WO2007148514A1 - Enzymatic synthesis method for 4-hydroxy-2-quinoline - Google Patents

Enzymatic synthesis method for 4-hydroxy-2-quinoline Download PDF

Info

Publication number
WO2007148514A1
WO2007148514A1 PCT/JP2007/060964 JP2007060964W WO2007148514A1 WO 2007148514 A1 WO2007148514 A1 WO 2007148514A1 JP 2007060964 W JP2007060964 W JP 2007060964W WO 2007148514 A1 WO2007148514 A1 WO 2007148514A1
Authority
WO
WIPO (PCT)
Prior art keywords
coa
hydrogen
hydroxy
synthase
coa derivative
Prior art date
Application number
PCT/JP2007/060964
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuro Abe
Tsuyoshi Abe
Hiroshi Noguchi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2007148514A1 publication Critical patent/WO2007148514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring

Definitions

  • the present invention relates to a method for synthesizing 4-hydroxy-2-quinolinones using an enzyme.
  • Non-patent Document 1 4-Hydroxy-2-quinolinones are known to have an antagonistic action on NMDA receptor (Non-patent Document 1) and serotonin 5-HT receptor (Non-patent Document 2).
  • Benzalacetone synthase is a type III polyketide synthase that constitutes a superfamily of chalcone synthases that are specific to plants that catalyze the condensation reaction of coumaroyl CoA and malol CoA. This is the first example of a polyketide synthase that condenses only the molecular malol CoA (Non-patent Document 4).
  • Non-Patent Document 1 Rowley, M. et al, J. Med. Chem. 40, 4053, 1997
  • Non-Patent Document 2 Hayashi, H. et al "J. Med. Chem. 36, 617, 1993
  • Non-Patent Document 3 Dittmer, D.C. et al., J. Org. Chem. 70, 4682, 2005
  • Non-Patent Document 4 Abe, I. et al., Eur. J. Biochem. 268, 3354, 2001
  • the present invention replaces the conventional chemical synthesis with a bio-based It utilizes biocatalysts typified by enzymes and cells that can be called stems.
  • an object of the present invention is to provide a method for synthesizing 4-hydroxy-2-quinolinones using an enzyme.
  • the present invention relates to the following aspects.
  • Rl and R2 each represent hydrogen, a carbon atom, or an organic group having up to 10 carbon atoms and heteroatoms in total
  • Aspect 2 The method according to Aspect 1, wherein R1 and R2 are each an organic group having a total of up to 6 carbon atoms and heteroatoms, each of hydrogen, carbon atoms, and heteroatoms.
  • Aspect 8 The method according to any one of Aspects 1 to 7, wherein substantially equal amounts of anthranyl CoA derivative and malonyl CoA derivative are used.
  • Aspect 11 The method according to any one of Aspects 1 to 10, wherein benzalacetone synthase, which is a recombinant enzyme obtained using Escherichia coli as a host, is used.
  • FIG. 1 Condensation reaction of coumaroyl CoA and malol CoA by benzalacetone synthase (BAS) (upper), and an anthral CoA derivative and malonyl CoA derivative in the method of the present invention. Molecular condensation (bottom) is shown.
  • BAS benzalacetone synthase
  • the present invention takes advantage of the broad substrate specificity and catalytic ability of benzalacetone synthase to produce an anthral CoA (or an anthral CoA derivative such as N-methylanthral CoA).
  • anthral CoA derivative such as N-methylanthral CoA
  • malol CoA or a malol CoA derivative such as methylmalol CoA
  • the 4-hydroxy-2-quinolinones can be treated under clean and mild conditions by single molecule condensation of these artificial substrates. Below, it is synthesized efficiently and simply. The synthesis of these quinolinone alkaloids using biocatalysts is a new technology that has never been seen before.
  • benzalacetone synthase used as a catalyst in the method of the present invention is a plant such as Rheum palmutum, particularly such as Rheum palmutum. It can be obtained and prepared by a method known to a person skilled in the art from a plant of the family Rosaceae and Raspberry (Rubus idaeus).
  • benzalacetone synthase is prepared from a natural product such as the above-mentioned plant or the like by using a suitable gene recombination technique known to those skilled in the art, and prokaryotic cells such as Escherichia coli, and yeast. It can also be used in the method of the present invention as a so-called “recombinant enzyme” obtained by expressing in a suitable host of eukaryotic cells such as. Furthermore, 1 to several amino acids obtained by expressing a gene obtained by modifying the enzyme gene derived from a natural product by any genetic engineering technique known to those skilled in the art, such as site-directed mutagenesis, are substituted.
  • a benzalacetone synthase having a modified 'altered amino acid sequence such as deletion, insertion, etc. and having substantially the enzyme activity (or enhanced enzyme activity) can also be used in the method of the present invention.
  • Such a recombinant enzyme may be expressed as a fusion protein with an appropriate tag substance known to those skilled in the art, such as a His tag, for the sake of purification.
  • benzalacetone synthase comprising a polypeptide chemically synthesized by any method known to those skilled in the art can also be used in the method of the present invention.
  • benzalacetone synthase purified by any method known to those skilled in the art is preferable from the standpoint of reaction efficiency and the like, but natural products (plants ) Or a recombinant product obtained by transformation with the enzyme gene such as Escherichia coli, and prepared as a crude extract containing the enzyme.
  • R1 and R2 are each a sum of hydrogen, carbon atoms, or carbon atoms and heteroatoms.
  • Organic groups having up to 10, preferably up to 6 are shown. There are no particular restrictions on the types of such organic groups, for example, oxygen represented by saturated aliphatic hydrocarbon groups, unsaturated aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, aromatic hydrocarbon groups, and heterocyclic groups. And various organic groups containing heteroatoms such as nitrogen or nitrogen atoms.
  • R1 and R2 are each preferably hydrogen or a lower alkyl group having up to 6 carbon atoms, benzene, or various groups derived from heterocyclic rings such as pyridine, furan and thiophene. Can be mentioned. Of the lower alkyl groups, methyl and ethyl groups are preferred.
  • R1 and R2 are hydrogen, the forces correspond to anthral CoA and malol CoA, respectively.
  • R1 and R2 are hydrogen in general formula (3), they correspond to 4-hydroxy-2-quinolinone.
  • the malol CoA derivative is commercially available and can be easily obtained.
  • An anthral CoA derivative can also be synthesized, for example, according to the method described in the literature (Stoeckigt, J. & Zenk, MH, Z. Naturforsch. 30c, 352, 1975). .
  • the method of the present invention is a single-molecule condensation reaction of an anthranyl CoA derivative and a malol CoA derivative, these substrate molecules are used in substantially equal amounts from the viewpoint of reaction efficiency and economy. Although it is preferable, the addition (use) amount of both does not need to be equal.
  • Enzyme reaction conditions can be appropriately selected by those skilled in the art according to various reaction conditions such as the type of substrate molecule, reaction scale, degree of enzyme purification, and the like.
  • benzal acetone synthesis fermentation Element 40 ⁇ g / mL
  • each substrate molecule 50 ⁇
  • a buffer solution of ⁇ 6-8 at a reaction temperature of 25-35 ° C, preferably 25-30 ° C
  • the reaction is preferably carried out in an appropriate buffer known to those skilled in the art, such as potassium phosphate buffer and Tris-HCl buffer.
  • the enzyme reaction is continuously performed using any form known to those skilled in the art, for example, a batch system or a column containing the enzyme bound to an appropriate support. It is also possible.
  • 4-hydroxy-2-quinolinones synthesized by the method of the present invention can be easily purified by any means and method known to those skilled in the art, such as reverse phase HPLC and silica gel column. It is.
  • Non-Patent Document 4 heterozygous expression of Rheum palmutum-derived benzalaceton synthase in Escherichia coli as a recombinant enzyme with an N-terminal addition of a His tag was performed using a nickel chelate column. Purified. Using this purified enzyme in 0.1 M potassium phosphate buffer (pH 7.0) and N-methylanthral CoA (50 ⁇ ) and methylmalol CoA (100 ⁇ ) as substrates at 30 ° C. When reacted for 1 hour, 4-hydroxy-2-quinolinone was obtained as a single product in high yield (85%).
  • the enzyme reaction product was extracted with an organic solvent such as ethyl acetate, then concentrated with a rotary evaporator, and the target product was fractionated by HPLC.
  • an organic solvent such as ethyl acetate
  • the target product was fractionated by HPLC.
  • elution was performed in the presence of 0.1% TFA for 40 minutes using the following methanol concentration gradient (0-5 min, 30% MeOH; 5-17 min, linear gradient from 30 to 60% MeOH; 17-25 min, 60% MeOH; 25-27 min, linear gradient from 60 to 70% MeOH; 27-35 min, 70% MeOH; 35 -40 min, linear gradient from 70 to 100 % MeOH) 0 Fractionated every 0.5 minutes at a flow rate of 0.8 ml per minute.

Abstract

Disclosed is a method for synthesis of a 4-hydroxy-2-quinoline by using an enzyme under clean and mild conditions in a simple manner. More specifically, disclosed is a method for synthesis of a 4-hydroxy-2-quinoline by conducting unimolecular condensation of an anthranyl-CoA derivative and a malonyl-CoA derivative by using, as a catalyst, a benzalacetone synthase which is a type-III polyketide synthase capable of catalyzing the condensation reaction between coumaroyl-CoA and malonyl-CoA and constituting a chalcone synthase super family specific to a plant.

Description

明 細 書  Specification
4-ヒドロキシ- 2-キノリノン類の酵素合成法  Enzymatic synthesis of 4-hydroxy-2-quinolinones
技術分野  Technical field
[0001] 本発明は、酵素を用いた 4-ヒドロキシ -2-キノリノン類の合成方法に関するものであ る。  The present invention relates to a method for synthesizing 4-hydroxy-2-quinolinones using an enzyme.
背景技術  Background art
[0002] 4-ヒドロキシ- 2-キノリノン類には、 NMDAレセプター(非特許文献 1)ゃセロトニン 5- HTレセプター(非特許文献 2)に対するアンタゴ-スト作用などが知られており、血液 [0002] 4-Hydroxy-2-quinolinones are known to have an antagonistic action on NMDA receptor (Non-patent Document 1) and serotonin 5-HT receptor (Non-patent Document 2).
3 Three
脳関門を通過する中枢性鎮吐薬など医薬品開発の見地からも注目を集めている。ま た、一連のアルカロイドをィ匕学合成する上でも重要な中間体となる。  It is also attracting attention from the standpoint of drug development, such as central antiemetics that cross the brain barrier. It is also an important intermediate in the chemical synthesis of a series of alkaloids.
[0003] 一方、これらキノリノンアルカロイドは、一部のミカン科植物が生産することが知られ ているが、生産量も限られており、その供給は主に有機合成によるものが主である。 最近では、アントラ-ル酸誘導体の α -ノヽロカルボン酸エステルを、テトラヒドロフラン 中、ナトリウムテルライドで処理して環化させることにより 4-ヒドロキシ -2-キノリノンを合 成する方法が報告されて ヽる (非特許文献 3)。  [0003] On the other hand, these quinolinone alkaloids are known to be produced by some Rutaceae plants, but their production is limited, and their supply is mainly from organic synthesis. Recently, a method for synthesizing 4-hydroxy-2-quinolinone by treating an α-norocarboxylic acid ester of an anthrallic acid derivative with sodium telluride in tetrahydrofuran and cyclizing it has been reported ( Non-patent document 3).
[0004] ベンザルアセトン合成酵素(BAS)は、クマロイル CoAとマロ-ル CoAの縮合反応を触 媒する植物に特異的なカルコン合成酵素スーパーファミリーを構成する III型ポリケタ イド合成酵素であり、 1分子のマロ-ル CoAのみを縮合するポリケタイド合成酵素とし ては唯一最初の例である(非特許文献 4)。  [0004] Benzalacetone synthase (BAS) is a type III polyketide synthase that constitutes a superfamily of chalcone synthases that are specific to plants that catalyze the condensation reaction of coumaroyl CoA and malol CoA. This is the first example of a polyketide synthase that condenses only the molecular malol CoA (Non-patent Document 4).
非特許文献 1 : Rowley, M. et al, J. Med. Chem. 40, 4053, 1997  Non-Patent Document 1: Rowley, M. et al, J. Med. Chem. 40, 4053, 1997
非特許文献 2 : Hayashi, H. et al" J. Med. Chem. 36, 617, 1993  Non-Patent Document 2: Hayashi, H. et al "J. Med. Chem. 36, 617, 1993
非特許文献 3 : Dittmer, D. C. et al., J. Org. Chem. 70, 4682, 2005  Non-Patent Document 3: Dittmer, D.C. et al., J. Org. Chem. 70, 4682, 2005
非特許文献 4 :Abe, I. et al., Eur. J. Biochem. 268, 3354, 2001  Non-Patent Document 4: Abe, I. et al., Eur. J. Biochem. 268, 3354, 2001
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 地球資源の無駄使いを回避し、地球環境に優しぐ化合物を効率的に合成する新し い技術の創出が求められている。本発明は従来の化学合成に変わって、バイオの基 幹とも言える酵素や細胞に代表される生体触媒を活用するものである。 [0005] Creation of new technologies that efficiently synthesize compounds that are friendly to the global environment while avoiding wasteful use of earth resources is required. The present invention replaces the conventional chemical synthesis with a bio-based It utilizes biocatalysts typified by enzymes and cells that can be called stems.
[0006] 従って、本発明の目的は、酵素を用いた 4-ヒドロキシ- 2-キノリノン類の合成方法を提 供することである。  Accordingly, an object of the present invention is to provide a method for synthesizing 4-hydroxy-2-quinolinones using an enzyme.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は鋭意研究の結果、ベンザルアセトン合成酵素が示す広範な基質特異 性と触媒能力を活用して、上記の課題を解決することに成功し、本発明を完成した。  [0007] As a result of intensive studies, the present inventor succeeded in solving the above problems by utilizing the wide range of substrate specificity and catalytic ability exhibited by benzalacetone synthase, and completed the present invention.
[0008] 即ち、本発明は、以下の各態様に係る。  That is, the present invention relates to the following aspects.
[態様 1]ベンザルアセトン合成酵素を触媒として用いて、一般式 (ィ匕 1)で示されるァ ントラニル CoA誘導体及び一般式 (化 2)で示されるマロニル CoA誘導体の一分子縮 合により一般式 (化 3)で示される 4-ヒドロキシ -2-キノリノン類を合成する方法。  [Aspect 1] Using a benzalacetone synthase as a catalyst, a general formula is obtained by single-molecule condensation of an anthranyl CoA derivative represented by the general formula (II) and a malonyl CoA derivative represented by the general formula (Formula 2). A method for synthesizing 4-hydroxy-2-quinolinones represented by (Chemical Formula 3).
[化 1]  [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
[化 2] [Chemical 2]
Figure imgf000004_0002
R 1
Figure imgf000004_0002
R 1
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 Rl及び R2は、夫々、水素、炭素原子、又は、炭素原子及びへテロ原子を総 計 10個まで有する有機基を示す) (In the formula, Rl and R2 each represent hydrogen, a carbon atom, or an organic group having up to 10 carbon atoms and heteroatoms in total)
[態様 2]、 R1及び R2が、夫々、水素、炭素原子、又は、炭素原子及びへテロ原子を 総計 6個まで有する有機基である、態様 1記載の方法。  [Aspect 2] The method according to Aspect 1, wherein R1 and R2 are each an organic group having a total of up to 6 carbon atoms and heteroatoms, each of hydrogen, carbon atoms, and heteroatoms.
[態様 3]R1及び R2力 夫々、水素又は低級アルキル基である、態様 2記載の方法。  [Aspect 3] The method according to Aspect 2, wherein R1 and R2 forces are each hydrogen or a lower alkyl group.
[態様 4] R1及び R2が水素である、態様 3記載の方法。  [Aspect 4] The method according to aspect 3, wherein R1 and R2 are hydrogen.
[態様 5] R1が水素、 R2がメチル基である態様 3記載の方法。  [Aspect 5] The method according to Aspect 3, wherein R1 is hydrogen and R2 is a methyl group.
[態様 6] R1がメチル基、 R2が水素である態様 3記載の方法。  [Aspect 6] The method according to Aspect 3, wherein R1 is a methyl group and R2 is hydrogen.
[態様 7] R1及び R2カ^チル基である、態様 3記載の方法。  [Aspect 7] The method according to Aspect 3, wherein R1 and R2 are carbonyl groups.
[態様 8]実質的に等量のアントラニル CoA誘導体及びマロニル CoA誘導体を使用す る、態様 1〜7のいずれか一項に記載の方法。  [Aspect 8] The method according to any one of Aspects 1 to 7, wherein substantially equal amounts of anthranyl CoA derivative and malonyl CoA derivative are used.
[態様 9]pH6〜8の緩衝液中、 25〜35°Cで 0. 5〜20時間反応させる、態様 1〜8の V、ずれか一項に記載の方法。  [Aspect 9] The method according to any one of V and Aspects 1 to 8, wherein the reaction is performed at 25 to 35 ° C. for 0.5 to 20 hours in a buffer having a pH of 6 to 8.
[態様 1Ο]0.1 Mリン酸カリウム緩衝液 (pH 7.0)中、 30 °Cで 1時間反応させる、態様 9 記載の方法。  [Aspect 1Ο] The method according to Aspect 9, wherein the reaction is carried out in 0.1 M potassium phosphate buffer (pH 7.0) at 30 ° C. for 1 hour.
[態様 11]大腸菌を宿主として得られた組換え酵素であるべンザルアセトン合成酵素 を使用する、態様 1〜10のいずれか一項に記載の方法。  [Aspect 11] The method according to any one of Aspects 1 to 10, wherein benzalacetone synthase, which is a recombinant enzyme obtained using Escherichia coli as a host, is used.
発明の効果 The invention's effect
本発明によって、酵素に人工基質を作用させることにより、一連の 4-ヒドロキシ -2-キ ノリノン類を、クリーンかつマイルドな条件下、簡便に合成することが可能となる。 図面の簡単な説明 According to the present invention, a series of 4-hydroxy-2-quinolinones can be easily synthesized under clean and mild conditions by allowing an artificial substrate to act on an enzyme. Brief Description of Drawings
[0010] [図 1]ベンザルアセトン合成酵素(BAS)によるクマロイル CoAとマロ-ル CoAの縮合反 応(上段)、及び、本発明方法におけるアントラ-ル CoA誘導体及びマロニル CoA誘 導体との一分子縮合 (下段)を示す。  [0010] [Fig. 1] Condensation reaction of coumaroyl CoA and malol CoA by benzalacetone synthase (BAS) (upper), and an anthral CoA derivative and malonyl CoA derivative in the method of the present invention. Molecular condensation (bottom) is shown.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明は、ベンザルアセトン合成酵素が示す広範な基質特異性と触媒能力を活用し て、本酵素にアントラ-ル CoA (又は N-メチルアントラ-ル CoAなどアントラ-ル CoA 誘導体)、及び、マロ-ル CoA (又はメチルマロ-ル CoAなどマロ-ル CoA誘導体)を 同時に作用させることにより、これら人工基質の 1分子縮合により 4-ヒドロキシ -2-キノ リノン類をクリーンかつマイルドな条件下、効率よく簡便に合成するものである。なお、 これらキノリノンアルカロイドの生体触媒を用いた合成はこれまでに全く例のな 、新た な技術である。 [0011] The present invention takes advantage of the broad substrate specificity and catalytic ability of benzalacetone synthase to produce an anthral CoA (or an anthral CoA derivative such as N-methylanthral CoA). In addition, by simultaneously acting with malol CoA (or a malol CoA derivative such as methylmalol CoA), the 4-hydroxy-2-quinolinones can be treated under clean and mild conditions by single molecule condensation of these artificial substrates. Below, it is synthesized efficiently and simply. The synthesis of these quinolinone alkaloids using biocatalysts is a new technology that has never been seen before.
[0012] 本発明方法で触媒として用いるベンザルアセトン合成酵素は、例えば、非特許文献 4 に記載されているように、ダイォゥ(Rheum palmutum)等の植物、特に、ダイォゥ(Rhe um palmutum)等のタデ科、及び、ラズベリー(Rubus idaeus)等のバラ科の植物から 当業者に公知の方法で取得'調製することができる。  [0012] As described in Non-Patent Document 4, for example, benzalacetone synthase used as a catalyst in the method of the present invention is a plant such as Rheum palmutum, particularly such as Rheum palmutum. It can be obtained and prepared by a method known to a person skilled in the art from a plant of the family Rosaceae and Raspberry (Rubus idaeus).
[0013] 尚、 1分子のマロニル CoAのみを縮合するポリケタイド合成酵素としての活性を実質 的に有する限り、このような天然物由来のベンザルアセトン合成酵素のアミノ酸配列と 異なるアミノ酸配列を有するタンパク質であっても、本発明における「ベンザルァセト ン合成酵素」に属し、本発明方法で使用することができる。  [0013] In addition, as long as it has substantially the activity as a polyketide synthase that condenses only one molecule of malonyl CoA, it is a protein having an amino acid sequence different from the amino acid sequence of such a natural product-derived benzalacetone synthase. Even if it exists, it belongs to “benzalaceton synthase” in the present invention and can be used in the method of the present invention.
[0014] 従って、ベンザルアセトン合成酵素は、該酵素の遺伝子を上記の植物等の天然物か ら調製し、当業者に公知の適当な遺伝子組換え手法により、大腸菌等の原核細胞、 及び酵母等の真核細胞の適当な宿主中で発現させて得られる、所謂「組換え酵素」 として本発明方法で使用することも可能である。更に、部位特異的突然変異法等の 当業者の公知の任意の遺伝子工学的手法により天然物由来の該酵素遺伝子を改 変した遺伝子を発現させて得られる、 1個ないし数個のアミノ酸が置換、欠失、挿入 等した修飾'改変アミノ酸配列を有し、実質的に該酵素活性を有する (又は、該酵素 活性が増強した)ベンザルアセトン合成酵素も本発明方法で使用することができる。 尚、このような組換え酵素は、精製の都合上、 Hisタグのような当業者に公知の適当な タグ物質との融合蛋白質として発現されたものでも良い。更には、当業者に公知の任 意の方法でィ匕学合成されたポリペプチドからなるベンザルアセトン合成酵素も本発明 方法で使用することができる。 [0014] Accordingly, benzalacetone synthase is prepared from a natural product such as the above-mentioned plant or the like by using a suitable gene recombination technique known to those skilled in the art, and prokaryotic cells such as Escherichia coli, and yeast. It can also be used in the method of the present invention as a so-called “recombinant enzyme” obtained by expressing in a suitable host of eukaryotic cells such as. Furthermore, 1 to several amino acids obtained by expressing a gene obtained by modifying the enzyme gene derived from a natural product by any genetic engineering technique known to those skilled in the art, such as site-directed mutagenesis, are substituted. A benzalacetone synthase having a modified 'altered amino acid sequence such as deletion, insertion, etc. and having substantially the enzyme activity (or enhanced enzyme activity) can also be used in the method of the present invention. Such a recombinant enzyme may be expressed as a fusion protein with an appropriate tag substance known to those skilled in the art, such as a His tag, for the sake of purification. Furthermore, benzalacetone synthase comprising a polypeptide chemically synthesized by any method known to those skilled in the art can also be used in the method of the present invention.
[0015] 更に、本発明方法において、ベンザルアセトン合成酵素は当業者に公知の任意の 方法で精製されたものを使用することが反応の効率等の観点力 は好ましいが、天 然物 (植物)又は、大腸菌などの該酵素遺伝子による形質転換で得られた組換え体 力 調製された、該酵素を含む粗抽出物として使用することも可能である。  [0015] Furthermore, in the method of the present invention, the use of benzalacetone synthase purified by any method known to those skilled in the art is preferable from the standpoint of reaction efficiency and the like, but natural products (plants ) Or a recombinant product obtained by transformation with the enzyme gene such as Escherichia coli, and prepared as a crude extract containing the enzyme.
[0016] 一般式(1)で示されるアントラニル CoA誘導体及び一般式(2)で示されるマロニル CoA誘導体において、 R1及び R2は、夫々、水素、炭素原子、又は、炭素原子及びへ テロ原子を総計 10個、好ましくは 6個まで有する有機基を示す。このような有機基の 種類に特に制限はなぐ例えば、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素 基、脂環式炭化水素基、芳香族炭化水素基、複素環基に代表される酸素、窒素又 はィォゥ原子等のへテロ原子を含む各種有機基を含むものである。特に、 R1及び R2 は、夫々、水素又は炭素原子 6個までのアルキル基である低級アルキル基、ベンゼ ン、又は、ピリジン、フラン及びチォフェン等の複素環から誘導される各種の基を好適 例として挙げることができる。低級アルキル基の中でも、メチル基及びェチル基が好 ましい。 R1及び R2が水素の場合力 夫々、アントラ-ル CoA及びマロ-ル CoAに相当 し、一般式(3)において、 R1及び R2が水素の場合が 4-ヒドロキシ -2-キノリノンに相当 する。尚、マロ-ル CoA誘導体は市販されており容易に入手することが可能である。 又、アントラ-ル CoA誘導体は、例えば、アントラ-ル酸の誘導体力も文献 (Stoeckigt , J. & Zenk, M. H., Z. Naturforsch. 30c, 352, 1975)記載の方法に従って合成するこ とがでさる。  [0016] In the anthranyl CoA derivative represented by the general formula (1) and the malonyl CoA derivative represented by the general formula (2), R1 and R2 are each a sum of hydrogen, carbon atoms, or carbon atoms and heteroatoms. Organic groups having up to 10, preferably up to 6 are shown. There are no particular restrictions on the types of such organic groups, for example, oxygen represented by saturated aliphatic hydrocarbon groups, unsaturated aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, aromatic hydrocarbon groups, and heterocyclic groups. And various organic groups containing heteroatoms such as nitrogen or nitrogen atoms. In particular, R1 and R2 are each preferably hydrogen or a lower alkyl group having up to 6 carbon atoms, benzene, or various groups derived from heterocyclic rings such as pyridine, furan and thiophene. Can be mentioned. Of the lower alkyl groups, methyl and ethyl groups are preferred. When R1 and R2 are hydrogen, the forces correspond to anthral CoA and malol CoA, respectively. When R1 and R2 are hydrogen in general formula (3), they correspond to 4-hydroxy-2-quinolinone. The malol CoA derivative is commercially available and can be easily obtained. An anthral CoA derivative can also be synthesized, for example, according to the method described in the literature (Stoeckigt, J. & Zenk, MH, Z. Naturforsch. 30c, 352, 1975). .
[0017] 本発明方法は、アントラニル CoA誘導体とマロ-ル CoA誘導体との一分子縮合反 応であるので、反応の効率及び経済性の観点から、これらの基質分子は実質的に等 量使用することが好ましいが、両者の添加 (使用)量が等量である必要はない。  [0017] Since the method of the present invention is a single-molecule condensation reaction of an anthranyl CoA derivative and a malol CoA derivative, these substrate molecules are used in substantially equal amounts from the viewpoint of reaction efficiency and economy. Although it is preferable, the addition (use) amount of both does not need to be equal.
[0018] 酵素反応条件は、基質分子の種類、反応規模、酵素精製の度合 、等の反応の諸 条件に応じて当業者が適宜選択することが出来る。例えば、ベンザルアセトン合成酵 素(40 μ g/mL)に対して、夫々の基質分子(50 μ Μ)を用いて、 ρΗ 6〜8の緩衝液 中、反応温度 25〜35°C、好ましくは 25〜30°Cで、約 0. 5〜20時間、好ましくは約 1 〜20時間、反応させることが出来る。尚、反応は、リン酸カリウム緩衝液、トリス-塩酸 緩衝液等の当業者に公知の適当な緩衝液中で実施することが好ましい。更に、本発 明方法は、当業者に公知の任意の形態、例えば、バッチ式、又は、適当な支持体に 結合させた該酵素を含むカラム等を使用して連続的に酵素反応を行わせることも可 能である。 [0018] Enzyme reaction conditions can be appropriately selected by those skilled in the art according to various reaction conditions such as the type of substrate molecule, reaction scale, degree of enzyme purification, and the like. For example, benzal acetone synthesis fermentation Element (40 μg / mL) with each substrate molecule (50 μΜ) in a buffer solution of ρΗ 6-8 at a reaction temperature of 25-35 ° C, preferably 25-30 ° C For about 0.5 to 20 hours, preferably about 1 to 20 hours. The reaction is preferably carried out in an appropriate buffer known to those skilled in the art, such as potassium phosphate buffer and Tris-HCl buffer. Furthermore, in the present invention method, the enzyme reaction is continuously performed using any form known to those skilled in the art, for example, a batch system or a column containing the enzyme bound to an appropriate support. It is also possible.
[0019] 更に、本発明方法で合成された 4-ヒドロキシ -2-キノリノン類は、例えば、逆相 HPLC 及びシリカゲルカラム等の当業者に公知の任意の手段 ·方法で容易に精製すること が可能である。  [0019] Furthermore, 4-hydroxy-2-quinolinones synthesized by the method of the present invention can be easily purified by any means and method known to those skilled in the art, such as reverse phase HPLC and silica gel column. It is.
実施例  Example
[0020] 以下、実施例に則して本発明を更に詳しく説明する。尚、本発明の技術的範囲は これらの記載によって何等制限されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples. The technical scope of the present invention is not limited by these descriptions.
[0021] 非特許文献 4に記載の方法に従!、、ダイォゥ(Rheum palmutum)由来べンザルァセト ン合成酵素を N末に Hisタグを付加した組み換え酵素として大腸菌において異種発 現させ、ニッケルキレートカラムにより精製した。この精製酵素を 0.1 Mリン酸カリウム 緩衝液(pH 7.0)中、 N-メチルアントラ-ル CoA (50 μ Μ)、及び、メチルマロ-ル CoA (100 μ Μ)を同時に基質として、 30 °Cで 1時間反応させると、 4-ヒドロキシ -2-キノリノ ンが単一生成物として高収率 (85%)で得られた。同様に、アントラ-ル CoAとメチル マロ-ル CoAを基質とした場合にも高収率 (80%)で得られた。又、 N-メチルアントラ -ル CoA又はアントラ-ル CoAとマロ-ル CoAを基質とした場合では、それぞれ 10% 程度の収率であった(図 1)。  [0021] According to the method described in Non-Patent Document 4, heterozygous expression of Rheum palmutum-derived benzalaceton synthase in Escherichia coli as a recombinant enzyme with an N-terminal addition of a His tag was performed using a nickel chelate column. Purified. Using this purified enzyme in 0.1 M potassium phosphate buffer (pH 7.0) and N-methylanthral CoA (50 μΜ) and methylmalol CoA (100 μΜ) as substrates at 30 ° C. When reacted for 1 hour, 4-hydroxy-2-quinolinone was obtained as a single product in high yield (85%). Similarly, high yields (80%) were obtained when anthral CoA and methylmalol CoA were used as substrates. In addition, when N-methylanthral CoA or anthral CoA and malol CoA were used as substrates, the yields were about 10%, respectively (Fig. 1).
[0022] 尚、各酵素反応後、酵素反応生成物を酢酸ェチルなど有機溶媒で抽出した後、ロー タリーエバポレーターで濃縮し、 HPLCで目的の生成物を分取した。 TSK- gel ODS- 8 0Ts (4.6 x 150 mm;東ソー(株))カラムを用い、 0.1% TFA存在下で以下のメタノール 濃度勾配を用いて 40分間で溶出させた(0-5 min, 30% MeOH; 5-17 min, linear gradi ent from 30 to 60% MeOH; 17-25 min, 60% MeOH; 25-27 min, linear gradient from 60 to 70% MeOH; 27-35 min, 70% MeOH; 35-40 min, linear gradient from 70 to 100 % MeOH)0毎分 0.8 mlの流速で 0.5分毎に分取し、各画分の吸光スペクトル(200〜40 0 nm)を調べて 224〜228 nm、 272〜284 nm、 312-318 nmに極大吸収をもつ画分を 4 -ヒドロキシ -2-キノリノン画分として集めた。溶出時間;化合物 la (18.3 min),化合物 1 b (18.9 min),化合物 lc (22.8 min),化合物 Id (23.5 min)。 [0022] After each enzyme reaction, the enzyme reaction product was extracted with an organic solvent such as ethyl acetate, then concentrated with a rotary evaporator, and the target product was fractionated by HPLC. Using a TSK-gel ODS-8 0Ts (4.6 x 150 mm; Tosoh Corporation) column, elution was performed in the presence of 0.1% TFA for 40 minutes using the following methanol concentration gradient (0-5 min, 30% MeOH; 5-17 min, linear gradient from 30 to 60% MeOH; 17-25 min, 60% MeOH; 25-27 min, linear gradient from 60 to 70% MeOH; 27-35 min, 70% MeOH; 35 -40 min, linear gradient from 70 to 100 % MeOH) 0 Fractionated every 0.5 minutes at a flow rate of 0.8 ml per minute. Examine the absorption spectra (200 to 400 nm) of each fraction to 224 to 228 nm, 272 to 284 nm, and 312-318 nm. The fraction with the maximum absorption was collected as the 4-hydroxy-2-quinolinone fraction. Elution time: Compound la (18.3 min), Compound 1 b (18.9 min), Compound lc (22.8 min), Compound Id (23.5 min).
産業上の利用可能性  Industrial applicability
[0023] 形質転換大腸菌と人工基質を用いた醱酵法など生物工学の技術を用いて本発明 方法を実施することによって、安価で効率的な大量生産にも道を拓くことが期待され る。本発明により得られた、 4-ヒドロキシ -2-キノリノン類は、さらに分子修飾を施すこと が可能であり、上述した NMDAレセプターゃセロトニン 5-HTレセプター拮抗剤などを [0023] By implementing the method of the present invention using biotechnology such as fermentation using transformed Escherichia coli and an artificial substrate, it is expected to open a path to inexpensive and efficient mass production. 4-Hydroxy-2-quinolinones obtained by the present invention can be further subjected to molecular modification, such as the NMDA receptor serotonin 5-HT receptor antagonist described above.
3  Three
はじめとする、医薬品開発が可能となる。  First, drug development becomes possible.
[0024] 本明細書中に引用される文献に記載された内容は、本明細書の一部として本明細 書の開示内容を構成するものである。  [0024] The contents described in the documents cited in the present specification constitute the disclosure of the present specification as part of the present specification.

Claims

請求の範囲 ベンザルアセトン合成酵素を触媒として用いて、一般式 (ィ匕 1)で示されるアントラ-ル CoA誘導体及び一般式 (化 2)で示されるマロ-ル CoA誘導体の一分子縮合により一 般式 (化 3)で示される 4-ヒドロキシ -2-キノリノン類を合成する方法。 [Claims] Using benzalacetone synthase as a catalyst, one-molecule condensation of an anthral CoA derivative represented by the general formula (II) and a malol CoA derivative represented by the general formula A method for synthesizing 4-hydroxy-2-quinolinones represented by the general formula (Chemical Formula 3).
[化 1] [Chemical 1]
Figure imgf000010_0001
Figure imgf000010_0001
[化 2] [Chemical 2]
Figure imgf000010_0002
Figure imgf000010_0002
[化 3] R 1 [Chemical 3] R 1
Figure imgf000011_0001
Figure imgf000011_0001
(式中、 Rl及び R2は、夫々、水素、炭素原子、又は、炭素原子及びへテロ原子を総 計 10個まで有する有機基を示す) (In the formula, Rl and R2 each represent hydrogen, a carbon atom, or an organic group having up to 10 carbon atoms and heteroatoms in total)
[2] R1及び R2が、夫々、水素、炭素原子、又は、炭素原子及びへテロ原子を総計 6個ま で有する有機基である、請求項 1記載の方法。 [2] The method according to claim 1, wherein R1 and R2 are each hydrogen, a carbon atom, or an organic group having up to 6 carbon atoms and heteroatoms.
[3] R1及び R2力 夫々、水素又は低級アルキル基である、請求項 2記載の方法。 [3] The method according to claim 2, wherein R1 and R2 forces are each hydrogen or a lower alkyl group.
[4] R1及び R2が水素である、請求項 3記載の方法。 [4] The method according to claim 3, wherein R1 and R2 are hydrogen.
[5] R1が水素、 R2がメチル基である請求項 3記載の方法。 5. The method according to claim 3, wherein R1 is hydrogen and R2 is a methyl group.
[6] R1がメチル基、 R2が水素である請求項 3記載の方法。 6. The method according to claim 3, wherein R1 is a methyl group and R2 is hydrogen.
[7] R1及び R2力メチル基である、請求項 3記載の方法。 [7] The method of claim 3, wherein R1 and R2 are methyl groups.
[8] 実質的に等量のアントラニル CoA誘導体及びマロニル CoA誘導体を使用する、請求 項 1〜7のいずれか一項に記載の方法。  [8] The method according to any one of [1] to [7], wherein substantially equal amounts of anthranyl CoA derivative and malonyl CoA derivative are used.
[9] pH6〜8の緩衝液中、 25〜35°Cで 0. 5〜20時間反応させる、請求項 1〜8のいず れか一項に記載の方法。 [9] The method according to any one of claims 1 to 8, wherein the reaction is carried out in a buffer solution of pH 6 to 8 at 25 to 35 ° C for 0.5 to 20 hours.
[10] 0.1 Mリン酸カリウム緩衝液 (pH 7.0)中、 30 °Cで 1時間反応させる、請求項 9記載の 方法。 [10] The method according to claim 9, wherein the reaction is carried out in 0.1 M potassium phosphate buffer (pH 7.0) at 30 ° C. for 1 hour.
[11] 大腸菌を宿主として得られた組換え酵素であるべンザルアセトン合成酵素を使用す る、請求項 1〜10のいずれか一項に記載の方法。  [11] The method according to any one of [1] to [10], wherein benzalacetone synthase, which is a recombinant enzyme obtained using Escherichia coli as a host, is used.
PCT/JP2007/060964 2006-06-22 2007-05-30 Enzymatic synthesis method for 4-hydroxy-2-quinoline WO2007148514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006172160 2006-06-22
JP2006-172160 2006-06-22

Publications (1)

Publication Number Publication Date
WO2007148514A1 true WO2007148514A1 (en) 2007-12-27

Family

ID=38833257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060964 WO2007148514A1 (en) 2006-06-22 2007-05-30 Enzymatic synthesis method for 4-hydroxy-2-quinoline

Country Status (1)

Country Link
WO (1) WO2007148514A1 (en)

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ABE I. ET AL.: "Benzalacetone Synthase: A Novel Polyketide Synthase That Plays a Crucial Role in the Biosynthesis of Phenylbutanones in Rheum palmatum", EUR. J. BIOCHEM., vol. 268, no. 11, 2001, pages 3354 - 3359, XP003020225 *
ABE I. ET AL.: "Enzymatic Formation of an Unnatural C6-C5 Aromatic Polyketide by Plant Type III Polyketide Synthase", ORG. LETT., vol. 4, no. 21, 2002, pages 3623 - 3626 *
ABE I. ET AL.: "Enzymatic Formation of Quinolone Alkaloids by a Plant Type III Polyketide Synthase", ORG. LETT., vol. 8, no. 26, December 2006 (2006-12-01), pages 6063 - 6065, XP003020228 *
ABE I. ET AL.: "Enzymatic Formation of Unnatural Novel Polyketides from Alternate Starter and Nonphysiological Extension Substrate by Chalcone Synthase", ORG. LETT., vol. 5, no. 8, 2003, pages 1277 - 1280, XP003020222 *
ABE I.: "Shokubutsu 2ji Taisha Sanbutsu no Bunshi Tayosei o Soshutsu suru III-gata Polyketide Gosei Koso no Seigosei Kogaku", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 48, no. 16, 2003, pages 2275 - 2285, XP003020223 *
BOREJSZA-WYSOCKI W. ET AL.: "Aromatic Polyketide Synthases: Purification, Characterization, and Antibody Development to Benzalacetone Synthase from Raspberry Fruits", PLANT PHYSIOL., vol. 110, no. 3, 1996, pages 791 - 799, XP003020226 *
DITTMER D.C. ET AL.: "Synthesis of Coumarins, 4-Hydroxycoumarins and 4-Hydroxyquinolinones by Tellurium-Triggered Cyclizations", J. ORG. CHEM., vol. 70, no. 12, 2005, pages 4682 - 4686, XP003020227 *
JEZ J.M. ET AL.: "Expanding the Biosynthetic Repertoire of Plant Type III Polyketide Synthases by Altering Starter Molecule Specificity", PROC. NATL. ACAD. SCI., vol. 99, no. 8, 2002, pages 5319 - 5324, XP003020224 *
MORITA H. ET AL.: "Enzymatic Formation of Unnatural Aromatic Polyketides by Chalcone Synthase", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 279, no. 1, 2000, pages 190 - 195, XP003020220 *
MORITA H. ET AL.: "Novel Polyketides Synthesized with a Higher Plant Stilbene Synthase", EUR. J. BIOCHEM., vol. 268, no. 13, 2001, pages 3759 - 3766, XP003020221 *

Similar Documents

Publication Publication Date Title
US7432100B2 (en) Variant aldolase and processes for producing an optically active IHOG and an optically active monatin using the same
CN106916857B (en) A method of producing L-glufosinate-ammonium
KR101910259B1 (en) Transaminase and use thereof
Hadfield et al. The crystal structure of the actIII actinorhodin polyketide reductase: proposed mechanism for ACP and polyketide binding
CN113846069B (en) Amphetamine dehydrogenase mutant and application thereof in chiral amine synthesis
AU2016427130B2 (en) Method for preparing rebaudioside N using enzymatic method
JP6853549B2 (en) Modified meso-diaminopimelic acid dehydrogenase
CN106701723B (en) D-Fructose -6- phosphate aldolase A mutant, recombinant expression carrier, genetic engineering bacterium and its application and reaction product
WO2018219107A1 (en) Engineered polypeptides and their applications in synthesis of beta-hydroxy-alpha-amino acids
JP2012000059A (en) FERMENTATIVE PRODUCTION OF MUCONOLACTONE, β-KETOADIPIC ACID AND/OR LEVULINIC ACID
US10370693B2 (en) Transaminases
Juneja et al. Mechanistic implications for the chorismatase FkbO based on the crystal structure
CN105018439B (en) A kind of carbonyl reductase and its application in synthesis of chiral hydroxy compounds
CN113930404B (en) Method for synthesizing chiral tofacitinib citrate intermediate by enzymatic method
CN105950595B (en) (-)-gamma-lactam enzyme, gene, mutant, carrier and its preparation and application
WO2007148514A1 (en) Enzymatic synthesis method for 4-hydroxy-2-quinoline
Ordu et al. Protein engineering applications on industrially important enzymes: Candida methylica FDH as a case study
CN109180691B (en) C3-aromatic pyrroloindole alkaloid and synthetic method thereof
CN109402099B (en) Lysine cyclodeaminase and application thereof
CN103409402B (en) Aldolase mutant
CN113862234A (en) Transaminase and application thereof in preparation of (R) -alpha-methyltryptamine compounds
WO2018166237A1 (en) (s)-carbonyl reductase heteropolymers and application thereof in catalysis of polybenzene ring compounds
WO2023068215A1 (en) Efficient chemo-enzymatic synthesis method for cyclic peptide
KR100783521B1 (en) Flavone synthase derived from Oriza sativa flavone synthase gene methods for preparing the same and process for producing apigenin in microorganism by using the same
KR101223664B1 (en) Method for preparing a carboxylic acid using nitrilase RMN1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP