resistance due to high molecular weight or crosslinking of the block copolymer may be insufficient.
  • the method for introducing the monomer unit) into the block copolymer (A) is not particularly limited! However, a (meth) acrylic monomer containing a hydroxyl group is converted into the block copolymer (A).
  • the polymerization may be performed directly at the time of polymerization, or after the block copolymer (A) is polymerized, it may be introduced using an esterification reaction or a transesterification reaction with a diol component. From the viewpoint of easy reaction, a (meth) acrylic monomer containing a hydroxyl group is directly polymerized during the polymerization of the block copolymer (A). It is preferable.
  • (meth) acryl means acrylic or methacryl.
  • Specific (meth) acrylic monomers include (meth) acrylic acid-2-hydroxyethyl,
  • Examples include (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid-3-hydroxypropyl, (meth) acrylic acid-4-hydroxybutyl, and the like. These compounds can be used alone or in combination of two or more. Among these, (2-methyoxy) ethyl 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid-4-hydroxyptylca are easy to polymerize and are readily available. From the point of view, it is preferable.
  • the method for producing the acrylic block copolymer (A) is not particularly limited, but it is preferable to use controlled polymerization using an initiator.
  • controlled polymerization include living ion polymerization, radical polymerization using a chain transfer agent, and recently developed living radical polymerization.
  • living radical polymerization power is preferred from the viewpoint of control of molecular weight and structure of acrylic block copolymer.
  • Living radical polymerization is radical polymerization in which the activity at the polymerization terminal is maintained without loss.
  • living polymerization refers to polymerization in which the terminal always has activity, but generally includes pseudo-living polymerization in which the terminal is inactivated and the terminal is in equilibrium. It is. The definition here is also the latter.
  • Living radical polymerization has been actively researched by various groups in recent years. Examples include those using chain transfer agents such as polysulfide, cobalt borphyrin complex (Journal 'Ob' American 'Chemical' Society, J. Am. Chem. Soc., 1994, Vol. 116, 7943) and -troxide compounds and other radical scavengers (Macromolecules ⁇ 1994, pp. 27, 7228), organic halides and other transition metal complexes as initiators Atom Transfer Radical Polymerization (ATRP) and the like.
  • chain transfer agents such as polysulfide, cobalt borphyrin complex (Journal 'Ob' American 'Chemical' Society, J. Am. Chem. Soc., 1994, Vol. 116, 7943) and -troxide compounds and other radical scavengers (Macromolecules ⁇ 1994, pp. 27, 7228), organic halides and other transition metal complexes as initiators Atom
  • the polymerization method by adjusting the reaction rate and amount of monomers (X) and (y) (for example, the reaction rate of monomers (X) and (y) in the actual reaction system is If they are the same, (y) should be charged more than twice the amount of (X)).
  • the compound (B) constituting the thermoplastic elastomer composition according to the present invention is a polymer having 1.1 or more reactive functional groups (d) in one molecule.
  • Compound (B) improves the molding fluidity as a plasticizer when forming the composition, and at the same time, reacts with an acid anhydride group or carboxyl group in the acrylic block copolymer (A) and a reactive functional group (
  • the acrylic block copolymer (A) is reacted according to d) to have a high molecular weight or to be crosslinked.
  • the number of reactive functional groups (d) represents the average number of reactive functional groups (d) present in the entire compound (B).
  • the reactive functional group (d) in the compound (B) is contained in the compound (B) in an amount of 1.1 or more, preferably 1.5 or more, more preferably 2.0 or more.
  • the number includes the reactivity of the reactive functional group (d), the site and manner in which the reactive functional group (d) is contained, the hydroxyl group and Z or acid anhydride group in the acrylic block copolymer (A) and Varies depending on the number, position and pattern of Z or carboxyl groups.
  • the content of the reactive functional group (d) is less than 1.1, the effect of the block copolymer as a high molecular weight ionic reactant or crosslinking agent is reduced, and the acrylic block copolymer (A ) Tends to be insufficient in improving the heat resistance.
  • the acrylic polymer (B1) is obtained by polymerizing two or more kinds of acrylic monomers, or by polymerizing one or more kinds of acrylic monomers with monomers other than acrylic monomers. Preferably there is.
  • acrylic monomer examples include the acrylic esters and methacrylic esters described in the section of the methacrylic polymer block (a). Of these, the ability to use any one of acrylic acid-n-butyl, ethyl acrylate and 2-methoxyethyl acrylate, or a combination of two or more of these is preferred.
  • the monomer other than the acrylic monomer is not particularly limited as long as it is a monomer copolymerizable with the acrylic monomer.
  • vinyl acetate, styrene and the like can be used.
  • the ratio of the monomer component containing the alitaroyl group to the total monomer components in the acrylic polymer (B1) is preferably 70% by weight or more.
  • the proportion is less than 70% by weight, the weather resistance tends to decrease and the compatibility with the acrylic block copolymer (A) tends to decrease. Moreover, discoloration tends to occur in the molded product.
  • the molecular weight of the acrylic polymer (B1) is not particularly limited, but preferably has a low molecular weight with an average weight molecular weight of 3,000,000 or less S, more preferably 500 to 30, S Particularly preferred is 500 to 10,000.
  • the weight average molecular weight is less than 500, the molded product tends to be sticky.
  • the weight average molecular weight exceeds 30,000, plasticization of the molded product tends to be insufficient.
  • the viscosity of the acrylic polymer (B1) is preferably 35, OOOmPa's or less when measured with a cone-plate type rotational viscometer (E-type viscometer) at 25 ° C. More preferably, it is less than 10, OOOmPa s, and particularly preferably less than 5, OOOmPa's. When the viscosity is higher than 35, OOOmPa's, the plasticizing effect of the composition tends to decrease.
  • the lower limit of the preferred viscosity is not particularly limited, but the normal viscosity of the acrylic polymer is lOmPa's or more
  • the glass transition temperature Tg of the acrylic polymer (B1) is preferably 100 ° C or lower, preferably 25 ° C or lower, as measured by differential scanning calorimetry (DSC). It is particularly preferable that the temperature is 0 ° C or less, more preferably 30 ° C or less. Glass-transition temperature When Tg exceeds 100 ° C, the effect of improving moldability as a plasticizer tends to be insufficient, and the flexibility of the resulting molded product tends to decrease.
  • the acrylic polymer (B1) can be obtained by polymerizing by a known predetermined method.
  • the polymerization method may be appropriately selected according to need, for example, by suspension polymerization, emulsion polymerization, bulk polymerization, living-on polymerization, polymerization using a chain transfer agent, and controlled polymerization such as living radical polymerization.
  • controlled polymerization it is preferable to use controlled polymerization to obtain a polymer having good weather resistance and heat resistance and having a relatively low molecular weight and a small molecular weight distribution, the following method power using high-temperature continuous polymerization is described. More preferable in terms.
  • the acrylic polymer (B1) is preferably obtained by a polymerization reaction at a temperature of 180 to 350 ° C. At this polymerization temperature, an acrylic polymer having a relatively low molecular weight can be obtained without using a polymerization initiator or a chain transfer agent. For this reason, the acrylic polymer is an excellent plasticizer and has good weather resistance.
  • Examples of the reactive functional group (d) include an epoxy group, a carboxyl group, a hydroxyl group, an amino group, and the like, and at least one functional group selected from the group consisting of an epoxy group, a carboxyl group, a hydroxyl group, and an amino group. It is desirable to use it.
  • the epoxy group is selected from the reactivity with the acid anhydride group and carboxyl group contained in the acrylic block copolymer (A) and the introduction of the functional group into the compound (B). Is more preferred.
  • the epoxy group has an average of 1.1 or more, preferably 1 or more per molecule of the compound (B2) having an epoxy group. Preferably, 1.5 or more, more preferably 2.0 or more. The number varies depending on the reactivity of the epoxy group, the site and mode in which the epoxy group is contained, and the content, site and mode of the hydroxyl group per molecule of the acrylic block copolymer (A).
  • Epoxy group When the content of acrylonitrile is less than 1.1, the block copolymer tends to have a high molecular weight or insufficient crosslinking, and the acrylic block copolymer (A) tends to have insufficient heat resistance. .
  • the compound (B2) having an epoxy group is not particularly limited as long as it is a compound having at least one epoxy group in one molecule, and is not limited to bisphenol A type epoxy resin, bisphenol F type epoxy.
  • Resin bisphenol AD type epoxy resin, bisphenol S type epoxy resin, hydrogenated epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin, Novolak type epoxy resin, urethane modified epoxy resin having urethane bond, fluorinated epoxy resin, polybutadiene, rubber modified epoxy resin containing NBR, tetrabromobisphenol A glycidyl ether, etc.
  • Epoxy resin such as epoxy resin, glycidyl ether of polyhydric alcohol and glycidyl ester of polybasic acid
  • Epoxy plasticizers such as epoxidized soybean oil, epoxidized flax oil, and epoxidized fatty acid alkyl esters
  • epoxy group-containing polymers such as Bond First (trade name, manufactured by Sumitomo Chemical Industries); Polymers, epoxy-containing polymers such as ARUFON (trade name, manufactured by Toagosei Co., Ltd.); forces exemplified by styrenic polymers and acrylic polymers, etc. Any epoxy group-containing compound can be used. These epoxy group-containing compounds may be used alone or in combination of two or more.
  • Sarakuko is that the resulting composition is molded at a high temperature, and from the viewpoint of volatility, the compound (B2) having an epoxy group is a styrene polymer or an acrylic polymer. It is a polymer with a weight average molecular weight of 30,000 or less from the viewpoint of more preferable molding fluidity Is preferred. Although there is no particular limitation, for molded products, a low molecular weight strength of 30,000 or less S is preferred ⁇ , 500 to 30,000 strength S is more preferred ⁇ , 500 to 10,000 strength S Particularly preferred. When the weight average molecular weight is less than 500, the molded product tends to be sticky. On the other hand, when the weight average molecular weight exceeds 30,000, plasticization of the molded product becomes insufficient.
  • acrylic polymers are preferred in terms of weather resistance and the like.
  • acrylic polymers include ARUFON (registered trademark) XG4 000, ARUFON UG4000, ARUFON XG4010, ARUFON UG4010, AR UFON XD945, ARUFON XD950, ARUFON UG4030, ARUFON UG 4070, etc. Can be suitably used. These are all acrylics, acrylic polymers such as acrylate / styrene, and contain at least one epoxy group in one molecule.
  • the compound (B2) having an epoxy group is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the acrylic block copolymer (A). More preferably, it is used in the range of 1. parts by weight. If the amount is less than 0.5 parts by weight, the moldability and the heat resistance of the resulting molded product may not be sufficient, and if it exceeds 50 parts by weight, the mechanical properties of the resulting composition will deteriorate. There is a tendency
  • the thermal latent catalyst (C) constituting the thermoplastic elastomer composition according to the present invention is a functional group (c) that is one of a hydroxyl group, an acid anhydride group, and a carboxyl group in the block copolymer (A). ) And the reactive functional group (d) in the compound (B), thereby promoting the cross-linking reaction.
  • the thermal latent catalyst is a catalyst that exhibits higher activity when heated at a predetermined temperature.
  • the functional group (c) and the reactive functional group are used.
  • the group (d) has an effect of suppressing deterioration of moldability by reaction (maintaining good storage stability for a long period of time).
  • the thermal latent catalyst (C) is preferably a compound that exhibits more catalytic activity at a temperature of 60 ° C or higher. If this heat-latent catalyst exhibits catalytic activity at temperatures below 60 ° C, the resulting composition may degrade moldability during storage.
  • thermal latent catalyst (C) examples include (i) a compound obtained by neutralizing a proton acid with an Arrhenius base, (ii) a compound obtained by reacting a proton acid with a Lewis base, (Iii) a compound obtained by reacting a Lewis acid with a Lewis salt group, (iv) a mixture of Lewis acid and trialkyl phosphate, (V) sulfonate esters, (vi) phosphate esters, (vii) -Um compounds, (viii) compounds derived from metal complexes such as aluminum, (ix) quaternary salts, and (X) compounds obtained by reacting a Lewis acid with an araenius base are preferred. Can be mentioned.
  • Examples of the compound (i) obtained by neutralizing a protic acid with an Arenius base include, for example, carboxylic acids, halogenocarboxylic acids, sulfonic acids, sulfuric monoesters, monophosphate and monoester phosphates, polyphosphate esters, boric acid Mono and diesters such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, hydroxide, zinc, hydroxide, iron, etc.
  • the compound neutralized with a product is mentioned.
  • Examples of the compound (ii) obtained by reacting a protonic acid with a Lewis base include, for example, neurocarboxylic acids, sulfonic acids, sulfate monoesters, phosphate mono- and diesters, polyphosphate esters, borate mono- and diesters , Etc., various amines such as ammonia, monoethylamine, triethylamine, pyridine, piperidine, aniline, morpholine, cyclohexylamine, n-butylamine, monoethynolamine, diethanolamine, triethanolamine, or trialkylphosphine , Triaryl phosphine, trialkyl phosphite, triaryl phosphite compound, and neicure 2500X, X47—110, 3525, 5225 which are commercially available as acid monobase blocking catalysts (Product name, Kin Guindust Over's Co., Ltd.) and the like.
  • Examples of the compound (iii) obtained by reacting a Lewis acid and a Lewis base include, for example, BF, FeCl,
  • Examples include compounds obtained by reacting Lewis acids such as SnCl, A1C1, and ZnCl with the aforementioned Lewis bases.
  • Examples of the sulfonate esters (V) include those represented by the general formula (5)
  • R 6 is a phenyl group, a substituted phenyl group, a naphthyl group, a substituted naphthyl group or an alkyl group
  • R 7 is a sulfonyloxy group via a primary carbon or a secondary carbon. Attached C 3 18 alkyl group, alkenyl group, aryl group, alkaryl group, alkyl group, saturated cycloalkyl group, hydroxycycloalkyl group, unsaturated cycloalkyl group or hydroxycycloalkenyl group. -Group.
  • Such compounds include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid, nornaphthalenesulfonic acid, and n- Primary alcohols such as propanol, n-butanol, n-xanol and n-octanol or esterified products with secondary alcohols such as isopropanol, 2-butanol, 2-hexanol, 2-octanol and cyclohexanol, and And ⁇ -hydroxyalkyl sulfonic acid esters obtained by reacting the sulfonic acids with oxysilane group-containing compounds.
  • Examples of the phosphate esters (vi) include compounds represented by the general formula (6). [0126] [Chemical Formula 12]
  • R is an alkyl group having 3 to 10 carbon atoms, a cycloalkyl group or an aryl group, and h is 1 or 2.
  • n-propanol, n-butanol, n-xanol, n-otatano And primary alcohols such as 2-ethylhexanol, and phosphoric monoesters or phosphoric acids of secondary alcohols such as isopropanol, 2-butanol, 2-hexanol, 2-octanol, and cyclohexanol Diesters may be mentioned.
  • examples of the onium compound (vii) include compounds represented by the following general formulas (7) to (10).
  • R 8 , R 10 , R 12 and R 14 in the formula are an alkyl group having 1 to 12 carbon atoms, an alkyl group, an aryl group, an alkaryl group, an alkenol group or a cycloalkyl group.
  • R 8 , R 10 , R 12 and R 14 may be bonded to each other to form a heterocycle having N, P, O or S as a heteroatom
  • R 9 , 1 , R 13 and R 15 Is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkyl group, an aryl group, an alkaryl group
  • X— is SbF _, AsF _, PF— or BF "
  • a compound ( vm ) derived from a metal complex such as aluminum can be used.
  • metal complex such as aluminum
  • metal sarcophagus such as aluminum octylate, j8-diketonate aluminum complex, 13 diketoesterate aluminum complex, and o-carbophenolate aluminum complex.
  • ⁇ -diketones used as ligands for the above aluminum complexes include 1,3 diphenylenoles, 1,3 propanediones, 1 phenenoles, 1,3 butane dines, 2, 4 pentane dines, 3 felu rouge 2, 4 pentane dines , 5-dimethyl-2,4 hexanedione, 5 phenyl 2,4 pentanedione, 2,6 dimethyl-3,5 heptanedione, 2,6-tetramethyl-3,5 pentanedione, and the like.
  • Examples of 13 diketoesterol include ethinoreacetoacetate, propinoreacetoacetate, butylacetoacetate, t-butylacetoacetate, ethylbenzoylacetate, and the like.
  • -Lufenol includes 2-hydroxy monobenzaldehyde, 2,1-hydroxyacetophenone, methyl 2-hydroxybenzoate, phenol Examples include 2-hydroxybenzoate.
  • an aluminum complex in which a silanol compound is further mixed with the above metal complex such as aluminum may be used.
  • silanol compounds include triphenylsilanol, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethylether.
  • Toxisilane phenyltriethoxysilane, diphenyljetoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecatrifluorodecyltrimethoxysilane , Triphenylmethoxysilane, triphenylethoxysilane and the like.
  • quaternary salt (ix) can also be used as a catalyst. More specifically, tetrabutylammonium chloride such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylammonium iodide, tetrabutylammonium halide, tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium iodide, etc.
  • tetrabutylphosphomum halides such as tetrabutylphosphomum chloride, tetraphenylphosphomum chloride, tetraphenylphosphomum bromide and tetraphenylphosphomum iodide.
  • Examples of the compound (X) obtained by reacting a Lewis acid with an Arenius base include compounds obtained by reacting the above Lewis acid with the above Arenius base.
  • a compound obtained by neutralizing a protonic acid with an Arrhenius base and (ii) a compound obtained by reacting a protonic acid with a Lewis base in view of cost and availability.
  • a compound obtained by reacting a Lewis acid with a Lewis base, and (X) an acid-base reaction compound obtained by reacting a Lewis acid with an Arenius base has a high preferred reaction activity.
  • a compound derived from a metal complex such as aluminum is preferable. From the viewpoint of water resistance and coloring of the molded article finally obtained, (ii) a compound obtained by reacting a protonic acid with a Lewis base is more preferable. . Further, from the viewpoint of suppressing the balance of physical properties of the finally obtained molded body and suppressing the volatile matter from the molded body, a metal salt compound is particularly preferable.
  • the acid-base reaction compound include zinc stearate, calcium stearate, Fatty acid metal salts such as calcium stearate, aluminum stearate, zinc laurate, calcium laurate, magnesium laurate, zinc 2-ethylhexylate, calcium 2-ethylhexylate, magnesium 2-ethylhexylate , Zinc citrate, Sodium citrate, Potassium citrate, Calcium citrate and other metal salts, Sodium benzoate, Zinc benzoate, Aluminum trisbenzoate, Titanium tetrabenzoate, 2-tert-butyl zinc benzoate, 3- Zinc tert-butylbenzoate, Zinc 4-tert-butylbenzoate, Sodium 4-tert-butylbenzoate, Barium 4-tert-butylbenzoate, Barium 2-tert-butylbenzoate, 3-tert- Barium butylbenzoate, barium 4-tert-butylbenzoate, zinc 3,5
  • the fat having 4 to 16 carbon atoms is excellent in the physical properties (secondary workability such as adhesiveness) of the molded product after thermoforming the thermoplastic elastomer of the present invention.
  • a metal salt compound comprising a fatty acid or a benzoic acid derivative compound and zinc is more preferable.
  • Fatty acids having a carbon number of ⁇ 16 include butanoic acid (also known as butyric acid, the same shall apply hereinafter), pentanoic acid (valeric acid), hexanoic acid (caproic acid), heptanoic acid (enanthic acid), octanoic acid ( Caprylic acid), Nonanoic acid (Pelargonic acid), Decanoic acid (Power Puric acid), Dodecanoic acid (Lauric acid), Tetradecanoic acid (Myristylic acid), Pentadecanoic acid (Pentadecylic acid), Hexadecanoic acid (Palmitic acid) And heptadecanoic acid (margaric acid).
  • butanoic acid also known as butyric acid, the same shall apply hereinafter
  • pentanoic acid valeric acid
  • hexanoic acid caproic acid
  • heptanoic acid enanthic acid
  • decanoic acid undecanoic acid, undecanoic acid, and fatty acids having 10 to 17 carbon atoms, such as decanoic acid, undecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadedecanoic acid and heptadecanoic acid are preferred.
  • dodecanoic acid, tridecanoic acid and tetradecanoic acid are more preferred.
  • dodecanoic acid is more preferred in view of the balance of scratch resistance and adhesiveness of the resulting molded article.
  • the benzoic acid derivative compound includes tert-butylbenzoic acid, 3,5-di-tert-butylbenzoic acid, 2,4,6-tri-tert-butylbenzoic acid, 4-tert -Butyl-2,6-dimethylbenzoic acid.
  • the volatility (sublimation) of the catalyst itself bubbles are generated in the molded body during molding when the volatility is high) and molecular weight (when the molecular weight is large, the volatility is low.
  • Tert-Butylbenzoic acid is more preferred because of the balance (which requires more catalyst addition).
  • Examples of diketone compounds having 2 to 16 carbon atoms include 1,2-diketone compounds, 1,3-diketone compounds, 1,4-diketone compounds, 1,5-diketone compounds, and the like. Can be mentioned. Of these, 1,3-diketone compounds are preferred. Examples of 1,3-diketone compounds include acetylylaceton.
  • these thermal latent catalysts (C) can be used alone or in combination of two or more.
  • the blending amount is preferably in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the acryl-based block copolymer.
  • the amount of the catalyst is less than 0.01 parts by weight, the catalytic effect tends not to be sufficiently exhibited.
  • the amount exceeds 10 parts by weight, the finally obtained molded product tends to be colored or the water resistance tends to be lowered.
  • the method of adding the thermal latent catalyst (C) is not particularly limited.
  • the thermal latent catalyst (C) is added to the composition containing the acrylic block copolymer (A) and the compound (B) ( Acrylic block copolymer (A), compound (B), and thermal latent catalyst (C) that can be used by coating with C). After kneading A), compound (B) and thermal latent catalyst (C) as an organic solvent solution, the solvent can be removed! ,.
  • thermoplastic elastomer composition of the present invention has a low melt viscosity when molding and excellent melt fluidity (moldability), while it is a block copolymer of an acrylic thermoplastic elastomer composition when heated (A)
  • the cross-linking reaction between the hydroxyl group, acid anhydride group or carboxyl group, which is the functional group (c), and the reactive functional group (d) in the compound) is promoted by using the thermal latent catalyst (C).
  • the thermoplastic elastomer composition may contain a plasticizer for the purpose of improving meltability and improving low temperature characteristics.
  • the plasticizer is preferably used in the range of 0.1 to 50 parts by weight with respect to 100 parts by weight of the acrylic block copolymer (A). It is more preferable to use within a range. If the blending amount is less than 0.1 part by weight, the meltability and low-temperature property improvement effect of the resulting composition may not be sufficient! In some cases, if it exceeds 50 parts by weight, the mechanical properties of the resulting molded product And heat resistance may deteriorate
  • the plasticizer is not particularly limited, but a plasticizer having an SP value of 8.19.4 is preferable.
  • the SP value is less than 8.0 or more than 9.5, the compatibility between the plasticizer and the acrylic block copolymer (A) is deteriorated, and the physical properties of the resulting molded article are deteriorated. May be played out.
  • plasticizers include dimethyl phthalate, jetyl phthalate, di-n-butyl phthalate, di (2-ethylhexyl) phthalate, diheptyl phthalate, disodecyl phthalate, di-n-phthalate —Phthalic acid derivatives such as octyl, diisonoel phthalate, ditridecyl phthalate, octyldecyl phthalate, butylbenzyl phthalate, and dicyclohexyl phthalate; isophthalic acid derivatives such as dimethyl isophthalate; G (2-ethylhexyl) ) Tetrahydrophthalic acid derivatives such as tetrahydrophthalic acid; dimethyl adipate, dibutyl adipate, di-n-xyl adipate, diethyl adipate (2-ethylhexyl), isonoyl adipate, di
  • thermoplastic elastomer composition may be blended in the thermoplastic elastomer composition as necessary in order to reduce the friction of the surface of the obtained molded article.
  • Examples of the lubricant include ester lubricants, polyethylene lubricants, polypropylene lubricants, hydrocarbon lubricants, and silicone oils. Preferred are lubricants.
  • Organic lubricants such as montanic acid wax and stearic acid are not particularly limited. Examples thereof include organic acid amides such as fatty acids and stearic acid amides. These may be used alone or in combination.
  • the polyethylene-based lubricant and the polypropylene-based lubricant mentioned here include an acid-polyethylene lubricant and an acid-polypropylene lubricant, respectively.
  • lubricants include beef tallow 45 hardened oil (melting point 45 ° C; manufactured by Nippon Oil & Fats Co., Ltd., the same shall apply hereinafter), beef tallow 51 hardened oil (melting point 51 ° C), beef tallow 54 Hardened oil (melting point 54 ° C), beef tallow Extremely hardened oil (melting point 60 ° C), LicowaxE (drop point 79-85 ° C; manufactured by Clariant Japan Co., Ltd. I can list them.
  • thermoplastic elastomer compositions and stabilizers are used for the purpose of adjusting the physical properties of the thermoplastic elastomer composition and the resulting molded product.
  • Agents, mold release agents, antibacterial antifungal agents and the like may be further added.
  • examples of the stabilizer include an anti-aging agent, a light stabilizer, and an ultraviolet absorber.
  • a filler may be blended.
  • the filler is not particularly limited, but titanium oxide, carbon black, calcium carbonate, silica, and talc, which are more preferable for inorganic fillers, are more preferable from the viewpoint of improving mechanical properties, reinforcing effect, cost, and the like.
  • thermoplastic elastomer composition ⁇ Method for producing thermoplastic elastomer composition>
  • thermoplastic elastomer composition can be obtained, for example, by using a batch kneader or a continuous kneader. It can also be obtained by dissolving or dispersing in an organic solvent in a tank provided with a stirring blade and then removing the solvent.
  • the batch-type kneading apparatus for example, a mixing roll, a Banbury mixer, a pressure mixer, and a high shear mixer can be used.
  • a continuous kneading apparatus a single screw extruder, a twin screw extruder, a KCK extrusion kneader, or the like can be used.
  • mixing mechanically An existing method such as a method of forming into a pellet can be used.
  • the kneading temperature for producing the thermoplastic elastomer composition is such that the moldability is not lowered by the reaction of the acrylic block copolymer (A) and the compound (B). I prefer temperature.
  • the temperature at which the acrylic block copolymer (A) and the compound (B) react and the moldability deteriorates depends on the type of functional group (c), the amount introduced, the type of coexisting thermal latent catalyst (C), It varies depending on the amount introduced, the composition of the acrylic block copolymer (A) and the compound (B), the compatibility of the acrylic block copolymer (A) and the compound (B), and the like.
  • the temperature during kneading is preferably 200 ° C or less, more preferably 180 ° C or less, so that the composition can be molded. More preferably, the temperature is 150 ° C or lower.
  • the temperature at the time of kneading exceeds 200 ° C, high molecular weight and a crosslinking reaction occur during kneading, and the moldability tends to decrease.
  • the conditions are such that a high molecular weight is partly cross-linked, it may be at a temperature at which molding is possible.
  • an acrylic polymer (B) is added to an acrylic block copolymer solution in which an talyl block copolymer (A) is dissolved in an organic solvent.
  • the thermal latent catalyst (C) and after adding other components as necessary, a method of removing the organic solvent is preferred.
  • the acrylic polymer (B) and the thermal latent catalyst (C) are added to an acrylic block copolymer solution in which the acrylic block copolymer (A) is dissolved in an organic solvent, and then mixed with water. Then, a method of evaporating the organic solvent by heating the mixture as it is, forming droplets of the acrylic block copolymer solution of a predetermined size and heating it is more preferable.
  • thermoplastic elastomer composition When the thermoplastic elastomer composition is pulverized to obtain a powder, an impact type fine pulverizer such as a turbo mill, pin mill, hammer mill, centrifugal mill, etc., shearing with a fixed blade and a rotating blade is used. There is a method using a pulverizer or the like using an action. Furthermore, the pulverization can be performed at room temperature, but it can also be mechanically pulverized using a cooling equipment such as liquid nitrogen. When the thermoplastic elastomer composition is pulverized to obtain a powder, Various powders for preventing mutual adhesion may be adhered to the surface of the composition pellets or the like as a grinding aid.
  • an impact type fine pulverizer such as a turbo mill, pin mill, hammer mill, centrifugal mill, etc., shearing with a fixed blade and a rotating blade is used.
  • pulverization can be performed at room temperature, but it can also be mechanically
  • the grinding aid calcium carbonate, talc, kaolin, silica, fatty acid amide, fatty acid ester, metal sarcophagus and the like can be used. These can be used alone or in combination of two or more.
  • the amount is preferably about 1 to 40 parts by weight per 100 parts by weight of the acrylic block copolymer (A). If it is less than 1 part by weight, the effect is not sufficient, and if it exceeds 40 parts by weight, the mechanical properties of the resulting composition powder may be adversely affected.
  • the particle size of the grinding aid to be used is not particularly limited, but if the particle size is too large, the handling property will be reduced if the particle size is too small and the ability to prevent mutual adhesion.
  • pulverization aid it is preferable to use one having a diameter of 0.5 to 15 / ⁇ ⁇ (measured by a light dispersion method). Although most of the pulverization aid remains in the thermoplastic elastomer composition powder obtained by pulverization, a part of the pulverization aid is detached in the pulverization step and separated in the pulverizer.
  • thermoplastic elastomer composition composition When obtaining a powder from the thermoplastic elastomer composition composition, it is not always necessary to go through a pulverization step.
  • the composition powder when a thermoplastic elastomer composition is obtained by a continuous extruder, the composition powder can be directly obtained as a micropellet by attaching a special die.
  • the compound ( ⁇ ) is dissolved in an acrylic block copolymer solution in which the acrylic block copolymer ( ⁇ ) is dissolved in an organic solvent, and then mixed with water and stirred to obtain a predetermined size.
  • the organic solvent By forming droplets of the acrylic block copolymer solution and heating as it is, the organic solvent is evaporated, and a powder having an appropriate particle size distribution can be obtained.
  • the above-mentioned additives for promoting crosslinking, catalysts, fillers, lubricants, stabilizers, plasticizers, flexibility imparting agents, flame retardants, pigments, antistatic agents, Antibacterial and antifungal agents may be dissolved and dispersed.
  • polybulal alcohol, polybulal alcohol-polyacetic acid copolymer, methylcellulose, or the like may be added as an emulsifying agent.
  • the powder obtained as a result is preferably fractionated only with a particle size of 1 to L000 ⁇ m using a sieve or the like.
  • Powders containing particles smaller than 1 ⁇ m cause agglomeration of the powders, resulting in poor handling and poor powder flow. For this reason, when used for powder slush molding, which will be described later, the powder does not reach the end of the mold sufficiently, and the design of the molded body is impaired. In addition, powders with a particle size larger than 1000 m When used in molding, the powder having a large particle size does not melt sufficiently, so that the design of the molded body is impaired.
  • thermoplastic elastomer composition When the thermoplastic elastomer composition is used for powder slush molding, the above-mentioned method is used to improve the color tone of the molded body and the mold releasability and powder characteristics which are important for slush molding. It is possible to improve the powder characteristics by mixing and dispersing pigments, release agents, anti-blocking powders and the like that are usually used as needed in the powder obtained by .
  • the composition obtained in the section of the method for producing a thermoplastic elastomer can be molded by various methods. For example, it can be applied to powder slush molding, injection molding, injection blow molding, blow molding, extrusion blow molding, extrusion molding, calendar molding, vacuum molding, press molding, etc., but powder slush molding is more preferably used .
  • the powder slush molding is a method in which the composition powder is poured into a molding die heated to a high temperature, melt-molded, and the molded product cooled and solidified is taken out after a certain period of time.
  • the composition needs to flow and be melt-molded even under no pressure, while the molded body after molding is exposed to a usage environment of 100 ° C or higher. For this reason, it is difficult to balance moldability and heat resistance.
  • the composition of the present invention is in an unreacted state of the acrylic block copolymer (A) and the compound (B) before molding, and is excellent in meltability in the mold while being cooled and solidified.
  • the acrylic block copolymer (A) and the compound (B) react within a certain period of time until they are formed, and the acrylic block copolymer (A) is polymerized or crosslinked.
  • the heat resistance of is improved. From this, it can be said that it is a material suitable for powder slush molding.
  • the acrylic block copolymer (A) has a high molecular weight or is cross-linked to improve the heat resistance after molding.
  • the number average molecular weight of the acryl-based block copolymer (A) after molding is 100,000 or more. More preferably, the force S is more than 150,000, more preferably S, more preferably 200,000 or more. When the number average molecular weight is lower than 100,000, the effect of improving heat resistance is lowered. this From such a point, it is preferable that the thermoplastic elastomer composition of the present invention uses an acrylic block copolymer (A) having a number average molecular weight of 40,000 or more.
  • thermoplastic elastomer composition of the present invention is excellent in heat resistance, weather resistance, chemical resistance, oil resistance, adhesion, and flexibility by adjusting the blending and constituent monomer components.
  • Such a composition can be used as a material such as a skin material, a touch panel, or the like that requires good tactile sensation, a material whose appearance is important, an oil resistant material, a vibration damping material, or an adhesive material.
  • the shape may be a sheet, flat plate, film, small molded body, large molded body, or any other shape, and as parts such as panels, handles, grips, and switches. Besides, it can be used as a sealing member.
  • the application is not particularly limited, and examples thereof include automobiles, household electrical appliances, and office electrical appliances.
  • automotive skin materials automotive tactile materials, automotive exterior materials, automotive panels, automotive handles, automotive grips, automotive switches, and household or office electrical panel
  • household appliances or office appliance switches for example, household appliances or office appliance switches.
  • it is suitably used for an automobile interior skin.
  • BA, EA, HEA, HBA, AA, and MMA are n-butyl acrylate, ethyl acrylate, 2-hydroxybutyrate, acrylate-4-hydroxybutyl, acrylic acid, methacrylic, respectively. Represents methyl acid.
  • the molecular weight, the conversion rate of the polymerization reaction, and the evaluation of each physical property described in the examples were performed according to the following methods.
  • the molecular weight shown in this example was measured by the GPC analyzer shown below, and the molecular weight in terms of polystyrene was determined using black mouth form as the mobile phase.
  • a GPC system manufactured by Waters was used, and Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK was used for the column.
  • Shodex K-804 polystyrene gel manufactured by Showa Denko KK was used for the column.
  • the conversion rate of the polymerization reaction shown in this example was measured using the following analyzer and conditions.
  • Equipment used Gas chromatography GC-14B manufactured by Shimadzu Corporation
  • Sample preparation The sample was diluted about 10 times with ethyl acetate, and butyl acetate or acetonitrile was used as an internal standard.
  • the ethanol resistance shown in the examples and comparative examples was measured under the following conditions.
  • the textured sheet produced in the examples and comparative examples was placed on a flat surface, and a drop of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped onto the pipette and left at room temperature for 24 hours. Thereafter, the surface was observed and visually evaluated as ⁇ for those with no trace and X for those with whitening observed.
  • ethanol manufactured by Wako Pure Chemical Industries, Ltd.
  • the textured sheet produced in the examples and comparative examples was placed on a flat surface, and one drop of liquid paraffin strength light tester Co., Ltd. was dropped with a pipette and left at room temperature for 24 hours. Thereafter, the liquid paraffin was wiped off with Kimwipe (registered trademark) (manufactured by Cressia Co., Ltd.), the surface was observed, and visually, the one with no trace was evaluated as ⁇ , and the one with whitening was evaluated as X.
  • Kimwipe registered trademark
  • a 5 cm ⁇ 5 cm sample was cut from the sheet obtained by molding and left in an oven at 130 ° C. for 24 hours. Changes in the textured surface were compared before and after the test, and evaluated according to the following criteria. Surface gloss changes before and after the test.
  • a 5 cm ⁇ 5 cm sample was cut from the sheet obtained by molding and left in a 110 ° C. oven for 24 hours. Changes in the textured surface were compared with a dull meter (Nippon Denshoku Industries Co., Ltd., VG2000, angle set to 60 ° C) and evaluated according to the following criteria.
  • Dalos change is 0.5 to 0.7: ⁇
  • the heat resistance shown in the examples and comparative examples was measured under the following conditions.
  • a 2 cm ⁇ 10 cm skin material sample was cut from the sheet obtained by molding and cured at room temperature for 24 hours. After that, it was set on a urethane foam mold (140 mm long x 200 mm wide x 10 mm high lid, made of SUS304) with the embossed surface facing down. Stir the polyisocyanate (CEI-264, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 34 g of polyol (manufactured by Sanyo Chemical Industry Co., Ltd., HC-150) for 10 seconds at room temperature using a non-mix mixer. After pouring into the set urethane foam, it was covered and allowed to foam for 10 minutes.
  • a urethane foam mold 140 mm long x 200 mm wide x 10 mm high lid, made of SUS304
  • the composition was press-molded to prepare a skin material.
  • Cartridge type polyurethane made by Air Tight Co., Ltd.
  • main component is 4,4'-diphenylmethane diisocyanate
  • melt fluidity (powder slash property) of the resin at the time of molding shown in the examples and comparative examples was evaluated by the following method.
  • a mass of the composition was prepared.
  • a lump of the composition was put into a small pulverizer SK-M2 (manufactured by Kyoritsu Riko Co., Ltd.) cooled with dry ice, and pulverized while adding dry ice.
  • the obtained powder was evaluated under the following conditions.
  • the obtained powder was spread thinly on a leather metal plate heated to 200 ° C, and the molten state was visually observed.
  • Evaluation index Powder that melts completely: Yes, Powder that has some residue
  • Formability was evaluated by performing slush molding using a 29.4 cm X 20.4 cm flat plate with a texture (mold for slush molding) and a box slush molding machine such as a powder box.
  • the condition is that 2 kg of the thermoplastic elastomer composition powder is charged, the slush molding die heated to 280 ° C is set in a slush molding machine, and then the mold is heated to 260 ° C. After turning, it was held for 6 seconds and then reversed. After 60 seconds, the mold was cooled with cooling water for 40 seconds. Furthermore, air cooling was performed, and when the sheet temperature reached 30 ° C, the sheet was peeled off from the mold to obtain a molded sheet (thickness: 1. Omm).
  • the moldability of the obtained molded sheet was evaluated as follows.
  • a part of the back side of the molded sheet has a residue of the thermoplastic elastomer composition powder at the time of molding, and irregularities are observed;
  • thermoplastic elastomer composition powder is not sufficiently melted on the back side of the molded sheet, and the front side of the back side of the molded sheet is uneven; ⁇ Abrasion evaluation test>
  • a 3 cm x 10 cm sample was cut out from the sheet obtained by slush molding, and a wear test was performed with a wear tester.
  • Haydon-type wear tester 14DR manufactured by Shinto Kagaku Co., Ltd.
  • the test was conducted, visually observed, and evaluated according to the following criteria.
  • Cutter Tungsten carbide, 4.8 mm square x 19 mm length, cutting edge radius 12.7 mm
  • Cutter orientation Cutter length and surface mounted with the cutter blade side down (see Fig. 1) .
  • the test was performed with a load of 1N, visually observed, and evaluated according to the following criteria.
  • MFR melt flowability
  • Evaluation index A case where the powder slash property was good after 6 days was evaluated as ⁇ , and a case where the powder slash property after 6 days was bad was evaluated as X.
  • an acrylic block copolymer In order to obtain an acrylic block copolymer, the following operation was performed. Introduction of force ruboxyl groups into the polymer was carried out with reference to WO2003Z068836. After replacing the inside of the pressure-resistant reactor with nitrogen, 0.89 parts by weight of copper bromide, 100 parts by weight of n-butyl acrylate, and 4.46 parts by weight of acrylic acid-t-butyl were charged, and stirring was started. Then, 2,5-diethyl acetate dibromoadipate as an initiator 1. Acetonitrile (nitrogen published) 24 parts by weight 9. A solution prepared by dissolving 18 parts by weight was added, and the temperature was raised to 75 ° C. Stir for minutes. When the solution temperature reached 75 ° C., 0.11 part by weight of pentamethylethylenetriamine was added as a ligand to initiate polymerization of the acrylic polymer block.
  • n -butyl acrylate and t-butyl acrylate were determined by gas chromatography analysis of the sampling solution at regular intervals from the start of polymerization. During polymerization, The polymerization rate was controlled by adding n-methylethylenetriamine as needed. Pentamethyljetylenetriamine was added twice in total (0.21 part by weight in total) during the acrylic polymer block polymerization.
  • Toluene was added to the reaction solution containing the acrylic block copolymer to make the polymer concentration 25% by weight. To 100 parts by weight of this solution, 0.41 part by weight of p-toluenesulfonic acid was added, the inside of the reactor was purged with nitrogen, and the mixture was stirred at 30 ° C. for 3 hours.
  • reaction solution was sampled to confirm that the solution became colorless and transparent! /, And 0.50 part by weight of Radiolite # 3000 manufactured by Showa Chemical Industry was added as a filter aid. Thereafter, the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, and the solid content was separated using a pressure filter equipped with a polyester felt as a filter medium.
  • the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, the solid content was separated using the pressure filter shown above equipped with a polyester felt as a filter medium, and an acrylic block copolymer having a carboxyl group was separated. A polymer solution containing the coalescence was obtained.
  • polymer 1 This polymer solution was vacuum-dried at 80 ° C to obtain an acrylate block copolymer having a carboxyl group (hereinafter referred to as "polymer 1").
  • the glass transition temperature of the methacrylic polymer block (a) of the polymer 1 obtained in Production Example 1 was calculated according to the above Fox formula, and was loe.
  • a pressure stirrer is charged with 200 parts by weight of pure water and 0.7% by weight of polybulal alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name KH-17) (23.3 parts by weight as a 3% aqueous solution).
  • polybulal alcohol manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name KH-17
  • Example 1 400 parts by weight of polymer solution obtained in Example 1 (solid content concentration 25% by weight), 10 parts by weight of ARUFON (registered trademark) UG4010 (manufactured by Toagosei Co., Ltd.) which is an acrylic polymer having an epoxy group RS700 (polyester ester plasticizer, manufactured by Asahi Denki Kogyo Co., Ltd.) 10 parts by weight, extremely hardened beef tallow oil (melting point 60 ° C: manufactured by Nippon Oil & Fats Co., Ltd.) 1 part by weight ,Power 0.3 parts by weight of a black powder pigment based on one bon black was added.
  • ARUFON registered trademark
  • UG4010 manufactured by Toagosei Co., Ltd.
  • RS700 polymer having an epoxy group RS700 (polyester ester plasticizer, manufactured by Asahi Denki Kogyo Co., Ltd.) 10 parts by weight, extremely hardened beef tallow oil (melting point 60 ° C: manufactured
  • this dispersion was heated to 90 ° C, held at 90 ° C for 5 minutes, and then cooled to obtain a polymer slurry in which latex adhered to the surface of the polymer particles as an antiblocking agent. Obtained.
  • This slurry was dehydrated with a batch centrifugal filter and dried with a batch fluid dryer at a maximum temperature of 50 ° C. to obtain a polymer powder having a moisture content of 0.4%.
  • MMA-b- (BA-co-HEA) —b— MMA-type acrylic block copolymer-2 (in this case, (BA—co—HEA) means a polymer block consisting of BA and HEA. — B- (BA-co-HEA) —b— MMA consists of MMA blocks and (BA—co—HEA) It means a block copolymer in which blocks are bonded in the above order. (Hereinafter referred to as “Polymer 2”)
  • the conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed at the time when MMA was added, and the conversion rate of MMA was determined based on this. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added a total of 3 times (total 5.2 g) during block polymerization of the methacrylic polymer. When the conversion rate of MMA was 61.7%, 1300 g of toluene was added, and the reaction was terminated by cooling the reactor in a water bath.
  • Kiyo Ward 500SH manufactured by Kyowa Chemical Co., Ltd.
  • Kiyo Ward 500SH manufactured by Kyowa Chemical Co., Ltd.
  • the adsorbent was filtered with a Kiriyama funnel to obtain a colorless and transparent polymer solution.
  • This solution was dried to remove the solvent and residual monomer, and the intended polymer 1 was obtained.
  • the average number of hydroxyl groups per molecule is 40 (calculated from the charged amount).
  • the number average molecular weight Mn was 106,000, and the molecular weight distribution MwZMn was 1.61.
  • (MMA-co-EA) means a polymer block composed of MMA and EA).
  • Polymer 3 the following operation was performed.
  • the conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed when MMA was added, and the conversion rate of MMA was determined based on this sampling. . During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylenetriamine was added a total of 6 times (total 3.9 g) during block polymerization of the methacrylic polymer. When the MMA conversion rate was 94.4%, 1030 g of toluene was added, and the reactor was cooled in a water bath to complete the reaction.
  • Kiyoward 500SH manufactured by Kyowa Chemical Co., Ltd.
  • the adsorbent was filtered with a Kiriyama funnel to obtain a colorless and transparent polymer solution. This solution was dried to remove the solvent and residual monomer, and the intended polymer 2 was obtained.
  • the average number of hydroxyl groups per molecule is 10 (calculated from the charged amount).
  • the number average molecular weight Mn was 74, 110, and the molecular weight distribution MwZMn was 1.53.
  • the conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed at the time when MMA was added, and the conversion rate of MMA was determined based on this. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added a total of 6 times (3.7 g in total) during block polymerization of the methacrylic polymer. When the conversion rate of MMA was 95.1%, 2000 g of toluene was added, and the reaction was terminated by cooling the reactor in a water bath.
  • the conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed at the time when MMA was added, and the conversion rate of MMA was determined based on this. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added twice in total (1.5 g in total) during the methacrylic polymer block polymerization. When the conversion power of MMA was 1 ⁇ 20.6%, 1300 g of toluene was added, and the reactor was cooled in a water bath to complete the reaction.
  • the number average molecular weight Mn was 77,400, and the molecular weight distribution MwZMn was 1.44. Toluene was added to the resulting reaction solution to adjust the polymer concentration to 25% by weight.
  • Kiyoward 500SH and 9,275 g as a solid base were purged with nitrogen, and the mixture was stirred at 30 ° C for 1 hour.
  • the solution was sampled and the reaction was completed after confirming that the solution was neutral.
  • the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, and the solid content was separated using a pressure filter equipped with a polyester felt as a filter medium (filtration area 0.45 m 2 ) to obtain a polymer solution. It was.
  • the solvent component was evaporated from the polymer solution.
  • S CP100 heat transfer area lm 2
  • Evaporation of the polymer solution was performed by setting the heating medium oil at the evaporator inlet to 180 ° C, the evaporator vacuum to 90 Torr, the screw rotation speed to 60 rpm, and the polymer solution feed rate to 32 kgZh.
  • the polymer is made into a strand with a ⁇ 4mm die through a discharger, cooled in a water tank filled with 3% suspension of Alflow H50ES (main component: ethylene bis stearamide, manufactured by Nippon Oil & Fats Co., Ltd.), A cylindrical pellet was obtained with a pelletizer. In this way, polymer 6 pellets were produced.
  • the average number of carboxyl groups per molecule is about 10 (calculated from the charged amount).
  • ARUFON registered trader
  • the obtained sample was heat-pressed using a leather metal plate at a set temperature of 200 ° C for 8 minutes (compression molding machine NSF-50, manufactured by Kondo Metal Industry Co., Ltd.) and evaluated for lmm thickness A molded product for use was obtained. The transferability of the texture pattern by press molding was good. Table 1 shows the evaluation results of scratch resistance and heat resistance of the obtained sheet.
  • a press-molded sheet was obtained in the same manner as in Example 1 except that zinc stearate was not added.
  • the transferability of the texture pattern by press molding was good.
  • Table 1 shows the evaluation results of scratch resistance and heat resistance of the obtained sheet.
  • Powder B-1 obtained in Production Example 3 1 part by weight of zinc stearate (manufactured by NOF Co., Ltd., GF-200) was added to 100 parts by weight in a node blend, and powder C — Got one. Using the obtained powder C-1, evaluation of slush moldability (performed by moldability) and evaluation of molded sheet characteristics obtained thereby were performed. Table 2 shows the evaluation results.
  • Powder B-1 obtained in Production Example 3 To 100 parts by weight, 0.1 part by weight of zinc stearate (manufactured by Nippon Oil & Fats Co., Ltd., GF200) was added in a node blend, and powder C — Got two. Obtained Using the powder C-2, slush moldability was evaluated (performed by moldability>) and the molded sheet characteristics obtained thereby were evaluated. Table 2 shows the evaluation results.
  • Powder B—obtained in Production Example 3 100 parts by weight of zinc laurate (Nippon Yushi Co., Ltd., Zinclaurate GP) 0.085 parts by weight was added in a non-blend, Powder C-3 was obtained. Using the obtained powder C-3, evaluation of slush moldability (performed by moldability) and evaluation of molded sheet characteristics obtained thereby were performed. Table 2 shows the evaluation results. From the catalog, 0.085 parts by weight of zinc laurate in this example and 0.1 parts by weight of zinc stearate shown in Example 3 have substantially the same zinc content.
  • Powder B—obtained in Production Example 3 100 parts by weight of bis (acetylacetonato) zinc (Tokyo Chemical Industry Co., Ltd., reagent) 0.044 parts by weight in a node blend To obtain powder C-4. Using the obtained powder C-4, slush moldability was evaluated (performed by moldability>) and molded sheet characteristics obtained thereby were evaluated. Table 2 shows the evaluation results. From the catalog, 0.044 parts by weight of bis (acetylacetonato) zinc in this example and 0.1 parts by weight of zinc stearate shown in Example 3 have substantially the same zinc content.
  • Powder B-3 was obtained in the same manner as in Production Example 3 except for adding 3 parts by weight. Using the obtained powder B-3, slush moldability evaluation (implemented according to moldability>) and molded sheet characteristics obtained thereby were evaluated. The evaluation results are shown in Table 2.
  • Example 4 The adhesion of the molded sheets obtained in Example 4, Example 5 and Example 7 was evaluated by the urethane adhesion test 1>. The evaluation of V and deviation was ⁇ .
  • thermoplastic elastomer composition that is effective in the present invention has good moldability, and the obtained molded sheet has good heat resistance in addition to wear resistance and scratch resistance, and is used as a skin material. It can be seen that the material is excellent in balance.
  • urethane foam is often used as a base material, but it can be seen that urethane foam also has good adhesion.
  • Polymer 2 obtained in Production Example 4 100 parts by weight (40 g) of all acrylics with 1.1 or more epoxy groups per molecule (approximate value 4 (from catalog)) ARUFON UG4010 (manufactured by Toagosei Co., Ltd.), a polymer based, set to 100 ° C at a rate of 10 parts by weight Using a Laboplast mill 50C150 (blade shape: roller type R60, Toyo Seiki Seisakusho Co., Ltd.), melt-kneading was performed at lOOrpm for 15 minutes to obtain a lump sample. The storage stability (Evaluation Method 1) was evaluated using the obtained bulk sample. The results are shown in Table 3.
  • Reference Example 3 From Table 3 (Reference Examples 1 to 3), in Reference Example 3, a polymer having an epoxy group was blended using lab plastomiles, and the reaction proceeded from that point and was already in progress before storage at 80 ° C. Melt fluidity is poor, and when it is stored at 80 ° C, it does not melt completely.
  • Reference Example 1 and Reference Example 2 are samples using a polymer having a hydroxyl group instead of a polymer having a carboxyl group, and thus it can be seen that the storage stability is improved.
  • the sample using the polymer 2 having a sterically protected hydroxyl group in Reference Example 1 is particularly excellent in melt fluidity and storage stability.
  • Polymer 3 obtained in Production Example 5 100 parts by weight (35g) of all acrylics and acrylic containing 1.1 or more epoxy groups per molecule (approximate value 4 (from catalog)) 10 parts by weight of ARUFON UG4010 (manufactured by Toagosei Co., Ltd.) and 2.6 parts by weight of zinc acetate (anhydrous) (manufactured by Wako Pure Chemical Industries, Ltd.) were set at 100 ° C. Labo Plast Mill 50C15 Using 0 (blade shape: roller type R60, Toyo Seiki Seisakusho Co., Ltd.), melt-kneading was performed at lOOrpm for 15 minutes to obtain a lump sample.
  • the obtained sample was heat-pressed using a leather metal plate at a set temperature of 200 ° C for 8 minutes (compression molding machine NSF-50, manufactured by Kondo Metal Industry Co., Ltd.), and the leather texture was transferred.
  • a molded product for evaluation having a thickness of 1 mm was obtained.
  • These molded bodies were subjected to ethanol resistance, oil resistance, urethane adhesion, and heat resistance tests.
  • a powder slush property test was performed on the powder obtained by pulverizing the lump sample obtained above, thereby confirming the melt fluidity at the time of molding.
  • the storage stability (evaluation method-2) was evaluated using the obtained powder. The results are shown in Table 4.
  • Polymer 6 obtained in Production Example 8 100 parts by weight (35 g) of all acrylics and acrylic containing 1.1 or more epoxy groups per molecule (approximate value 4 (from catalog)) ARUFON UG4010 (manufactured by Toagosei Co., Ltd.), a polymer based on Laboplast Mill 50C150 (blade shape: roller type R60 Toyo Seiki Manufacturing Co., Ltd.) set to 100 ° C at a ratio of 10 parts by weight The mixture was melt-kneaded at lOOrpm for 15 minutes to obtain a lump sample. Evaluation was carried out in the same manner as in Example 9 using the obtained sample. The results are shown in Table 4.
  • Example 9 Example 1 0 Comparative Example 1 Polymer 3 100
  • thermoplastic elastomer composition for powder slush molding using a polymer 3 having a hydroxyl group that is three-dimensionally protected It can be seen that not only the slush moldability and storage stability are excellent, but the resulting molded article is also excellent in heat resistance, ethanol resistance and oil resistance. Furthermore, when the obtained sheet is used as an automobile skin material, it is generally necessary to adhere the sheet to polyurethane or the like used as a base material, but the composition according to the present invention is good. It shows that it shows adhesiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Disclosed is a thermoplastic elastomer composition which is excellent in storage stability and melt fluidity during molding. A molded body obtained from this thermoplastic elastomer composition is excellent in heat resistance, oil resistance, chemical resistance, adhesiveness and flexibility. Specifically disclosed is a thermoplastic elastomer composition containing an acrylic block copolymer (A) having a number average molecular weight determined by gel permeation chromatography of 30,000-200,000, a compound (B) having 1.1 or more reactive functional groups (d) in a molecule, and a thermal latent catalyst (C). The acrylic block copolymer (A) is composed of 10-60% by weight of a methacrylic polymer block (a) mainly composed of a methacrylic monomer and having a glass transition temperature of 25-130˚C and 90-40% by weight of an acrylic polymer block (b), and contains at least one functional group (c) selected from the group consisting of a hydroxyl group, an acid anhydride group and a carboxyl group in at least one of the polymer block (a) and the polymer block (b).

Description

明 細 書  Specification
熱可塑性エラストマ一組成物  Thermoplastic elastomer composition
技術分野  Technical field
[0001] 本発明は、熱可塑性エラストマ一組成物、およびその組成物を用いたパウダースラ ッシュ成形材料、およびパウダースラッシュ成形によって得られる自動車内装用表皮 に関する。  [0001] The present invention relates to a thermoplastic elastomer composition, a powder slush molding material using the composition, and an automobile interior skin obtained by powder slush molding.
背景技術  Background
[0002] メタアクリル酸メチルなどをハードセグメント、アクリル酸ブチルなどをソフトセグメント に有するアクリル系ブロック共重合体は、熱可塑性エラストマ一としての特性を有する ことが知られている。ブロック体を構成する成分を適宜選択することで、スチレン系ブ ロック体などの他の熱可塑性エラストマ一に比べて極めて柔軟なエラストマ一を与え ることち可會である。  [0002] It is known that an acrylic block copolymer having methyl methacrylate as a hard segment and butyl acrylate as a soft segment has characteristics as a thermoplastic elastomer. By appropriately selecting the components constituting the block body, it is possible to give an extremely flexible elastomer compared to other thermoplastic elastomers such as styrene block bodies.
[0003] また、アクリル系ブロック共重合体は、耐候性、耐熱性、耐油性に優れると!、う特徴 を有しており、さらに、特許文献 1に記載されたように、ィ-ファーター法で製造したメ 械特性 (引張強度や伸び等)を示す。  [0003] Further, the acrylic block copolymer has excellent characteristics such as weather resistance, heat resistance, and oil resistance. Furthermore, as described in Patent Document 1, the i-ferter method is used. The mechanical properties (tensile strength, elongation, etc.) manufactured in
[0004] このようなアクリル系ブロック共重合体の特性を活力した用途として、種々の表皮材 、内装材がある。また、その他触感を活力ゝして、直接人手に触れる部材用途の材料 にも好適に用いることができる。  [0004] Various skin materials and interior materials are used as applications that make use of the characteristics of such an acrylic block copolymer. In addition, it can also be suitably used as a material for a member that directly touches human hands while making the tactile feel vigorous.
[0005] これら表皮材などに必要な物性としては、機械特性 (引張強度や伸び等)、耐擦り 傷性、耐熱性、歪回復性などに加えて、接触可能性のある薬剤に対する耐性がある 。さらに、表皮と基材とを直接接着させる場合には、表皮と基材との接着性、表皮と基 材との間に緩衝材を設ける場合には、表皮と緩衝材との接着性が挙げられる。  [0005] In addition to mechanical properties (tensile strength, elongation, etc.), scratch resistance, heat resistance, strain recovery, etc., physical properties required for these skin materials include resistance to drugs that can be contacted. . Furthermore, when the skin and the base material are directly bonded, the adhesion between the skin and the base material, and when the buffer material is provided between the skin and the base material, the adhesion between the skin and the base material is mentioned. It is done.
[0006] この表皮材の成形方法として、軟質の粉末材料を用いた、粉末成形法であるパゥ ダースラッシュ成形法がある。この方法は、インストルメントパネル、コンソールボックス 、ドア一トリム等の自動車内装用表皮材の成形に広く採用されている。これは、パウダ 一スラッシュ成形法によれば、ソフトな感触の製品が得られ、また、皮シボゃステッチ を製品に設けることができることや、設計自由度が大きいこと、意匠性が良好なこと等 による。この成形方法は、射出成形や圧縮成形といった他の成形方法とは異なり、成 形の際に賦形圧力をかけない。このため、成形時に粉末材料を複雑な形状の金型に 均一に付着させる必要があり、粉体は流動性に優れることが要求される。それと同時 に、金型に付着した粉体が溶融した際、無加圧下でも流動して皮膜を形成する必要 がある。一方、成形された表皮材は、例えば自動車用材料の場合には 100°C付近の 高温でも、シボ模様が変形しないなどの耐熱性が要求される。このような材料として、 特許文献 2および 3では、アクリル系ブロック共重合体にカルボキシル基や酸無水物 基を導入し、成形時に高分子量化または架橋反応させ、溶融流動性と耐熱性の両 立を図った材料が提案されて!、る。 [0006] As a method for molding the skin material, there is a powder slash molding method which is a powder molding method using a soft powder material. This method is widely used for molding automotive interior skin materials such as instrument panels, console boxes and door trims. This is because, according to the powder one slash molding method, a product with a soft feel is obtained, and the skin texture is stitched. Can be provided in the product, the degree of freedom of design is large, and the design is good. Unlike other molding methods such as injection molding and compression molding, this molding method does not apply shaping pressure during molding. For this reason, it is necessary to uniformly adhere the powder material to a mold having a complicated shape during molding, and the powder is required to have excellent fluidity. At the same time, when the powder adhering to the mold melts, it must flow even under no pressure to form a film. On the other hand, for example, in the case of automobile materials, the molded skin material is required to have heat resistance such that the texture pattern does not deform even at a high temperature around 100 ° C. As such materials, Patent Documents 2 and 3 introduce a carboxyl group or an acid anhydride group into an acrylic block copolymer to increase the molecular weight or a crosslinking reaction during molding, thereby achieving both melt fluidity and heat resistance. The material which aimed at is proposed! RU
[0007] しかし、従来のアクリル系ブロック共重合体を用いた組成物では、貯蔵時に反応が 進行し、経時的に溶融流動性が悪化し、良好な貯蔵安定性を付与することが困難で めつに。 However, in a composition using a conventional acrylic block copolymer, the reaction proceeds during storage, the melt fluidity deteriorates over time, and it is difficult to impart good storage stability. To one.
特許文献 1 :特開平 1— 26619号公報  Patent Document 1: JP-A-1-26619
特許文献 2 :特開 2006— 104410号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2006-104410
特許文献 3:特開 2006 - 104419号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2006-104419
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、貯蔵安定性および成形時の溶融流動性に優れ、さらには得られた成形 体の耐熱性、耐油性、耐薬品性、接着性、柔軟性に優れた熱可塑性エラストマ一組 成物を得ることを目的とする。 The present invention is a thermoplastic elastomer excellent in storage stability and melt fluidity at the time of molding, and further in heat resistance, oil resistance, chemical resistance, adhesiveness and flexibility of the obtained molded product. The purpose is to obtain a composition.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するために鋭意検討を重ねた結果、本発明者らは、水酸基、酸無 水物基、カルボキシル基のいずれかを含有し、所定の構造を有するアクリル系ブロッ ク共重合体と、エポキシ基を有する化合物とを含有し、成形時に高分子量化または 架橋させることが可能な組成物とすることにより、上記課題を効果的に解決できること を見出し、本発明を解決するに至った。  [0009] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that any acrylic block containing a hydroxyl group, an acid anhydride group, or a carboxyl group and having a predetermined structure. In order to solve the present invention, the inventors have found that the above-mentioned problems can be effectively solved by using a composition containing a polymer and a compound having an epoxy group and capable of being increased in molecular weight or crosslinked during molding. It came.
[0010] すなわち本発明は、 (I) .メタアクリル系単量体を主成分とし、ガラス転移温度が 25〜130°Cであるメタァク リル系重合体ブロック(a) 10〜60重量%と、アクリル系重合体ブロック(b) 90〜40重 量%とからなり、ブロック(a)およびブロック(b)のうち少なくとも一方の重合体ブロック に、水酸基、酸無水物基、カルボキシル基力 なる群より選択される少なくとも 1種の 官能基 (c)を有し、ゲルパーミエーシヨンクロマトグラフィーで測定した数平均分子量 が 30, 000〜200, 000であるアクリル系ブロック共重合体 (A)と、 1分子中に 1. 1個 以上の反応性官能基 (d)を有する化合物 (B)と、熱潜在性触媒 (C)を含む熱可塑性 エラストマ一組成物、 [0010] That is, the present invention provides: (I) A methacrylic polymer block (a) having a methacrylic monomer as a main component and a glass transition temperature of 25 to 130 ° C. (a) 10 to 60% by weight, an acrylic polymer block (b) 90 to 40% by weight, and at least one polymer block selected from the group consisting of a hydroxyl group, an acid anhydride group, and a carboxyl group is included in at least one of the blocks (a) and (b). An acrylic block copolymer (A) having a group (c) and having a number average molecular weight of 30,000 to 200,000 as measured by gel permeation chromatography, and 1.1 or more per molecule A thermoplastic elastomer composition comprising a compound (B) having a reactive functional group (d) and a thermal latent catalyst (C),
(II) . アクリル系ブロック共重合体 (A)力 1分子当たり平均 1. 0個以上の一般式(1 )  (II). Acrylic block copolymer (A) Force Average per molecule 1. 0 or more general formulas (1)
[0011] [化 3]  [0011] [Chemical 3]
Figure imgf000005_0001
Figure imgf000005_0001
[0012] (式中の R1は水素またはメチル基を表し、 pおよび mはそれぞれ 1以上の整数を表す[In the formula, R 1 represents hydrogen or a methyl group, and p and m each represent an integer of 1 or more.
。)で表される水酸基を含有する単量体単位 (X)と、 . Monomer unit (X) containing a hydroxyl group represented by
単位 (X)の両側に少なくとも 1個ずつ、単位 (X)に近接して一般式 (2)  At least one unit on either side of unit (X), close to unit (X), general formula (2)
[0013] [化 4]  [0013] [Chemical 4]
Figure imgf000005_0002
Figure imgf000005_0002
[0014] (式中の R2は水素またはメチル基を表す。 qおよび nはそれぞれ 1以上の整数であつ て、 n>m+ l、 q>pの関係を満たす。)で表される単量体単位 (y)を有することを特 徴とする (I)記載の熱可塑性エラストマ一組成物、 (In the formula, R 2 represents hydrogen or a methyl group. Q and n are each an integer of 1 or more. Satisfying the relationship of n> m + 1 and q> p. A thermoplastic elastomer composition according to (I), characterized in that it has a monomer unit (y) represented by
(III) .一般式(1)および(2)の m, n, p, q力 m= 2、 n=4、 q> 2pの関係を満たすこ とを特徴とする (Π)に記載の熱可塑性エラストマ一組成物、  (III) The heat described in (i) is characterized by satisfying the relationship of m, n, p, q force m = 2, n = 4, q> 2p in the general formulas (1) and (2). A plastic elastomer composition,
(IV) . R1および R2カ^、ずれも水素であることを特徴とする (II)または(III)に記載の熱 可塑性エラストマ一組成物、 (IV) The thermoplastic elastomer composition according to (II) or (III), wherein R 1 and R 2 are both hydrogen,
(V) . 単量体単位 (X)力 アクリル系重合体ブロック (b)に存在することを特徴とする (I I)〜(IV)の 、ずれか 1項に記載の熱可塑性エラストマ一組成物、  (V). Monomer unit (X) force The thermoplastic elastomer composition according to any one of (II) to (IV), which is present in the acrylic polymer block (b) ,
(VI) . 単量体単位 (X)および単量体単位 (y)力 メタアクリル系重合体ブロック(a)ま たはアクリル系重合体ブロック (b)のいずれか一方の重合体ブロックに存在することを 特徴とする (II)〜(V)のいずれか 1項に記載の熱可塑性エラストマ一組成物、  (VI). Monomer unit (X) and monomer unit (y) force Present in either polymer block of methacrylic polymer block (a) or acrylic polymer block (b) The thermoplastic elastomer composition according to any one of (II) to (V),
(VII) . アクリル系重合体ブロック(b)がアクリル酸 n—ブチル、アクリル酸ェチル、ァ クリル酸 2—ェチルへキシルおよびアクリル酸 2—メトキシェチルからなる群より 選ばれる少なくとも 1種の単量体を主成分とすることを特徴とする (I)記載の熱可塑性 エラストマ一組成物、  (VII). At least one monomer selected from the group consisting of acrylic polymer block (b) consisting of n-butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, and 2-methoxyethyl acrylate. A thermoplastic elastomer composition according to (I), characterized in that:
(VIII) . アクリル系ブロック共重合体(A)のゲルパーミエーシヨンクロマトグラフィーで 測定した重量平均分子量 (Mw)と数平均分子量 (Mn)の比(MwZMn)が、 1. 8以 下である (I)〜(VII)のいずれ力 1項に記載の熱可塑性エラストマ一組成物、  (VIII) The ratio (MwZMn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic block copolymer (A) measured by gel permeation chromatography is 1.8 or less. The thermoplastic elastomer composition according to any one of (I) to (VII),
(IX) . アクリル系ブロック共重合体 (Α)が、原子移動ラジカル重合により製造されたブ ロック共重合体力 なる (I)〜(: VIII)のいずれか 1項に記載の熱可塑性エラストマ一組 成物、  (IX). The thermoplastic elastomer set according to any one of (I) to (: VIII), wherein the acrylic block copolymer (Α) is a block copolymer produced by atom transfer radical polymerization. Adult,
(X) . 化合物(Β)がアクリル系重合体力 なることを特徴とする (Ι)〜(IX)の 、ずれか 1 項に記載の熱可塑性エラストマ一組成物、  (X). The thermoplastic elastomer composition according to any one of (Ι) to (IX), wherein the compound (Β) has an acrylic polymer strength,
(XI) . 反応性官能基 (d) iS エポキシ基、カルボキシル基、水酸基およびアミノ基から なる群力 選ばれる少なくとも 1種である α)〜(χ)のいずれ力 1項に記載の熱可塑性 エラストマ一組成物、  (XI). Reactive functional group (d) iS The thermoplastic elastomer according to any one of α) to (χ), which is a group force consisting of an epoxy group, a carboxyl group, a hydroxyl group and an amino group, selected from α) to (χ) One composition,
(XII) . 反応性官能基 (d) エポキシ基である (Ι)〜(ΧΙ)の 、ずれか 1項に記載の熱 可塑性エラストマ一組成物、 (XIII) . 化合物(B)の重量平均分子量が 30, 000以下であることを特徴とする (I)〜(X II)のいずれか 1項に記載の熱可塑性エラストマ一組成物、 (XII). Reactive functional group (d) The thermoplastic elastomer composition according to any one of (Ι) to (ΧΙ), which is an epoxy group, (XIII). The thermoplastic elastomer composition according to any one of (I) to (XII), wherein the compound (B) has a weight average molecular weight of 30,000 or less,
(XIV) . アクリル系ブロック共重合体 (Α) 100重量部に対して、化合物(Β)を 1〜30 重量部含むことを特徴とする (Ι)〜(ΧΠΙ)のいずれか 1項に記載の熱可塑性エラストマ 一組成物、  (XIV). Acrylic block copolymer (Α) 1 to 30 parts by weight of compound (Β) per 100 parts by weight of (Ι) to (ΧΠΙ) A thermoplastic elastomer composition,
(XV) . 熱潜在性触媒 (C)が、 60°C以上で加熱することにより活性を示すことを特徴と する(I)〜(XIV)の 、ずれか 1項に記載の熱可塑性エラストマ一組成物、  (XV). The thermoplastic elastomer according to any one of (I) to (XIV), wherein the thermal latent catalyst (C) exhibits activity when heated at 60 ° C or higher. Composition,
(XVI) . 熱潜在性触媒 (C)が、金属塩ィ匕合物であることを特徴とする (I)〜(XV)の ヽず れカ 1項に記載の熱可塑性エラストマ一組成物、  (XVI). The thermoplastic elastomer composition according to any one of (I) to (XV), wherein the heat latent catalyst (C) is a metal salt compound,
(XVII) . 熱潜在性触媒 (C)が、炭素数が 4〜16である脂肪酸もしくは炭素数が 2〜1 6であるジケトンィ匕合物と亜鉛とからなる化合物であることを特徴とする (I)〜(XVI)のい ずれ力 1項に記載の熱可塑性エラストマ一組成物、  (XVII). The heat latent catalyst (C) is characterized in that it is a compound comprising a fatty acid having 4 to 16 carbon atoms or a diketone compound having 2 to 16 carbon atoms and zinc ( Any force of I) to (XVI) The thermoplastic elastomer composition according to paragraph 1,
(XVIII) . 熱潜在性触媒 (C)が、ラウリン酸亜鉛またはビス (ァセチルァセトナト)亜鉛 であることを特徴とする α)〜(χνπ)のいずれか 1項に記載の熱可塑性エラストマ一組 成物、  (XVIII). The thermoplastic elastomer according to any one of α) to (χνπ), wherein the thermal latent catalyst (C) is zinc laurate or bis (acetylacetonato) zinc. One set of composition,
(XIX) . 熱潜在性触媒 (C)が、ラウリン酸亜鉛であることを特徴とする (Ι)〜 (XVIII)の いずれか 1項に記載の熱可塑性エラストマ一組成物、  (XIX). Thermoplastic elastomer composition according to any one of (i) to (XVIII), wherein the heat latent catalyst (C) is zinc laurate,
(XX) . 熱潜在性触媒 (C)が、 tert-ブチル安息香酸亜鉛であることを特徴とする (1)〜 (XVI)のいずれ力 1項に記載の熱可塑性エラストマ一組成物、  (XX). The thermoplastic elastomer composition according to any one of (1) to (XVI), wherein the heat latent catalyst (C) is zinc tert-butylbenzoate,
(XXI) . アクリル系ブロック共重合体 (A) 100重量部に対して、熱潜在性触媒 (C)を 0 . 01〜5重量部含むことを特徴とする (I)〜(XX)のいずれか 1項に記載の熱可塑性ェ ラストマー組成物、  (XXI) .Acrylic block copolymer (A) Any one of (I) to (XX), characterized in that it contains 0.01 to 5 parts by weight of the thermal latent catalyst (C) with respect to 100 parts by weight. Or the thermoplastic elastomer composition according to claim 1,
(XXII) . (Ι)〜(ΧΧΙ)のいずれか 1項に記載の組成物を含むことを特徴とするパウダー スラッシュ成形用熱可塑性エラストマ一組成物、  (XXII). A thermoplastic elastomer composition for powder slush molding comprising the composition according to any one of (Ι) to (ΧΧΙ),
(XXIII) . (Ι)〜(ΧΧΠ)の 、ずれか 1項に記載の熱可塑性エラストマ一組成物をパウダ 一スラッシュ成形して成ることを特徴とする成形品、  (XXIII). A molded article comprising a thermoplastic slush molding of the thermoplastic elastomer composition according to any one of (i) to (ii),
(XXIV) . (Ι)〜(ΧΧΙ)の 、ずれか 1項に記載の熱可塑性エラストマ一組成物をパウダー スラッシュ成形して成ることを特徴とする自動車内装用表皮、 に間する。 (XXIV). A skin for automobile interior characterized by being formed by powder slush molding of the thermoplastic elastomer composition according to any one of (i) to (ii). In between.
発明の効果  The invention's effect
[0015] 本発明に係る熱可塑性エラストマ一組成物は、成形性や耐熱性および貯蔵安定性 に優れる。このため、本発明の組成物は、パウダースラッシュ成形に好適に使用でき 、安定した品質の成形体を得ることが可能である。また、アクリル系ブロック共重合体 ( A)中の官能基 (c)の構造等を特定することで、熱可塑性エラストマ一の保管にほと んど制約のない優れた貯蔵安定性が達成される。さらに、アクリル系ブロック共重合 体 (A)の分子量や単量体成分、化合物 (B)、熱潜在性触媒 (C)の種類等を適宜選 択することにより、耐候性、耐油性、耐薬品性、接着性、柔軟性及び耐磨耗性に優れ る組成物とすることが可能である。  [0015] The thermoplastic elastomer composition according to the present invention is excellent in moldability, heat resistance and storage stability. For this reason, the composition of the present invention can be suitably used for powder slush molding, and a molded article having stable quality can be obtained. In addition, by specifying the structure of the functional group (c) in the acrylic block copolymer (A), excellent storage stability with almost no restrictions on storage of the thermoplastic elastomer can be achieved. . Furthermore, weather resistance, oil resistance, and chemical resistance can be selected by appropriately selecting the molecular weight of the acrylic block copolymer (A), the monomer component, the compound (B), the type of the thermal latent catalyst (C), etc. It is possible to obtain a composition having excellent properties, adhesiveness, flexibility and abrasion resistance.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]耐スクラッチ性評価試験の模式図である。 FIG. 1 is a schematic diagram of a scratch resistance evaluation test.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明の熱可塑性エラストマ一組成物は、以下に記載の所定の構造を有するァク リル系ブロック共重合体 (A)と、 1分子中に 1. 1個以上の反応性官能基 (d)を有する 化合物 (B)と、熱潜在性触媒 (C)とからなる。  [0017] The thermoplastic elastomer composition of the present invention comprises an acryl-based block copolymer (A) having a predetermined structure described below, and one or more reactive functional groups in one molecule. It comprises a compound (B) having (d) and a thermal latent catalyst (C).
[0018] 本発明の組成物においては、化合物(B)中の反応性官能基 (d)がアクリル系ブロッ ク共重合体 (A)中の官能基 (c)である水酸基、酸無水物基、カルボキシル基と成形 時に反応し、高分子量化もしくは架橋が行われる際に、熱潜在性触媒 (C)が反応促 進剤として効果的に反応を推進させる。また、熱潜在性触媒 (C)の種類を選択するこ とで、接着性などの二次加工性を確保することが可能である。  [0018] In the composition of the present invention, the reactive functional group (d) in the compound (B) is a hydroxyl group, an acid anhydride group, which is the functional group (c) in the acrylic block copolymer (A). Then, when reacting with a carboxyl group at the time of molding to increase the molecular weight or crosslink, the thermal latent catalyst (C) effectively promotes the reaction as a reaction accelerator. In addition, by selecting the type of the heat latent catalyst (C), it is possible to ensure secondary workability such as adhesion.
[0019] ここで、本発明で使用する熱潜在性触媒 (C)とは所定の温度 (好ましく 60°C以上) で加熱した時により高活性を示す触媒である。熱潜在性触媒 (C)を使用する理由は 、アミン系化合物など通常の触媒を使用すると、前述した化合物 (B)中の反応性官 能基 (d)と共重合体 (A)中の官能基 (c)による架橋反応が加熱成形時以外、つまり 成形前の貯蔵時に、進行することを抑止する目的による。なお、前記架橋反応が成 形前の貯蔵時に進行した場合、熱可塑性エラストマ一の溶融流動性が低下し成形 性が悪化する原因となる。 [0020] ただし、熱潜在性触媒 (C)を使用しても、貯蔵時の外部環境によっては、前記の架 橋反応が進行する可能性がある。そこで、貯蔵時の外部環境の管理が不可能な場 合、長期の貯蔵が必要な場合、およびシビアな熱可塑性エラストマ一の溶融流動特 性が求められる場合などでは、熱潜在性触媒 (C)の使用とともに共重合体 (A)中の 官能基 (c)としてカルボキシル基よりも活性の低い水酸基を選択すること、更には、後 述する近接の構造によって立体的に保護された水酸基を選択するのが好ましい。 Here, the thermal latent catalyst (C) used in the present invention is a catalyst that exhibits higher activity when heated at a predetermined temperature (preferably 60 ° C. or higher). The reason for using the thermal latent catalyst (C) is that if a normal catalyst such as an amine compound is used, the functional group (d) in the compound (B) and the functional group in the copolymer (A) described above are used. The purpose is to prevent the cross-linking reaction by the group (c) from proceeding except at the time of thermoforming, that is, storage before molding. If the cross-linking reaction proceeds during storage before forming, the melt flowability of the thermoplastic elastomer is lowered, which causes deterioration of moldability. [0020] However, even when the thermal latent catalyst (C) is used, the bridge reaction may proceed depending on the external environment during storage. Therefore, when the external environment during storage cannot be managed, when long-term storage is required, or when the melt flow characteristics of severe thermoplastic elastomers are required, the thermal latent catalyst (C) As the functional group (c) in the copolymer (A), a hydroxyl group that is less active than the carboxyl group is selected, and further, a hydroxyl group that is sterically protected by a nearby structure described later is selected. Is preferred.
[0021] 近接の構造によって立体的に保護された水酸基を有するアクリルブロック共重合体  [0021] Acrylic block copolymer having a hydroxyl group sterically protected by an adjacent structure
(A)とは、 1分子当たり平均 1. 0個以上の、水酸基を含有する一般式(1)  (A) is a general formula (1) containing 1.0 or more hydroxyl groups per molecule on average
[0022] [化 5]  [0022] [Chemical 5]
Figure imgf000009_0001
Figure imgf000009_0001
[0023] (式中の R1は水素またはメチル基を表し、 pおよび mはそれぞれ 1以上の整数を表す 。)で表される単量体単位 (X)と、単位 (X)と単位 (X)の両側に少なくとも 1個ずつ、単 位 (X)に近接して一般式 (2) [0023] (wherein R 1 represents hydrogen or a methyl group, p and m each represent an integer of 1 or more), a monomer unit (X), a unit (X) and a unit ( At least one on each side of (X), close to unit (X), general formula (2)
[0024] [化 6]  [0024] [Chemical 6]
Figure imgf000009_0002
Figure imgf000009_0002
[0025] (式中の R2は水素またはメチル基を表す。 qおよび nはそれぞれ 1以上の整数であつ て、 n>m+ l、 q>p。)で表される単量体単位 (y)を有するものである。 [0025] (wherein R 2 represents hydrogen or a methyl group. Q and n are each an integer of 1 or more, and n> m + 1, q> p.) ).
[0026] ここで、単量体単位 (y)の側鎖(エステル鎖(一 COO (CH ) — H) )は単量体単位 (x)の側鎖 (エステル鎖(一 COO (CH ) —OH) )より長いため、単位 (X)の水酸基 [0026] Here, the side chain of the monomer unit (y) (ester chain (one COO (CH) — H)) is the monomer unit. Since the side chain of (x) (ester chain (one COO (CH) —OH)) is longer, the hydroxyl group of unit (X)
2 m  2 m
が単位 (y)により立体的に保護され、常温における化合物 (B)との反応が抑制され、 優れた貯蔵安定性を示すこととなる。  Is sterically protected by the unit (y), the reaction with the compound (B) at room temperature is suppressed, and excellent storage stability is exhibited.
[0027] 以下、本発明の各成分につき、詳細に説明する。  [0027] Hereinafter, each component of the present invention will be described in detail.
[0028] <アクリル系ブロック共重合体 (A) >  [0028] <Acrylic block copolymer (A)>
本発明のアクリル系ブロック共重合体 (A)の構造は、線状ブロック共重合体または 分岐状 (星状)ブロック共重合体またはこれらの混合物であってもよぐ特に問うもの ではない。このようなブロック共重合体の構造は、必要とされるアクリル系ブロック共重 合体 (A)の物性に応じて適宜選択すれば良いが、コスト面や重合容易性の点で、線 状ブロック共重合体が好まし 、。  The structure of the acrylic block copolymer (A) of the present invention is not particularly limited, and may be a linear block copolymer, a branched (star) block copolymer, or a mixture thereof. The structure of such a block copolymer may be appropriately selected according to the required physical properties of the acrylic block copolymer (A). However, from the viewpoint of cost and ease of polymerization, the linear block copolymer is selected. Polymer is preferred.
[0029] また、線状ブロック共重合体は!、ずれの構造 (配列)のものであってもよ!/、が、線状 ブロック共重合体の物性、または組成物の物性の点から、メタアクリル系重合体ブロッ ク(a)を a、アクリル系重合体ブロック (b)を bと表現したとき、 (a -b)型、 b— (a— b) 型および (a— b) —a型 (nは 1以上の整数、たとえば 1〜3の整数)からなる群より選 択される少なくとも 1種のアクリル系ブロック共重合体であることが好ましい。これらの 中でも、加工時の取り扱い容易性や、組成物の物性の点力も a— b型のジブロック共 重合体、 a— b— a型のトリブロック共重合体、またはこれらの混合物が好ましい。  [0029] In addition, the linear block copolymer may have a structure (arrangement) that is out of alignment! /, But from the viewpoint of the physical properties of the linear block copolymer or the composition, When the methacrylic polymer block (a) is expressed as a and the acrylic polymer block (b) is expressed as b, (a -b) type, b— (a— b) type and (a— b) — It is preferably at least one acrylic block copolymer selected from the group consisting of a type (n is an integer of 1 or more, for example, an integer of 1 to 3). Among these, an a-b type diblock copolymer, an ab-a type triblock copolymer, or a mixture thereof is preferable in terms of easy handling during processing and the point of physical properties of the composition.
[0030] アクリル系ブロック共重合体 (A)中に含まれる、水酸基、酸無水物基、カルボキシ ル基から選ばれる官能基 (c)は、メタアクリル系重合体ブロック (a)、アクリル系重合体 ブロック (b)のいずれか一方、または両方の重合体ブロックに、一分子当たり 1つ以上 導入される。その数が 2つ以上である場合には、官能基 (c)を有する単量体 (e)が重 合されている様式はランダム共重合またはブロック共重合であることができる。 a-b — a型のトリブロック共重合体を例にとって表わすと、(aZz)— b— a型、 (a/z) -b - {a/ z)型、 z— a— b— a型、 z— a— b— a— z型、 a— (bZ z) a型、 a— b— z— a型、 a — z— b— z— a型、 (a/z) - (b/z) - (aZz)型、 z— a— z— b— z— a— z型などのい ずれであってもよい。ここで zとは、官能基 (c)を有する単量体単位 (e)、または水酸 基を有する単量体単位 (f)が重合されてなる重合体ブロックを表し、 (a/z)とは、メタ アクリル系重合体ブロック (a)に単量体単位 (f)が共重合されて 、ることを表し、(bZz )とは、アクリル系重合体ブロック (b)に水酸基を有する単量体単位 (f)が共重合され ていることを表す。 [0030] The functional group (c) selected from a hydroxyl group, an acid anhydride group and a carboxyl group contained in the acrylic block copolymer (A) is a methacrylic polymer block (a), an acrylic heavy polymer. One or more per molecule is introduced into one or both polymer blocks (b). When the number is two or more, the mode in which the monomer (e) having the functional group (c) is superposed can be random copolymerization or block copolymerization. Taking ab — a-type triblock copolymer as an example, (aZz) — b—a type, (a / z) -b-(a / z) type, z— a— b— a type, z — A— b— a— z type, a— (bZ z) a type, a— b— z— a type, a — z— b— z— a type, (a / z)-(b / z) -(aZz) type, z-a-z-b-z-a-z type, etc. may be used. Here, z represents a polymer block obtained by polymerizing a monomer unit (e) having a functional group (c) or a monomer unit (f) having a hydroxyl group, and (a / z) Means that the monomer unit (f) is copolymerized with the methacrylic polymer block ( a ), and (bZz ) Means that the monomer unit (f) having a hydroxyl group is copolymerized with the acrylic polymer block (b).
[0031] また、メタアクリル系重合体ブロック(a)ある!/、はアクリル系重合体ブロック(b)中で z の含有される部位と含有される様式は、 目的に応じて適宜設定することができる。  [0031] In addition, the methacrylic polymer block (a) is! /, And in the acrylic polymer block (b), the site where z is contained and the manner in which it is contained should be appropriately set according to the purpose. Can do.
[0032] アクリル系ブロック共重合体 (A)の分子量は、とくに制限されず、メタアクリル系重合 体ブロック (a)とアクリル系重合体系ブロック (b)にそれぞれ必要とされる分子量から 決めればよい。しかし、分子量が小さい場合には、エラストマ一として十分な機械特 性を発現出来ない場合があり、逆に分子量が必要以上に大きいと、加工特性が低下 する場合がある。ノ ゥダースラッシュ成形の場合は、無加圧下でも流動する必要があ ることから、分子量が大きいと溶融粘度が高くなり、成形性が悪くなる場合がある。こ のような観点から、アクリル系ブロック共重合体 (A)の分子量は、数平均分子量で 30 , 000〜200, 000力 S好まし <、より好まし <ίま 35, 000〜150, 000、さらに好まし <ίま 40, 000〜100, 000である。 [0032] The molecular weight of the acrylic block copolymer (A) is not particularly limited, and may be determined from the molecular weights required for the methacrylic polymer block ( a ) and the acrylic polymer block (b), respectively. . However, if the molecular weight is small, sufficient mechanical properties as an elastomer may not be exhibited. Conversely, if the molecular weight is larger than necessary, the processing characteristics may deteriorate. In the case of the noder slash molding, since it is necessary to flow even under no pressure, if the molecular weight is large, the melt viscosity becomes high and the moldability may be deteriorated. From this point of view, the molecular weight of the acrylic block copolymer (A) is 30,000 to 200,000 force S in terms of number average molecular weight S preferred <, more preferred <ί 35,000 to 150,000 More preferred, <ί or 40,000 to 100,000.
[0033] アクリル系ブロック共重合体 (Α)のゲルパーミエーシヨンクロマトグラフィーで測定し た重量平均分子量 (Mw)と数平均分子量 (Mn)の比(MwZMn)も、とくに制限はな いが、 1. 8以下であることが好ましぐ 1. 5以下であることがさらに好ましい。 Mw/M nが 1. 8をこえるとアクリル系ブロック共重合体の均一性が悪ィ匕し、機械強度が低下 する場合がある。  [0033] The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (MwZMn) of the acrylic block copolymer (ク ロ マ ト グ ラ フ ィ) measured by gel permeation chromatography is not particularly limited. 1. Preferably it is 8 or less 1. More preferably, it is 5 or less. If Mw / Mn exceeds 1.8, the homogeneity of the acrylic block copolymer may deteriorate and the mechanical strength may decrease.
[0034] アクリル系ブロック共重合体 (A)を構成するメタアクリル系重合体ブロック (a)とアタリ ル系重合体ブロック(b)の組成比は、メタアクリル系重合体ブロック(a)が 5〜90重量 %、アクリル系重合体ブロック(b)が 95〜10重量%でするのが好ましい。成形時の形 状の保持およびエラストマ一としての弾性の観点から、メタアクリル系重合体ブロック( a)が 10〜60重量%、アクリル系重合体ブロック(b)が 90〜40重量%であるのがより 好ましぐメタアクリル系重合体ブロック(a)が 15〜50重量%、アクリル系重合体ブロ ック(b)力 ¾5〜50重量%であるのが更に好ましい。メタアクリル系重合体ブロック(a) の割合が 5重量%より少ないと、成形時に形状が保持されにくい傾向があり、アクリル 系重合体ブロック (b)の割合が 10重量%より少ないと、エラストマ一としての弾性ゃ柔 軟性および成形時の溶融性が低下する傾向がある。 [0035] エラストマ一組成物の硬度の観点からは、メタアクリル系重合体ブロック (a)の割合 が少ないと硬度が低くなり、また、アクリル系重合体ブロック (b)の割合が少ないと硬 度が高くなる傾向があり、エラストマ一組成物の必要とされる硬度に応じて適宜組成 を設定する。また加工の観点力もは、(a)の割合が少ないと粘度が低ぐまた、(b)の 割合が少ないと粘度が高くなる傾向があり、必要とする加工特性に応じて適宜組成を 設定する。 [0034] The composition ratio of the methacrylic polymer block (a) and the acrylic polymer block (b) constituting the acrylic block copolymer (A) is 5 for the methacrylic polymer block (a). It is preferable that the amount of the acrylic polymer block (b) is 95 to 10% by weight. From the viewpoint of maintaining the shape during molding and elasticity as an elastomer, the methacrylic polymer block (a) is 10 to 60% by weight, and the acrylic polymer block (b) is 90 to 40% by weight. More preferably, the methacrylic polymer block (a) is more preferably 15 to 50% by weight and the acrylic polymer block (b) is ¾ to 50% by weight. If the proportion of the methacrylic polymer block (a) is less than 5% by weight, the shape tends to be difficult to retain during molding. If the proportion of the acrylic polymer block (b) is less than 10% by weight, the elastomer As an elastic material, there is a tendency for the flexibility and the meltability during molding to decrease. [0035] From the viewpoint of the hardness of the elastomer composition, when the proportion of the methacrylic polymer block (a) is small, the hardness is low, and when the proportion of the acrylic polymer block (b) is small, the hardness is low. The composition is appropriately set according to the required hardness of the elastomer composition. In terms of processing viewpoint, the viscosity is low when the proportion of (a) is small, and the viscosity tends to be high when the proportion of (b) is small. The composition is appropriately set according to the required processing characteristics. .
[0036] アクリル系ブロック共重合体 (A)を構成するメタアクリル系重合体ブロック (a)とアタリ ル系重合体ブロック (b)のガラス転移温度の関係は、エラストマ一特性およびゴム弹 性を付与する点で、どちらか一方の重合体ブロックのガラス転移温度が他方の重合 体ブロックのガラス転移温度より高 、ことが好ましく、ガラス転移温度の調整の容易性 から、各ブロックのガラス転移温度 (メタアクリル系重合体ブロック(a)のガラス転移温 度を Tga、アクリル系重合体ブロック (b)のガラス転移温度を Tgbとする)が下式の関 係を満たすことがより好まし 、。  [0036] The relationship between the glass transition temperature of the methacrylic polymer block (a) and the acrylic polymer block (b) constituting the acrylic block copolymer (A) depends on the elastomer characteristics and rubber properties. The glass transition temperature of one of the polymer blocks is preferably higher than the glass transition temperature of the other polymer block in terms of imparting, and the glass transition temperature of each block ( More preferably, the glass transition temperature of the methacrylic polymer block (a) is Tga, and the glass transition temperature of the acrylic polymer block (b) is Tgb).
Tga>Tgo  Tga> Tgo
重合体 (メタアクリル系重合体ブロック(a)およびアクリル系重合体ブロック (b) )のガ ラス転移温度 (Tg)の設定は、下記の Fox式に従い、各重合体部分の単量体の重量 比率を設定することにより行なうことができる。  The glass transition temperature (Tg) of the polymer (methacrylic polymer block (a) and acrylic polymer block (b)) is set according to the following Fox formula. This can be done by setting the ratio.
(Wl/Tgl) + (W2/Tg2) H—— h (Wm/Tgm)  (Wl / Tgl) + (W2 / Tg2) H—— h (Wm / Tgm)
W1 +W2H—— hWm= l  W1 + W2H—— hWm = l
式中、 Tgは重合体部分のガラス転移温度を表し、 Tgl, Tg2, · ··, Tgmは各重合 単量体のガラス転移温度を表す。また、 Wl, W2, · ··, Wmは各重合単量体の重量 比率を表す。  In the formula, Tg represents the glass transition temperature of the polymer portion, and Tgl, Tg2,..., Tgm represent the glass transition temperature of each polymerization monomer. Wl, W2,..., Wm represent the weight ratio of each polymerization monomer.
[0037] 前記 Fox式における各重合単量体のガラス転移温度は、たとえば、 Polymer Ha ndbook Third Edition(Wiley - Interscience 1989年)記載の値を用いればよ い。  [0037] As the glass transition temperature of each polymerization monomer in the Fox formula, for example, a value described in Polymer Handbook Third Edition (Wiley-Interscience 1989) may be used.
[0038] なお、ガラス転移温度は、 DSC (示差走査熱量測定)または動的粘弾性の tan δピ ークにより測定することができる力 メタアクリル系重合体ブロック (a)とアクリル系重合 体ブロック (b)の極性が近すぎたり、ブロックの単量体の連鎖数が少なすぎると、それ ら測定値と、上記 Fox式による計算式とがずれる場合がある。 [0038] The glass transition temperature can be measured by DSC (differential scanning calorimetry) or tan δ peak of dynamic viscoelasticity. Methacrylic polymer block (a) and acrylic polymer block If the polarity of (b) is too close or the block monomer chain number is too small, The measured value may be different from the calculation formula by the Fox formula.
[0039] 上述のとおり、官能基 (c)として近接の構造によって立体的に保護された水酸基を 有するアクリル系ブロック共重合体 (A)は、 1分子あたり平均 1. 0個以上の水酸基を 有する単量体単位 (X)と、少なくとも 2個の単量体単位 (y)を有する。単量体単位 (y) は、単位 (X)の両側に少なくとも 1個ずつ、単位 (X)に近接して存在し、単位 (X)の水 酸基を立体的に保護する。このような目的のため、単量体単位 (y)は単量体単位 (X) に隣接して存在していてもよいし、隣接していなくてもよい。すなわち、単位 (X)およ び (y)以外の単量体を rと表した場合、例えば、 y— X— y、 y— x— r— y、 y— r— x— r —yのように配列していてもよい。また、アクリル系ブロック共重合体 (A)中に存在する 複数の単量体単位 (y)は、必ずしも同一の構造 (nの値が同じ)を有している必要は ない。さらに、上記目的が達成可能な限りにおいては、連続するまたは非連続の複 数の単量体単位 )の両端に単量体単位 (y)が存在する状態であってもよ 、 (例え ば、 y— X— X— y、 y— X— r— X— y(rは単位 (X)および (y)以外の単量体を表す))。 [0039] As described above, the acrylic block copolymer (A) having a hydroxyl group sterically protected by a neighboring structure as the functional group (c) has an average of 1.0 or more hydroxyl groups per molecule. It has a monomer unit (X) and at least two monomer units (y). At least one monomer unit ( y ) is present on both sides of the unit (X) in the vicinity of the unit (X), and sterically protects the hydroxyl group of the unit (X). For this purpose, the monomer unit (y) may or may not be present adjacent to the monomer unit (X). That is, if r is a monomer other than units (X) and (y), for example, y—X—y, y—x—r—y, y—r—x—r—y They may be arranged as follows. Further, the plurality of monomer units (y) present in the acrylic block copolymer (A) do not necessarily have the same structure (the same value of n). Furthermore, as long as the above object can be achieved, the monomer unit (y) may exist at both ends of a continuous or non-continuous monomer unit (for example, y—X—X—y, y—X—r—X—y (r represents a monomer other than the units (X) and (y))).
[0040] 貯蔵安定性の観点からは、一般式(1)において mは 1または 2が好ましぐ入手性 の観点力も m= 2がより好ましい。また、得られる熱可塑性エラストマ一に柔軟性ゃゴ ム弹性を付与できる点や入手性の点で、一般式(2)において n=4が好ましい。さら に、貯蔵安定性の点で、 p > 2pであることがより好ましい。  [0040] From the viewpoint of storage stability, in the general formula (1), m is preferably 1 or 2, and from the viewpoint of availability, m = 2 is more preferable. In addition, n = 4 is preferable in the general formula (2) from the viewpoint that flexibility can be imparted to the thermoplastic elastomer to be obtained and flexibility is available. Furthermore, it is more preferable that p> 2p from the viewpoint of storage stability.
[0041] さらにカ卩えて、貯蔵安定性の点で、前記 pと q、 mと nの関係をアクリル系ブロック共 重合体 (A)全体でなぐメタアクリル系重合体ブロック (a)、ある 、はアクリル系重合体 ブロック (b)内で有することが好まし 、。  [0041] Further, in terms of storage stability, a methacrylic polymer block (a) in which the relationship between p and q and m and n is combined with the entire acrylic block copolymer (A) is: Is preferably within the acrylic polymer block (b).
[0042] ここで、メタアクリル系重合体ブロック (a)に単位 (X)および (y)を含む場合は、一般 式(1)、一般式(2)の R1および R2はメチル基であることが好ましぐアクリル系重合体 ブロック (b)に含む場合は、一般式(1)、一般式(2)の R1および R2は水素であること が好まし!/、。メタアクリル系重合体ブロック(a)に単位 (X)および (y)を含む場合に R1 が水素である場合や、アクリル系重合体ブロック (b)に単位 (X)および (y)を含む場 合に R1がメチル基である場合は、アクリル系ブロック共重合体 (A)の重合操作が煩 雑になったり、メタアクリル系重合体ブロック (a)とアクリル系重合体ブロック (b)のガラ ス転移温度の差が小さくなり、アクリル系ブロック共重合体 (A)のゴム弾性が低下す る傾向にある。 [0042] Here, when the methacrylic polymer block (a) contains the units (X) and (y), R 1 and R 2 in the general formula (1) and the general formula (2) are methyl groups. When it is included in the acrylic polymer block (b), R 1 and R 2 in general formula (1) and general formula (2) are preferably hydrogen! /. When unit (X) and (y) are included in methacrylic polymer block (a), R 1 is hydrogen, or units (X) and (y) are included in acrylic polymer block (b) In this case, when R 1 is a methyl group, the polymerization operation of the acrylic block copolymer (A) becomes complicated, or the methacrylic polymer block (a) and the acrylic polymer block (b) The difference in glass transition temperature of the acrylic block copolymer (A) is reduced, and the rubber elasticity of the acrylic block copolymer (A) decreases. Tend to.
[0043] また、特に限定されな 、が、水酸基を有する単量体単位 (X)は、得られる成形体の ゴム弾性を向上させられる点や、ヒステリシスロスを低減できる点でアクリル系重合体 ブロック (b)に存在することが好ま 、。  [0043] Although not particularly limited, the monomer unit (X) having a hydroxyl group is an acrylic polymer block in that the rubber elasticity of the obtained molded article can be improved and the hysteresis loss can be reduced. (b) preferred to be present.
[0044] <メタアクリル系重合体ブロック(a) >  [0044] <Methacrylic polymer block (a)>
メタアクリル系重合体ブロック(a)は、メタアクリル酸エステルを主成分とする単量体 を重合してなるブロックであり、メタアクリル酸エステル 50 100重量%およびこれと 共重合可能なビュル系単量体 0 50重量%と力 なることが好まし 、。メタアクリル酸 エステルの割合が 50重量%未満であると、メタアクリル酸エステルの特徴である、耐 候性などが損なわれる場合がある。  The methacrylic polymer block (a) is a block obtained by polymerizing a monomer having a methacrylic acid ester as a main component. The methacrylic acid ester 50 100% by weight and a bule-based single copolymer copolymerizable therewith. It is preferable that the weight is 0-50% by weight. When the proportion of the methacrylic acid ester is less than 50% by weight, the weather resistance, which is a characteristic of the methacrylic acid ester, may be impaired.
[0045] メタアクリル系重合体ブロック(a)を構成するメタアクリル酸エステルとしては、たとえ ば、メタアクリル酸メチル、メタアクリル酸ェチル、メタアクリル酸 n—プロピル、メタァク リル酸 n—ブチル、メタアクリル酸イソブチル、メタアクリル酸 n—ペンチル、メタアタリ ル酸 n キシル、メタアクリル酸 n プチル、メタアクリル酸 n—ォクチル、メタァク リル酸 2—ェチルへキシル、メタアクリル酸ノエル、メタアクリル酸デシル、メタアクリル 酸ドデシル、メタアクリル酸ステアリルなどのメタアクリル酸脂肪族炭化水素(たとえば 炭素数 1 18のアルキル)エステル;メタアクリル酸シクロへキシル、メタアクリル酸イソ ボルニルなどのメタアクリル酸脂環式炭化水素エステル;メタアクリル酸ベンジルなど のメタアクリル酸ァラルキルエステル;メタアクリル酸フエ-ル、メタアクリル酸トルィル などのメタアクリル酸芳香族炭化水素エステル;メタアクリル酸 2—メトキシェチル、メタ アクリル酸 3—メトキシブチルなどのメタアクリル酸とエーテル性酸素を有する官能基 含有アルコールとのエステル;  [0045] The methacrylic acid ester constituting the methacrylic polymer block (a) includes, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, Isobutyl acrylate, n-pentyl methacrylate, n-xyl methacrylate, n-butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, noel methacrylate, decyl methacrylate, meta Methacrylic acid aliphatic hydrocarbons such as dodecyl acrylate and stearyl methacrylate (e.g., alkyl having 1 to 18 carbon atoms); methacrylic acid alicyclic hydrocarbons such as cyclohexyl methacrylate and isobornyl methacrylate Esters; aralkyl methacrylates such as benzyl methacrylate Esters; Methacrylic acid aromatic hydrocarbon esters such as methacrylic acid phenol and methacrylic acid toluene; Functional groups with methacrylic acid such as 2-methoxyethyl methacrylate and 3-methoxybutyl methacrylate and etheric oxygen An ester with a group-containing alcohol;
メタアクリル酸トリフルォロメチル、メタアクリル酸トリフルォロメチルメチル、メタアクリル 酸 2—トリフルォロメチルェチル、メタアクリル酸 2—トリフルォロェチル、メタアクリル酸 2—パーフルォロェチルェチル、メタアクリル酸 2—パーフルォロェチルー 2—パーフ ルォロブチルェチル、メタアクリル酸 2—パーフルォロェチル、メタアクリル酸パーフ ルォロメチル、メタアクリル酸ジパーフルォロメチルメチル、メタアクリル酸 2—パーフ ルォロメチルー 2—パーフルォロェチルメチル、メタアクリル酸 2—パーフルォ口へキ シルェチル、メタアクリル酸 2—パーフルォロデシルェチル、メタアクリル酸 2—パーフ ルォ口へキサデシルェチルなどのメタアクリル酸フッ化アルキルエステルなどがあげ られる。これらはそれぞれ単独でまたは 2種以上を組み合わせて用いることができる。 これらの中でも、加工性、コストおよび入手しやすさの点で、メタアクリル酸メチルが好 ましい。 Trifluoromethyl methacrylate, trifluoromethyl methyl methacrylate, 2-trifluoromethylethyl methacrylate, 2-trifluoroethyl methacrylate, 2-perfluoroethyl methacrylate Chill, 2-perfluoroethyl methacrylate, 2-perfluorobutylethyl methacrylate, 2-perfluoromethacrylate, perfluoromethyl methacrylate, diperfluoromethyl methyl methacrylate, meta Acrylic acid 2-perfluoromethyl-2-perfluoroethylmethyl, methacrylic acid 2-perfluoro Examples thereof include fluorinated alkyl esters of methacrylic acid such as silethyl, 2-perfluorodecylethyl methacrylate, and 2-perfluorohexadecylethyl methacrylate. These can be used alone or in combination of two or more. Among these, methyl methacrylate is preferred in terms of processability, cost, and availability.
[0046] メタアクリル系重合体ブロック(a)を構成するメタアクリル酸エステルと共重合可能な ビュル系単量体としては、たとえば、アクリル酸エステル、芳香族アルケニル化合物、 シアン化ビニル化合物、共役ジェン系化合物、ハロゲン含有不飽和化合物、ビニル エステルイ匕合物、マレイミド系化合物などをあげることができる。  [0046] Examples of bulle monomers that can be copolymerized with the methacrylic acid ester constituting the methacrylic polymer block (a) include acrylic acid esters, aromatic alkenyl compounds, vinyl cyanide compounds, conjugated genes. Compounds, halogen-containing unsaturated compounds, vinyl ester compounds, maleimide compounds, and the like.
[0047] アクリル酸エステルとしては、たとえば、アクリル酸メチル、アクリル酸ェチル、アタリ ル酸 n—プロピル、アクリル酸 n—ブチル、アクリル酸イソブチル、アクリル酸 n ペン チル、アクリル酸 n—へキシル、アクリル酸 n—へプチル、アクリル酸 n—ォクチル、ァ クリル酸 2—ェチルへキシル、アクリル酸ノエル、アクリル酸デシル、アクリル酸ドデシ ル、アクリル酸ステアリルなどのアクリル酸脂肪族炭化水素(たとえば炭素数 1〜18の アルキル)エステル;アクリル酸シクロへキシル、アクリル酸イソボル-ルなどのアクリル 酸脂環式炭化水素エステル;アクリル酸フエ-ル、アクリル酸トルィルなどのアクリル 酸芳香族炭化水素エステル;アクリル酸ベンジルなどのアクリル酸ァラルキルエステ ル;アクリル酸 2—メトキシェチル、アクリル酸 3—メトキシブチルなどのアクリル酸とェ 一テル性酸素を有する官能基含有アルコールとのエステル;アクリル酸トリフルォロメ チルメチル、アクリル酸 2—トリフルォロメチルェチル、アクリル酸 2—パーフルォロェ チルェチル、アクリル酸 2—パーフルォロェチル 2—パーフルォロブチルェチル、 アクリル酸 2—パーフルォロェチル、アクリル酸パーフルォロメチル、アクリル酸ジパ 一フルォロメチルメチル、アクリル酸 2—パーフルォロメチルー 2—パーフルォロェチ ルメチル、アクリル酸 2—パーフルォ口へキシルェチル、アクリル酸 2—パーフルォロ デシルェチル、アクリル酸 2—パーフルォ口へキサデシルェチルなどのアクリル酸フッ 化アルキルエステルなどをあげることができる。  [0047] Examples of acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, n-hexyl acrylate, and acrylic. Acrylic aliphatic hydrocarbons such as n-heptyl acid, n-octyl acrylate, 2-ethylhexyl acrylate, noel acrylate, decyl acrylate, dodecyl acrylate, stearyl acrylate, etc. ~ 18 alkyl) esters; Acrylic alicyclic hydrocarbon esters such as cyclohexyl acrylate and isoborn acrylate; Acrylic aromatic hydrocarbon esters such as acrylic and acrylic acid toluene; Acrylic acid Aralkylesters such as benzyl; 2-methoxyethyl acrylate Esters of acrylic acid such as 3-methoxybutyl acrylate and functional group-containing alcohols having etheric oxygen; trifluoromethyl acrylate, 2-trifluoromethyl acrylate, 2-perfluoroethyl acrylate, acrylic Acid 2-Perfluoroethyl 2-Perfluorobutylethyl, Acrylic acid 2-Perfluoroethyl, Perfluoromethyl acrylate, Difluoromethylmethyl acrylate, Acrylic acid 2- Examples thereof include alkyl fluorinated alkyl esters such as perfluoromethyl-2-perfluoromethyl, 2-perfluorohexyl acrylate, 2-perfluorodecyl acrylate, 2-perfluorohexyl acrylate, and the like.
[0048] 芳香族ァルケ-ル化合物としては、たとえば、スチレン、 α—メチルスチレン、 ρ—メ チノレスチレン、 ρ—メトキシスチレンなどをあげることができる。 [0049] シアン化ビュル化合物としては、たとえば、アクリロニトリル、メタタリ口-トリルなどを あげることができる。 [0048] Examples of the aromatic alkenyl compound include styrene, α-methylstyrene, ρ-methylolstyrene, ρ-methoxystyrene, and the like. [0049] Examples of the cyanide bur compound include acrylonitrile and meta-tallow-tolyl.
[0050] 共役ジェン系化合物としては、たとえば、ブタジエン、イソプレンなどをあげることが できる。  [0050] Examples of the conjugation compound include butadiene and isoprene.
[0051] ハロゲン含有不飽和化合物としては、たとえば、塩化ビニル、塩ィ匕ビユリデン、パー フルォロエチレン、パーフルォロプロピレン、フッ化ビ-リデンなどをあげることができ る。  [0051] Examples of the halogen-containing unsaturated compound include vinyl chloride, vinylidene chloride, perfluoroethylene, perfluoropropylene, and vinylidene fluoride.
[0052] ビュルエステル化合物としては、たとえば、酢酸ビュル、プロピオン酸ビュル、ピバリ ン酸ビュル、安息香酸ビュル、桂皮酸ビニルなどをあげることができる。  [0052] Examples of the burester compound include butyl acetate, butyl propionate, butyl pivalate, benzoate, and vinyl cinnamate.
[0053] マレイミド系化合物としては、たとえば、マレイミド、メチルマレイミド、ェチルマレイミ ド、プロピルマレイミド、ブチルマレイミド、へキシルマレイミド、ォクチルマレイミド、ド デシルマレイミド、ステアリルマレイミド、フエ-ルマレイミド、シクロへキシルマレイミド などをあげることができる。  [0053] Examples of maleimide compounds include maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenolmaleimide, and cyclohexylmaleimide. I can give you.
[0054] これらの化合物は、それぞれ単独で又は 2種以上組み合わせて用いることができる 。これらのビニル系単量体は、メタアクリル系重合体ブロック (a)に要求されるガラス転 移温度の調整、アクリル系ブロック体 (b)との相溶性などの観点力 好ましいものを選 択する。  [0054] These compounds may be used alone or in combination of two or more. These vinyl monomers are preferably selected from the viewpoints of adjusting the glass transition temperature required for the methacrylic polymer block (a) and compatibility with the acrylic block (b). .
[0055] 特に、パウダースラッシュ成形の場合は無加圧下でも榭脂が流動する必要があるが 、メタアクリル系重合体ブロック(a)の凝集力やガラス転移温度 Tgaが上昇すると、榭 脂の溶融粘度が高くなり、成形性が悪くなる傾向にある。このため、メタアクリル系重 合体ブロック (a)のガラス転移温度は、エラストマ一組成物の熱変形性の観点および 成形性の観点から、 25〜130°Cが好ましぐより好ましくは 50〜130°C、さらに好まし くは 70〜100°Cである。この点から、メタアクリル系重合体ブロック(a)は、メタアクリル 酸メチルを主成分とするのが望ましぐメタアクリル系重合体ブロック (a)のガラス転移 温度を調整する目的で、アクリル酸ェチル、アクリル酸 n ブチルおよびアクリル酸 2—メトキシェチルカ なる群力 選ばれる少なくとも 1種の単量体を重合すること が好ましい。このうち、メタアクリル酸メチルとの相溶性の点でアクリル酸ェチルが特に 好ましい。 [0056] なお、メタアクリル系重合体ブロック(a)の Tgaの設定は、前記の Fox式に従!、、各 重合体部分の単量体の重量比率を設定することにより行なうことができる。 [0055] In particular, in the case of powder slush molding, it is necessary for the resin to flow even under no pressure. However, if the cohesive strength of the methacrylic polymer block (a) and the glass transition temperature Tga increase, the resin melt Viscosity increases and moldability tends to deteriorate. For this reason, the glass transition temperature of the methacrylic polymer block ( a ) is preferably from 25 to 130 ° C, more preferably from 50 to 130, from the viewpoint of thermal deformation and moldability of the elastomer composition. ° C, more preferably 70-100 ° C. From this point, the methacrylic polymer block (a) is used for the purpose of adjusting the glass transition temperature of the methacrylic polymer block (a), which is desirably composed mainly of methyl methacrylate. It is preferable to polymerize at least one monomer selected from the group power of ethyl, n-butyl acrylate and 2-methoxyethyl acrylate. Of these, ethyl acrylate is particularly preferred from the viewpoint of compatibility with methyl methacrylate. [0056] The Tga of the methacrylic polymer block (a) can be set by setting the weight ratio of the monomers in each polymer portion according to the Fox formula.
[0057] また、水酸基を有する単位量体単位 (X)をメタアクリル系重合体ブロック (a)に有す る場合は、貯蔵安定性と入手性の観点から、メタアクリル酸 n—プチル、アクリル酸 n —プチルカもなる群力 選ばれる少なくとも 1種の単量体を単量体単位 (y)として重 合することが好ましい。なお、本願においては、メタアクリル系重合体ブロック (a)中の 単量体単位 (X)を除くすべての単量体が単量体単位 (y)であっても、一部が単量体 単位 (y)であってもよい。  [0057] When the unit polymer unit (X) having a hydroxyl group is contained in the methacrylic polymer block (a), from the viewpoint of storage stability and availability, n-butyl methacrylate, acrylic It is preferable that at least one monomer selected from the group power of acid n-ptylca is overlapped as a monomer unit (y). In the present application, even if all the monomers other than the monomer unit (X) in the methacrylic polymer block (a) are monomer units (y), some of the monomers are monomer units. Unit (y) may be used.
[0058] <アクリル系重合体ブロック(b) >  [0058] <Acrylic polymer block (b)>
アクリル系重合体ブロック(b)は、アクリル酸エステルを主成分とする単量体を重合 してなるブロックであり、アクリル酸エステル 50〜: L00重量%ぉよびこれと共重合可能 なビュル系単量体 0〜50重量%とからなることが好まし!/、。アクリル酸エステルの割 合が 50重量%未満であると、アクリル酸エステルを用いた場合の特徴である組成物 の物性、とくに柔軟性、耐油性が損なわれる場合がある。  The acrylic polymer block (b) is a block obtained by polymerizing a monomer having an acrylic ester as a main component. The acrylic ester block 50-: L00% by weight and a bulle type copolymer copolymerizable therewith. It is preferable to consist of 0-50% by weight of the mass! /. If the proportion of acrylic acid ester is less than 50% by weight, the physical properties of the composition, particularly flexibility and oil resistance, which are characteristic when acrylic acid ester is used, may be impaired.
[0059] アクリル系重合体ブロック(b)を構成するアクリル酸エステルとしては、たとえば、メタ アクリル系重合体ブロック (a)を構成する単量体として例示したアクリル酸エステルと 同様の単量体をあげることができる。これらは単独でまたはこれらの 2種以上を組み 合わせて用いることができる。これらの中でも、ゴム弾性、低温特性およびコストのバ ランスの点で、アクリル酸 n—ブチルが好ましい。耐油性と機械特性が必要な場合 は、アクリル酸ェチルが好ましい。また、低温特性と耐油性の付与、および榭脂の表 面タック性の改善が必要な場合は、アクリル酸— 2—メトキシェチルが好ましい。また 、耐油性および低温特性のバランスが必要な場合は、アクリル酸ェチル、アクリル酸 n ブチルおよびアクリル酸 2—メトキシェチルを組み合わせて用 、るのが好ま しい。 [0059] As the acrylic ester constituting the acrylic polymer block (b), for example, the same monomer as the acrylic ester exemplified as the monomer constituting the methacrylic polymer block ( a ) is used. I can give you. These can be used alone or in combination of two or more thereof. Among these, n-butyl acrylate is preferable from the viewpoint of rubber elasticity, low temperature characteristics and cost balance. Ethyl acrylate is preferred when oil resistance and mechanical properties are required. In addition, when it is necessary to impart low temperature characteristics and oil resistance and to improve the surface tackiness of the resin, acrylic acid-2-methoxyethyl is preferred. In addition, when a balance between oil resistance and low temperature characteristics is required, it is preferable to use a combination of ethyl acrylate, n-butyl acrylate and 2-methoxyethyl acrylate.
[0060] アクリル系重合体ブロック(b)は、コストや物性バランスの点で、アクリル酸 n—ブ チル、アクリル酸ェチルおよび、アクリル酸 2—メトキシェチルカ なる群より選ばれ る少なくとも 1種の単量体 50〜: L00重量%と、これらと共重合可能な他のアクリル酸 エステルおよび Z又は他のビュル系単量体 50〜0重量0 /0からなることがより好ましい [0061] アクリル系重合体ブロック (b)を構成するアクリル酸エステルと共重合可能なビュル 系単量体としては、たとえば、メタアクリル酸エステル、芳香族アルケニル化合物、シ アン化ビニル化合物、共役ジェン系化合物、ハロゲン含有不飽和化合物、ケィ素含 有不飽和化合物、不飽和カルボン酸化合物、不飽和ジカルボン酸化合物、ビニルェ ステル化合物、マレイミド系化合物などをあげることができ、これらの具体例としては、 メタアクリル系重合体ブロック(a)に用いられる前記のものと同様のものをあげることが できる。 [0060] The acrylic polymer block (b) is at least one monomer selected from the group consisting of n-butyl acrylate, ethyl acrylate, and 2-methoxyethyl acrylate in terms of cost and physical property balance. body 50 to: L00 and weight%, and more preferably made of these with other copolymerizable acrylic acid ester and Z, or other Bulle monomer 50 to 0 weight 0/0 [0061] Examples of the butyl monomer copolymerizable with the acrylate ester constituting the acrylic polymer block (b) include methacrylic acid esters, aromatic alkenyl compounds, vinyl cyanide compounds, and conjugate conjugates. Compounds, halogen-containing unsaturated compounds, silicon-containing unsaturated compounds, unsaturated carboxylic acid compounds, unsaturated dicarboxylic acid compounds, vinyl ester compounds, maleimide compounds, and the like. Specific examples of these include: The thing similar to the above-mentioned thing used for a methacrylic polymer block (a) can be mention | raise | lifted.
[0062] これらのビュル系単量体は、それぞれ単独で又は 2種以上を組み合わせて用いる ことができる。これらのビュル系単量体は、アクリル系重合体ブロック(b)に要求される ガラス転移温度および耐油性、メタアクリル系重合体ブロック (a)との相溶性などのバ ランスを勘案して、適宜好ましいものを選択する。たとえば、組成物の耐油性の向上 を目的とした場合、アクリロニトリルを共重合するとよい。  [0062] These bull monomers can be used alone or in combination of two or more. These bull monomers take into account the balance of the glass transition temperature and oil resistance required for the acrylic polymer block (b) and compatibility with the methacrylic polymer block (a). A preferable one is appropriately selected. For example, acrylonitrile may be copolymerized for the purpose of improving the oil resistance of the composition.
[0063] アクリル系重合体ブロック (b)のガラス転移温度は、エラストマ一組成物の柔軟性や 、ゴム弾性の観点から、 25°C以下であるのが好ましぐより好ましくは 0°C以下、さらに 好ましくは— 20°C以下である。アクリル系重合体ブロック (b)のガラス転移温度がエラ ストマー組成物の使用される環境の温度より高いと、柔軟性や、ゴム弾性が発現され にくい。  [0063] The glass transition temperature of the acrylic polymer block (b) is preferably 25 ° C or less, more preferably 0 ° C or less, from the viewpoint of flexibility of the elastomer composition and rubber elasticity. More preferably, it is −20 ° C. or lower. When the glass transition temperature of the acrylic polymer block (b) is higher than the temperature of the environment in which the elastomer composition is used, flexibility and rubber elasticity are hardly exhibited.
[0064] アクリル系重合体ブロック(b)の Tgbの設定は、前記の Fox式に従 、、各重合体部 分の単量体の重量比率を設定することにより行なうことができる。  [0064] The Tgb of the acrylic polymer block (b) can be set by setting the monomer weight ratio of each polymer portion according to the Fox formula.
[0065] また、水酸基を有する単位量体単位 (X)をアクリル系重合体ブロック (b)に有する場 合は、貯蔵安定性と入手性の観点から、単量体単位 (y)はメタアクリル酸 n—ブチル が好ましい。なお、本願においては、アクリル系重合体ブロック (b)中の単量体単位( X)を除くすべての単量体が単量体単位 (y)であっても、一部が単量体単位 (y)であ つてもよい。  [0065] When the acrylic polymer block (b) has a unit monomer unit (X) having a hydroxyl group, the monomer unit (y) is methacrylic from the viewpoint of storage stability and availability. The acid n-butyl is preferred. In the present application, even if all the monomers except the monomer unit (X) in the acrylic polymer block (b) are monomer units (y), some of the monomers are monomer units. It may be (y).
[0066] <酸無水物基およびカルボキシル基 >  [0066] <Acid anhydride group and carboxyl group>
メタアクリル系重合体ブロック(a)および Zまたはアクリル系重合体ブロック (b)に存 在する酸無水物基およびカルボキシル基は、通常、ブロック共重合体 (A)が高分子 量化または架橋されるための反応点または架橋点として作用する。酸無水物基およ びカルボキシル基は、酸無水物基およびカルボキシル基を適当な保護基で保護した 形、または、酸無水物基およびカルボキシル基の前駆体となる形でブロック共重合体 に導入し、そののちに公知の所定の化学反応で酸無水物基およびカルボキシル基 を生成させることちできる。 The block copolymer (A) is usually a polymer of the acid anhydride group and carboxyl group present in the methacrylic polymer block (a) and Z or acrylic polymer block (b). It acts as a reaction point or crosslinking point for quantification or crosslinking. The acid anhydride group and carboxyl group are introduced into the block copolymer in a form in which the acid anhydride group and carboxyl group are protected with an appropriate protective group, or as a precursor of the acid anhydride group and carboxyl group. Thereafter, an acid anhydride group and a carboxyl group can be generated by a known chemical reaction.
[0067] 酸無水物基およびカルボキシル基の含有数は、酸無水物基およびカルボキシル基 の凝集力、反応性、アクリル系ブロック共重合体 (A)の構造および組成、アクリル系 ブロック共重合体 (A)を構成するブロックの数、ガラス転移温度によって変化させ、そ の数は必要に応じて適宜設定する必要があるが、好ましくはブロック共重合体 1分子 あたり 1. 0個以上、より好ましくは 2. 0個以上とする。これは、 1. 0個より少なくなると 、ブロック共重合体の高分子量ィ匕ゃ架橋による耐熱性向上が不十分になる傾向があ るためである。  [0067] The content of the acid anhydride group and carboxyl group is determined by the cohesive strength of the acid anhydride group and carboxyl group, the reactivity, the structure and composition of the acrylic block copolymer (A), the acrylic block copolymer ( The number of blocks constituting A) varies depending on the glass transition temperature, and the number must be appropriately set as necessary, but is preferably 1.0 or more, more preferably, per block copolymer molecule. 2. Zero or more. This is because if the number is less than 1.0, the heat resistance of the block copolymer due to high molecular weight or crosslinking tends to be insufficient.
[0068] ただし、酸無水物基やカルボキシル基を導入することによりメタアクリル系重合体ブ ロック(a)やアクリル系重合体ブロック (b)の凝集力やガラス転移温度が上昇すると、 柔軟性、ゴム弾性、低温特性が悪ィ匕する傾向にある。このため、酸無水物基やカル ボキシル基は、アクリル系ブロック共重合体 (A)の柔軟性、ゴム弾性、低温特性が悪 化しない範囲で導入するのが好ましい。具体的には、酸無水物基やカルボキシル基 をアクリル系重合体ブロック (b)に導入する場合は、アクリル系重合体ブロック (b)の ガラス転移温度が 25°C以下になるような範囲で導入するのが好ましぐ 0°C以下にな るようにするのがより好ましぐ—20°C以下になるようにするのが更に好ましい。酸無 水物基やカルボキシル基をアクリル系重合体ブロック(a)に導入する場合は、良好な 溶融流動性を確保するために、ガラス転移温度が 130°C以下になるように調整する ことが好ましい。  [0068] However, when an acid anhydride group or a carboxyl group is introduced to increase the cohesive force or glass transition temperature of the methacrylic polymer block (a) or the acrylic polymer block (b), flexibility, Rubber elasticity and low temperature characteristics tend to be poor. For this reason, it is preferable to introduce an acid anhydride group or a carboxyl group as long as the flexibility, rubber elasticity, and low temperature characteristics of the acrylic block copolymer (A) are not deteriorated. Specifically, when an acid anhydride group or a carboxyl group is introduced into the acrylic polymer block (b), the acrylic polymer block (b) has a glass transition temperature of 25 ° C or lower. It is preferable to introduce it to 0 ° C or less, more preferably -20 ° C or less. When introducing an acid anhydride group or carboxyl group into the acrylic polymer block (a), the glass transition temperature may be adjusted to 130 ° C or lower in order to ensure good melt fluidity. preferable.
[0069] 以下に、酸無水物基およびカルボキシル基のそれぞれについて更に詳細に説明 する。  [0069] Hereinafter, each of the acid anhydride group and the carboxyl group will be described in more detail.
[0070] <酸無水物基 >  [0070] <Acid anhydride group>
組成物中に活性プロトンを有する化合物を含有する場合、酸無水物基はエポキシ 基等の反応性官能基と容易に反応する。酸無水物基の導入位置は、特に限定され るものではなぐ酸無水物基は、メタアクリル系重合体ブロック (a)、アクリル系重合体 ブロック (b)の主鎖中に導入されていても良いし、側鎖に導入されていても良い。酸 無水物基はカルボキシル基の無水物基であり、メタアクリル系重合体ブロック(a)およ びアクリル系 o CH When the composition contains a compound having an active proton, the acid anhydride group easily reacts with a reactive functional group such as an epoxy group. The position of acid anhydride group introduction is particularly limited. In other words, the acid anhydride group may be introduced into the main chain of the methacrylic polymer block (a) or the acrylic polymer block (b), or may be introduced into the side chain. . An acid anhydride group is an anhydride group of a carboxyl group, which is a methacrylic polymer block (a) and an acrylic o CH
I重 2 合体ブロック (b)への導入の容易性から、主鎖中へ導入されているこ とが好ましぐ具体的には一般式 (3)で表される。一般式 (3):  Specifically, it is preferably introduced into the main chain because of its ease of introduction into the I-duplex block (b), represented by the general formula (3). General formula (3):
[0071] [化 7]  [0071] [Chemical 7]
Figure imgf000020_0001
Figure imgf000020_0001
[0072] (式中、 R3は水素またはメチル基で、 2つの R°は互いに同一でも異なっていてもよい 。 tは 0〜3の整数、 sは 0または 1の整数)で表される形で含有される。 [In the formula, R 3 is hydrogen or a methyl group, two R ° may be the same or different from each other, t is an integer of 0 to 3, and s is an integer of 0 or 1] Contained in the form.
[0073] 一般式(1)中の tは 0〜3の整数であって、好ましくは 0または 1であり、より好ましく は 1である。 tが 4以上の場合は、重合が煩雑になったり、酸無水物基の環化が困難 になる傾向にある。  [0073] t in the general formula (1) is an integer of 0 to 3, preferably 0 or 1, and more preferably 1. When t is 4 or more, polymerization tends to be complicated, and cyclization of the acid anhydride group tends to be difficult.
[0074] 酸無水物基の導入方法としては、酸無水物基の前駆体の形でアクリル系ブロック共 重合体に導入し、そののちに環化させることが好ましい。特に、一般式 (4):  [0074] As a method for introducing the acid anhydride group, it is preferable to introduce the acid anhydride group into the acrylic block copolymer in the form of a precursor of the acid anhydride group, and then cyclize it. In particular, the general formula (4):
[0075] [化 8] [0075] [Chemical 8]
Figure imgf000020_0002
Figure imgf000020_0002
R1 R 1
[0076] (式中、 R4は水素またはメチル基を表わす。 R5は水素、メチル基またはフエ-ル基を 表わし、 3つの R5のうち少なくとも 2つはメチル基および Zまたはフエ-ル基力 選ば れ、 3つの R5は互いに同一でも異なっていてもよい。)で表される単位を少なくとも 1 つ有するアクリル系ブロック共重合体を溶融混練して、環化導入することが好まし 、。 [In the formula, R 4 represents hydrogen or a methyl group. R 5 represents hydrogen, a methyl group or a phenyl group. And at least two of the three R 5 groups are selected from a methyl group and a Z or phenyl group, and the three R 5 groups may be the same or different. It is preferable to melt-knead an acrylic block copolymer having at least one unit represented by) and introduce cyclization.
[0077] メタアクリル系重合体ブロック(a)およびアクリル系重合体ブロック(b)への一般式 (4 )で表される単位の導入は、一般式 (4)に由来するアクリル酸エステル、またはメタァ クリル酸エステル単量体を共重合することによって行なうことができる。単量体として は、(メタ)アクリル酸 tーブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸 α , α—ジメチルベンジル、(メタ)アクリル酸 α—メチルベンジルなどがあげられるが、 これらに限定するものではない。これらのなかでも、入手性や重合容易性、酸無水物 基生成容易性などの点から (メタ)アクリル酸— t ブチルが好ましい。なお、本願に おいて、(メタ)アクリル酸とは、アクリル酸およびメタアクリル酸を意味する。 [0077] Introduction of the unit represented by the general formula (4) into the methacrylic polymer block (a) and the acrylic polymer block (b) is an acrylate ester derived from the general formula (4), or This can be carried out by copolymerizing a methacrylic acid ester monomer. Monomers include t-butyl (meth) acrylate, isopropyl (meth) acrylate, α, α-dimethylbenzyl (meth) acrylate, α-methylbenzyl (meth) acrylate, and the like. It is not limited. Among these, (meth) acrylic acid-t-butyl is preferable from the viewpoints of availability, ease of polymerization, and ease of acid anhydride group formation. In the present application, (meth) acrylic acid means acrylic acid and methacrylic acid.
[0078] 酸無水物基の形成は、酸無水物基の前駆体を有するアクリル系ブロック共重合体 を高温下で加熱することにより行なうのが好ましぐ 180〜300°Cで加熱することが好 ましい。 180°Cより低いと酸無水物基の生成が不十分となる傾向があり、 300°Cより高 くなると、酸無水物基の前駆体を有するアクリル系ブロック共重合体自体が分解する ことがある。  [0078] The formation of the acid anhydride group is preferably performed by heating the acrylic block copolymer having a precursor of the acid anhydride group at a high temperature at 180 to 300 ° C. It is preferable. When the temperature is lower than 180 ° C, the acid anhydride groups are likely to be insufficiently generated. When the temperature is higher than 300 ° C, the acrylic block copolymer having a precursor of the acid anhydride group itself may be decomposed. is there.
[0079] <カルボキシル基 >  [0079] <Carboxyl group>
カルボキシル基は、エポキシ基等の反応性官能基と容易に反応する。カルボキシ ル基の導入位置は、特に限定されるものではなぐカルボキシル基は、メタアクリル系 重合体ブロック(a)、アクリル系重合体ブロック(b)の主鎖中に導入されて 、ても良!ヽ し、側鎖に導入されていても良いが、メタアクリル系重合体ブロック (a)およびアクリル 系重合体ブロック (b)への導入の容易性から、主鎖中へ導入されていることが好まし い。 The carboxyl group easily reacts with a reactive functional group such as an epoxy group. The introduction position of the carboxyl group is not particularly limited. The carboxyl group may be introduced into the main chain of the methacrylic polymer block ( a ) or the acrylic polymer block (b)! However, it may be introduced into the side chain, but it may be introduced into the main chain for ease of introduction into the methacrylic polymer block (a) and the acrylic polymer block (b). I like it.
[0080] カルボキシル基の導入は、カルボキシル基を有する単量体が重合条件下で触媒を 被毒することがない場合は、重合により直接導入することにより行なうのが好ましぐ力 ルポキシル基を有する単量体が重合時に触媒を失活させるおそれがある場合には、 官能基変換によりカルボキシル基を導入する方法により行なうのが好ましい。  [0080] When the monomer having a carboxyl group does not poison the catalyst under the polymerization conditions, it is preferable to introduce the carboxyl group directly by polymerization. When there is a possibility that the monomer deactivates the catalyst during polymerization, it is preferable to carry out by a method of introducing a carboxyl group by functional group conversion.
[0081] 官能基変換によりカルボキシル基を導入する方法では、カルボキシル基を適当な 保護基で保護した形、または、カルボキシル基の前駆体となる官能基の形でアクリル 系ブロック共重合体に導入し、そののちに公知の所定の化学反応で官能基を生成さ せることができる。 [0081] In the method of introducing a carboxyl group by functional group conversion, an appropriate carboxyl group is used. It can be introduced into an acrylic block copolymer in a form protected with a protective group or in the form of a functional group that is a precursor of a carboxyl group, and then a functional group can be generated by a known chemical reaction. .
[0082] カルボキシル基を有するアクリル系ブロック共重合体 (A)の合成方法としては、たと えば、(メタ)アクリル酸 t—ブチル、(メタ)アクリル酸トリメチルシリルなどのように、カル ボキシル基の前駆体となる官能基を有する単量体を含むアクリル系ブロック共重合 体を合成し、加水分解もしくは酸分解など公知の化学反応によってカルボキシル基 を生成させる方法 (特開平 10— 298248号公報、特開 2001— 234146号公報)や、 一般式 (4) :  [0082] As a synthesis method of the acrylic block copolymer (A) having a carboxyl group, for example, a precursor of a carboxyl group such as t-butyl (meth) acrylate and trimethylsilyl (meth) acrylate is used. A method of synthesizing an acrylic block copolymer containing a monomer having a functional group to form a carboxyl group by a known chemical reaction such as hydrolysis or acid decomposition (JP 10-298248 A, JP 2001—234146) and general formula (4):
[0083] [化 9] [0083] [Chemical 9]
Figure imgf000022_0001
Figure imgf000022_0001
R 5  R 5
[0084] (式中、 R4は水素またはメチル基を表わす。 R5は水素、メチル基またはフエ-ル基を 表わし、 3つの R5のうち少なくとも 2つはメチル基および Zまたはフエ-ル基力 選ば れ、 3つの R5は互いに同一でも異なっていてもよい。)で表わされる単位を少なくとも 1 つ有するアクリル系ブロック共重合体を、溶融混練して導入する方法がある。一般式 (4)で示される単位は、高温下でエステルユニットが分解してカルボキシル基を生成 し、そのカルボキシル基の一部が環化することにより生成する。これを利用して、一般 式 (4)で示される単位の種類や含有量に応じて、加熱温度や時間を適宜調整するこ とでカルボキシル基を導入することができる。 [In the formula, R 4 represents hydrogen or a methyl group. R 5 represents hydrogen, a methyl group or a phenol group, and at least two of the three R 5 groups are a methyl group and Z or a phenyl group. selected group forces, the acrylic block copolymer having at least one unit represented by the three R 5 may be the same or different.), there is a method of introducing by melt kneading. The unit represented by the general formula (4) is produced by decomposition of an ester unit at a high temperature to form a carboxyl group, and a part of the carboxyl group is cyclized. Utilizing this, the carboxyl group can be introduced by appropriately adjusting the heating temperature and time according to the type and content of the unit represented by the general formula (4).
[0085] また、上述の酸無水物基を加水分解することにより、カルボキシル基を導入すること も可能である。  [0085] It is also possible to introduce a carboxyl group by hydrolyzing the above acid anhydride group.
[0086] <水酸基 >  [0086] <Hydroxyl group>
(単量体単位 (X) ) 単量体単位 )の水酸基は、化合物 (B)の反応性官能基 (d)と容易に反応する。こ の水酸基は、反応性官能基 (d)をする化合物 (B)との反応点として作用すればよぐ ブロック共重合体が高分子量ィ匕または架橋されるための反応点または架橋点として 作用することが好ましい。 (Monomer unit (X)) The hydroxyl group of the monomer unit) easily reacts with the reactive functional group (d) of the compound (B). This hydroxyl group only needs to act as a reaction point with the compound (B) having a reactive functional group (d). The block copolymer acts as a reaction point or a crosslinking point for high molecular weight or crosslinking. It is preferable to do.
[0087] 本発明にお ヽて、水酸基を有する単量体単位 (X)は、本発明に係る熱可塑性エラ ストマー組成物から得られる成形体に耐薬品性やゴム弾性を付与しつつ、高温での 機械特性を保持させるために、一般式(1):  In the present invention, the monomer unit (X) having a hydroxyl group has a high temperature while imparting chemical resistance and rubber elasticity to a molded product obtained from the thermoplastic elastomer composition according to the present invention. In order to maintain the mechanical properties of the general formula (1):
[0088] [化 10]  [0088] [Chemical 10]
Figure imgf000023_0001
Figure imgf000023_0001
[0089] (式中の R1は水素またはメチル基を表す。式中の p、 mはそれぞれ 1以上の整数) で表される単量体単位の形で、メタアクリル系重合体ブロック(a)および Zまたはァク リル系重合体ブロック (b)に、一分子当たり平均 1. 0個以上導入される。 [0089] (wherein R 1 represents hydrogen or a methyl group. In the formula, p and m are each an integer of 1 or more) in the form of a monomer unit represented by ) And Z or acryl-based polymer block (b) are introduced in an average of 1.0 or more per molecule.
[0090] 単量体単位 )の含有数は、化合物(B)との反応性、アクリル系ブロック共重合体( A)の構造および組成、アクリル系ブロック共重合体 (A)を構成するブロックの数、ガ ラス転移温度によって変化させる。その数は必要に応じて適宜設定する必要がある 力 ブロック共重合体 1分子あたり 1. 0個以上、好ましくは 2. 0個以上とする。これは 、 1. 0個より少なくなると、ブロック共重合体の高分子量ィ匕ゃ架橋による耐熱性向上 が不十分になる場合があるためである。  [0090] The content of the monomer unit) is the reactivity with the compound (B), the structure and composition of the acrylic block copolymer (A), and the block constituting the acrylic block copolymer (A). The number varies depending on the glass transition temperature. It is necessary to set the number appropriately according to need. Force Block copolymer It is 1.0 or more, preferably 2.0 or more per molecule. This is because if the number is less than 1.0, improvement in heat resistance due to high molecular weight or crosslinking of the block copolymer may be insufficient.
[0091] 単量体単位 )のブロック共重合体 (A)への導入方法は、特に限定されな!、が、水 酸基を含有する (メタ)アクリルモノマーをブロック共重合体 (A)の重合時に直接重合 してもよく、ブロック共重合体 (A)を重合した後に、ジオール成分にてエステルイ匕反 応ゃエステル交換反応を利用して導入しても良い。反応が容易である点から、水酸 基を含有する (メタ)アクリルモノマーをブロック共重合体 (A)の重合時に直接重合す ることが好ましい。 [0091] The method for introducing the monomer unit) into the block copolymer (A) is not particularly limited! However, a (meth) acrylic monomer containing a hydroxyl group is converted into the block copolymer (A). The polymerization may be performed directly at the time of polymerization, or after the block copolymer (A) is polymerized, it may be introduced using an esterification reaction or a transesterification reaction with a diol component. From the viewpoint of easy reaction, a (meth) acrylic monomer containing a hydroxyl group is directly polymerized during the polymerization of the block copolymer (A). It is preferable.
[0092] ここで、本願にお!、て、(メタ)アクリルとは、アクリルまたはメタアクリルを意味する。  Here, in the present application, “(meth) acryl” means acrylic or methacryl.
[0093] 具体的な (メタ)アクリルモノマーとしては、(メタ)アクリル酸— 2—ヒドロキシェチル、  [0093] Specific (meth) acrylic monomers include (meth) acrylic acid-2-hydroxyethyl,
(メタ)アクリル酸— 2—ヒドロキシプロピル、(メタ)アクリル酸— 3—ヒドロキシプロピル、 (メタ)アクリル酸— 4—ヒドロキシブチルなどが例示される。これらの化合物は、それ ぞれ単独で又は 2種以上を組み合わせて用いることができる。このうち、(メタ)アタリ ル酸一 2—ヒドロキシェチル、(メタ)アクリル酸一 2—ヒドロキシプロピル、(メタ)アタリ ル酸ー 4ーヒドロキシプチルカ 重合が容易である点や、入手容易性の点で好ましい 。さらには、得られる熱可塑性エラストマ一組成物の長期保存時に水酸基とエポキシ 基が反応して、成形性が悪化することを抑制する (長期にわたる貯蔵安定性を良好 に保つ)観点から、(メタ)アクリル酸— 2—ヒドロキシェチルがより好ま 、。  Examples include (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid-3-hydroxypropyl, (meth) acrylic acid-4-hydroxybutyl, and the like. These compounds can be used alone or in combination of two or more. Among these, (2-methyoxy) ethyl 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid-4-hydroxyptylca are easy to polymerize and are readily available. From the point of view, it is preferable. Furthermore, from the viewpoint of suppressing deterioration of moldability due to reaction of hydroxyl groups and epoxy groups during long-term storage of the resulting thermoplastic elastomer composition (maintaining long-term storage stability), (meta) Acrylic acid-2-hydroxyethyl is preferred.
[0094] <アクリル系ブロック共重合体 (A)の製法 >  [0094] <Method for producing acrylic block copolymer (A)>
アクリル系ブロック共重合体 (A)を製造する方法としては、とくに限定されないが、 開始剤を用いた制御重合を用いることが好ましい。制御重合としては、リビングァ-ォ ン重合や連鎖移動剤を用いるラジカル重合、近年開発されたリビングラジカル重合 があげられる。なかでも、リビングラジカル重合力 アクリル系ブロック共重合体の分子 量および構造の制御の点から好ま 、。  The method for producing the acrylic block copolymer (A) is not particularly limited, but it is preferable to use controlled polymerization using an initiator. Examples of controlled polymerization include living ion polymerization, radical polymerization using a chain transfer agent, and recently developed living radical polymerization. Especially, living radical polymerization power is preferred from the viewpoint of control of molecular weight and structure of acrylic block copolymer.
[0095] リビングラジカル重合は、重合末端の活性が失われることなく維持されるラジカル重 合である。リビング重合とは狭義においては、末端が常に活性をもち続ける重合のこ とを指すが、一般には、末端が不活性化されたものと活性化されたものが平衡状態 にある擬リビング重合も含まれる。ここでの定義も後者である。  [0095] Living radical polymerization is radical polymerization in which the activity at the polymerization terminal is maintained without loss. In the narrow sense, living polymerization refers to polymerization in which the terminal always has activity, but generally includes pseudo-living polymerization in which the terminal is inactivated and the terminal is in equilibrium. It is. The definition here is also the latter.
[0096] リビングラジカル重合は、近年様々なグループで積極的に研究がなされて ヽる。そ の例としては、ポリスルフイドなどの連鎖移動剤を用いるもの、コバルトボルフイリン錯 体(ジャーナル'ォブ 'アメリカン 'ケミカル'ソサエティ (J. Am. Chem. Soc. )、 1994 年、第 116卷、 7943頁)や-トロキシドィ匕合物などのラジカル捕捉剤を用いるもの(マ クロモレキュールズ(Macromolecules)ゝ 1994年、第 27卷、 7228頁)、有機ハロゲ ン化物などを開始剤とし遷移金属錯体を触媒とする原子移動ラジカル重合 (Atom Transfer Radical Polymerization : ATRP)などをあげることができる。本発明に おいて、これらのうちいずれの方法を使用するかはとくに制約はないが、制御の容易 さの点など力 原子移動ラジカル重合が好ましい。 [0096] Living radical polymerization has been actively researched by various groups in recent years. Examples include those using chain transfer agents such as polysulfide, cobalt borphyrin complex (Journal 'Ob' American 'Chemical' Society, J. Am. Chem. Soc., 1994, Vol. 116, 7943) and -troxide compounds and other radical scavengers (Macromolecules ゝ 1994, pp. 27, 7228), organic halides and other transition metal complexes as initiators Atom Transfer Radical Polymerization (ATRP) and the like. In the present invention There is no particular restriction as to which of these methods is used, but force atom transfer radical polymerization is preferred in terms of ease of control.
[0097] 原子移動ラジカル重合の具体例としては、特開 2004— 107447号公報に記載さ れて 、る方法をあげることができる。  [0097] Specific examples of atom transfer radical polymerization include the method described in JP-A-2004-107447.
[0098] 官能基 (c)として近接の構造によって立体的に保護された水酸基を有するアクリル 系ブロック共重合体 (A)の場合、アクリルブロック共重合体 (A)に単量体単位 )と、 単位 (X)の両側かつ単位 (X)に近接して単量体単位 (y)を導入する必要がある。この 方法としては、例えば、単量体単位 (X)および (y)以外の重合体構成成分と単量体 単位 (X) , (y)を所望の構造をとるように逐次添加して重合させる方法や、単量体 (X) および (y)の反応速度と仕込み量を調整して重合を行なう方法 (たとえば、単量体 (X )と (y)の実際の反応系での反応速度が同一なら (y)を (X)の 2倍量以上仕込めば良 い)等が挙げられる。  [0098] In the case of an acrylic block copolymer (A) having a hydroxyl group sterically protected by an adjacent structure as the functional group (c), a monomer unit) in the acrylic block copolymer (A), and It is necessary to introduce the monomer unit (y) on both sides of the unit (X) and close to the unit (X). As this method, for example, polymer components other than the monomer units (X) and (y) and the monomer units (X) and (y) are sequentially added and polymerized so as to have a desired structure. The polymerization method by adjusting the reaction rate and amount of monomers (X) and (y) (for example, the reaction rate of monomers (X) and (y) in the actual reaction system is If they are the same, (y) should be charged more than twice the amount of (X)).
[0099] <化合物(B) >  [0099] <Compound (B)>
本発明に係る熱可塑性エラストマ一組成物を構成する化合物 (B)は、一分子中に 1. 1個以上の反応性官能基 (d)を有する重合体である。化合物(B)は、組成物の成 形時に可塑剤として成形流動性を向上させると同時に、成形時にアクリル系ブロック 共重合体 (A)中の酸無水物基やカルボキシル基と反応性官能基 (d)によって反応し 、アクリル系ブロック共重合体 (A)を高分子量ィ匕あるいは架橋させる。なお、ここでい う反応性官能基 (d)の個数は、化合物 (B)全体中に存在する反応性官能基 (d)の平 均の個数を表す。  The compound (B) constituting the thermoplastic elastomer composition according to the present invention is a polymer having 1.1 or more reactive functional groups (d) in one molecule. Compound (B) improves the molding fluidity as a plasticizer when forming the composition, and at the same time, reacts with an acid anhydride group or carboxyl group in the acrylic block copolymer (A) and a reactive functional group ( The acrylic block copolymer (A) is reacted according to d) to have a high molecular weight or to be crosslinked. Here, the number of reactive functional groups (d) represents the average number of reactive functional groups (d) present in the entire compound (B).
[0100] 化合物 (B)中の反応性官能基 (d)は、化合物 (B)中に 1. 1個以上、好ましくは 1. 5 個以上、更に好ましくは 2. 0個以上含有させる。その数は、反応性官能基 (d)の反 応性、反応性官能基 (d)が含有される部位および様式、アクリル系ブロック共重合体 (A)中の水酸基および Zまたは酸無水物基および Zまたはカルボキシル基の個数 や部位および様式に応じて変化させる。反応性官能基 (d)の含有数が 1. 1個より少 なくなると、ブロック共重合体の高分子量ィヒ反応剤あるいは架橋剤としての効果が低 くなり、アクリル系ブロック共重合体 (A)の耐熱性向上が不十分になる傾向がある。  [0100] The reactive functional group (d) in the compound (B) is contained in the compound (B) in an amount of 1.1 or more, preferably 1.5 or more, more preferably 2.0 or more. The number includes the reactivity of the reactive functional group (d), the site and manner in which the reactive functional group (d) is contained, the hydroxyl group and Z or acid anhydride group in the acrylic block copolymer (A) and Varies depending on the number, position and pattern of Z or carboxyl groups. When the content of the reactive functional group (d) is less than 1.1, the effect of the block copolymer as a high molecular weight ionic reactant or crosslinking agent is reduced, and the acrylic block copolymer (A ) Tends to be insufficient in improving the heat resistance.
[0101] 化合物(B)がアクリル系重合体 (B1)の場合、アクリル系重合体 (B1)は、 1種若しく は 2種以上のアクリル系単量体を重合させる力、又は 1種若しくは 2種以上のアクリル 系単量体とアクリル系単量体以外の単量体とを重合させることにより得られたもので あることが好ましい。 [0101] When the compound (B) is an acrylic polymer (B1), the acrylic polymer (B1) Is obtained by polymerizing two or more kinds of acrylic monomers, or by polymerizing one or more kinds of acrylic monomers with monomers other than acrylic monomers. Preferably there is.
[0102] アクリル系単量体としては、メタアクリル系重合体ブロック(a)の項において記載した アクリル酸エステルやメタアクリル酸エステルが挙げられる。このうち、アクリル酸— n ーブチル、アクリル酸ェチルおよびアクリル酸 2—メトキシェチルのいずれか又はこ れらの 2種以上を組み合わせて用いるの力 入手性の点力 好まし!/、。  [0102] Examples of the acrylic monomer include the acrylic esters and methacrylic esters described in the section of the methacrylic polymer block (a). Of these, the ability to use any one of acrylic acid-n-butyl, ethyl acrylate and 2-methoxyethyl acrylate, or a combination of two or more of these is preferred.
[0103] アクリル系単量体以外の単量体としては、アクリル系単量体と共重合可能な単量体 である限りにおいては特に制限はなぐ例えば酢酸ビニル、スチレン等を用いることが できる。  [0103] The monomer other than the acrylic monomer is not particularly limited as long as it is a monomer copolymerizable with the acrylic monomer. For example, vinyl acetate, styrene and the like can be used.
[0104] なお、アクリル系重合体 (B1)中の全単量体成分に対するアタリロイル基含有単量 体成分の割合は、 70重量%以上であることが好ましい。その割合が 70重量%未満 の場合、耐候性が低下し、アクリル系ブロック共重合体 (A)との相溶性も低下する傾 向にある。また、その成形物に変色が生じやすくなる。  [0104] Note that the ratio of the monomer component containing the alitaroyl group to the total monomer components in the acrylic polymer (B1) is preferably 70% by weight or more. When the proportion is less than 70% by weight, the weather resistance tends to decrease and the compatibility with the acrylic block copolymer (A) tends to decrease. Moreover, discoloration tends to occur in the molded product.
[0105] アクリル系重合体 (B1)の分子量は、特に制限はないが、平均重量分子量で 30, 0 00以下の低分子量のもの力 S好ましく、 500〜30, OOOのもの力 Sさらに好ましく、 500 〜10, 000のものが特に好ましい。重量平均分子量が 500未満の場合、成形体にベ たつきが生じる傾向があり、一方、重量平均分子量が 30, 000を超えた場合、成形 物の可塑化が不十分になりやす 、。  [0105] The molecular weight of the acrylic polymer (B1) is not particularly limited, but preferably has a low molecular weight with an average weight molecular weight of 3,000,000 or less S, more preferably 500 to 30, S Particularly preferred is 500 to 10,000. When the weight average molecular weight is less than 500, the molded product tends to be sticky. On the other hand, when the weight average molecular weight exceeds 30,000, plasticization of the molded product tends to be insufficient.
[0106] アクリル系重合体 (B1)の粘度は、 25°Cにおいてコーン'プレート型の回転粘度計( E型粘度計)で測定した時、 35, OOOmPa' s以下であるのが好ましぐ 10, OOOmPa •s以下であるのがより好ましぐ 5, OOOmPa' s以下であるのが特に好ましい。粘度が 35, OOOmPa' sより高いと、組成物の可塑ィ匕効果が低下する傾向にある。好ましい 粘度の下限は特にないが、アクリル系重合体の通常の粘度は lOmPa' s以上である  [0106] The viscosity of the acrylic polymer (B1) is preferably 35, OOOmPa's or less when measured with a cone-plate type rotational viscometer (E-type viscometer) at 25 ° C. More preferably, it is less than 10, OOOmPa s, and particularly preferably less than 5, OOOmPa's. When the viscosity is higher than 35, OOOmPa's, the plasticizing effect of the composition tends to decrease. The lower limit of the preferred viscosity is not particularly limited, but the normal viscosity of the acrylic polymer is lOmPa's or more
[0107] アクリル系重合体 (B1)のガラス転移温度 Tgは、示差走査熱量測定法 (DSC)で測 定した場合に 100°C以下であるのが好ましぐ 25°C以下であるのがより好ましぐ 0°C 以下であるのが更に好ましぐ 30°C以下であるのが特に好ましい。ガラス転移温度 Tgが 100°Cを超えると、可塑剤として成形性を向上させる効果が不十分になる傾向 があり、また、得られる成形体の柔軟性が低下する傾向にある。 [0107] The glass transition temperature Tg of the acrylic polymer (B1) is preferably 100 ° C or lower, preferably 25 ° C or lower, as measured by differential scanning calorimetry (DSC). It is particularly preferable that the temperature is 0 ° C or less, more preferably 30 ° C or less. Glass-transition temperature When Tg exceeds 100 ° C, the effect of improving moldability as a plasticizer tends to be insufficient, and the flexibility of the resulting molded product tends to decrease.
[0108] アクリル系重合体 (B1)は、公知の所定の方法で重合させることにより得られる。重 合方法は必要に応じて適宜選択すればよぐ例えば、懸濁重合、乳化重合、塊状重 合、リビングァ-オン重合や連鎖移動剤を用いる重合およびリビングラジカル重合等 の制御重合等の方法により行なうことができるが、耐候性や耐熱性が良好で比較的 低分子量かつ分子量分布の小さい重合体が得られる制御重合が好ましぐ以下に記 載の高温連続重合を用いる方法力コスト面などの点でより好ましい。  [0108] The acrylic polymer (B1) can be obtained by polymerizing by a known predetermined method. The polymerization method may be appropriately selected according to need, for example, by suspension polymerization, emulsion polymerization, bulk polymerization, living-on polymerization, polymerization using a chain transfer agent, and controlled polymerization such as living radical polymerization. Although it is preferable to use controlled polymerization to obtain a polymer having good weather resistance and heat resistance and having a relatively low molecular weight and a small molecular weight distribution, the following method power using high-temperature continuous polymerization is described. More preferable in terms.
[0109] アクリル系重合体 (B1)は、 180〜350°Cの温度での重合反応により得ることが好ま しい。この重合温度では、重合開始剤や連鎖移動剤を使用することなぐ比較的低 分子量のアクリル系重合体が得られる。このため、そのアクリル系重合体は優れた可 塑剤となり、耐候性も良好である。具体的には、特表昭 57— 502171号公報、特開 昭 59— 6207号公報、特開昭 60— 215007号公報及び国際公開第 01Z083619 号パンフレットに記載された高温連続重合による方法、すなわち、所定の温度及び 圧力に設定された反応器内に上記の単量体の混合物を一定の供給速度で連続して 供給し、その供給量に見合う量の反応液を抜き出す方法が例示される。  [0109] The acrylic polymer (B1) is preferably obtained by a polymerization reaction at a temperature of 180 to 350 ° C. At this polymerization temperature, an acrylic polymer having a relatively low molecular weight can be obtained without using a polymerization initiator or a chain transfer agent. For this reason, the acrylic polymer is an excellent plasticizer and has good weather resistance. Specifically, the method by high-temperature continuous polymerization described in JP-A-57-502171, JP-A-59-6207, JP-A-60-215007 and WO01Z083619, An example is a method in which a mixture of the above monomers is continuously supplied into a reactor set to a predetermined temperature and pressure at a constant supply rate, and an amount of the reaction liquid corresponding to the supply amount is withdrawn.
<反応性官能基 (d) >  <Reactive functional group (d)>
反応性官能基 (d)としては、エポキシ基、カルボキシル基、水酸基、アミノ基等が挙 げられ、エポキシ基、カルボキシル基、水酸基およびアミノ基カもなる群力 選ばれる 少なくとも 1種の官能基を用いるのが望ましい。これらの官能基のうち、アクリル系プロ ック共重合体 (A)に含まれる酸無水物基やカルボキシル基との反応性および化合物 (B)への官能基の導入のしゃすさから、エポキシ基がより好ま 、。  Examples of the reactive functional group (d) include an epoxy group, a carboxyl group, a hydroxyl group, an amino group, and the like, and at least one functional group selected from the group consisting of an epoxy group, a carboxyl group, a hydroxyl group, and an amino group. It is desirable to use it. Among these functional groups, the epoxy group is selected from the reactivity with the acid anhydride group and carboxyl group contained in the acrylic block copolymer (A) and the introduction of the functional group into the compound (B). Is more preferred.
<エポキシ基を有する化合物(B2) >  <Compound having epoxy group (B2)>
化合物 (B)が反応性官能基 (d)としてエポキシ基を有する化合物 (B2)の場合、ェ ポキシ基は、エポキシ基を有する化合物(B2) 1分子当たり平均して 1. 1個以上、好 ましくは 1. 5個以上、より好ましくは 2. 0個以上含有させる。その数は、エポキシ基の 反応性、エポキシ基の含有される部位および様式、アクリル系ブロック共重合体 (A) 1分子当たりの水酸基の含有数や部位および様式に応じて変化させる。エポキシ基 の含有数が 1. 1個より少なくなると、ブロック共重合体を高分子量化、あるいは架橋 が不十分になり、アクリル系ブロック共重合体 (A)の耐熱性が不十分になる傾向があ る。 When the compound (B) is a compound (B2) having an epoxy group as a reactive functional group (d), the epoxy group has an average of 1.1 or more, preferably 1 or more per molecule of the compound (B2) having an epoxy group. Preferably, 1.5 or more, more preferably 2.0 or more. The number varies depending on the reactivity of the epoxy group, the site and mode in which the epoxy group is contained, and the content, site and mode of the hydroxyl group per molecule of the acrylic block copolymer (A). Epoxy group When the content of acrylonitrile is less than 1.1, the block copolymer tends to have a high molecular weight or insufficient crosslinking, and the acrylic block copolymer (A) tends to have insufficient heat resistance. .
[0110] エポキシ基を有する化合物(B2)は、 1分子中に少なくとも 1. 1個以上のエポキシ 基を有する化合物であれば特に限定されず、ビスフエノール A型エポキシ榭脂、ビス フエノール F型エポキシ榭脂、ビスフエノール AD型エポキシ榭脂、ビスフエノール S型 エポキシ榭脂ゃこれらを水添したエポキシ榭脂、グリシジルエステル型エポキシ榭脂 、グリシジルァミン型エポキシ榭脂、脂環式エポキシ榭脂、ノボラック型エポキシ榭脂 、ウレタン結合を有するウレタン変性エポキシ榭脂、フッ素化エポキシ榭脂、ポリブタ ジェンある 、は NBRを含有するゴム変性エポキシ榭脂、テトラブロモビスフエノール Aのグリシジルエーテル等、難燃型エポキシ榭脂等のエポキシ榭脂、多価アルコー ルのグリシジルエーテル類や多塩基酸のグリシジルエステル類であるエポキシ化大 豆油、エポキシ化アマ-油、エポキシ化脂肪酸アルキルエステルなどのエポキシ系 可塑剤や、ボンドファースト (商品名、住友ィ匕学工業製)などのエポキシ基含有重合 体;ォレフィン系重合体、 ARUFON (商品名、東亞合成 (株)製)などのエポキシキ含 有重合体;スチレン系重合体やアクリル系重合体などが例示される力 これらに限定 されるものではなぐ一般に使用されているエポキシ基含有化合物が使用されうる。こ れらのエポキシ基含有化合物は単独で使用してもよく、 2種以上併用してもょ ヽ。  [0110] The compound (B2) having an epoxy group is not particularly limited as long as it is a compound having at least one epoxy group in one molecule, and is not limited to bisphenol A type epoxy resin, bisphenol F type epoxy. Resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, hydrogenated epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, alicyclic epoxy resin, Novolak type epoxy resin, urethane modified epoxy resin having urethane bond, fluorinated epoxy resin, polybutadiene, rubber modified epoxy resin containing NBR, tetrabromobisphenol A glycidyl ether, etc. Epoxy resin such as epoxy resin, glycidyl ether of polyhydric alcohol and glycidyl ester of polybasic acid Epoxy plasticizers such as epoxidized soybean oil, epoxidized flax oil, and epoxidized fatty acid alkyl esters, and epoxy group-containing polymers such as Bond First (trade name, manufactured by Sumitomo Chemical Industries); Polymers, epoxy-containing polymers such as ARUFON (trade name, manufactured by Toagosei Co., Ltd.); forces exemplified by styrenic polymers and acrylic polymers, etc. Any epoxy group-containing compound can be used. These epoxy group-containing compounds may be used alone or in combination of two or more.
[0111] 上記エポキシ基を有する化合物(B2)のうちではアクリル系ブロック共重合体 (A)と の相溶性、入手容易性、コスト、成形時の低揮発性、成形性の改善効果および得ら れる成形体の機械特性などの点で、ビスフエノール A型エポキシ榭脂、多価アルコー ルのグリシジルエーテル類や多塩基酸のグリシジルエステル類であるエポキシ化大 豆油、エポキシ化アマ-油、エポキシ化脂肪酸アルキルエステルなどのエポキシ系 可塑剤や、 ARUFONなどのエポキシキ含有重合体;スチレン系重合体やアクリル系 重合体が好ましい。  [0111] Among the compounds having an epoxy group (B2), compatibility with the acrylic block copolymer (A), availability, cost, low volatility during molding, improvement of moldability, and Bisphenol A type epoxy resin, glycidyl ethers of polyhydric alcohols and glycidyl esters of polybasic acids, epoxidized amateur oil, epoxidation Epoxy plasticizers such as fatty acid alkyl esters, epoxy-containing polymers such as ARUFON; styrene polymers and acrylic polymers are preferred.
[0112] さら〖こは、得られる組成物は高温で成形されることから、揮発性などの点から、ェポ キシ基を有する化合物(B2)はスチレン系重合体やアクリル系重合体であることがより 好ましぐ成形流動性の点から、重量平均分子量 30, 000以下の重合体であること が好ましい。特に制限はないが、成形体用途においては、 30, 000以下の低分子量 のもの力 S好まし <、 500〜30, 000のもの力 Sさらに好まし <、 500〜10, 000のもの力 S 特に好ましい。重量平均分子量が 500未満の場合、成形体に粘着性が生じる傾向 があり、一方、重量平均分子量が 30, 000を超えた場合、成形物の可塑化が不十分 になる。 [0112] Sarakuko is that the resulting composition is molded at a high temperature, and from the viewpoint of volatility, the compound (B2) having an epoxy group is a styrene polymer or an acrylic polymer. It is a polymer with a weight average molecular weight of 30,000 or less from the viewpoint of more preferable molding fluidity Is preferred. Although there is no particular limitation, for molded products, a low molecular weight strength of 30,000 or less S is preferred <, 500 to 30,000 strength S is more preferred <, 500 to 10,000 strength S Particularly preferred. When the weight average molecular weight is less than 500, the molded product tends to be sticky. On the other hand, when the weight average molecular weight exceeds 30,000, plasticization of the molded product becomes insufficient.
[0113] 上記重合体のうちでは、耐候性などの点で、アクリル系重合体が好ま 、。  [0113] Among the above polymers, acrylic polymers are preferred in terms of weather resistance and the like.
[0114] アクリル系重合体として、具体的には東亞合成 (株)の ARUFON (登録商標) XG4 000, ARUFON UG4000、 ARUFON XG4010、 ARUFON UG4010、 AR UFON XD945、 ARUFON XD950、 ARUFON UG4030、 ARUFON UG 4070などが好適に使用できる。これらは、オールアクリル、アタリレート/スチレン等の アクリル系重合体であって、エポキシ基を 1分子中に 1. 1個以上含む。 [0114] Specific examples of acrylic polymers include ARUFON (registered trademark) XG4 000, ARUFON UG4000, ARUFON XG4010, ARUFON UG4010, AR UFON XD945, ARUFON XD950, ARUFON UG4030, ARUFON UG 4070, etc. Can be suitably used. These are all acrylics, acrylic polymers such as acrylate / styrene, and contain at least one epoxy group in one molecule.
[0115] エポキシ基を有する化合物(B2)は、アクリル系ブロック共重合体 (A) 100重量部 に対して、 0. 5〜50重量部の範囲で使用するのが好ましぐ 1〜30重量部の範囲で 使用するのがより好ましぐ 1. 5〜20重量部の範囲で使用するのが特に好ましい。配 合量が 0. 5重量部未満の場合には、成形性や得られる成形体の耐熱性が十分でな いことがあり、 50重量部を超えると得られる組成物の機械特性が低下する傾向にある [0115] The compound (B2) having an epoxy group is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the acrylic block copolymer (A). More preferably, it is used in the range of 1. parts by weight. If the amount is less than 0.5 parts by weight, the moldability and the heat resistance of the resulting molded product may not be sufficient, and if it exceeds 50 parts by weight, the mechanical properties of the resulting composition will deteriorate. There is a tendency
<熱潜在性触媒 (C) > <Thermal latent catalyst (C)>
本発明に係る熱可塑性エラストマ一組成物を構成する熱潜在性触媒 (C)は、ブロッ ク共重合体 (A)中の水酸基、酸無水物基、カルボキシル基のいずれかである官能基 (c)と、化合物 (B)中の反応性官能基 (d)との反応を促進することで、架橋反応を促 進する成分である。前述したように、熱潜在性触媒とは、所定の温度で加熱した時に より高活性を示す触媒をいい、本発明の熱可塑性エラストマ一を長期保存する際に 官能基 (c)と反応性官能基 (d)が反応して、成形性が悪化すること抑制する (長期に わたる貯蔵安定性を良好に保つ)効果を有するものである。  The thermal latent catalyst (C) constituting the thermoplastic elastomer composition according to the present invention is a functional group (c) that is one of a hydroxyl group, an acid anhydride group, and a carboxyl group in the block copolymer (A). ) And the reactive functional group (d) in the compound (B), thereby promoting the cross-linking reaction. As described above, the thermal latent catalyst is a catalyst that exhibits higher activity when heated at a predetermined temperature. When the thermoplastic elastomer of the present invention is stored for a long period of time, the functional group (c) and the reactive functional group are used. The group (d) has an effect of suppressing deterioration of moldability by reaction (maintaining good storage stability for a long period of time).
[0116] 熱潜在性触媒 (C)は、 60°C以上の温度において、より触媒活性を示すィ匕合物が好 ましい。この熱潜在性触媒が 60°C未満の温度で触媒活性を示す場合、得られる組 成物は貯蔵中に成形性が悪化するおそれがある。 [0117] 熱潜在性触媒 (C)としては、具体的には、(i)プロトン酸をァレニウス塩基で中和し た化合物、(ii)プロトン酸とルイス塩基を反応させたィ匕合物、(iii)ルイス酸とルイス塩 基を反応させた化合物、(iv)ルイス酸とトリアルキルホスフ ートの混合物、(V)スルホ ン酸エステル類、(vi)リン酸エステル類、(vii)ォ -ゥム化合物類、(viii)アルミニウム 等の金属錯体から誘導される化合物、(ix)第 4ォ -ゥム塩、および (X)ルイス酸とァレ 二ウス塩基を反応させた化合物が好ましく挙げられる。 [0116] The thermal latent catalyst (C) is preferably a compound that exhibits more catalytic activity at a temperature of 60 ° C or higher. If this heat-latent catalyst exhibits catalytic activity at temperatures below 60 ° C, the resulting composition may degrade moldability during storage. [0117] Specific examples of the thermal latent catalyst (C) include (i) a compound obtained by neutralizing a proton acid with an Arrhenius base, (ii) a compound obtained by reacting a proton acid with a Lewis base, (Iii) a compound obtained by reacting a Lewis acid with a Lewis salt group, (iv) a mixture of Lewis acid and trialkyl phosphate, (V) sulfonate esters, (vi) phosphate esters, (vii) -Um compounds, (viii) compounds derived from metal complexes such as aluminum, (ix) quaternary salts, and (X) compounds obtained by reacting a Lewis acid with an araenius base are preferred. Can be mentioned.
[0118] プロトン酸をァレニウス塩基で中和した化合物(i)としては、例えばカルボン酸類、 ハロゲノカルボン酸類、スルホン酸類、硫酸モノエステル類、リン酸モノおよびジエス テル類、ポリリン酸エステル類、ホウ酸モノおよびジエステル類、等を水酸化リチウム、 水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシウム、水酸化マグネシウム、水酸ィ匕 亜鉛、水酸ィ匕鉄等の各種金属水酸ィ匕物で中和したィ匕合物が挙げられる。  [0118] Examples of the compound (i) obtained by neutralizing a protic acid with an Arenius base include, for example, carboxylic acids, halogenocarboxylic acids, sulfonic acids, sulfuric monoesters, monophosphate and monoester phosphates, polyphosphate esters, boric acid Mono and diesters such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, hydroxide, zinc, hydroxide, iron, etc. The compound neutralized with a product is mentioned.
[0119] プロトン酸とルイス塩基を反応させた化合物(ii)としては、例えばノヽロゲノカルボン 酸類、スルホン酸類、硫酸モノエステル類、リン酸モノおよびジエステル類、ポリリン酸 エステル類、ホウ酸モノおよびジエステル類、等を、アンモニア、モノェチルァミン、ト リエチルァミン、ピリジン、ピぺリジン、ァニリン、モルホリン、シクロへキシルァミン、 n ーブチルァミン、モノェチノールァミン、ジエタノールァミン、トリエタノールァミン等の 各種アミンもしくはトリアルキルホスフィン、トリアリールホスフィン、トリアルキルホスファ イト、トリアリールホスファイトで反応させたィ匕合物、さらには、酸一塩基ブロック化触媒 として市販されて ヽるネィキュア一 2500X、 X47— 110、 3525、 5225 (商品名、キン グィンダストリーズ社製)などが挙げられる。  [0119] Examples of the compound (ii) obtained by reacting a protonic acid with a Lewis base include, for example, neurocarboxylic acids, sulfonic acids, sulfate monoesters, phosphate mono- and diesters, polyphosphate esters, borate mono- and diesters , Etc., various amines such as ammonia, monoethylamine, triethylamine, pyridine, piperidine, aniline, morpholine, cyclohexylamine, n-butylamine, monoethynolamine, diethanolamine, triethanolamine, or trialkylphosphine , Triaryl phosphine, trialkyl phosphite, triaryl phosphite compound, and neicure 2500X, X47—110, 3525, 5225 which are commercially available as acid monobase blocking catalysts (Product name, Kin Guindust Over's Co., Ltd.) and the like.
[0120] また、ルイス酸とルイス塩基を反応させたィ匕合物(iii)としては、例えば BF、 FeCl、  [0120] Examples of the compound (iii) obtained by reacting a Lewis acid and a Lewis base include, for example, BF, FeCl,
3 3 3 3
SnCl、 A1C1、 ZnClなどのルイス酸を前記のルイス塩基で反応させた化合物が挙Examples include compounds obtained by reacting Lewis acids such as SnCl, A1C1, and ZnCl with the aforementioned Lewis bases.
4 3 2 4 3 2
げられる。あるいは上記ルイス酸とトリアルキルホスフェートとの混合物(iv)も挙げられ る。  I can get lost. Another example is a mixture (iv) of the above Lewis acid and trialkyl phosphate.
[0121] スルホン酸エステル類 (V)としては、例えば一般式(5)  [0121] Examples of the sulfonate esters (V) include those represented by the general formula (5)
[0122] [化 11]
Figure imgf000031_0001
[0122] [Chemical 11]
Figure imgf000031_0001
[0123] (ただし、式中の R6はフエニル基、置換フエ-ル基、ナフチル基、置換ナフチル基ま たはアルキル基、 R7は一級炭素または二級炭素を介してスルホニルォキシ基と結合 している炭素数 3 18のアルキル基、ァルケ-ル基、ァリール基、アルカリール基、 アル力ノール基、飽和のシクロアルキル基またはヒドロキシシクロアルキル基もしくは 不飽和のシクロアルケ-ルまたはヒドロキシシクロアルケ-ル基である。 )で表される 化合物が挙げられる。 [Wherein R 6 is a phenyl group, a substituted phenyl group, a naphthyl group, a substituted naphthyl group or an alkyl group, and R 7 is a sulfonyloxy group via a primary carbon or a secondary carbon. Attached C 3 18 alkyl group, alkenyl group, aryl group, alkaryl group, alkyl group, saturated cycloalkyl group, hydroxycycloalkyl group, unsaturated cycloalkyl group or hydroxycycloalkenyl group. -Group.
[0124] このような化合物として、具体的には、例えば、メタンスルホン酸、エタンスルホン酸 、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、ノ-ル ナフタレンスルホン酸などのスルホン酸類と n—プロパノール、 n—ブタノール、 n キサノール、 n—ォクタノールなどの第一級アルコール類またはイソプロパノール、 2 ーブタノール、 2—へキサノール、 2—ォクタノール、シクロへキサノールなどの第二級 アルコール類とのエステル化物、さらには前記スルホン酸類とォキシラン基含有ィ匕合 物との反応により得られる βーヒドロキシアルキルスルホン酸エステル類などが挙げら れる。  Specific examples of such compounds include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid, nornaphthalenesulfonic acid, and n- Primary alcohols such as propanol, n-butanol, n-xanol and n-octanol or esterified products with secondary alcohols such as isopropanol, 2-butanol, 2-hexanol, 2-octanol and cyclohexanol, and And β-hydroxyalkyl sulfonic acid esters obtained by reacting the sulfonic acids with oxysilane group-containing compounds.
[0125] リン酸エステル類 (vi)としては、例えば、一般式 (6)で表される化合物が挙げられる [0126] [化 12]  [0125] Examples of the phosphate esters (vi) include compounds represented by the general formula (6). [0126] [Chemical Formula 12]
Figure imgf000031_0002
Figure imgf000031_0002
(式中の R。は炭素数 3 10のアルキル基、シクロアルキル基またはァリール基、 hは 1 または 2である。 ) (In the formula, R is an alkyl group having 3 to 10 carbon atoms, a cycloalkyl group or an aryl group, and h is 1 or 2.)
より具体的には、 n—プロパノール、 n—ブタノール、 n キサノール、 n—オタタノ ール、 2—ェチルへキサノール等の第一級アルコール類、およびイソプロパノール、 2 ーブタノール、 2—へキサノール、 2—ォクタノール、シクロへキサノール等の第二級 アルコール類のリン酸モノエステル類あるいはリン酸ジエステル類が挙げられる。 More specifically, n-propanol, n-butanol, n-xanol, n-otatano And primary alcohols such as 2-ethylhexanol, and phosphoric monoesters or phosphoric acids of secondary alcohols such as isopropanol, 2-butanol, 2-hexanol, 2-octanol, and cyclohexanol Diesters may be mentioned.
[0128] また、ォニゥム化合物 (vii)としては、例えば以下に示す一般式(7)〜(10)で表され る化合物などが挙げられる。  [0128] Further, examples of the onium compound (vii) include compounds represented by the following general formulas (7) to (10).
[ (R8) NR9] + -X- (7) [(R 8 ) NR 9 ] + -X- (7)
3  Three
[ (R10) PR ] + -X- (8) [(R 10 ) PR] + -X- (8)
3  Three
[ (R12) OR13] + -X- · ' · · (9) [(R 12 ) OR 13 ] + -X- · '· · (9)
2  2
[ (R14) SR15] + -X- · ' · · (10) [(R 14 ) SR 15 ] + -X- · '· · (10)
2  2
式中の R8、 R10, R12および R14は炭素数 1〜12のアルキル基、ァルケ-ル基、ァリ ール基、アルカリール基、アル力ノール基またはシクロアルキル基であって、 R8、 R10 、 R12および R14は互いに結合して N、 P、 Oまたは Sをへテロ原子とする複素環を形成 していてもよぐ R91、 R13および R15は水素原子、炭素数 1〜12のアルキル基、ァ ルケ-ル基、ァリール基、アルカリール基、 X—は SbF _、 AsF _、 PF—または BF " R 8 , R 10 , R 12 and R 14 in the formula are an alkyl group having 1 to 12 carbon atoms, an alkyl group, an aryl group, an alkaryl group, an alkenol group or a cycloalkyl group. , R 8 , R 10 , R 12 and R 14 may be bonded to each other to form a heterocycle having N, P, O or S as a heteroatom R 9 , 1 , R 13 and R 15 Is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkyl group, an aryl group, an alkaryl group, X— is SbF _, AsF _, PF— or BF "
6 6 6 4 である。  6 6 6 4.
[0129] また、触媒として、アルミニウム等の金属錯体から誘導される化合物 (vm)を使用す ることができる。具体的には、ォクチル酸アルミニウム等の金属石鹼、 j8—ジケトネー トアルミニウム錯体、 13 ジケトエステラートアルミニウム錯体、 o カルボ-ルフエノレ ートアルミニウム錯体が挙げられる。上記アルミニウム錯体の配位子として用いられる βージケトンとしては、 1, 3 ジフエニノレー 1, 3 プロパンジオン、 1 フエニノレー 1, 3 ブタンジ才ン、 2, 4 ペンタンジ才ン、 3 フエ-ルー 2, 4 ペンタンジ才ン、 5— ジメチルー 2, 4 へキサンジオン、 5 フエ二ルー 2, 4 ペンタンジオン、 2, 6 ジメ チルー 3, 5 ヘプタンジオン、 2, 6—テトラメチルー 3, 5 ペンタンジオン等が挙げ られる。 [0129] As the catalyst, a compound ( vm ) derived from a metal complex such as aluminum can be used. Specific examples include metal sarcophagus such as aluminum octylate, j8-diketonate aluminum complex, 13 diketoesterate aluminum complex, and o-carbophenolate aluminum complex. Β-diketones used as ligands for the above aluminum complexes include 1,3 diphenylenoles, 1,3 propanediones, 1 phenenoles, 1,3 butane dines, 2, 4 pentane dines, 3 felu rouge 2, 4 pentane dines , 5-dimethyl-2,4 hexanedione, 5 phenyl 2,4 pentanedione, 2,6 dimethyl-3,5 heptanedione, 2,6-tetramethyl-3,5 pentanedione, and the like.
[0130] また、 13 ジケトエステノレとしては、ェチノレアセトアセテート、プロピノレアセトァセテ ート、ブチルァセトアセテート、 t ブチルァセトアセテート、ェチルベンゾィルァセテ ート等が挙げられ、 o カルボ-ルフエノールとしては、 2—ヒドロキシ一べンズアルデ ヒド、 2,一ヒドロキシ一ァセトフエノン、メチル 2—ヒドロキシベンゾエート、フエ-ル 2—ヒドロキシベンゾエート等が挙げられる。 [0130] Examples of 13 diketoesterol include ethinoreacetoacetate, propinoreacetoacetate, butylacetoacetate, t-butylacetoacetate, ethylbenzoylacetate, and the like. -Lufenol includes 2-hydroxy monobenzaldehyde, 2,1-hydroxyacetophenone, methyl 2-hydroxybenzoate, phenol Examples include 2-hydroxybenzoate.
[0131] さらに、活性力を高めるために、上記アルミニウム等の金属錯体にさらにシラノール 化合物を混合したアルミニウム錯体を用いてもょ 、。そのようなシラノールイ匕合物とし ては、トリフエ二ルシラノール、テトラメトキシシラン、メチルトリメトキシシラン、ジメチル ジメトキシシラン、フエニルトリメトキシシラン、ジフエ二ルジメトキシシラン、テトラエトキ シシラン、メチルトリエトキシシラン、ジメチルジェトキシシラン、フエニルトリエトキシシ ラン、ジフエ二ルジェトキシシラン、へキシルトリメトキシシラン、へキシルトリエトキシシ ラン、デシルトリメトキシシラン、トリフルォロプロピルトリメトキシシラン、ヘプタデカトリ フルォロデシルトリメトキシシラン、トリフエニルメトキシシラン、トリフエニルェトキシシラ ン等が挙げられる。 [0131] Further, in order to enhance the activity, an aluminum complex in which a silanol compound is further mixed with the above metal complex such as aluminum may be used. Examples of such silanol compounds include triphenylsilanol, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethylether. Toxisilane, phenyltriethoxysilane, diphenyljetoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecatrifluorodecyltrimethoxysilane , Triphenylmethoxysilane, triphenylethoxysilane and the like.
[0132] さらに、触媒として、第 4ォ-ゥム塩 (ix)を使用することもできる。より具体的には、テ トラブチルアンモ -ゥムクロライド、テトラプチルアンモ -ゥムブロマイド、テトラブチル アンモ-ゥムアイオダイド等のテトラプチルアンモ -ゥムハライド、テトラブチルホスホ -ゥムクロライド、テトラブチルホスホ-ゥムブロマイド、テトラブチルホスホ-ゥムアイ オダイド等のテトラブチルホスホ-ゥムハライド、テトラフエ-ルホスホ -ゥムクロライド、 テトラフエ-ルホスホ -ゥムブロマイド、テトラフエ-ルホスホ -ゥムアイオダイド等のテ トラフエ-ルホスホ -ゥムハライド等が挙げられる。  [0132] Furthermore, quaternary salt (ix) can also be used as a catalyst. More specifically, tetrabutylammonium chloride such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylammonium iodide, tetrabutylammonium halide, tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium iodide, etc. And tetrabutylphosphomum halides such as tetrabutylphosphomum chloride, tetraphenylphosphomum chloride, tetraphenylphosphomum bromide and tetraphenylphosphomum iodide.
[0133] また、(X)ルイス酸とァレニウス塩基を反応させた化合物としては、前記のルイス酸 を前記のァレニウス塩基で反応させたィ匕合物が挙げられる。  [0133] Examples of the compound (X) obtained by reacting a Lewis acid with an Arenius base include compounds obtained by reacting the above Lewis acid with the above Arenius base.
[0134] これらの触媒のうち、コスト面や入手が容易である点で、(i)プロトン酸をァレニウス 塩基で中和した化合物、(ii)プロトン酸とルイス塩基を反応させたィ匕合物、(iii)ルイス 酸とルイス塩基を反応させたィ匕合物、(X)ルイス酸とァレニウス塩基を反応させた化 合物の酸塩基反応化合物が好ましぐ反応活性が高い点では、(viii)アルミニウム等 の金属錯体から誘導される化合物が好ましぐ最終的に得られる成形体の耐水性や 着色の点で (ii)プロトン酸とルイス塩基を反応させたィ匕合物がより好ましい。また、最 終的に得られる成形体の物性バランスや、成形体からの揮発分を抑制する観点から 、金属塩ィ匕合物であることが特に好ましい。  [0134] Among these catalysts, (i) a compound obtained by neutralizing a protonic acid with an Arrhenius base and (ii) a compound obtained by reacting a protonic acid with a Lewis base in view of cost and availability. (Iii) A compound obtained by reacting a Lewis acid with a Lewis base, and (X) an acid-base reaction compound obtained by reacting a Lewis acid with an Arenius base has a high preferred reaction activity. viii) A compound derived from a metal complex such as aluminum is preferable. From the viewpoint of water resistance and coloring of the molded article finally obtained, (ii) a compound obtained by reacting a protonic acid with a Lewis base is more preferable. . Further, from the viewpoint of suppressing the balance of physical properties of the finally obtained molded body and suppressing the volatile matter from the molded body, a metal salt compound is particularly preferable.
[0135] 酸塩基反応化合物の具体例としては、ステアリン酸亜鉛、ステアリン酸カルシウム、 ステアリン酸カルシウム、ステアリン酸アルミニウム、ラウリル酸亜鉛、ラウリル酸カルシ ゥム、ラウリル酸マグネシウム、 2-ェチルへキシル酸亜鉛、 2-ェチルへキシル酸カル シゥム、 2-ェチルへキシル酸マグネシウム等の脂肪酸金属塩、クェン酸亜鉛、クェン 酸ナトリウム、クェン酸カリウム、クェン酸カルシウム等の金属塩、安息香酸ナトリウム、 安息香酸亜鉛、トリス安息香酸アルミニウム、テトラ安息香酸チタン、 2-tert-ブチル 安息香酸亜鉛、 3-tert-ブチル安息香酸亜鉛、 4-tert-ブチル安息香酸亜鉛、 4-te rt-ブチル安息香酸ナトリウム、 4-tert-ブチル安息香酸バリウム、 2-tert-ブチル安 息香酸バリウム、 3-tert-ブチル安息香酸バリウム、 4-tert-ブチル安息香酸バリウム 、 3, 5-ジ -tert-ブチル安息香酸亜鉛、 3, 5-ジ -tert-ブチルサリチル酸亜鉛、 2, 4 , 6-トリ- tert-ブチル安息香酸亜鉛、 5-tert-ブチルサリチル酸亜鉛、 4-tert-ブチ ル - 2, 6-ジメチル安息香酸亜鉛、 4- (4 -tert-ブチルフエニル)安息香酸亜鉛等の 安息香酸やサリチル酸金属塩の誘導体等が挙げられる。 [0135] Specific examples of the acid-base reaction compound include zinc stearate, calcium stearate, Fatty acid metal salts such as calcium stearate, aluminum stearate, zinc laurate, calcium laurate, magnesium laurate, zinc 2-ethylhexylate, calcium 2-ethylhexylate, magnesium 2-ethylhexylate , Zinc citrate, Sodium citrate, Potassium citrate, Calcium citrate and other metal salts, Sodium benzoate, Zinc benzoate, Aluminum trisbenzoate, Titanium tetrabenzoate, 2-tert-butyl zinc benzoate, 3- Zinc tert-butylbenzoate, Zinc 4-tert-butylbenzoate, Sodium 4-tert-butylbenzoate, Barium 4-tert-butylbenzoate, Barium 2-tert-butylbenzoate, 3-tert- Barium butylbenzoate, barium 4-tert-butylbenzoate, zinc 3,5-di-tert-butylbenzoate, 3,5-di-tert-butylsalicyl Zinc, zinc 2,4,6-tri-tert-butylbenzoate, zinc 5-tert-butylsalicylate, zinc 4-tert-butyl-2,6-dimethylbenzoate, 4- (4-tert-butylphenyl) Examples thereof include benzoic acid such as zinc benzoate and metal salicylic acid derivatives.
[0136] 酸塩基反応化合物の中でも、本発明の熱可塑性エラストマ一を加熱成形した後の 成形品の物性 (接着性など 2次加工性)が優れることから、炭素数が 4〜16である脂 肪酸または、安息香酸誘導体化合物と亜鉛からなる金属塩化合物がより好ま ヽ。  [0136] Among the acid-base reaction compounds, the fat having 4 to 16 carbon atoms is excellent in the physical properties (secondary workability such as adhesiveness) of the molded product after thermoforming the thermoplastic elastomer of the present invention. A metal salt compound comprising a fatty acid or a benzoic acid derivative compound and zinc is more preferable.
[0137] 炭素数力 〜16である脂肪酸としては、ブタン酸 (別名:酪酸、以下同じ)、ペンタン 酸(吉草酸)、へキサン酸 (カプロン酸)、ヘプタン酸 (ェナント酸)、オクタン酸 (カプリ ル酸)、ノナン酸 (ペラルゴン酸)、デカン酸 (力プリン酸)、ドデカン酸 (ラウリン酸)、テ トラデカン酸(ミスチリン酸)、ペンタデカン酸(ペンタデシル酸)、へキサデカン酸 (パ ルミチン酸)、ヘプタデカン酸 (マルガリン酸)等が挙げられる。なかでも、デカン酸、ゥ ンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、へキサデ力 ン酸、ヘプタデカン酸等の炭素数 10〜 17の脂肪酸が好ましぐデカン酸、ゥンデ力 ン酸、ドデカン酸、トリデカン酸、テトラデカン酸がより好ましぐこのうち得られる成形 体の耐スクラッチ性や接着性のバランスからドデカン酸がさらに好ましい。  [0137] Fatty acids having a carbon number of ~ 16 include butanoic acid (also known as butyric acid, the same shall apply hereinafter), pentanoic acid (valeric acid), hexanoic acid (caproic acid), heptanoic acid (enanthic acid), octanoic acid ( Caprylic acid), Nonanoic acid (Pelargonic acid), Decanoic acid (Power Puric acid), Dodecanoic acid (Lauric acid), Tetradecanoic acid (Myristylic acid), Pentadecanoic acid (Pentadecylic acid), Hexadecanoic acid (Palmitic acid) And heptadecanoic acid (margaric acid). Of these, decanoic acid, undecanoic acid, undecanoic acid, and fatty acids having 10 to 17 carbon atoms, such as decanoic acid, undecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadedecanoic acid and heptadecanoic acid are preferred. Of these, dodecanoic acid, tridecanoic acid and tetradecanoic acid are more preferred. Of these, dodecanoic acid is more preferred in view of the balance of scratch resistance and adhesiveness of the resulting molded article.
[0138] 安息香酸誘導体ィ匕合物としては、 tert-ブチル安息香酸、 3, 5 -ジ -tert-ブチル安 息香酸、 2, 4, 6-トリ- tert-ブチル安息香酸、 4-tert-ブチル - 2, 6-ジメチル安息香 酸などが挙げられる。このうち、触媒自体の揮発 (昇華)性 (揮発性が高いと成形時に 成形体中に気泡が発生したりする)と分子量 (分子量が大きいと低揮発性になるが、 より多くの触媒添カ卩が必要になる)のバランスから、 tert-ブチル安息香酸がより好ま しい。 [0138] The benzoic acid derivative compound includes tert-butylbenzoic acid, 3,5-di-tert-butylbenzoic acid, 2,4,6-tri-tert-butylbenzoic acid, 4-tert -Butyl-2,6-dimethylbenzoic acid. Of these, the volatility (sublimation) of the catalyst itself (bubbles are generated in the molded body during molding when the volatility is high) and molecular weight (when the molecular weight is large, the volatility is low. Tert-Butylbenzoic acid is more preferred because of the balance (which requires more catalyst addition).
(viii)アルミニウム等の金属錯体から誘導される化合物の具体例としては、炭素数が 2〜16であるジケトンィ匕合物と亜鉛力もなる金属塩ィ匕合物がより好ましい。  (viii) As a specific example of the compound derived from a metal complex such as aluminum, a diketone compound having 2 to 16 carbon atoms and a metal salt compound having a zinc power are more preferable.
炭素数が 2〜16であるジケトンィ匕合物としては、 1, 2—ジケトンィ匕合物、 1, 3—ジケト ン化合物、 1, 4ージケトンィ匕合物、 1, 5—ジケトンィ匕合物などが挙げられる。このうち 、 1, 3—ジケトンィ匕合物が好ましい。 1, 3—ジケトンィ匕合物としては、ァセチルァセト ンなどが挙げられる。  Examples of diketone compounds having 2 to 16 carbon atoms include 1,2-diketone compounds, 1,3-diketone compounds, 1,4-diketone compounds, 1,5-diketone compounds, and the like. Can be mentioned. Of these, 1,3-diketone compounds are preferred. Examples of 1,3-diketone compounds include acetylylaceton.
[0139] 本発明の熱可塑性エラストマ一組成物において、これらの熱潜在性触媒 (C)は、そ れぞれ単独で又は 2種以上を組み合わせて用いることができる。その配合量は、ァク リル系ブロック共重合体 100重量部に対して、 0. 01〜10重量部の範囲で配合する ことが好ましい。触媒の量が 0. 01重量部未満では触媒効果が十分に発揮されない 傾向にあり、 10重量部を超えると、最終的に得られる成形体が着色したり、耐水性が 低下する傾向にある。  [0139] In the thermoplastic elastomer composition of the present invention, these thermal latent catalysts (C) can be used alone or in combination of two or more. The blending amount is preferably in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the acryl-based block copolymer. When the amount of the catalyst is less than 0.01 parts by weight, the catalytic effect tends not to be sufficiently exhibited. When the amount exceeds 10 parts by weight, the finally obtained molded product tends to be colored or the water resistance tends to be lowered.
[0140] 熱潜在性触媒 (C)を添加する方法は、特に制限されないが、たとえば、アクリル系 ブロック共重合体 ( A)と化合物 (B)を含有する組成物に対して熱潜在性触媒 (C)を まぶして使用してもよぐアクリル系ブロック共重合体 (A)と化合物(B)と熱潜在性触 媒 (C)を溶融状態で練りこんでもよぐアクリル系ブロック共重合体 (A)と化合物 (B) と熱潜在性触媒 (C)を有機溶媒の溶液として混練した後に溶媒を除去しても良!、。  [0140] The method of adding the thermal latent catalyst (C) is not particularly limited. For example, the thermal latent catalyst (C) is added to the composition containing the acrylic block copolymer (A) and the compound (B) ( Acrylic block copolymer (A), compound (B), and thermal latent catalyst (C) that can be used by coating with C). After kneading A), compound (B) and thermal latent catalyst (C) as an organic solvent solution, the solvent can be removed! ,.
[0141] <熱可塑性エラストマ一組成物 >  [0141] <Thermoplastic elastomer composition>
本発明の熱可塑性エラストマ一組成物は、成形を行なう際は溶融粘度が低ぐ溶融 流動性 (成形性)に優れる一方、加熱時にアクリル系熱可塑性エラストマ一組成物の ブロック共重合体 (A)中の官能基 (c)である水酸基や酸無水物基やカルボキシル基 と、化合物 )中の反応性官能基 (d)との架橋反応が、熱潜在性触媒 (C)を用いる ことで促進される。  The thermoplastic elastomer composition of the present invention has a low melt viscosity when molding and excellent melt fluidity (moldability), while it is a block copolymer of an acrylic thermoplastic elastomer composition when heated (A) The cross-linking reaction between the hydroxyl group, acid anhydride group or carboxyl group, which is the functional group (c), and the reactive functional group (d) in the compound) is promoted by using the thermal latent catalyst (C). The
[0142] 熱可塑性エラストマ一組成物は、溶融性の向上および低温特性改善を目的として 、可塑剤を含んでいてもよい。可塑剤は、アクリル系ブロック共重合体 (A) 100重量 部に対して、 0. 1〜50重量部の範囲で使用するのが好ましぐ 0. 2〜40重量部の 範囲で使用するのがより好ましい。配合量が 0. 1重量部未満の場合には、得られる 組成物の溶融性や低温特性改善効果が十分でな!、場合があり、 50重量部を超える と、得られる成形体の機械特性や耐熱性などが悪化する場合がある [0142] The thermoplastic elastomer composition may contain a plasticizer for the purpose of improving meltability and improving low temperature characteristics. The plasticizer is preferably used in the range of 0.1 to 50 parts by weight with respect to 100 parts by weight of the acrylic block copolymer (A). It is more preferable to use within a range. If the blending amount is less than 0.1 part by weight, the meltability and low-temperature property improvement effect of the resulting composition may not be sufficient! In some cases, if it exceeds 50 parts by weight, the mechanical properties of the resulting molded product And heat resistance may deteriorate
可塑剤としては、特には限定されないが、 SP値が 8.1 9. 4である可塑剤が好まし い。 SP値が 8. 0未満及び 9. 5を超える場合には、可塑剤とアクリル系ブロック共重 合体 (A)との相溶性が悪くなり、得られる成形体の物性が低下したり、可塑剤がプリ ードアウトする可能性がある。  The plasticizer is not particularly limited, but a plasticizer having an SP value of 8.19.4 is preferable. When the SP value is less than 8.0 or more than 9.5, the compatibility between the plasticizer and the acrylic block copolymer (A) is deteriorated, and the physical properties of the resulting molded article are deteriorated. May be played out.
可塑剤としては、具体的にはフタル酸ジメチル、フタル酸ジェチル、フタル酸ジ—n ーブチル、フタル酸ジ一(2—ェチルへキシル)、フタル酸ジヘプチル、フタル酸ジィ ソデシル、フタル酸ジ—n—ォクチル、フタル酸ジイソノエル、フタル酸ジトリデシル、 フタル酸ォクチルデシル、フタル酸ブチルベンジル、フタル酸ジシクロへキシル等の フタル酸誘導体;ジメチルイソフタレートのようなイソフタル酸誘導体;ジー(2—ェチ ルへキシル)テトラヒドロフタル酸のようなテトラヒドロフタル酸誘導体;アジピン酸ジメ チル、アジピン酸ジブチル、アジピン酸ジ—n キシル、アジピン酸ジー(2—ェチ ルへキシル)、アジピン酸イソノエル、アジピン酸ジイソデシル、アジピン酸ジブチルジ グリコール等のアジピン酸誘導体;ァゼライン酸ジ— 2—ェチルへキシル等のァゼライ ン酸誘導体;セバシン酸ジブチル、セバシン酸ジォクチル等のセバシン酸誘導体;ド デカン 2—酸誘導体;マレイン酸ジブチル、マレイン酸ジ 2—ェチルへキシル等 のマレイン酸誘導体;フマル酸ジブチル等のフマル酸誘導体;トリメリト酸トリス - 2- ェチルへキシル、トリメリト酸トリオクチル等のトリメリト酸誘導体;ピロメリト酸テトラオタ チル等のピロメリト酸誘導体;ァセチルクェン酸トリブチル等のクェン酸誘導体;ヒドロ キシ安息香酸 2—ェチルへキシル等の安息香酸誘導体、ィタコン酸誘導体;ォレイン 酸誘導体;リシノール酸誘導体;ステアリン酸誘導体;その他脂肪酸誘導体; N アル キルベンゼンスルホンアミド等のスルホン酸誘導体;トリメチルフォスフェート、トリス(2 —ェチルへキシル)フォスフェート、 2—ェチルへキシルジフエ-ルフォスフェート等の リン酸誘導体;ダルタル酸誘導体;アジピン酸、ァゼライン酸、フタル酸などの二塩基 酸とグリコールおよび一価アルコールなどとのポリマーであるポリエステル系可塑剤、 ダルコール誘導体、グリセリン誘導体、塩素化パラフィン等のパラフィン誘導体、ェポ キシ誘導体ポリエステル系重合型可塑剤、ポリエーテル系重合型可塑剤、エチレン カーボネート、プロピレンカーボネート等のカーボネート誘導体等が挙げられる。 Specific examples of plasticizers include dimethyl phthalate, jetyl phthalate, di-n-butyl phthalate, di (2-ethylhexyl) phthalate, diheptyl phthalate, disodecyl phthalate, di-n-phthalate —Phthalic acid derivatives such as octyl, diisonoel phthalate, ditridecyl phthalate, octyldecyl phthalate, butylbenzyl phthalate, and dicyclohexyl phthalate; isophthalic acid derivatives such as dimethyl isophthalate; G (2-ethylhexyl) ) Tetrahydrophthalic acid derivatives such as tetrahydrophthalic acid; dimethyl adipate, dibutyl adipate, di-n-xyl adipate, diethyl adipate (2-ethylhexyl), isonoyl adipate, diisodecyl adipate, adipine Adipic acid derivatives such as dibutyl diglycolate; azelaic acid Azelaic acid derivatives such as di-2-ethylhexyl; sebacic acid derivatives such as dibutyl sebacate and dioctyl sebacate; dodecane 2-acid derivatives; maleic acid such as dibutyl maleate and di-2-ethylhexyl maleate Derivatives; fumaric acid derivatives such as dibutyl fumarate; trimellitic acid derivatives such as tris-2-ethylhexyl trimellitate and trioctyl trimellitic acid; pyromellitic acid derivatives such as tetraoctyl pyromellitic acid; Benzoic acid derivatives such as 2-ethylhexyloxybenzoate, itaconic acid derivatives; oleic acid derivatives; ricinoleic acid derivatives; stearic acid derivatives; other fatty acid derivatives; sulfonic acid derivatives such as N alkylbenzenesulfonamide; trimethyl phosphate; Tris (2 (Ruhexyl) phosphate, 2-ethylhexyl diphosphate phosphate, etc .; Daltaric acid derivatives; polymers of dibasic acids such as adipic acid, azelaic acid, phthalic acid, glycols and monohydric alcohols Certain polyester plasticizers, dalcol derivatives, glycerin derivatives, paraffin derivatives such as chlorinated paraffin, epo Examples thereof include xy derivative polyester polymerization type plasticizers, polyether polymerization type plasticizers, carbonate derivatives such as ethylene carbonate and propylene carbonate.
[0144] さらに、得られる成形体の表面の摩擦を下げるために、熱可塑性エラストマ一組成 物には、必要に応じて、各種滑剤を配合してもよい。  [0144] Further, various lubricants may be blended in the thermoplastic elastomer composition as necessary in order to reduce the friction of the surface of the obtained molded article.
[0145] 滑剤としては、エステル系滑剤、ポリエチレン系滑剤、ポリプロピレン系滑剤、炭化 水素系滑剤、及びシリコーンオイルが好ましいものとして挙げられる力 特に限定は なぐさらに、モンタン酸系ワックス、ステアリン酸などの有機脂肪酸、ステアリン酸アミ ドなどの有機酸アミドが例示できる。これらは単独で用いてもよぐ複数を組み合わせ て用いてもよい。なお、ここでいうポリエチレン系滑剤、ポリプロピレン系滑剤には、そ れぞれ、酸ィ匕ポリエチレン系滑剤、酸ィ匕ポリプロピレン系滑剤が含まれる。  [0145] Examples of the lubricant include ester lubricants, polyethylene lubricants, polypropylene lubricants, hydrocarbon lubricants, and silicone oils. Preferred are lubricants. Organic lubricants such as montanic acid wax and stearic acid are not particularly limited. Examples thereof include organic acid amides such as fatty acids and stearic acid amides. These may be used alone or in combination. The polyethylene-based lubricant and the polypropylene-based lubricant mentioned here include an acid-polyethylene lubricant and an acid-polypropylene lubricant, respectively.
[0146] このような滑剤としては、さらに具体的には、牛脂 45硬化油(融点 45°C ;日本油脂( 株)製、以下同じ)、牛脂 51硬化油 (融点 51°C)、牛脂 54硬化油 (融点 54°C)、牛脂 極度硬化油(融点 60°C)、 LicowaxE (滴点 79〜85°C ;クラリアントジャパン (株)製、 滴点は同社カタログより引用、以下同じ)などを挙げることが出来る。  [0146] Specific examples of such lubricants include beef tallow 45 hardened oil (melting point 45 ° C; manufactured by Nippon Oil & Fats Co., Ltd., the same shall apply hereinafter), beef tallow 51 hardened oil (melting point 51 ° C), beef tallow 54 Hardened oil (melting point 54 ° C), beef tallow Extremely hardened oil (melting point 60 ° C), LicowaxE (drop point 79-85 ° C; manufactured by Clariant Japan Co., Ltd. I can list them.
[0147] 熱可塑性エラストマ一組成物には、熱可塑性エラストマ一組成物および得られる成 形体の諸物性の調整を目的として、可塑剤や滑剤のほかに、安定剤、難燃剤、顔料 、帯電防止剤、離型剤、抗菌抗カビ剤などをさらに添加してもよい。このうち、安定剤 としては、老化防止剤、光安定剤、紫外線吸収剤などが挙げられる。充填材を配合し てもよい。充填材としては、特に限定されないが、機械特性の改善や補強効果、コス ト面等から、無機充填材がより好ましぐ酸化チタン、カーボンブラック、炭酸カルシゥ ム、シリカ、タルクがより好ましい。  [0147] In addition to plasticizers and lubricants, thermoplastic elastomer compositions and stabilizers, flame retardants, pigments, antistatic agents are used for the purpose of adjusting the physical properties of the thermoplastic elastomer composition and the resulting molded product. Agents, mold release agents, antibacterial antifungal agents and the like may be further added. Among these, examples of the stabilizer include an anti-aging agent, a light stabilizer, and an ultraviolet absorber. A filler may be blended. The filler is not particularly limited, but titanium oxide, carbon black, calcium carbonate, silica, and talc, which are more preferable for inorganic fillers, are more preferable from the viewpoint of improving mechanical properties, reinforcing effect, cost, and the like.
[0148] <熱可塑性エラストマ一組成物の製造方法 >  [0148] <Method for producing thermoplastic elastomer composition>
熱可塑性エラストマ一組成物は、例えば、バッチ式混鍊装置や連続混鍊装置を用 いること〖こより得ることができる。また、撹拌翼を供えた槽中で有機溶媒に溶解あるい は分散させた後に溶媒を除去することによつても得ることができる。  The thermoplastic elastomer composition can be obtained, for example, by using a batch kneader or a continuous kneader. It can also be obtained by dissolving or dispersing in an organic solvent in a tank provided with a stirring blade and then removing the solvent.
[0149] バッチ式混練装置としては、例えば、ミキシングロール、バンバリ一ミキサー、加圧- ーダ一、高剪断型ミキサーを使用できる。また、連続混練装置としては、単軸押出機 、二軸押出機、 KCK押出混練機などを用いることができる。さらに、機械的に混合し 、ペレット状に賦形する方法などの既存の方法を用いることができる。 [0149] As the batch-type kneading apparatus, for example, a mixing roll, a Banbury mixer, a pressure mixer, and a high shear mixer can be used. As the continuous kneading apparatus, a single screw extruder, a twin screw extruder, a KCK extrusion kneader, or the like can be used. Furthermore, mixing mechanically An existing method such as a method of forming into a pellet can be used.
[0150] 熱可塑性エラストマ一組成物を製造するための混練時の温度は、アクリル系ブロッ ク共重合体 (A)と化合物 (B)とが反応することにより、成形性が低下することのない温 度が好ま 、。アクリル系ブロック共重合体 (A)と化合物(B)とが反応して成形性が 悪化する温度は、官能基 (c)の種類、導入量、共存する熱潜在性触媒 (C)の種類、 導入量、アクリル系ブロック共重合体 (A)やィ匕合物(B)の組成、アクリル系ブロック共 重合体 (A)と化合物(B)の相溶性などによって変化する。このため、上記のような要 素に応じて、混練温度を適宜設定する必要がある。一般的には、組成物を得た後、 その組成物の成形を可能とするため、混練時の温度は 200°C以下であることが好ま しぐ 180°C以下であることがより好ましぐ 150°C以下であることがさらに好ましい。混 練時の温度が 200°Cを超えると、混練中に高分子量化や架橋反応が起こり、成形性 が低下する傾向にある。ただし、一部に高分子量ィ匕ゃ架橋が起こるような条件であつ ても、成形が可能な程度の温度であればよい。  [0150] The kneading temperature for producing the thermoplastic elastomer composition is such that the moldability is not lowered by the reaction of the acrylic block copolymer (A) and the compound (B). I prefer temperature. The temperature at which the acrylic block copolymer (A) and the compound (B) react and the moldability deteriorates depends on the type of functional group (c), the amount introduced, the type of coexisting thermal latent catalyst (C), It varies depending on the amount introduced, the composition of the acrylic block copolymer (A) and the compound (B), the compatibility of the acrylic block copolymer (A) and the compound (B), and the like. For this reason, it is necessary to appropriately set the kneading temperature according to the above-described elements. In general, after obtaining the composition, the temperature during kneading is preferably 200 ° C or less, more preferably 180 ° C or less, so that the composition can be molded. More preferably, the temperature is 150 ° C or lower. When the temperature at the time of kneading exceeds 200 ° C, high molecular weight and a crosslinking reaction occur during kneading, and the moldability tends to decrease. However, even if the conditions are such that a high molecular weight is partly cross-linked, it may be at a temperature at which molding is possible.
上述の方法において、せん断発熱による架橋反応進行を抑制する観点から、アタリ ル系ブロック共重合体 (A)を有機溶剤中に溶解させたアクリル系ブロック共重合体溶 液へアクリル系重合体 (B)および熱潜在性触媒 (C)、必要に応じてその他成分を添 カロした後に、有機溶媒を除去する方法が好ましい。特に、アクリル系ブロック共重合 体 (A)を有機溶剤中に溶解させたアクリル系ブロック共重合体溶液へアクリル系重合 体 (B)および熱潜在性触媒 (C)を添加した後に、水と混合して撹拌し、所定の大きさ のアクリル系ブロック共重合体溶液の液滴を形成させ、そのまま加熱することで有機 溶剤を蒸発させる方法がより好ま U、。  In the above method, from the viewpoint of suppressing the progress of the cross-linking reaction due to shear heat generation, an acrylic polymer (B) is added to an acrylic block copolymer solution in which an talyl block copolymer (A) is dissolved in an organic solvent. ) And the thermal latent catalyst (C), and after adding other components as necessary, a method of removing the organic solvent is preferred. In particular, the acrylic polymer (B) and the thermal latent catalyst (C) are added to an acrylic block copolymer solution in which the acrylic block copolymer (A) is dissolved in an organic solvent, and then mixed with water. Then, a method of evaporating the organic solvent by heating the mixture as it is, forming droplets of the acrylic block copolymer solution of a predetermined size and heating it is more preferable.
[0151] この熱可塑性エラストマ一組成物を粉砕して粉体を得る場合、その方法としては、タ ーボミル、ピンミル、ハンマーミル、遠心ミル等の衝撃型微粉砕機、固定刃と回転刃 による剪断作用を用いた粉砕機等を用いる方法がある。さらに、粉砕は常温で行なう こともできるが、液体窒素等の冷媒ゃ冷却設備を使用して機械粉砕することもできる 熱可塑性エラストマ一組成物を粉砕して粉体を得る際は、粉砕前の組成物ペレット 等の表面に、互着防止用の各種粉末を粉砕助剤として付着させてもよい。 [0152] 粉砕助剤としては、炭酸カルシウム、タルク、カオリン、シリカ、脂肪酸アミド、脂肪酸 エステル、金属石鹼等を用いることができる。これらは単独で、または 2種以上を組み 合わせて用いることができる。また、その量は、アクリル系ブロック共重合体 (A) 100 重量部に対して、 1〜40重量部程度とするとよい。 1重量部未満では、効果が十分で はなぐまた 40重量部より多いと、得られる組成物粉末の機械特性に悪影響を与える 恐れがある。用いる粉砕助剤の粒子径に関しては特に制限されるものではないが、 粒子径が大きすぎる場合には、互着防止能力が低ぐ微細な場合はハンドリング性 が低下することとなるため、平均粒子径 0. 5〜15 /ζ πι (光分散法により測定)のもの を用いるのが好ましい。なお、粉砕助剤は、粉砕により得られる熱可塑性エラストマ一 組成物粉体に大部分が残留するものの、一部は粉砕工程で脱離し、粉砕機内で分 離する。 [0151] When the thermoplastic elastomer composition is pulverized to obtain a powder, an impact type fine pulverizer such as a turbo mill, pin mill, hammer mill, centrifugal mill, etc., shearing with a fixed blade and a rotating blade is used. There is a method using a pulverizer or the like using an action. Furthermore, the pulverization can be performed at room temperature, but it can also be mechanically pulverized using a cooling equipment such as liquid nitrogen. When the thermoplastic elastomer composition is pulverized to obtain a powder, Various powders for preventing mutual adhesion may be adhered to the surface of the composition pellets or the like as a grinding aid. [0152] As the grinding aid, calcium carbonate, talc, kaolin, silica, fatty acid amide, fatty acid ester, metal sarcophagus and the like can be used. These can be used alone or in combination of two or more. The amount is preferably about 1 to 40 parts by weight per 100 parts by weight of the acrylic block copolymer (A). If it is less than 1 part by weight, the effect is not sufficient, and if it exceeds 40 parts by weight, the mechanical properties of the resulting composition powder may be adversely affected. The particle size of the grinding aid to be used is not particularly limited, but if the particle size is too large, the handling property will be reduced if the particle size is too small and the ability to prevent mutual adhesion. It is preferable to use one having a diameter of 0.5 to 15 / ζ πι (measured by a light dispersion method). Although most of the pulverization aid remains in the thermoplastic elastomer composition powder obtained by pulverization, a part of the pulverization aid is detached in the pulverization step and separated in the pulverizer.
[0153] 熱可塑性エラストマ一組成物カゝら粉体を得る際は、必ずしも粉砕工程を経なくても よい。例えば、熱可塑性エラストマ一組成物を連続式押し出し機で得る際、特殊なダ イスを取り付けることで、組成物粉末をマイクロペレットとして直接得ることができる。ま た、アクリル系ブロック共重合体 (Α)を有機溶剤中に溶解させたアクリル系ブロック共 重合体溶液へ化合物 (Β)を溶解させた後に、水と混合して撹拌し、所定の大きさの アクリル系ブロック共重合体溶液の液滴を形成させ、そのまま加熱することで有機溶 剤を蒸発させ、適当な粒度分布を持った粉体を得ることができる。この時、アクリル系 ブロック共重合体溶液に、予め上記の架橋促進用の添加剤や触媒、充填材、滑材、 安定剤、可塑剤、柔軟性付与剤、難燃剤、顔料、帯電防止剤、抗菌抗カビ剤等を溶 解-分散させておいてもよい。また、所定の大きさの液滴を安定して得るために、乳化 剤としてポリビュルアルコール、ポリビュルアルコール Ζポリ酢酸ビュル共重合体、メ チルセルロースなどを添加してもよい。 これらの結果得られた粉体は、ふるい等を用 いて粒径 1〜: L000 μ mのものだけを分取するのが好ましい。 1 μ mより粒径の小さい ものを含んだ粉体は、粉体同士の凝集を促進させる原因となり、ハンドリング性が低 下すると共に粉体流動性が悪化する。このため、後述するパウダースラッシュ成形に 用いたときに、金型の端部まで粉体が十分に届かず、成形体の意匠性が損なわれる こととなる。また、 1000 mより大きな粒径のものを含んだ粉体は、パウダースラッシ ュ成形に用いたときに、粒径の大きな粉体が十分に溶融しないため、成形体の意匠 性が損なわれることとなる。 [0153] When obtaining a powder from the thermoplastic elastomer composition composition, it is not always necessary to go through a pulverization step. For example, when a thermoplastic elastomer composition is obtained by a continuous extruder, the composition powder can be directly obtained as a micropellet by attaching a special die. In addition, the compound (Β) is dissolved in an acrylic block copolymer solution in which the acrylic block copolymer (Α) is dissolved in an organic solvent, and then mixed with water and stirred to obtain a predetermined size. By forming droplets of the acrylic block copolymer solution and heating as it is, the organic solvent is evaporated, and a powder having an appropriate particle size distribution can be obtained. At this time, in the acrylic block copolymer solution, the above-mentioned additives for promoting crosslinking, catalysts, fillers, lubricants, stabilizers, plasticizers, flexibility imparting agents, flame retardants, pigments, antistatic agents, Antibacterial and antifungal agents may be dissolved and dispersed. Further, in order to stably obtain droplets of a predetermined size, polybulal alcohol, polybulal alcohol-polyacetic acid copolymer, methylcellulose, or the like may be added as an emulsifying agent. The powder obtained as a result is preferably fractionated only with a particle size of 1 to L000 μm using a sieve or the like. Powders containing particles smaller than 1 μm cause agglomeration of the powders, resulting in poor handling and poor powder flow. For this reason, when used for powder slush molding, which will be described later, the powder does not reach the end of the mold sufficiently, and the design of the molded body is impaired. In addition, powders with a particle size larger than 1000 m When used in molding, the powder having a large particle size does not melt sufficiently, so that the design of the molded body is impaired.
[0154] 熱可塑性エラストマ一組成物をパウダースラッシュ成形に用いる場合は、成形体の 色調や、スラッシュ成形にお!ヽて重要な金型離型性および粉体特性を改良するため に、上記方法により得られた粉体に、必要に応じて、通常一般的に用いられる顔料、 離型剤、ブロッキング防止用粉体などを混合'分散することで粉体特性を改良するこ とが可能である。  [0154] When the thermoplastic elastomer composition is used for powder slush molding, the above-mentioned method is used to improve the color tone of the molded body and the mold releasability and powder characteristics which are important for slush molding. It is possible to improve the powder characteristics by mixing and dispersing pigments, release agents, anti-blocking powders and the like that are usually used as needed in the powder obtained by .
[0155] <熱可塑性エラストマ一組成物の成形方法 >  <Method for molding thermoplastic elastomer composition>
熱可塑性エラストマ一の製造方法の項で得られた組成物は、種々の方法で成形で きる。例えば、パウダースラッシュ成形、射出成形、射出ブロー成形、ブロー成形、押 出ブロー成形、押出成形、カレンダー成形、真空成形、プレス成形などに適用可能 であるが、パウダースラッシュ成形がより好適に使用される。ここで、パウダースラッシ ュ成形とは、組成物パウダーを高温に加熱された成形金型に流し込み、溶融成形さ せ、ある一定時間経過後に冷却固化された成形体を取り出す方法である。パウダー スラッシュ成形では、組成物が無加圧下でも流動して溶融成形される必要がある一 方、成形後の成形体は 100°C以上の使用環境に曝される。このことから、成形性と耐 熱性とのバランスをとることが困難である。  The composition obtained in the section of the method for producing a thermoplastic elastomer can be molded by various methods. For example, it can be applied to powder slush molding, injection molding, injection blow molding, blow molding, extrusion blow molding, extrusion molding, calendar molding, vacuum molding, press molding, etc., but powder slush molding is more preferably used . Here, the powder slush molding is a method in which the composition powder is poured into a molding die heated to a high temperature, melt-molded, and the molded product cooled and solidified is taken out after a certain period of time. In powder slush molding, the composition needs to flow and be melt-molded even under no pressure, while the molded body after molding is exposed to a usage environment of 100 ° C or higher. For this reason, it is difficult to balance moldability and heat resistance.
[0156] しかし、本発明の組成物は、成形前はアクリル系ブロック共重合体 (A)と化合物(B )が未反応の状態であり、金型内での溶融性に優れる一方、冷却固化されるまでの 一定時間内にアクリル系ブロック共重合体 (A)と化合物(B)が反応し、アクリル系プロ ック共重合体 (A)が高分子量ィ匕あるいは架橋されることによって成形後の耐熱性が 向上する。このことから、パウダースラッシュ成形に好適な材料であるといえる。  [0156] However, the composition of the present invention is in an unreacted state of the acrylic block copolymer (A) and the compound (B) before molding, and is excellent in meltability in the mold while being cooled and solidified. After molding, the acrylic block copolymer (A) and the compound (B) react within a certain period of time until they are formed, and the acrylic block copolymer (A) is polymerized or crosslinked. The heat resistance of is improved. From this, it can be said that it is a material suitable for powder slush molding.
[0157] なお、パウダースラッシュ成形にぉ 、て、アクリル系ブロック共重合体 (A)が高分子 量ィ匕あるいは架橋されることによって成形後の耐熱性が向上する力 アクリル系プロ ック共重合体 (A)の高分子量ィ匕によって耐熱性を付与する場合には、成形後のァク リル系ブロック共重合体 (A)の数平均分子量が 100, 000以上となるようにすることが 好ましく、 150, 000以上とすること力 Sより好ましく、 200, 000以上とすること力 Sさらに 好ましい。数平均分子量が 100, 000より低いと耐熱性の改善効果が低くなる。この ような点からは、本発明の熱可塑性エラストマ一組成物は、数平均分子量 40, 000 以上のアクリル系ブロック共重合体 (A)を用いることが好ま U、。 [0157] In addition to the powder slush molding, the acrylic block copolymer (A) has a high molecular weight or is cross-linked to improve the heat resistance after molding. In the case where heat resistance is imparted by the high molecular weight of the blend (A), it is preferable that the number average molecular weight of the acryl-based block copolymer (A) after molding is 100,000 or more. More preferably, the force S is more than 150,000, more preferably S, more preferably 200,000 or more. When the number average molecular weight is lower than 100,000, the effect of improving heat resistance is lowered. this From such a point, it is preferable that the thermoplastic elastomer composition of the present invention uses an acrylic block copolymer (A) having a number average molecular weight of 40,000 or more.
産業上の利用可能性  Industrial applicability
[0158] 本発明の熱可塑性エラストマ一組成物においては、配合や構成単量体成分等を調 整することにより、耐熱性、耐候性、耐薬品性、耐油性、接着性、柔軟性に優れたも のとすることができる。このような組成物は、表皮材料、タツチパネル等の良好な触感 が求められる材料、外観が重要視される材料、耐油性材料、制振材料、粘着材料の ような材料として使用することができる。また、その形状としてはシート状、平板状、フ イルム状、小型成形体、大型成形体その他任意の形状として、またパネル類、ハンド ル類、グリップ類、スィッチ類のような部品として、さらにそれ以外にもシーリング部材 として用いることができる。用途としては、特に制限されないが、自動車用、家庭用電 気製品用、または事務用電気製品用が例示される。たとえば、自動車用表皮材料、 自動車用触感材料、 自動車用外観材料、自動車用パネル類、自動車用ハンドル類 、 自動車用グリップ類、自動車用スィッチ類として、また、家庭用または事務用電気製 品用パネル類、家庭用または事務用電気製品用スィッチ類などを例示することがで きる。この中でも、自動車内装用表皮に好適に使用される。 [0158] The thermoplastic elastomer composition of the present invention is excellent in heat resistance, weather resistance, chemical resistance, oil resistance, adhesion, and flexibility by adjusting the blending and constituent monomer components. Can be anything. Such a composition can be used as a material such as a skin material, a touch panel, or the like that requires good tactile sensation, a material whose appearance is important, an oil resistant material, a vibration damping material, or an adhesive material. In addition, the shape may be a sheet, flat plate, film, small molded body, large molded body, or any other shape, and as parts such as panels, handles, grips, and switches. Besides, it can be used as a sealing member. The application is not particularly limited, and examples thereof include automobiles, household electrical appliances, and office electrical appliances. For example, automotive skin materials, automotive tactile materials, automotive exterior materials, automotive panels, automotive handles, automotive grips, automotive switches, and household or office electrical panel For example, household appliances or office appliance switches. Among these, it is suitably used for an automobile interior skin.
実施例  Example
[0159] 本発明を実施例に基づいてさらに詳細に説明する力 本発明はこれらの実施例の みに限定されるものではない。なお、実施例における BA、 EA、 HEA、 HBA、 AA、 MMAはそれぞれ、アクリル酸 n—ブチル、アクリル酸ェチル、アクリル酸 2—ヒド 口キシェチル、アクリル酸ー4ーヒドロキシブチル、アクリル酸、メタアクリル酸メチルを 表す。また、実施例中に記載した分子量や重合反応の転化率、各物性評価は、以下 の方法に従って行った。  [0159] Power to explain the present invention in more detail based on examples The present invention is not limited to only these examples. In the examples, BA, EA, HEA, HBA, AA, and MMA are n-butyl acrylate, ethyl acrylate, 2-hydroxybutyrate, acrylate-4-hydroxybutyl, acrylic acid, methacrylic, respectively. Represents methyl acid. Further, the molecular weight, the conversion rate of the polymerization reaction, and the evaluation of each physical property described in the examples were performed according to the following methods.
[0160] <分子量測定法 >  [0160] <Molecular weight measurement method>
本実施例に示す分子量は以下に示す GPC分析装置で測定し、クロ口ホルムを移 動相として、ポリスチレン換算の分子量を求めた。システムとして、ウォーターズ (Wat ers)社製 GPCシステムを用い、カラムに、昭和電工 (株)製 Shodex K— 804 (ポリ スチレンゲル)を用いた。 [0161] <重合反応の転化率測定法 > The molecular weight shown in this example was measured by the GPC analyzer shown below, and the molecular weight in terms of polystyrene was determined using black mouth form as the mobile phase. As a system, a GPC system manufactured by Waters was used, and Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK was used for the column. [0161] <Method of measuring conversion rate of polymerization reaction>
本実施例に示す重合反応の転化率は以下に示す分析装置、条件で測定した。 使用機器:島津製作所 (株)製ガスクロマトグラフィー GC― 14B  The conversion rate of the polymerization reaction shown in this example was measured using the following analyzer and conditions. Equipment used: Gas chromatography GC-14B manufactured by Shimadzu Corporation
分離カラム: J&W SCIENTIFIC INC製、キヤビラリ一力ラム Supelcowax— 10 ( 0. d5mm X 30m)  Separation column: manufactured by J & W SCIENTIFIC INC, one-off ram Supelcowax— 10 (0. d5mm X 30m)
分離条件:初期温度 60°C、 3. 5分間保持  Separation conditions: Initial temperature 60 ° C, hold for 3.5 minutes
昇温速度: 40°CZmin  Temperature increase rate: 40 ° CZmin
最終温度: 140°C、 1. 5分間保持  Final temperature: 140 ° C, 1. Hold for 5 minutes
インジェクション温度: 250°C  Injection temperature: 250 ° C
ディテクター温度: 250°C  Detector temperature: 250 ° C
試料調整:サンプルを酢酸ェチルにより約 10倍に希釈し、酢酸ブチルまたはァセトニ トリルを内部標準物質とした。  Sample preparation: The sample was diluted about 10 times with ethyl acetate, and butyl acetate or acetonitrile was used as an internal standard.
[0162] <耐エタノール性試験 >  [0162] <Ethanol resistance test>
本実施例および比較例に示す耐エタノール性は以下に示す条件で測定した。  The ethanol resistance shown in the examples and comparative examples was measured under the following conditions.
[0163] 実施例および比較例にて作製した、シボ模様のシートを平面に設置し、ピペットに てエタノール (和光純薬 (株)製)を 1滴滴下し、 24時間室温で放置した。その後表面 を観察し、 目視にて、跡のないものを〇、白化がみとめられるものを Xで評価した。  [0163] The textured sheet produced in the examples and comparative examples was placed on a flat surface, and a drop of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped onto the pipette and left at room temperature for 24 hours. Thereafter, the surface was observed and visually evaluated as ◯ for those with no trace and X for those with whitening observed.
[0164] <耐油性試験 >  [0164] <Oil resistance test>
本実施例および比較例に示す耐油性は、以下に示す条件で測定した。  The oil resistance shown in the examples and comparative examples was measured under the following conditions.
[0165] 実施例および比較例にて作製したシボ模様のシートを平面に設置し、ピペットにて 流動パラフィンけ力ライテスタ (株)製)を 1滴滴下し、 24時間室温で放置した。その 後、流動パラフィンをキムワイプ (登録商標)((株)クレシァ製)でふき取り、表面を観 察し、 目視にて、跡のないものを〇、白化がみとめられるものを Xで評価した。  [0165] The textured sheet produced in the examples and comparative examples was placed on a flat surface, and one drop of liquid paraffin strength light tester Co., Ltd. was dropped with a pipette and left at room temperature for 24 hours. Thereafter, the liquid paraffin was wiped off with Kimwipe (registered trademark) (manufactured by Cressia Co., Ltd.), the surface was observed, and visually, the one with no trace was evaluated as ◯, and the one with whitening was evaluated as X.
[0166] <耐熱性試験- 1 >  [0166] <Heat resistance test-1>
成形により得られたシートから 5cm X 5cmのサンプルを切り出し、 130°Cオーブン に 24時間放置した。シボ面の変化を試験前後で比較し、以下の基準で評価した。 試験前後で表面光沢が変化して 、な 、もの;〇  A 5 cm × 5 cm sample was cut from the sheet obtained by molding and left in an oven at 130 ° C. for 24 hours. Changes in the textured surface were compared before and after the test, and evaluated according to the following criteria. Surface gloss changes before and after the test.
試験前後で表面光沢がわずかでも変化して 、るもの; X <耐熱性試験- 2 > A slight change in surface gloss before and after the test; X <Heat resistance test-2>
成形により得られたシートから 5cm X 5cmのサンプルを切り出し、 110°Cオーブン に 24時間放置した。シボ面の変化をダロスメーター(日本電色工業 (株)、 VG2000 、角度は 60°Cに設定)で比較し、以下の基準で評価した。  A 5 cm × 5 cm sample was cut from the sheet obtained by molding and left in a 110 ° C. oven for 24 hours. Changes in the textured surface were compared with a dull meter (Nippon Denshoku Industries Co., Ltd., VG2000, angle set to 60 ° C) and evaluated according to the following criteria.
試験前後で、ダロス変化が 0. 4以内であるもの:〇  Before and after the test, Dalos change is within 0.4: 〇
試験前後で、ダロス変化が 0. 5〜0. 7であるもの:△  Before and after the test, Dalos change is 0.5 to 0.7: △
試験前後で、ダロス変化が 0. 8以上であるもの: X  Before and after the test, Dalos change is more than 0.8: X
<耐熱性試験- 3 >  <Heat resistance test-3>
本実施例および比較例に示す耐熱性は以下に示す条件で測定した。  The heat resistance shown in the examples and comparative examples was measured under the following conditions.
[0167] 実施例および比較例にて作製したシボ模様のシートを 24時間 120°Cで放置した。 [0167] The textured sheet produced in the examples and comparative examples was left at 120 ° C for 24 hours.
その後、表面を観察し、 目視にて、シボ模様の変化が認められないものを〇、シボ模 様の変化が認められるものを Xとした。  Then, the surface was observed, and “X” indicates that no change in the wrinkle pattern is observed, and “X” indicates that the wrinkle-like change is recognized.
[0168] <ウレタン接着性試験- 1 > [0168] <Urethane adhesion test-1>
成形により得られたシートから 2cm X 10cmの表皮材サンプルを切り出し、 24時間 室温で養生した。その後、あら力じめ 40°Cに設定したウレタン発泡型(縦 140mm X 横 200mm X高さ 10mmの蓋付容器、 SUS304製)に、表皮材のシボ面を下にして セットした。ポリイソシァネート(日本ポリウレタン工業 (株)製 CEI— 264) 17gおよび ポリオール (三洋化成工業 (株)製、 HC— 150) 34gを室温で 10秒ノヽンドミキサーに よる攪拌を行い、表皮材がセットされたウレタン発泡型に注入後、蓋をして、 10分間 発泡させた。発泡終了後、発泡型力 ウレタンフォームを取り出し、 24時間室温で養 生した。ウレタンフォーム力 試験片を手で引き剥がし、以下の基準で評価した。 ウレタンフォーム部分で材料破壊を起こす:〇  A 2 cm × 10 cm skin material sample was cut from the sheet obtained by molding and cured at room temperature for 24 hours. After that, it was set on a urethane foam mold (140 mm long x 200 mm wide x 10 mm high lid, made of SUS304) with the embossed surface facing down. Stir the polyisocyanate (CEI-264, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 34 g of polyol (manufactured by Sanyo Chemical Industry Co., Ltd., HC-150) for 10 seconds at room temperature using a non-mix mixer. After pouring into the set urethane foam, it was covered and allowed to foam for 10 minutes. After foaming was completed, the foaming strength urethane foam was taken out and cured at room temperature for 24 hours. Urethane foam strength The test piece was peeled off by hand and evaluated according to the following criteria. Causes material destruction at the urethane foam part: 〇
ウレタンフォームと試験片の界面で剥離する: X  Peel at the interface between urethane foam and specimen: X
くウレタン接着性試験 -2 >  Urethane adhesion test -2>
実施例に従って組成物をプレス成型して表皮材を作製した。主成分が 4, 4'—ジフ ェ-ルメタンジイソシァネートであるカートリッジタイプポリウレタン (エアータイト (株)製 According to the example, the composition was press-molded to prepare a skin material. Cartridge type polyurethane (made by Air Tight Co., Ltd.) whose main component is 4,4'-diphenylmethane diisocyanate
)を金属板上に塗布し、すぐにその発泡体上に表皮材を載せ接着させた。 12時間以 上経過した後(完全に発泡体が硬化して 、る状態)で、発泡ウレタン力 表皮材を手 で剥離させて破壊の状態を観察し、ウレタン材料で破壊が起こっているものを〇、シ ートとウレタンの界面で一部破壊が起こっていたり、完全に破壊が起こっているものを) Was applied onto a metal plate, and a skin material was immediately placed on the foam and adhered. After 12 hours or more have passed (the foam has been completely cured) , And observe the state of destruction.If the urethane material is broken, it will be broken.If it is partially broken or completely broken at the interface between the sheet and the urethane,
Xとした。 X.
[0169] <パウダースラッシュ'性試験 >  [0169] <Powder slash 'sex test>
本実施例および比較例に示す成形時の樹脂の溶融流動性 (パウダースラッシュ性 )は以下に示す方法で評価した。  The melt fluidity (powder slash property) of the resin at the time of molding shown in the examples and comparative examples was evaluated by the following method.
[0170] 実施例および比較例に従って、組成物の塊を作成した。ドライアイスで冷却した小 型粉砕機 SK— M2 (協立理工 (株)製)に組成物の塊を投入し、ドライアイスを加えつ つ粉砕した。得られたパウダーを、以下の条件にて評価した。  [0170] According to Examples and Comparative Examples, a mass of the composition was prepared. A lump of the composition was put into a small pulverizer SK-M2 (manufactured by Kyoritsu Riko Co., Ltd.) cooled with dry ice, and pulverized while adding dry ice. The obtained powder was evaluated under the following conditions.
[0171] 得られたパウダーを 200°Cに加熱した皮シボ金属板上に薄く広げて載せ、溶融状 態を目視にて観察した。  [0171] The obtained powder was spread thinly on a leather metal plate heated to 200 ° C, and the molten state was visually observed.
[0172] 評価指標:パウダーが完全に溶融するもの:〇、パウダーに一部とけ残りがあるもの  [0172] Evaluation index: Powder that melts completely: Yes, Powder that has some residue
:△、ノ ウダ一が溶融しないもの: Xとして評価した。  : △, no melt of melting: X
[0173] <成形性>  [0173] <Formability>
成形性は 29. 4cm X 20. 4cmのシボ付平板 (スラッシュ成形用金型)とパウダーボ ックスカゝらなる箱型スラッシュ成形機を用いてスラッシュ成形を行うことにより評価した 。条件は、熱可塑性エラストマ一組成物粉体を 2Kg投入し、 280°Cに加熱したスラッ シュ成形用金型をスラッシュ成形機にセットした後、金型が 260°Cとなった時点で、反 転させ後、 6秒間保持し、その後、反転させた。 60秒間経過した時点で金型を冷却 水で 40秒冷却した。さらに空冷を行い、シート温度が 30°Cまで達した時点で、シート を金型から剥がし、成形シート (厚み 1. Omm)を得た。得られた成形体シートの成形 性は以下のように評価した。  Formability was evaluated by performing slush molding using a 29.4 cm X 20.4 cm flat plate with a texture (mold for slush molding) and a box slush molding machine such as a powder box. The condition is that 2 kg of the thermoplastic elastomer composition powder is charged, the slush molding die heated to 280 ° C is set in a slush molding machine, and then the mold is heated to 260 ° C. After turning, it was held for 6 seconds and then reversed. After 60 seconds, the mold was cooled with cooling water for 40 seconds. Furthermore, air cooling was performed, and when the sheet temperature reached 30 ° C, the sheet was peeled off from the mold to obtain a molded sheet (thickness: 1. Omm). The moldability of the obtained molded sheet was evaluated as follows.
[0174] 成形シートの裏面が平滑で、溶融ムラが無ぐコーナー部にも凹凸が認められない もの;成形性〇  [0174] Molded sheet with a smooth back surface and no unevenness in the corners without melting unevenness; Formability 〇
成形シートの裏面の一部に成形時の熱可塑性エラストマ一組成物粉体の粉切れ残 りがあり、凹凸が認められるもの;成形性△  A part of the back side of the molded sheet has a residue of the thermoplastic elastomer composition powder at the time of molding, and irregularities are observed;
成形シートの裏面で熱可塑性エラストマ一組成物粉体の溶融が不十分であり、成 形シートの裏面の前面が凸凹であるもの;成形性 X。 <摩耗性評価試験 > The thermoplastic elastomer composition powder is not sufficiently melted on the back side of the molded sheet, and the front side of the back side of the molded sheet is uneven; <Abrasion evaluation test>
スラッシュ成形により得られたシートから 3cm X 10cmのサンプルを切り出し、摩耗 試験機にて、摩耗試験を行った。  A 3 cm x 10 cm sample was cut out from the sheet obtained by slush molding, and a wear test was performed with a wear tester.
使用機器:ヘイドン式摩耗試験機 14DR (新東科学 (株)製) Equipment used: Haydon-type wear tester 14DR (manufactured by Shinto Kagaku Co., Ltd.)
移動速度: 6000mmZ分 Movement speed: 6000mmZ min
移動長さ: 5cm Movement length: 5cm
移動回数: 5往復 Number of movements: 5 round trips
荷重重 : lkg Load weight: lkg
摩耗ジグ: ASTM式ジグを、ジグがサンプルに対して常に平行になるように軸に固定 した。 ASTMジグの下側に、アルミニウム製、直径 2. 5cm、長さ lcmの円柱を半分 に切断した半円柱を接着した。その上から、金巾 3号の布を 4重巻きにて取り付け、 A STMジグの止め具にて固定した。 Wear jig: An ASTM jig was fixed to the shaft so that the jig was always parallel to the sample. A semi-cylinder made of aluminum, having a diameter of 2.5 cm and a length of 1 cm was cut in half on the lower side of the ASTM jig. On top of that, a cloth with a width of gold No. 3 was attached in a quadruple roll and fixed with a stopper of an A STM jig.
試験を行い、 目視で観察し、以下の基準で評価した。 The test was conducted, visually observed, and evaluated according to the following criteria.
正面から見て傷がよく分力 な 、もの;〇 Scratches seen from the front are well-balanced;
正面から見て若干でも傷が認められるもの; X Some scratches seen from the front; X
<耐スクラッチ性 >  <Scratch resistance>
スラッシュ成形により得られたシートから 10cm X 10cmのサンプルを切り出し、台紙 に貼り付けて、測定用サンプルとした。以下の条件にて、スクラッチ試験を行った。 使用機器:テーバースクラッチテスタ (東洋精機 (株)製)  A 10 cm × 10 cm sample was cut out from the sheet obtained by slush molding and pasted on a mount to obtain a measurement sample. A scratch test was conducted under the following conditions. Equipment used: Tabers clutch tester (Toyo Seiki Co., Ltd.)
回転数: 0. 5rpm Rotation speed: 0.5rpm
カッター:タングステンカーバイド、 4. 8mm角 X 19mm長、刃先半径 12. 7mm カッターの向き:カッターの刃側が下になるように、カッターの長 、面が上になるように 取り付けた (図 1参照)。 Cutter: Tungsten carbide, 4.8 mm square x 19 mm length, cutting edge radius 12.7 mm Cutter orientation: Cutter length and surface mounted with the cutter blade side down (see Fig. 1) .
荷重 1Nで試験を行い、 目視で観察し、以下の基準で評価した。 The test was performed with a load of 1N, visually observed, and evaluated according to the following criteria.
正面から見て傷がよく分力 な 、もの;〇 Scratches seen from the front are well-balanced;
正面から見て若干でも傷が認められるもの; X Some scratches seen from the front; X
<貯蔵安定性試験 >  <Storage stability test>
本実施例および比較例に示す組成物の貯蔵安定性は以下に示す方法で評価した [0176] (評価方法 1) The storage stability of the compositions shown in the examples and comparative examples was evaluated by the following method. [0176] (Evaluation Method 1)
組成物を 80°Cオーブン中に放置し、経時(6日、 12日)での溶融流動性 (MFR)を 測定することにより評価した。 MFR (g/10min)は (株)島津製作所製の高化式フロ 一テスター CFT— 500C型を用いて 180°C、余熱時間 30秒で加熱された組成物を 荷重 20kgfZcm2のもとで、内径 lmm、長さ 10mmのノズルから押出したときに、 10 分間に押出される榭脂量 (本測定器においては MFRと表示される)とした。この際、 比重は 1. 0として算出した。貯蔵安定性は、 MFRの初期値を 100%として、 12日放 置後の MFRの値が初期値に対して 50%以上の場合を〇、 10〜49%を△、 10%以 下の場合を Xとした。 The composition was left in an 80 ° C. oven and evaluated by measuring melt flowability (MFR) over time (6 days, 12 days). MFR (g / 10min) is a composition heated at 180 ° C with a preheating time of 30 seconds using a Koka type flow tester CFT-500C manufactured by Shimadzu Corporation under a load of 20 kgfZcm 2 When extruding from a nozzle with an inner diameter of 1 mm and a length of 10 mm, the amount of grease extruded during 10 minutes (indicated as MFR in this measuring instrument) was used. At this time, the specific gravity was calculated as 1.0. Storage stability is defined as 0 when the initial value of MFR is 100% and the MFR value after standing for 12 days is 50% or more of the initial value, △ is 10 to 49%, and is 10% or less. X.
[0177] (評価方法 2)  [0177] (Evaluation Method 2)
ノ ゥダースラッシュ試験用に作製したパウダーを 80°Cオーブン中で 6日放置した後 、パウダースラッシュ試験を実施し、 80°Cオーブン中への放置前後での溶融流動性 (パウダースラッシュ性)を観察することで評価した。  After the powder prepared for the noder slash test was left in an oven at 80 ° C for 6 days, the powder slush test was conducted, and the melt fluidity (powder slash property) before and after being left in the oven at 80 ° C was measured. Evaluation was made by observation.
[0178] 評価指標: 6日放置後のパウダースラッシュ性が良好なものを〇、 6日放置後のバウ ダースラッシュ性が悪 、ものを Xとして評価した。  [0178] Evaluation index: A case where the powder slash property was good after 6 days was evaluated as ◯, and a case where the powder slash property after 6 days was bad was evaluated as X.
[0179] (製造例 1)  [0179] (Production Example 1)
アクリル系ブロック共重合体の合成  Synthesis of acrylic block copolymers
アクリル系ブロック共重合体を得るために以下の操作を行なった。重合体中への力 ルボキシル基の導入は WO2003Z068836を参考に行なった。耐圧反応器内を窒 素置換したのち、臭化銅 0. 89重量部、アクリル酸 n ブチル 100重量部及びァク リル酸— t—ブチル 4. 46重量部を仕込み、攪拌を開始した。その後、開始剤として 2 , 5 ジブロモアジピン酸ジェチル 1. 24重量部をァセトニトリル(窒素パブリングした もの) 9. 18重量部に溶解させた溶液を仕込み、溶液温度を 75°Cに昇温しつつ 30分 間攪拌した。溶液温度が 75°Cに到達した時点で、配位子としてペンタメチルジェチ レントリアミン 0. 11重量部加えてアクリル系重合体ブロックの重合を開始した。  In order to obtain an acrylic block copolymer, the following operation was performed. Introduction of force ruboxyl groups into the polymer was carried out with reference to WO2003Z068836. After replacing the inside of the pressure-resistant reactor with nitrogen, 0.89 parts by weight of copper bromide, 100 parts by weight of n-butyl acrylate, and 4.46 parts by weight of acrylic acid-t-butyl were charged, and stirring was started. Then, 2,5-diethyl acetate dibromoadipate as an initiator 1. Acetonitrile (nitrogen published) 24 parts by weight 9. A solution prepared by dissolving 18 parts by weight was added, and the temperature was raised to 75 ° C. Stir for minutes. When the solution temperature reached 75 ° C., 0.11 part by weight of pentamethylethylenetriamine was added as a ligand to initiate polymerization of the acrylic polymer block.
[0180] 重合開始から一定時間ごとに、サンプリング溶液のガスクロマトグラフィー分析により アクリル酸 n—ブチル、アクリル酸 t ブチルの転ィ匕率を決定した。重合の際、ぺ ンタメチルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタ メチルジェチレントリアミンはアクリル系重合体ブロック重合時に合計 2回 (合計 0. 21 重量部)添加した。 [0180] The conversion rate of n -butyl acrylate and t-butyl acrylate was determined by gas chromatography analysis of the sampling solution at regular intervals from the start of polymerization. During polymerization, The polymerization rate was controlled by adding n-methylethylenetriamine as needed. Pentamethyljetylenetriamine was added twice in total (0.21 part by weight in total) during the acrylic polymer block polymerization.
[0181] アクリル酸 n ブチルの転化率が 99.0%、アクリル酸 t ブチルの転化率が 99 . 1%の時点で、メタアクリル酸メチル 63. 76重量部、アクリル酸ェチル 10. 38重量 部、塩化銅 0. 61重量部、ペンタメチルジェチレントリァミン 0. 11重量部及びトルェ ン(窒素パブリングしたもの) 137. 41重量部をカ卩えて、メタクリル系重合体ブロックの 重合を開始した。  [0181] When the conversion rate of n-butyl acrylate was 99.0% and the conversion rate of t-butyl acrylate was 99.1%, methyl methacrylate was 63.76 parts by weight, ethyl acrylate was 10.38 parts by weight, chloride Polymerization of the methacrylic polymer block was started by adding 0.61 part by weight of copper, 0.11 part by weight of pentamethylgerylenetriamine and 137.41 parts by weight of toluene (nitrogen published).
[0182] メタアクリル酸メチル、アクリル酸ェチルを投入した時点でサンプリングを行 、、これ を基準としてメタアクリル酸メチル、アクリル酸ェチルの転ィ匕率を決定した。メタアタリ ル酸メチル、アクリル酸ェチルを投入後、内温を 85°Cに設定した。重合の際、ペンタ メチルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメチ ルジェチレントリアミンはメタクリル系重合体ブロック重合時に合計 6回 (合計 0. 64重 量部)添加した。メタアクリル酸メチルの転化率が 95. 0%の時点でトルエン 212. 77 重量部を加え、反応器を冷却して反応を終了させた。得られたアクリル系ブロック共 重合体の GPC分析を行ったところ、数平均分子量 Mnは 72, 100、分子量分布 Mw ZMnは 1. 48であった。  [0182] Sampling was performed at the time when methyl methacrylate and ethyl acrylate were added, and the conversion ratio of methyl methacrylate and ethyl acrylate was determined based on this sampling. After adding methyl methacrylate and ethyl acrylate, the internal temperature was set to 85 ° C. During the polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethylgerylenetriamine was added a total of 6 times (0.64 parts by weight in total) during methacrylic polymer block polymerization. When the conversion rate of methyl methacrylate was 95.0%, 212.77 parts by weight of toluene was added, and the reactor was cooled to complete the reaction. The obtained acrylic block copolymer was subjected to GPC analysis. As a result, the number average molecular weight Mn was 72, 100, and the molecular weight distribution Mw ZMn was 1.48.
[0183] 上記のアクリル系ブロック共重合体を含有する反応溶液にトルエンを加えて、重合 体濃度を 25重量%とした。この溶液 100重量部に p—トルエンスルホン酸を 0. 41重 量部加え、反応機内を窒素置換し、 30°Cで 3時間撹拌した。  [0183] Toluene was added to the reaction solution containing the acrylic block copolymer to make the polymer concentration 25% by weight. To 100 parts by weight of this solution, 0.41 part by weight of p-toluenesulfonic acid was added, the inside of the reactor was purged with nitrogen, and the mixture was stirred at 30 ° C. for 3 hours.
[0184] 反応液をサンプリングし、溶液が無色透明になって!/、ることを確認して、濾過助剤と して昭和化学工業製ラヂオライト # 3000を 0. 50重量部添加した。その後反応機を 窒素により 0. 1〜0. 4MPaGに加圧し、濾材としてポリエステルフェルトを備えた加 圧濾過機を用いて固体分を分離した。  [0184] The reaction solution was sampled to confirm that the solution became colorless and transparent! /, And 0.50 part by weight of Radiolite # 3000 manufactured by Showa Chemical Industry was added as a filter aid. Thereafter, the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, and the solid content was separated using a pressure filter equipped with a polyester felt as a filter medium.
[0185] 濾過後のブロック共重合体含有溶液 100重量部に対し、フエノール系酸ィ匕防止剤 としてィルガノックス 1010を 0. 15重量部添加した後、反応機内を窒素置換し、耐圧 反応機中で、 150°Cで 4時間攪拌した。 30°Cに冷却した反応液に固体塩基としてキ ョーワード 500SH 1. 75重量部を加えた後、反応機内を窒素置換して、 2時間撹拌 した。反応液をサンプリングし、溶液が中性になっていることを確認して反応終了とし た。その後反応機を窒素により 0. 1〜0. 4MPaGに加圧し、濾材としてポリエステル フェルトを備えた上に示した加圧濾過機を用いて固体分を分離し、カルボキシル基を 有するアクリル系ブロック共重合体を含有する重合体溶液を得た。 [0185] 0.15 parts by weight of Irganox 1010 as a phenolic acid / antioxidation inhibitor was added to 100 parts by weight of the block copolymer-containing solution after filtration, and then the inside of the reactor was purged with nitrogen, and in a pressure-resistant reactor. The mixture was stirred at 150 ° C for 4 hours. After adding 75 parts by weight of Keyword 500SH as a solid base to the reaction solution cooled to 30 ° C, purge the reactor with nitrogen and stir for 2 hours. did. The reaction solution was sampled, and it was confirmed that the solution was neutral. Thereafter, the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, the solid content was separated using the pressure filter shown above equipped with a polyester felt as a filter medium, and an acrylic block copolymer having a carboxyl group was separated. A polymer solution containing the coalescence was obtained.
[0186] この重合体溶液を 80°Cで真空乾燥することにより、カルボキシル基を有するアタリ ル系ブロック共重合体 (以下、「重合体 1」とする)を得た。なお、本製造例 1で得られ た重合体 1のメタクリル系重合体ブロック(a)のガラス転移温度を上記 Fox式に従って 計算したところ、 lo eであった。 [0186] This polymer solution was vacuum-dried at 80 ° C to obtain an acrylate block copolymer having a carboxyl group (hereinafter referred to as "polymer 1"). The glass transition temperature of the methacrylic polymer block (a) of the polymer 1 obtained in Production Example 1 was calculated according to the above Fox formula, and was loe.
[0187] (製造例 2)  [0187] (Production Example 2)
乳化重合ラテックス (A- 1)の合成  Synthesis of emulsion polymerization latex (A-1)
水 200重量部、ジォクチルスルホコハク酸ナトリウム 0. 28重量部、硫酸第一鉄 (Fe SO · 7Η Ο) 0. 0015重量部、エチレンジァミン四酢酸 0. 006重量部およびソジゥ 200 parts by weight of water, 0.28 parts by weight of sodium dioctylsulfosuccinate, 0.00015 part by weight of ferrous sulfate (Fe SO 7Η Ο), 0.006 part by weight of ethylenediamine tetraacetic acid and sodium
4 2 4 2
ムホルムアルデヒドスルフォキシレート 0. 5重量部を撹拌器付反応器に仕込み、窒素 置換後、 60°Cまで昇温した。これにメタアクリル酸メチル 90重量部、アクリル酸一 n— ブチル 10重量部、ターシャリ 'ドデシルメルカプタン 0. 8重量部およびクメンハイド口 パーオキサイド (純度 82%) 1重量部の混合液を 6時間かけて添加し、添加開始から 2時間後にジォクチルスルホコハク酸ナトリウム 0. 33重量部を、 4時間後に 0. 39重 量部をカ卩えた。添加終了後、ソジゥムホルムアルデヒドスルフォキシレートを 0. 05重 量部添加して、 1時間重合を行い、重合転化率 99%、ガラス転移温度 92°C、固形分 濃度 33%のアクリル酸エステル系ラテックス (A- 1)を得た。  0.5 parts by weight of mformaldehyde sulfoxylate was charged into a reactor equipped with a stirrer, purged with nitrogen, and heated to 60 ° C. Add a mixture of 90 parts by weight of methyl methacrylate, 10 parts by weight of n-butyl acrylate, 0.8 parts by weight of tertiary dodecyl mercaptan and 1 part by weight of cumene hydride peroxide (purity 82%) over 6 hours. 2 hours after the start of addition, 0.33 parts by weight of sodium dioctylsulfosuccinate was added, and 0.39 parts by weight of 4 hours later. After completion of addition, 0.05 part by weight of sodium formaldehyde sulfoxylate was added and polymerization was carried out for 1 hour. Acrylic acid having a polymerization conversion rate of 99%, a glass transition temperature of 92 ° C, and a solid content concentration of 33% An ester latex (A-1) was obtained.
[0188] (製造例 3) [0188] (Production Example 3)
アクリル系ブロック共重合体組成物粉体の製造  Production of acrylic block copolymer composition powder
耐圧攪拌装置に純水 200重量部及びポリビュルアルコール(日本合成化学工業( 株)製、商品名 KH— 17) 0. 7重量部(3%水溶液として 23. 3重量部)を仕込み、製 造例 1で得られた重合体溶液 400重量部(固形分濃度 25重量%)、エポキシ基を持 つアクリル系重合体である ARUFON (登録商標) UG4010 (東亞合成 (株)製) 10重 量部、ポリエーテルエステル系可塑剤である RS700 (旭電ィ匕工業 (株)製) 10重量部 、エステル系滑剤である牛脂極度硬化油 (融点 60°C:日本油脂 (株)製) 1重量部、力 一ボンブラックを主成分とする黒色粉末顔料 0. 3重量部を添加した。撹拌翼として 2 段 4枚傾斜パドルを用いて攪拌して、撹拌槽の底部より蒸気を導入した。撹拌槽上部 に接続したコンデンサで溶剤ガス及び蒸気を凝縮し、系外で逐次溶剤及び水を回収 した。発泡に注意しながら蒸気流量を加減し、 100°C到達後 5分後に蒸気を停止し、 撹拌槽のジャケットを用いて冷却を行い、重合体粒子、水及び分散剤を含むスラリー を得た。得られた重量体粒子について標準ふるいでふるい分けし、それぞれの粒径 範囲に属する画分の重量を個別に計量して、重量基準による平均値を求めた結果、 得られた重合体粒子の平均粒子径は 200 μ mであった。 A pressure stirrer is charged with 200 parts by weight of pure water and 0.7% by weight of polybulal alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name KH-17) (23.3 parts by weight as a 3% aqueous solution). 400 parts by weight of polymer solution obtained in Example 1 (solid content concentration 25% by weight), 10 parts by weight of ARUFON (registered trademark) UG4010 (manufactured by Toagosei Co., Ltd.) which is an acrylic polymer having an epoxy group RS700 (polyester ester plasticizer, manufactured by Asahi Denki Kogyo Co., Ltd.) 10 parts by weight, extremely hardened beef tallow oil (melting point 60 ° C: manufactured by Nippon Oil & Fats Co., Ltd.) 1 part by weight ,Power 0.3 parts by weight of a black powder pigment based on one bon black was added. Stirring was carried out using a two-stage, four-padded paddle as a stirring blade, and steam was introduced from the bottom of the stirring tank. Solvent gas and steam were condensed with a condenser connected to the upper part of the agitation tank, and the solvent and water were sequentially recovered outside the system. The steam flow was adjusted while paying attention to foaming, and the steam was stopped 5 minutes after reaching 100 ° C, and cooling was performed using a jacket of a stirring tank to obtain a slurry containing polymer particles, water and a dispersant. The obtained heavy particles were sieved with a standard sieve, the weights of the fractions belonging to the respective particle size ranges were individually weighed, and the average value on the basis of the weight was obtained. As a result, the average particles of the obtained polymer particles The diameter was 200 μm.
[0189] このようにして得られた重合体粒子と水と分散剤を含むスラリーを 1時間静置し、スラ リー重量の 72%相当分の上澄み液を取り除いた後、スラリー濃度が 20重量%になる まで水を加え、撹拌器付反応器に仕込み、 60°Cに加熱した。製造例 2の乳化重合に より製造した重合体ラテックス A— 1を 12. 6重量部(固形分基準で 4. 2重量部)添加 し、引き続き 15%硫酸ナトリウム溶液 37. 3重量部を 5分間かけて連続的に添加した 。添加終了から 5分後、この分散液を 90°Cまで加熱し、 5分間 90°Cで保持した後冷 却して、ブロッキング防止剤としてラテックスが重合体粒子の表面に付着した重合体 スラリーを得た。このスラリーをバッチ式遠心ろ過機で脱水し、バッチ式流動乾燥機で 榭脂温度最大 50°Cの条件で乾燥し、水分が 0. 4%の重合体粉体を得た。  [0189] The slurry containing polymer particles, water and a dispersant obtained in this manner was allowed to stand for 1 hour, and after removing the supernatant corresponding to 72% of the slurry weight, the slurry concentration was 20% by weight. Water was added until the solution was charged, and the mixture was charged into a reactor equipped with a stirrer and heated to 60 ° C. 12.6 parts by weight of polymer latex A-1 produced by emulsion polymerization in Production Example 2 (4.2 parts by weight based on solid content) was added, followed by 37.3 parts by weight of 15% sodium sulfate solution for 5 minutes. Over time. After 5 minutes from the end of the addition, this dispersion was heated to 90 ° C, held at 90 ° C for 5 minutes, and then cooled to obtain a polymer slurry in which latex adhered to the surface of the polymer particles as an antiblocking agent. Obtained. This slurry was dehydrated with a batch centrifugal filter and dried with a batch fluid dryer at a maximum temperature of 50 ° C. to obtain a polymer powder having a moisture content of 0.4%.
[0190] 得られた重合体粉体 100重量部をヘンシェル型ミキサー( (株)カヮタ製、スーパー ミキサー SMV— 20)に投入し、低速回転で攪拌しながら、成形時の離型性改良剤 として水酸基変性シリコーンオイル (信越ィ匕学工業 (株)製、 X— 22— 4015) 0. 18 75重量部およびカルボキシル基変性シリコーンオイル (東レ 'ダウコーユング (株)製 、 FZ— 3703) 0. 0625重量部を添カ卩した後、高速回転で 5分間混合し、この後、ブ ロッキング防止剤としてポリメタクリル酸メチル微粒子((株)日本触媒 製、 MA1002 ) 1重量部を添加して 1分間混合して、粉体 B— 1を得た。  [0190] 100 parts by weight of the obtained polymer powder was put into a Henschel-type mixer (manufactured by Katsura Co., Ltd., Super Mixer SMV-20) as a releasability improver during molding while stirring at low speed. Hydroxyl group-modified silicone oil (Shin-Etsu Chemical Co., Ltd., X—22—4015) 0.18 75 parts by weight and carboxyl group-modified silicone oil (Toray Dow Co., Ltd., FZ—3703) 0.0625 weight 1 part by weight of polymethyl methacrylate fine particles (manufactured by Nippon Shokubai Co., Ltd., MA1002) was added as a blocking inhibitor, and mixed for 1 minute. Thus, powder B-1 was obtained.
[0191] (製造例 4)  [0191] (Production Example 4)
MMA-b- (BA-co-HEA)—b— MMA型アクリル系ブロック共重合体ー2 (こ の場合、(BA— co— HEA)は BAと HEAからなる重合体ブロックを意味し、 MMA— b- (BA-co-HEA)—b— MMAは、 MMAからなるブロックと(BA—co— HEA) ブロックが上記の順に結合したブロック共重合体を意味する。以下「重合体 2」と記載 する)の合成 MMA-b- (BA-co-HEA) —b— MMA-type acrylic block copolymer-2 (in this case, (BA—co—HEA) means a polymer block consisting of BA and HEA. — B- (BA-co-HEA) —b— MMA consists of MMA blocks and (BA—co—HEA) It means a block copolymer in which blocks are bonded in the above order. (Hereinafter referred to as “Polymer 2”)
重合体 2を得るために以下の操作を行なった。  In order to obtain the polymer 2, the following operation was performed.
[0192] 5Lの耐圧反応器内を窒素置換したのち、臭化銅 11. 57g (80. 7ミリモル)、 BA 7 44g (5. 81モル)および HEA 75g (645ミリモル)を仕込み、攪拌を開始した。その 後、開始剤として 2, 5—ジブロモアジピン酸ジェチル 5. 8g (16ミリモル)をァセトニト リル (窒素パブリングしたもの) 14 lgに溶解させた溶液を仕込み、内溶液を 75°Cに昇 温しつつ 30分間攪拌した。内温が 75°Cに到達した時点で、配位子としてペンタメチ ルジェチレントリァミン 1. 40g (8ミリモル)をカ卩えてアクリル系重合体ブロックの重合を 開始した。 [0192] After replacing the inside of the 5 L pressure-resistant reactor with nitrogen, charged with 11.57 g (80.7 mmol) of copper bromide, 44 g (5.81 mol) of BA 7 and 75 g (645 mmol) of HEA and started stirring. did. After that, a solution prepared by dissolving 5.8 g (16 mmol) of ethyl 2,5-dibromoadipate in 14 lg as a initiator in 14 lg was charged, and the temperature of the inner solution was raised to 75 ° C. The mixture was stirred for 30 minutes. When the internal temperature reached 75 ° C, 1.40 g (8 mmol) of pentamethylgerylenetriamine was added as a ligand and polymerization of the acrylic polymer block was started.
[0193] 重合開始から一定時間ごとに、重合溶液約 0. 2mLをサンプリングし、これをガスク 口マトグラム分析することにより BA、 HEAの転ィ匕率を決定した。重合の際、ペンタメ チルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメチ ルジェチレントリアミンはアクリル系重合体ブロック重合時に合計 2回 (合計 2. 8g)添 加した。  [0193] About 0.2 mL of the polymerization solution was sampled at regular intervals from the start of the polymerization, and the conversion rate of BA and HEA was determined by gas-phase matogram analysis. During the polymerization, the polymerization rate was controlled by adding pentamethylethylenetriamine as needed. Pentamethylethylene triamine was added twice in total (2.8 g in total) during the acrylic polymer block polymerization.
[0194] BAの転化率が 93. 3%の時点で、 MMA350g (3. 50モル)、塩化銅 7. 98g (81ミ リモル)、ペンタメチルジェチレントリァミン 1. 4g (8ミリモル)およびトルエン(窒素パブ リングしたもの) 957gをカ卩えて、メタアクリル系重合体ブロックの重合を開始した。  [0194] When the conversion rate of BA was 93.3%, MMA 350 g (3.50 mol), copper chloride 7.98 g (81 mmol), pentamethyljetylenetriamine 1.4 g (8 mmol) and toluene (Nitrogen-published) 957 g was added and polymerization of the methacrylic polymer block was started.
[0195] アクリル系重合体ブロック重合時と同様にして、 MMAの転化率を決定した。 MMA を投入した時点でサンプリングを行 ヽ、これを基準として MMAの転化率を決定した 。重合の際、ペンタメチルジェチレントリアミンを随時カ卩えることで重合速度を制御し た。なお、ペンタメチルジェチレントリアミンはメタアクリル系重合体ブロック重合時に 合計 3回(合計 5. 2g)添カ卩した。 MMAの転化率が 61. 7%の時点でトルエン 1300 gを加え、水浴で反応器を冷却して反応を終了させた。  [0195] The conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed at the time when MMA was added, and the conversion rate of MMA was determined based on this. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added a total of 3 times (total 5.2 g) during block polymerization of the methacrylic polymer. When the conversion rate of MMA was 61.7%, 1300 g of toluene was added, and the reaction was terminated by cooling the reactor in a water bath.
[0196] 得られた反応溶液にトルエンを加えて、重合体濃度が 25重量%になるように希釈し た。この溶液に p—トルエンスルホン酸一水和物 20. 7gをカ卩えて室温で 3時間撹拌 し、析出した固形分を濾過で除いた。  [0196] Toluene was added to the obtained reaction solution to dilute the polymer concentration to 25 wt%. To this solution, 20.7 g of p-toluenesulfonic acid monohydrate was added and stirred at room temperature for 3 hours, and the precipitated solid was removed by filtration.
[0197] 得られたポリマー溶液に固体塩基としてキヨ一ワード 500SH (協和化学 (株)製)を 11. 8g加えて室温でさらに 1時間撹拌した。桐山漏斗で吸着剤を濾過し、無色透明 のポリマー溶液を得た。この溶液を乾燥させて溶剤および残存モノマーを除き、 目的 の重合体 1を得た。一分子当たりの水酸基数は平均 40個である (仕込み量からの計 算値)。得られた重合体 2の GPC分析を行なったところ、数平均分子量 Mnは 106, 0 00、分子量分布 MwZMnは 1. 61であった。 [0197] Kiyo Ward 500SH (manufactured by Kyowa Chemical Co., Ltd.) as a solid base was added to the obtained polymer solution. 11. 8 g was added and the mixture was further stirred at room temperature for 1 hour. The adsorbent was filtered with a Kiriyama funnel to obtain a colorless and transparent polymer solution. This solution was dried to remove the solvent and residual monomer, and the intended polymer 1 was obtained. The average number of hydroxyl groups per molecule is 40 (calculated from the charged amount). As a result of GPC analysis of the obtained polymer 2, the number average molecular weight Mn was 106,000, and the molecular weight distribution MwZMn was 1.61.
[0198] (製造例 5)  [0198] (Production Example 5)
(MMA-co-EA)— b— (BA— co— HEA)— b— (MMA— co— EA)型アクリル 系ブロック共重合体 3 (以下「重合体 3」と記載する)の合成  Synthesis of (MMA-co-EA) —b— (BA—co—HEA) —b— (MMA—co—EA) type acrylic block copolymer 3 (hereinafter referred to as “polymer 3”)
(この場合、(MMA— co— EA)は MMAと EAからなる重合体ブロックを意味する) 重合体 3を得るために以下の操作を行なった。  (In this case, (MMA-co-EA) means a polymer block composed of MMA and EA). To obtain Polymer 3, the following operation was performed.
[0199] 5Lの耐圧反応器内を窒素置換したのち、臭化銅 5. 38g (37ミリモル)、 BA608g ( 4. 75モル)および HEA24g (211ミリモル)を仕込み、攪拌を開始した。その後、開 始剤として 2, 5 ジブロモアジピン酸ジェチル 7. 5g (21ミリモル)をァセトニトリル(窒 素パブリングしたもの) 55gに溶解させた溶液を仕込み、内溶液を 75°Cに昇温しつつ 30分間攪拌した。内温が 75°Cに到達した時点で、配位子としてペンタメチルジェチ レントリアミン 0. 65g (4ミリモル)を加えてアクリル系重合体ブロックの重合を開始した  After replacing the inside of the 5 L pressure-resistant reactor with nitrogen, 5.38 g (37 mmol) of copper bromide, 608 g (4.75 mol) of BAB and 24 g (211 mmol) of HEA were charged, and stirring was started. Then, a solution prepared by dissolving 7.5 g (21 mmol) of diethyl 2,5 dibromoadipate in 55 g of acetonitrile as a initiator was added to the solution and the temperature of the inner solution was raised to 75 ° C. Stir for minutes. When the internal temperature reached 75 ° C, 0.665 g (4 mmol) of pentamethylethylenetriamine was added as a ligand to initiate polymerization of the acrylic polymer block.
[0200] 重合開始から一定時間ごとに、重合溶液約 0. 2mLをサンプリングし、これをガスク 口マトグラム分析することにより BA、 HEAの転ィ匕率を決定した。重合の際、ペンタメ チルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメチ ルジェチレントリアミンはアクリル系重合体ブロック重合時に合計 2回 (合計 1. 3g)添 加した。 [0200] About 0.2 mL of the polymerization solution was sampled at regular intervals from the start of polymerization, and the conversion rate of BA and HEA was determined by gas-mouth-matrix analysis. During the polymerization, the polymerization rate was controlled by adding pentamethylethylenetriamine as needed. Pentamethylethylene triamine was added twice in total (1.3 g in total) during the acrylic polymer block polymerization.
[0201] BAの転化率が 99. 0%の時点で、 MMA 385g (3. 85モル)、 EA 63g (0. 63 モル)、塩ィ匕銅 3. 71g (37ミリモル)、ペンタメチルジェチレントリァミン 0. 65g (4ミ リモル)およびトルエン(窒素パブリングしたもの) 830gを加えて、メタアクリル系重合 体ブロックの重合を開始した。  [0201] When the conversion rate of BA was 99.0%, MMA 385g (3.85 mol), EA 63g (0.63 mol), salted copper 3.71 g (37 mmol), pentamethyljetent Polymerization of the methacrylic polymer block was started by adding 0.65 g (4 mmol) of lyamine and 830 g of toluene (nitrogen published).
[0202] アクリル系重合体ブロック重合時と同様にして、 MMAの転化率を決定した。 MMA を投入した時点でサンプリングを行 ヽ、これを基準として MMAの転化率を決定した 。重合の際、ペンタメチルジェチレントリアミンを随時カ卩えることで重合速度を制御し た。なお、ペンタメチルジェチレントリアミンはメタアクリル系重合体ブロック重合時に 合計 6回(合計 3. 9g)添カ卩した。 MMAの転化率が 94.4%の時点でトルエン 1030g を加え、水浴で反応器を冷却して反応を終了させた。 [0202] The conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed when MMA was added, and the conversion rate of MMA was determined based on this sampling. . During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylenetriamine was added a total of 6 times (total 3.9 g) during block polymerization of the methacrylic polymer. When the MMA conversion rate was 94.4%, 1030 g of toluene was added, and the reactor was cooled in a water bath to complete the reaction.
[0203] 得られた反応溶液にトルエンを加えて、重合体濃度が 25重量%になるように希釈し た。この溶液に p—トルエンスルホン酸一水和物 17. lgを加えて室温で 3時間撹拌し 、析出した固形分を濾過で除いた。  [0203] Toluene was added to the resulting reaction solution to dilute the polymer concentration to 25 wt%. To this solution, 17. lg of p-toluenesulfonic acid monohydrate was added and stirred at room temperature for 3 hours, and the precipitated solid was removed by filtration.
[0204] 得られたポリマー溶液に固体塩基としてキヨ一ワード 500SH (協和化学 (株)製)を 15. 6g加えて室温でさらに 1時間撹拌した。桐山漏斗で吸着剤を濾過し、無色透明 のポリマー溶液を得た。この溶液を乾燥させて溶剤および残存モノマーを除き、 目的 の重合体 2を得た。一分子当たりの水酸基数は平均 10個である (仕込み量からの計 算値)。得られた重合体 3の GPC分析を行なったところ、数平均分子量 Mnは 74, 11 0、分子量分布 MwZMnは 1. 53であった。  [0204] 15.6 g of Kiyoward 500SH (manufactured by Kyowa Chemical Co., Ltd.) as a solid base was added to the obtained polymer solution, and the mixture was further stirred at room temperature for 1 hour. The adsorbent was filtered with a Kiriyama funnel to obtain a colorless and transparent polymer solution. This solution was dried to remove the solvent and residual monomer, and the intended polymer 2 was obtained. The average number of hydroxyl groups per molecule is 10 (calculated from the charged amount). As a result of GPC analysis of the obtained polymer 3, the number average molecular weight Mn was 74, 110, and the molecular weight distribution MwZMn was 1.53.
[0205] (製造例 6)  [0205] (Production Example 6)
(MMA-co-EA)— b— (BA— co— HEA)— b— (MMA— co— EA)型アクリル 系ブロック共重合体 4 (以下「重合体 4」と記載する)の合成  Synthesis of (MMA-co-EA) —b— (BA—co—HEA) —b— (MMA—co—EA) type acrylic block copolymer 4 (hereinafter referred to as “polymer 4”)
重合体 4を得るために以下の操作を行なった。  In order to obtain the polymer 4, the following operation was performed.
[0206] 5Lの耐圧反応器内を窒素置換したのち、臭ィ匕銅 5. 02g (35ミリモル)、 BA 545 g (4. 25モル)および HEA 46g (395ミリモル)を仕込み、攪拌を開始した。その後、 開始剤として 2, 5 ジブロモアジピン酸ジェチル 7. 0g (19ミリモル)をァセトニトリ ル (窒素パブリングしたもの) 5 lgに溶解させた溶液を仕込み、内溶液を 75°Cに昇温 しつつ 30分間攪拌した。内温が 75°Cに到達した時点で、配位子としてペンタメチル ジエチレントリァミン 0. 6 lg (3ミリモル)をカ卩えてアクリル系重合体ブロックの重合を 開始した。  [0206] After replacing the inside of the 5 L pressure-resistant reactor with nitrogen, 5.02 g (35 mmol) of odorous copper, 545 g (4.25 mol) of BA and 46 g (395 mmol) of HEA were charged, and stirring was started. . After that, a solution prepared by dissolving 7.0 g (19 mmol) of 2,5 dibromoadipate diethyl acetonitrile (nitrogen publishing) in 5 lg as an initiator was charged, and the temperature of the inner solution was raised to 75 ° C. Stir for minutes. When the internal temperature reached 75 ° C, polymerization of the acrylic polymer block was started by adding 0.6 lg (3 mmol) of pentamethyldiethylenetriamine as a ligand.
[0207] 重合開始から一定時間ごとに、重合溶液約 0. 2mLをサンプリングし、これをガスク 口マトグラム分析することにより BA、 HEAの転ィ匕率を決定した。重合の際、ペンタメ チルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメチ ルジェチレントリアミンはアクリル系重合体ブロック重合時に合計 2回 (合計 1. 2g)添 加した。 [0207] About 0.2 mL of the polymerization solution was sampled at regular intervals from the start of the polymerization, and the conversion rate of BA and HEA was determined by gas-phase matogram analysis. During the polymerization, the polymerization rate was controlled by adding pentamethylethylenetriamine as needed. Pentamethylethylenetriamine is added twice in total (1.2 g in total) during the acrylic polymer block polymerization. Added.
[0208] BAの転化率が 98. 8%の時点で、 MMA 360g (3. 59モル)、 EA 59g (0. 59 モル)、塩ィ匕銅 3. 46g (35ミリモル)、ペンタメチルジェチレントリァミン 0. 61g (3ミ リモル)およびトルエン(窒素パブリングしたもの) 775gを加えて、メタアクリル系重合 体ブロックの重合を開始した。  [0208] When the conversion rate of BA was 98.8%, MMA 360g (3.59 mole), EA 59g (0.59 mole), salted copper 3.46g (35 mmol), pentamethyljetent Polymerization of the methacrylic polymer block was started by adding 0.61 g of lyamine (3 mmol) and 775 g of toluene (nitrogen published).
[0209] アクリル系重合体ブロック重合時と同様にして、 MMAの転化率を決定した。 MMA を投入した時点でサンプリングを行 ヽ、これを基準として MMAの転化率を決定した 。重合の際、ペンタメチルジェチレントリアミンを随時カ卩えることで重合速度を制御し た。なお、ペンタメチルジェチレントリアミンはメタアクリル系重合体ブロック重合時に 合計 6回(合計 3. 7g)添カ卩した。 MMAの転化率が 95. 1%の時点でトルエン 2000 gを加え、水浴で反応器を冷却して反応を終了させた。  [0209] The conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed at the time when MMA was added, and the conversion rate of MMA was determined based on this. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added a total of 6 times (3.7 g in total) during block polymerization of the methacrylic polymer. When the conversion rate of MMA was 95.1%, 2000 g of toluene was added, and the reaction was terminated by cooling the reactor in a water bath.
[0210] 得られた反応溶液にトルエンを加えて、重合体濃度が 25重量%になるように希釈し た。この溶液に p トルエンスルホン酸一水和物 16. Ogをカ卩えて室温で 3時間撹拌 し、析出した固形分を濾過で除いた。  [0210] Toluene was added to the obtained reaction solution to dilute the polymer concentration to 25 wt%. To this solution was added p-toluenesulfonic acid monohydrate 16. Og, and the mixture was stirred at room temperature for 3 hours, and the precipitated solid was removed by filtration.
[0211] 得られたポリマー溶液に固体塩基としてキヨ一ワード 500SH (協和化学 (株)製)を 14. 5g加えて室温でさらに 1時間撹拌した。桐山漏斗で吸着剤を濾過し、無色透明 のポリマー溶液を得た。この溶液を乾燥させて溶剤および残存モノマーを除き、 目的 の重合体 4を得た。一分子当たりの水酸基数は平均 20個である (仕込み量からの計 算値)。得られた重合体 4の GPC分析を行なったところ、数平均分子量 Mnは 84, 88 0、分子量分布 MwZMnは 1. 53であった。  [0211] To the obtained polymer solution, 14.5 g of Kiyoward 500SH (manufactured by Kyowa Chemical Co., Ltd.) was added as a solid base, and the mixture was further stirred at room temperature for 1 hour. The adsorbent was filtered with a Kiriyama funnel to obtain a colorless and transparent polymer solution. This solution was dried to remove the solvent and residual monomer, and the intended polymer 4 was obtained. The average number of hydroxyl groups per molecule is 20 (calculated from the charged amount). As a result of GPC analysis of the obtained polymer 4, the number average molecular weight Mn was 84,880 and the molecular weight distribution MwZMn was 1.53.
[0212] (製造例 7)  [0212] (Production Example 7)
MMA-b- (BA— co— HBA)— b— MMA型アクリル系ブロック共重合体 5 (以 下「重合体 5」と記載する)の合成  MMA-b- (BA—co—HBA) —b—Synthesis of MMA-type acrylic block copolymer 5 (hereinafter referred to as “polymer 5”)
重合体 5を得るために以下の操作を行なった。  In order to obtain the polymer 5, the following operation was performed.
[0213] 5Lの耐圧反応器内を窒素置換したのち、臭ィ匕銅 10. 30g (72ミリモル)、 BA 64 6g (5. 04モル)および HBA 8 lg (560ミリモル)を仕込み、攪拌を開始した。その後 、開始剤として 2, 5 ジブロモアジピン酸ジェチル 5. 2g (14ミリモル)をァセトニトリ ル (窒素パブリングしたもの) 125gに溶解させた溶液を仕込み、内溶液を 75°Cに昇 温しつつ 30分間攪拌した。内温が 75°Cに到達した時点で、配位子としてペンタメチ ルジェチレントリァミン 1. 24g (7ミリモル)をカ卩えてアクリル系重合体ブロックの重合を 開始した。 [0213] After substituting the inside of the 5 L pressure-resistant reactor with nitrogen, charged with odorous copper 10.30 g (72 mmol), BA 64 6 g (5.04 mol) and HBA 8 lg (560 mmol) and started stirring. did. Then, a solution of 5.2 g (14 mmol) of 2,5-dibromoadipate diethyl acetonitrile (nitrogen publishing) in 125 g was charged as an initiator, and the inner solution was raised to 75 ° C. Stir for 30 minutes while warm. When the internal temperature reached 75 ° C, 1.24 g (7 mmol) of pentamethylgerylenetriamine was added as a ligand and polymerization of the acrylic polymer block was started.
[0214] 重合開始から一定時間ごとに、重合溶液約 0. 2mLをサンプリングし、これをガスク 口マトグラム分析することにより BA、 HBAの転ィ匕率を決定した。重合の際、ペンタメ チルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメチ ルジェチレントリアミンはアクリル系重合体ブロック重合時に合計 2回 (合計 1. 5g)添 加した。  [0214] About 0.2 mL of the polymerization solution was sampled at regular intervals from the start of the polymerization, and the conversion rate of BA and HBA was determined by gas-mouth-mautogram analysis. During the polymerization, the polymerization rate was controlled by adding pentamethylethylenetriamine as needed. Pentamethylethylene triamine was added a total of 2 times (1.5 g in total) during the acrylic polymer block polymerization.
[0215] BAの転化率が 96. 4%の時点で、 MMA 312g (3. 12モル)、塩ィ匕銅 7. l lg ( 72ミリモル)、ペンタメチルジェチレントリアミン 1. 24g (7ミリモル)およびトルエン( 窒素パブリングしたもの) 1, 278gをカ卩えて、メタアクリル系重合体ブロックの重合を開 始した。  [0215] When the conversion rate of BA was 96.4%, MMA 312g (3.12 mol), salted copper 7. l lg (72 mmol), pentamethylgerylenetriamine 1.24 g (7 mmol) Then, 1,278 g of toluene (nitrogen published) was added and polymerization of the methacrylic polymer block was started.
[0216] アクリル系重合体ブロック重合時と同様にして、 MMAの転化率を決定した。 MMA を投入した時点でサンプリングを行 ヽ、これを基準として MMAの転化率を決定した 。重合の際、ペンタメチルジェチレントリアミンを随時カ卩えることで重合速度を制御し た。なお、ペンタメチルジェチレントリアミンはメタアクリル系重合体ブロック重合時に 合計 2回(合計 1. 5g)添カ卩した。 MMAの転化率力 ½0. 6%の時点でトルエン 1300 gを加え、水浴で反応器を冷却して反応を終了させた。  [0216] The conversion rate of MMA was determined in the same manner as in the acrylic polymer block polymerization. Sampling was performed at the time when MMA was added, and the conversion rate of MMA was determined based on this. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added twice in total (1.5 g in total) during the methacrylic polymer block polymerization. When the conversion power of MMA was ½0.6%, 1300 g of toluene was added, and the reactor was cooled in a water bath to complete the reaction.
[0217] 得られた反応溶液にトルエンを加えて、重合体濃度が 25重量%になるように希釈し た。この溶液に p—トルエンスルホン酸一水和物 16. 4gを加えて室温で 3時間撹 拌し、析出した固形分を濾過で除いた。  [0217] Toluene was added to the obtained reaction solution to dilute the polymer concentration to 25 wt%. To this solution, 16.4 g of p-toluenesulfonic acid monohydrate was added and stirred at room temperature for 3 hours, and the precipitated solid was removed by filtration.
[0218] 得られたポリマー溶液に固体塩基としてキヨ一ワード 500SH (協和化学 (株)製)を 10. 4g加えて室温でさらに 1時間撹拌した。桐山漏斗で吸着剤を濾過し、無色透明 のポリマー溶液を得た。この溶液を乾燥させて溶剤および残存モノマーを除き、 目的 の重合体 5を得た。一分子当たりの水酸基数は平均 40個である (仕込み量からの計 算値)。得られた重合体 5の GPC分析を行なったところ、数平均分子量 Mnは 95, 00 0、分子量分布 MwZMnは 1. 57であった。  [0218] 10.4 g of Kiyoward 500SH (manufactured by Kyowa Chemical Co., Ltd.) as a solid base was added to the obtained polymer solution, and the mixture was further stirred at room temperature for 1 hour. The adsorbent was filtered with a Kiriyama funnel to obtain a colorless and transparent polymer solution. This solution was dried to remove the solvent and residual monomer, and the intended polymer 5 was obtained. The average number of hydroxyl groups per molecule is 40 (calculated from the charged amount). As a result of GPC analysis of the obtained polymer 5, the number average molecular weight Mn was 95,000, and the molecular weight distribution MwZMn was 1.57.
[0219] (製造例 8) (MMA-co-EA)— b— (BA— co— AA)— b— (MMA— co— EA)型アクリル系 ブロック共重合体 (以下、重合体 6と記載する)の合成 [0219] (Production Example 8) Synthesis of (MMA-co-EA) —b— (BA—co—AA) —b— (MMA—co—EA) type acrylic block copolymer (hereinafter referred to as polymer 6)
重合体中へのカルボキシル基の導入は WO2003Z068836を参考に行なった。  The introduction of carboxyl groups into the polymer was carried out with reference to WO2003Z068836.
[0220] 500Lの耐圧反応器内を窒素置換したのち、臭化銅 639g (4. 45モル)、 BA 71 , 83 ^ (560モル)ぉょび丁 八 3, 203g (25. 0モル)を仕込み、攪拌を開始した。 その後、開始剤として 2, 5—ジブロモアジピン酸ジェチル 89 lg (2. 47モル)をァセト 二トリル (窒素パブリングしたもの) 6588gに溶解させた溶液を仕込み、内溶液を 75 °Cに昇温しつつ 30分間攪拌した。内温が 75°Cに到達した時点で、配位子としてべ ンタメチルジェチレントリァミン 77. 2g (0. 445モル)をカ卩えてアクリル系重合体ブロッ クの重合を開始した。 [0220] After substituting nitrogen in the 500 L pressure-resistant reactor, 639 g (4.45 mol) of copper bromide, 3,713 g (25.0 mol) of BA 71, 83 ^ (560 mol) Charge and start stirring. After that, a solution of 89 lg (2.47 mol) of ethyl 2,5-dibromoadipate dissolved in 6588 g of acetonitryl (nitrogen publishing) was charged as an initiator, and the temperature of the inner solution was raised to 75 ° C. The mixture was stirred for 30 minutes. When the internal temperature reached 75 ° C, polymerization of the acrylic polymer block was started with 77.2 g (0.445 mol) of benzomethylethylentriamine as a ligand.
[0221] 重合開始から一定時間ごとに、重合溶液を約 lOOmLサンプリングし、これをガスク 口マトグラム分析することにより BA、 TBAの転ィ匕率を決定した。重合の際、ペンタメチ ルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメチルジ エチレントリアミンはアクリル系重合体ブロック重合時に合計 2回 (合計 154g)添加し た。  [0221] About 10 mL of the polymerization solution was sampled at regular intervals from the start of the polymerization, and the conversion rate of BA and TBA was determined by gas-mouth-mautogram analysis. During the polymerization, the polymerization rate was controlled by adding pentamethylethylene triamine as needed. Pentamethyldiethylenetriamine was added twice in total (total of 154 g) during the acrylic polymer block polymerization.
[0222] BAの転化率が 98. 9%、 TBAの転化率が 99. 0%の時点で、 MMA 45, 779g ( 457モル)、 EA 7, 432g (74. 2モル)、塩ィ匕銅 441g (4. 45モル)、ペンタメチル ジエチレントリァミン 77. 2g (0. 445モル)およびトルエン(窒素パブリングしたもの) 98, 641gをカ卩えて、メタアクリル系重合体ブロックの重合を開始した。  [0222] When the conversion rate of BA is 98.9% and the conversion rate of TBA is 99.0%, MMA 45, 779g (457mol), EA 7,432g (74.2mol), salty copper Polymerization of the methacrylic polymer block was started by adding 441 g (4.45 mol), 77.2 g (0.445 mol) of pentamethyldiethylenetriamine and 98,641 g of toluene (nitrogen published).
[0223] MMA、 EAを投入した時点でサンプリングを行 、、これを基準として MMA、 EAの 転化率を決定した。 MMA、 EAを投入後、内温を 85°Cに設定した。重合の際、ペン タメチルジェチレントリアミンを随時カ卩えることで重合速度を制御した。なお、ペンタメ チルジェチレントリアミンはメタアクリル系重合体ブロック重合時に合計 6回 (合計 463 g)添加した。 MMAの転化率が 95. 9%の時点でトルエン 220, OOOgを加え、反応 器を冷却して反応を終了させた。得られたブロック共重合体の GPC分析を行ったとこ ろ、数平均分子量 Mnは 77, 400、分子量分布 MwZMnは 1. 44であった。得られ た反応溶液にトルエンを加えて重合体濃度を 25重量%とした。  [0223] Sampling was performed when MMA and EA were added, and conversion rates of MMA and EA were determined based on this sampling. After introducing MMA and EA, the internal temperature was set to 85 ° C. During polymerization, the polymerization rate was controlled by adding pentamethylgerylenetriamine as needed. Pentamethyljetylene triamine was added a total of 6 times (a total of 463 g) during methacrylic polymer block polymerization. When the conversion rate of MMA was 95.9%, 220, OOOg of toluene was added, and the reactor was cooled to complete the reaction. As a result of GPC analysis of the obtained block copolymer, the number average molecular weight Mn was 77,400, and the molecular weight distribution MwZMn was 1.44. Toluene was added to the resulting reaction solution to adjust the polymer concentration to 25% by weight.
[0224] この溶液に p—トルエンスルホン酸を 1, 779g加え、反応機内を窒素置換し、 30°C で 3時間撹拌した。反応液をサンプリングし、溶液が無色透明になっていることを確認 して、濾過助剤として昭和化学工業製ラヂオライト # 3000を 6, 116g添加した。その 後反応機を窒素により 0. 1〜0. 4MPaGに加圧し、濾材としてポリエステルフェルト を備えた加圧濾過機 (濾過面積 0. 45m2)を用いて固体分を分離した。 [0224] 1,779 g of p-toluenesulfonic acid was added to this solution, and the inside of the reactor was purged with nitrogen, and the temperature was 30 ° C. For 3 hours. The reaction solution was sampled to confirm that the solution was colorless and transparent, and 6,116 g of Radiolite # 3000 manufactured by Showa Chemical Industry was added as a filter aid. Thereafter, the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, and the solid content was separated using a pressure filter (filtration area 0.45 m 2 ) equipped with polyester felt as a filter medium.
[0225] 得られた濾液に対して、フエノール系酸ィ匕防止剤としてィルガノックス 1010 (チバ · スペシャルティ 'ケミカルズ (株)製) 750gを添加し、さらに内部標準物質として TBM Aを濾液 100wt%に対して 0. lwt%を添カ卩した。この溶液を 150°Cで 4時間加熱攪 拌した。 4時間後、溶液をサンプリングし、 GC測定にて TBMAが消失していることを 確認して反応終了とし、冷却した。  [0225] To the obtained filtrate, 750 g of Irganox 1010 (manufactured by Ciba Specialty Chemicals Co., Ltd.) was added as a phenolic anti-oxidation agent, and TBM A was added to 100 wt% of the filtrate as an internal standard substance. 0. lwt% was added. This solution was heated and stirred at 150 ° C. for 4 hours. After 4 hours, the solution was sampled, and it was confirmed that TBMA had disappeared by GC measurement.
[0226] 得られた溶液に対し、固体塩基としてキヨ一ワード 500SH、 9, 275gをカ卩ぇ反応機 内を窒素置換し、 30°Cで 1時間撹拌した。溶液をサンプリングし、溶液が中性になつ ていることを確認して反応終了とした。その後反応機を窒素により 0. 1〜0. 4MPaG に加圧し、濾材としてポリエステルフェルトを備えた加圧濾過機 (濾過面積 0. 45m2) を用いて固体分を分離し、重合体溶液を得た。得られた重合体溶液にフエノール系 酸化防止剤としてィルガノックス 1010 (チノく'スペシャルティ ·ケミカルズ (株)製) 750 gと、酸トラップ剤としてノ、イド口タルサイト DHT—4A— 2 (協和化学工業 (株)製) 1, 325gを添カロした。 [0226] To the obtained solution, Kiyoward 500SH and 9,275 g as a solid base were purged with nitrogen, and the mixture was stirred at 30 ° C for 1 hour. The solution was sampled and the reaction was completed after confirming that the solution was neutral. Thereafter, the reactor was pressurized to 0.1 to 0.4 MPaG with nitrogen, and the solid content was separated using a pressure filter equipped with a polyester felt as a filter medium (filtration area 0.45 m 2 ) to obtain a polymer solution. It was. In the resulting polymer solution, 750 g of Irganox 1010 as a phenolic antioxidant (manufactured by Chinoku Specialty Chemicals Co., Ltd.), and as an acid trapping agent, Idoguchi Talsite DHT-4A-2 (Kyowa Chemical Industry) (Made by Co., Ltd.) 1,325g was added.
[0227] 引き続き重合体溶液から溶媒成分を蒸発した。蒸発機は株式会社栗本鐡ェ所製 S CP100 (伝熱面積 lm2)を用いた。蒸発機入口の熱媒オイルを 180°C、蒸発機の真 空度を 90Torr、スクリュー回転数を 60rpm、重合体溶液の供給速度を 32kgZh〖こ 設定し重合体溶液の蒸発を実施した。重合体は排出機を通じ、 φ 4mmのダイスにて ストランドとし、アルフロー H50ES (主成分:エチレンビスステアリン酸アミド、 日本油 脂 (株)製)の 3%懸濁液で満たした水槽で冷却後、ペレタイザ一により円柱状のペレ ットを得た。このようにして重合体 6ペレットを作製した。一分子当たりのカルボキシル 基数は平均約 10個である (仕込み量からの計算値)。 [0227] Subsequently, the solvent component was evaporated from the polymer solution. As the evaporator, S CP100 (heat transfer area lm 2 ) manufactured by Kurimoto Kyosho Co., Ltd. was used. Evaporation of the polymer solution was performed by setting the heating medium oil at the evaporator inlet to 180 ° C, the evaporator vacuum to 90 Torr, the screw rotation speed to 60 rpm, and the polymer solution feed rate to 32 kgZh. The polymer is made into a strand with a φ4mm die through a discharger, cooled in a water tank filled with 3% suspension of Alflow H50ES (main component: ethylene bis stearamide, manufactured by Nippon Oil & Fats Co., Ltd.), A cylindrical pellet was obtained with a pelletizer. In this way, polymer 6 pellets were produced. The average number of carboxyl groups per molecule is about 10 (calculated from the charged amount).
[0228] t ブチルエステル部位のカルボキシル基への変換効率測定は、 280°C熱分解反 応により t—ブチル基力 発生するイソブチレン量を定量することにより行った。測定 の結果、得られた榭脂の変換効率は 95%以上であった。 [0229] (実施例 1) [0228] The conversion efficiency of the t-butyl ester moiety into a carboxyl group was measured by quantifying the amount of isobutylene generated by the t-butyl group force by the 280 ° C thermal decomposition reaction. As a result of the measurement, the conversion efficiency of the obtained rosin was 95% or more. [0229] (Example 1)
製造例 1で得られた重合体 1 ; 100重量部に対し、 1分子あたり 1. 1個以上 (概算値 4個(カタログより) )のエポキシ基を持つアクリル系重合体である ARUFON (登録商 標) UG4010 (東亞合成 (株)製) 10重量部、ポリエーテルエステル系可塑剤である R S700 (旭電ィ匕工業 (株)製) 10重量部、およびステアリン酸亜鉛(日本油脂 (株)製、 GF- 200) 0. 4重量部の割合で、 100°Cに設定したラボプラストミル 50C150 (ブレー ド形状:ローラー形 R60 (株)東洋精機製作所)を用いて lOOrpmで 15分間溶融混 練し、塊状サンプルを得た。  Polymer 1 obtained in Production Example 1; ARUFON (registered trader), an acrylic polymer with epoxy groups of 1.1 or more (approximate value 4 (from catalog)) per molecule for 100 parts by weight Standard) UG4010 (Toagosei Co., Ltd.) 10 parts by weight, polyether ester plasticizer R S700 (Asahi Denshi Co., Ltd.) 10 parts by weight, and zinc stearate (Nippon Yushi Co., Ltd.) GF-200) 0.4% by weight, melt-kneaded for 15 minutes at lOOrpm using a Laboplast Mill 50C150 (blade shape: roller type R60 Toyo Seiki Seisakusho) set at 100 ° C Thus, a lump sample was obtained.
[0230] 得られたサンプルを、皮シボ金属板を用い、設定温度 200°Cで 8分間熱プレス( (株 )神藤金属工業所製 圧縮成形機 NSF— 50)成形し、厚さ lmmの評価用の成形体 を得た。プレス成形による皮シボ模様の転写性は良好であった。得られたシートの耐 スクラッチ性および耐熱性の評価結果を表 1に示す。  [0230] The obtained sample was heat-pressed using a leather metal plate at a set temperature of 200 ° C for 8 minutes (compression molding machine NSF-50, manufactured by Kondo Metal Industry Co., Ltd.) and evaluated for lmm thickness A molded product for use was obtained. The transferability of the texture pattern by press molding was good. Table 1 shows the evaluation results of scratch resistance and heat resistance of the obtained sheet.
[0231] (比較例 1)  [0231] (Comparative Example 1)
ステアリン酸亜鉛の添加を実施しなカゝつた以外は実施例 1と同様に実施して、プレ ス成形シートを得た。プレス成形による皮シボ模様の転写性は良好であった。得られ たシートの耐スクラッチ性および耐熱性の評価結果を表 1に示す。  A press-molded sheet was obtained in the same manner as in Example 1 except that zinc stearate was not added. The transferability of the texture pattern by press molding was good. Table 1 shows the evaluation results of scratch resistance and heat resistance of the obtained sheet.
[0232] [表 1]
Figure imgf000057_0001
[0232] [Table 1]
Figure imgf000057_0001
[0233] (実施例 2)  [0233] (Example 2)
製造例 3で得られた粉体 B— 1; 100重量部に対して、ステアリン酸亜鉛 (日本油脂( 株)製、 GF-200) 1重量部をノヽンドブレンドにて添加し、粉体 C— 1を得た。得られた 粉体 C— 1を用いて、スラッシュ成形性評価(く成形性〉により実施)およびそれによ り得られた成形シート特性の評価を行った。評価結果を表 2に示す。  Powder B-1 obtained in Production Example 3: 1 part by weight of zinc stearate (manufactured by NOF Co., Ltd., GF-200) was added to 100 parts by weight in a node blend, and powder C — Got one. Using the obtained powder C-1, evaluation of slush moldability (performed by moldability) and evaluation of molded sheet characteristics obtained thereby were performed. Table 2 shows the evaluation results.
[0234] (実施例 3) [0234] (Example 3)
製造例 3で得られた粉体 B— 1: 100重量部に対して、ステアリン酸亜鉛 (日本油脂( 株)製、 GF200) 0. 1重量部をノヽンドブレンドにて添加し、粉体 C— 2を得た。得られ た粉体 C— 2を用いて、スラッシュ成形性評価(く成形性 >により実施)およびそれに より得られた成形シート特性の評価を行った。評価結果を表 2に示す。 Powder B-1 obtained in Production Example 3: To 100 parts by weight, 0.1 part by weight of zinc stearate (manufactured by Nippon Oil & Fats Co., Ltd., GF200) was added in a node blend, and powder C — Got two. Obtained Using the powder C-2, slush moldability was evaluated (performed by moldability>) and the molded sheet characteristics obtained thereby were evaluated. Table 2 shows the evaluation results.
[0235] (実施例 4)  [Example 4]
製造例 3で得られた粉体 B— 1: 100重量部に対して、ラウリン酸亜鉛 (日本油脂 (株 )製、ジンクラウレート GP) 0. 085重量部をノヽンドブレンドにて添加し、粉体 C— 3を 得た。得られた粉体 C— 3を用いて、スラッシュ成形性評価(く成形性〉により実施) およびそれにより得られた成形シート特性の評価を行った。評価結果を表 2に示す。 なお、カタログより、この実施例におけるラウリン酸亜鉛 0. 085重量部と、実施例 3に 示すステアリン酸亜鉛 0. 1重量部は、ほぼ等しい亜鉛含量となる。  Powder B—obtained in Production Example 3: 100 parts by weight of zinc laurate (Nippon Yushi Co., Ltd., Zinclaurate GP) 0.085 parts by weight was added in a non-blend, Powder C-3 was obtained. Using the obtained powder C-3, evaluation of slush moldability (performed by moldability) and evaluation of molded sheet characteristics obtained thereby were performed. Table 2 shows the evaluation results. From the catalog, 0.085 parts by weight of zinc laurate in this example and 0.1 parts by weight of zinc stearate shown in Example 3 have substantially the same zinc content.
[0236] (実施例 5)  [0236] (Example 5)
製造例 3で得られた粉体 B— 1: 100重量部に対して、ビス (ァセチルァセトナト)亜 鉛 (東京化成工業 (株)、試薬) 0. 044重量部をノヽンドブレンドにて添加し、粉体 C— 4を得た。得られた粉体 C— 4を用いて、スラッシュ成形性評価(く成形性 >により実 施)およびそれにより得られた成形シート特性の評価を行った。評価結果を表 2に示 す。なお、カタログより、この実施例におけるビス (ァセチルァセトナト)亜鉛 0. 044重 量部と、実施例 3に示すステアリン酸亜鉛 0. 1重量部は、ほぼ等しい亜鉛含量となる  Powder B—obtained in Production Example 3: 100 parts by weight of bis (acetylacetonato) zinc (Tokyo Chemical Industry Co., Ltd., reagent) 0.044 parts by weight in a node blend To obtain powder C-4. Using the obtained powder C-4, slush moldability was evaluated (performed by moldability>) and molded sheet characteristics obtained thereby were evaluated. Table 2 shows the evaluation results. From the catalog, 0.044 parts by weight of bis (acetylacetonato) zinc in this example and 0.1 parts by weight of zinc stearate shown in Example 3 have substantially the same zinc content.
[0237] (比較例 2) [0237] (Comparative Example 2)
製造例 3で得られた粉体 B— 1を用いて、スラッシュ成形性評価(<成形性 >により 実施)およびそれにより得られた成形シート特性の評価を行った。評価結果を表 2〖こ 示す。  Using Powder B-1 obtained in Production Example 3, slush moldability evaluation (implemented according to <moldability>) and molded sheet characteristics obtained thereby were evaluated. The evaluation results are shown in Table 2.
[0238] (実施例 6)  [Example 6]
製造例 3における重合体粒子、水及び分散剤を含むスラリーを得る工程において、 エステル系滑剤、カーボンブラック等を添加する際に、ステアリン酸亜鉛(日本油脂( 株)製、 GF-200) 0. 2重量部を添加した以外は、製造例 3と同様に実施し、粉体 B —2を得た。得られた粉体 B— 2を用いて、スラッシュ成形性評価(く成形性〉により 実施)およびそれにより得られた成形シート特性の評価を行った。評価結果を表 2〖こ 示す。 [0239] (実施例 7) In the step of obtaining a slurry containing polymer particles, water, and a dispersing agent in Production Example 3, zinc stearate (manufactured by NOF Corporation, GF-200) was added when an ester lubricant, carbon black and the like were added. A powder B-2 was obtained in the same manner as in Production Example 3 except that 2 parts by weight were added. Using the obtained powder B-2, evaluation of slush moldability (performed by moldability) and evaluation of molded sheet characteristics obtained thereby were performed. The evaluation results are shown in Table 2. [Example 7]
製造例 3における重合体粒子、水及び分散剤を含むスラリーを得る工程において、 エステル系滑剤、カーボンブラック等を添加する際に、 p— tert—ブチル安息香酸亜 鉛 (堺ィ匕学工業 (株)製) 0. 3重量部を添加した以外は、製造例 3と同様に実施し、粉 体 B— 3を得た。得られた粉体 B— 3を用いて、スラッシュ成形性評価(く成形性 >に より実施)およびそれにより得られた成形シート特性の評価を行った。評価結果を表 2 に示す。  In the step of obtaining a slurry containing polymer particles, water and a dispersing agent in Production Example 3, when adding an ester lubricant, carbon black, etc., p-tert-butyl benzoate (Zyi Industrial Co., Ltd.) ) Produced) Powder B-3 was obtained in the same manner as in Production Example 3 except for adding 3 parts by weight. Using the obtained powder B-3, slush moldability evaluation (implemented according to moldability>) and molded sheet characteristics obtained thereby were evaluated. The evaluation results are shown in Table 2.
(実施例 8)  (Example 8)
実施例 4および実施例 5および実施例 7で得られた成形シートの接着性をくウレタ ン接着性試験一 1 >により評価した。 V、ずれも評価は〇であった。  The adhesion of the molded sheets obtained in Example 4, Example 5 and Example 7 was evaluated by the urethane adhesion test 1>. The evaluation of V and deviation was ◯.
[0240] [表 2] [0240] [Table 2]
Figure imgf000059_0001
Figure imgf000059_0001
[0241] 実施例 1〜8と、比較例 1〜2の評価結果の比較から、熱潜在性触媒を添加した本 発明にかかる組成物では、成形性の低下を招くことなぐ耐熱性の向上を図ることが 可能であることがわかる。カロえて、本発明に力かる熱可塑性エラストマ一組成物は、 成形性が良好であり、得られた成形シートは耐摩耗性、耐スクラッチ性に加え、耐熱 性も良好であり、表皮材としてのバランスに優れた材料であることがわかる。また、自 動車の表皮材として使用する場合、一般的に基材としてウレタンフォームが使用され ることが多いが、ウレタンフォームにも良好な接着性を有することがわかる。  [0241] From the comparison of the evaluation results of Examples 1 to 8 and Comparative Examples 1 to 2, the composition according to the present invention to which the thermal latent catalyst was added improved the heat resistance without causing a decrease in moldability. It turns out that it is possible to plan. The thermoplastic elastomer composition that is effective in the present invention has good moldability, and the obtained molded sheet has good heat resistance in addition to wear resistance and scratch resistance, and is used as a skin material. It can be seen that the material is excellent in balance. In addition, when used as a car skin material, urethane foam is often used as a base material, but it can be seen that urethane foam also has good adhesion.
[0242] (参考例 1)  [0242] (Reference Example 1)
製造例 4で得られた重合体 2 ; 100重量部 (40g)に対し、オールアクリルで、ェポキ シ基を 1分子中に 1. 1個以上 (概算値 4個 (カタログより))含有するアクリル系重合体 である ARUFON UG4010 (東亞合成 (株)製) 10重量部の割合で、 100°Cに設定 したラボプラストミル 50C150 (ブレード形状:ローラー形 R60 (株)東洋精機製作所) を用いて lOOrpmで 15分間溶融混練し、塊状サンプルを得た。得られた塊状サンプ ルを用いて、貯蔵安定性 (評価方法 1)を評価した。結果を表 3に示す。 Polymer 2 obtained in Production Example 4: 100 parts by weight (40 g) of all acrylics with 1.1 or more epoxy groups per molecule (approximate value 4 (from catalog)) ARUFON UG4010 (manufactured by Toagosei Co., Ltd.), a polymer based, set to 100 ° C at a rate of 10 parts by weight Using a Laboplast mill 50C150 (blade shape: roller type R60, Toyo Seiki Seisakusho Co., Ltd.), melt-kneading was performed at lOOrpm for 15 minutes to obtain a lump sample. The storage stability (Evaluation Method 1) was evaluated using the obtained bulk sample. The results are shown in Table 3.
[0243] (参考例 2)  [0243] (Reference example 2)
参考例 1において重合体 2に替えて重合体 5を用いた以外は、参考例 1と同様にし て評価を行った。結果を表 3に示す。  Evaluation was performed in the same manner as in Reference Example 1 except that Polymer 5 was used instead of Polymer 2 in Reference Example 1. The results are shown in Table 3.
[0244] (参考例 3)  [0244] (Reference Example 3)
参考例 1において重合体 2に替えて重合体 6を用いた以外は、参考例 1と同様にし て評価を行った。結果を表 3に示す。  Evaluation was performed in the same manner as in Reference Example 1 except that Polymer 6 was used instead of Polymer 2 in Reference Example 1. The results are shown in Table 3.
[0245] [表 3]  [0245] [Table 3]
Figure imgf000060_0001
Figure imgf000060_0001
[0246] 表 3 (参考例 1〜3)から、参考例 3では、エポキシ基を有する重合体をラボプラストミ ルを用いて配合して 、る時点から反応が進行し、 80°C貯蔵前にすでに溶融流動性 が悪ィ匕しており、 80°C貯蔵時に、完全に溶融しなくなつている。これに対し、参考例 1 や参考例 2はカルボキシル基を有する重合体に変えて、水酸基を有する重合体を用 いたサンプルであることから、貯蔵安定性が改善されていることがわかる。なかでも、 参考例 1の立体的に保護されている水酸基を有する重合体 2を用いたサンプルは、 特に溶融流動性および貯蔵安定性に優れることがわかる。  [0246] From Table 3 (Reference Examples 1 to 3), in Reference Example 3, a polymer having an epoxy group was blended using lab plastomiles, and the reaction proceeded from that point and was already in progress before storage at 80 ° C. Melt fluidity is poor, and when it is stored at 80 ° C, it does not melt completely. On the other hand, Reference Example 1 and Reference Example 2 are samples using a polymer having a hydroxyl group instead of a polymer having a carboxyl group, and thus it can be seen that the storage stability is improved. In particular, the sample using the polymer 2 having a sterically protected hydroxyl group in Reference Example 1 is particularly excellent in melt fluidity and storage stability.
[0247] (実施例 9)  [Example 9]
製造例 5で得られた重合体 3; 100重量部(35g)に対し、オールアクリルで、ェポキ シ基を 1分子中に 1. 1個以上 (概算値 4個 (カタログより))含有するアクリル系重合体 である ARUFON UG4010 (東亞合成 (株)製) 10重量部、酢酸亜鉛 (無水)(和光 純薬工業 (株)製)を 2. 6重量部の割合で、 100°Cに設定したラボプラストミル 50C15 0 (ブレード形状:ローラー形 R60 (株)東洋精機製作所)を用いて lOOrpmで 15分 間溶融混練し、塊状サンプルを得た。 Polymer 3 obtained in Production Example 5: 100 parts by weight (35g) of all acrylics and acrylic containing 1.1 or more epoxy groups per molecule (approximate value 4 (from catalog)) 10 parts by weight of ARUFON UG4010 (manufactured by Toagosei Co., Ltd.) and 2.6 parts by weight of zinc acetate (anhydrous) (manufactured by Wako Pure Chemical Industries, Ltd.) were set at 100 ° C. Labo Plast Mill 50C15 Using 0 (blade shape: roller type R60, Toyo Seiki Seisakusho Co., Ltd.), melt-kneading was performed at lOOrpm for 15 minutes to obtain a lump sample.
[0248] 得られたサンプルを、皮シボ金属板を用い、設定温度 200°Cで 8分間熱プレス( (株 )神藤金属工業所製 圧縮成形機 NSF— 50)成形し、皮シボ模様が転写された厚さ lmmの評価用の成形体を得た。これらの成形体について、耐エタノール性、耐油性 、ウレタン接着性、耐熱性試験を実施した。また、上記で得られた塊状サンプルを粉 砕したパウダーにて、パウダースラッシュ性試験を実施し、これにより、成形時の溶融 流動性を確認した。また、得られたパウダーを用いて、貯蔵安定性 (評価方法— 2)を 評価した。結果を表 4に示す。  [0248] The obtained sample was heat-pressed using a leather metal plate at a set temperature of 200 ° C for 8 minutes (compression molding machine NSF-50, manufactured by Kondo Metal Industry Co., Ltd.), and the leather texture was transferred. A molded product for evaluation having a thickness of 1 mm was obtained. These molded bodies were subjected to ethanol resistance, oil resistance, urethane adhesion, and heat resistance tests. In addition, a powder slush property test was performed on the powder obtained by pulverizing the lump sample obtained above, thereby confirming the melt fluidity at the time of molding. Moreover, the storage stability (evaluation method-2) was evaluated using the obtained powder. The results are shown in Table 4.
[0249] (実施例 10)  [Example 10]
実施例 9において重合体 3に替えて重合体 4を用いた以外は、実施例 9と同様にし て評価を行った。結果を表 4に示す。  Evaluation was performed in the same manner as in Example 9 except that Polymer 4 was used instead of Polymer 3 in Example 9. The results are shown in Table 4.
[0250] (比較例 3)  [0250] (Comparative Example 3)
製造例 8で得られた重合体 6; 100重量部(35g)に対し、オールアクリルで、ェポキ シ基を 1分子中に 1. 1個以上 (概算値 4個 (カタログより))含有するアクリル系重合体 である ARUFON UG4010 (東亞合成 (株)製)を 10重量部の割合で、 100°Cに設 定したラボプラストミル 50C150 (ブレード形状:ローラー形 R60 (株)東洋精機製作 所)を用いて lOOrpmで 15分間、溶融混練し、塊状サンプルを得た。得られたサンプ ルを用いて、実施例 9と同様にして評価した。結果を表 4に示す。  Polymer 6 obtained in Production Example 8: 100 parts by weight (35 g) of all acrylics and acrylic containing 1.1 or more epoxy groups per molecule (approximate value 4 (from catalog)) ARUFON UG4010 (manufactured by Toagosei Co., Ltd.), a polymer based on Laboplast Mill 50C150 (blade shape: roller type R60 Toyo Seiki Manufacturing Co., Ltd.) set to 100 ° C at a ratio of 10 parts by weight The mixture was melt-kneaded at lOOrpm for 15 minutes to obtain a lump sample. Evaluation was carried out in the same manner as in Example 9 using the obtained sample. The results are shown in Table 4.
[0251] [表 4] 実施例 9 実施例 1 0 比較例 1 重合体 3 100  [Table 4] Example 9 Example 1 0 Comparative Example 1 Polymer 3 100
アクリル系プロック  Acrylic block
重合体 4 100  Polymer 4 100
共重合体 (A)  Copolymer (A)
重合体 6 100 化合物(B) UG4010 10 10 10 触媒 酢酸亜鉛 2.6 2.6  Polymer 6 100 Compound (B) UG4010 10 10 10 Catalyst Zinc acetate 2.6 2.6
耐エタノール性 〇 〇 〇 耐油性 〇 〇 〇 耐熱性試験- 3 (120°C) 〇 〇 〇 ウレタン接着性試験一 2 〇 〇 〇 パウダースラッシュ性試験 Δ 〇 〇 貯蔵安定性 (評価方法- 2) 〇 〇 X [0252] 表 4 (実施例 9〜10および比較例 3)から、立体的に保護されて!、る水酸基を有する 重合体 3を用いたパウダースラッシュ成形用熱可塑性エラストマ一組成物は、パウダ 一スラッシュ成形性および貯蔵安定性に優れるばかりでなく、得られた成形体の耐熱 性、耐ェタノール性ゃ耐油性にも優れることがわかる。さらに、得られたシートを自動 車用表皮材として用いる場合、一般的には、基材として用いられているポリウレタン等 にシートを接着する必要があるが、本発明に係る組成物は、良好な接着性を示すこと がわカゝる。 Ethanol resistance ○ ○ ○ Oil resistance ○ ○ ○ Heat resistance test-3 (120 ° C) ○ ○ ○ Urethane adhesion test 1 2 ○ ○ ○ Powder slash test Δ ○ ○ Storage stability (Evaluation method -2) ○ 〇 X [0252] From Table 4 (Examples 9 to 10 and Comparative Example 3), a thermoplastic elastomer composition for powder slush molding using a polymer 3 having a hydroxyl group that is three-dimensionally protected! It can be seen that not only the slush moldability and storage stability are excellent, but the resulting molded article is also excellent in heat resistance, ethanol resistance and oil resistance. Furthermore, when the obtained sheet is used as an automobile skin material, it is generally necessary to adhere the sheet to polyurethane or the like used as a base material, but the composition according to the present invention is good. It shows that it shows adhesiveness.
[0253] なお、前記表 3、表 4の結果 (参考例 1〜3、実施例 9〜10、比較例 3)は、可塑剤を 添加していないこと、ラボプラストミルにて溶融混練していることから、混連により強い せん断が加わり、サンプルは高温下で作製されている。つまり、架橋反応の進行を抑 止するにはよりシビアな条件下での作製法に相当し、また、評価も 80°Cでの貯蔵す る(一般的な保管は夏場でも 40°C程度)シビアな外部環境で検討をおこなって 、る。  [0253] The results shown in Tables 3 and 4 (Reference Examples 1 to 3, Examples 9 to 10 and Comparative Example 3) are based on the fact that no plasticizer was added, and melt-kneading was performed using a lab plast mill. As a result, strong shear is applied to the mixture, and the samples are made at high temperatures. In other words, to suppress the progress of the crosslinking reaction, it corresponds to a production method under more severe conditions, and the evaluation is also stored at 80 ° C (general storage is about 40 ° C even in summer). Study in a severe external environment.
[0254] このような場合、参考例 3、比較例 3に示すように熱潜在性触媒 (C)を使用していな くても、貯蔵前後で、架橋反応が進行している。よって、このような厳しい外部環境の 場合は、耐熱性と貯蔵安定性を両立する為には、水酸基を有する化合物と熱潜在性 触媒の組み合わせ、特に、立体的に保護した水酸基を有する化合物と熱潜在性触 媒の組み合わせが有効であることがわかる。  [0254] In such a case, as shown in Reference Example 3 and Comparative Example 3, the cross-linking reaction proceeds before and after storage even when the thermal latent catalyst (C) is not used. Therefore, in such a severe external environment, in order to achieve both heat resistance and storage stability, a combination of a compound having a hydroxyl group and a thermal latent catalyst, particularly a compound having a sterically protected hydroxyl group and a heat It turns out that the combination of latent catalysts is effective.

Claims

請求の範囲 [1] メタアクリル系単量体を主成分とし、ガラス転移温度が 25〜130°Cであるメタアタリ ル系重合体ブロック(a) 10〜60重量%と、アクリル系重合体ブロック(b) 90〜40重 量%とからなり、ブロック(a)およびブロック(b)のうち少なくとも一方の重合体ブロック に、水酸基、酸無水物基、カルボキシル基力 なる群より選択される少なくとも 1種の 官能基 (c)を有し、ゲルパーミエーシヨンクロマトグラフィーで測定した数平均分子量 力 000〜200, 000であるアクリル系ブロック共重合体 (A)と、 1分子中に 1. 1個 以上の反応性官能基 (d)を有する化合物 (B)と、熱潜在性触媒 (C)を含む熱可塑性 エラストマ一組成物。 [2] アクリル系ブロック共重合体 (A)力 1分子当たり平均 1. 0個以上の一般式(1) Claims [1] A methacrylic polymer block (a) having a methacrylic monomer as a main component and having a glass transition temperature of 25 to 130 ° C (a) 10 to 60% by weight, an acrylic polymer block ( b) 90 to 40% by weight, and at least one of the blocks (a) and (b) is selected from the group consisting of a hydroxyl group, an acid anhydride group and a carboxyl group. An acrylic block copolymer (A) having a functional group (c) of the number average molecular weight of 000 to 200,000 as measured by gel permeation chromatography, and 1.1 or more per molecule A thermoplastic elastomer composition comprising a compound (B) having a reactive functional group (d) and a thermal latent catalyst (C). [2] Acrylic block copolymer (A) Force Average per molecule 1. 0 or more general formulas (1)
[化 1] [Chemical 1]
Figure imgf000063_0001
Figure imgf000063_0001
(式中の R1は水素またはメチル基を表し、 pおよび mはそれぞれ 1以上の整数を表す(In the formula, R 1 represents hydrogen or a methyl group, and p and m each represents an integer of 1 or more.
。)で表される水酸基を含有する単量体単位 (X)と、 . Monomer unit (X) containing a hydroxyl group represented by
単位 (X)の両側に少なくとも 1個ずつ、単位 (X)に近接して一般式 (2)  At least one unit on either side of unit (X), close to unit (X), general formula (2)
[化 2]  [Chemical 2]
Figure imgf000063_0002
Figure imgf000063_0002
(式中の R2は水素またはメチル基を表す。 qおよび nはそれぞれ 1以上の整数であつ て、 n>m+ l、 q>pの関係を満たす。)で表される単量体単位 (y)を有することを特 徴とする請求項 1記載の熱可塑性エラストマ一組成物。 (In the formula, R 2 represents hydrogen or a methyl group. Q and n are each an integer of 1 or more. Satisfying the relationship of n> m + 1 and q> p. 2. The thermoplastic elastomer composition according to claim 1, which has a monomer unit (y) represented by the formula (1):
[3] 一般式(1)および(2)の m, n, p, q力 m= 2、 n=4、 q> 2pの関係を満たすことを 特徴とする請求項 2に記載の熱可塑性エラストマ一組成物。 [3] The thermoplastic elastomer according to claim 2, wherein the relationship of m, n, p, q force m = 2, n = 4, q> 2p in the general formulas (1) and (2) is satisfied. One composition.
[4] R1および R2が 、ずれも水素であることを特徴とする請求項 2または 3に記載の熱可 塑性エラストマ一組成物。 [4] The thermoplastic elastomer composition according to claim 2 or 3, wherein R 1 and R 2 are both hydrogen.
[5] 単量体単位 )力 アクリル系重合体ブロック (b)に存在することを特徴とする請求 項 2〜4のいずれ力 1項に記載の熱可塑性エラストマ一組成物。 [5] Monomer unit) force The thermoplastic elastomer composition according to any one of claims 2 to 4, which is present in the acrylic polymer block (b).
[6] 単量体単位 )および単量体単位 (y)力 メタアクリル系重合体ブロック (a)または アクリル系重合体ブロック (b)のいずれか一方の重合体ブロックに存在することを特 徴とする請求項 2〜5のいずれ力 1項に記載の熱可塑性エラストマ一組成物。 [6] Monomer unit) and monomer unit (y) force Characteristic of being present in either polymer block of methacrylic polymer block (a) or acrylic polymer block (b) The thermoplastic elastomer composition according to any one of claims 2 to 5, wherein:
[7] アクリル系重合体ブロック(b)がアクリル酸—n—ブチル、アクリル酸ェチル、アタリ ル酸ー 2—ェチルへキシルおよびアクリル酸 2—メトキシェチルからなる群より選ば れる少なくとも 1種の単量体を主成分とすることを特徴とする請求項 1記載の熱可塑 性エラストマ一組成物。 [7] The acrylic polymer block (b) is at least one monomer selected from the group consisting of acrylate-n-butyl, ethyl acrylate, acrylate 2-ethyl hexyl and 2-methoxyethyl acrylate. 2. The thermoplastic elastomer composition according to claim 1, comprising a body as a main component.
[8] アクリル系ブロック共重合体 (A)のゲルパーミエーシヨンクロマトグラフィーで測定し た重量平均分子量(Mw)と数平均分子量(Mn)の比(MwZMn)が、 1. 8以下であ る請求項 1〜7のいずれ力 1項に記載の熱可塑性エラストマ一組成物。  [8] The ratio (MwZMn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by gel permeation chromatography of the acrylic block copolymer (A) is 1.8 or less. The thermoplastic elastomer composition according to any one of claims 1 to 7.
[9] アクリル系ブロック共重合体 (A)が、原子移動ラジカル重合により製造されたブロッ ク共重合体力 なる請求項 1〜8のいずれ力 1項に記載の熱可塑性エラストマ一組成 物。  [9] The thermoplastic elastomer composition according to any one of [1] to [8], wherein the acrylic block copolymer (A) is a block copolymer produced by atom transfer radical polymerization.
[10] 化合物(B)がアクリル系重合体力 なることを特徴とする請求項 1〜9のいずれか 1 項に記載の熱可塑性エラストマ一組成物。  [10] The thermoplastic elastomer composition according to any one of [1] to [9], wherein the compound (B) has an acrylic polymer strength.
[11] 反応性官能基 (d) 1S エポキシ基、カルボキシル基、水酸基およびアミノ基力 なる 群力も選ばれる少なくとも 1種である請求項 1〜: L0のいずれ力 1項に記載の熱可塑性 エラストマ一組成物。 [11] Reactive functional group (d) 1S epoxy group, carboxyl group, hydroxyl group, and amino group power are at least one selected from the group powers. Composition.
[12] 反応性官能基 (d)力 エポキシ基である請求項 1〜: L 1のいずれか 1項に記載の熱 可塑性エラストマ一組成物。 [12] The reactive functional group (d) force is an epoxy group. The thermoplastic elastomer composition according to any one of L1 to L1.
[13] 化合物(B)の重量平均分子量が 30, 000以下であることを特徴とする請求項 1〜1[13] The compound (B) has a weight average molecular weight of 30,000 or less,
2のいずれか 1項に記載の熱可塑性エラストマ一組成物。 3. The thermoplastic elastomer composition according to any one of 2 above.
[14] アクリル系ブロック共重合体 (A) 100重量部に対して、化合物(B)を 1〜30重量部 含むことを特徴とする請求項 1〜13のいずれか 1項に記載の熱可塑性エラストマ一 組成物。 [14] The thermoplastic resin according to any one of claims 1 to 13, wherein the acrylic block copolymer (A) comprises 1 to 30 parts by weight of the compound (B) with respect to 100 parts by weight. Elastomer composition.
[15] 熱潜在性触媒 (C)が、 60°C以上で加熱することにより活性を示すことを特徴とする 請求項 1〜14のいずれか 1項に記載の熱可塑性エラストマ一組成物。  15. The thermoplastic elastomer composition according to any one of claims 1 to 14, wherein the thermal latent catalyst (C) exhibits activity when heated at 60 ° C or higher.
[16] 熱潜在性触媒 (C)が、金属塩化合物であることを特徴とする請求項 1〜15のいず れカ 1項に記載の熱可塑性エラストマ一組成物。 [16] The thermoplastic elastomer composition according to any one of [1] to [15], wherein the heat latent catalyst (C) is a metal salt compound.
[17] 熱潜在性触媒 (C)が、炭素数が 4〜16である脂肪酸もしくは炭素数が 2〜16であ るジケトンィ匕合物と亜鉛とからなる化合物であることを特徴とする請求項 1〜16のい ずれ力 1項に記載の熱可塑性エラストマ一組成物。 [17] The heat latent catalyst (C) is a compound comprising a fatty acid having 4 to 16 carbon atoms or a diketone compound having 2 to 16 carbon atoms and zinc. Any force of 1 to 16. The thermoplastic elastomer composition according to item 1.
[18] 熱潜在性触媒 (C)が、ラウリン酸亜鉛またはビス (ァセチルァセトナト)亜鉛であるこ とを特徴とする請求項 1〜17のいずれ力 1項に記載の熱可塑性エラストマ一組成物 18. The thermoplastic elastomer composition according to any one of claims 1 to 17, wherein the heat latent catalyst (C) is zinc laurate or zinc bis (acetylacetonato) zinc. object
[19] 熱潜在性触媒 (C)が、ラウリン酸亜鉛であることを特徴とする請求項 1〜18のいず れカ 1項に記載の熱可塑性エラストマ一組成物。 [19] The thermoplastic elastomer composition according to any one of [1] to [18], wherein the thermal latent catalyst (C) is zinc laurate.
[20] 熱潜在性触媒 (C)が、 tert-ブチル安息香酸亜鉛であることを特徴とする請求項 1[20] The thermal latent catalyst (C) is zinc tert-butylbenzoate,
〜16のいずれ力 1項に記載の熱可塑性エラストマ一組成物。 The thermoplastic elastomer composition according to any one of ˜16.
[21] アクリル系ブロック共重合体 (A) 100重量部に対して、熱潜在性触媒 (C)を 0. 01[21] Acrylic block copolymer (A) 100 parts by weight of thermal latent catalyst (C)
〜5重量部含むことを特徴とする請求項 1〜20のいずれか 1項に記載の熱可塑性ェ ラストマー組成物。 21. The thermoplastic elastomer composition according to any one of claims 1 to 20, comprising ˜5 parts by weight.
[22] 請求項 1〜21のいずれか 1項に記載の組成物を含むことを特徴とするパウダースラ ッシュ成形用熱可塑性エラストマ一組成物。  [22] A thermoplastic elastomer composition for powder slush molding, comprising the composition according to any one of claims 1 to 21.
[23] 請求項 1〜22のいずれか 1項に記載の熱可塑性エラストマ一組成物をパウダース ラッシュ成形して成ることを特徴とする成形品。 [23] A molded product comprising the thermoplastic elastomer composition according to any one of claims 1 to 22 formed by powder slash molding.
[24] 請求項 1〜22のいずれ力 1項に記載の熱可塑性エラストマ一組成物をパウダース ラッシュ成形して成ることを特徴とする自動車内装用表皮。 [24] A skin for automobile interior, wherein the thermoplastic elastomer composition according to any one of [1] to [22] is formed by powder slush molding.
PCT/JP2007/062181 2006-06-21 2007-06-15 Thermoplastic elastomer composition WO2007148636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522439A JPWO2007148636A1 (en) 2006-06-21 2007-06-15 Thermoplastic elastomer composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006171844 2006-06-21
JP2006-171844 2006-06-21
JP2006213822 2006-08-04
JP2006-213822 2006-08-04
JP2006269352 2006-09-29
JP2006-269352 2006-09-29

Publications (1)

Publication Number Publication Date
WO2007148636A1 true WO2007148636A1 (en) 2007-12-27

Family

ID=38833378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062181 WO2007148636A1 (en) 2006-06-21 2007-06-15 Thermoplastic elastomer composition

Country Status (2)

Country Link
JP (1) JPWO2007148636A1 (en)
WO (1) WO2007148636A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039535A1 (en) * 2007-08-21 2009-02-26 Evonik Röhm Gmbh Process for the preparation of pentablock copolymers with (meth) acrylate-based OH-functionalized blocks
JP2018184544A (en) * 2017-04-26 2018-11-22 アロン化成株式会社 Thermoplastic elastomer composition
JP2018184541A (en) * 2017-04-26 2018-11-22 アロン化成株式会社 Thermoplastic elastomer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104419A (en) * 2004-10-08 2006-04-20 Kaneka Corp Thermoplastic elastomer composition and molded product using the same
JP2006104410A (en) * 2004-10-08 2006-04-20 Kaneka Corp Thermoplastic elastomer composition and molded product using the same
JP2006124588A (en) * 2004-10-29 2006-05-18 Kaneka Corp Thermoplastic elastomer composition and molded product
JP2006249173A (en) * 2005-03-09 2006-09-21 Kaneka Corp Thermoplastic elastomer composition and molded article using the same
JP2007182482A (en) * 2006-01-05 2007-07-19 Kaneka Corp Thermoplastic elastomer composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104419A (en) * 2004-10-08 2006-04-20 Kaneka Corp Thermoplastic elastomer composition and molded product using the same
JP2006104410A (en) * 2004-10-08 2006-04-20 Kaneka Corp Thermoplastic elastomer composition and molded product using the same
JP2006124588A (en) * 2004-10-29 2006-05-18 Kaneka Corp Thermoplastic elastomer composition and molded product
JP2006249173A (en) * 2005-03-09 2006-09-21 Kaneka Corp Thermoplastic elastomer composition and molded article using the same
JP2007182482A (en) * 2006-01-05 2007-07-19 Kaneka Corp Thermoplastic elastomer composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039535A1 (en) * 2007-08-21 2009-02-26 Evonik Röhm Gmbh Process for the preparation of pentablock copolymers with (meth) acrylate-based OH-functionalized blocks
JP2018184544A (en) * 2017-04-26 2018-11-22 アロン化成株式会社 Thermoplastic elastomer composition
JP2018184541A (en) * 2017-04-26 2018-11-22 アロン化成株式会社 Thermoplastic elastomer composition

Also Published As

Publication number Publication date
JPWO2007148636A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2005073270A1 (en) Thermoplastic elastomer composition and molded article
US7732529B2 (en) Thermoplastic elastomer composition and molded article
JP2010090326A (en) Powder for powder molding, and molded article
JP2007246616A (en) Resin composition for powder molding and molded product
WO2007148636A1 (en) Thermoplastic elastomer composition
JP2006124588A (en) Thermoplastic elastomer composition and molded product
JP2010254761A (en) Thermoplastic elastomer composition and molded item
JP2008291130A (en) Anionic aqueous dispersion of acrylic block copolymer and method for producing the same
JP2006225563A (en) Powder for surface skin molding for automobile interiors and surface skin for automobile interiors
JP2008007639A (en) Thermoplastic elastomer composition
JP4220709B2 (en) Thermoplastic elastomer composition
JP2006249173A (en) Thermoplastic elastomer composition and molded article using the same
JP2009203397A (en) Resin composition for powder molding and molded article
JP4485317B2 (en) Thermoplastic elastomer composition and molded article using the same
JP2007182482A (en) Thermoplastic elastomer composition
JP2006274080A (en) Slush molding powder composition
JP2007182481A (en) Thermoplastic elastomer composition
JP2009120665A (en) Powdery thermoplastic elastomer composition and molded article
JP2010285506A (en) Resin powder for powder slush molding
JP2006274079A (en) Slush molding powder composition
JP2007070460A (en) Method for producing powdery thermoplastic resin composition
JP4763272B2 (en) Thermoplastic elastomer composition and molded article containing metal salt
JP2008291131A (en) Acrylic block copolymer composition
JP2006124589A (en) Thermoplastic elastomer composition
JPWO2009063719A1 (en) Thermoplastic elastomer composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522439

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745435

Country of ref document: EP

Kind code of ref document: A1